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Abstract 

Due to a variety of factors chlorination is common water disinfectant for community-

scale distribution systems. The town of Suyo, Peru was already equipped with a gravity 

fed water system and drip chlorinator which achieved 4-log inactivation of viruses 

throughout the town, however, it was not providing 3-log inactivation of giardia cysts at 

all points of the system. 

This project used an EPANET model to determine and compare the potential benefits of 

changes which could be made to the pre-existing water system in Suyo.  

The model was used to compare current operating conditions of the Suyo system, 1.5 

mg/L chlorine addition at the reservoir, with different potential operating configurations. 

To determine if there was a more efficient concentration of chlorine addition or point of 

chlorination, chlorination of different concentrations taking place at the reservoir and six 

other points between the reservoir and the town were modeled as well as the potential to 

chlorinate at two points simultaneously. To increase the amount of time the chlorine had 

to react with the water, the pipe between the reservoir and the town was modeled at 

different diameters.  

Replacing the pipe between the reservoir and the town from the current 4” to 8” was 

found to raise Ct values and achieve 3-log giardia inactivation throughout the town. No 

benefit was found in moving the point of chlorination closer to the city nor in 

chlorinating both at the reservoir and at an additional node. Increasing the concentration 

of chlorination was found to provide 3-log giardia inactivation to a larger percentage of 

the town but did not provide full coverage for all users. 
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1 Introduction 

Since the acceptance of the germ theory of disease, clean drinking water has been widely 

recognized as one of the most fundamental and effective strategies to ensure and improve 

the health of a population. In the past few decades tremendous strides have been taken to 

improve the situation worldwide. In 2005 95.8% of the world’s urban and 75.7% of the 

rural population were using improved drinking water, water from a source protected from 

contamination. By 2017 this had increased to 96.4% in urban areas and 84.5% in rural 

(UNSD 2018). As the most basic water demands are met more and more countries, 

communities, and individuals are looking for ways to improve preexisting water systems. 

The primary goals of a water treatment system are 1) that it should improve the quality 

and or accessibility of water and 2) that the system must be sustainable, able to be 

operated and maintained by the community after construction without dependence on 

outside sources of funding. Sustainability is an often overlooked concern for projects in 

the developing world where it is arguably even more important as financial aid from 

governments and non-governmental organizations (NGOs) can be less dependable due to 

increased political instability (Johnson et al. 2008). If these outside sources are cut off 

when the community is unable to sustain the system themselves, then there are good odds 

the project will break down, resulting in nothing more useful than a waste of resources. 

For example, a town in Peru had most of a brand new water treatment plant built to 

utilize multiple basin filtration which was abandoned before completion when changes in 

the political landscape caused funding to be diverted to other projects. Less obvious 

problems include failing to provide adequate training to operators and lack of community 

investment (Smith 2011). 

To reduce these risks and provide value to preexisting systems, project planners should 

consider the possibilities of a modular approach by which a system is planned and then 

constructed one part at a time with each completed stage able to function and improve the 

community even if subsequent stages fall through. 

This paper focuses on one such strategy, the efficacy of alternatives to improving 

chlorination disinfection in a preexisting piped water system. However, as different 

strategies may be more effective in different situations this introductory section will 

begin with a review of other potential treatment options. 

1.1 Water Treatment in the Developing World 

Water treatment systems can be broadly classified by the location where treatment 

occurs. Point-of-use treatment occurs in the location, typically the home, where the water 

is to be used. Point-of-use treatments have the benefits that they reduce the likelihood 

that the water will be recontaminated between treatment and consumption. They can be 

very inexpensive and may be the only option for populations in remote areas. The main 

weakness is the strong educational component required. All people who will be treating 
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water must be properly educated to ensure that no well-meaning mistakes are made. Solar 

disinfection and boiling are methods which work better for point-of-use treatment than in 

a larger scale system. 

