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Abstract 

As the world makes a slow transition from conventional sources to renewable energy, the 
need for energy storage is climbing. The role of battery modeling becomes more critical, not 
only for predicting the state variables of existing battery systems, but also to aid the 
development of new battery systems by a deeper understanding of the chemical processes 
that make up a cell.  

This thesis extends the full-scale electrochemical model for Lithium-ion battery based on the 
porous electrode theory to incorporate aging mechanisms of solid electrolyte interface 
formation, cyclic electrode degradation, and lithium plating during overcharge, automotive 
vibrations, mechanical stress and cell temperature, as reported in the existing literature. 
Further, the thesis presents the scope of the parameters used in the model to enable designers 
to extend the equations for new mechanisms and variability of other parameters. 

An increased set of equations makes the complexity of the model even higher, and it would 
be very computationally complex to simulate this model. This makes this model unsuitable for 
inexpensive processors of mobile applications like an automotive battery management 
system, while increasing the uncertainty faced by PDE solvers. However, as the physical 
models get close to an actual lithium-ion battery behavior, they could accelerate its 
development, shortening the design life of batteries. 
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1 Introduction  

Lithium ion batteries (LIB) are the current workhorse of the mobile energy storage industry. 
Since their ideation in 1970’s, there has been continuous research going on to increase their 
capacity and the aging behavior. The current literatures address the domains of electrodes [1], 
electrolytes[2] and the separator [3], to make batteries more energy dense, safe, and long 
lasting. Even though the major internal phenomena happening through the battery are known, 
there are still mechanisms of degradation and side reactions, that are unquantified [4][5]. The 
battery is a closed boundary mass exchange system, and direct measurement or observance 
of majority of the intended and unintended phenomenon is not possible. Hence, there is a 
need of models which can closely represent the battery’s real performance, so that LIB could 
be put to an optimized usage which is safe and long lasting [6] .  

There have been many proposed methods to approach this challenge [7]–[10]. Majorly, there 
can be sorted into two types: statistical models [11] [12], and electrochemical model [13] [14]. 
The statistical models depend on the availability of plenty of testing data in a variety of 
conditions, which are not generally available, especially for new battery chemistries. The 
electrochemical modeling, however, depends on governing equations proposed by scientists 
over the last decades that predict the migration of charge and species inside a battery, and the 

degradation of these mechanisms over time.  There is a plethora of phenomena that have been 
tamed with the governing equations [15] [7] [16] [17] [18], and this work is an approach to bring 
them together. 

1.1 Scope of the thesis 

The aim of this research is to document and tabulate interwoven work predicted for a lithium 
ion battery, and to mathematically couple them for implementation with the partial 
differential equation (PDE) based porous electrode theory [19]. This reference model could be 
helpful for battery researchers. As the physical model keep simulating a realistic LIB behavior, 
it could accelerate the development of LIB, as the design iterations of prototyping and testing 
could be eliminated.  

The next chapter of the thesis discusses the development of a continuum scale model, and the 
reduction of the model into state space. A single particle model is also developed for drawing 
comparisons with the rest of the two models. Chapter 3 develops a novel model to integrate 
the existing methods of degradation to develop a full-scale model which incorporates multiple 
aging mechanisms with the porous electrode theory.  

Chapter 4 presents a summary of the existing parameters required for the continuum scale 
model for different battery chemistries. The parameter estimation techniques are briefly 
discussed, and the parameters used for developing the final continuum scale model are 
mentioned. Chapter 5 documents the trials of development of the model, and enlists results 
generated with the model. The final chapter summarizes the findings of the work and suggests 
the future direction of this work. 
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1.2 Basics of a lithium-ion battery (LIB) 

The class of batteries could be divided in two broad categories: primary and secondary 
batteries. The former are the energy storage devices intended for single usage such as zinc 
chloride, mercury batteries which find use in our watches, and remotes. The latter are the ones 
which could go through a charge and discharge cycles, like the automotive lead-acid battery, 
and Li-ion cells, etc. 

This mechanism is generally referred as a rocking-chair mechanism, because of the cycling of 
electrons and ions from one electrode to the other through a series of reversible reactions 
(irreversible reactions are basically the cause of aging or the death of batteries).  Figure 1-1 
shows the basic schematic of a Lithium-ion battery. It consists of 3 basic parts, the negative 
and the positive electrode, and the separator. Electrolyte flushes the rest of the remaining 
gaps, and the space left between the electrodes as they are porous solids for increasing the 
surface area available for chemical processes. There are current collectors on both ends of the 
electrodes to facilitate the transfer of electrons to the external circuit. The separator is a 
special barrier that doesn’t allow the flow of electrons inside the battery and lets the lithium 
ions pass unhindered. 

 
Figure 1-1 Li-ion battery schematic, the golden representations are current collectors 

As the battery is put through an external load, the electrons flow from the negative to the 
positive current collector, creating an excess of electrons at one end. This makes positively 
charged Li-ions migrate from inside the cell to the positive electrode to keep the charge 
balance. While charging, this process is reversed when the external flow of electrons to the 
negative electrode makes the lithium ions to migrate back.  
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The negative electrode (or the anode during discharging process) could be made of carbon, 
silicon, and the cathodes have variety of choices with different chemistries like Lithium iron 
phosphate (LFP), Lithium manganese oxide (LMO), Lithium Cobalt oxide (LCO). The quality of 
a good electrode would be good cycling behavior (i.e. retaining the structural integrity with 
mechanical stress of intercalation cycling), low internal resistance, and high surface area to 
name a few [20], [21]. The electrolyte is generally a liquid made of a Lithium-salt with an organic 
solvent like dimethyl carbonate, and the properties required of them are to be stable at high 
temperatures and to be less reactive to byproducts of the chemical processes [3]. A large 
amount of current research is devoted towards the development of solid electrolytes, to 
increase the safety of the batteries. The separators are made of cotton, nylon, glass, or ceramic 
materials for the selective movement of ions. 

LIB’s are examples of very complex chemical subsystem, and they have multiple phenomenon 
going on simultaneously [22]. Hence, measurement of the current state of the battery is not 
possible by any known means. Also, there are around tens of thousands of cells used in an 
automotive battery pack, and it would not be possible to measure the output states of each 
cell. Hence, there is a need of battery models and estimators that help us keep track over the 
operation of lithium-ion cells.  

1.3 Modeling Approaches 

The accurate modeling of batteries has gained importance with the same industry that 
pioneered the introduction of a high capacity LIB, portable electronics.  Even in current 
smartphone industry, a major weighing factor is if the phone could make it through the day. 
Now, correct estimation of the state of charge (SOC) of the battery for the user feedback, and 
the battery life according to the current usage, are made based on the battery models. It 
becomes even more safety critical for automotive applications, because of the sheer energy 
of the battery packs. 

However, for mobile applications, the battery models are constrained by the amount of 
processing power available onboard. This chapter summarizes a few approaches of modeling 
the batteries with increasing computational complexity.  

1.3.1 Phenomenological Models 

The name for these models comes from phenomena observation, i.e. empirical testing. The 
data recorded through the elaborate testing is fitted into models that could simulate the same 
behavior in an inexpensive way. 

One example, the Equivalent Circuit Modeling (EQM) is a widespread technique used in 
electrical engineering to represent physical processes in form of a theoretical circuit. Starting 
with linear and passive elements, they could be used to represent non-linear behavior. A typical 
EQM battery model consists of a resistor to denote the internal resistance of the cell, voltage 
source to represent the open circuit voltage (OCV), and an RC circuit to capture to dynamic 
behavior of battery. The values for these elements are typically estimated by EIS 
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(electrochemical impedance spectroscopy) testing [23], [24]. Typically, these testing are 
carried out between frequencies of few Hz to 10 kHz for different state of charge states (and 
at times temperature).  

 
Figure 1-2 :EQM proposed by Chen [8] 

Figure 1-2 shows a model proposed by Chen et al. [8] to represent the I-V characteristics of a 
polymer LIB. This model proposes an extra RC element where the Rseries represents 
instantaneous voltage drop during a step response, “s” subsets represent the short time 
response like the exchange of charge and double electric effects, and “L” subsets are for long 
time response like the exchange of mass, i.e. lithium ions in the electrodes in the battery. All 
these parameters, including the Vsoc are functions of SOC of the cell. However, the major 
contribution of the work is to present an equivalent circuit representation of the capacity fade. 
The capacitor, Ccapacity, depends on the cycle number and the temperature of the cell, and there 
is a self-discharge resistor which represents the loss of charge while the battery is in standby.  

Chen [8] reported an error of 0.4%, with a voltage response within 30mV error when the tests 
were done at a maximum of C/3 discharge rate where C is the rated capacity of the battery. 
With an increasing current requirement, the model would start to increasingly deviate with the 
results. These results represent the limits of accuracy the phenomenological models (i.e. 
models derived from empirical data) can reach. Physical models can reach a better accuracy 
because they try to understand the underlying physics of a battery. 

 

1.3.2 PDE based Models 

Partial differential equations or PDE’s are the forerunners of the current development of 
mathematical science. They are pervasive in the field of physics, chemistry, and real sciences, 
and are used to model most of the real-life systems. Generally, the systems expressed by a set 
of PDE’s have an infinite-dimensional configuration space, which makes them very difficult to 
solve. There are many methods of estimating the solutions to these equations, and there is 
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still a need of better optimization methods to solve these equations. However, let us come 
back to the topic at hand. 

To first define the PDE’s for the internal dynamics of the battery, we first need to identify 
different processes happening in the battery. The Figure 1-3 shows the stages of building a 
physics based model mentioned by Gregory Pelt [25]. 

 

 

 
 

Figure 1-3 Development of physics-based models [25] 

The process starts at an atomic level, where parameter values of diffusion rates of lithium in 
the electrodes are measured directly. The parameters of diffusivity, and open-circuit potentials 
would be used later in the full order physics-based models. At the particle scale, the expansion 
of molecular level into solid electrodes and electrolyte are made with an assumption of 
homogeneity. The model parameters for this scale like the porosity and tortuosity are 
measured in the laboratory.  

The volume averaging of the particle scale model over the complete domain of a cell is deemed 
as continuum scale model. This model accommodates for the interaction of the solid and liquid 
regions and is referred as full-scale order model. The Figure 1-4 shows a representation of the 
PDE based continuum scale model.   

Let us set the stage for the continuum theory model, or the PDE based model which has been 
worked through this thesis. As mentioned, the name porous electrode theory comes from the 
fact that the electrodes are geometrically porous matrices with a single reactive electronic 
conductor [19]. We define potentials Фs and Фe in solid and electrolyte respectively which are 
functions of time and space. The porosity of electrode ℇ is defined as the volume fraction of 
solid and electrolyte and the interfacial area is defined as the surface area of the pores per unit 
volume of the electrodes [19].  

The flux density, j, is the wall flux of a species averaged over the interfacial area in the direction 
pointing towards the solution. This generates the Butler-Volmer equation that allows 
obtaining the current density, which could be found in the next chapter. The next equations in 
the PDE model are the mass balance equations and charge balance equation for the lithium-
ion species in the solid and the liquid phase. The complete set of equations of the porous 
electrode theory can be found in Chapter 3.  

Molecular Scale 
PDE’s 

Particle scale 
PDE’s 

Continuum scale 
PDE’s 

Cell scale ODE’s 
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Figure 1-4 The co-ordinate system for a LIB reflecting physics-based models [26] 

The final step of the modeling (into the mathematical realms) is to convert the set of PDE’s 
into coupled ordinary differential equations, so that they could be used with inexpensive 
processors and mobile applications. The following Chapter 2 of the thesis talks about the state-
space realization method using the Ho-Kalman method to reduce the equations. 
There are other methods for reducing the set of partial differential equations, and work done 
by Zou et al. [26] could be summarized to explain the process of simplification using Hilbert 
space transformation. The initial set of PDE’s selected for the reduction include the 
temperature, heat generation, and the aging equations, summarizing to a set of 17 PDEs. The 
Figure 1-5 reproduces the chart presented by Zhou in their work. The typical assumption for 
the first reductions is to assume that the time constant for electrical dynamics are faster than 
the mass movement time constants.  

The methods of model reduction are be revisited in Chapter 5 of the thesis, but any new 
approaches to model reduction is out of the scope of the thesis. The following chapter 
introduces the development of few models as suggested by Gregory Plett [25]. 
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Figure 1-5 Framework for PDE reduction by Zou [26] 
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2 Developing physical models 

2.1 Background 

This chapter discusses implementation of three models based on the porous electrode theory 
as proposed by Newman and Doyle [27] – which would be discussed in more detail in the 
upcoming Chapter 3.  It is necessary to point out that the model proposed by Newman to 
simulate a battery uses various other concepts to quantify different behaviors, ohm’s law to 
express solid phase charge conservation, concentrated solution theory to express ionic 
transport in electrolyte, Butler-Volmer to express local current density, and finally the porous 
electrode theory to assume the electrodes as a lump of perfectly sized spheres to consider ion 
diffusion through solid gradients [28]. However, in current literature the whole model is 
referred in general as the porous electrode model. 

The models developed in this chapter follow the lead by the book, Battery modeling by 
Gregory Pelt [25]. This chapter follows a gradual approach of reducing complexity starting 
from a 1-D implementation of the porous electrode model, to a reduced model of a set of 3 
algebraic equations, in course reducing the complexity for suiting inexpensive computational 
resources. The computational complexity for the porous electrode theory is too high to be 
suitable for various applications[26], constrained by processing power, cost, and at times 
space. The assumptions made in each step will continually be mentioned in each section.  

2.1.1 Pseudo 2D Model: COMSOL 

Continuum refers to a type of modeling where there is continuous sequence of change in a 
quantity which may not be distinguishable with each other, but extremities are very different 
[25]. A continuum battery model would be a macroscale model which is made by averaging 
macroscopic quantities over a finite volume. It is called a pseudo 2D model, as the second 
dimension is the electrode particle radius to account for diffusion on the solid electrode (mass 
balance in the electrode), and basically works as a 1-D model. 

However, the extra dimension in the pseudo 2D model causes a greater computational 
complexity [29], and most of the work in the current reduction literature is focused towards 
elimination of this spatial dimension.  

The following equations summaries the modified porous electrode theory. The major 
assumptions for the model are as listed [26], [27]. 

• The whole battery domain is a macro-homogenous phase, the errors and particle 
irregularities are volume averaged, and hence, the electrode is made of homogenous 
spheres of same radii. 

