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 Abstract 

Historically, post-fire debris flows (DFs) have been mostly more deadly than the fires 

that preceded them. Fires can transform a location that had no history of DFs to one that 

is primed for it. Studies have found that the higher the severity of the fire, the higher the 

probability of DF occurrence. Due to high fatalities associated with these events, several 

statistical models have been developed for use as emergency decision support tools. 

These previous models used linear modeling approaches that produced subpar results. 

Our study therefore investigated the application of nonlinear machine learning modeling 

as an alternative. Existing models identified the burn severity of wildfires as an important 

input in their development. Currently, the most widespread approach to obtaining this 

input is the use of the differenced normalized burn ratio (dNBR) index, which is 

determined using data from optical sensors on satellites. However, progress of this 

existing protocol is mostly hampered by the presence of cloud coverage during data 

acquisition since optical sensors cannot penetrate clouds. Radar sensors on the other hand 

can penetrate clouds and smoke. This study therefore developed a radar based algorithm 

to be used as an alternative to the dNBR metric. The results showed the SAR metric to 

perform even better than the dNBR, with an overall accuracy (OA) of ~60% and Kappa 

of 0.35 in comparison to an OA of ~35% and a kappa of 0.1 from the dNBR approach. 

Next we developed a nonlinear machine learning model to predict the likelihood of post-

wildfire debris flow occurrences. This produced improved results over the linear 

modeling approach with an average sensitivity of 77%, depicting increased ability to 

predict ~8 out of 10 DF producing basins. Finally, we performed a case study to validate 

our DF model that showed the model’s robustness in isolating especially high hazard 

locations. Having these improved models will furnish emergency responders with an 

increased ability to better assess the associated risks of potential debris flow producing 

basins and make informed decisions on mitigation and/ or prevention measures. 
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1 Introduction 

About 350 million ha of land worldwide burn annually as a result of wildfires (van der 

Werf et al., 2006). This projected coverage is potentially larger in recent years since 

wildfire frequencies have increased due to the onset of drier climates (Bond-Lamberty et 

al., 2007; Berman, 2017; Orosco, 2017; Dolan, 2018). Starting from ignition, wildfires 

leave devastations in their wake, which continue even years after the fire is ended. In fact, 

history shows most post-fire hazards to be more deadly than the fire itself. An example is 

the Thomas Fire, in Southern California in December 2017. This fire resulted in two 

fatalities, whereas a consequent debris flow event in January caused 21 deaths (Berman, 

2017; Orosco, 2017; Dolan, 2018). 

Post-fire hazards include, but are not limited to emission of greenhouse gases, erosion, 

flash floods, sediment-laden floods, debris flows, and rock falls (Dixon and Krankina, 

1993; Moody and Martin, 2001; Cannon et al., 2009; 2010). Our study focuses on debris 

flows because historically they are the most fatal of these hazards and their frequencies in 

western USA are increasing (Cannon and DeGraff, 2009; Eaton, 1935; Bailey et al., 

1947; Wells, 1987).  A debris flow is a fast-moving, high-density slurry of water, 

sediments and debris that travels under gravity with enormous destructive power. It 

usually occurs after periods of intense, short duration precipitation (rainfall, snow melt, 

etc.) on steep hillsides covered with loose erodible material (Cannon et al., 2010).  

Debris flows are not exclusive to fire affected areas but a location’s vulnerability 

increases significantly after it experiences wildfires (Cannon and Gartner 2005; Canon et 

al., 2010). The process by which this occurs are outlined as follows. Burning off of the 

rainfall intercepting vegetation (Kinner and Moody, 2008; Wondzell and King, 2003; 

Cannon et al., 2010), sealing of the soil pores from the generated ash (Cannon and 

Gartner, 2005; Larsen et al., 2009), and predominantly, the condensation of organic 

compounds produce an aftermath of a water repellent soil (DeBano, 2000; Doerr et al., 

2000; Cannon and Gartner, 2005; Moody and Ebel, 2012). These processes result in the 

formation a non-cohesive, water-repellent, bare soil, which is primed for the movement 

of large volumes of sediment within the burned area and its vicinity. 
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Behaviors of debris flows are extremely difficult to predict due to their complex physical 

structure, trigger mechanisms, and regional variability (Cannon et al., 2010). There are 

records of studies dating to the 1980s that began the task of detailing the physical 

behavior and impact of debris flows (Hungr et al., 1984; Johnson et al., 1991; Cannon et 

al. 2010; Staley et al, 2017; Prochaska et al. 2008; Santi et al. 2011). Recognition and 

study of the influence of wildfires on these events began in 1991 when Johnson et al. 

discovered an increase in volumes of eroded material at locations that had experienced 

wildfires in their recent past (Johnson et al., 1991). Currently, researchers are focusing on 

developing statistical models that attempt to predict the probability of post-fire debris 

flow occurrences. These models are developed by utilizing a number of different 

descriptive characteristics of a location such as: basin morphology, rainfall 

characteristics, burn severity, and soil properties (e.g., Hungr et al. 1984; Bovis and 

Jakob 1999; Gartner 2005; Gartner et al. 2008; Cannon et al. 2010).   

Unsurprisingly, development of these models showed the burn severity of wildfires to be 

a very important input (Johnson et al., 1991; Cannon et al., 2010; Staley et al., 2017). 

Generally, a high burn severity basin has a higher likelihood to produce debris flows of 

larger volumes than one with low severity (Cannon et al., 2010). This makes the burn 

severity input especially critical to this study. Currently the common approach to 

assessing this parameter is by employing satellite remote sensing. In particular, data from 

optical sensors data have been used extensively to develop algorithms that have proved to 

be instrumental in mapping burned areas (Koutsias et al., 2000; Justice et al., 2002; Roy 

et al., 2002; Mitri and Gitas., 2004; Chuvieco et al., 2006; Polychronaki et. al, 2013; 

Kalogirou et al., 2014; Stroppiana, 2015). The differenced normalized burn ratio (dNBR) 

is the most common of these algorithms. These optical based approaches, however, have 

a major disadvantage associated with them, in that their progress can be hampered or 

even halted by smoke and/or cloud coverage during data acquisition. Substantial smoke 

and cloud coverage can corrupt an optical image and render it unusable for any analyses 

to be done. A user who encounters this problem is forced to wait for at least an entire 

temporal cycle of the satellite of interest for the chance to obtain usable data. For 
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emergency situations, this delay can be life threatening and/ or costly. Past research have 

also shown that the dNBR method of assessing fire severity works well for unburned and 

highly burned areas but becomes inconsistent in the intermediary severity levels. Some 

studies found it problematic to clearly delineate intermediate severity burns (Chuvieco et 

al., 2006; Allen and Sorbel, 2008; Hoy et al., 2008; Murphy et. al., 2008). Radar sensors, 

on the other hand, can penetrate smoke and clouds and have been used by several 

researchers for fire studies (Bourgeau-Chavez, 1997; Rignot et al., 1999; Hoekman et al., 

2010; Polyvhronaki, 2013; Kalogirou, 2014), but limited work has been done in the 

particular area of burn severity determination, especially in the fire prone western United 

States. With these problem statements in mind, our study set out to complete the 

following three objectives: 

 Develop a radar-based burn severity estimate to be used as an alternative in 

emergency situations where there is cloud and/ or smoke coverage. 

 Develop a nonlinear machine learning model to predict the likelihood of post-

wildfire debris flow occurrences in the western USA. 

 Test robustness of developed debris flow model with a case study of recent event 

occurrence. 

We employed machine learning modeling in all three aspects of the study because its 

algorithms offer flexibility through data driven predictions made by iteratively learning 

from the input data, as opposed to the strictly static algorithms of some linear models. 

Machine learning is a type of artificial intelligence that was originally developed to 

provide computers with the ability to learn without being explicitly programmed 

(Samuel, 1959). The algorithm was initially developed for the computer science 

discipline but is now gaining notoriety in other fields due to its robustness. Several 

models have been developed that use this algorithm to learn from previous computations 

by searching through data to look for patterns, iteratively re-adjusting until a final robust 

pattern is found (Samuel, 1959; Fogel et al., 1966; Kohavi and Provost, 1998; Kuhn and 

Johnson, 2013). Hence, the more data you have to learn from, the better your output. 

Machine learning modeling can be applied even when the theory behind the data in 
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question is not fully understood. Models that use these algorithms have become 

widespread in recent years because they have proved to be better at teasing out complex 

relationships than simple linear models (Kern et al., 2017). Some examples of the success 

of machine learning modeling include their use in the environmental science field to 

detect oil spills from satellite imagery (Kubat et al., 1998); geoscience and remote 

sensing data (Oommen et al., 2007; 2008; Samui et al., 2012; Gowda et al. 2015); as well 

as in the medical field to detect cancer tissue samples using microarray expression data 

(Furey, 2000; Stalin and Kalaimagal, 2016). The surveillance field has used them to 

develop algorithms for facial recognition (Rowley et al., 1998; Dolecki et al., 2016), 

whereas the financial world has used them for predicting bankruptcy as well as credit 

rating (Odom et al., 1990; Wu et al., 2016). There are many other disciplines that have 

explored machine learning modeling for various complex scenarios that depict the 

extreme usefulness of this approach and hence, touts its use as an emergency response 

tool for post-fire debris flow hazards.  

To tackle the first aspect of our project, we developed a radar-based metric using the 

C5.0 decision tree algorithm. This furnished us with an alternative model to use in place 

of, or in the absence of the optical models. Specifically, we developed a synthetic 

aperture radar (SAR) based metric aimed at classifying the burn severity into three 

categories: low severity, moderate severity, and high severity.  SAR is a technique that 

artificially lengthens a radar sensor’s antenna by capitalizing on the flight movement to 

provide high resolution imagery. The way SAR works is that it transmits microwave 

energy to a target object, after hitting the target the wave scatters, part of it are lost but 

others are transmitted back to the SAR receiver. This is measured as the backscatter 

value. The amount of waves that are lost depends on the composition and nature of the 

target object. Its application to burned area studies is that after a surface experiences 

burn, the loss in vegetative cover causes backscatter variations. These changes are 

directly proportional to the degree of burn and therefore make it possible to map the burn 

severities (Tanase et al., 2015a; Polychronaki et al., 2013). The SAR data that was used 

was the Japan Aerospace Exploration Agency’s Advanced Land Observing Satellite 
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Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) obtained from the 

Alaska Satellite Facility. Details of this study have been provided in the Chapter 2 of this 

dissertation. 

Moving on to the issue of debris flows prediction, we again employed the machine 

learning-based decision tree algorithm to develop a nonlinear model that predicts the 

probability of debris flow generation after wildfires. Previous studies, mostly by 

researchers at the United States Geological Survey (USGS), had predominantly employed 

linear models, specifically the logistic regression model (Cannon and Gartner 2005, 

Cannon et al., 2010, Staley et al., 2017). The logistic regression approach is advantageous 

because it considers simple linear classification boundaries, making model development 

simple as well as easy to interpret. However, its simplicity is a detriment to it in debris 

flow modeling due to its complex triggering and flow mechanics. Up until 2017, the best 

model reported a sensitivity of 44% (Cannon et al., 2010) — this translates to an 

approximate 4 out of 10 debris flow producing basins being correctly isolated. This was 

not ideal and hence, Staley et al., 2017 used a more data rich sample to develop an 

updated logistic regression model with an improved sensitivity of 83%. It, however, had a 

specificity of 58%, which means that ~6 out of 10 “debris flow safe” locations will be 

correctly predicted. Although this updated model provides an increased ability to isolate 

more vulnerable areas, it held the risk of desensitizing the public, due to the likelihood of 

producing high false positive predictions. We therefore proposed the use of the C5.0 

decision tree algorithm to investigate if higher predictive capabilities could be harnessed 

from this nonlinear machine learning approach. Details of this have been provided in 

Chapter 3 of this dissertation.  