Solar disinfection (SODIS) is accomplished by placing clear water in a clear container, 

usually a bottle of polyethylene terephthalate (PET) plastic, and placing it in the sun for 6 

hours or multiple days if there is cloud cover. The disinfection is two-fold: a combination 

of UV irradiation and the disinfection achieved by heating the water. For the heating 

component to be effective, the water temperature must be raised above the optimum 

microbial growth temperature. The process can also be hampered by turbidity which 

partially blocks irradiation and decreases the efficiency of disinfection (Vivar et al. 

2017). This is a time consuming process and can be difficult to teach. One large scale 

version using photovoltaics was constructed to simultaneously treat water and generate 

electricity (Jin et al. 2016). 

Boiling is the process of heating the water beyond what the harmful microbes can 

survive. This is very effective and widely practiced in Peru as a point-of-use treatment 

(Clasen et al. 2008). 

Large scale systems are those which provide water to communities larger than a family 

group. Treatment takes place at a central location from which the water is transferred to 

individual consumers. This transfer can be provided by a piped system leading to 

individual houses or communal taps or water can be carried in trucks, jugs, or other 

containers. If the water is not piped directly to the consumer the potential vectors for 

contamination increase, particularly where containers used to transfer it are unclean or 

uncovered (Wright et al. 2004). The reliability of the water system is also greatly 

important. One study of two Uganda water systems showed that if supply was disrupted, 

incidence of cryptosporidium and rotavirus would skyrocket. The same trend was 

observed in E. coli but to a lesser degree (Hunter et al. 2009). 

When there is no contamination between the treatment and the consumers, these systems 

provide a much greater ease of use for the consumers. Large scale systems also have the 

advantage that they are easier to maintain and inspect to ensure correct function.  

Filtration and chlorination can be effective treatment strategies in both point-of-use and 

large scale situations. Filtration involves passing water through a semi-porous media 

which destroys or inactivates pathogens usually through the development of a biological 

layer but more modern filters may make use of colloidal silver impregnated ceramics. To 

increase sustainability, locally available filtration media are preferred. Perhaps the most 

basic form of filtration is to use the natural properties of the earth by building a well or 

pumping water out from the ground (Sharma and Amy 2009, Ahmed et. al. 2017). 

Traditional slow sand filters rely on sand and pebbles. Biochar, created through burning 

locally available organics such as farm wastes, has also been shown to be effective, 

dependent on their pore size and capacity, for the removal of inorganics and heavy 

metals, anionic contaminants, radionuclides, and arsenic (Gwenzi et al. 2017). Non-
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synthetic filters are associated with low material costs and high labor requirements while 

still being attainable for a community. 

1.2 Chlorination in the Developing World 

Solid form chlorine (granular or tablet) is widely popular in the developing world due to 

its availability, effectiveness, cost, and relative ease of transportation and use. Chlorine 

interacts with water to produce hypochlorous acid, HOCl. A second reaction then forms 

between H+ and hypochlorite ion OCl-. HOCl and OCl- are known as ‘free chlorine’. The 

concentration of free chlorine remaining in the water after initial disinfection is the 

chlorine residual (Ratnayaka et al. 2017). Residual chlorine continues to provide 

disinfection in the water system, reducing the risks of recontamination between treatment 

and consumption. 

Cl2 + H2O = HOCl + HCl 

HOCl = H+ + OCl- 

Other substances present in the water can also interact with chlorine, reducing the amount 

of free chlorine produced thereby reducing disinfection efficiency. Ammonia will react 

with chlorine to form monochloramine NH2Cl, dichloramine NHCl2, and trichloramine 

NCl3. NH2Cl and NHCl2 are known as ‘combined chlorine’ and are significantly less 

effective disinfectants than free chlorine. Organic compounds, common in surface waters, 

will interact to form disinfection byproducts which are hazardous to human health such 

as chloroform and haloacetic acids (Ratnayaka et al. 2017). 