• The migration of ions and electrons are not caused by convection 

• The electrolyte is diluted or ideal (the activity coefficient ==1) 
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The equations used for the model are briefly explained in the following section. For more 
detailed explanation of the equations, one could refer the work by Newman [19] and Smith 
[30]. 

 

a) Charge conservation in solid phase  
 

∇ ⋅ (σ s,eff∇ϕ̅s) = asF j ̅     Equation 1 

This equation states that the divergence of the current density at any volume in a cell is equal 
to the net charge arriving or exiting from that given volume. The first term indicates the 

current density like the ohm’s law, as σ s,eff is the solid phase conductivity, ϕ̅s is the solid phase 
potential. The as variable represents the interfacial area in final term, with j being the exchange 
current density and F the faraday constant, with a value of 96 485.3329 s A / mol. 

The dash above the quantities mean that they are volume averaged quantities. 

 

b) Mass conservation equation in Solid phase  

This equation, known as the Fick’s law of diffusion, signifies diffusion in a new spatial 
dimension of particle radius r that explains the rate of change of lithium concentration (𝑐𝑠) at 
a localized volume. The assumptions are that the particle is completely spherical, and that the 
particle is centered at all locations in the electrode [25]. 

𝜕𝑐𝑠

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝐷𝑠𝑟2 𝜕𝑐𝑠

𝜕𝑟
)    Equation 2 

 

c) Charge conservation in electrolyte phase  

It uses the volume averaging theorem on the liquid phase charge conservation equation, 
stating the charge continuity equation in the electrolyte. It states that the net charge flux 
entering or exiting the electrolyte volume is equal to the divergence of current density (second 
term), and the logarithmic concentration gradient in the electrolyte.  

𝛻 ⋅ σ𝑠,𝑒𝑓𝑓𝛻𝜙𝑠 +  𝛻 ⋅ (𝐾𝑒𝑓𝑓𝛻𝜙𝑒 + 𝐾𝐷,𝑒𝑓𝑓𝛻𝑙𝑛�̃�𝑒) + 𝑎𝑠𝐹𝑗̅ = 0  Equation 3 

𝐾𝐷 = 2𝑅𝑇𝑘(𝑡+
0 − 1)   Equation 4 

The 𝐾𝑒𝑓𝑓 term is the liquid phase conductivity, and 𝐾𝑒𝑓𝑓 represents the liquid state potential. 

The solid conductivity showing up in this equation represents the porous electrodes and the 
existence of homogenously distributed medium. The equation 4, expresses ionic conductivity 
𝐾𝐷, as function of reaction rate and the transference number, 𝑡+

0  that has been used in the final 
model in Chapter 5. 
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d) Mass conservation in the electrolyte phase of porous electrode 

It states that the local vol-averaged concentration of lithium could change due to a 
concentration gradient depending upon the electrolyte diffusion flux, or if there is a local flux 
from solid to electrolyte, which depends on transference number. 

𝜕(𝜀𝑒𝑐�̅�)

𝜕𝑡
= 𝛻 ⋅ (𝐷𝑒,𝑒𝑓𝑓𝛻𝑐�̅�) + 𝑎𝑠(1 − 𝑡+

0)𝑗 ̅  Equation 5 

The parameter 𝜀𝑒 represents the electrolyte volume fraction, and 𝐷𝑒,𝑒𝑓𝑓 represents the 

diffusivity constant of the electrolyte medium. 

 

e) Butler-Volmer Kinetics equation for the flux density of species 

This equation represents to solid-electrolyte interface and uses the dependence of all 
intertwined parameters to help calculate the overall potential of the cell. The equation is 
discussed in detail in the upcoming chapters. 

𝑗̅ = 𝑗(𝑐�̅�,𝑒 , 𝑐�̅� , 𝜙𝑠
̅̅ ̅, 𝜙𝑒

̅̅̅̅ )    Equation 6 

 

2.1.2 State Space Reduction: MATLAB 

Reduced order models work by reducing the complexity of continuously time-space varying 
partial differential equations by converting them into discrete time Ordinary Differential 
Equations (ODEs) via finding transfer functions. The 6 PDE’s for charge, concentration, and 
potential for both electrodes and electrolyte domain will be modelled in MATLAB, by using the 
transfer functions, from the reference book [25]. The step by step reduction of solid-state 
dynamics is achieved, but rest of the equations are presented by the final deduced result. 

a)  Solid State Dynamics 

This equation 7, of the solid diffusion will be reduced by the approach  suggested by the 
Jacobsen and West [25], [31]. 

𝜕𝑐𝑠(𝑟,𝑡)

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝐷𝑠𝑟2 𝜕𝑐𝑠(𝑟,𝑡)

𝜕𝑟
)   Equation 7 

The boundary conditions can be given by 

𝐷𝑠
𝜕𝑐𝑠(0,𝑡)

𝜕𝑟
= 0, 𝐷𝑠

𝜕𝑐𝑠(𝑅𝑠,𝑡)

𝜕𝑟
= −𝑗(𝑡)  Equation 8 

With initial concentration, 𝑐𝑠(𝑟, 0) = 𝑐𝑠,0,  𝛽(𝑟) = 𝑟√𝑠 ∕ 𝐷𝑠, and an assumption of the 𝐷𝑠 to be 

constant, we reach the transfer function,  
𝐶�̃�(𝑟,𝑠)

𝐽(𝑠)
=

−𝑅𝑠
2

𝐷𝑠𝑟
(

e𝛽(𝑟)−e(−𝛽(𝑟))

(1−𝛽(𝑅𝑠))e𝛽(𝑅𝑠)−(1+𝛽(𝑅𝑠))e−𝛽(𝑅𝑠)) Equation 9 

Reducing for the surface concentration, we have, 
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𝐶�̃�(𝑅𝑠,𝑠)

𝐽(𝑠)
=

𝑅𝑠

𝐷𝑠
(

1

(1−𝛽(𝑅𝑠) coth (𝛽(𝑅𝑠))))
)  Equation 10 

As we see, we have an integrator pole at s=0, we will create a debiased variable (also known 
as tilde notation), by subtracting the average quantity, which in this case, is concentration. 

𝛥�̃�𝑠,𝑒(𝑠)

𝐽(𝑠)
=

𝑅5

𝐷𝑠
[

(𝛽2+3)−3𝛽 coth(𝛽)

𝛽2(1−𝛽 coth(𝛽))
]=  

𝑠
𝑅𝑠

2

𝐷𝑠
+3−3𝑅𝑠 √

𝑠

𝐷𝑠

2
coth(𝑅𝑠 √

𝑠

𝐷𝑠

2
)

𝑠𝑅𝑠(1−𝑅𝑠 √
𝑠

𝐷𝑠

2
coth(𝑅𝑠 √

𝑠

𝐷𝑠

2
)

 Equation 11 

Where we have, 
𝛥�̃�𝑎𝑣𝑔(𝑠)

𝐽(𝑠)
=

−𝑟𝑒𝑠0

𝑠
=

=3/𝑅𝑠

𝑠
    Equation 12 

This model still yields the value of transfer function to infinity after it’s zero, so we use 
L’Hospitals rule to calculate the lim s-> 0 on equation 11, multiple times to get the value at s=0. 
This limit can be calculated using a limit function in my MATLAB code. 

The transfer functions are the first step to write the 1D reduced order model. It follows by the 
creating of DRAs, and then the system could be used for predicting the internal parameters. 
Below are the different transfer functions which have been modeled [25]. Following steps are 
involved in generating the discrete equation [25]. 

Pre-step: Compute the bode magnitude plot for our transfer function to estimate the 
bandwidth and choose an appropriate sampling rate. It is a recognized format for finding 
frequency response of time variant systems. The x axis is logarithmic denoting frequency and 
the x axis has phase in degrees and magnitude in decibels.  

Step1: Sampling the transfer function at discrete frequencies and drafting approximate 
continuous-time impulse response with inverse DFT (Direct Fourier Transform, computed 
using the ifft command in MATLAB).  

Step2: Cumulating the discrete values to find out the continuous time step response.  

Step 3: Resample the results for the desired sample time, for example 1 sec, and compute 
discrete time pulse response. 

Step 4: Use the discrete time pulse response to find out the step-space realization by the 
deterministic Ho-Kalman algorithm. The algorithm starts with creating two squares Hankel 
Matrices, imposing Single Value decomposition to determine the order of the system, and then 
compute the system of matrices to define the system.  
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Table 1 : Transfer Functions for the State space reduction model [25]  

Neg Current flux density  
 

-Jneg 𝐽𝑛𝑒𝑔(𝑧,𝑠)

𝐼𝑎𝑝𝑝(𝑠)
= 𝑣𝑛𝑒𝑔(𝑠)

𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

cosh(𝑣𝑛𝑒𝑔(𝑠)𝑧)+𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

cos ℎ(𝑣𝑛𝑒𝑔(𝑧−1))

𝑎𝑠
𝑛𝑒𝑔

𝐹𝐿𝑛𝑒𝑔𝐴(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

)sinh (𝑣𝑛𝑒𝑔(𝑠))
  

Surface potential �̃�𝑠−𝑒
𝑛𝑒𝑔

 
 

�̃�𝑠−𝑒
𝑛𝑒𝑔

(𝑧,𝑠)

𝐼𝑎𝑝𝑝(𝑠)
=

𝐿𝑛𝑒𝑔(𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

cosh(𝑣𝑛𝑒𝑔(𝑠)𝑧)+𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

cos ℎ(𝑣𝑛𝑒𝑔(𝑧−1)))

𝐴𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

𝑣𝑛𝑒𝑔(𝑠) 𝑠𝑖𝑛ℎ( 𝑣𝑛𝑒𝑔(𝑠))
, 

[�̃�𝑠−𝑒
𝑛𝑒𝑔(𝑧,𝑠)]

∗

𝐼𝑎𝑝𝑝(𝑠)
=

�̃�𝑠−𝑒
𝑛𝑒𝑔

(𝑧,𝑠)

𝐼𝑎𝑝𝑝(𝑠)
+

1

𝜀𝑠
𝑛𝑒𝑔

𝐴𝐹𝐿𝑛𝑒𝑔𝑠
[

𝜕𝑈𝑜𝑐𝑝

−𝜕𝑐𝑠,𝑒
|

𝐶𝑠,0

] 

Neg Surface concentration – cneg �̃�𝑠,𝑒
𝑛𝑒𝑔(𝑧,𝑠)

𝐼𝑎𝑝𝑝(𝑠)
=

𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

cosh(𝑣𝑛𝑒𝑔(𝑠)𝑧)+𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

cos ℎ(𝑣𝑛𝑒𝑔(𝑧−1))

𝑎𝑠
𝑛𝑒𝑔

𝐹𝐿𝑛𝑒𝑔𝐴(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

)sinh (𝑣𝑛𝑒𝑔(𝑠))

𝑅𝑠
𝑛𝑒𝑔

∗𝑣𝑛𝑒𝑔(𝑠)

1−𝑅𝑠
𝑛𝑒𝑔√𝑠∕𝐷𝑠

𝑛𝑒𝑔
coth(𝑅𝑠

𝑛𝑒𝑔√𝑠∕𝐷𝑠
𝑛𝑒𝑔

)

 ,
[�̃�𝑠,𝑒

𝑛𝑒𝑔(𝑧,𝑠)]𝑥

𝐼𝑎𝑝𝑝(𝑠)
=

�̃�𝑠,𝑒
𝑛𝑒𝑔(𝑧,𝑠)

𝐼𝑎𝑝𝑝(𝑠)
+

1

𝜀𝑠
𝑛𝑒𝑔

𝐴𝐹𝐿𝑛𝑒𝑔𝑠
 

Neg Solid potential -�̃�𝑠
𝑛𝑒𝑔

(𝑧, s) [�̃�𝑠
𝑛𝑒𝑔(𝑧,𝑠)]

𝐼𝑎𝑝𝑝(𝑠)
= −𝐿𝑛𝑒𝑔 [

𝐾𝑒𝑓𝑓
𝑛𝑒𝑔

(cos ℎ(𝑣𝑛ⅇ𝑔(𝑠)−cosh ((𝑧−1)𝑣𝑛ⅇ𝑔(𝑠)))+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

(1−cosh(𝑧𝑣𝑛ⅇ𝑔(𝑠))+𝑧𝑣𝑛ⅇ𝑔(𝑠) sinh(𝑣𝑛ⅇ𝑔(𝑠))

𝐴𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

)𝑣𝑛ⅇ𝑔(𝑠)sinh (𝑣𝑛ⅇ𝑔(𝑠)))
]  

 
Pos Solid potential �̃�𝑠−𝑒

𝑝𝑜𝑠
(𝑧, 𝑠) �̃�𝑠−𝑒

𝑝𝑜𝑠
(𝑧,𝑠)

𝐼𝑎𝑝𝑝(𝑠)
= −

𝐿𝑝𝑜𝑠(𝜎𝑒𝑓𝑓
𝑝𝑜𝑠

cosh(𝑣𝑝𝑜𝑠(𝑠)𝑧)+𝑘𝑒𝑓𝑓
𝑝𝑜𝑠

cos ℎ(𝑣𝑝𝑜𝑠(𝑧−1)))

𝐴𝜎
𝑒𝑓𝑓
𝑝𝑜𝑠

𝑘
𝑒𝑓𝑓
𝑝𝑜𝑠

𝑣𝑝𝑜𝑠(𝑠) 𝑠𝑖𝑛ℎ( 𝑣𝑝𝑜𝑠(𝑠))
  

Concentration of the 
electrolyte 

𝑐𝑒(𝑥, 𝑡) 𝐶�̃�(𝑥,𝑠)

𝐼𝑎𝑝𝑝(𝑠)
= ∑

�̃�𝑒,𝑛(𝑠)

𝐼𝑎𝑝𝑝(𝑠)
𝑛=1

𝛹(𝑥; 𝜆𝑛),
�̃�𝑒,𝑛(𝑠)

𝐼𝑎𝑝𝑝(𝑠)
=

1

𝑠+𝜆𝑛
[

𝐽𝑛
𝑛𝑒𝑔(𝑠)

𝐼𝑎𝑝𝑝(𝑠)
+

𝐽𝑛
𝑝𝑜𝑠(𝑠)

𝐼𝑎𝑝𝑝(𝑠)
],  Jneg and Jpos  [25] 