Finally, the fourth chapter of this dissertation sought to validate the developed debris 

flow prediction model by considering a case study. We applied both the C5.0 tree and 

USGS’ logistic regression models to a recent fire that happened in Southern California, 

the Thomas Fire. This fire, which was the largest in California’s recent past at time of its 

ignition, occurred from December 4, 2017 to January 12, 2018 and consumed ~114,000 

ha of land. Before the fire could be fully contained a major storm occurred on January 9, 
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2018, which triggered debris flows within the burned area, inundating several 

communities downstream in the Santa Barbara and Ventura Counties. Using this location 

as a case study, we validated our C5.0 tree model as well as compare its predictive 

strength with that of the logistic regression model. Details of this have also been provided 

in Chapter 4 of this dissertation.  
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2 Utilizing Satellite Radar Remote Sensing for Burn 
Severity Estimation1 

Abstract: The increasing knowledge in the capabilities of satellite imagery to hazard 

applications is especially useful in emergency situations where timing and ability to cover 

large areas is of the essence. For optical imagery, cloud coverage can corrupt an image 

rendering it unusable for intended emergency analyses. This study proposes the use of 

Synthetic Aperture Radar (SAR) imagery for burn severity analysis for western United 

States sites, as an alternative to its optical based counterpart, differenced normalized burn 

ratio (dNBR). Unlike optical sensors, the radar sensor is an active sensor that is able to 

penetrate clouds and smoke, an attribute that is crucial in emergency situations where 

immediate burn severity data are needed to assess the vulnerability of fire affected areas 

to post-fire hazards. Using C5 decision tree algorithm we developed a SAR-based metric 

that attempts to classify burn severities of fire affected locations in the western USA. We 

then compared the performance of this developed metric to that obtained by the existing 

dNBR metric, to determine if there is any merit to its adoption as an alternative for the 

western USA landscape. The results showed the SAR approach to produce higher 

validation metrics in comparison to the dNBR. It had an overall accuracy and kappa of 

60% and 0.35, respectively, in comparison to the 35% and 0.1 of the dNBR approach. 

This shows an improved ability to quickly obtain burn severity data and make better 

informed decision in emergency situations. 

 

 

 

 

 

1This material has been published as an Open Access article in the International Journal of Applied Earth 

Observation and Geoinformation. Check page v for original article link. 
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2.1 Introduction 

The hazards associated with a wildfire continue even after it is contained. A wildfire’s 

aftermath usually results in the loss of vegetative cover, leaving the ground exposed and 

vulnerable to a plethora of post-fire hazards.  These hazards include erosion, sediment 

flows, rock falls, flash floods, debris flows, and release of greenhouse gases into the 

atmosphere (Dixon and Krankina, 1993; Moody and Martin, 2001; Cannon et al., 2009; 

2010). The intensity of such post-fire hazards are usually exacerbated by the severity of 

the fire. Emergency response teams therefore need immediate access to burn severity 

maps to enable them to assess the vulnerability of fire affected areas to post-fire hazards 

(Cannon et al., 2010; Staley et al., 2016; Kern et al, 2017). The United States Department 

of Agriculture (USDA), for example, has formed a dedicated team— Burned Area 

Emergency Response (BAER)— whose mission is to rapidly evaluate severity of fires 

and their implications on Federal lands and prescribe emergency stabilization treatments. 

The BAER team works on a short turnaround time because their activities have to be 

completed before the next major storm. Their work therefore begins even while the 

wildfire is still ongoing because it is imperative that stabilization measures (reseeding 

with quick-growing species, mulching, building slope breakers, etc.) are applied as soon 

as possible (Witt, 1999) 

Currently, the common approach to determining burn severity of an extensive area is by 

employing satellite imagery since they provide objective estimates and cover wider 

investigative areas (Key and Benson, 2006; Miller and Thode, 2007; Parks et al., 2014). 

In particular, optical satellite data have been used extensively and proven to be useful for 

mapping burned areas (Koutsias et al., 2000; Justice et al., 2002; Roy et al., 2002; Mitri 

and Gitas., 2004; Chuvieco et al., 2006; Stroppiana, 2015). The optical approach, 

however, has a major disadvantage of being hindered by cloud coverage and smoke from 

ongoing wildfires (Schroeder et al., 2008; Wooster et al., 2013; Allison et al., 2016). 

Substantial cloud coverage and/or smoke can mask an optical image and render it 

unusable for the intended burn severity analysis. A user who encounters this misfortune is 

forced to wait for at least an entire temporal cycle of the satellite—16 days, in the case of 
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Landsat—for the chance to obtain usable data. For potential emergency hazards, this 

delay can be life threatening and/or costly. Also, studies have shown that the most widely 

used optical approach, the differenced normalized burn ratio (dNBR), shows 

inconsistencies in the intermediary burn severity levels. Some studies found it 

problematic to clearly delineate intermediate severity burns (Chuvieco et al., 2006; Allen 

and Sorbel, 2008; Hoy et al., 2008; Murphy et. al., 2008). Finally, the dNBR index is an 

absolute measure of landscape (vegetation) change, hence it fails to take into account the 

heterogeneous nature of landscapes. That is, for the same intensity of burn, a pixel with 

sparse pre-fire vegetation will measure a small change (lower dNBR) even if it 

experienced a high severity burn; whereas its counterpart with dense pre-fire vegetation 

will register a high change (higher dNBR).This becomes problematic when a user 

encounters a landscape with different vegetation types and densities and try to rank them 

on the same burn severity scale (Miller and Thode, 2007; Parks et al., 2014). 

We are therefore proposing an alternate approach in this study: radar burn severity 

estimation. Unlike optical sensors, the radar sensor is an active sensor that is able to 

penetrate clouds and smoke, an attribute that is crucial in emergency situations. Radar 

satellite sensors use a technique known as synthetic aperture radar (SAR), which is 

basically the artificial lengthening of a sensor’s antenna by capitalizing on the flight 

movement to provide high resolution imagery. SAR uses microwave energy to quantify 

and discern between ecological processes by measuring the differences in scattering 

based on the roughness of the target surface. Variation in the dielectric constant of target 

objects plays a central role in determining the intensity (backscatter) of the microwave 

energy that is received and processed into the resulting SAR image (Kasischke et al., 

1997). Its application to burned area studies is that after a surface experiences burn, the 

loss in vegetative cover causes scattering variations. These changes are directly 

proportional to the degree of burn and therefore make it possible to map the burn 

severities (Tanase et al., 2015a; Polychronaki et al., 2013).  The use of SAR to determine 

burn severity is in no way novel, however, it is a fairly new application area with limited 

literature currently available (Tanase et al., 2010a, 2010b, 2015a, 2015b).  Further, the 
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existing studies focus predominantly on Mediterranean forests. The signature of SAR’s 

measurement is unique to different vegetation types, hence with the landscape of the 

western USA being different from the Mediterranean landscape, an extensive study like 

this one with unique concentration on the western USA is warranted.  Finally, noting the 

difficulty of the dNBR approach to account for the heterogeneous nature of landscapes 

we will consider relative measures of SAR burn severity by averaging over the pre-burn 

condition of each landscape to account for its relative change.  

2.2 Methods 

2.2.1 Study Area  

Our study considered 15 fires that occurred across six States in the fire-prone western 

USA (Figure 2.1, Table 2.1) from 2008 to 2010.  These fires were chosen out of the 37 

fires in the FIRESEV (FIRE SEVerity mapping system project) database (Dillon et al, 

2011a; Sikkink et al., 2013) because they were the ones with documented containment 

dates. FIRESEV was a project funded by a Joint Fire Sciences Program “geared toward 

providing fire managers across the western United States with critical information for 

dealing with and planning for the ecological effects of wildfire at multiple levels of 

thematic, spatial, and temporal detail” (Dillon et al, 2009). This project collected ground-

based burn severity data on 37 fires that occurred in the western USA from 2008-2010 

(Sikkink et al., 2013).  

2.2.2  Field Data 

The field protocol used in the FIRESEV project was the Composite Burn Index (CBI), 

which assesses the burn severity of a landscape on a continuous scale by visually 

examining vegetation conditions of 90-meter diameter plots in the aftermath of a fire with 

respect to the condition of vegetation before the fire. Values range from 0 (unburned) to 3 

(high severity) for any given plot (Key and Benson, 2006).  
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Figure 2.1 Study area of western USA showing the 15 fires from 2008-2010 from the 

FIRESEV database. 

Setting CBI thresholds is arguably as much an art as science, so depending on study 

location and study focus, threshold values could differ for different studies. After doing 

some preliminary explorations of different thresholds, we decided on the ranges proposed 

by Key and Benson, 2005 (Table 2.2). The only exception was the unburned class that 

was set at a threshold of 0.1 because preliminary analysis showed the noted range limit of 

0.5 encapsulated most of the low severity samples. Documentation on the FIRESEV 

project noted that it was predominantly geared towards isolating high severity burn 
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locations (Dillon et al, 2011b) therefore there was an intentional sample bias towards this 

class, which was evident even in the subset of data we obtained (Figure 2.2); this further 

gave confidence to the class thresholds set. The unburned class comprised ~2% of the 

sample size, so we removed them from further analyses to prevent this extreme class 

imbalance. 

 

Table 2.1.  List of fires used in the study 

Fire Name State 
Ignition 

Date 

Containment 

Date 

Eagle Rock 
Arizona 6/11/10 6/28/10 

Hobble 
Arizona 8/30/10 10/15/10 

Schultz 
Arizona 6/20/10 7/7/10 

Bull 
California 7/26/10 8/10/10 

Cotton 
California 5/15/10 5/17/10 

Indian 
California 7/18/10 7/24/10 

McDonald 
California 7/27/10 8/10/10 

Shu Lightning 
California 6/21/08 7/20/08 

Harris Complex 
Idaho 8/27/10 9/4/10 

Long Butte 
Idaho 8/21/10 8/31/10 

Bielenburg 
Montana 7/12/09 10/1/09 

Dominic Point 
Montana 7/25/10 8/7/10 

Kootenai Creek 
Montana 7/12/09 8/5/09 

Aspen 
New Mexico 6/6/10 6/26/10 

Big Pole 
Utah 8/6/09 8/16/09 
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Table 2.2 CBI and dNBR severity category definitions. Bilinear interpolation was used to 

cross-reference CBI values with dNBR values 

Class CBI  dNBR Description 

Unburned 0.00 – 0.10 0.00 – 0.10 

Location experienced no fire. This 

may also include a location that 

recovers quickly after fires. 

Low 0.10 – 1.24 0.10 – 0.27 
Minimal vegetation consumption; 

patches of scorched foliage. 

Moderate 1.25 – 2.24 0.27 – 0.66 

The landscape exhibits transitional 

conditions between low and high 

severity characteristics described. 

High 2.25 – 3.00 > 0.66 

~ 90% to total consumption of 

vegetation. Sites normally exhibit 

over 50% cover of newly exposed 

mineral soil or rock fragments 

 

 

Figure 2.2 Percentage of the different CBI burn severity classes from the FIRESEV 

database  
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2.2.3 Remote Sensing Data 

2.2.3.1 Optical Burn Severity Determination 

The dNBR index determines burn severities by harnessing the spectral values of the near 

infrared (NIR) and short wave infrared (SWIR) wavelengths. NIR records high 

reflectance values for healthy vegetation and low values for burned vegetation; whereas 

the converse is true for SWIR; low reflectance in healthy vegetation and high reflectance 

in burned areas. With these intrinsic signatures, the normalized burn ratio (NBR) 

(equation 1) was developed to map burn areas. A high NBR value generally indicates 

healthy vegetation whereas a low value indicates low or no vegetation, such as a result of 

fire. To go a step further to quantify different severity classes, the dNBR (equation 2) was 

developed as a temporal change detection metric. This metric runs from -2 to +2, with 

high positive values corresponding to severely burned locations.  

𝑁𝐵𝑅 =
𝑁𝐼𝑅 𝑏𝑎𝑛𝑑−𝑆𝑊𝐼𝑅 𝑏𝑎𝑛𝑑

𝑁𝐼𝑅 𝑏𝑎𝑛𝑑+𝑆𝑊𝐼𝑅 𝑏𝑎𝑛𝑑
     (1) 

𝑑𝑁𝐵𝑅 =  𝑁𝐵𝑅𝑝𝑟𝑒𝑓𝑖𝑟𝑒 − 𝑁𝐵𝑅𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒    (2) 

Cloud-free pre- and post- images were downloaded from Landsat 5 Thematic Mapper 

(TM). These images were downloaded as Level 1 products (geometrically and 

radiometrically corrected) from USGS’ Earth Explorer website. Burn severity for each 

scene was determined using equations (1) and (2) with bands 4 and 7 corresponding to 

the NIR and SWIR infrared wavelengths, respectively. We then extracted the dNBR 

values to correspond to each CBI plot location using bilinear interpolation, as a past study 

showed this approach to give representative values corresponding to the CBI plots (Parks 

et al., 2014). Bilinear interpolation is a resampling approach that uses the four closest 

pixels of an input raster, with a user defined statistic metric, to determine the value of the 

output raster. The statistic metric used for our study was the mean, which was adjusted to 

account for the distance of each of the four closest rasters to the centroid of the output 

cell. This resampling step was necessary to account for the extent of the CBI plot, which 

is unlikely to fall within a single raster pixel. The continuous dNBR values were then 
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classified into their respective severity classes of low, moderate, and high (Table 2.2). 

