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Abstract

Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants,

which means EVs could provide reactive power at any state-of-charge (SOC). This

dissertation shows four-quadrant operation of EVs and aggregation of EVs for support

of grid operations.

First, this work develops hierarchical coordination frameworks to optimally manage

active and reactive power dispatch of number of spatially distributed EVs incorporat-

ing distribution grid level constraints. This work demonstrates benefits of coordinated

dispatch of active and reactive power from EVs using a 33-node distribution feeder

with large number of EVs (more than 5,000). Case studies demonstrate that, in

constrained distribution grids, coordinated charging reduces the average cost of EV

charging if the charging takes place at non-unity power factor mode compared to

unity power factor. Similarly, the results also demonstrate that distribution grids

can accommodate charging of increased number of EVs if EV charging takes place at

non-unity power factor mode compared to the unity power factor.

Next, this work utilizes detailed EV battery model that could be leveraged for its

four-quadrant operations. Then, the developed work coordinates the operations of

EVs and distribution feeder to support voltage profile on the grid in real time. The

xxi



grid level problem is devised as a distribution optimal power flow model to compute

voltage regulation signal to dispatch active/reactive power setpoints of individual

EVs. The efficacy of the developed models are demonstrated by using a LV secondary

feeder, where EVs’ operating in all four quadrants are shown to compensate the feeder

voltage fluctuations caused by daily time varying residential loads, while honoring

other operational constraints of the feeder.

Furthermore, a novel grid application, called virtual power plant (VPP), is developed.

Traditional nonlinear power flow problems are nonconvex, hence, time consuming to

solve. In order to be used in real time simulation in VPP, an efficient linearized

optimal power flow model is developed. This linearization method is used to solve

a 534-bus power system with 3 VPPs in real-time. This work also implements VPP

scheduling in real-time using OPAL-RT’s simulator in hardware-in-the-loop (HIL),

where the loads are emulated using micro-controller devices.

xxii



Chapter 1

Introduction

1.1 Motivation

Electric vehicles (EVs) are increasingly used due to their clean nature. Fossil fuel

generates a lot of greenhouse gas emission and EVs are one of the solutions to reduce

it. According to [1], EV sales in USA by year and month as for 2016 is shown in

Fig. 1.1. Over 159,000 new EVs hit the road, and sales were 38% more than the

numbers in 2015. 2016 EV sales by state is shown in Fig. 1.2. California is leading

overwhelmingly, representing over 50% of the total EV sales in the USA. The other 9

states including CT, ME, MD, MA, NJ, NY, OR, RI, VT account for another 25%.
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Figure 1.1: 2016 EV sales in USA by year and month [1].

Figure 1.2: 2016 EV sales by state [1].

EVs, due to their sizable power ratings and flexibility of charging, possess great de-

mand response potential in electric power grids. EV aggregation not only benefits

the operations of distribution grids, this could support system-wide frequency regu-

lation, load following services, etc [7, 8, 9]. Despite the benefits EVs provide to the
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grids [10, 11, 12, 13, 14], high penetration of EVs adversely impact power grids in

case of uncoordinated charging. High penetration of EV leads to several issues on

distribution feeders including increased energy losses, voltage deviations, and trans-

former overloading. Studies showed that about 50% penetration of EV leads to 50%

overloading of distribution transformers [15] and causes 25% more energy losses in the

feeders [16]. Uncoordinated EV charging requires replacing most 50 kVA distribution

transformers if EV penetration level reaches 40% [17]. To reduce the negative im-

pacts of EVs on grid operations and equipment, coordinated charging schemes can be

devised, in which distribution system operator (DSO) would coordinate the charging

of EVs [10, 18, 19, 20, 21, 22].

This dissertation concentrates around solving distribution level operational problems

by utilizing the flexibility of EV loads.

1.2 Smart Grid and Demand Response

Smart grid refers to the communication and computer-based technologies which are

used for remote and automatic control of electric power grids, from generation all the

way through transmission and distribution systems, in order to improve efficiency,

reliability and security of the grids [23]. Smart grid also helps to optimize grid oper-

ations, to apply ‘smart’ meters and other sensors for measuring system conditions,

3



to encourage demand response activities, and to accommodate high penetration

of EVs and distributed energy resources (DERs) into systems. Generally, smart

grid is intelligent, efficient, accommodating, quality-focused, resilient, and ‘green’ [24].

With the help of smart meters, advanced metering infrastructure (AMI), and ad-

vanced computing capabilities, it becomes possible to predict the peak loads on the

grids and to take demand response actions to avoid overload on the grids, which other-

wise might lead to power failure. Although DERs such as wind and solar are growing

due to environmental reasons, they are generally non-dispatchable and intermittent

compared to the demand response resources [25]. Demand response, also known as

demand-side management, is a recent trend in smart grids. This means consumers can

make corresponding interactions and responses to grid operators power adjustments

while respecting their own choices and privacy, such as consuming less energy during

peak periods or shifting power consumption to a different time. Demand response not

only means lowering peak demand, rather, it also represents demand increase when

there is high power production [26]. Without demand response, independent system

operators (ISOs) and regional transmission operators (RTOs) determine the electric-

ity price in power markets with the assumption that customers could not adjust their

power usages even when the price is very high. Such markets result in fixed energy

price and there will be no motivation for customers to defer using energy intensive

appliances such as EVs, air conditioners, water heating, and clothes dryers, at peak

4



hours [27].

There are several options to implement demand response, such as price options, in-

centive options, and demand reduction bids. Time of use rates (TOU), critical peak

pricing (CPP) and real-time pricing (RTP) are popular price options. TOU refers to

different fixed rates for different times of a day. CPP refers to an extra-high rate which

is planned by utilities during a limited time period. RTP refers to real-time changing

rates in response to wholesale market prices. For incentive options, customers receive

incentive payments for load reduction or load curtailment. For a demand bidding

program, customers could bid to reduce or curtail loads in real-time market when

wholesale market prices are high [26]. By getting compensations, various rates and

other financial incentives, consumers can be engaged in the grid operations by reduc-

ing their electricity usage or even send electricity back to the grid at the peak power

usage periods.

The main purpose of demand response is to balance the supply and demand with the

help of demand itself [28]. All the generation, transmission, distribution systems and

customers can get benefits from demand response programs. For generation systems,

they can produce less power and at peak time, decrease power spinning reserves and

reduce capital cost investments. For transmission and distribution systems, demand

response can relieve congestion, increase reliability and decrease power losses. For

customers, demand response and load shifting help them to reduce electricity bills

5



[26, 27].

Demand response also has its own limitations. For instance, it can affect customers’

comfort to some extent and may impact the grid adversely if not coordinated. Refer-

ence [29] proposed comfort indices such as severity indices, scale indices and duration

indices to measure how severely and how long consumer’s comfort is violated. Ref-

erence [30] proposed a demand response strategy as a load shaping tool to solve

distribution transformer overloading problem by operating home appliances without

violating customers’ comfort and privacy. Reference [31] proposed an intelligent home

energy management (HEM) algorithm to keep power consumption of the whole house

under demand limit. A HEM system helps with demand response applications for

end-use costumers. HEM system could monitor, control, manage and operate home

appliances to reduce, shift or curtail loads in response to system requirements. Ref-

erences [29, 30, 31] only considered high power consumption home appliances in the

research, such as water heaters, air conditioners, clothes dryers, and EVs, ignoring

the detailed modeling of grid for analysing the impact of demand response on the

grids.

6



1.3 Electric Vehicle Loads

EVs provide excellent demand response potential due to their size and flexibility. Not

only distribution grids benefit from demand response of EVs, but also EV consumers

could get monetary incentives from the grid operators. The benefits are mutual,

which could motivate the EV owners to get involved in demand response activities.

EVs require regular charging due to the limited battery capacities. The time and

power EV takes to charge depend on charging infrastructure. Table 1.1 shows three

EV charging levels and ratings. Level 1 charging is 1-phase slow charging, level 2

charging comes with 3-phase slow and fast charging, and level 3 charging is fast

charging.

Table 1.1
Levels of EV charging[6].

Levels of charging Ampere (A) Voltage (V) Power (kW)

Level 1 charging
AC plug, single phase, slow 12− 16 120 1.3− 1.9

Level 2 charging
AC plug, 3-phase, slow and fast ≤ 80 240 ≤ 19.2

Level 3 charging
DC charging, 3-phase, fast ≤ 80 480 ≤ 130

The demand response from EVs come from controlling or deferring the charging of

EVs. Therefore, efficient EV battery charging algorithms should be emphasized and

studied for an effective demand response program from the EVs. Some research has
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already been carried out in this area in recent years, and according to [6], EV charging

schemes can be classified into two main categories: uncontrolled and controlled smart

charging.

Uncontrolled Charging, also called uncoordinated charging, refers to start serving

and charging EVs right after they are plugged in, without arranging and organizing

their charging schedules. An uncontrolled charging flow chart is shown in Figure 1.3.

Uncontrolled charging can lead to several issues including large voltage deviations,

peak load increasing, transformer/feeder overload, etc [6].

Controlled Charging, which is also referred to as coordinated charging, tries to

solve the charging schedules while keeping the power grids from overloading issues,

limiting load profile valley, or anything that can decrease power quality and reliability.

The control objectives are either optimal economic objectives, such as minimum cost,

minimum power losses or maximum profit, or optimal operational objectives, such as

valley-filling/peak shaving/flattening of the load profiles or even maximizing the grid

load factor. According to [6], controlled charging schemes can further be classified

into indirectly-controlled charging, smart charging, and bidirectional charging. For

indirectly-controlled charging, directly-controlled parameters such as charging rate

and charging duration are not used. Instead, any other indirect factors, such as

incentives, which can help EV owners make their decisions are used. For smart

charging, directly-controlled parameters are used. Charging power can vary from

8



time to time, place to place depending on system’s requirement; thus, the EV totally

turns to a flexible load in this case. However, the energy may only flow from grid

to vehicle (G2V), not the other way around. The majority of EV coordinations

are about unidirectional charging between EVs and power grids. For bidirectional

Figure 1.3: Flow chart for uncontrolled charging of EVs.
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charging [32, 33, 34, 35, 36, 37, 38], the power electronic devices make it possible

for electricity to flow from vehicle to grid (V2G) at the same time as G2V. In that

case, EVs are not only consumers or flexible loads, but moving energy sources. With

V2G options, EVs can participate in frequency regulation and many power markets

such as bulk energy markets and spinning reserve markets. They could flatten the

load profile by taking energy from EV loads when there is a high load demand in the

system and charging EV loads when the demand is low.

1.4 State-of-the-art

Coordinated charging of EVs is an active area of research. References [11, 39] pro-

posed coordinated EV charging to minimize the power losses and maximize the grid

load factor with quadratic programming (QP) and dynamic programming (DP) ap-

proaches. The QP can optimize quadratic function while satisfying linear constraints.