Electrolyte Potential 𝜙𝑒
̅̅ ̅(𝑥, 𝑠) 

Negative electrode   
�̃�𝑒(𝑥,𝑠)]1

𝐼𝑎𝑝𝑝(𝑠)
= − [

𝐿𝑛𝑒𝑔𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

(cosh(
𝑥

𝐿𝑛𝑒𝑔𝑣𝑛𝑒𝑔(𝑠))−1)+𝐿𝑛𝑒𝑔𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

(cosh(
(𝐿𝑛𝑒𝑔−𝑥)

𝐿𝑛𝑒𝑔 𝑣𝑛𝑒𝑔(𝑠))−cosh(𝑣𝑛𝑒𝑔(𝑠))

𝐴𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

)𝑣𝑛ⅇ𝑔(𝑠) sinh(𝑣𝑛ⅇ𝑔(𝑠))
] −

𝑥

𝐴(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

)
 

Negative-electrode-separator Boundary      
�̃�𝑒(𝐿𝑛𝑒𝑔,𝑠)]1

𝐼𝑎𝑝𝑝(𝑠)
= −

𝐿𝑛𝑒𝑔((𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

−𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

) tanh(
𝑣𝑛𝑒𝑔(𝑠)

2
))

𝐴𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

) (𝑣𝑛ⅇ𝑔(𝑠)))
−

𝐿𝑛𝑒𝑔

𝐴(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

)
  

Separator        
�̃�𝑒(𝑥,𝑠)]1

𝐼𝑎𝑝𝑝(𝑠)
= −

𝐿𝑛𝑒𝑔((𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

−𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

) tanh(
𝑣𝑛𝑒𝑔(𝑠)

2
))

𝐴𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

) (𝑣𝑛ⅇ𝑔(𝑠)))
−

𝐿𝑛𝑒𝑔

𝐴(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

)
−

𝑥−𝐿𝑛𝑒𝑔

𝐴(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

)
  

Separator-positive-electrode Boundary    
�̃�𝑒(𝐿𝑛𝑒𝑔+𝐿𝑠𝑒𝑝,𝑠)]1

𝐼𝑎𝑝𝑝(𝑠)
= −

𝐿𝑛𝑒𝑔((𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

−𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

) tanh(
𝑣𝑛𝑒𝑔(𝑠)

2
))

𝐴𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

) (𝑣𝑛ⅇ𝑔(𝑠)))
−

𝐿𝑛𝑒𝑔

𝐴(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

)
−

𝐿𝑠𝑒𝑝

𝐴(𝑘𝑒𝑓𝑓
𝑠𝑒𝑝

)
  

Positive-electrode 

�̃�𝑒(𝑥,𝑠)]1

𝐼𝑎𝑝𝑝(𝑠)
= −

𝐿𝑛𝑒𝑔((𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

−𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

) tanh(
𝑣𝑛𝑒𝑔(𝑠)

2
))

𝐴𝑘
𝑒𝑓𝑓
𝑛𝑒𝑔

(𝑘
𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎
𝑒𝑓𝑓
𝑛𝑒𝑔

) (𝑣𝑛ⅇ𝑔(𝑠)))
−

𝐿𝑛𝑒𝑔

𝐴(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

)
−

𝐿𝑠𝑒𝑝

𝐴(𝑘𝑒𝑓𝑓
𝑠𝑒𝑝

)
−

𝐿𝑝𝑜𝑠(1−cosh(
(𝐿𝑛𝑒𝑔+𝐿𝑠𝑒𝑝−𝑥)

𝐿𝑝𝑜𝑠 𝑣𝑝𝑜𝑠(𝑠))−𝐿𝑝𝑜𝑠𝜎𝑒𝑓𝑓
𝑝𝑜𝑠

(cosh(𝑣𝑝𝑜𝑠(𝑠))−cosh(
(𝐿𝑡𝑜𝑡−𝑥)

𝐿𝑝𝑜𝑠 𝑣𝑛𝑒𝑔(𝑠))

𝐴𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

) (𝑣𝑛ⅇ𝑔(𝑠))sinh (𝑣𝑛ⅇ𝑔(𝑠))
−

(𝑥−𝐿𝑛𝑒𝑔−𝐿𝑠𝑒𝑝)

𝐴(𝑘𝑒𝑓𝑓
𝑝𝑜𝑠

+𝜎𝑒𝑓𝑓
𝑝𝑜𝑠

)
         

At the cell Boundary    
[�̃�𝑒(𝑥,𝑠)]1

𝐼𝑎𝑝𝑝(𝑠)
= −

𝐿𝑛𝑒𝑔((𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

−𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

) tanh(
𝑣𝑛𝑒𝑔(𝑠)

2
))

𝐴𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

) (𝑣𝑛ⅇ𝑔(𝑠)))
−

𝐿𝑛𝑒𝑔

𝐴(𝑘𝑒𝑓𝑓
𝑛𝑒𝑔

+𝜎𝑒𝑓𝑓
𝑛𝑒𝑔

)
−

𝐿𝑠𝑒𝑝

𝐴(𝑘𝑒𝑓𝑓
𝑠𝑒𝑝

)
−

𝐿𝑝𝑜𝑠((𝜎𝑒𝑓𝑓
𝑝𝑜𝑠

−𝑘𝑒𝑓𝑓
𝑝𝑜𝑠

) tanh(
𝑣𝑝𝑜𝑠(𝑠)

2
))

𝐴𝑘𝑒𝑓𝑓
𝑝𝑜𝑠

(𝑘𝑒𝑓𝑓
𝑝𝑜𝑠

+𝜎𝑒𝑓𝑓
𝑝𝑜𝑠

) (𝑣𝑝𝑜𝑠(𝑠)))
−

𝐿𝑝𝑜𝑠

𝐴(𝑘𝑒𝑓𝑓
𝑝𝑜𝑠

+𝜎𝑒𝑓𝑓
𝑝𝑜𝑠

)
  

Cell voltage Computation 
 

𝑣(𝑡) 
𝑛𝑝𝑜𝑠(𝑧, 𝑡) =

2𝑅𝑇

𝐹
𝑎𝑠𝑖𝑛 ℎ (

𝑗𝑝∘𝑠(𝑧,𝑡)

2𝑘0
𝑝𝑜𝑠

√𝐶𝑒(𝑧,𝑡)(𝑐𝑠,𝑚𝑎𝑥
𝑝𝑜𝑠

−𝑐𝑠,𝑒
𝑝𝑜𝑠(𝑧,𝑡))𝑐𝑠,𝑒

𝑝𝑜𝑠
(𝑧,𝑡)

)   

𝑣(𝑡) = 𝐹(𝑅𝑓𝑖𝑙𝑚
𝑝𝑜𝑠

𝑗𝑝∘𝑠(0, 𝑡) − 𝑅𝑓𝑖𝑙𝑚
𝑛𝑒𝑔

𝑗𝑝∘𝑠(0, 𝑡)] + [�̃�𝑒(𝐿𝑡𝑜𝑡 , 𝑡)]1 + [𝑛𝑝𝑜𝑠(0, 𝑡) − 𝑛𝑛𝑒𝑔(0, 𝑡)] + [�̃�𝑒(𝐿𝑡𝑜𝑡, 𝑡)]2 + [𝑈𝑜𝑐𝑝
𝑝𝑜𝑠

(𝑐𝑠,𝑒
𝑝𝑜𝑠(0, 𝑡)) − 𝑈𝑜𝑐𝑝

𝑛𝑒𝑔
(𝑐𝑠,𝑒

𝑛𝑒𝑔(0, 𝑡))]  
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From here, the transfer functions could be decomposed using the steps mentioned above. 𝑣 
can be interpreted as the ratio of the frequency dependent and SOC dependent impedances. 
It is of importance as it repeats itself in most of the equations. Table 1 summarizes the transfer 
functions for the various state variables used in the model.  

𝑣𝑛𝑒𝑔(𝑠) =

𝐿𝑛𝑒𝑔
√

𝑎𝑠
𝑛𝑒𝑔

𝜎
𝑒𝑓𝑓
𝑛𝑒𝑔+

𝑎𝑠
𝑛𝑒𝑔

𝑘
𝑒𝑓𝑓
𝑛𝑒𝑔

2

√𝑅𝑠,𝑒
𝑛𝑒𝑔

+
𝑅𝑠

𝑛𝑒𝑔

𝐹𝐷𝑠𝑛𝑒𝑔[
𝜕𝑈

𝑂𝐶𝑃
𝑛𝑒𝑔

𝜕𝐶𝑠,ⅇ
𝑛𝑒𝑔 |

𝐶𝑠,0
𝑛𝑒𝑔

][
1

1−𝑅𝑠
𝑛𝑒𝑔√𝑠∕𝐷𝑠

𝑛𝑒𝑔
coth(𝑅𝑠

𝑛𝑒𝑔√𝑠∕𝐷𝑠
𝑛𝑒𝑔

)

]

 Equation 13 

2.1.3 Single Particle Model: Simulink 

The complexity of these models has been driving the work towards the reduction of PDEs into 
algebraic differential equations, and this model uses the work by Venkat et al. [32] and  
Venkatasailanathan et al. [33]. They reduced the microscale solid phase mass conservation 
equation, the Fick’s law of diffusion, into a set of three differential equations. The known 
assumption is that the solid-state concentration inside the spherical particle can be expressed 
as a polynomial in the spatial direction. 

𝑐(𝑟, 𝑡) = 𝑎(𝑡) + 𝑏(𝑡) (
𝑟2

𝑅𝑝
2)  Equation 14 

In this MATLAB model the flux concentration has not been implemented, unlike Venkat et al. 
[32] so it takes it even farther from generating an actual battery configuration. So, it is 
essentially reducing the 3-algebraic equation single particle model to a surface concentration-
based model with 2 algebraic equations. The following equations have been replicated from 
[4] with a few modifications and have been used in the model. 

 

𝑗𝑛 =  
𝐼

𝐹∗𝑎𝑠∗𝐴∗𝐿
    Equation 15 

𝑑𝑐𝑠

𝑑𝑡
= −3

𝑗𝑛

𝑅𝑝
   (𝑟𝑒𝑑𝑢𝑐𝑒𝑑)   Equation 16 

𝑐𝑠𝑠 = 𝑐𝑠 −
𝑅𝑝

𝐷𝑠
𝑗𝑛  (𝑟𝑒𝑑𝑢𝑐𝑒𝑑)   Equation 17 

𝜃 =
2𝑅𝑇

𝐹
sin ℏ−1[

𝐼

2𝑎𝐿𝑟𝑒𝑓𝑓√𝑐𝑐
0𝑐𝑠𝑠(𝑐𝑠,𝑚𝑎𝑥−𝑐𝑠𝑠)

] + 𝑈(𝑐𝑠𝑠) +
𝑅𝑓𝐼

𝑎 𝐿
  Equation 18 

It is not a common practice by manufacturers give the reaction rate constant for batteries, 
hence, the input values for the k0norm, the normalized reaction rate coefficient, and Reaction 
rate, reff were calculated by using the following equation, 

 

𝑟𝑒𝑓𝑓 = 𝑘0,𝑛𝑜𝑟𝑚/(𝑐𝑒00.5𝑐𝑠,𝑚𝑎𝑥)    Equation 19 

The equations for the open circuit potentials for the LFP and LIC6 were taken from work by 
Zou. [26] The plots are shown in Figure 2-1. 
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Figure 2-1: Open circuit potentials of electrodes 

 
U𝐿𝐹𝑃  =  2.567462 +  57: 69[1 –  tanh(100z + 2.9163927) +  0.442953 tan − 1(−65: 41928z +

 64: 89741)0.097237 tan − 1(−160.9058 z +  154.590)          Equation 20 
     
𝑈𝐿𝑖𝐶6   =  0.6379 +  0: 5416 exp(−305.5309z) +  0.044tanh[−(z − 0.1958)/0.1088) −
  0.1978 tanh[(z − 1.0571)/0.0854] − 0.6875 tanh[(z + 0.0117)/0: 0529] −  0.0175 tanh[(z −

0.5692)/0: 0875]                     Equation 21 

These are the standard voltages of electrodes against the concentration of lithium ion. For the 
final prediction of voltages, we need the over potential curve, along with this plot to predict 
the cell voltage. 

 

2.2 Comparison and Results 

This section compares results generated by the three models. Due to limitations of different 
models to generate different state variables, only selected comparisons are made between 
different models. The current testing waveform has been extracted from an electric 
motorcycle drive-cycle, where a current profile of 1728 seconds is being utilized, as shown in 
Figure 2-2. 

The maximum current discharge has been noted at a time stamp of 1409 seconds, which 
corresponds to a value of 2.13 amps. This time stamp has been used to record values for 
comparison, and another time stamp of 1539, when a negative current of 0.324 amps is 
supplied to the battery. 

2.2.1  Cell Voltage 

COMSOL: The simulation starts with the battery at SOC of 45%, and the manufacturer reported 
nominal voltage is 3.3 V. The cell voltage profile has been recorded in Figure 2-3. 

This plot is mostly straight forward, the results generated seem to be in sync with the 
manufacturer claims. The main take away from this plot is the dynamic behavior and the 
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voltage drop observed at the peak current values. It would be interesting to compare this data 
to an experimentally observed data to find out the accuracy of COMSOL model. 

 
Figure 2-2: Current Profile being tested 

SPM: There are numerous differences occurring in the voltage profiles, the equilibrium 
voltages reported are offset by a value of 0.07V. Also, the voltage reported in SPM follows a 
decreasing trend with the SOC loss, which is not evident in the COMSOL model.  

 
Figure 2-3: Voltage profile with COMSOL Model 

The dynamic peaks in COMSOL model are in the same order as in the SPM model, but during 
the peak current of 2.1 Amps, the SPM voltage drops by 0.7 volts which is an unrealistic number 
for a 3.3Ah battery. The SPM model is not supposed to work with high discharge currents as 
mentioned in the assumptions while formulating the model. 
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This is mostly the extent of results which could be drawn from the 2-equation SPM model, and 
they are not very satisfactory.  

 
Figure 2-4: Voltage Profile SPM Model 

 

2.2.2 Intercalation Flux 

COMSOL: Figure 2-5 represents the varying flux with respect to the normalized length of the 
battery, where the three sections represent negative, separator, and the positive electrode 
starting from the left to right. 