This four class categorization is known in the fire community as BARC-4 (burned area 

reflectance classification, using 4 classes). 

2.2.3.2 Radar Burn Severity Determination 

SAR scattering is sensitive to vegetation structure and biomass. Removal of leaves and 

branches from trees after wildfires alters the scattering mechanisms causing temporal 

variations of the backscatter coefficient (Polychronaki et al., 2013). This temporal 

alteration makes it possible to map burn severity. The wavelength and polarization of the 

SAR sensor strongly influence the accuracy of the output. The higher the wavelength the 

more penetration the SAR signals are able to achieve. The higher wavelength of the L-

band (24 cm) therefore allows it to penetrate vegetation canopy and interact with large 

branches, stems, and the forest floor (Le Toan et al. 1992), which makes it possible to 

discern burned structures from unburned ones. Conversely, the X- and C- bands, by 

virtue of their lower wavelengths (5.6 cm and 3 cm, respectively), have lower penetration 

capabilities; scattering occurs only in the upper few centimeters of the forest canopy 

making them less favorable in burn severity applications (Tanase et al., 2010a, 2010b, 

2015a, 2015b). In terms of polarizations, the cross-polarized state (HV) has been shown 

to be sensitive to volume changes hence, the removal of leaves and branches by fire and 

consequent thinner, dryer vegetation results in a decreased backscatter. These processes 

translate to the needed contrast in SAR image to discern changes.  

The Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture 

Radar (ALOS PALSAR) was the sensor employed in our studies. This was because it is 

the only L-band sensor that was in operation during our investigative period and also that 

its data are readily available at no cost. Pre- and post- fire data were downloaded through 

the Alaska Satellite Facility (ASF) as fine beam dual polarization (FBD) products, which 

meant that they had both HH and HV polarization information. A preliminary assessment 

of the mean backscatter values for the study locations pre- and post- fire conditions 

showed that unburned locations recorded higher backscatter coefficients in comparison to 
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their burned counterparts for both HH and HV polarizations (Figure 2.3). This supports 

the theory found in earlier literature. 

The ALOS PALSAR data were also downloaded as radiometrically terrain-corrected 

(RTC) products from ASF. This meant that single look complex (SLC) data had already 

been converted to radiometrically and terrain geo-coded data by ASF. By this, co-

registering was done for scenes obtained from the same sensor and track.  Multi-looking 

had also been performed to obtain representative pixel sizes as well as reduce the 

characteristic speckle noise associated with SAR data. For images with fully developed 

speckle noise, further filtering had been done by applying a sensor-suitable adaptive or 

non-adaptive filter; keeping in mind to preserve good radiometric as well as spatial 

resolution (Bernhard et al., 2011; Gimeno et al., 2004). Geocoding had finally been 

carried out using the best available digital elevation model (DEM). Two sets of data were 

downloaded for each fire for pre- and post- fire scenarios, respectively.  

 

 

Figure 2.3 A plot of mean backscatter values for the fifteen burned areas considered in 

this study for before (green) and after (red) the fires. 
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Next, we developed the following absolute and relative predictors from the HH and HV 

backscatter data to quantify the landscape changes due to wildfire: 

𝐴𝑏𝑠_𝐻𝐻 = 𝐻𝐻𝑝𝑟𝑒 − 𝐻𝐻𝑝𝑜𝑠𝑡     (3) 

𝐴𝑏𝑠_𝐻𝑉 = 𝐻𝑉𝑝𝑟𝑒 − 𝐻𝑉𝑝𝑜𝑠𝑡     (4) 

𝑅𝑒𝑙_𝐻𝐻_1 =
𝐻𝐻𝑝𝑟𝑒−𝐻𝐻𝑝𝑜𝑠𝑡

𝐻𝐻𝑝𝑟𝑒
     (5) 

𝑅𝑒𝑙_𝐻𝑉_1 =
𝐻𝑉𝑝𝑟𝑒−𝐻𝑉𝑝𝑜𝑠𝑡

𝐻𝑉𝑝𝑟𝑒
     (6) 

𝑅𝑒𝑙_𝐻𝐻_2 =
𝐻𝐻𝑝𝑟𝑒−𝐻𝐻𝑝𝑜𝑠𝑡

√𝐻𝐻𝑝𝑟𝑒
     (7) 

𝑅𝑒𝑙_𝐻𝑉_2 =
𝐻𝑉𝑝𝑟𝑒−𝐻𝑉𝑝𝑜𝑠𝑡

√𝐻𝑉𝑝𝑟𝑒
     (8) 

Equations (3) and (4) to give the absolute changes of the landscape after fires, whereas 

equations (5) to (8) give the relative changes with respect to the existing condition on the 

ground before the fire. We extracted each of these predictors to correspond to the CBI 

plots using bilinear interpolation, as was done for the dNBR data. Land Cover Data 

We observed the existence of different vegetation types across the six States that were 

investigated. Past studies indicate that the differences in the moisture content and 

individual components of different vegetation types results in unique dielectric constants 

(Rignot et al, 1994; Kasischke et al., 1997; Wegmuller and Werner, 1997). The different 

dielectric constants cause different vegetation groups to have different scattering and 

attenuating responses to the microwave energy transmitted by radars (Kasischke et al., 

1997). Therefore, we obtained land cover data from the National Land Cover Database 

(NLCD) from the United States Department of Agriculture’s geospatial data gateway to 

quantify the broad land cover types. Preliminary analyses showed improved results when 

land cover data was integrated into model development. Our sites comprised the 

following three dominant land cover types: evergreen forest, herbaceous, and shrub. 
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These were coded as three separate dummy variables to be used as predictors and were 

extracted for each CBI plot using nearest neighbor resampling method. With these three 

dummy variables, together with the six predictors from equations (3) – (8), we had a total 

of nine candidate predictors for developing our model. 

2.2.4 Data Analyses 

2.2.4.1 C5.0 Algorithm 

The algorithm used for this study was the C5.0 decision tree (Quinlan, 1993). It is a 

simple method that uses inductive inference to approximate discrete-valued functions. It 

is robust to noisy data and capable of learning mutually exclusive expressions. Its 

algorithm works by sorting the data from a base decision into smaller, more 

homogeneous groups. It does this by developing a general decision called the root, then 

branching out from there with other more specific decisions known as branches, till it 

gets to a decision that produces homogeneous samples, which are then assigned a 

classification known as the leaf (Kuhn and Johnson, 2013). This represents a typical tree 

structure, hence, the name decision tree. Figure 2.4 gives a schematic of a simplified tree 

with one root, two branches and four leaves.  

At each node, each predictor is tested to assess how well it alone separates the training 

data according to the target classification. The process is repeated on each new subset 

until a subset contains only samples of a single class, or the partitioning tree has reached 

a predetermined maximum depth. Trees are grown to their maximum size and then a 

pruning step is usually applied by removing a decision’s precondition if the accuracy of 

the decision improves without it. This is done to avoid overfitting to the training data. 

The C5.0 tree algorithm uses boosting in its model training process, which works by 

combining average model decisions together to improve overall model performance of 

the final output. 
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Figure 2.4 Schematic of a simplified decision tree with a root, two branches and four leaf 

nodes 

2.2.4.2 Model Development 

Figure 2.5 shows boxplots of the six continuous predictors (excluding the three land 

cover predictors) as they relate to the different burn severity classes from the CBI data. A 

look at this shows the low and moderate severity classes to have mostly similar median 

values. This likely due to the fact that there were not as many samples for these two as 

there were for the high severity class. Preliminary data pre-processing steps taken to 

ensure optimal model performances included omitting observations with missing values 

and testing for predictor degeneracy. 
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Figure 2.5 Boxplots showing how the six continuous predictor variables vary with the 

CBI classes of low, moderate, and high burn severity.  

We then run a predictor selection routine that tested the performance of candidate models 

with successively fewer predictors (Dillon et al., 2011b and Birch et al., 2015). By this, 

we assessed the influence of each individual predictor on the model as a whole. We 

examined the variable importance from the C5.0 tree modeling process. With each model 

run, C5.0 tree calculates variable importance by randomly permuting the values of each 

variable, one at a time, and calculating the change in overall model performance (mean 

decrease in accuracy) as a result. We determined the rankings of stable predictor 

importance by running 10 reproducible C5.0 tree models with all the nine predictors. 

From here, we determined a single value of importance for each predictor from the mean 

variable importance of all 10 candidate models and ranked them (1= highest importance; 
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9 = least importance). The results identified REL_HV_1, evergreen forest, and Abs_HV 

to be most informative, having an aggregated ranking of less than a threshold of 50 

(Figure 2.6). 

Using the three final predictors, REL_HV_1, evergreen forest, and Abs_HV, an 80-20 

data sampling split was made without replacement. 80% of the data was used to train the 

model and 20% was used to validate it. This split was done using stratified random 

sampling to ensure that representative distributions of the response variable were sampled 

in each set since our class sizes were imbalanced. A leave-one-out cross validation 

resampling was applied to determine the number of trials needed to achieve optimal 

model performance. An interval of 1 – 30 was set as the candidate for this process. The 

results from the resampling were then aggregated into a performance profile which 

revealed optimal number of trials to be 6. Setting this as the optimum number of trials, 

the model was developed a final time using the entire training data. 

 

Figure 2.6 Aggregated ranking of variable importance for 10 candidate model runs for all 

nine predictors 
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2.2.4.3 Model Validation 

To first establish the baseline to compare our SAR analyses to, we determined a 

confusion matrix (Table 2.3) using the CBI values for the 15 fires as the reference data 

and the BARC-4 data as the predictor. We then tested our developed SAR model on the 

initial 20% validation set that was retained after preprocessing. 

From this we determined the overall accuracy (Eq. 9), which measures the overall 

performance of the model in correctly identifying the three different burn severity 

classes. It ranges from 0 to 1, with 0 representing a model with no predictive capability 

and 1 representing a perfect model. Cohen’s Kappa (Eq. 10), also provides a measure of 

the overall performance of the model by measuring the precision between predictions and 

observations while correcting for chance agreements (Cohen, 1960). This statistic takes 

into account the possibility of chance predictions hence it tends to be more conservative. 

Typical values from 0.30 – 0.50 on a scale of -1 to 1 represent a model with reasonable 

agreement (Kuhn and Johnson, 2013). 

 

 

Table 2.3 A three class confusion matrix, setting the “high” class as the true positive 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
      (9) 

     𝐾𝑎𝑝𝑝𝑎 =  
𝑝0−𝑝𝑒

1−𝑝𝑒
       (10) 

where po is the total accuracy given as: 𝑝𝑜 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
, and pe is the random 

accuracy given as: 𝑝𝑒          =  
(𝑇𝑁+𝐹𝑃)+(𝑇𝑁+𝐹𝑁)+(𝐹𝑁+𝑇𝑃)+(𝐹𝑃+𝑇𝑃)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)2
  

2.3 Results and Discussion 

Values of the continuous dNBR index ranged from -0.20 to 0.84; these corresponded to 

continuous CBI values from 0 to 3 across the 15 burned areas. A plot of the continuous 

values of the CBI confirmed the challenges of the dNBR having difficulty in 

differentiating between moderate and high severity burns, as there did not seem to be 

much separation between these two classes (Figure 2.7).  

 

Figure 2.7 A plot of continuous values of the CBI against the continuous values of dNBR 
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A baseline confusion matrix between CBI and the BARC-4 data also confirmed this 

difficulty, as only ~21% and ~26% of the moderate and high severity classes, 

respectively, were correctly identified (Table 2.4). The confusion matrix shows the low 

severity class to have the highest producer’s accuracy of 80%, which goes to show that 

the reflectance-based BARC-4 does a good job of correctly predicting low severity 

locations, however, its ~28% user’s accuracy is problematic because here, a large count 

of moderate and high severity locations are being incorrectly classified as low severity. 