DP is the shortest path technique and it has to store every possible passes through

stages so it takes more time than QP. Reference [40] proposed a new charging tech-

nique to optimize the total power delivered to EVs within the constrains set. Ref-

erence [41] used smart charging to carry out unidirectional V2G regulation. The

proposed method requires communication between EVs and aggregator, and the ag-

gregator sends all the combined data of EVs to markets to bid. The method finds

the preferred operating point (POP) which is the target average power consumption
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around which the EV could be charged. However, this work only discussed EV power

dispatch ignoring the distribution grid constraints. Reference [9] discussed a novel

algorithm for bidirectional charging and discharging of EVs. The authors in [9] pro-

posed optimal schedule of EVs to minimize total costs in each group of EVs. They

proved that the performance of this approach is close to the global one. Reference [42]

proposed a coordinated real-time smart load management (RT-SLM) algorithm based

on maximum sensitivities selection (MSS) to minimize power losses. The RT-SLM

allows EVs to charge as soon as possible within priority-charging time zones and all

grid constrains. Reference [43] developed an optimal charging/discharging control of

EVs to minimize operation costs which includes energy costs and battery degrada-

tion costs, and also considers system voltage constrains and line current constrains.

Reference [12] proposed an optimal charging and V2G control of EVs to minimize

the total charging costs subject to demand constrains. This paper focused on the EV

dispatch issues and didn’t explicitly modeled the grid constraints.

Possible coordination charging scheduling can be classified into two categories: cen-

tralized charging and decentralized charging [44]. For centralized charging scheduling,

the control center (e.g., grid control center) decides precise charging time and charg-

ing rate of each EV while decentralized charging scheduling, also called distributed

charging, allows each EV to make their own charging decision. Centralized algorithms

optimize the charging profile of all the EVs with all the relevant information collected

at a centralized location. Their objective functions include minimize power loss, load
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variance minimization, and EV penetration maximization [11, 45, 46].

Figure 1.4: Hierarchical Control of Distribution Grid and EVs.

1.4.1 Distributed EV Charging Algorithms

Thanks to smart meters, AMI and communication techniques, EVs are able to decide

their own charging profile, which is called decentralized algorithm. Decentralized

control can effectively reduce computational complexities due to decomposition of

the large centralized scheduling problem. Reference [47] proposed algorithms to solve

optimal decentralized charging (ODC) models, which use synchronous, asynchronous,

and real-time ODC algorithms. Those algorithms can help solve valley filling and
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flatten load profiles. EVs update their charging schedule profile in each iteration

depending on the control signals obtained from the control center. Control center

also updates its control signal to help EVs adjust their schedules. Reference [44] is

also solving valley-filling with decentralized charging control. However, the papers

[44, 47] do not consider modeling of the grid side. Similarly, in [48] a decentralized

algorithm is proposed which is based on iterative water-filling and the objective is

to flatten the total demand profile with bidirectional energy flow and decentralized

control. This paper also focused on load demand and EV dispatch problems but

didn’t explicitly model the power grid. Reference [49] developed a droop-based control

and novel distributed V2G dispatch algorithm to maximize revenues of aggregators

from ancillary services. Reference [50] developed a decentralized bidirectional EV

coordination charging method to carry out valley-filling, aiming to minimize load

variance. Similarly, the decentralized charging mechanism in [51] minimize aggregate

load variance to avoid system overloading with overload cost functions.

Hierarchical computing approaches was brought up by [47, 52, 53]. There can be

several levels and necessary information can be exchanged among different levels. A

big demand dispatch problem can be split into several small problems which can re-

duce computational complexity to a great extent. Reference [54] proposed a bi-level

hierarchical vehicle-to-grid optimization framework, as showed in Figure 1.4. There

are both distribution grid level and EV aggregation level involved in the hierarchy.
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Information such as each EV owners preferences, EVs state of charge (SOC), distri-

bution system control commands and market operators strategies are supposed to

exchange among every member inside this hierarchy.

A centralized approach to solve EV scheduling problem is computationally involving

in a practical sized distribution system. To reduce the computational complexity,

distributed and hierarchical computing approaches can be used with information ex-

change among various levels in the hierarchy. It is shown that computational com-

plexity can be reduced by using distributed approach, which leads to small manage-

able problems. Therefore, in this proposed work distributed algorithm, particularly

ADMM, will be used to solve optimal scheduling of large number of EVs in distribu-

tion grids.

1.4.2 Reactive Power Support from EVs

Every single customer device consumes some amount of reactive power. Reactive

power flow affects voltages throughout the system, and helps improve voltage profile,

grid reliability, and security. It also helps increase transferring power factor and im-

prove real power transfer capability. Traditionally, reactive power is generated by syn-

chronous generators, synchronous condensers, capacitors, static VAR compensators
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(SVCs), static synchronous compensators (STATCOMs), flexible ac transmission sys-

tems (FACTS) and distributed generation. But, the shortcomings are the reactive

power capacity they generate is limited and reactive power needs to be transmitted

from a fixed place to the loads [55, 56]. Currently, most of the reactive power gets

to the load all the way through generation, transmission and distribution systems,

which causes more power losses and make transformers get overloaded.

Even though the optimal EV scheduling has been an active research topic recently,

reactive power dispatch of EVs is not discussed much. Grid applications, such as

frequency regulation, load following, etc. [7, 8, 57] can be obtained from active power

dispatch of EVs, while reactive power dispatch could provide ancillary services for

voltage support [3, 58]. With power-electronics based charging infrastructure, the EV

charging/discharging could be operated in any P-Q quadrants, as shown in Figure 1.5.

In fact, the EVs could generate/consume reactive power at any SOC level without

impacting lifecycle of the batteries [3, 59, 60]. With this control flexibility, EVs can

support reactive power and voltage control applications in the power grid [61].

According to [62], EVs can respond to the system demand locally and fast, and

provide reactive power back to the grid even without battery. Reference [63] also

pointed out that EVs can participate in ancillary service market and demand response

by providing reactive power to the grid. Reference [64] pointed out that there is no

battery degradation in reactive power market, and presented both decoupled and
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coupled energy and reactive power markets with EVs integrated. Therefore, EVs

provide an efficient way to support power systems with reactive power. In addition,

EV owners can receive compensation for providing reactive power support to the grid.

With reactive power, bidirectional power occurs [52, 65] with EV charging process

taking place in any of the P-Q quadrants, as shown in Figure 1.5.

Usually, V2G refers to active power flowing from vehicles to grids. However, chargers

can also provide reactive power support back to the grid whenever they get a chance to

plug in outlets. Reference [66] designed a bidirectional battery charger which enables

EV itself send reactive power back to the grid, and balances the reactive power

between supply and demand. This on-site reactive power can reduce the reactive

power transmission through the entire grid and take advantage of several operation

modes of the EVs. However, most of the papers on reactive power from EVs focus on

designing electronic circuit interface. For instance, [65] designed a battery charger for

V2G reactive power compensation with inverter dc-link capacitor and [67] developed

several non-isolated bi-directional DC-DC converters for EV charging.

Some paper focus on the battery level, such as in [68]. Other papers such as [55, 56, 69]

focus on the reactive power market level. Reference [55] proposed a stochastic scheme

for clearing of reactive power market with EVs involved in, and solved it as a mixed

integer non-linear programming (MINLP) problem. Reference [69] came up with a

decentralized EV on-street parking and charging scheduling method for V2G reactive
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Figure 1.5: Operation modes of the EVs.

power compensation. EVs are used as mobile reactive power resources in this scheme.

Since reactive power support is an important issue in power grids, in this proposal,

the reactive power support from the EVs will be included while solving the optimal

scheduling of EVs.
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1.5 Literature Review

1.5.1 Coordinated EV Charging with Reactive Power Sup-

port to Distribution Grids

DSO can limit charging power for EVs based on existing system peak load in co-

ordinated scheme [70, 71]. DSO may use operational limits on voltage drop, feeder

current rating, etc., to coordinate EV charhing [72, 73]. In constrained feeders, EV

coordination helps maintain distribution grid operational limits [74, 75]. However,

when DSO imposes limits on charging power for the EVs to maintain the grid con-

straints, the cost of charging EVs may increase. This can happen when dynamic

energy pricing scheme is used.

Centralized approach to solve EV scheduling problem on practical-sized grid with

large penetration of EVs becomes computationally challenging task due to mixed-

integer non-linear nature of the problem [76, 77]. In [72], EV scheduling with grid

constraints is simplified to a linear programming (LP) problem; however, the re-

sulting LP problem may be infeasible to the original nonlinear model. Distributed

and hierarchical computing approaches have also been used to achieve computational

efficiency [48, 77]. However, references [48, 77] did not consider modeling of the grid.
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Even though a rich literature exists for optimal active power scheduling of EVs,

reactive power dispatch is not discussed often. Grid applications, such as frequency

regulation, load following, etc. [7, 8, 57] can be obtained from active power dispatch of

EVs, while reactive power dispatch could provide ancillary services for voltage support

[3, 58]. EV could be charged/discharged in any P-Q quadrants with advanced charging

infrastructure. In fact, the EVs could generate/consume reactive power at any state-

of-charge (SOC) level without impacting life cycle of the batteries [3, 59, 60, 78, 79].

With this control flexibility, EVs can support reactive power and voltage control

applications in the power grid [61]. According to [3], EVs can respond to the system

demand locally and fast, and provide reactive power back to the grid even without

battery. It was also pointed out in [59] EVs can participate in ancillary service

market and demand response by providing reactive power to the grid. The authors in

[64] specified that there is no battery degradation when EVs participate in reactive

power markets, and presented both decoupled and coupled energy and reactive power

markets for EVs. Hence, EVs provide an efficient way to support power grids with

reactive power.
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1.5.2 Four Quadrant Operation of EVs for Voltage Support

and Real Time Implementation

Uncontrolled charging of large number of EVs leads to increased feeder losses, voltage

deviations, overloading of distribution transformers, and the need for network rein-

forcements [22, 80, 81]. Studies showed that 45% EV penetration will lead to 50%

overloading on the transformers and 25% increase in the energy losses in the distri-

bution system [82]. Similar observation is made in [17] that uncoordinated charging

of EVs will require replacing all 50 kVA transformers when EV penetration exceeds

40%.

In coordinated charging, DSO could restrict charging of EVs based on existing system

peak load [70, 71], or using operational limits on voltage drop, feeder current rating,

etc. [72, 73]. In previous studies [74], it is shown that in constrained distribution

grids, coordinated charging of EVs help maintain distribution grid operational limits;

however, average cost of charging EVs may increase. This could happen particu-

larly when EVs are subscribed to dynamic energy prices and DSO imposes limits on

charging power for the EVs to maintain the grid constraints.