 
Figure 2-5: Intercalation Flux with normalized battery length and time in COMSOL Model 

A current requirement causes a positive flux at the negative electrode, and vice-versa. 
However, the interesting observation here is that as the current requirement increases, the 
flux concentration starts to follow a curve path, as compared to a straight one.  
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The peak current requirements show that the negative flux at separator side is higher as 
compared to the current collector interface, in contrary to the positive electrode which follows 
an opposite trend. This can be explained by looking at the flux equation.  

 

𝐽 = 𝑘0
𝑛𝑜𝑟𝑚 ((

𝐶e

𝐶e,0
) (

𝐶𝑠,𝑚𝑎𝑥−𝐶𝑆,𝑒

𝐶𝑠,𝑚𝑎𝑥
))

1−𝛼

. {e
(

(1−𝛼)𝐹

𝑅𝑇
𝜂)

− e
(

(−𝛼)𝐹

𝑅𝑇
𝜂)

}   Equation 22 

As we will see in the future results, ce rather increases at the collector ends so it couldn’t be 
contributing to the decrease. As the overpotential is inter-related to flux, the cause is probably 
the drop of overpotential at the ends due to an outward flow of electrons. The independent 
nature also explains the parabolic nature of the curve. 

The selected time stamps for highest discharge and a negative current have been recorded in 
Figure 2-6. We can also plot the flux densities with respect to time, however, all the values for 
different localized locations have been plotted simultaneously, which makes this graph 
difficult to comprehend, and directly compare.  

Depending upon the current profile, and dynamics, there are a lot of variations captured in the 
COMSOL model, which couldn’t be expected from the SPM model.   

 
Figure 2-6 : Intercalation Flux, j with normalized battery length at selected time instances 

 

SPM: The flux densities for the negative and positive electrode are shown in the Figure 2-7. 

By comparing the maximum values of flux, the order of the flux densities for both the 
electrodes is the same as compared to the COMSOL model. However, this model does not 
consider the concentration fluxes, overpotential for calculating the flux, but it is a rather 
simple calculation of the oncoming current divided by the volumes of the electrode. (A/m2) 

It would not be great idea to compare the results from COMSOL model peaks with these 
results, as this is a rather averaged value, as compared to localized results plotted against time. 
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Figure 2-7: Intercalation flux with respect to time of the SPM model 

 

2.2.3 Electrolyte Potential 

 
Figure 2-8: Electrolyte potential at Specific timestamps 

COMSOL:  At equilibrium, that is the beginning of the cycle, the potential across the electrolyte 
is distributed evenly across the normalized length to be -0.12 V. From the results plotted in the 
Figure 2-8, we can see that the electrolyte potential is a very dynamic parameter, and the 
potential flips readily with the application of an external current. 

For a positive discharge rate - the negative electrode is at a higher potential- the electrolyte 
has a higher potential towards the negative electrode. 



 

19 

2.2.4 Electrolyte Concentration 

COMSOL: We already used the electrolyte concentration results to predict if the trends got for 
the intercalation flux were reasonable. It turns out that the electrolyte concentration is an 
equally dynamic parameter like electrolyte potential. As the potential in electrolyte does 
depend on the concentration flux, it is easier to predict that the waveforms would be similar. 

However, we can see in the plot for the time stamp 1539 (Figure 2-10), that the electrolyte 
concentration at the positive electrode struggles to keep up with the potential, as the current 
changes the direction to negative, in comparison to the negative electrode which has a 
smoother waveform. It could be argued that be the big particle size at the positive electrode 
makes dynamics slower. 

Also, the electrolyte concentration at the separator keeps to the initial value of ceO which slight 
variations, which shows that there is no net increase in the concentration of the electrolyte 
while discharging and charging. 

 
Figure 2-9: Electrolyte concentration as a function of normalized x-coordinates 

State space DRA model: The reduced order model uses eigenvalues-based solution to calculate 
the electrolyte concentration, and it is only feasible to see the results at specific time instants. 
We have already calculated the results for time instants of max charge and discharge, and we 
could plot them to compare both. 
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Figure 2-10: Electrolyte concentration at time stamps 

The number of eigenvalues selected for plotting the Figure 2-11 below has been taken as 6. It 
is reported that increasing number of eigenvalues gets closer results to experimental data, 
however, increasing number of eigenvalues exponentially increases the time taken in 
simulation, which will be discussed later in the document. 

  
Figure 2-11: Electrolyte concentration at selected time stamps: state space model 

In the case of a lower discharge rate of 0.324 amps, the concentration profile at the current 
collector interface fails short by a factor of 0.98, and at a higher discharge rate of 2.1 amps, the 
overshoot is higher by a factor of 1.07, although the potential at the separator interface is 
predicted right by the model. However, the intricacies in the dynamics is not predicted by the 
reduced order model, as it doesn’t consider the previous current waveforms, rather a static 
value of current. 

Figure 2-12 shows the comparison the results for different eigenvalues to present the 
deviation. The eigenvalues of 8 indeed is closer to the nature of the COMSOL generated result.  
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Figure 2-12: Comparison between different numbers of eigen values 

 

2.2.5 Solid electrode concentration 

COMSOL: The dynamics for solid surface concentration is a slow phenomenon in a battery, and 
it is the reaction which limits the charging and discharging rates of a battery. In the beginning 
they have flat concentrations divided equally at all locations of the electrodes. The lower 
curves represent the concentrations for the negative electrode, and the upper profile 
represents the concentration for positive electrode.  

 
Figure 2-13: Solid Surface Concentration in the electrode: COMSOL 

We can observe in the Figure 2-13 and 2-14 the dynamic difference of the concentration profiles 
for the positive and the negative electrode. The negative electrode has a uniform distribution 
of the concentration along the length, however, for the positive electrode, most of the lithium 
concentration is accumulated at the collector, and another localized high concentration is at 
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the separator interface. This agrees with existing literatures [28] adding validation to the 
model. This uneven distribution of ion concentration in positive electrode increases with 
increase in the discharge rate, and hence the consumption of positive electrode material is 
highly limited. 

The same behavior can also be observed in the solid concentration vs time plot in Figure 2-14, 
where we can see that the positive electrode has a wide area of plots because of the different 
localized lithium ion concentrations, as compared to negative electrode which has rather 
consistent decrease in SOC. 

 
Figure 2-14: Electrode concentration with respect to time: COMSOL 

SPM: These localized results cannot be generated from the SPM model, hence results in Figure 
2-15 reports an averaged value of the concentrations.  

The averaged final negative electrode concentration reported by COMSOL was around 10300 
mol/m3, as compared to the result in SPM model with around 10800 mol/m3 concentration left 
to be used. Even for a period of 1800 seconds, this gap cannot be ignored. 

State space: The first result shown in the Figure 2-16 is for the solid surface concentrations for 
the negative and positive electrode. The results are like the ones generated by the previous 
model, we can see if the plots with respect to localized locations could be made. 

The result here seems to agree more with the continuum model, the positive densities didn’t 
seem to vary as the negative concentration densities. This is probably because the 
intercalation rate at the LFP electrode is not as fast as compared to the Li metal negative 
electrode. The SPM model however, doesn’t differentiate between the concentration profiles 
for the both electrodes, and are basically reciprocal to each other. 
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Figure 2-15: The Electrode concentrations 

 

 
Figure 2-16: Solid concentration Profiles: State Space Model 

 

2.3 Limitations and further approach 

Each model has its own advantages and disadvantages and is better suited to different 
applications. The SPM Model could be useful for class projects, or for basic level understanding 
of the voltage and flux density waveforms. The COMSOL model on the other hand, takes 
significant amount of processing power and time to generate the results, but the macroscopic 
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detail of the model is excellent. The reduced order model is supposed to generate all the 
results generated by the COMSOL model, with a lesser complexity, but it shows limitations 
with the electrolyte potential prediction.  

Furthermore, from the current results of concentration profile, the state space model is not 
able to capture the dynamics at the localized location like the COMSOL model. Moreover, there 
is a limitation for which the state space model can work. For example, the total iterations of 
the system cannot be smaller than the order of the predicted system. 

Also, as reported before, increasing the eigenvalues in the Reduced Order Model results in a 
significant increase in the simulation time, for an increase in eigenvalue number for 4 to 12, the 
simulation time increases 37 secs from the initial selection of 11 eigenvalues. It would be a good 
practice to find the tradeoff between the simulation time lost and the accuracy lost in the 
model. 

The next chapter presents the development of a more elaborate set of PDE equations that 
incorporate aging mechanisms for the lithium-ion batteries. Then a continuum model will be 
developed to generate some results known for Li-ion batteries. 
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3 A novel integrated model 

This thesis generates a new integrated porous electrode model of a lithium-ion battery that 
models various mechanisms of its degradation that have been found in the current literature. 
Contrary to the existing approach of modeling different aging behaviors at different scales, 
like particle, electrode, and cell level, this work brings all the degradation behaviors together 
in an integrated porous electrode theory, favoring a top-down modeling approach. Even if the 
increase in the computational complexity may seem large, there are optimization methods 
which could be employed to bring down the complexity to be used in an automotive battery 
management system.  

The degradation mechanisms covered in the thesis include Solid-Electrolyte Layer growth, Li-
plating, electrolyte dissolution, active area loss with cycling, capacity loss with calendar aging, 
mechanical deformation, and automotive vibrations. The equations are substituted to make a 
generalized PDE model that could be extended to pseudo 3D or 4D dimensions. COMSOL 
environment has then been utilized to draw correlations to experimental data. 

 

3.1 Literature Review 

There are many methods in the current literature that try to model the complexity of a lithium 
ion battery. The two objectives of such models are: first to replicate the intrinsic behavior of 
the charge and discharge, and second to find the reasons behind the battery degradation. 
These models can be classified into phenomenological and predictive. The later depends on 
recorded data to use techniques like neural networks to predict the behavior of the system. 
However, the former tries to use mathematical equations to model underlying processes to 
replicate the empirical results. 

The phenomenological approach was first introduced by Doyle et al [27], based on Newman’s 
porous electrode theory [19], that used a set of partial differential equations to model the 
movement of ions and particles in a battery. Since 1993, there have been significant 
developments in the model, and the modified porous electrode theory with heat generation 
as shown by Northman et al [29] has been used as the base model for integrating other 
degradation mechanisms suggested by other authors.  

The first approach to modeling degradation was in the form of the solid electrolyte layer [SEI] 
presented by Safari et al [34] in 2009, and has been accepted as the most popular way to model 
the growth of SEI layer in negative electrodes. Lithium plating during overcharge was 
proposed by Perkins et al [17], which used the overcharge current flux to quantify the amount 
of lithium plated on the negative electrodes.  Dai et al [35] worked in the dissolution of active 
materials and solvents, to report that the solid diffusion constant is inversely related as the 
active materials concentration in the battery. Further, there are other work in the literature 
that model the number of the actives sites [36], and other authors are going towards the 
coupling of mechanical behavior with the electrochemical behaviors of a battery. 
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Even if these models are adequate, their results are far from the real-life empirical results of a 
battery as they consider a single phenomenon. There are attempts in the literature to couple 
various scales and mechanisms together, but there is dearth of models which couple 
electrochemical behavior with its degradation. This paper presents a novel battery model 
which stitches an elaborate porous electrode theory with known degradation mechanisms to 
theoretically increase the accuracy of predictions.  

The upcoming section of the thesis consists of the equations of the base model, and a review 
of the literatures that model specific degradation mechanisms. These mechanisms are stitched 
together to the base model in the following section 3. The section 4 of the thesis discusses the 
construction of a COMSOL model based on the equations and its results. 

 

3.2 Equations: The modified Porous electrode theory 

Equations in Table 1 represent the modified version of the porous electrode theory model. The 
partial differential equations can be extended to all 3 dimensions by increasing the number of 
variables, however for the simulations in this thesis, only two dimensions have been 
considered. This allows the model to be called a Pseudo 3D model, as the radius of the 
electrode particles (assuming them to be perfect spheres) is a pseudo dimension. The 
boundary conditions for the model can be seen in Figure 3-1, as shown by Northrop et al [29] . 

 
 

Table 2 : Equations for the modified porous electrode theory (PDEs).  

Conservation of 
charge 

Solid phase:  

  𝛻. (𝜎𝑠
𝑒𝑓𝑓

 𝛻𝜑𝑠) =  𝑎𝑠 𝑗𝑠 

Electrolyte phase: 

 −𝛻 · [𝜎𝑒
𝑒𝑓𝑓

 𝛻𝜙𝑠] − 𝛻 · [𝜅𝑒
𝑒𝑓𝑓

 𝛻𝜙𝑒] + 𝛻. [
2𝜅𝑒

𝑒𝑓𝑓
𝑅𝑇

𝐹
 (1 − 𝑡+)𝛻 ln 𝑐𝑒] =

0  

Conservation of 
Mass 

Solid phase: 

  
𝜕(𝜀𝑠𝑐𝑠)

𝜕𝑡
=

1

𝑟2

𝜕

𝜕𝑟
(𝐷𝑠

𝑒𝑓𝑓𝑟2 𝜕𝑐𝑠

𝜕𝑟
) 

Electrolyte phase 

 
𝜕(𝜀𝑒𝑐𝑒)

𝜕𝑡
= 𝛻 ⋅ (𝐷𝑒

𝑒𝑓𝑓𝛻𝑐𝑒) +
𝑎𝑠(1−𝑡+

0 )𝑗

𝐹
 

Kinetics Electrochemical Reaction Rate: 

 𝑗 = 𝑘𝑒(𝑐𝑒)𝛼𝑎(𝑐𝑠
𝑚𝑎𝑥 − 𝑐𝑠,𝑒)

𝛼𝛼
(𝑐𝑠,𝑒)

𝛼𝑐
{exp [

𝛼𝛼𝐹

𝑅𝑇
(𝜂 −

𝑅𝑓𝑖𝑙𝑚

𝛼𝑠
𝑗)] − exp [

𝛼𝑐𝐹

𝑅𝑇
(𝜂 −

𝑅𝑓𝑖𝑙𝑚

𝛼𝑠
𝑗)]} 

Overpotential:        𝜂 =  𝜙𝑠 − 𝜙𝑒 − 𝑈   
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Figure 3-1: Boundary conditions of the modified porous electrode theory 

 

3.3 Degradation Mechanisms 

The scientific community agrees on multiple aging mechanisms which contribute to the 
capacity and performance degradation of a Lithium-ion battery. Smith et al [37] made a good 
tabulation of the known mechanisms, Table 3 lists the mechanisms covered in this work. 
 