With this baseline established, we developed our SAR model with the three final 

predictors to check against. Figure 2.8 and Table 2.5 show the breakdown of the tree that 

was developed from our C5.0 tree algorithm. This tree had one root node, four branches 

and six leaves.  The algorithm identified the Rel_HV_1 predictor as its root. This makes 

the Rel_HV_1 predictor the most important, as it forms the base of every decision made. 

It therefore means that relating the response of the landscape to its condition before the 

fire occurrence makes it possible to better discern the different severity classes. 

 

Table 2.4 Confusion matrix of test data CBI (columns) vs. BARC-4 data (kappa = 0.10) 

 CBI 

User’s 

Accuracy (%) 

  Low Moderate High 

B
A

R
C

-4
 

Low 8 14 7 27.6 

Moderate 1 4 7 33.3 

High 1 1 5 71.4 

Producer’s  

Accuracy (%) 
80.0 21.1 26.3 35.4 
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Figure 2.8 Break down of the decisions for developing the final SAR burn severity model 

 

 

The Evergreen decision branch generally classified locations where this land cover was 

present as low to moderate severity and locations without evergreen forests as moderate 

to high severity. This means that the likelihood of having a high severity burn is low 

when evergreen forests are present.  A critical look at this predictor confirmed that the 

low severity locations had the majority of this land cover type whereas the high severity 

had the least (Figure 2.9). 
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Table 2.5 Summary of decision paths for each leaf node 

Leaf Decisions Burn Severity  

1 

 

Rel_HV1 ≤ 0.57 

Evergreen = No 

Abs_HH ≤ 0.03 
 

Moderate 

2 

 

Rel_HV1 ≤ 0.57 

Evergreen = No 

Abs_HH > 0.03 

High 

3 

 

Rel_HV1 ≤ 0.57 

Evergreen = Yes 

Abs_HH ≤ 0.03 

Low 

4 

 

Rel_HV1 ≤ 0.57 

Evergreen = Yes 

Abs_HH > 0.03 

Moderate  

5 

 

Rel_HV1 > 0.57 

Abs_HH ≤ 0.19 

High 

6 

 

Rel_HV1 ≤ 0.57 

Abs_HH > 0.19 

Moderate 
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Figure 2.9 Plot showing percent coverage of evergreen vegetation in the different burn 

severity classes. 

The HH polarization also played an integral role in the developed model, as it was the 

final determinant in all the six decisions. This was unexpected because past studies 

showed the cross-polarized HV to be a much better discerner of burn severity classes than 

the co-polarized HH polarization. The argument was that the strength of the backscatter 

from the HV polarization was much higher since by virtue of the transmitted waves going 

in horizontally and received vertically translates to volumetric scattering. However, we 

see here that the HH polarization, though not as important as the HV polarization, is 

crucial in discerning between burn classes. 

Some other observations were that generally a low Abs_HH corresponded to low severity 

classification whereas higher Abs_HH values corresponded to the higher severity classes. 

This is intuitive because from equation 3, low Abs_HH is obtained when pre- and post- 

backscatter values are close to each other in magnitude. This is what is to be expected in 
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a low severity burn because the landscape would not have experienced that much change 

to translate to a large difference in recorded values. The converse is also true, as higher 

Abs_HH corresponded to higher severity burns. 

Testing the 20% validation data set that was retained during model development on our 

final model gave the results presented in Table 2.6. An overall accuracy of ~60% and a 

kappa of 0.35 for a three-class model show good predictive performance.  The model 

performed better in identifying moderate and high severity locations but had difficulty 

with the low severity locations. The fact that the low severity had the least sample size 

(15%) likely contributed to this underperformance, hence we are hopeful that 

improvement will be possible with a data rich model. Comparing this to the results 

obtained from the dNBR approach (Table 2.5) clearly shows the SAR approach to 

perform much better. 

Table 2.6 Confusion matrix of test data CBI vs. SAR classified data (kappa = 0.35) 

 CBI 

User’s 

Accuracy (%) 

  Low Moderate High 

S
A

R
 

Low 1 1 0 50.0 

Moderate 7 15 6 53.6 

High 2 3 13 72.2 

Producer’s  

Accuracy (%) 
10.0 78.9 68.4 60.4 
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Finally to test the importance of the land cover input, the model was tested without the 

Evergreen predictor. This resulted in an accuracy of 48% and kappa of 0.14. This is a 

clearly mediocre model in comparison and proves that knowledge of the land cover type 

is necessary for radar burn severity estimation. It is even possible that dNBR approach 

might be improved with a land cover input as well and future studies can look into it. 

2.4 Conclusions and Future Work 

The main focus of this study has been to develop a SAR based metric aimed at 

classifying the burn severity of locations in the western USA that have experienced 

wildfires as an alternative to the commonly used dNBR metric. We consequently 

compared the performance of SAR approach to the accepted dNBR approach to 

determine if there is any merit to its adoption as an alternative in the western USA 

landscape. The results showed the SAR approach to produce higher validation metrics in 

comparison to the dNBR. It had an overall accuracy and kappa of ~60% and 0.35 

respectively in comparison to the ~35% and 0.1 of the BARC-4 data. 

Generally, smaller differences in backscatter values for pre- and post- fire data translated 

to lower burn severities and vice versa. This was intuitive because for low severity, the 

landscape would not have experienced much change, thereby translating to lower 

differences in scattering of the radar signals and consequently, lower differences in 

backscatter values. Another noteworthy discovery was that the presence of evergreen 

forests seemed to limit the severity of fires.  

Overall, this developed SAR based metric showed improved results and can therefore be 

recommended as an alternative to the optical sensor approach of the dNBR. Also, 

because the radar signals of SAR can penetrate clouds, this will be even more beneficial 

in emergency situations where burn severity information is needed right away to 

implement stabilization measures on unstable slopes. 

FUNDING: This research did not receive any specific grant from funding agencies in the 

public, commercial, or not-for-profit sectors. 
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3 Assessment of Post-Wildfire Debris Flow Occurrence 
Using Classifier Tree2 

Abstract: Besides the dangers of an actively burning wildfire, a plethora of other 

hazardous consequences can occur afterwards. Debris flows are among the most 

hazardous of these, being known to cause fatalities and extensive damage to 

infrastructure. Although debris flows are not exclusive to fire affected areas, a wildfire 

can increase a location’s susceptibility by stripping its protective covers like vegetation 

and introducing destabilizing factors such as ash filling soil pores to increase runoff 

potential. Due to the associated dangers, researchers are developing statistical models to 

isolate susceptible locations. Existing models predominantly employ the logistic 

regression algorithm, however, previous studies have shown that the relationship between 

the predictors and response is likely better predicted using nonlinear modeling. We 

therefore propose the use of nonlinear C5.0 decision tree algorithm, a simple yet robust 

algorithm that uses inductive inference for categorical data modeling. It employs a tree-

like decision making system that makes conditional statements to split data into 

homogeneous classes. Our results showed the C5.0 approach to produce stable and higher 

validation metrics in comparison to the logistic regression. A sensitivity of 81% and 

specificity of 78% depicts improved predictive capability and gives credence to the 

hypothesis that data relationships are likely nonlinear. 

 

 

 

 

 

2This material has been published as an Open Access article in the Geomatics, Natural Hazards and Risk 

journal. Check page v to see the citation for this. 
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3.1 Introduction  

An average of 350 million hectares of land are affected annually by wildfires worldwide 

(van der Werf et al., 2006). There are predictions of even further increase in these 

occurrences with increasing trends in temperature (Westerling et al., 2006; Bond-

Lamberty et al., 2007; Miller et al., 2009; Flannigan et al., 2009).  The hazards associated 

with a wildfire continues even after it is contained. Its aftermath can yield itself to a 

spectrum of post-effects, of which debris flows are at the most disastrous end (Brock et 

al., 2007; Cannon et al., 2010). Debris flows are fast-moving, high-density slurry of 

water, sediments and debris that travels under gravity and are endued with enormous 

destructive power (Cannon and Gartner 2005, Cannon et al., 2010, Staley et al., 2017). 

They usually occur after periods of intense, short duration precipitation on steep 

hillslopes covered with loose erodible material (Cannon et al., 2010). They are very 

destructive to anything in their paths and are usually associated with fatalities. A recent 

event occurring on January 09, 2018 in Montecito, California resulted in 21 confirmed 

deaths, hundreds of injuries, and extensive damage to infrastructure including roadways, 

causing major freeways to be closed for days (CNN, 2018; Fox News, 2018). This debris 

flow event occurred following the largest fire in California’s recent past, Thomas Fire, 

which had been ignited a month prior and consumed a little over 280,000 acres of land. 

Although debris flows are not exclusive to fire affected areas, wildfires have been known 

to increase the susceptibility of otherwise stable locations (Cannon et al., 2010). With the 

upward trend in wildfire frequencies, it is likely these events will also be on the rise. The 

threat of debris flow occurrence can persists for years after wildfires. A 2015 study 

showed that a location that experiences a wildfire event can be at risk of producing debris 

flows for an average of up to two years after the fire after which period the risk reduces 

due to repopulation of vegetation (DeGraff et al., 2015). A wildfire increases the 

susceptibility of a basin to debris flow occurrences by several mechanisms, which all 

work to decrease infiltration and increase the runoff generated. Some of these factors 

include the burning off of the rainfall intercepting vegetation (Kinner and Moody, 2008; 

Wondzell and King, 2003; Cannon et al., 2010), sealing of the soil pores from the 
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generated ash (Cannon and Gartner, 2005; Larsen et al., 2009), and predominantly, the 

condensation of water repellent organic compounds which leave in their wake a water 

repellent soil that is primed for the movement of large volumes of erodible material 

(DeBano, 2000; Doerr et al., 2000; Cannon and Gartner, 2005; Moody and Ebel, 2012).   

Accurately predicting the behavior of debris flow is decidedly difficult due to their 

complex physical structure, triggering mechanisms, and regional variability. There are 

records of studies dating as far back as the 1980s that began the onerous task of detailing 

the physical behavior and impact of debris flows (Hungr et al., 1984; Bovis and Jakob, 

1999; Gartner et al., 2008; Cannon et al., 2010; Staley et al., 2017). With the knowledge 

that wildfires increase a location’s susceptibility, scientists in the past have utilized this 

information to develop statistical models to isolate these potentially hazardous locations. 

Using information on the severity of the wildfire together with other pertinent descriptors 

of the affected location such as basin morphology, rainfall characteristics, and soil 

properties have been utilized in developing these predictive models (Hungr et al., 1984; 

Bovis and Jakob, 1999; Gartner et al., 2008; Cannon et al., 2010; Staley et al., 2017).   

Generally, there are two different approaches for predicting the likelihood of post-

wildfire debris flow occurrences:  deterministic (Hungr et al., 1984; Johnson et al., 1991) 

and probabilistic (Cannon et al., 2010; Staley et al, 2017). Researchers at the United 

States Geological Survey (USGS) have spearheaded work using the probabilistic 

approach since it provides objective results even with scanty or low quality datasets 

(Hammond et al., 1992; Donovan and Santi, 2017). They have developed probability 

models using datasets on past debris flow events such as basin morphology, burn 

severity, rainfall characteristics, and soil properties to build logistic regression models 

that predict the statistical likelihood of post-fire debris flow occurrence in western United 

States (Canon et al., 2010, Staley et al., 2013; Staley et al., 2017). This work began in 

2005 but there have been several refinements to the models over the years (Cannon and 

Gartner 2005, Cannon et al., 2010, Staley et al., 2017). The logistic regression approach 

is advantageous mostly because it considers simple linear relationships which are 

computationally faster and easy to interpret. Up until 2017, the best available logistic 
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regression model developed by USGS researchers for the intermountain west United 

States reported a sensitivity of 44% (Cannon et al., 2010) — this translates to an 

approximate of 4 out of 10 potential hazardous debris flow events being correctly 

predicted. This classifier had each of the input predictors modelled to influence the 

response variable independently, as such, probabilities greater than the cutoff points 

occurred even when the rainfall input was zero (Cannon et al., 2010). This was 

problematic because it is impossible for debris flows to occur in the absence of a driving 

high intensity, short duration rainfall (Cannon et al., 2010; Gartner et al, 2005). In a bid 

to improve upon this, in 2016, USGS researchers added more samples to the initial 2010 

dataset to investigate if the now data-rich database could improve the initial model 

(Staley et al., 2016). The data size was increased from 608 samples in 2005 (Gartner 

2005 et al., 2005) to 1550 samples in 2016 (Staley et al., 2016). Also, this new study 

introduced a link function whereby the critical inputs of the basin characteristics were 

multiplied by the rainfall inputs to ensure that the response probability was close to zero 

when there was no rainfall event. The best of these updated models had an improved 

sensitivity of 83% as compared to the previous 44%, with a corresponding specificity of 

58% (Staley et al., 2017). 