The peak loads caused by EV charging can be restrained either by unidirectional
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EV charging management [22, 83] or by discharging EV batteries into the grid us-

ing vehicle-to-grid (V2G) technology [84, 85, 86]. In coordinated charging schemes,

distribution system operator (DSO) would coordinate the charging to minimize the

adverse impacts of EVs on grid operations and equipment [18, 20, 22, 73]. DSO could

restrict charging of EVs based on existing system peak load [70, 71], or using oper-

ational limits on voltage drop, feeder current rating, etc. [72, 73]. The DSO could

use full-fledged optimization model with objectives such as load profile optimization,

loss/cost/emission minimization [87, 88], and revenue maximization [32] to coordinate

the charging of EVs. Contrary to the problems due to large EV penetration, there is

also a great potential for demand response management and grid ancillary services in

distribution feeders due to flexibility of EVs’ charging and their sizable power ratings

[10, 89, 90, 91].

At the distribution level, EVs can provide Volt/Var support [63, 86, 89, 92, 93].

Traditionally, this service is provided only by utilizing load tap changers (LTCs)

and capacitor banks at the distribution level [94, 95]. Even though the optimal EV

scheduling has been an active research topic recently, reactive power dispatch of EVs

is not discussed much. Grid applications, such as frequency regulation, load following,

etc., can be obtained from active power dispatch of EVs [7, 8], while reactive power

dispatch could provide ancillary services for voltage support [3, 63]. According to

[3], EVs can respond to the system demand locally and fast, and provide reactive

power back to the grid even without battery. With advanced power-electronics based
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charging infrastructure, the EV charging/discharging could be operated in any P-Q

quadrants. In fact, the EVs could generate/consume reactive power at any state-

of-charge (SOC) level without impacting life cycle of the batteries [3, 63, 64, 78].

With this control flexibility, EVs can support reactive power and voltage control

applications in the power grids.

Reactive power potential of EVs using a residential 3.3 kVA and a commercial 30 kVA

charging station is demonstrated in [86, 93]. Recent work in [96] utilized EVs and

LTCs to regulate voltage in distribution feeder. Similarly, reactive power dispatch of

EVs [97] and 4-quadrant operations of EVs [98, 99] for voltage control are recently

proposed. Even though these studies focus on reactive power control of EVs for grid

voltage support, modeling is primarily focused on grid side, while battery and charger

models are overly simplified.

1.5.3 Real-time Virtual Power Plant Coordination at Distri-

bution Level

With large penetration of Distributed Energy Resources (DERs), storage, and flexi-

ble loads on low voltage grid, the concept of virtual power plant (VPP) is becoming

reality. VPP is an efficient way to couple small DG units with demand response (DR)

and distributed energy storage into one large aggregation which can participate on
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real-time power balancing. VPP is a power plant with dynamic and limited power

and energy capacity constraints. VPP’s operating bounds are based on several factors

in the VPP including heterogeneity of devices, customers’ preferences, distribution

network constraints, etc. Therefore, modeling of network constraints in VPP coordi-

nation is very crucuial, as the resources are spatially distributed on the low voltage

network [100, 101]. Recent works in VPPs [101, 102] demonstrates VPP dispatch us-

ing individual DER constraints and system constraints. Reference [103] developed an

optimization framework for DER aggregation to emulate a VPP, which can provide

regulation services. In other related work on VPPs, optimal scheduling of VPPs are

presented in [104, 105], and value of energy storage devices into VPP is shown in

[106].

With the help of advanced metering infrastructure and advanced information and

communication technologies, parameters and status of smart grids can be accurately

monitored and controlled [107]. On-load tap changers (OLTC), step voltage regu-

lators (SVR), and shunt capacitors (SC) can be remotely controlled to help power

systems operate within constraints and optimize objective functions (such as loss min-

imization). Mathematically, this could be achieved through distribution level Optimal

Power Flow (DOPF). DOPF in accurate formulation is non-liner and non-convex, and

may involve integer control. DOPF has inherent computational challenges that pro-

hibits its application in real-time control [108]. Therefore, a non-convex version of

DOPF may not be suitable for VPP dispatch, if a fast grid service is sought from
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the VPP. In this context, a linearized version of DOPF model could be a possible

solution to dispatch VPP in real time.

Several recent works have used linearization approaches for DOPF, to convert non-

linear problem to linear programming (LP) problem. A piece-wise linear approxima-

tion is used in [109, 110, 111, 112, 113]. A curve-fitting technique is used in [114] to

obtain linear equivalents. Sensitivity coefficients are used in [115, 116] to linearize

the relationship between voltages and control variables. DistFlow method is used in

[113, 117, 118, 119, 120] to approximate power flow model assuming line losses are

negligible and voltage deviations are small. Further, simplified-DistFlow method is

used in a linear approximation of branch flow model in [121, 122] by dropping the

second order terms. Truncated Taylor series is used in [112, 123] to linearize power

flow equations. It used first-order approximation of P, Q and V around the operating

point to transform non-linear constraints to linear constraints.

1.6 Contribution of the Dissertation

The main contributions of this dissertation are:

† Bi-level EV and grid optimization models are developed; Inclusion of reactive

power in the formulation of optimal EV charge scheduling and to the best of the
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author’s knowledge, this is the first work that considers both active and reactive

power in the optimal EV scheduling formulation; Modeling of comprehensive

distribution optimal power flow with inclusion of flexible reactive power support

from EVs, load shifting, and curtailment as demand response options; Applica-

tions that demonstrate coordinated reactive power dispatch of EVs combined

with active power can result in higher EV penetration without impacting the

grid.

† Inclusion of reactive power in the formulation of optimal EV charge scheduling

problems at distribution grid level and, integration to the detailed EV charger/-

battery model for grid services such as voltage support applications; Real-time

implementation of 4-quadrant operation of EV.

† A novel linearized optimal power flow approach is proposed by taking first or-

der of Taylor series expansion; Voltage regulation signals in terms of active

and reactive power dispatch are generated by linearizing about the operation

points; Distribution level VPP coordinator is developed to reschedule VPPs

against distribution constraints; Real-time hardware-in-the-loop (HIL) simula-

tion is implemented.
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Chapter 2

Background

2.1 Introduction

This chapter describes background information required to understand the contents

provided in Chapters 3,4, and 5. Specifically, this chapter describes mathematical

models of distribution power flow with operational constraints, EV model, and EV

charger model.
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2.2 Nomenclature

Subscripts

ag EV aggregator

c curtailment

g grid

i node number/EV aggregator number

init initial value

j branch number which connects node i and node i+ 1

nom nominal value

ph phase, ph=a,b,c

rv receiving end

s shifting

sd sending end

t time
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Superscripts

base base load

c curtailment

Cap capacitor load

consI constant current load

consP constant power load

consZ constant impedance load

EV EV loads

max maximum value/upper limit

min minimum value/lower limit

R rating value

req minimum requirement

s shifting

V ar variable load

Xfm transformer

Parameters

Δstep Δstep = 0.00625 per unit

29



Δt time interval

η efficiency

γ trade-off parameter

λ penalty factor/birth rate

μ death rate

ρ augmented Lagrangian parameter, penalty factor

A,B,C,D three phase ABCD parameter matrices

B binary number

c(t) price per unit

E state

k population of a size/ current iteration number

N number of EVs/ number of agents

P probability

tap tap number, tap=-16,-15,...,15,16

SOC state of charge

SOD state of discharge

TP total active power

TS total apparent power

u scaled price vector
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Variables

I complex current vector

Ī complex conjugate of current vector

P active power

Q reactive power

S apparent power

V complex voltage vector

x load profile, which is a vector

x̄ average load profile of all the agents

Z impedance

Functions

∫
integral

f cost function

� real part of a complex number

� imaginary part of a complex number
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2.3 Distribution Power Flow Model

Kirchhoff’s circuit law (KCL) and Kirchhoff’s voltage law (KVL) are used to formulate

the distribution circuit equation [124]. The diagram of component connection is shown

in Figure 2.1.

Figure 2.1: The diagram of components.

The series elements such as cables, transformers, conductors and load tap changers

are modeled with ABCD parameters, which can be formulated as,

⎡
⎢⎢⎣ Vi,ph(t)

Isd,j,ph(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣Aj Bj

Cj Dj

⎤
⎥⎥⎦
⎡
⎢⎢⎣Vi+1,ph(t)

Irv,j,ph(t)

⎤
⎥⎥⎦ (2.1)

The equation constrains above is based on KVL.
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Three phase transformers are modeled based on either delta connection or wye connec-

tion. Distribution cables and conductors are modeled based on pi-equivalent circuits.

Load tap changers (LTC) enable voltage regulation of output by adjusting discrete

numbers of turns to get different output voltage ratios. The voltage range being used

in this paper is [0.9, 1.1] per unit, and 32 steps included in the tap changer. So there

is 0.00625 per unit difference between each step. The LTC is also modeled with the

equation above, and the ABCD parameters are represented as follows,

ALTC(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣
1 + Δstep × tapAph 0 0

0 1 + Δstep × tapBph 0

0 0 1 + Δstep × tapCph

⎤
⎥⎥⎥⎥⎥⎥⎦ (2.2)

BLTC(t) = CLTC(t) = [0] (2.3)

DLTC(t) = A−1
LTC(t) (2.4)

Shunt components refer to constant impedance load, constant current load, constant

power load, capacitor banks, and variable loads. Capacitor banks are modeled as

constant impedance load. The models and equations for those loads are represented

below, and Vnom stands for nominal voltage for single phase.
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For single-phase constant impedance load,

Z =
V 2
nom

S
=

V 2
nom

P − jQ
(2.5)

For constant current load,

I =
S

V
=

P + jQ

V
(2.6)

For constant power load,

S = P + jQ = Vnom ∗ I (2.7)

For capacitive loads, they could be modeled as constant impedance loads but the

active power is always zero.

For three-phase, all the single-phase nominal voltages, currents, and impedance should

be changed to line to line values.

EV loads can be modeled as follows,

SEV = V (t)× IEV (t) (2.8)

Where PEV =�(SEV ) and QEV =�(SEV ).
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Those models are based on single phase. As for three-phase, phase voltages and

currents should be replaced by line to line voltages and currents.

Based on KCL, the equation constrain is as follows,

Irv,j,ph − Isd,j+1,ph = IconsZi+1,ph(t) + IconsIi+1,ph(t)+

IconsPi+1,ph(t) + Icapi+1,ph(t) + IEV
i+1,ph(t) + Ivari+1,ph(t)

(2.9)

2.4 Distribution Operational Constraints

Distribution operational constrains refer to operation limits such as voltage, current,

power capacity limits. These constrains are inequality constrains for the optimization

problem.