Mechanical • Mechanical Stress and deformation 

• Automotive vibrations 

Chemical • Lithium plating during Overcharge 

Electrochemical • Side reactions 

• Solvent dissolution 

• SEI growth 

Electro-chemo-mechanical • Active site area loss due to cycling 

Thermal Coupling • Reaction rates increasing with higher temperatures 

Table 3: Degradation mechanisms of LIB [38] 

 

3.3.1 SEI growth 

Solid electrolyte layer is understood to be the primary cause [36] of a Li-ion aging. According 
to Wertheim et al [39], the process starts when the voltage of graphite electrode drops below 
a certain threshold (typically 1.0V) with respect to the cathode. The initial formation of the SEI, 
during the activation procedure decides on the cycling performance for the rest of the life.  
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In the existing literatures, there are multiple proposed methods of reaching at the final 
product as the SEI, however, any of the processes with their current density could be used to 
predict the rate of the growth [34]. The rate of SEI growth, where 𝛿 is the length of the SEI 
(generally in nm) can be given by: 

𝑣 =
𝑑𝛿

𝑑𝑡
 = − 

𝑖𝑠

2𝐹

𝑀𝑆𝐸𝐼

𝜌𝑆𝐸𝐼
 | (𝑟 = 𝑅 + 𝛿)      Equation 23 

Here, 𝑀𝑆𝐸𝐼is the molecular weight, 𝜌𝑆𝐸𝐼 the density of the SEI film, and 𝑖𝑠 is the kinetic current 
density of the side reaction given by 

𝑖𝑠  = −𝐹𝑘𝑓,𝑠𝑐 𝐸𝐶  𝑒𝑥𝑝 [−
𝛽𝑠𝐹

𝑅𝑇
(𝜙𝑠 −

𝛿

𝑘𝑆𝐸𝐼

𝑖𝑡)]   Equation 24 

The total current density 𝑖𝑡  at the negative electrode can be given by 
𝑖𝑡 = 𝑖𝑖𝑛𝑡 + 𝑖𝑠    Equation 25 

Now it depends recursively to 𝑖𝑖𝑛𝑡  ,the intercalation current density depending upon the 
butler-Volmer Kinetics, modified from the porous electrode model: 

𝑖𝑖𝑛𝑡 = 𝐹 𝑘𝑖𝑛𝑡(𝑐𝑒)𝛼𝑎(𝑐𝑠
𝑚𝑎𝑥 − 𝑐𝑠,𝑒)

𝛼𝛼
(𝑐𝑠,𝑒)

𝛼𝑐
{exp [

𝛼𝛼𝐹

𝑅𝑇
(𝜂 −

𝛿

𝑘𝑆𝐸𝐼
𝑖𝑡)] − exp [

𝛼𝑐𝐹

𝑅𝑇
(𝜂 −

𝛿

𝑘𝑆𝐸𝐼
𝑖𝑡)]} 

Equation 26 

The 𝑐𝑥 are concentration of ions in electrolytes and electrodes,  𝜂 is the overpotential, and  𝑘𝑆𝐸𝐼 
is the conductivity of the SEI layer. The material loss of the solvent can be given by [34], where 
ℇ is the concentration of active materials in the electrolyte. 

𝜕ℇ

𝜕𝑡
= 𝐷𝐸𝐶

𝜕2
ℇ

𝜕𝑟2 − 𝑣
𝜕ℇ

𝜕𝑟
     Equation 27 

 

3.3.2 Lithium Plating 

The lithium plating behavior can happen in two major conditions of a battery operation: 
overcharging or a low temperature operation. It has also been argued that a high discharge 
rate results in the metal plating [36]. The work shown here tries to model the overcharge and 
the capacity fade and resistance increase associated with plating. 

The method proposed by Perkins et al [17]  is to modify the film resistance accounting for the 
new film due to the metal plating. The following equations represent the side reaction current 
density, or the rate of li-plating: 

𝑗𝑝𝑙𝑎𝑡𝑖𝑛𝑔 = 𝑚𝑖𝑛 [0, 𝑘𝑛(𝑐𝑒)𝛼𝑎(𝑐𝑠
𝑚𝑎𝑥 − 𝑐𝑠,𝑒)

𝛼𝛼
(𝑐𝑠,𝑒)

𝛼𝑐
{exp [

𝛼𝛼𝐹

𝑅𝑇
(𝜂 −

𝛿𝑓𝑖𝑙𝑚

𝑘𝐿𝑖
𝑖𝑡)] − exp [

𝛼𝑐𝐹

𝑅𝑇
(𝜂 −

𝛿𝑓𝑖𝑙𝑚

𝑘𝐿𝑖
𝑖𝑡)]}] 

Equation 28 

 

𝑅𝑓𝑖𝑙𝑚(𝑥, 𝑡) = 𝑅𝑆𝐸𝐼
0 (𝑥, 𝑡) + 𝑅𝐿𝑖(𝑥, 𝑡)  Equation 29 

Observe that the variables 𝑘𝐿𝑖is the only variable localized to the Li plating process, and the 
length of the film 𝛿𝑓𝑖𝑙𝑚 included the SEI layer growth 𝛿, and hence could potentially be used 
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to improve the SEI growth equation. This is the approach which would be followed in the next 
section of thesis to stitch various models together. 

The capacity loss due to these two processes will be accounted for later. 

 

3.3.3 Electrolyte/ active material Dissolution  

The electrolyte dissolution is yet another phenomenon representing the active material loss. 
The simplest way to account for this method is find the rate of reaction which causes the 
dissolution. This will rate the change of active material 𝜀 with the following equation, as given 
by [35][36]. 

𝜕𝜀

𝜕𝑡
= −𝑎𝑐,𝑖�̅�𝑟𝑑𝑖𝑠𝑠   Equation 30 

Here, the V is the molar volume of the electrolyte or active material (like LMO in Li-Manganese-
oxide cell), and 𝑟𝑑𝑖𝑠𝑠  is the dissolution constant for that species. Finally, this loss in the active 
material can be related to the original model by changing the diffusion coefficient and a side 
current density for dissolution: 

𝐷𝑠 = 𝐷𝑠
0[1 − (

𝜀0−𝜀

𝜀0 )
𝑛

]     Equation 31 

𝑗𝑠𝑜𝑙
𝑡𝑖𝑙𝑑𝑒~−𝐷𝑖

𝑒𝑓𝑓
𝛻𝑐𝑖   Equation 32 

 

3.3.4 Active site area loss 

The active sites available for the transaction of ions change by two contradictory mechanisms: 
Fracture of particles, which increases the area, and isolation of particles which decreases the 
area. The current state of active sites is given by [36]: 

 
𝑎𝑐 = 𝑎𝑖 + 𝑎𝑓 − 𝑎𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑   Equation 33 

 

where 𝑎𝑖 is the initial surface area given by 
3𝜀𝑠

𝑟
 [14] assuming the electrode is a collection of 

spheres on uniform radius. 𝑎𝑓 and 𝑎𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 are the resultant area due to fracture and isolation.  

 

𝑑(
𝑎𝑓

𝑎𝑖
)

𝑑𝑁
= 𝑘𝑓    Equation 34 

ⅆ𝑎𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑

𝑑𝑁
= 𝑘𝑖𝑠𝑜𝑎𝑖    Equation 35 

Here, N denotes the number of cycles. 𝑘𝑓 are the material parameters which depends on the 

current, 𝛥SOC, SOC, temperature, and particle size [36]. This parameter is crucial to generate 
proper results for a high discharge behavior of a battery. 𝑘𝑖𝑠𝑜, on the other hand, is an 
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evolution parameter for isolation. We see that these variables are highly empirical, and there 
are vast amounts of uncertain conditions which can lead model to an inaccurate result. 

 This equation would be coupled in the original model by altering the active site area variable 
in the flux equations as reduced by Narayan Rao et al [7]. 

 

3.3.5 Number of Cycles 

When a battery is bought from a manufacturer, it has a listed number of cycles noted as the 
total life of the cell but a certain amount of degradation. However, this aging tests for cycling 
are conducted linearly for a specific SOC range and generally at 1C discharge rate. However, 
the effective cycle number of the cell might differ according to the behavior of the user. A 
weighted number of cycles could give a proper health estimation of a battery. 

In this model, however, the number of cycles parameter is only used for estimating the surface 
area change, and the empirical tests to estimate 𝑘𝑓 and 𝑘𝑖𝑠𝑜must have a definitively measure 

to calculate the number of cycles. Hence, a rather simplistic approach of current integration is 
presented, as proposed by Alan [23]. Moreover, the weighted method of cycle estimation is 
an empirical aging data condensed into a single equation. 

𝑁 = ∫
𝑎𝑏𝑠(𝐼(𝑡))𝑑𝑡

𝑄𝑐𝑒𝑙𝑙∗2
𝑡𝑖𝑚𝑒 

   Equation 36 

The 2 factor comes in because it considers both charging and discharging of the cell, just for 
ease of modeling. Notice that, 𝑄𝑐𝑒𝑙𝑙is the initial capacity of the cell, not the updated degrading 
capacity. 

 

3.3.6 Mechanical Deformation and stress 

The mechanical deformation and stress could be divided into two segments: external and 
internal. The effect of external stresses like impact, pressure and tension have been found 
difficult to couple with electrochemical behavior. Moreover, the cylindrical cells do not tend 
to have external stress due to their packaging form. In this thesis, the internal volumetric stress 
has been modeled as shown by Xu et al [40]. 

The pure volumetric stress generated by lithiation is given by 
𝜇 = 𝜇0 + 𝑘𝑇𝑙𝑜𝑔(𝛾𝑥) − 𝛺𝜎𝑚   Equation 37 

Here, 𝜎𝑚 is the mean stress,  𝜇 is the chemical potential of Li, and the 𝑘𝑇𝑙𝑜𝑔(𝛾𝑥) represents 
the change in elastic energy under stress, and 𝛺 is the partial molar volume of lithium in the 
electrode. In the mentioned work, the stress generated due to the LixSi particle has been 
modeled. The values of the stress would depend upon the number of intercalated ions, 
increasing the stress potential as intercalation increases.  
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This mean stress coupled with the partial molar volume can be incorporated in the current flux 
density equation of the original model: 

 

𝑖 = 𝑖𝑜 {exp [
𝛼𝛼𝐹(𝐸−𝐸𝑜)−𝛺𝜎𝑚

𝑅𝑇
] − exp [

𝛼𝑐𝐹(𝐸−𝐸𝑜)−𝛺𝜎𝑚

𝑅𝑇
]}   Equation 38 

 

3.3.7 Automotive vibrations 

According to the literature [41], the pouch cells do not experience any degradation with the 
vibrations. However, the cylindrical cells while going through a z-vibration tend to get loose 
mandrels which cause an increase in resistance or an apparent capacity loss. James et al [42] 
quantified the resistance increase by conducting experiments on a sample of 12 Lithium Nickel 
Cobalt Aluminum (NCA) batteries, subjecting them to 150 hours of vibration in 6 degrees of 
freedom. Using ANOVA analysis, they predicted with a 95% confidence level that the mean DC 
resistance was 2.45% at the end of the test. However, it was also reported in the paper that the 
cells excited to 6 degrees of freedoms experienced a slower rate of degradation as compared 
to cells which were left in static condition.   

In another work by Fu et al [43], the change in resistance of the electrical connections in hybrid 
vehicle was quantified as a function of displacement frequency and the amplitude of the 
displacement, as given by equation 57. 

 
𝛥𝑅𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑘𝑐𝑦𝑙,𝑣𝑖𝑏𝛥𝐷𝑓2   Equation 39 

Even though some works [44] do report that the vibrations destroy the SEI layer formed during 
initial cycling to replace it with film with electrolyte decomposition, we don’t have quantified 
results for the same. Further, it has been recognized repeatedly recognized [42] that there is 
no degradation at the electrochemical level with vibrations.  

Hence, this equation could be used to predict the resistance increase in a cylindrical cell. The 
constant 𝑘𝑐𝑦𝑙,𝑣𝑖𝑏 can be found out with experimental results. As reported in [43], the value of 

the constant should have a quadratic relationship peaking at mid-range frequencies. 

This equation will be incorporated in the final model through the increase in the cell resistance. 

 

3.3.8 Heat generation 

The heat equations integrated in this work are the ones proposed by Newman and Pals [45], 
which complements the porous electrode theory. It summarizes 3 types of heat generated in 
a battery: reversible heat generation ( Qrev  ), Active polarization heat (Qrxn ) which is generated 
because of disturbing the OCV equilibrium, and ohmic heat ( Qohm ). The latter is composed of 



 

32 

three components, the heat because of Li-intercalation, second the li-ion transformation, and 
finally the resistance due to current collectors [28]. Because the thickness of the current 
collectors is limited to few micro-meters [46], the current collector heat is not of a great 
significance. 

Finally, the heat interaction of a li-ion batteries can be related to the boundary conditions of 
energy conversation through the Newton’s law of cooling [28] as given by following equation. 
Here, 𝜀𝑡is the blackness of Li-ion surface, 𝑇𝑎𝑚𝑏 is the ambient temperature of the pack, h is the 
heat change coefficient, 𝜎 is the Stefen-Boltmann constant, and 𝜆 is the flux density. 

−𝜆𝛻𝑇 = −ℎ(𝑇𝑎𝑚𝑏 − 𝑇) − 𝜀𝑡𝜎(𝑇𝑎𝑚𝑏
4 − 𝑇4) 

3.4 Substitution and Model generation 

As described in the previous section, all the mechanisms are tied together by interconnected 
variables to generate the model shown in Table 4. The process of explaining each variable can 
be observed by referring to the previous chapters. There is an apparent increase in the 
complexity of the model in case of algebraic and differential equations, however the number 
of partial differential equation remains constant. 