Other researchers have also looked into nonlinear probability modeling approach to 

investigate if more of the complex relationships between basin predictors and debris flow 

occurrence, which might not be discernible to linear models, can be captured with the 

nonlinear approach. Kern et al., 2017 explored the use of machine learning algorithms to 

model debris flow response. Their study explored both linear and nonlinear relationships 

between the predictors and response variable. They compared the accuracies offered by 

different linear and nonlinear models using the same dataset in Cannon et al. 2010’s 

study. Their results showed the nonlinear models outperformed the linear ones by as 

much as ~64% giving credence to their hypothesis that the relationship between basin 

predictors and the debris flows occurrence might be a nonlinear one. The top model 

identified from the Kern et al. (2017) study was one that was built using the Naïve Bayes 

algorithm. This model resulted in a sensitivity of 72%, an improvement on the 44% that 
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was initially obtained from Cannon et al., 2010’s study, and a corresponding specificity 

of 90% showing improved ability to predict these debris flow locations with the nonlinear 

model. 

We are therefore proposing the application of nonlinear modeling to the 2016 dataset as 

well to further improve the debris flow prediction. Preliminary analyses done with the 

Naïve Bayes algorithm resulted in a sensitivity 75% of and a specificity of 81%, showing 

improved results. However, in this current study, we propose the use of the nonlinear 

C5.0 tree algorithm (Quinlan, 1993) as opposed to the Naïve Bayes algorithm because the 

Naïve Bayes model is a black box model whose inner workings are unknown. It does not 

offer any insight into the relationships of the predictors as they relate to the response. The 

C5.0 tree algorithm, was therefore chosen in particular because it is one of the simplest 

nonlinear algorithms with transparent outputs. It affords a nonlinear approach by 

identifying unique cutoffs in the different distributions of the predictors as they relate to 

the response. The algorithm works by splitting the data into smaller, more homogeneous 

groups. Stepwise decisions are made on predictors at different levels to iteratively 

determine unique breakpoints as they relate to the different classes of the response 

variable. C5.0 builds trees from a set of training data using concepts from information 

theory. The algorithm makes different decisions at different nodes in an attempt to sort 

the response variable into its homogenous classes. To determine which predictor to 

choose to ask which question at each node, it uses a concept called information entropy 

(H), a statistic measure for the average rate at which information is produced by a 

stochastic source of data (Shannon, 2001). Essentially, H calculates the uncertainty in any 

particular decision at each node. Shannon defined Η of a discrete random variable, X, 

with possible values (x1, x2,… xn) and probability mass function P(x) as: 

𝐻 = − ∑ 𝑃(𝑥𝑖) log𝑏 𝑃(𝑥𝑖)
𝑛
𝑖=1      (1) 

where b is usually taken as base 2. For a binary response like in this project’s case, “no” 

debris flow and “yes” debris flow, the entropy distribution looks like Figure 3.1 below. 
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Figure 3.1  A plot of a binary entropy function showing the distribution of entropy 

(uncertainty) with changes in the probability of response classes. Uncertainty is lowest 

when the probability approaches 0 or 1, and reaches maximum when probability is 0.5. 

 

Entropy reaches a maximum at the halfway point when the probability is 0.5; i.e. there is 

a 50-50 chance that it could go either way (“no” or “yes”), uncertainty is at its maximum.  

It is lowest when the probability approaches 0 or 1. The goal is to choose the predictor 

which gives us the lowest entropy. Moving on from there the process is repeated for the 

node below, however, this time the gain, measure of entropy change, is also determined. 

This is to assess the magnitude of information increase in comparison to a prior node 

(Mitchell, 1997; Shannon, 2001). 

𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑟𝑖𝑜𝑟 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑐𝑢𝑟𝑟𝑒𝑛𝑡    (2) 
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All candidate predictors are considered and the one with the largest information gain is 

chosen for the decision using a greedy system. This process is applied recursively from 

the root node down until a subset contains only samples of a single class, or the 

partitioning tree has reached a predetermined maximum depth. The C5.0 tree algorithm 

uses boosting in its model training process, which works by combining average model 

decisions together to improve overall model performance of the final output. The 

particular objective of this study was to investigate the applicability of the nonlinear C5.0 

tree algorithm in predicting the likelihood of post-wildfire debris flow occurrences in the 

western USA and to determine if there is any advantage to be obtained over the linear 

logistic regression approach with this new dataset. 

3.2 Method 

3.2.1 Data 

Data for this study was obtained from USGS’ open file report 2016-1106 (Staley et al., 

2016).  It comprises descriptive information on 1550 burned basins in western United 

States (Figure 3.2).  Besides the response variable, there were a total of 16 predictors, 

which included information on the basin morphology, burn severity, soil properties, 

rainfall characteristics, and other ancillary data. Brief summaries of predictors have been 

provided in Table 3.1.  

 



37 

 

Figure 3.2 Map showing the 1550 burned basins considered in this study. Red dots show 

locations that experienced debris flows and the green dots show locations that 

experienced none 
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Table 3.1 Brief descriptions of model predictors 

Predictor Description 

Acc015 Peak 15-minute rainfall accumulation of storm, in millimeters 

Acc030 Peak 30-minute rainfall accumulation of storm, in millimeters 

Acc060 Peak 60-minute rainfall accumulation of storm, in millimeters 

Area Contributing area of observation location, in square kilometers 

dNBR Average differenced normalized burn ratio of watershed 

GaugeDist Distance from rain gauge to documented response location, in meters 

Iave Average storm intensity, in millimeters per hour 

KF 

Average KF-factor a basin. Also known as the erodibility factor. It is 

the susceptibility of soil particle to detached and get transported by 

rainfall. 

Peak_I15 Peak 15-minute rainfall intensity of storm, in millimeters per hour 

Peak_I30 Peak 30-minute rainfall intensity of storm, in millimeters per hour 

Peak_I60 Peak 60-minute rainfall intensity of storm, in millimeters per hour 

PropHM23 
Proportion of watershed burned at high or moderate severity and with 

slope>23º 

Soil 
Thickness of soil to the closest “restrictive layer” that significantly 

impede the movement of water and air through the soil. 

StormAccum Total rainfall accumulation of storm, in millimeters 

StormDate Date of storm that produced the debris-flow response 

StormDur Total duration of storm, in hours 
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3.2.2 Model Development 

The data from Staley et al., 2016 were all given as independent predictors. As was done 

in Staley et al., 2017, we introduced a link function by multiplying the morphological and 

burn properties predictors by rainfall predictors, since debris flows cannot occur in the 

absence of a driving storm. A total of 35 compound predictors were obtained after this. 

Preliminary data pre-processing steps taken to ensure optimal model performance 

included omitting observations with missing values and assessing predictor degeneracy. 

We also observed the existence of correlations between predictors so we performed a 

pairwise collinearity test. The results showed that 15 predictors had 99% or more 

correlations with other predictors.  These were regarded as redundant information and 

were thus deleted, leaving 20 predictors for further analyses. We run a predictor selection 

routine that tested the performance of candidate models with successively fewer 

predictors (Dillon et al., 2011 and Birch et al., 2015). By this, we assessed the influence 

of each individual predictor on the model as a whole. We examined the variable 

importance from the C5.0 tree modeling process. With each model run, C5.0 tree 

calculates variable importance by randomly permuting the values of each variable, one at 

a time, and assessing the overall improvement in the optimization criteria (accuracy, in 

this case). We determined the rankings of stable predictor importance by running 10 

reproducible C5.0 tree models with all the 20 remaining predictors. From here, we 

determined a single value of importance for each predictor from the mean variable 

importance of all 10 candidate models and ranked them (1=highest importance; 20 = least 

importance). A threshold of 50 was applied, narrowing down the predictor size to five 

most informative. Finally, to ensure that predictors were truly independent we performed 

a pairwise collinearity test once more and applied a cutoff of 60%. This resulted in these 

three final predictors for modelling: Soil* peakI30, PropHM23*peakI30, and 

KF*peakI30. 

Using the final three predictors, we split the data into 70% training and 30% validation 

sets using stratified random sampling to ensure that representative distributions of the 

response variable were represented in each set, since the data was skewed towards the 
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“no debris flow” response at about 3:1. A repeated ten-fold cross validation resampling 

was applied to determine the number of trials needed to achieve optimal model 

performance. An interval of 1 – 30 was set as the candidates for this process. The results 

from the resampling were then aggregated into a performance profile which revealed 

optimal number of trials to be 11. Setting this as the optimum number of trials, the model 

was developed a final time using the entire training data. 

3.2.3 Model Evaluation 

The developed model was then tested on the initial 30% validation set that was retained 

after preprocessing. To define the performance profile, we first generated a confusion 

matrix (Table 3.2) to summarize how the model’s predictions performed against the 

actual data. 

From this we determined the sensitivity (Eq. 1), which measures the fraction (or 

percentage) of debris flow producing locations that were correctly predicted by the 

model. This metric was given the highest priority because it gives a direct measure of the 

objective of the study. It runs from 0 to 1, with 1 representing a perfect model that 

correctly classifies all the debris flow locations. The specificity (Eq. 2) was also 

determined as the measure of the fraction (or percentage) of locations that did not 

produce any debris flows that were correctly predicted by the model. This metric also 

runs from 0 to 1, with 1 representing a perfect model that correctly classifies all the no 

debris flow locations. We were also interested in this metric since it assesses the model’s 

robustness in preventing false positives. 

The third metric was the overall accuracy (Eq. 3), which measures the overall 

performance of the model in correctly distinguishing between debris flow and no debris 

flow locations. A score of 1 indicates a perfect model and 0 indicates a model with no 

predictive capability. Threat score (Eq. 4), also known as the critical success index 

(Schaefer, 1990), was also considered. It is another metric that measures a model’s 

overall performance. It is especially used when the class distributions of the response 

variable are as skewed toward one class, as is present in our data. This metric, however, 
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does not consider true negative (TN) events. Cohen’s Kappa (Eq. 5), also provides a 

measure of the overall performance of the model by measuring the similarity between 

predictions and observations while correcting for agreement that occurs by chance 

(Cohen, 1960). The kappa statistic tends to be quite conservative but it is a more robust 

measure than the overall accuracy since it takes into account the possibility of chance 

predictions. Therefore typically, values within 0.30 to 0.50 on a scale of -1 to 1 indicate 

reasonable agreement (Kuhn and Johnson, 2013). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦      =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦      =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
    (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦         =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
   (3) 

𝑇ℎ𝑟𝑒𝑎𝑡 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
    (4) 

𝐾𝑎𝑝𝑝𝑎              =  
𝑝0−𝑝𝑒

1−𝑝𝑒
    (5) 

where po is the total accuracy given as: 𝑝𝑜          =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
, and pe is the random 

accuracy given as:   𝑝𝑒 =  
(𝑇𝑁+𝐹𝑃)+(𝑇𝑁+𝐹𝑁)+(𝐹𝑁+𝑇𝑃)+(𝐹𝑃+𝑇𝑃)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)2      

 

Table 3.2 Confusion matrix 
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We evaluated the validation data on all these five metrics together because each of these 

metrics has its own biases, hence, using them together gave a better picture of the 

model’s performance. For example, by virtue of the skewed nature of the data, if we 

consider the threat score metric, it will afford us the ability to prioritize the low frequency 

debris flow locations, since it ignores the TNs in its computation. However, considering 

this metric alone would have meant that we would not have been able to fully assess the 

influence of the false positives in relation to how many no-debris flow locations were 

present. That information is necessary to assess whether or not the model holds the risk of 

desensitizing the public, showing the need for considering all these metrics. To further 

test robustness and stability, the entire modeling process from resampling, training, and 

validation was repeated for ten different combinations of data samples and the best 

amongst these was selected.  