The voltage limit means the node voltage should be neither over maximum voltage

nor lower than minimum voltage to ensure power quality and grid reliability. It is

defined below,

V min
i < |Vi,ph(t)| < V max

i (2.10)

Similarly, current limit is defined as follows,

|Ij,ph(t)| ≤ Imax
j (2.11)
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And transformer capacity limit is shown below,

∑
ph

∣∣∣Vi,ph(t)× IXfm
sd,ph (t)

∣∣∣ ≤ SXfm (2.12)

2.5 Electric Vehicle Load Model

State of Charge (SOC) is an energy gauge for the battery in EVs. The percentage

range is from 0%(empty) to 100%(fully charged). The left driving miles can be

predicted with SOC. The equation for SOC is shown below,

SOC =
Qinit ±

∫
ibcdt

Qnom

× 100 (2.13)

where Qinit is the initial electric energy before charging the EV, Qnom is the nominal

electric energy capacity of the EV, and ibc is the battery current of the EV. If ibc is

positive, it means the current is going to the EV direction and the SOC is increasing.

It can be figured out from the equation above that SOC is a normalized value.

Similarly, state of discharge (SOD) stands for how much electricity has been dis-

charged. The equation is shown below,

SOD = 1− SOC (2.14)
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2.6 EV Charging Model

The charger and components of battery system model used in this dissertation are

shown in Fig. 2.2 to Fig. 2.6 [2, 59, 63, 65, 66, 78, 79, 83, 86, 93, 125]1. DC and AC

system dynamics of EVs are included in the model. More specifically, detailed DC

battery cell model as shown in Fig. 2.3 and AC grid connection model as shown in

Fig. 2.2 are used to represent EV grid integration system accurately. Constant current

(CC)/constant voltage (CV) control of DC battery system is shown in Fig. 2.5; AC

system response, as shown in Fig. 2.6, is used which is based on a second-order transfer

function.

An open-circuit cell voltage and an equivalent internal resistance are included in the

battery cell model, and they are in series with each other. The functions of open-

circuit voltage (OCV ) and equivalent resistance (Req) in terms of battery SOC are

shown in Fig. 2.4.

CC and CV modes are the two operating regions of the charge control model as

shown in Fig. 2.5. The battery voltage gradually increases as shown in Fig. 2.3, and

the battery terminal voltage (Vbt) plays a key role in determining the time to switch

from CC to CV mode. In CC mode, the commanded active power (P ev) controls the

1This work is developed by Dr. M. C. Kisacikoglu’s group from the University of Alabama, and is
used in Chapter 4 for real-time implementation.
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Figure 2.2: Power Control Block.

Figure 2.3: SOC Dynamics Block.

DC battery current Ibt. The battery cell switches to CV charging mode when Vbt

becomes 4.0 V at time tcv in the models of this work. The battery current is reduced

exponentially and the model maintains the constant battery voltage at Vbt,max at the

same time after switching to CV charging mode.
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Figure 2.4: Battery Characteristics [2].

This model consists essential features of on-board charger and EV battery, and it has

the ability to track active and reactive power set-points sent by DSO.
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Figure 2.5: Charge Control Block.

Figure 2.6: Current Response Block.
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Chapter 3

Coordinated Electric Vehicle

Charging with Reactive Power

Support to Distribution Grids

3.1 Introduction

In this chapter, hierarchical coordination frameworks are developed to optimally man-

age active and reactive power dispatch of number of spatially distributed EVs in-

corporating distribution grid level constraints1. The frameworks consist of detailed

1This work has been published in IEEE Transactions on Industrial Informatics.
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mathematical models, which can benefit the operation of both entities involved, i.e.,

the grid operations and EV charging. The first model comprises of a comprehen-

sive optimal power flow model at the distribution grid level, while the second model

represents detailed optimal EV charging with reactive power support to the grid.

3.2 Nomenclature

Subscripts

e EV number, eset = {e | e ∈ Z, 0 < e ≤ emax}.

i Node number, iset = {i | i ∈ Z, 0 < i ≤ imax}.

j Series element between node i and i+ 1,

jset = {j | j ∈ Z, 0 < j ≤ jmax}.

k Time interval, kset = {k | k ∈ Z, 0 < k ≤ kmax}.

m Node with base loads, m ∈ iset.

r Receiving end.

s Sending end.

t Time when EVs are grid connected, t ∈ kset.

t′ Time when EVs are off grid, t′ ∈ kset.

Superscripts
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ba Base load.

ct Load curtailment.

ev EV loads.

fl Flexible loads.

il Constant current load.

loss Loss.

max Maximum value.

min Minimum value.

pl Constant power load.

sh Load shift.

ss Substation.

zl Constant impedance load.

Parameters

Δk Time interval.

η Efficiency.

λ1, λ2 Weighting factor.

ρ Energy price.

θ Power factor angle.

A,B,C,D ABCD parameter matrices.

E EV battery’s energy.
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I0 Constant current.

P0 Constant active power.

Q0 Constant reactive power.

R Socket rating.

S State of charge.

S0 Desired SOC.

Z0 Constant impedance.

Variables

Ψ,Ω1,Ω2 Objective function values.

F Fairness index.

I Complex current vector.

Ī Complex conjugate of current vector.

P Active power.

Q Reactive power.

V Complex voltage Vector.

Functions

� Real part of a complex number.

� Imaginary part of a complex number.
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Figure 3.1: a) High-level overview of the proposed active/reactive power
scheduling of EVs, and b) Charging region of EVs [3, 4].

3.3 Solution Approach

In this work, EVs are deployed on the first and fourth P-Q quadrants, i.e., EVs

inject/withdraw reactive power from the grid while charging, as shown in Fig. 3.1-b).

This allows DSO to raise charging power limits for the EVs without violating the grid

operating constraints, compared to the case when EVs are dispatched at the unity

power factor. The higher EV charging power limit means reduced energy costs for the

EV owners in dynamic pricing scheme. The EVs could participate in reactive power

market to maximize the revenue; however, reactive power market is a bit futuristic.
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Thus, this work demonstrates immediate benefits of dispatching reactive power from

grid constraint management point of view.

Fig. 3.1-a) shows a high-level schematic of the proposed coordinated EV charging,

where EVs support reactive power to the grid while charging the EVs at lowest

possible costs. Two coordinated versions are proposed. In the first coordinated

framework, EV aggregators (EVAs) submit EVs’ preferences and parameters (such as

socket rating, SOC, etc.) to the DSO. Then, DSO solves an optimal power flow (OPF)

model at the grid level and generates upper bounds on active power consumption and

reactive power injection at each aggregated node on the feeder. At the aggregation

level, optimal EV scheduling models are solved, in which the bounds obtained from

the DSO are used as additional constraints to ensure feasible operations of the grid.

In the second coordinated framework, models at the EV aggregation level are solved

first and optimal EV charging profiles from each node are sent to the grid control

center. Then, the grid control center solves distribution OPF with an objective to

minimize the deviation of EV charging scheduling through load shifting and load

curtailment.

In this work, EVs are considered operating on the first and fourth P-Q quadrants to

demonstrate the concept, i.e., EVs can inject/withdraw reactive power while charging.

The main contributions of this chapter are as follows:
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a) inclusion of reactive power in the formulation of optimal EV charge scheduling.

This is a substantial extension to [4], and to the best of the authors’ knowledge,

this is the first paper that considers both active and reactive power in the

optimal EV scheduling formulation,

b) modeling of comprehensive distribution optimal power flow with inclusion of

flexible reactive power support from EVs, load shifting, and curtailment as

demand response options, and

c) applications that demonstrate coordinated reactive power dispatch of EVs com-

bined with active power can result in higher EV penetration without impacting

the grid.

3.4 Mathematical Modeling

At the grid level, we have extended prior work in [108] on distribution optimal power

flow (DOPF) model to create upper bounds on net active and reactive powers for EVs,

load shifting, and load curtailment on EV charging. At the EV aggregation level, we

have extended previous work in [14, 74, 75] on optimal EV scheduling models by

including reactive power support from the EVs. Key mathematical modeling and

constraints are discussed next.
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3.4.1 Distribution Grid Component Model

The DOPF model is built using individual grid components and circuit laws. The

mathematical models are developed in terms of branch current and nodal voltages.

The conductors and cables are modeled using π-equivalent circuits. Detailed descrip-

tions of these models can be found in [108].

For each series element, ABCD parameters are used to model sending/receiving end

currents and voltages,

⎡
⎢⎢⎢⎢⎣

Vi,k

Is,j,k

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Aj Bj

Cj Dj

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Vi+1,k

Ir,j,k

⎤
⎥⎥⎥⎥⎦ (3.1)

Loads are modeled as shunt components. Impedance-current-power (ZIP) load model

is used for the base loads which are non-flexible loads in the system. For base loads,

Vm,k = Z0m,k I
zl
m,k (3.2)

∣∣I ilm,k

∣∣ (∠Vm,k − ∠I ilm,k

)
=

∣∣I0ilm,k

∣∣∠θm,k (3.3)

Vm,k I
pl
m,k = P0m,k +

√−1Q0m,k (3.4)
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Equation (3.2), (3.3), and (3.4) represent constant impedance, constant current, con-

stant power part of the ZIP loads.

To represent the current balance at node, the following equation is used,

Branch currents︷ ︸︸ ︷
Ir,j−1,k = Is,j,k +

ZIP load currents︷ ︸︸ ︷
Izli,k + I ili,k + Ipli,k +Ifli,k (3.5)

where superscript fl is used to denote flexible loads, such as EVs. The flexible loads

in (3.5) are assumed to be connected at nodes where base loads are connected, i.e.,

at nodes m.

3.4.2 Electric Vehicle Load Optimization Model

Total cost of charging EVs are minimized from EVA’s

point of view. The objective function can be written as,

Ψm =
∑
k

ρk
∑
e

P ev
m,e,k Δk (3.6)

Equation (3.6) represents cost of charging EVs at node m on the distribution grid.

The mathematical model of EVs are developed based on SOC, initial SOC, final SOC
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desired by the EV owners, and the time instances when EVs are connected to the

grid. The SOC of EVs are given by,

Sm,e,t = Sm,e,t−1 + ηm,e

P ev
m,e,t Δk

Emax
m,e

(3.7)

Electric power consumed by the EV must always be within the rating of the charging

socket,

P ev2

m,e,k +Qev2

m,e,k ≤ R2
m,e (3.8)

where R represents the rating of charging socket.

SOC at the instance EV is off the grid must meet the SOC desired by the EV owner,

Sm,e,t′ ≥ S0m,e (3.9)

Minimum and maximum allowed SOC are represented as,

Smin
m,e ≤ Sm,e,t ≤ Smax

m,e (3.10)

Grid constraints, i.e., upper bounds on active power consumption and reactive power
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injection from the EVs, which are computed from the model given in Section III.C,

are also incorporated using the following equations,

∑
e

P ev
m,e,t ≤ P fl

m,t (3.11)

∑
e

Qev
m,e,t ≥ Qfl

m,t (3.12)

3.4.3 Distribution Grid Optimization Model-I

This model is used to find maximum penetration of flexible loads on the distribution

grid, which can be written as,

Ω1 =
∑
m,k

P fl
m,k (3.13)

where,

P fl
m,k = �

(
Vm,k I

fl
m,k

)
(3.14)

The reactive power of the flexible load is represented as,
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Qfl
m,k = �

(
Vm,k I

fl
m,k

)
(3.15)

DSO sends P fl and Qfl to the aggregators at each node m, which represent upper

bounds on active power consumption and reactive power injection from the EVs.