The resistance of this film is the major cause of the performance degradation of a li-ion battery. 
The total length of the film, as discussed before can be given as 

 
𝛿film = 𝛿o + 𝛿𝐿𝑖 𝑝𝑙𝑎𝑡𝑖𝑛𝑔 +  𝛿𝑆𝐸𝐼 + (𝑅𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛) ∗ 𝑘𝑆𝐸𝐼 Equation 40 

The overall capacity loss in the model due to shown mechanisms can be given by: 

 
𝜕𝑄(𝑡)𝑢𝑠𝑎𝑔𝑒

𝜕𝑡
= 𝑚𝑎𝑥 [𝐴 ∫ 𝑗𝑝𝑙𝑎𝑡𝑖𝑛𝑔(𝑥, 𝑡) ⅆ𝑥

𝑙

0
, 𝑎𝑐,𝑖�̅�𝑟𝑑𝑖𝑠𝑠] + 𝐴 ∫ 𝑗𝑠𝑒𝑖(𝑥, 𝑡) ⅆ𝑥

𝑙

0
 Equation 41 

Here, l is the length of the cell, A is the total surface area of the electrode. It can be observed 
that in this thesis, for the capacity loss calculation, the homogeneity in the y direction has been 
considered.  

However, there is another type of aging which has not been modeled in the dynamic porous 
electrode theory so far. Calendar aging, or shelf aging of lithium ion batteries can be quantified 
with two major factors: state of charge of storage, and the temperature of the storage 
conditions. In basic models, this is exhibited as increase in the DC impedance, with a reversible 
and irreversible component. However, the primary mode of calendar degradation is the loss 
of cyclable Lithium [47] and in very extreme situations (high temperature and SOC), there is a 
loss of active materials.  

Further, in a work by Dong Jiang[48], there has been a mathematical relation developed which 
can distinguish between the calendar and cyclic aging. The SEI formation during storage can 
be given by: 
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𝑖𝑠𝑡𝑜𝑟𝑎𝑔𝑒  = −𝐹𝑘𝑓,𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑐 𝐸𝐶  𝑒𝑥𝑝 [−
𝛽𝑠𝐹

𝑅𝑇
(𝜙𝑠 −

(𝛿𝑓𝑖𝑙𝑚+𝛿𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟)

𝑘𝑆𝐸𝐼

𝑖𝑠𝑡𝑜𝑟𝑎𝑔𝑒)] Equation 42 

𝑑𝛿𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟

𝑑𝑡
 = − 

𝑖𝑠𝑡𝑜𝑟𝑎𝑔𝑒

2𝐹

𝑀𝑆𝐸𝐼

𝜌𝑆𝐸𝐼
  Equation 43 

Here, 𝑘𝑓,𝑠𝑡𝑜𝑟𝑎𝑔𝑒 is the rate of side reactions during calendar aging which would be dependent 

on the State of Charge and the temperature conditions of the storage. There is no side current 
density during an idle battery behavior, hence the complexity of the calculation is reduced. 
Hence, the overall calendar aging of a cell can be given by 

𝜕𝑄(𝑡)𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟

𝜕𝑡
= ∫ 𝑖𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ⅆ𝑥

𝑙

0
   Equation 44 

It can be observed by this equation that both the reversible and irreversible calendar capacity 
losses can be modeled by the same equation, keeping in account that the reaction rate 
constants would be different for the two different mechanisms. 

 

3.5 Summary and limitations 

The presented work provided a framework to add multiple mechanisms through an integrated 
model. This model could be extended even further by defining the variables like conductivity 
and diffusivity to vary as a function of distance of local SOC. In contrast, work on reducing this 
model could help bring all aging mechanisms on a single page on an inexpensive BMS. 

Even if the electrochemical model simulates the behavior of an actual battery, there remains 
variables for the behaviors which need to be evaluated using empirical data. Obtaining 
empirical data can be difficult in most of the situations as they are not reported by the 
manufacturer, and some variables like the kinetic rate constant have no definite way of being 
measured, this limits the effectiveness of the model. Other variables like the diffusion 
coefficient for the solid electrodes measured in the laboratory with an open cell may not be 
able to capture the dynamics of a closed cylindrical cell that is undergoing pressure of cycling 
under the arrangement in a pack.  

Further, there are many aging mechanisms that still need to be incorporated in the model: the 
SEI decomposition, electrolyte oxidation, manufacturing defects are to name a few. The 
former two can be incorporated by adjusting the coefficients for the SEI growth rate, and 
electrolyte dissolution. Similarly, the model assumes the fracture and isolation evolution 
parameters as constant, however, their dependency on the 𝛥SOC and other parameters like 
temperature would be very crucial. Hence, this model could incorporate the mechanisms that 
have not been covered in the thesis by means of adjusting the coefficients of the equations. 
Also, the equations used for transport of a singular species, must be replicated for simulating 
the flux of the transport of minor species, such as byproducts and stabilizers for the 
electrolyte. 
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Table 4: Equations for the coupled porous electrode theory. [27], [49] 

Active Surface 
Area change 

Positive electrode:  ac,p = ai,p + aikf,pN − kiso,paiN Negative electrode:     ac,n = ai,n + aikf,nN − kiso,naiN 

Solvent 
Dissolution 

∂ε

∂t
= −ac,iV̅rⅆiss Ds,i = Ds,i

0[1 − (
ε0 − ε

ε0
)

n

] 

Conservation of 
charge 

Solid phase:                ∇. (σs
eff ∇φs) =  ac,i jt Electrolyte phase  −∇ · [σe

eff ∇ϕs] − ∇ · [  κe
eff∇ϕe] + ∇. [

2κⅇ
ⅇffRT

F
 (1 − t+)∇ ln ce ∇ϕe] = 0  

Conservation of 
Lithium 

Solid phase:                  
∂(εscs)

∂t
=

1

r2

∂

∂r
(Ds,i

effr2 ∂cs

∂r
) Electrolyte phase                

∂(εⅇcⅇ)

∂t
= ∇ ⋅ (De

eff∇ce) +
as(1−t+

0 )jt

F
 

SEI Current 
density 

Modified Current Density at electrodes      jt = jint + jsei 
jsei = ksiⅆe(ℇ)αaexp [

βsF

RT
(ϕs −

δeqv,film

kSEI ∗ αn,c

jt − Ωσm)] 

Kinetics with 
overcharging and 
mechanical stress 

Electrochemical Reaction Rate jint = ke(ce)αa(cs
max − cs,e)

αα
 (cs,e

)
αc

 

{exp [
ααF

RT
(η −

δeqv,film

kSEI ∗ ac, p
jt − Ωσm)] − exp [

αcF

RT
(η −

δeqv,film

kSEI ∗ ac,n

jt − Ωσm)]} − jminor
tilⅆe  

Overpotential                  η =  ϕs − ϕe − U −
jplating

αc
 

jplating = min [0, kn(ce)αa(cs
max − cs,e)

αα
(cs,e

)
αc

{exp [
ααF

RT
(η −

δeqv,film

kLi

it)] − exp [
αcF

RT
(η −

δeqv,film

kLi

it)]}] 

Temperature 
extrapolations 

Ui(Ti, θi) = Ui,ref(Tref, θi) + (Ti − Tr) [
∂Ui

∂T
]|

Tref

 Ds,i
eff = Ds,i exp( −

Ea
Di

R
[
1

T
−

1

Tref

]) , i =  p, n κi
eff = κi exp( −

Ea
κi

R
[
1

T
−

1

Tref

]), i =  p, n 

Heat 

ρiCp,i
ⅆTp

ⅆt
= ∇ ⋅ λi∇T +  Q      (Internal energy conservation equation) 

Solid Phase        Q = Qrxn,i + Qrev,i + Qohm,i + Qohm,e, i =  p, n , c= collector 

Qrxn,i  =  Faijint,i ( ϕs − ϕe − Ui) ,       Qrev,i =  Fac,ijint,iTi
∂Ui

∂T
  ,      Qohm,i = [σs,i

eff[∇ϕs,i]
2

] + [κi
eff [∇ϕe,i]

2
] + [

2κi
ⅇffRT

F
 (1 − t+

0)∇ ln ce ∇ϕe,i] + σc,i
eff[∇ϕc,i]

2
 

Electrolyte Phase        Q = Qohm,e = [κ2,e
eff  [∇ϕe]2] + [

2κ2,ⅇ
ⅇffRTⅇ

F
 (1 − t+

0)∇ ln ce ∇ϕe] 

Capacity 
𝜕𝑄(𝑡)𝑢𝑠𝑎𝑔𝑒

𝜕𝑡
= 𝑚𝑎𝑥 [𝐴 ∫ 𝑗𝑝𝑙𝑎𝑡𝑖𝑛𝑔(𝑥, 𝑡) ⅆ𝑥

𝑙

0
, 𝑎𝑐,𝑖�̅�𝑟𝑑𝑖𝑠𝑠] + 𝐴 ∫ 𝑗𝑠𝑒𝑖(𝑥, 𝑡) ⅆ𝑥

𝑙

0
, 

𝜕𝑄(𝑡)𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟

𝜕𝑡
= ∫ 𝑖𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ⅆ𝑥

𝑙

0
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The heat model presented in this work ties up the total heat generation with a single 
temperature state variation on the cell level, which ignores the uneven distribution through 
the cell. Lai et al. [28] reported that the region near tabs have lower temperature as compared 
to the rest of the cell because of better conductivity of collectors. 

Further, this model built over the framework of the porous electrode theory did not address 
the limitations of the original theory itself. Based on volume averaged quantities, this model 
does not consider the in-homogeneities present in the length scales of the electrode [27]. Also, 
this model describes only the solid-solution active materials, but the electrodes used today, 
like LFP, reflect multiple stable phases of varying equilibrium concentrations which can’t be 
described without empirical modifications [30].  

Finally, the computational complexity of the current model would be too high for inexpensive 
computational purposes, and the assumptions could reduce the system of equations to make 
compromises on the actual prediction. Hence, work done by Northrop [50] [49], multi-domain 
modeling shown by Smith et al.  [51] [30] could be further approached to reduce the model. 
We will discuss these works in upcoming chapters. The next chapter presents a summary of 
parameters inherent to the presented model, and the scope of the variables. 
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4 Model Parameters 

The major challenge towards developing physical model is the estimation and assumption of 
the parameters used in the model.  The sources for this information is the manufacturer [52], 
or the experimental data reported in the literature [4] [53]. Further, the accuracy of the 
reported variables can depend on measurement techniques and equipment, as well as 
manufacturing processes which could cause variations of the parameters [12] in products 
produced at different time lines.  

With a goal to represent many battery chemistries, the parameters reported in this chapter 
are shown as a range of values. The first section presents an analysis of the parameters used 
in the work. The next section reports the parameters used in this work. 

 

4.1 Parameter analysis 

A predictive understanding of a LIB arises from two basic reasons [54]: non-linearity of the 
internal phenomena, and inhomogeneity in the internal structure. Even if the systems of 
equations presented by Doyle and Newman [27] present a strong case to model the behavior, 
they need a conjunction of non-linear parameters to complement them [55]–[57]. The 
following text visits these linear and non-linear dependencies to the other parameters and 
state variables of a battery. 

 

4.1.1 Active interfacial surface area (ac,i) 

As discussed in Chapter 1, the porous electrodes are assumed to be made of uniform spheres, 
with the electrolyte flushing the gap between these spheres. The ac,i parameter, where i 
denotes subscripts for positive and negative electrode represents the solid area exposed to 
the liquid phase per unit volume, and can be given by following equation [14].  

𝑎𝑐,𝑖 =
3𝜀𝑖

𝑟
     Equation 45 

The parameters 𝜀𝑖and r are volume fractions of the electrodes and the particle radius, which 
would be discussed later. This thesis relates change in this surface area, as discussed in the 
section 3.3.4 , using the parameters of fracture and isolation coefficients. There parameters 
could be estimated by measuring a gradual change in the interfacial area, however, there are 
no significant literatures available on measuring the same. To use the above equation, tracer 
tests [58] could be conducted to calculate the absorption of the liquid in the porous materials, 
and the mean radius could be estimated through an electron microscopy. Also, there are 
products like Beckman Coulter SA3100 surface area analyzer [59], that could be used to 
estimate the surface area of the whole electrode using the absorption of gas molecules on 
solid surface. 
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The interfacial surface area has units of m-1 and varies in the order of 104 to 106 units. Further, 
this parameter can also be used to account for mechanical degradation caused by external 
parameters like stress, manufacturing defects. 

 

4.1.2 Active material concentration (ℇ) and Rate of Dissolution (rdiss) 

Active materials in an electrode are the chemical compounds which interact with the cycling 
lithium ions in a LIB. Their loss is one of the primary causes of aging of LIB as it reduces the rate 
of transport of charge and mass in the electrode [36]. The quantification of the active material 
concentration with the molar volume of the electrolyte has been discussed in the section 
Electrolyte/ active material Dissolution 3.3.3.  

Electrolyte in a LIB is typically composed of 3 components, a solvent, lithium salt, and some 
minor species such as additives added for electrolyte stability [58]. The minor species induce 
reactions interacting with both the electrodes which make the battery processes difficult to 
track. Assuming the concentration of the minor species to be diluted and that the flux of the 
mass exchange is negligible, this model quantifies only the loss of active materials to 
participate in aging. However, the flux term jminor

tilⅆe
  could be used for averaged reduction of flux 

because of minor species.   

For estimating the rate of dissolution, the first step is to understand the mechanisms that 
cause this phenomenon, which vary for different electrode materials [36]. For example, for 
Lithium Cobalt Oxide electrodes, it is understood in the scientific community that the 
delithiation starts with exchange of Li+ ion with H+ ions in the electrode lattice. Further, in the 
work by Billy at al. [59], a step by step procedure to estimate the dissolution rate is noted. The 
method involves the use of X-ray photoelectron spectrometry, X-ray diffraction, and 
transmission electron microscopy to understand the leaching process. 

This method presents a limitation on the development of aging model for a conceptual battery 
chemistry, as the electrode material must be synthesized to find out the unintended 
dissolution phenomenon. 

 

4.1.3 Solid phase diffusion coefficient (𝑫𝒔,𝒊
𝒆𝒇𝒇) 

The solid phase diffusion is incorporated in the porous electrode theory through the Fick’s law 
of diffusion as mentioned in chapter 2. This quantifies the rate of diffusion of lithium ions 
through the solid medium as a function of time and particle radium, r. 

Having a rigorous approach to the coefficient increases the complexity of the model, and 
increases the computational cost of the model [33]. However, it is necessary to express the 
effective coefficient as a function of temperature and the active materials, as shown in the 
temperature extrapolations in Chapter 3, and the section 3.3.3.  
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In other literatures, this coefficient is reported as a function of the average Li-ion 
concentration in the electrode (signifying DOD)  [22]. The typical values of the solid diffusion 
coefficients lie in the orders of 10-15 to 10-13[38], however there is a variation of multiple orders 
of magnitude, showing that it is a poorly measured parameter [22] .   