3.3 Results and Discussion 

In this study, we used C5.0 decision tree algorithm to develop predictive models with the 

aim of isolating locations in western USA that will likely produce post-wildfire debris 

flows. Ten candidate models were built in order to investigate the robustness and stability 

of the algorithm. The average of validation metrics for the candidate models have been 

presented in Table 3.3. The results gave stable as well as high metrics for all ten 

candidates with an average sensitivity of 77%, which is an improvement on the 66% from 

the logistic regression method (Table 3.4), thereby giving confidence in the use of the 

nonlinear C5.0 algorithm for our study. This algorithm was robust in distinguishing 

between the two classes of the response, even though the data distribution was skewed 

towards the “no debris flow” class. The 2017 study done on this same dataset using 

logistic regression approach (Staley et al., 2017) reported validation outputs as TPs, TNs, 

FPs, and FNs hence, we have computed the corresponding sensitivities, specificities, 

kappas, and accuracies (Table 3.4), to allow for direct comparison of the two different 

approaches. 
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Table 3.3 Validation metrics of the 10 candidate models developed with the C5.0 tree 

algorithm 

Model 

Validation Metrics 

Accuracy Sensitivity Specificity Kappa 
Threat 

Score 

1 0.77 0.82 0.75 0.47 0.45 

2 0.80 0.71 0.83 0.49 0.46 

3 0.78 0.81 0.78 0.49 0.47 

4 0.81 0.74 0.84 0.53 0.49 

5 0.76 0.78 0.75 0.45 0.44 

6 0.78 0.78 0.78 0.49 0.46 

7 0.80 0.77 0.81 0.52 0.48 

8 0.80 0.76 0.81 0.51 0.47 

9 0.79 0.75 0.80 0.49 0.46 

10 0.76 0.74 0.77 0.44 0.43 

Average 0.79 0.77 0.79 0.49 0.46 
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Table 3.4 Validation metrics computed from the results of the logistic regression models 

developed by Staley et al., 2017 

Model 

Validation Metric 

Accuracy Sensitivity Specificity Kappa 
Threat 

Score 

M1_15 0.64 0.81 0.58 0.30 0.39 

M1_30 0.67 0.71 0.66 0.29 0.34 

M1_60 0.73 0.46 0.81 0.26 0.27 

M2_15 0.64 0.81 0.57 0.30 0.38 

M2_30 0.67 0.74 0.65 0.30 0.35 

M2_60 0.74 0.46 0.82 0.27 0.28 

M3_15 0.60 0.84 0.52 0.26 0.36 

M3_30 0.62 0.82 0.56 0.27 0.34 

M3_60 0.71 0.48 0.76 0.20 0.24 

M4_15 0.61 0.79 0.54 0.25 0.36 

M4_30 0.61 0.67 0.58 0.20 0.31 

M4_60 0.69 0.37 0.79 0.16 0.23 

Average 0.66 0.66 0.65 0.26 0.32 
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Comparing Table 3.3 to Table 3.4, we can see that the logistic regression algorithm 

produces generally lower metrics than the C5.0 approach. Its highest sensitivity of 84% 

corresponded to a specificity of 52%, which goes with the general theme of its results, 

where high sensitivities corresponded to low specificities, and vice versa. In other words, 

the model had a harder time isolating actual debris flow locations without lumping some 

of the no debris flow locations (false positives) with them. This is likely due to the linear 

nature of the logistic regression algorithm being unable to capture much of the complex 

relationships to discern between little nuances as they relate to the likelihood of debris 

flow occurrence.  

The C5.0 tree, on the other hand, affords a nonlinear approach by identifying unique 

cutoffs in the different distributions of the predictors as they relate to the response. Model 

3 from Table 3.3 was chosen to be the overall best model since it had a high sensitivity 

with an equally high specificity, as well as a simple tree structure. A confusion matrix of 

the resulting classification of the test data for this model is presented in Table 3.5. The 

resulting sensitivity is 81% and the specificity is 78%, which shows an increased capacity 

to correctly identify ~8 out of 10 of these hazardous debris flow locations with a very low 

risk (~22%) of collating numerous false positives in the process.  

 

Table 3.5 Confusion matrix of the top model using the C5.0 tree algorithm 
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Yes 75 18 

No 67 234 
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Figure 3.3 Graphical representation of the adopted C5.0 tree model 

The comprehensive list of rainfall predictors investigated in this study include rainfall 

accumulations in 15, 30, and 60 minutes, respectively, peak rainfall intensities in 15, 30, 

and 60 minutes, respectively, total rainfall accumulation as well as average rainfall 

intensity. A look at the decision tree plot (Figure 3.3), however, reveals that it was only 

the peakI30 rainfall predictor that the model found to be most informative. This suggests 

that it does not take much time (at most 30 minutes) for a post-wildfire debris flows to be 

triggered once an intense storm (peak) starts, which agrees with what is found in 

literature (Cannon et al., 2010).  

As was discussed earlier, the rainfall predictors are very essential because debris flows 

cannot occur in the absence of a triggering storm event. However, since the peakI30 

predictor was multiplied to each of the other predictors used in the study, it will be 

considered as a constant in the following discussion of the tree decisions. The generated 

simple tree comprised a root, five branch nodes and seven leaf nodes; therefore there 

were seven different decision paths. The accuracy of the decisions were individually 
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~60% or better. The most important predictors were the PropHM23, which indicates the 

proportion of moderate-high burn severity locations that have slopes that are 23% or 

higher, as well as the Soil  predictor, which measures the overburden thickness over a 

“restrictive layer” such as bedrock, cemented layers, frozen layers etc. The PropHM23 

was the root of the tree and thus formed the basis of every decision made, whereas the 

Soil was the “tie-breaker” for ~86% of the decisions.  

 A quick overview of the seven decision nodes showed that the model was flexible 

enough to discourage the training data from overfitting to it. Taking the decision path 

from the root to leaf node 1, shows that fire affected location that are on higher elevations 

(slope>23%) but sustained mostly lower severity burns, i.e. lower moderate-high burn 

severity burn (PropHM23*peak_I30 < 2.9) will likely not produce any debris flows. This 

decision was especially reassuring because it agrees with the main premise of this study 

that wildfires increases the susceptibility of a location to debris flow occurrences. A look 

at decisions 2 through to 7 seem to suggest that the thicker the soil overburden over a 

“restrictive layer” (Soil*peak_I30), the higher a location’s chance of generating post-

wildfire debris flows. A speculation can be drawn that this is likely due to the fact that the 

basin will now have a greater supply of loose sediment primed for movement by a 

triggering rainfall. Decisions 4 and 6 further buttress this point by suggesting that even 

with a higher erodibility factor (KF), a basin might not be susceptible to post fire debris 

flows, if it has little supply of loose material to move. In summary, the comprehensive 

tree seems to suggest that: 

 Post-wildfire debris flows are triggered by high intensity storms that occur over 

short periods. 

 Any location with an ample steepness in terrain (slope>23) that experiences 

moderate to high severity burns (PropHM23) has an increased capacity to produce 

debris flows. 

 Coupled with this, the thicker the soil overburden over a “restrictive layer”, the 

higher the chances of generating these events. 
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These are in no way new discoveries as past studies have reported or alluded to them. In 

fact, the recent logistic regression modeling identified these similar predictors as well 

(Staley et al., 2017).  The agreement confirms the importance of these predictors and 

gives rise to the recommendation to focus future studies on the cutoff points identified by 

the C5.0 tree algorithm. This will further our understanding of the triggering and driving 

forces to better prepare and mitigate future hazardous events. 

3.4 Conclusions and Future Work 

The main focus of this study has been to investigate the use of nonlinear C5.0 tree 

algorithm in predicting the likelihood of post-wildfire debris flow occurrences in the 

western USA and compare it to the results obtained from the logistic regression approach. 

The results showed the C5.0 approach to produce stable and higher validation metrics in 

comparison to the logistic regression. It had an average sensitivity of 77%, which is an 

improvement on the 66% from the logistic regression approach. Analyzing the resulting 

tree of the adopted C5.0 tree model buttressed the intuitive hypotheses that a location 

with a steep terrain (slope>23) that experiences moderate to high burn severity fires and 

laden with thick overburden soil is highly susceptible to such events. All these give rise 

to the conclusion that the relationship between the predictors and the response is 

nonlinear as opposed to the linear one offered by the logistic regression.  
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4 Post-Fire Debris Flow Modeling Analyses: Case 
Study of the Post Thomas Fire Event in California3 

Abstract: There is an increased risk in post-fire debris flow (DF) occurrences in the 

western USA with a recent increase in wildfire frequencies. DFs are destructive, causing 

high loss to lives and infrastructure. A lot of effort is going into possible preventive and/ 

or mitigation measures. Recently, researchers have been especially working on 

developing statistical models that assist emergency response efforts in isolating 

vulnerable locations after fires. There are two general approaches to this statistical 

modeling: linear and nonlinear. This study has looked into applying a linear-based 

logistic regression model and a nonlinear-based C5.0 decision tree model to assess the 

strength of each in predicting the locations within the Thomas Fire boundary that 

produced DFs. To do this, DF scars were delineated by running a change detection 

protocol known as delta normalized difference vegetation index (dNDVI), using high 

resolution data from Planet Labs. These scars were further validated with data gathered 

by the Santa Barbara County on affected areas. Results from the two statistical models 

were then overlain on the delineated DF scars and compared against each other to assess 

predictive strengths. The results showed both models to perform well in predicting high 

probabilities for locations that were evidenced to produce DFs. The logistic regression 

model predicted an overall ~44,800 ha (49%) more high hazard coverage compared to the 

C5.0 tree, and therefore showed greater urgency. However, a closer look at the basin 

predictions with the delineated DF scars showed that most of these high hazard basins by 

the logistic regression did not to have any discernible scars. It was projected that most of 

these locations were likely false positives and the model was recommended for fine-

tuning to avoid desensitizing the public against this hazard. Further recommendation was 

made concerning the development of models to predict the potential inundation DF paths 

after these statistical models have isolated their origination points upstream since the 

most associated danger with DFs is not necessarily where they start but rather further 

downstream where communities and infrastructure are located. 

3This chapter has been submitted for peer review to the Natural Hazards journal. 
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4.1  Introduction  

Wildfire influenced hazards can be even more deadly after their containment. Factors 

such as the consumption of rainfall intercepting vegetation, sealing off of soil pores from 

generated ash, together with the creation of water repellent due to the condensation of 

organic compounds can result in decreased rainfall infiltration and subsequent significant 

increase in runoff (Cannon and Gartner 2005, Cannon et al., 2010). All these factors work 

together to increase a location’s susceptibility to debris flow occurrences after it 

experiences a wildfire. A debris flow (DF) is a geological phenomenon whereby a soil-

laden slurry of mud and rock fragments, triggered by runoff, flow under gravity and pick 

up any loose erodible material on its way (Cannon et al., 2010). They garner appreciable 

speeds which cause them to be very deadly and destructive to anything in their paths, in 

several cases being more destructive than the wildfires that preceded them. 

The focus of this study is the Thomas Fire, which occurred in southern California (Figure 

4.1). This fire was ignited on December 4, 2017, burned for about a month, consuming 

~114,000 ha of land before being officially contained on January 12, 2018. Before the 

fire could be fully contained, a major storm occurred on January 9, 2018, which triggered 

DFs within the burned area, inundating several communities downstream in the Santa 

Barbara and Ventura Counties. The actively burning fire resulted in two fatalities 

whereas the ensuing DF event caused 21 fatalities (Berman, 2017; Orosco, 2017; Dolan, 

2018). Not only that but many homes and roads were severely damaged, causing ~$207 

million in infrastructure damage (RDN, 2018; Magnoli, 2018). It is therefore imperative 

that any mitigating and/or preventive measures that can be applied to lessen the effect or 

prevent such events altogether are done. 

In a bid to support emergency response efforts researchers have developed probability 

models that aim at isolating especially vulnerable locations within a burned area 

immediately after wildfires. There exist two general probability modeling approaches: 

linear (Rupert et al., 2008; Cannon et al., 2010; Staley et al., 2017), and nonlinear 
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machine learning modeling (Kern et al., 2017, Addison et al., 2018), both of which have 

inherent advantages and disadvantages. 