Equation (13) may not result in a fair allocation of EV active and reactive power

bounds at all nodes. Thus, we introduce a fairness index based on base load,

Fk =
P fl
m,k

P zl
m,k + P il

m,k + P pl
m,k

(3.16)

where F is called the fairness index, which ensures that the EV load penetration at

all nodes is allowed in the same proportion corresponding to the base loads. However,

F is kept as variable in the optimization model.

The voltage limits at load buses are modeled as,

V min
m ≤ |Vm,k| ≤ V max

m (3.17)

Similarly, feeder current limits are defined as follows,

|Is,j,k| ≤ Imax
j (3.18)

|Ir,j,k| ≤ Imax
j (3.19)
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The distribution grid optimization model-I consists of the objective function given

in (3.13), equality constraints (5.2)-(3.5), (3.14)-(3.16), and inequality constraints

(3.17)-(3.19). Other constraints such as transformer capacity limits, can also be

easily incorporated in the model.

3.4.4 Distribution Grid Optimization Model-II

The optimization objective of this model is to minimize the total power loss on the

distribution grid as well as the active power shifting and curtailment of EV loads.

Ω2 = P loss +
∑
m,k

(λ1P
sh
m,k + λ2P

ct
m,k) (3.20)

where,

P loss =
∑
k

� (
V ss
k Issk

)− ∑
m,k,e

P ev
m,e,k −

∑
m,k

(P ba
m,k − P ct

m,k) (3.21)

where P sh stands for active power shifting and P ct stands for active power curtailment.

Power shifting means EV loads can change their time to charge while connected at

the same charging nodes. If active power shifting couldn’t satisfy the grid constraints,

then the active power curtailment will be carried out. λ1 and λ2 are the weighting

factors used to prioritize P sh over P ct. A higher weighting factor for P ct ensures that

active power shifting is prioritized compared to the curtailment.
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EVs can provide reactive support back to distribution grid. There are lower and upper

limits for reactive power which EVs could provide, which can be mathematically

modeled as following,

Qmin
m,k ≤ Qm,e,k ≤ Qmax

m,k (3.22)

where

Qmin
m,k = −

∑
e

√
R2

m,e,k − P ev2
m,e,k (3.23)

Qmax
m,k =

∑
e

√
R2

m,e − P ev2
m,e,k (3.24)

Regulation of reactive power injection to the grid is essential. Qmin is the reactive

power injection limit and constraint (3.22) ensures that the reactive power injection/-

consumption in each node supports an optimal operation of the grid and EVs. In

case of utility regulations requiring mandatory minimum reactive power support from

EVs, Qmin must be set to the minimum of the regulation requirement and the reactive

power capability of EVs obtained using (3.23). The distribution grid optimization

model-II consists of the objective function given in (20), constraints (21)-(24), and

other constraints similar to the grid optimization model-I, i.e., (1)-(5), (14)-(16), and

(17)-(19).

The EV load optimization model and grid optimization models are non-linear pro-

gramming problem (NLP) in nature.
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3.5 Case Studies

The mathematical models described in Section III are developed in GAMS and solved

using KNITRO solver. For the case studies, a modified single phase 33-node distribu-

tion feeder is considered [5], as shown in Fig. 3.2, which serves residential customers.

EV departure time, arrival time, initial SOC, and final desired SOC are modeled

using truncated Gaussian distribution functions [126]. The EVs are assumed grid

connected at home from evening to the morning. Socket rating of 3.3 kW is used,

which in this case is taken as kVA rating. Charging efficiency of the EVs is assumed

in the range of 90-95%. The maximum energy capacity of EVs is assumed 30 kWh.

Simulation is run for 24 hours with 15-minute intervals.

1
2

3
4 5

6
7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24
25

26
27

28 29
30

31 32
33

Distribution  Grid
 Control Center

EV Aggregator

EV Aggregator

Figure 3.2: 33-node feeder [5] which is used to demonstrate the optimal
active/reactive power dispatch of EVs.
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3.5.1 Case Studies: Grid Optimization Model-I and EV Op-

timization Model

To avoid the consequences of uncontrolled charging, the DSO coordinates the charging

of the EVs. DSO first solves the distribution grid optimization model described in the

Section II-C. For this case studies, the price of electricity in a 24-hour period is shown

in Fig. 3.3, which is based on locational marginal price (LMP) from ISO-NE system.

The solutions to this model provide two set of bounds for each node, i.e., maximum

allowable active power consumption and maximum allowable reactive power injection

from EVs. DSO sends this information to the EV aggregators. Fig. 3.4 shows active

power bounds for EV charging sent to the aggregators designated for node-25 and

node-33 along with the base loads. These bounds are obtained when EVs operate in

unity power factor mode, i.e., the reactive power injection from EVs is zero. Fig. 3.5

shows similar bounds when EV charging takes place in non-unity power factor mode.

The active power bounds in Fig. 3.5 are higher than that in Fig. 3.4 for the same

base loads, EV parameters, and the grid constraints. This shows that if EVs agree to

inject reactive power into the grid, in coordinated charging scheme, DSO can permit

more active power withdrawal from the EV charging.

At the aggregation level, signals from the DSO are incorporated into the EV opti-

mization model described in the Section II-B. Here, we present the case studies for
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Figure 3.4: Active power injection bounds at node-25 and -33 when EVs
charging operate on unity power factor mode.
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Figure 3.5: Active/reactive power injection bounds at node-25 and -33
when EVs charging operate on the fourth quadrant.

165 EVs connected at node-25; however, a total of 1,500 EVs are connected to the

feeder which is used to solve the grid level optimization model discussed above.

At node-25, first, the EV optimization model is solved without grid constraints, which

represents an uncontrolled charging scheme. On a dynamic energy pricing, most of

the EVs are charged during 1:00-2:30 and 21:00-22:30 (see Fig. 3.6) when energy prices

are low. The peak EV charging load exceeds 500 kW. In fact, all EVs charge at 3.3

kW during those time slots. From EV owners’ perspective, uncontrolled charging
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yields the best solution as the average cost of charging one EV is the lowest (30

/day). In an uncontrolled charging, when optimal EV load profiles from all nodes

are integrated and power flow is solved for the feeder, some of the nodes show under

voltage issues.
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Figure 3.6: Active power profile in uncoordinated charging scheme, and
on coordinated scheme when EVs operate on unity power factor at node-25.

Next, active power withdrawal bounds from the DSO, shown in Fig. 3.4, are incorpo-

rated into the EV optimization model. This case represents EVs operating on unity

power factor mode. Fig. 3.6 shows that the EV charging is now constrained by the

bounds from the DSO; the maximum power allowed for EV charging is about 164

kW. With these optimized EV load profiles, the grid constraints are not violated. In

Fig. 3.6, when EVs are grid connected, it can be seen that the EVs charging always

hits the bounds set by the DSO. All the EVs are off the grid between 8:15 to 17:15.

With the grid constraints, the average cost of charging one EV is 52 /day at node-25.

59



If the number of EVs are increased further from 165 at node-25, grid operations be-

come infeasible. Therefore, for higher number EVs, the requested amount of energy

may not be delivered to EVs at the node-25.

If EVs agree to operate in non-unity power factor mode, the DSO sends two set of

bounds to each node, as shown in Fig. 3.5, that represent active power withdrawal

and reactive power injection bounds. The bounds on reactive power injection are also

necessary to avoid any overvoltage issues that excessive reactive power injection may

cause. Fig. 3.7 shows EV charging with the grid constraints. From the optimized EV

charging profile of 165 EVs at node-25, it is clear that there is still room to charge

more EVs if required. With reactive power injection from the EVs, the active power

limits set by the DSO are higher (max 183 kW) compared to EVs charging at unity

power factor mode (max 164 kW). This reduces average charging cost to 42 /day

from 52 . It should be noted that the observed cost reduction is not representative

and depends on several factors including the variation of dynamic pricing over the

day, base loads, and several grid parameters. However, the key point here is that

reactive power injection can subside the adverse impacts of active power withdrawal

to some extent, which provides benefits both DSO and EV owners. DSO benefits by

obtaining the reactive power support from the distributed EVs, while EVs benefit

with the reduced charging costs in coordinated EV charging schemes.

In this proposed model, we have not considered direct financial model to compensate
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EVs’ participating for the grid level services. However, we have demonstrated indirect

benefit of this on the charging costs of EVs. Without reactive power support to the

grid, the maximum power limit set by DSO for EVs is less compared to the case

when EVs support reactive power to the grid. The later allows charging EVs at less

expensive costs.
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Figure 3.7: Active power profile in coordinated charging scheme when EVs
operate on the fourth quadrant at node-25.

3.5.2 Case Studies: Grid Optimization Model-II and EV Op-

timization Model

The same 33-node system is used in these case studies. First, the EV aggregator

at each node solves an optimization model based on minimization of EV charging

costs. For this case studies, dynamic energy price taken from ISO-NE system on

09/07/2017 is used as shown Fig. 3.8. The optimized load profile along with the
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reactive power support capability of each EVs are sent to the grid control center. The

grid control center incorporates the optimized load profiles (active power) obtained

from all the nodes, the reactive power capability limits from EVs, and solves the grid

level optimization problem. The grid optimization model first tries to accommodate

the optimized load profile of the EVs, and in doing so it may dispatch negative reactive

power from EVs (injection). If the reactive power is not sufficient to fix the constraint

violations particularly when EV penetration is high, then the optimization model will

first time shift the charging of EVs, and then will curtail the active power dispatch of

EVs. We use λ1 = 104, and λ2 = 1010 for the case studies. Higher value of λ2 ensures

that customer’s quality of service is given priority as EV curtailment takes only as

the last resort. The EVs are connected at all nodes, except at node-1; however, the

case studies on this chapter will be presented only for EVs connected at node-18 and

the total aggregation of EVs seen from the substation, i.e., node-1.

No Adverse Impact from EVs: Total of 160 EVs are connected to the 33-node dis-

tribution grid. There are 5 EVs at node-18. Since the EV penetration is low, the

optimized EV load profiles from each node did not lead to constraint violation on

the grid. Fig. 3.9 shows EV charging are scheduled during time slots when price of

electricity is low. Fig. 10 shows that the voltage of the nodes are within the limit with

or without reactive power support from EVs. When EVs are not fixed to operate on

unity power factor, some reactive power dispatch is seen due to the objective chosen,

i.e., the loss minimization. The reactive power injection from EVs help to reduce
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Figure 3.8: Dynamic electricity price.

the losses on the grid without impacting the costs of charging of EVs. Since the EV

penetration was low, the grid control center did not require to move or curtail the EV

charging schedules. The energy served from the substation in this case is summarized

in the Table I along with the results form other case studies.