The methods employed to measure the solid phase diffusivity are intermittent titration and 
electrochemical spectroscopy (EIS, EVS) [60]. In the potentiostatic intermittent titration 
method, a series of 15 minutes of negative incremental potential pulses with 15 minutes 
relaxation time are applied through a whole discharge cycle, and the current development is 
related to the diffusion coefficient [61]. 

 

4.1.4 Liquid phase diffusion coefficient (𝑫𝒆,𝒊
𝒆𝒇𝒇) 

The transfer of Li-ions in the liquid medium, both in the separator and suspended through the 
solid electrolyte and quantified by the liquid phase diffusion coefficient. Even if the coefficient 
generally varies by one order of magnitude from positive to negative electrode [62], the 
presented model in this work uses a constant value of this coefficient.  

As the electrolytes are made up of additives, charged and uncharged carriers [36], and 
byproducts of the aging mechanisms, like dissolution, corrosion, electroplating [61], the 
estimation of this parameter is difficult. In literatures, this value has been reported to vary 
between orders of 10-9 to 10-11 [m2/s]. 

In-situ NMR (Nuclear Magnetic resonance) imaging is one of the popular methods to study 
electrolyte transport properties. By observing the salt concentration inside the cell in response 
to various current profiles can be used to predict variables like diffusivity, conductivity, and 
transference number[63]. Di-electric spectroscopy could also be used for predicting these 
variables as shown by Munar et al. [62]. The electrolyte medium with known dielectric 
constant is put between two electrodes, and the phase angle (Ɵ) of the dielectric permittivity 
gives the diffusion coefficient by the following equation. 

 

 𝐷𝑒,𝑖
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =

2𝛱(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝐸𝐼𝑆)𝑚𝑎𝑥(𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒)2

32⋅(𝑡𝑎𝑛 𝜃)𝑚𝑎𝑥
3  Equation 46 [62] 

 

4.1.5 Solid Phase conductivity (𝝈𝒔
𝒆𝒇𝒇

) 

The conductivity of the solid electrode is generally assumed to be dependent on the 
distribution of black carbon present in the lithium oxide electrodes, and as a function of the 
state of lithiation (DOD) [22].  Further, the Bruggeman’s relation is used to effectively estimate 
the conductivity considering the tortuosity (𝜏), the active volume fraction (𝜀𝑠), and porosity 
(𝛿) [25] given by following equation. 
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 𝜎𝑒𝑓𝑓 =
𝜀𝑠𝜎𝛿

𝜏
=  𝜎𝜀𝑠

𝑏𝑟𝑢𝑔     Equation 47 

The effective solid phase conductivity is always smaller than the measured conductivity, and 
the assumed value of the Bruggeman’s exponent is assumed to 1.5. The typical value of 
effective solid phase conductivity lied in orders of 10-2 to 102[S/m].  

The measurement of solid phase conductivity is done through a four-point probe technique 
[61], which is basically an electrical impedance measuring technique. 

 

4.1.6 Liquid Phase conductivity (𝛋𝐞
𝐞𝐟𝐟) 

The conductivity of an electrolyte can be explained as the ability to conduct electricity. Similar 
to the solid phase conductivity, the effective liquid phase conductivity can also be expressed 
with the Bruggeman’s exponent[25]. However, the values of the exponent are reported 
different for the separator and the electrodes, the conductivity being higher at the separator 
than the electrodes. [22] 

The conductivity of solutions is generally reported at 1M, and lies between ranges of 1.2 to 1.8 
[S/m] [22] at a temperature of 500C. Further, at -400C the conductivity drops to 10 times smaller 
[22].   

The electrolyte conductivity could be measured using the methods reported before such as 
dielectric spectroscopy [62] and conductivity meter [64]. The variables causing complexity in 
the measurement of these variables have already been mentioned in the section 4.1.4. 

 

4.1.7 Transference number (t+, t-) 

Transference, or transport number represents the fraction of the solid lithium flux 
contributing to the change in electrolyte lithium concentration[25]. In other words, this 
number represents the fractional current carried in the electrolyte by lithium-ions. 

Like the other transport parameters of a battery, the transference or transport number is also 
generally reported at 1M[22]. This value is generally reported to be equal to 0.37, with 
maximum and minimum range of 0.2 to 0.5 [22], however there is disagreement on if the 
transference number increases or decreases with an increase in the solvent concentration[65], 
[66].  

The measurement of transport number is the more standardized: Hittorf and moving boundary 
method [22]. The former up depends on the coulomb comparison of the current flow and the 
species flow throw at an electrode, and the difference between the net increase of 
concentration and current can give the number. The moving boundary method, however, 
quantifies the number as the movement of the boundary between two interfaced electrolytes 
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in the influence of an electric field. There are more methods as suggested by Zugmann et al. 
[67] using electrostatic theory and NMR. 

  

4.1.8 Kinetic Rate constant (k0) 

The rate constant of the reaction in a lithium-ion battery is one of the most important 
parameters to quantify the performance of a lithium-ion battery, but cannot be measured in a 
closed system like lithium-ion batteries [22]. It depends dynamically on the output required of 
the batteries, as quantified by the Butler-Volmer reaction. In other literatures, the reaction rate 
constant is generally estimated by the initial current density, that varies with temperature and 
concentration of lithium ions in each electrode [14].  

A known way to estimate the change in reaction rate is via the Arrhenius relationship [25], 
where the activation energy (Ea) of reactions could be used to predict the rate of reaction, as 

shown in the following equation, where 𝑘𝑓
0 is a constant determined experimentally at 

reference conditions.  A knowledge of undergoing multispecies interactions, the reaction rate 
could represent a balanced form for all reactions. 

𝑘 = 𝑘𝑓
0 𝑒𝑥𝑝 (

𝐸𝑎

𝑅𝑇
) [25]    Equation 48 

The literatures report the reaction rate constant lies between orders of 10-14 to 100 [22] [mol m-
2 s-1] and it could be inferred that this parameter is poorly estimated in the existing literature. 

 

4.1.9 Other variables 

The open circuit potential (Ui) is reported for both the electrodes as a function of temperature 
and SOC. It is relatively easy to measure as compared to variables discussed prior to this 
section, using apparatuses such as rotating disk electrodes. A typical equation representing 
this state variable has been mentioned in Chapter 2. 

The lithium concentrations in both electrodes (ce,i) is generally specified by manufacturers, 
specifying the concentrations equivalent to 0 and 100% SOC. However, in battery modeling, 
there is an approach to separately define the two variables seemingly unrelated to each other 
through the Fick’s law of diffusion at both electrodes. In the work done by Dey et al [68], they 
propose an estimation scheme where the concentration of positive electrode is estimated as 
a function of negative electrodes concentration.  

The values of outer cell dimensions like thickness, length of electrodes is specified by the 
manufacturer and could vary according to the cell geometry. The particle radii, r reported in 
literatures varies from 10-10 to 10-9 [m] [22].   
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4.2 Tabulated parameters used in work 

The selection of a battery chemistry for the model depends on two constraints: the availability 
of data in the current literature, and the known high discharge behavior of the chemistry. Due 
to the eclectic nature of equations that have been reported in the work, the data have been 
collected from variety of sources [10], [24], [56], [57],[55]. Hence, the final reported values 
represent a ballpark value of the parameters of a typical lithium-ion cell for providing an 
engineering reference. Empirical experimentation would be required to get the exact values 
of parameters.  

Table 4 summarizes the data used for the model development, adding on to the model 
development by Gregory pelt [25]. 

 

4.3 Summary 

In summary, there is seemingly a lot of disagreements amidst the data reported in the 
literature for the values of electrochemical and transport parameters. Developing a 
standardized methodology for measuring and calculating the parameters could help in better 
quantification the accuracy of the electrochemical models. 

Most parameters are reported as constant, or just as the function of temperature, have the 
potential to be expressed as function of the lengths of the electrode, and some other state 
variables. This chapter could be used as a reference to revisit a specific parameter in question. 
The next chapter describes the development of the model in COMSOL and Mathematica 
environment. 



 

 

4
2 

 
 
Table 5: Nomenclature and parameters used in the model for the following chapter. The data has been collected from multiple  
references [22], [25], [40],[10], [57], [68],[14], [24] representing ballpark figures. 
 

 
 
 
 
 
 
 
 

 

 

 

Sym Description Estimated value Sym Description Estimated value 

𝒌𝒇,𝒔 Rate constant SEI [mol m-2 s-1] 1.36e-12 m/s 
1.36e-7 (OCV storage) 

𝑎𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 Active surface area [nAn] Calculated by porosity and particle radius 

ℇ Solvent active material [mol/m3] 4541  𝐷𝐸𝐶 Diffusion rate in SEI equation [ m2/s] 6.8e-21 m2/s, 3.7e-19 (OCV storage) [34] 

𝜷𝒔 SEI Charge transfer coeff. [nAn] 0.5 r Particle radius [µm] 12.5 8 

𝛋𝐞
𝐞𝐟𝐟 Liquid phase conductivity [S/m] 2*R*T/F*(1-𝑡+) 𝜎𝑚 Mean Stress (

𝜎𝑘𝑘

3
) [Gpa] 10  

Kiso Isolation evolution param {nAn] N: 5.18 e-5 P: 1.07 e-8 𝛺 Volume fraction of LixSi particles [V/GPa] 0.025  

Kf Fracture evolution param [nAn] N: 2.39 e-6 P: 2.87 e-7 𝛥𝐷 Amplitude of vibrations [mm] 0.4 

R Gas constant [J mol-1 K-1] 8.314 𝑘𝑐𝑦𝑙,𝑣𝑖𝑏 Vibrations coefficient [nAn] 7.2e-4 

𝒓𝒅𝒊𝒔𝒔 Rate of dissolution [ mol/(m2s)] Neg: 0 Pos: 8e-10 𝑓 Frequency of vibrations [Hz] 100 Hz 

brug Bruggeman’s exponent [nAn] 1.5 

𝑘𝑒 Normalized Reaction rate constant [mol m-2 s-1] 
Neg: 1.2 × 10−5 exp (

−20000

𝑅
(

1

𝑇
−

1

298.15
)) 

𝒏 Empirical factor diffusivity [nAn] 0.12 Pos: 3.7 × 10−6 exp(−SOCp)exp (
−30000

𝑅
(

1

𝑇
−

1

298.15
)) 

𝜶𝒂 Charge transfer coefficient [nAn] 0.5 𝐷𝑒
𝑒𝑓𝑓 Electrolyte Diffusion Coefficient [𝑚2 𝑠 −1] 

7.51𝑒 − 4 × 10−4.43((
54

𝑇−229−0.05𝑐𝑒
)2.2×10−4𝐶𝑒) 

𝑲𝑺𝑬𝑰 Conductivity of SEI layer [S/m] 5e-6  
𝐷𝑠

𝑒𝑓𝑓 
 

Solid Diffusion Coefficient [𝑚2 𝑠 −1] 
Neg: 3.9 × 10−14 exp (

−35000

𝑅
(

1

𝑇
−

1

298.15
)) 

𝑴𝑺𝑬𝑰 Molecular mass of SEI [ kg/mol] 0.162  Pos: 
1.18×10−18

(1+𝑆𝑂𝐶𝑝)1.6
exp (

−35000

𝑅
(

1

𝑇
−

1

298.15
)) 

𝝆𝑺𝑬𝑰 Density of SEI [ kg/m3] 1690  𝜎𝑖
𝑒𝑓𝑓

 Solid phase conductivity [S m-1] 100 3.8 

𝜹𝟎 Initial length of the SEI layer [nm] 5 𝑡+ Transference number  [nAn] 0.363 

�̅� Solvent Molar Vol [ m3 mol-1] 4.1389e-5  𝜀𝑒,𝑖 Volume fraction of the electrolyte [nAn] Neg: 0.33 Sep: 0.54 Pos: 0.332 

𝑬𝒂
𝑫𝒊 Activation energy [kJ/mol] 18 4 cs, max Max solid concentration of Li [mol m-3] Neg: 10352 Pos: 7524 

𝝀 Thermal conductivity [W/m K] 1.3 0.099 1.04 L Thickness of the battery (µm) 100 52 183 

Cp Specific heat of the cell [J/kg K] 1240 1518 1437 𝜌 Density of the cell [kg m-3] 4740 1210 5031 

Subscripts: i for p,n:  p- positive electrode, n- negative electrode, the three columns in a section represent negative electrode ,sep, and positive electrode respectively 
[nAn] - dimensionless 
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5 Simulation and Results 

There are two approaches towards development of battery models: increasing the complexity 
of the models to capture more physical processes or reducing the complexity of the models 
to make them suitable for real time applications.  

This thesis, so far, has addressed the need to increase the complexity of the model, and this 
chapter targets how to generate results to simulate to the model. Running this 
computationally expensive model brings with it a need of mathematical reduction, an aspect 
that is not in the scope of this thesis. However, the first section presents a literature review of 
a few mathematical methods before moving to model generation. 

 

5.1 Literature review 

Conventionally, the PDEs have always been used to model real life scenarios. There have been 
numerical methods to solve them equations like finite element method, finite difference, 
Galerkin approximation etc. Most of the methods have been successfully implemented in 
current generation computational software like MATLAB and Maple, but these methods 
struggle with high computational requirements, which is not suitable for mobile applications 
of lithium-ion batteries [29].  

Northrop et al [29], [49], [50], [69] have contributed significantly towards the model 
reformulation of the physical models of lithium ion batteries, using methods like coordinate 
transformation and orthogonal collocation.  

Beginning with simple transformation [32], the pseudo 2D dimension of the solid diffusion in 
the electrolyte is removed by polynomial profile approximation, where the solid concentration 
is represented as a function of particle surface concentration. In co-ordinate transformation  
[49], the three region cell is converted into a single region by normalized co-ordinates. This 
reduces the complexity of the equation as all variables can be expressed as a function of single 
variable x. The method of orthogonal collocation [49] estimates a variable of interest by a 
summation of linearly independent trial functions, as shown in the following equation. The 
weights to the approximated functions are found by minimize the residuals while keeping the 
computational complexity. 