The objective of this paper is to apply representative models from these two approaches 

to the DF event that occurred after the Thomas Fire and assess their predictive 

capabilities. The models considered are the linear-based logistic regression model from 

Staley et al., (2017) and the nonlinear-based C5.0 decision tree model from Addison et 

al., (2018). To do this, DF scars were delineated by running a change detection protocol 

with the Normalized Difference Vegetation Index (NDVI) algorithm, using high-

resolution data from Planet Labs Inc. The mapped scars were further validated with data 

gathered by Santa Barbara County officials on affected structures. DF probability results 

from the two models were then overlain on the delineated DF scars and compared against 

each other to assess predictive strength. 

 

Figure 4.1 Location of the Thomas Fire in California. 
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4.1.1 Fire Background 

The Thomas Fire was ignited north of Santa Paula, California, close to a college called 

Thomas Aquinas College, from which the fire derived its name. Aided by strong winds, it 

grew to a total of 114,000 ha, breaching the county boundaries of Santa Barbara and 

Ventura Counties. Analyzing burn severity data showed that 11% of the area within the 

burn boundary were unburned, 31% burned with low severity, 56% moderately burned, 

and a final 1% burned with high severity. It devastated ~1,300 structures and caused a 

projected ~$2.2 billion in damages (Ding, 2018; Hersko, 2018; Santa Cruz, 2018; NIFC, 

2018). By the time it was contained on January 12, 2018, the Thomas Fire was the largest 

fire in California’s recent past, after the 2003 Cedar fire, which consumed ~110, 600 ha 

of land. However, in the August 2018, it was surpassed by the Mendocino Complex Fire, 

which consumed ~63% more land, with a ~185,800 ha total coverage (Phillips et al., 

2018). This was not surprising because scientists have been predicting increase in the 

frequencies of big fires with the onslaught of drier climates (Westerling et al., 2006; 

Bond-Lamberty et al., 2007; Miller et al., 2009; Flannigan et al., 2009), however, its 

fulfillment increases our urgency in fine-tuning emergency response tools.  

4.1.2 Candidate Models 

The two models considered in this study are the linear-based logistic regression model 

from Staley et al., (2017) and the nonlinear-based C5.0 decision tree model from Addison 

et al., (2018). It is important to note that these models predict the origination points of 

DFs and not their inundation paths downstream. The following sections provide brief 

overviews of each algorithm, together with their associated validation metrics. 

4.1.2.1 Logistic Regression Model 

Logistic regression modeling was the approach adopted by Staley et al., (2017) in their 

study. This is a linear modeling approach that assesses the probability (from 0-100%) of a 

location’s potential to generate DFs after experiencing wildfires. The data utilized for 

model development was obtained from a database developed by researchers at the United 
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States Geological Survey (USGS), which included descriptive information on 1550 

basins from 34 fires across the western United States (Staley et al., 2016). There were a 

total of 26 predictors and ancillary data, which included information on fire location, year 

of occurrence, burn severity, rainfall rates, soil properties, as well as topographical 

properties. The data was split into training and validation sets. Running multiple data 

iterations, four final variables were identified as the important predictors for model 

development (Table 4.1).  

Table 4.1 Predictors used for the two candidate models: logistic regression (Staley et al., 

2017) and C5.0 decision tree (Addison et al., 2018) 

Predictor Description 
Staley et al., 

2017 

Addison et al., 

2018 

R15 

Peak 15-minute rainfall 

intensity of storm, in 

millimeters per hour (PeakI15) 

  

R30 

Peak 30-minute rainfall 

intensity of storm, in 

millimeters per hour (PeakI30) 

  

X1 

Proportion of watershed burned 

at high or moderate severity and 

with gradients in excess of 23º 

(PropHM23) 

  

X2 
average differenced normalized 

burn ratio of the basin (dNBR) 
  

X3 

Average erodibility index, also 

known k-factor, of the fine 

fragments of the soil of the 

watershed (KF) 

  

X4 

Average soil thickness to a 

restrictive layer, like bedrock 

(Soilthick) 

  

 



54 

Using the training dataset, a final logistic regression model was developed as: 

𝑃 =
𝑒𝑥

(1 + 𝑒𝑥)
      (1) 

where, P = the probability of debris-flow occurrence,  

e = the exponential function, and 

 

𝑥 =  (0.41 × 𝑋1𝑅15)  +  (0.67 × 𝑋2𝑅15)  +  (0.7 ×  𝑋3𝑅15) − 3.63  (2) 

 

where, X1 = proportion of basin that had moderate–high burn severity with gradients ≥ 23°,  

X2 = average differenced normalized burn ratio (dNBR) of the basin,  

X3 = soil erodibility index of the basin, and 

R15 = peak 15-minute rainfall accumulation of the design storm. 

The model was then tested on the validation set, which yielded a sensitivity of 81% and a 

specificity of 58% (Staley et al., 2017; Addison et al., 2018). A sensitivity of 81% means 

that the model has the capability of correctly predicting ~8 out of 10 DF producing 

locations, whereas a specificity of 58% means that ~6 out of 10 “DF safe” locations 

within a burned area will be correctly identified.  The model had an overall accuracy of 

64%. 

4.1.2.2 C5.0 Tree Model 

Using the same dataset on the 1550 burned basins in western USA from USGS’ databases 

(Staley et al., 2016), Addison et al., (2018) employed the C5.0 decision tree algorithm to 

develop a model for post-wildfire DF prediction. This is a nonlinear machine learning 

algorithm which uses inductive inference to split data into smaller, homogeneous classes. 

Stepwise decisions are made on predictors at different levels to iteratively determine 

unique breakpoints as they relate to the different classes of the response variable. 

Specifically, a general decision called the root is first developed, then branching out from 

there more specific decisions, known as branches, are made, till it gets to a decision that 

produces homogeneous samples, which are then assigned a classification known as the 
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leaf (Kuhn and Johnson, 2013). Figure 4.2 gives a schematic of a simplified tree with one 

root, two branches and four leaves. To determine which predictor to use at each node, 

each predictor is tested to assess how well it alone separates the training data according to 

the target classification. The process is repeated on each new subset until a subset 

contains samples of only a single class, or the partitioning tree has reached a 

predetermined maximum depth (Kuhn and Johnson, 2013). 

The dataset was split into 70:30 training and testing sets respectively. A predictor 

selection routine was ran that identified the four predictors presented in Table 4.1 to be 

the most important for model development. Using these predictors the C5.0 tree 

algorithm was ran to develop the final tree structure presented in Addison et al., (2018). 

The tree had seven decision paths, with three belonging to the “yes” classification and 

four belonging to the “no”. Summary of this has been presented in Table 4.2. 

 

 

Figure 4.2 Graphical schematic of a simplified decision tree 
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Table 4.2. Summary of decision paths for each leaf node 

Leaf Conditions Debris Flow  

1 

 

(X1 * R30) > 2.86 

(X3 * R30) ≤ 3.27 

(X4 * R30) > 4774.2 
 

Yes 

2 

 

(X1 * R30) > 2.86 

(X3 * R30) > 3.27 

 (X4 * R30) > 8442 
 

Yes 

3 

 

(X1 * R30) > 2.86 

(X3 * R30) > 3.27 

471.2 < (X4 * R30) ≤ 1164.5 
 

Yes 

4 
 

(X1 * R30) ≤ 2.86 
 

No  

5 

 

(X1 * R30) > 2.86 

(X3 * R30) ≤ 3.27 

(X4 * R30) ≤ 4774.2 
 

No 

6 

 

(X1 * R30) > 2.86 

(X3 * R30) > 3.27 

 (X4 * R30) ≤ 471.2 
 

No 

7 

 

(X1 * R30) > 2.86 

(X3 * R30) > 3.27 

 (X4 * R30) ≤ 8442 
 

No 

General summaries of the tree was that a location on steep slope that experiences 

moderate to high burn (high X1 predictor) had a higher probability to produce DFs, if it 

was also laden with thick overburden material (high X4 predictor), with high erodibility 

index (high X3 predictor). Finally, the DF had to be triggered by a high intensity, short 

duration storm (predictor R30). Validation of this model with the test set gave a 

sensitivity of 81% and a specificity of 78%, resulting in an overall accuracy of 78%. This 

means that the model can identify both DF stable and unstable locations within a burned 

area ~8 out of 10 times. 
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4.2 Methodology and Approach 

4.2.1 Delineating Debris Flow Paths 

Although the probability models discussed above only isolate DF origination points 

upstream, we postulated that by isolating the DF inundation paths, we can back-trace 

them to the origination points upstream to use as model validation data. To do this, we 

performed a change detection analysis to map the DF paths. Two sets of high-resolution 

multispectral data were obtained from Planet Labs Inc. These were from their Planet 

Scope product, which comes with four bands: blue, green, red, and near infrared (nIR), at 

a 3m spatial resolution. The pre- image acquisition date was December 29, 2017, and the 

post image acquisition date was January 11, 2018 (Planet Team, 2018). To run the 

change detection analyses, we determined the NDVI for these two time stamps using the 

following equation (Rouse et al., 1973): 

𝑁𝐷𝑉𝐼 =  
𝐵𝑎𝑛𝑑 4 − 𝐵𝑎𝑛𝑑 3

𝐵𝑎𝑛𝑑 4 + 𝐵𝑎𝑛𝑑 3
      (3) 

where, Band 3 = reflectance of the red band at a spectral resolution of 590 – 670 nm 

Band 4 = reflectance of the nIR band at a spectral resolution of 780 – 860 nm 

NDVI is a metric that is usually used to determine vegetation health; it runs from -1 to 

+1. Values close to +1 indicate healthy vegetation whereas values close to -1 give 

indication of poor to no vegetation. The rationale behind it is that leaves of healthy 

vegetation absorb red light for use in photosynthesis (low reflectance value) whereas its 

cell structure strongly reflects nIR (high reflectance value), thereby resulting in high 

NDVI values. For poor to no vegetation, the converse is true— that is, the red band has a 

higher reflectance and the nIR has lower reflectance, resulting in lower NDVIs. We 

therefore expected the DF path to have lower NDVI values. To make them even more 

discernible, we generated a resultant metric by subtracting the NDVI after the DF event 

(NDVIpost) from the NDVI before the event (NDVIpre). This metric shall be called delta 

NDVI (dNDVI): 
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𝑑𝑁𝐷𝑉𝐼 = 𝑁𝐷𝑉𝐼𝑝𝑟𝑒 − 𝑁𝐷𝑉𝐼𝑝𝑜𝑠𝑡     (4) 

Locations with DF scars had larger magnitudes of negative NDVI, thereby subtracting 

them from the pre- image resulted in relatively higher values than their surroundings, 

making the contrast even sharper (Figure 4.3). To validate these scars as being truly from 

the DFs we overlaid ground truth data obtained from Santa Barbara County (Santa 

Barbary County, Finalized Damage Inspections, 2018). These data consisted of point 

locations of infrastructure downstream to the burned area that were affected by the 

runoff.  

 
 

Figure 4.3 dNDVI analyses output of with Planet Lab data. Locations with lighter green 

to white colors show DF scars, with high dNDVI values. 
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4.2.2 Assessing Debris Flow Response 

Analyses of the DF response of the Thomas fire basin using the Staley et al., (2017) 

logistic regression approach was ran by researchers from the USGS. These analyses were 

done for different rainfall scenarios and uploaded on the web for public access 

(https://landslides.usgs.gov/hazards/postfire_debrisflow/detail.php?objectid=178). The 

output for a 40mm/h rainfall was downloaded for use as the candidate logistic model 

output for use in later assessments. 

 To run similar prediction analyses with C5.0 algorithm, we first downloaded all needed 

data. A 10 m digital elevation model (DEM) was downloaded from the United States 

Department of Agriculture (USDA) Geospatial Gateway. Peak 30-minute rainfall 

intensity (PeakI30) input was obtained from the Santa Barbara County Public Works 

website. Burn severity input was obtained from the Burned Area Emergency Response 

(BAER) team, who field validated Burned Area Reflectance Classification (BARC) 

imagery derived from the dNBR data (Key and Benson, 2006). Finally, the soil 

properties, KF and soil thickness, were obtained from the Soil Survey Geographic 

(SSURGO) database (USDA, 1995). 