Load Shifting of EVs: The total number of EVs is set to 1,925. There are 50 EVs at

node-18. EV optimization is solved at each node first. Then, the resulting data from

EV optimization are imported to distribution grid optimization. Since, the number

of EVs in this case is large, the grid optimization needed to shift some of EV charging

power from peak to off-peak (see Fig. 3.11) but no curtailment was necessary (with

Q �= 0 from EVs).

When we set Q = 0 for this case study, solution yields some energy curtailment (see
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Figure 3.9: Active and reactive power dispatch of EV and base loads at
node-18.

Table I). Also, voltage at node-18 becomes below 0.95 (refer to Fig. 3.12) at some

time intervals. Voltage at node-18 are within the range from 0.95 p.u to 1.05 p.u. as

long as reactive power support from EVs take place. Therefore, the reactive power

of EV loads are of great importance to keep grid voltages within limits. It was also

observed that power shifting is large when EVs are operating at non-unity power

factor. Total active power consumption of all the loads are shown in Fig. 3.13.

This case demonstrates that EV loads can have both positive and negative impacts

on the system. A large number of EVs consuming active power can make the system
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Figure 3.10: Voltage profile at node-18 with and without reactive power
support from EVs.

Figure 3.11: Active power of EV loads at node-18 with and without load
shifting and Q �= 0 from EVs.

overload and violate operational constraints of distribution grid. In this case, power

shifting is of great importance to keep the distribution system feasible. Moreover,

EV loads can operate in non-unity power factor mode, which enables them to provide

reactive power support back to the grid.
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Figure 3.12: Voltage profile at node-18 with and without reactive power
support.

Figure 3.13: Total active power of all the loads seen from substation with
and without load shifting and Q �= 0 from EVs.

Load Shifting and Load Curtailment of EVs: The total number of EVs are increased

to 5,450. There are 150 EVs both at node-18 and node-32. Since the number of EVs

are large in this case, load shifting of EV charging itself is not sufficient to ensure

feasibility of the grid operations; therefore, the grid optimization model comes up
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Table 3.1
Summary of Total Energy Shift and Curtailment with and without

Reactive Power.

Without React. Power With React. Power
No. of EVs Energy Served Energy Shift Energy Curt. Energy Served Energy Shift Energy Curt.

MWhr MWhr MWhr MWhr MWhr MWhr
160 36.52 0 0 36.52 0 0
1,925 64.01 9.69 6.81 70.82 15.20 0
5,450 87.69 11.84 51.35 121.84 39.70 17.20

with load curtailment from EVs. Fig. 3.14 shows the active and reactive power of EV

loads at node-18 with power shifting and curtailment. Some EV loads are curtailed

at two peak hours as shown in Fig. 3.14 in order to keep the distribution grid feasible.

Figure 3.14: Active power of EVs and base loads at node-18 with power
shifting and curtailment.

Voltage profile of node-18 in case 3 is shown in Fig. 3.15. Voltages at node-18 are

within the limit from 0.95 p.u to 1.05 p.u. when EVs operate in non-unity power factor

mode. When EVs operate at unity power factor mode, voltages at node-18 (and other

nodes) are below 0.95 p.u. at some of the time intervals. Table I summarizes the

results of the case studies.
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Figure 3.15: Voltage profile at node-18 with and without reactive power
support.

This case demonstrates that reactive power support from EVs, load shifting of EVs,

and load curtailment of EVs should be coordinated to improve power system oper-

ational feasibility. If coordinated, it leads to increased EV penetration and optimal

operation of the grid as well as EVs. Based on our preliminary studies it seems this

idea is promising and could open new avenues to optimally aggregate EVs for reactive

power support to the grid.

The EV aggregation model is a non-linear programming (NLP) problem and is solved

on nodal basis; thus, this could be solved in parallel. The maximum solution time

for one node was recorded 3.2 seconds using KNITRO solver in a Windows machine

with 6 GB memory and 2.80 GHz processor. The grid level model is an NLP problem

and needs to be solved twice: once to obtain the active/reactive bounds as shown

in Figs. 3 and 4, and once to ensure that the optimal EV profiles from all nodes,
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when aggregated, are feasible for the grid. Using KNITRO solver, and with the same

computing specifications as above, the grid level problem was solved in 15.23 seconds.

Note that the grid level problem is cast as an NLP; hence, it does not consider the

integer variables associated with tap changers and switched capacitor banks. Note

that the grid level optimal power flow problem is a NP-hard problem, and since

the model is non-convex, KNITRO does not guarantee a global optimal solution.

Recent advancements in convexification of optimal power flow may be applicable in

this context to achieve global optimal solution and also to speed up the computation

further [127].

3.6 Conclusion

In this chapter, optimal distribution power flow and optimal EV charging models are

developed first, which utilize reactive power injection capability of the EVs to support

the grid. The benefits of dispatching reactive power from EVs to the grid operation

and also to the EV owners are demonstrated. Reactive power dispatch from EVs

could help manage distribution grid constraints, e.g., undervoltage issues caused by

the active power consumption during the EV charging. This work has shown that

in coordinated charging scheme, if EVs agree to inject reactive power into the grid,

it benefits EVs by reducing the costs of charging the EVs in dynamic energy pricing

schemes. This work also demonstrates that the reactive power injection from EVs
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can be coordinated with the load shifting and load curtailment in demand response

applications to help accommodate increased number of EVs on constrained grids.
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Chapter 4

Four Quadrant Operation of

Electric Vehicles for Voltage

Support and Real-Time

Implementation

4.1 Introduction

In this chapter, detailed EV battery model that could be leveraged for its 4-quadrant

operations is integrated into coordination of the operations of EVs and distribution
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feeder to support voltage profile on the grid. The grid level problem is devised as

a distribution optimal power flow model to compute voltage regulation signal to

dispatch active/reactive power set points of individual EVs. The whole integrated

system is implemented in real time simulation with OPAL-RT OP56001.

4.2 Nomenclature

Δt Time interval.

η EV efficiency.

Φ Objective function value.

Ecap Battery capacity.

I Nodal current injection.

j, k EV number, {j, k ∈ N}.

m set of nodes with EVs and loads, {m ∈ N}.

P c EV charging power.

P d EV discharging power.

P ev EV power on grid side.

PL Active power of load.

Qev Reactive power of EV on grid side.

1Contents of this chapter is developed in collaboration with Dr. M. C. Kisacikoglu’s group from
the University of Alabama. The detailed EV/charger models were provided by them, and are
implemented in real-time simulator in this work.

72



QL Reactive power of load.

Rev Charger rating.

smax Max. SOC.

smin Min. SOC.

t Time index, {t ∈ T }.

uc, ud Charging/discharging status of EV.

V Nodal voltage.

V max Max. nodal voltage limit.

V min Min. nodal voltage limit.

Y Y-bus matrix.

4.3 Solution Approach

In this proposed work, a high fidelity EV charging model described in Chapter 2 is

used to deploy EVs in all four P-Q quadrants for voltage control in distribution grids.

Figure 4.1 shows a high-level schematic of the proposed coordinated EV charging,

where EVs support reactive power to the grid for voltage support. In this coordinated

framework, EVs send EVs’ preferences and parameters (such as power rating, SOC,

etc.) to the DSO. Then, DSO solves an optimal power flow (OPF) model at the
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grid level and generates voltage regulation signals that each EVs are recommended

to follow. Figure 4.2 shows an overview of the real time setup in this chapter. The

main contributions of this chapter are as following:

† Inclusion of reactive power in the formulation of optimal EV charge scheduling

problems at distribution grid level and, integration to the detailed EV charg-

er/battery model for grid services such as voltage support applications.

† Real-time implementation of 4-quadrant operation of EV.

Distribution Grid Distribution  Grid
 Control Center

Feeder Level 
Controller

EV parameters

P

Q

Socket rating 

Quadrant-I
(P>0, Q>0)

Quadrant-II
(P<0, Q>0)

Quadrant-III
(P<0, Q<0)

Quadrant-IV
(P>0, Q<0)

Unity power factor 

a)

b)

Service 
transformer

Figure 4.1: a) High-level overview of the proposed active/reactive power
scheduling of EVs, and b) Charging region of EVs [3].
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Figure 4.2: Overview of the real time simulation setup and optimization
models.

4.4 Mathematical Modeling: Optimal Voltage

Regulation Model

This work has extended prior work on distribution optimal power flow (DOPF) model

in [108] to create voltage regulation signals (in terms of active power and reactive

power dispatch of EVs) from the DSO’s point of view. The DOPF model is built

using individual grid components and circuit laws. The mathematical models are

developed in terms of branch current and nodal voltages. The conductors and cables

are modeled using π-equivalent circuits. Detailed descriptions of these models can be

found in [108].

Min: Φ =
∑∑∑

m∈N, t∈T

(
Vm,t − V min

)2
(4.1)
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subject to:

(Grid Level Constraints)

Vj,t =
∑∑∑
k∈N

Yj,k Ik,t ∀ j ∈ N, t ∈ T (4.2)

P ev
j,t + PL

j,t = R
(
Vj,t I

∗
j,t

) ∀ j ∈ N, t ∈ T (4.3)

Qev
j,t +QL

j,t = I
(
Vj,t I

∗
j,t

) ∀ j ∈ N, t ∈ T (4.4)

V min ≤ Vm,t ≤ V max ∀m ∈ N, t ∈ T (4.5)

(EV Level Constraints)

P ev
m,t = uc

m,t P
c
m,t (ηm,t)

−1−ud
m,t P

d
m,t ηm,t ∀m ∈ N, t ∈ T (4.6)

Qev
m,t ≤

√(
Rev

m,t

)2

−
(
P ev

m,t

)2

∀m ∈ N, t ∈ T (4.7)

Qev
m,t ≥ −

√(
Rev

m,t

)2

−
(
P ev

m,t

)2

∀m ∈ N, t ∈ T (4.8)

sevm,t = sevm,t−1 +Δt (Ecap)−1
(
uc

m,t P
c
m,t (ηm,t)

−1−ud
m,t P

d
m,t ηm,t

)
∀m ∈ N, t ∈ T

(4.9)

sevm,t = sevm,0 +Δt (Ecap)−1
(
uc

m,t P
c
m,t (ηm,t)

−1−ud
m,t P

d
m,t ηm,t

)
∀m ∈ N, t = 1

(4.10)

smin ≤ sm,t ≤ smax ∀m ∈ N, t ∈ T (4.11)
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uc
m,t + ud

m,t ≤ 1 ∀m ∈ N, t ∈ T (4.12)

uc
m,t, u

d
m,t ∈ {0,1} ∀m ∈ N, t ∈ T (4.13)

Equation 4.1 minimizes the voltage deviation from minimum allowed limit at EV

nodes. This objective function ensures EVs get opportunity to charge when the base

load is not causing excessive voltage drop issue (i,e., EVs operate in I and IV P-Q

quadrants). At times, when voltage with base load goes below the minimum limit,

the objective function will also force EV to discharge (i.e., EVs operate in II and III