 

 𝑐𝑝(𝑥, 𝑡) = 𝐴𝑝, 𝑐(𝑡)𝑥2 + ∑ 𝐵𝑝,𝑐,𝑘(𝑡)cos (𝑘𝜋𝑥)
𝑁𝑃

𝑘=0
  Equation 49 

Model order reduction techniques by approximating frequency response through Padé 
approximation and residue grouping methods are the most popular methods taken in current 
scientific community [70]. Introduced by mathematician Henri Padé, this method suggests 
estimating a function through power series of the same order. It is a special time of estimator 
that has both numerator and denominator coefficients in the approximator functions.  
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 Further, the implementation of reduced physical models is explored in some literatures [29], 
[71]. It is explored that some parameters like electrolyte concentration and overpotential that 
could have detailed equations to capture high charging and discharging behavior. 

In summary, there has been a lot of work to reduce the models mathematically for automotive 
BMS applications, and a selective approach can be taken tailored to the performance required 
for the condition. This thesis, however, focusses on the generating simulations of the model 
in software environment, and does not address the mathematical reduction techniques. 

 

5.2 Model Development 

There are mathematical tools which allow using these mathematical methods to be called 
upon for solving the set of differential equations. There was plethora of options to choose 
from: MATLAB, COMSOL, Mathematica are one of the most popular ones to choose. This thesis 
started with using Mathematica as the first approaches because of their rather intuitive 
mathematical modeling, and easy post processing of the data. However, we can see that the 
capabilities of the software are limited, especially for solving time delayed PDE’s. Using 
COMSOL was also explored but getting around circular dependency of the current density is a 
difficult problem. 

This thesis uses high computational power and software tools rather than solving the 
equations by reduction methods as described in the last section. The upcoming text 
summarizes the development of the model, and snapshots to regenerate the results. 

 

5.2.1 Mathematica 12 Prerelease 

Mathematica, originally, was marketed towards physicists and mathematicians for the nature 
of mathematical manipulation of this software surpasses any of the other packages available 
currently. However, they have been expanding their domain to address more real-life 
simulations and engineering problems. The perks of using this software is that the same 
package could be used for developing mathematical tools of reduction, taking heuristic 
approach to solving the model, import real time data, and many others. In the next chapter of 
this thesis, the feasibility of teaching neural networks to estimate the solutions of the PDE’s in 
this environment is talked about. 

The stages of development of the model is to initialize variables, set the boundary conditions 
in the specified domain, and specify the initial conditions, and call a solver by selecting a 
method of estimation. The Figure 5-1 captures a snapshot of the developed model. 

The model was not used to generate results because of an apparent incapability of the model 
to solved delayed PDE’s, and circular referencing that is inherent in the physical model at the 
current density equations and the growth of the SEI. Also, the inbuilt methods of lines, and 
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stiffness switching methods do not work well with parabolic PDE’s. The software package of 
PDE’s was only introduced in Mathematica in the year 2014, and there is a long way to go for 
the software to match Multiphysics software like COMSOL for solving domain based PDE’s. 

 

 
Figure 5-1 : Snapshot of model developed in Mathematica environment 

 

5.2.2 COMSOL 5.2  

The model used for simulation was developed on COMSOL Multiphysics 5.2, adding on the 
work by Gregory Plett [25]. Conditional assumptions for the initial conditions were used in the 
model, using the capability of time delayed variables, to reach at agreeable results (something 
which the Mathematica didn’t allow).  There are a few equations that are not included in the 
model, especially the ones that cannot be differentiated with other results. Also, as the 
electrochemical model takes exponentially more time than the actual scale of time, it is not 
feasible to generate aging data for years and make a comparison. The work will compare the 
results against the general understanding of the degradation mechanism. 

There are some equations omitted in the model to reduce the computation time, and the 
mystical limitations of the developed model. First, the ohmic heat generation has been 
estimated using the overall resistance of the cell, rather that the PDE representing the same. 
Further, the lithium plating behavior during the overcharge has not been incorporated in the 
model, because of inherent limitation of the model to go beyond the boundary conditions of 
electrode concentrations.  

The nominal capacity of the modeled cell is 3.3 Ah, as discussed about in the last chapter, and 
for the testing variables it would be subjected to tests of various discharge rates of 0.5C to 
10C.  
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Computation power and time 

The workstation used for generating the results is the Dell Precision T1700: core i7 @3,4Ghz, 
with a RAM of 16GBs. With a time-step of 0.1 seconds, the time taken by the pseudo 3D model 
to simulate a 50 seconds of a modified hybrid power pulse characterization cycle is 37 seconds. 
Also, most processing of the data for calculating capacity loss has been done later. 

The HPPC cycle has 2 second pulses of alternating charging and discharging with 1 second of 
rest, for 55 seconds, following 5 seconds of rest. 

 
Figure 5-2 : Modified HPPC cycle with 1C and 2C discharge rates 

 

5.3 Results 

The first result that could be looked upon is the cell voltage profile. For an initial SOC of 0.65, 
the results are shown in Figure 5-2. It can clearly be seen that the initial estimate of the cell 
voltage was not correct for no current flow (like OCV). Such a set of partial differential 
equations could give a completely divergent set of results because of inconsistent initial 
conditions.  

 
Figure 5-3: the cell voltage profile for the modified HPPC cycle with step a)0.1 b)0.01  
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However, this model is given a time of few seconds to stabilize the initial conditions. Further, 
with the same current discharge profile, the voltage overshoots are different (marginally).  The 
overshoot is probably because of the charge transport, and it would be advisable to observe 
the electrolyte potential around the time stamps of the data callouts. There is not an apparent 
reason for why the electrolyte potentials should vary significantly for similar SOC and 
discharge current.   

 
Figure 5-4 The electrolyte potential plots for the 3 callouts with step a) 0.1 s b)0.01 s 

Again, if we see the results for a 0.01s step time, averaged over 0.1 seconds we see that the 
voltages values are more in agreement with each other. However, the electric potential of 
electrolyte still disagrees at the three steps, and the results from the two time-steps are very 
close to each other. Hence, selecting a right time-step could potentially generate varied results 
for such set of PDE’s. 

Seemingly a dichotomy, this thesis focuses on the aging mechanisms of Li-ion batteries, but it 
is very infeasible to generate aging data of years from an elaborate electrochemical model that 
runs on the same time-scale. It could be argued, however, that a full-scale model would rather 
help in developing a deeper understanding of battery design parameters and accelerate the 
development of batteries as it keeps getting closer to the real-life behavior of a battery. Hence, 
the results in this thesis try to inspect two aspects: first to inspect the model’s behavior, and 
second to analyze the aging behavior with respect to the usage of the battery. 

 

5.3.1 Peukert’s law – rate of discharge 

Peukert’s law states that a battery tends to reflect different capacities at different charge rates 
of a battery. Even if this effect is much less pronounced in Lithium batteries as compared to a 
lead acid battery, this model could help us draw relations towards the aging behavior: 
Resistance increase and capacity degradation. Also, validity of this law could add a credibility 
to the model. 

The current cycles which would be defined would ask for a same cumulative ampere-hour 
discharge from the battery, but at different rates. Starting from the same SOC, the plot 
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compares the end SOC’s for different discharge rates. According to the plot 5-5, the Peukert’s 
constant for the modeled battery came in the range of around 0.96~0.98, which seems 
accurate. 

 
Figure 5-5 Peukert's law for a Li-ion battery 

5.3.2 Capacity Degradation - SEI 

The capacity degradation behavior does not depend completely on the high current, as can be 
deduced from Figure 5-6, in fact the 0.1C charge causes more SEI growth over a period of 
usage, as compared to the 10C discharge current. The growth of the SEI is homogenous 
throughout the electrodes.  

It seems like a fair estimate for capacity degradation based on just the SEI density. Notice that 
the SEI density in the equations depends on the coefficient of the side reaction, and hence 
needs to be empirically correct. 

 
Figure 5-6 Capacity degradation for different current profiles 
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5.4 Conclusions 

The developed model in the COMSOL environment does not capture all the capabilities of the 
suggested model. The limitations of existing software coupled with the available 
computational power for long simulations restricts the development of a full order model. 
These omissions of certain behaviors could be very sensitive to the dynamic behaviors of the 
battery. The heat equations will add significant amount of computational expense with the 
differential equations, even in only one spatial dimension of x.  

However, the model developed generates similar behaviors as a real battery, evading the 
surprise as it is based on the existing porous electrode theory. The developed framework could 
now be used to target model order reduction techniques for capturing aging dynamics of a 
LIB. Further, a sensitivity analysis of the various parameters over the aging mechanisms could 
be done to develop a deeper design insight of the battery. This model could also be expanded 
with more varying parameters of diffusivity and conductivity with the length spatial dimension 
of the battery. 

The use of python packages like DAE tools has not been explored in the thesis. There are open 
source applications like MPET [30], which can be used to simulate the developed model with 
modifications.  
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6 Summary and future work 

This thesis introduces the modeling approaches of Lithium ion batteries, to finally draw the 
importance of physics-based models. As the model keep incorporating more and more 
physical processes, the easier it would become to shorten the design life of new batteries.  

The existing approaches of continuum modeling and reduced order models are presented to 
make a qualitative comparison on how the prediction deviates with the assumptions made for 
reducing the model. The computational complexity of the produced model varies 
logarithmically, and the results further endorse the importance of the full order physics-based 
models. The parameters used in the model are discussed at length, explaining their physical 
significance and their scope. The methodologies of recording these variables empirically have 
been explored briefly, and ballpark values provide a reference to a battery designer. 

The major contribution of the thesis is to bring various physical degradations of Lithium-ion 
batteries on a single interconnected set of partial differential equations. Even if the approach 
to the integration is simplistic, the integrated model tends to cover a lot of standardized aging 
mechanisms under the same roof of porous electrode theory model. There is a limitation of 
the model to be directly compared with aging results in the literature because of a large 
computational time, but the framework of this model can enable an engineer model most of 
the degradation processes of a LIB. 

The thesis stands short of validating the development model in a simulation environment, and 
the ongoing work is towards using MPET open source package by DAE tools in python. 

6.1 Uncertainties in an integrated model approach 

As discussed before, PDE’s are very complex to solve. For a minuscule change in the initial and 
boundary conditions, there can be paradigm shifts in the estimated solution of the equation. 
With every new variable added to the system, it simultaneously adds a degree of freedom and 
a need for boundary conditions to constraint it, hence, rapidly increasing the complexity. Any 
unspecified boundary gives results that are not unique, and don’t define the actual behavior 
of the system. 

With an increases number of PDE’s and the suggested used of length varying variables, this 
model proposes an increase in uncertainly if the conditions are not properly defined. This 
increase in uncertainty questions the approach to bring all mechanisms together in an 
integrated theory. This topic is also debated in other fields of science like nuclear reactor 
modeling, and only a validated model could present an answer to the question. 

6.2 Future work 

The work achieved in this thesis would need complements in various domains, as the battery 
industry is evolving every day. Solid state batteries, sodium ions, and fuel cell-based 
chemistries might need foundational modifications in the model. Further, even if a model 
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framework integrating known mechanisms has been developed, there are degradation 
mechanisms that haven’t been quantified with equations.  

Firstly, the limitations in the original theory, as mentioned in the Chapter 3, need to be 
addressed for a successful implementation of this framework. Smith and Bazant [30] 
introduced a multiphase porous electrode theory to simulate the heterogeneity of the battery 
materials, and integrating this framework with their model could find applications in new 
battery materials including the solid phase electrolytes. 

Secondly, there needs to be a better way to reduce these equations without losing the 
predictive quality. This section explores a method using neural networks to achieve the same 
and discusses work by fellow researchers to extend this model for solid state batteries, and 
automotive BMS applications.  

6.2.1 Neural networks for reducing the sets of equation 

This work was done during the summer 2018 Convention with Wolfram Research, the parent 
company making the Mathematica software. As the real-time solution of such a set of partial 
differential equations is not feasible for the mobile application of automotive applications, the 
idea behind this project was to find out if the finite element results could be used to train 
neural networks, and if they were a suitable choice to make faster predictions for these set of 
equations. 

There has been work before using neural networks to make these predictions [72] [73], but 
however the approach taken in the papers is in aid with mathematical methods of reduction. 
Neural networks are used for the estimation of the coefficients of the reduced equations. In 
contrast, this work uses convolution layers to learn the results in form of images.  

 
Figure 6-1 Training and predicted data, and snapshot of the Neural network 
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The first equation used is in the form shown in the following equation. This equation was 
solved for multiple thousands of shapes solved over a region made of 4 vertices, and this data 
was used to train a network made of 21 layers deep network, as shown in Figure 6-1. 

𝜕φ(x,y)

𝜕y
= a

𝜕2φ(x,y)

𝜕x2 − b  Equation 50 

The Figure shows the subset of the test set, actual results, and the prediction results. The 
average accuracy achieved for the model was more than 95%, but the distribution of the error 
rates varied to around 10% of times. The error calculation was made by calculating the rms error 
of each pixel. 

Further, this method was extended to the Fick’s law of diffusion, i.e. a parabolic PDE varying 
with time. However, as the time domain comes into play, the two dimensions were reduced to 
just the x dimension, so that the images could be generated for training the network. Using a 
2D array would be theoretically be the same for the neural network, but it would have been 
difficult to visualize the results.  

 
Figure 6-2 Data with 99% accuracy and 70% accuracy, concentration as a function of time 

The generated results can be seen in the Figure 6-2, where two generated datasets are 
compared, with 99% accuracy of prediction, and with 70% accuracy. Here the non-linearity of 
the PDE makes it difficult for the neural network to make a good prediction. However, with 
increasing training time and the training data set, it was observed that the accuracy started 
improving to reach 95% of RMS image error. This validation proves that with increase in the 
training time, and the layers, neural networks as the universal function estimators could be a 
good contender of solving sets of PDEs. 

The use targeted towards the model of batteries, would not use images but different battery 
parameters, and the usage data like current and temperature to predict the output variables 
like SOC and the degradation data. It can be argued that with a change in different coefficients 
of the PDE’s the results could be highly non-linear, but a targeted training set for a specific Li-
ion chemistry could constrain the variation set and it might be feasible for a neural network to 
heuristically predict the results.  

The advantage of this method over the conventional testing data is that the PDE model could 
be used to generate data for conditions without using an actual workbench, and with increase 
in computational power it would shorten the time and expenses required to collect the data 
from a cell. This reduction could further enable extending the physical model to pack 
applications inexpensively.  
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