 The DEM was used to delineate the area within the Thomas Fire boundary into sub-

basins using the hydrology suite offered by TauDEM toolbox add-on in ArcMap. This 

add-on was developed by researchers at Utah State University (Tarboton, 2005). The 

basin delineation analyses resulted in the creation of 6,611 sub-basins. For the PeakI30 

input, we analyzed historical per minute rainfall data from the Santa Barbara County for 

13 rainfall stations within, and around the burned area on the day of the event, January 

09, 2018 (Table 4.3). An inverse distance weighted (IDW) interpolation was done to 

display the spatial distribution of the rainfall (Figure 4.4). These showed variable 

intensities across the stations with the higher intensities concentrated within the burned 

boundary. For representative rainfall scenario, we took an average of the five stations 

within the Thomas Fire boundary to obtain a PeakI30 input of 49.4 mm/h, which was 

used for further analyses.  
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Table 4.3 Historical rainfall data for January 09, 2018 obtained from 13 stations within 

the Thomas Fire boundary. 

Station Lat. Long. 

Accumulation 

(mm) 

Peak Intensity 

(mm/h) 

15 

mins 

30 

mins 
15 mins 

30 

mins 

Carpinteria Fire 34.39697 -119.518 21.6 28.2 86.4 56.4 

Don Victor 34.6375 -119.464 6.9 9.4 27.4 18.8 

Doulton Tunnel 34.45778 -119.566 25.7 31.0 102.6 62.0 

Edison Trail 34.4428 -119.508 19.6 26.7 78.2 53.3 

Jameson Reservoir 34.49083 -119.507 24.9 31.8 99.6 63.5 

KTYD 34.47111 -119.677 19.6 22.1 78.2 44.2 

La Conchita 34.36683 -119.442 16.3 20.3 65.0 40.6 

Matilija Canyon 34.54131 -119.372 12.2 23.4 48.8 46.7 

Montecito 34.42752 -119.64 18.3 19.6 73.2 39.1 

Old Man Mountain 34.50431 -119.44 11.2 15.2 44.7 30.5 

Seacliff 34.34544 -119.42 6.4 9.1 25.4 18.3 

Stanwood Fire 34.4439 -119.691 14.0 15.0 55.9 30.0 

Summerland 34.4153 -119.581 18.3 21.6 73.2 43.2 
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Figure 4.4 Inverse distance weighted interpolation showing spatial distribution of the 

January 09, 2018 rainfall data within the Thomas Fire Boundary in Santa Barbara County  

 

We then compiled values for each of the other three needed predictors; if more than one 

value for any one predictor occurred in a basin, we calculated a single spatially weighted 

average for it. Finally, using the C5.0 tree model we calculated the probability of DF 

occurrence. The calculated values were then proportioned into probability classes and 

assigned to their respective sub-basins. 

4.3 Results 

The objective of this study was to apply the linear-based logistic regression model from 

Staley et al., (2017) and the nonlinear-based C5.0 tree model by Addison et al., (2018) to 

assess the strength of each in predicting the locations within the Thomas Fire boundary 

that produced DFs. To do this, DF scars were delineated by running a change detection 

protocol known as dNDVI, using high resolution data from Planet Labs. These scars were 
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further validated with data gathered by the Santa Barbara County on affected 

infrastructure. Results from the two models were overlain on the delineated DF scars and 

compared against each other to assess predictive strengths. 

The dNDVI was instrumental in delineating DF scars. Overlaying the Santa Barbara 

point data of affected areas on it revealed great agreement between them and the 

delineated scars (Figure 4.5). We traced these scars upstream to points where they 

terminated and classified them as the DF origination points. 

Figure 4.6 shows the model outputs for the logistic regression and the C5.0 tree 

algorithms, respectively. Table 4.4 also gives a breakdown of the prediction summary for 

different probability bins. The rainfall predictors that were used by these models were the 

peak 15-minute rainfall intensity (PeakI15) for the logistic regression, and the peak 30-

minute rainfall intensity (PeakI30) for the C5.0 decision tree.  

 

Figure 4.5 dNDVI image with locations of infrastructure that were affected in Santa 

Barbara County by the DF event overlaid. 
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Figure 4.6 Model probability predictions of the logistic regression (A) and C5.0 tree (B) 

algorithms respectively. The map displays the probability of DF (in %) in 20% bins. The 

black bounding boxes in the Santa Barbara area shows the location that was zoomed in 

later for further analyses (see Figure 4.7). 
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Table 4.4 Summary of the area covered by the different probability bins of the two 

models 

Probability 

(%) 
Hazard 

Area Covered (%) 

Logistic Regression C5 Tree 

0-20 Low 0.3 10.5 

20-40 

Moderate 

5.6 1.6 

40-60 9.0 51.7 

60-80 

High 

15.9 18.8 

80-100 69.3 17.4 

It is important to note that the average of the intensities of the actual rainfall that fell that 

day were 73.2 mm/h for the PeakI15 and 49.4 mm/h for the PeakI30. However, the 

logistic regression model showed in Figure 4.6A was made with a PeakI15 of 40 mm/h. 

The reason for using this instead of the actual 73.2 mm/h is that USGS researchers made 

these predictions before the actual DF event; they made them for different PeakI15 

rainfall scenarios from lowest 12 mm/h to highest 40mm/h. The rainfall experienced on 

January 09, 2018 was a 50-year return event (Burns, 2018). Before the event, this seemed 

unlikely and hence, probably the reason why USGS researchers predicted to a highest 

rainfall scenario of PeakI15 of 40mm/h, which is a ~5-year return event, according to 

NOAA’s precipitation frequency estimates (https://hdsc.nws.noaa.gov/hdsc/pfds/). 

It was therefore this available maximum 40mm/h PeakI15 model output that was 

considered in our study. Even with the lower rainfall intensity, the logistic regression 

model predicted the majority of the Thomas Fire boundary, 84.9% to be in high hazard 

(probability of 60-100%). The C5.0 tree model, on the other hand, predicted 36.2% of the 

area to be high hazard, with its majority (53.3%) being a moderate hazard prediction 
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(probability of 20-60%). Overall, the logistic regression predicted ~44,800 ha (49%) 

more high hazard locations than the C5.0 tree. 

Since we know that the DF did occur, in terms of emergency response, the logistic 

regression model shows better urgency than the C5.0 tree. However, with majority of the 

study area being classified as high hazard, it does bring a question to bear: is the model 

predicting more false positives for some of these areas, especially since it has a lower 

specificity (58%) than the C5 tree (78%)? From the dNDVI images, it does not look like 

all the basins upstream had DF origination points. Zooming into the Santa Barbara 

County, where we had DF scar validating data, we see that both models performed well 

in predicting high probabilities for the mountain ranges for the traced out debris flow 

scars from the dNDVI image (Figure 4.7). Going off from the delineated DF scars in the 

zoomed in image, the logistic regression model predicts a 100% of all terminating basins 

as high hazard, whereas the C5.0 tree model predicts 80% of the locations as high hazard 

and the remaining 20% as moderate hazard. We performed further analyses to isolate true 

positive predictions, as basins predicted as high hazards with visible DF scars, and their 

converse as false positives (basins predicted as high hazards with no visible DF scars).  

Logistic regression had ~72% of its area as false positives whereas the C5.0 tree had 

29%. A perfect model is one with 100% true positives and 0% false positives; and a 

realistic robust model should be one that maximizes true positives and minimizes its false 

positives.  Therefore from these analyses, the C5.0 tree performed better overall since it 

did not sacrifice its specificity for a high sensitivity as the logistic regression did.  

All in all, we can conclude that both models performed well in isolating the high hazard 

basins, which is critical in emergency situations. The logistic regression showed better 

urgency but the C5.0 tree performed better overall with a high true positive and 

corresponding low false positive rate. The high false positive rate from the logistic 

regression waters its robustness down, as it holds the risk of desensitizing the public to 

when there is real danger. We therefore recommend that it be fine-tuned to improve its 

specificity to match its sensitivity. 
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Figure 4.7 Model probability outputs in Santa Barbara County from the logistic regression 

algorithm (A) and the C5.0 tree algorithm (B), respectively. These outputs are overlaid on 

a greyscale dNDVI map with isolated DF paths traced out to their origination points 

upstream (cyan color). The pink show point data for locations downstream that were 

affected by the DF runoff. 
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4.4 Conclusion 

This study has looked into applying a linear-based logistic regression model and a 

nonlinear-based C5.0 tree model to assess the strength of each in predicting the locations 

within the Thomas Fire boundary that produced DFs. The dNDVI metric was 

instrumental in delineating DF scars. Locations with higher dNDVI values showed good 

agreement with ground truthing data and were mapped as debris flow scars. The results 

from the statistical modeling approaches showed that both models performed well in 

isolating the high hazard basins, which is critical in emergency situations. The logistic 

regression model, however, predicted an overall ~44,800 ha (49%)  more high hazard 

locations compared to the C5.0 tree, which with the knowledge that the debris flow event 

happened, shows better urgency. However, overall, the C5.0 tree performed better since it 

did not sacrifice its specificity for a high sensitivity. A closer look at the DF predictions 

by the logistic regression showed most of the basins predicted as high hazards to not have 

any discernible DF scars. ~72% of the area in the Santa Barbara County were classified 

as false positives, which is worrying since it holds the risk of desensitizing the public to 

when there is real danger. We, however, do not discount this model since it had a high 

sensitivity. We recommend fine-tuning to improve its specificity as well. Further 

recommendation include further studies to predict potential inundation DF paths after 

these statistical models have isolated their origination points upstream since their most 

associated danger is not necessarily where they start but rather further downstream where 

most communities and infrastructure are located.  
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5 Overarching Conclusions 

The main focus of this dissertation project has been to investigate the application of 

machine learning modeling as an emergency response tool for post-wildfire debris flow 

occurrences. The study was split into three sub-projects to meet the following objectives: 

 Developing a radar-based burn severity estimate to be used as an alternative in 

emergency situations where there is cloud and/ or smoke coverage. 

 Developing a nonlinear machine learning model to predict the likelihood of post-

wildfire debris flow occurrences in the western USA. 

 Testing robustness of developed debris flow model with a case study of recent 

event occurrence. 

To meet the first objective, we developed a SAR based burn severity classification model 

as an alternative to the optical based approach, dNBR. During the modeling process, a 

significant discovery showed that evergreen vegetation seem to limit the severity of fires, 

as we observed locations with evergreen forests to generally experience low burn 

severity. The developed SAR metric produced higher validation metrics. It had an overall 

accuracy (OA) of ~60% and Kappa of 0.35 in comparison to an OA of ~35% and a kappa 

of 0.1 from the dNBR approach. This therefore proves the robustness of the SAR metric, 

however, we recommend further studies to investigate the influence of rainfall on this 

metric since weather effects are sometimes considered sources of noise for SAR data. 

Rainfall especially may result in differing water content of a target, affecting its relative 

permittivity and effectively altering its dielectric constant (alterations in backscatter 

values). 

For the second project, we developed a nonlinear C5.0 tree model to predict the 

likelihood of post-wildfire debris flow occurrences in the western USA. This model was 

then compared to an existing logistic regression by USGS researchers. The C5.0 tree 

model gave an average sensitivity of 77% as compared to 66% from the logistic 

regression approach. Generally, the validation results from the C5.0 approach were 

higher and more stable. Analyzing the tree output confirmed the hypotheses that a steep 
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landscape that is laden with thick overburden soil, becomes highly susceptible to debris 

flow occurrences when it experiences moderate to high severity burns.  

The final project was a case study to validate our C5.0 tree model from the previous 

project. We applied both the C5.0 tree and USGS’ logistic regression models to a recent 

fire that happened in Southern California: the Thomas Fire. Using this burned location as 

a case study, we validated our C5.0 tree model as well as compare its predictive strength 

with that of the logistic regression. Both models were robust in isolating high hazard 

locations evidenced to have produced debris flows. The logistic regression model, 

however, predicted an overall ~44,800 ha (49%) more high hazard locations compared to 

the C5.0, showing better urgency. However, a closer look at the DF predictions showed 

that most of those extra basins had no discernible debris flow scars. It was therefore 

projected that these locations are likely false positives and caution was therefore 

recommended in using the logistic regression model to avoid desensitizing the public 

against debris flow hazards. 

All these work to show the machine learning modeling as a superior tool in teasing out 

complex relationships. It also show utility of the approach for yet one more discipline for 

application. 
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