P-Q quadrants). Equation 4.2 represents the network model. Equations 4.3 and 4.4

represent the load models. Equation 4.5 ensures the nodal voltage limits. Equation 4.6

represents EV power in terms of charging and discharging powers. Equations 4.7

and 4.8 calculate and bound the reactive power of EVs based on socket KVA rating

and EVs’ active power. Equation 4.9 and 4.10 represent SOC dynamics, and 4.11

represents SOC limits. Equations 4.12 ensures charging and discharging would not

take place simultaneously, and 4.13 ensures the binary values on charging/discharging

decision. This model is non-linear mixed integer in nature, and the variables P ev
m,t

and Qev
m,t represent the dispatch signals send to EVs in order to maintain voltage

profile on the feeder.
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4.5 Case Studies

4.5.1 EV Charger/Battery Model Validation

The mathematical model [2, 59, 63, 65, 66, 78, 79, 83, 86, 93, 125] of the battery

is implemented in Simulink. The EVs are connected to a distribution feeders and

are operated in 4-quadrant based on arbitrary P,Q set points sent to the EVs for

60 minutes. The set points are limited between -3.3 to 3.3 kVA (which is the rated

capacity of the battery). Fig. 4.3 to Fig. 4.7 show response of the battery looking at

active power tracking, SOC dynaimcs, battery current, battery voltage, and reactive

power tracking, respectively.
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Figure 4.3: Response of battery model for dynamic active power set points.
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Figure 4.4: SOC as battery model trakcs dynamic active power set points.
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Figure 4.5: Battery current (DC side) as the battery tracks dynamic active
power set points.

4.5.2 Feeder Level Simulation

For analysis purpose, the 240 V lateral in [128] is modified. It is considered that the

feeder is supplied by a 175 kVA, 14.4/0.24 kV transformer as shown in Fig. 4.8. The
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Figure 4.6: Battery internal voltage (DC side) as the battery tracks dy-
namic active power set points.
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Figure 4.7: Response of battery for dynamic reactive power set points.

feeder supplies 24 houses (node 1 through 24) through service drops. The impedances

of lateral sections, i.e., branch 52-53 through 62-63, are assumed identical and equal

to 0.0069+j 0.0018Ω. Similarly, the impedances of the service drops, i.e., branch 52-1

through 63-24, are also assumed identical and equal to 0.011+j 0.0017Ω. Transformer
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has an impedance of 0.0143+ j0.0357Ω referred to LV side. The grid and EV models

are solved using ePHASORSIM solver in OPAL-RT. The optimal voltage regulation

model is built in GAMS and solved using KNITRO solver. Each house has different

daily base load profiles (EV load excluded), and the total consumption of the 24

houses for a typical summer day beginning from noon is shown in Fig. 4.9. Voltage

profile at 24-houses are shown in Fig. 4.10, which are obtained by solving power flow

using 1-minute resolution load profiles. Fig. 4.10 shows during the evening time,

when the loads are high, houses far away from the service transformer experience

undervoltage issues.
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Figure 4.8: LV 240V Feeder with 24-houses used for the simulation studies.

The case studies to be discussed next demonstrates 4-quadrant operations of EVs
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Figure 4.9: Base load profile on the feeder.
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Figure 4.10: Voltage profile at selective houses (8,16,and 24) on the feeder.

showing impacts on feeder voltage and the 4-quadrant operation of EVs to maintain

voltages on the feeder.

Case-A: Since the battery has limited capability, EVs can not support grid for all

day long. Also, the EVs primary purpose won’t let the EVs be connected to grid all

the times. Therefore, one hour in a day is considered to carry out the case studies.
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Figure 4.11: Voltage profile at House 8, 16, and 24 with base, with EV
loads (Q = 0 and Q �= 0) when most of EVs are charging on the feeder
(under light loading conditions).

In Case-A, first the working of high fidelity battery model will be shown when several

of EVs are connected to the feeder. 00:00 to 1:00 AM is chosen when the EVs are

home and the feeder is under light load condition. The time is chosen such that the

base load is low. This ensures voltage drop is not significant and the available voltage
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Figure 4.12: Response of active power of EVs at House 8, 16, and 24
without reactive power dispatch (under light loading conditions).

margins allow EVs to charge. For comparative analysis, EVs are dispatched with and

without reactive power.

Fig. 4.11 shows voltage profiles at selective nodes (House 8, 16, 24) with and without

EV reactive power dispatch. Since the voltage regulation signals (in terms of P,Q
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Figure 4.13: Response of active power of EVs at House 8, 16, and 24 with
reactive power dispatch (under light loading conditions).

dispatch of EVs) are obtained using an optimization model, and the EVs are spread

over the feeder length, EVs near to feeder head has more room to charge EVs com-

pared to EVs downstream. This is clear from Fig. 4.11 as well, where EVs at House 8

and 16 are allowed to charge at high rate. Compared to EVs at House 8 and 16, the
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Figure 4.14: Response of reactive power of EVs at House 8, 16, and 24
without reactive power dispatch (under light loading conditions).

EV at House 24 is more constrained; hence, it allows EVs to charge at lower rate.

Since most of the EVs are operating in the charging mode, the voltages decrease with

reactive power dispatch as reactive power charging leads to lower voltages. However,

the voltages are still within limits and satisfy constraints, which is fine.
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Figure 4.15: Response of reactive power of EVs at House 8, 16, and 24
with reactive power dispatch (under light loading conditions).

As EV is in charging mode for the selected hour, voltage profile is low compared to

the base case. It is observed in Fig. 4.12 and 4.13 that upstream EVs, which are

closer to the service transformer, has more voltage room to charge than downstream

EVs. Therefore, the optimal voltage regulation signal provides higher active power

set points to upstream EVs. During the EV charging, the voltage profile of House-24,

which is the farthest node from the transformer becomes limiting as it hits the lower
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prescribed limit first.

Fig. 4.12 and 4.13 show active power dispatch of EVs compared to the regulation

signals obtained from optimization model of DSO. At House 8, the EV dispatch are

positive; hence the EVs over SOC was increased. As moving towards EVs downstream

the feeder, it is observed that the regulation signals from DSO are both positive and

negative. For example, at House 24; the regulation signals for EVs are both charging

and discharging. Fig. 4.14 and 4.15 show reactive power dispatch of EVs and the

response of EVs; this shows the EVs are effectively working on 4-quadrants.

Case-B: In these case studies, how EVs can support voltage with 4-quadrant op-

eration will be demonstrated. For these studies, one hour window during the peak

load (10:00-11:00PM) is intentionally picked. This ensures most of EVs operate in

discharging mode. The voltage profiles at this hour are low, however, there is still

room to utilize before it hits the statutory limits. As the loading condition varies,

SOC of EVs change, EVs arrive and leave on random times, some of the EVs may

operate in the charging mode as well, which is acceptable as long as the voltages

are maintained on the feeder. This is used to let EVs charge (with dispatch of Q)

and analyze the impact on voltages on the feeder. Fig. 4.16 shows the voltage nodal

voltage profiles at House 8, 16, and 24 with and without EV reactive power dispatch.

It clearly shows the EVs are helping to improve the voltage profile on the feeder. Es-

pecially, on House 24 (which is furthest from head node), the nodal voltage is already
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Figure 4.16: Voltage profile at House 8, 16, and 24 with base, with EV
loads (Q = 0 and Q �= 0) when most of EVs are in discharging mode (under
high loading conditions).

beyond limits, hence, the optimization model forces the EVs to discharge, and hence

the voltage profile at this node improves with EVs.

Fig. 4.17 and 4.18 show the responses of EVs on the optimal voltage regulation signals
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Figure 4.17: Response of active power of EVs at House 8, 16, and 24
without reactive power dispatch (under high loading conditions).

that is trying to keep the nodal voltages within the prescribed limits. Note that the

EVs are in mixed mode of charging/discharging. Fig. 4.19 and 4.20 show the tracking

of EVs for reactive power set points (obtained from the optimization model).
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Figure 4.18: Response of active power of EVs at House 8, 16, and 24 with
reactive power dispatch (under high loading conditions).
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Figure 4.19: Response of reactive power of EVs at House 8, 16, and 24
without reactive power dispatch (under high loading conditions).

4.6 Conclusion

In this Chapter, the detailed high-fidelity model of battery and EV on-board charger

that allows four-quadrant operation is integrated to a typical North American low
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Figure 4.20: Response of reactive power of EVs at House 8, 16, and 24
without reactive power dispatch (under high loading conditions).

voltage distribution feeder to demonstrate the usefulness of four-quadrant dispatch

of EVs in supporting voltage on the feeder. For this, voltage regulation signals (in

terms of P,Q dispatch of EVs) are generated from an optimal power flow model and the

EVs are dispatched accordingly. The real time simulation demonstrates effectiveness

of dispatching EVs in 4-quadrant for supporting voltage on the distribution feeders.
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Chapter 5

Real-time Virtual Power Plant

Coordination at Distribution Level

and HIL Implementation

5.1 Introduction

In this chapter, preliminary feasibility of virtual power plant (VPP)1 is examined. For

real time dispatch of resources in VPP, a linearized optimal power flow approach is

adopted. In addition, VPP scheduling is implemented in hardware-in-the-loop (HIL)

1This work was carried out in collaboration with Dr. M. R. Almassalkhi and his group from the
University of Vermont.

95



simulation with OPAL-RT’s simulator in real time. Results shown in this Chapter are

preliminary based on a work in progress. Readers are advised to follow publications

that will contain detailed models and rigorous analyses.

5.2 VPP Coordination Model

In this work, a scalable Quadratic Programming (QP) version of VPP scheduling

problem is formulated. The QP model consists of a linearized version of three-phase

unbalanced power flow equations. A high level mathematical model of the QP-DOPF

is provided next.

Min :

(
Ptrack −

∑
vpp

Pvpp

)2

(5.1)

The development of mathematical models is based on branch currents and nodal

voltages. π-equivalent circuits are used to model cables and conductors. Detailed

models are available in [108]. Sending end and receiving end currents and voltages

are modeled with ABCD parameters for series elements,
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⎡
⎢⎢⎢⎢⎣

Vi,k

Is,j,k

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Aj Bj

Cj Dj

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Vi+1,k

Ir,j,k

⎤
⎥⎥⎥⎥⎦ (5.2)

As the active power, reactive power, and voltage magnitude have relatively small and

limited range of variation, they can be linearized around an estimated operation point

(V0, I0), as shown in (5.3) and (5.4).

Pn = Pn

∣∣∣
V=V0,I=I0

+
∂ P (V, I)

∂I

∣∣∣
V=V0,I=I0

(I − I0)

+
∂ P (V, I)

∂V

∣∣∣
V=V0,I=I0

(V − V0)

Qn = Qn

∣∣∣
V=V0,I=I0

+
∂ Q(V, I)

∂I

∣∣∣
V=V0,I=I0

(I − I0)

+
∂ Q(V, I)

∂V

∣∣∣
V=V0,I=I0

(V − V0)

Pvpp =
∑
n∈vpp

Pn (5.3)

0.952 ≤ Vn
2
∣∣∣
V=V0

+
∂ V 2

n

∂Vn

∣∣∣
V=V0

(Vn − V0) ≤ 1.052 (5.4)

Pvpp ≤ Pmax
vpp (5.5)
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where V represents three-phase voltage vector, I represents three-phase branch cur-

rent vector, V0 and I0 represent the operating point around which the constraint set

are linearized, P represents active power loads, Q represents reactive power loads, A,

B, C, D are the line parameters, s, and r represent two ends of the lines, n represents

node, vpp represents number of virtual power plants (VPPs), and Ptrack represents

tracking reference signal for VVPs to follow.

5.3 HIL Implementation

The HIL design uses the architecture shown in Fig. 5.1. The HIL setup mainly consists

of a Grid Simulator, Grid Control Center, and Load Emulator. Grid Control Center

consists of Grid Optimization and VPP Coordinator models. The Grid Control Center

controls the grid model built in Grid Simulator (OPAL-RT OP5600). The VPP

coordinator sends dispatch signals to the loads, which are emulated using micro-

controllers (ESP8266). Each ESP8266 simulates up to thousands of water heaters

(load model), which is based on the Packetized Load Management Algorithm1 [129,

130]. Output of ESP8266 is voltage proportional to the load. In Grid Control Center,

a DOPF model (that consists of comprehensive mathematical model of three-phase

distribution grid components, operational limits, and control variables including load

tap changers, capacitor banks) is solved. This model provides set points every 15

1This work was done by University of Vermont, and the contents of this Chapter was developed
based on the collaborative work between Michigan Tech. and the University of Vermont.
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Figure 5.1: Overview of the HIL setup.

minutes. This model is built in GAMS and solved using KNITRO solver. Then,

a VPP scheduler model is solved, which provides the set points of VPPs every 30

seconds.
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5.4 Case Studies

5.4.1 Accuracy of QP VPP Scheduler Model

IEEE 4-node test feeder is used to show the effectiveness of the proposed model.

The proposed QP and non-linear models are compared by varying the load data in

the range of ±10% around the base load. The largest voltage difference obtained is

0.014%, which shows that the proposed QP VPP scheduler model is very accurate

around the base load.

5.4.2 VPP Scheduling

The QP VPP Scheduler model is tested with 68-node feeder using CPLEX solver.

The original 64-node feeder is first modified by adding LTCs, cap banks, and an

energy storage device at sub-station. The resulting feeder is a 68 node circuit. On a

slower time scale (15-minute resolution) for 3-hour rolling horizon full scale MINLP-

DOPF model is solved, which provides set points for LTCs, cap banks, and grid

level energy storage devices. In near real time, the DSO receives tracking signals

from TSO to follow, which must be obtained by coordinating the resources from the

VPPs within the DSO service area. To coordinate the VPPs, given the fast response
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Figure 5.2: 68-node feeder to demonstrate QP-DOPF.
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Figure 5.3: Set points of three VPPs in 68-node feeder.

needed, QP-DOPF model is used. Three VPPs are considered, as shown in Fig. 5.2, to

demonstrate the concept and to demonstrate the performance of QP-DOPF model.

VPP-1 and -2 have 8 load nodes and VPP-3 has 4 load nodes. Each VPP sends

net load forecasting at 5-minute resolution to the DSO. DSO then solves the MINLP-

DOPF and dispatches its assets. In near real time, the VPP sends updated short-term
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net load prediction. Based on the tracking signal received by the DSO and the net

load capabilities of the VPPs, DSO solves the QP-DOPF to track the reference signal

from TSO as closely as possible. While dispatching the VPPs, the DSO ensures that

the grid constraints (e.g. voltage limits, transformer capacity limits) are not violated.

The QP-DOPF model is solved every 30-seconds. Solution time for each case was <

2 seconds.

Fig. 5.3 shows the response of 3 VPPs for the DSO level tracking signal. From the

Fig. 5.3, it can be observed that when VPP-2 can not increase kW consumption due

grid constraints (eg., transformer capacity in the VPPs), the unconstrained VPPs

(VPP-1 and -3) share the slack.

5.4.3 HIL Simulation in Large-Scale Feeder

A 534-node feeder is separated into three VPPs, which is shown in Fig. 5.4. There

are aggregated water heater fleets connected to each VPP. In addition, there are 13

small water heater loads connected to 13 nodes in the VPP2. The small water heater

loads are simulated by software-in-the-loop (SIL) and 3 large loads for 3 VPPs are

simulated using HIL. The capacity of each water heater is 5kW. Since there are at

most 10 houses connected to each node, there are up to 10 water heaters for each

SIL node. For HIL VPPs, there are up to 300 water heaters each.
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Figure 5.4: 534-node feeder to demonstrate VPPs’ working in HIL.

Case I: Tracking a Step Change Signal

In this simulation studies, a step change signal from TSO is received by the DSO.

DSO diaggregates the TSO level signal using VPP Scheduler model, which results

in three step change signals for the three VPPs to track. The active power tracking

responses of three VPPs are shown in Fig. 5.5. Voltage profile at selective nodes is
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Figure 5.5: The tracking of charging set points of three VPPs for a step
change signal.

shown in Fig. 5.6. This shows that three HIL VPPs are capable to track step change

signals while staying within the DSO level constraints (in this case voltage bounds).

Case II: Tracking a Ramp Signal

104



0 2 4 6 8 10 12 14
Time, minutes

0.9974

0.9976

0.9978

0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

Vo
lta

ge
 M

ag
ni

tu
de

, p
.u

.

117b
237b
105b
299a
327a
48a
56b
169a
135c
149c
354c
364c
84c

Figure 5.6: Phase voltage profile at selected three-phase nodes during VPP
dispatch of distribution system Case I.

Several small step change signals are used to emulate the ramp signal. Three VPPs

have their own ramp signal to track. The disaggregated responses of the distribution

level VPPs and the charging signal set points are plotted for each of the three VPPs

in Fig. 5.7. The corresponding node voltages are plotted in Fig. 5.8 to show three-

phase feasibility of VPP dispatch in distribution feeder. All of the voltages are within

limits.

Case III: VPP coordination and re-dispatch under VPP limits

If one of the VPPs is constrained, the DSO attempts to redispatch the requested
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Figure 5.7: The tracking of charging set points of three VPPs Case II.

flexibility to the remaining VPPs. In case the remaining VPPs also have power

limitations, the DSO sends trigger signal to redispatch at TSO level (however, this is

beyond the scope of this dissertation). Fig. 5.9 shows, VPP1 saturates at 5th minute

(by enforcing the bounds in the model). The remaining active power, that VPP1
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Figure 5.8: Phase voltage profile at selected three-phase nodes during VPP
dispatch of distribution system Case II.

can not track, is redispatched to VPP2 and VPP3 using the QP model. Therfore,

the setpoints of VPP2 and VPP3 are increased to accommodate the difference. Next,

VPP3 saturates at 10th minute. The remaining active power of VPP3 is redispatched

to VPP2 using the QP moddel. Voltage profile at selective nodes is shown in Fig. 5.10.

They are lower than the voltages in Case II because of VPP saturation. However,

they are still within the desired limits.
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Figure 5.9: The tracking of charging set points of three VPPs Case III.
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Figure 5.10: Phase voltage profile at selected three-phase nodes during
VPP dispatch of distribution system Case III.

5.5 Conclusions

The HIL setup is developed for a 534-node distribution feeder using OPAL-RT

OP5600 simulator with all required optimization modules built in GAMS/MATLAB

and interfaced with the simulator. Distribution level VPP scheduler is developed to

reschedule VPPs against distribution constraints by linearizing around the operation

point of the MINLP trajectory. A QP-DOPF model of three-phase feeder is devel-

oped. The real time HIL simulation demonstrates effectiveness of the QP-DOPF

model and VPP scheduler on the distribution feeders.
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Chapter 6

Conclusion and Future Work

6.1 Summary

In Chapter 1, the motivation and basic concepts of this dissertation are discussed and

introduced. State-of-the-art literature are reviewed.

In Chapter 2, mathematical models of distribution power flow with operational con-

straints, EV load model, EV charging model, and concept of VPP are introduced.

In Chapter 3, optimal distribution power flow and optimal EV charging models are

first developed, which utilize reactive power injection capability of the EVs to support

the grid. This work has shown that in coordinated charging scheme, if EVs agree to
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inject reactive power into the grid, it benefits EVs by reducing the costs of charging

the EVs in dynamic energy pricing schemes. This work also demonstrates that the

reactive power injection from EVs can be coordinated with the load shifting and load

curtailment in demand response applications to help accommodate increased number

of EVs on constrained grids.

In Chapter 4, the detailed high-fidelity model of battery and EV on-board charger that

allows four-quadrant operation is integrated to a typical North American low voltage

distribution feeder to demonstrate the usefulness of four-quadrant dispatch of EVs

in supporting voltage on the feeder. For this, voltage regulation signals (in terms of

P,Q dispatch of EVs) are generated from an optimal power flow model and the EVs

are dispatched accordingly. The real time simulation demonstrates effectiveness of

dispatching EVs in 4-quadrant for supporting voltage on the distribution feeders.

In Chapter 5, the HIL setup is developed for a 534-node distribution feeder using

OPAL-RT OP5600 simulator with all required optimization modules built in GAM-

S/MATLAB and interfaced with the simulator. More specifically, first of all, distri-

bution level VPP coordinator is developed to reschedule VPPs against distribution

constraints by linearizing around the operating point of the MINLP trajectory. Then,

a quadratic programming formulation of three-phase optimal power flow using parallel

computing environment is developed to ensure distribution grid operating constraints

every 30 seconds. If VPPs cannot provide expected resources, distribution level finds
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an optimal way of re-scheduling the VPPs requests against distribution constraints.

The real time HIL simulation demonstrates effectiveness of LOPF method and VPP

coordinator on the distribution feeders.

6.2 Future Work

† Evaluate and quantify the effectiveness of reactive power dispatch for voltage

support on LV and MV feeder.

† Aggregate the EVs at MV level, and utilize the high fidelity battery/charger

model for supporting grid services that is faster in dynamic (such as frequency

regulation).

† Consider other distributed resources, such as four-quadrant operation of invert-

ers in Chapter 3 and 4. Further consider EV and other energy storage devices

in Chapter 5.

† Include transmission line model and transmission level simulation in Chapter 5.

† Consider spatial-temporal model in Chapter 3 and 4. Temporal model of EV

distribution is considered in this dissertation, but not spatial model. Further

research on geographic locations of EV distribution. This requires bigger power

systems including transportation systems. Probability and stochastic process

models of EV spatial distribution will be considered, such as Markov process

model.
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