1.2.1      Drip Chlorination 

Drip chlorinators consist of a tank holding a chlorine solution, most frequently created by 

mixing granular chlorine with water, which drips down into a water reservoir before the 

contained water flows into the water system. Depending on the residence time, a drip 

chlorinator may improve disinfection by allowing the chlorine more time to react with the 

water.  

1.2.2 In-Line Chlorination 

In-line chlorinators add chlorine to water as it moves through the pipe. One method of 

accomplishing this is to add a chamber containing a chlorine tablet to the pipe. As the 

water flows over the tablet it erodes, releasing chlorine into the water. These systems are 

inflexible. They are constructed to meet expected flow rates. If flow rates change later 

there is no way to adjust it afterwards.     

Even when the flow rate is steady, which is by no means guaranteed, the erosion of the 

tablet is irregular (Yoakum, 2013). Research has demonstrated that much of this 
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unreliability can be improved by proper storage of the tablets. If kept in individual water-

tight wrapping until use, relatively consistent chlorination with free chlorine 

concentrations of less than 0.2 mg/L could be achieved. If exposed to humidity 

beforehand however, they dissolved much more quickly resulting in high concentrations 

during the first day and almost nothing on subsequent days. The residual chlorine 

concentration could be increased with the use of multiple tablets, but the effects only 

lasted for the first day (Orner 2011). 

Similar results were found by a point-of-use study of a combination of filtration through a 

colloidal-silver-impregnated ceramic pot filter followed by chlorination through 

dissolution of calcium hypochlorite tablets. Chlorine residuals started above 2.5 mg/L on 

the first day and dwindled to around 0.7 mg/L over the course of the next seven days 

(Cash-Fitzpatrick et al. 2008).  

Alternatively, chlorine powder could be mixed into a liquid solution and attached to the 

pipe on the downstream side of an orifice plate. The pressure differential between the two 

sides of the plate creates a vacuum which then draws the liquid into the pipe. Such a 

system can be surprisingly inexpensive to construct (Schuhmann and Karlheim 2012). 

The resultant hydrodynamic cavitation has been found to increase disinfection rates and 

reduce production of chloroform when used in conjunction with a sodium hypochlorite 

solution (Wang et al. 2015). It is unknown whether there has been any study into the 

long-term durability of these systems. 

1.2.3 Diffusion Chlorination 

Diffusion chlorinators function similarly to the in-line tablet chlorinators in that they 

consist of solid chlorine disbursed into water through erosion. Chlorine tablets are placed 

in a porous container which is then suspended below the water level in a reservoir. As 

with drip chlorination this can provide longer disinfection times. 

1.3 Water Treatment in Peru 

In January of 1991, cholera swept through South America. By the end of December 

321,334 cases and 2,906 deaths had been reported in Peru alone (Ries et al. 1992) with a 

total of 533,000 cases and 4,700 deaths across the 19 countries affected (Swerdlow et al. 

1992). Analyses of the epidemic showed a strong correlation between infection and 

drinking unboiled water, drinking water stored in contaminated containers, and eating or 

drinking items prepared in uncontrolled conditions such as street stalls. It has even been 

theorized that the warmer conditions of an El Nino year may have contributed by making 

the environment more hospitable for the cholera bacteria (Tickner and Gouveia-Vigeant 

2005, Fraser 2009). This theory is supported by a study showing a 200% increase in 

hospital admission for diarrheal illness in children under 10 during the 1997 – 1998 El 

Nino (Checkley et al. 2017). It is also frequently attributed to lack of chlorination and 

poor sanitary conditions.  
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At the time, a study of some of the municipal wells and private water taps in the city of 

Piura found that a majority of those sampled had no residual chlorine (Reis et al. 1992). 

The city of Trujillo had no chlorination at all (Swerdlow et al. 1992).  

The water treatment situation in Peru has greatly improved sine 1991 although much 

improvement is still needed. In 2015, 95% of the Peruvian urban population and 72% of 

the rural population were using an improved drinking water source (WHO 2016).  

1.3.1 Rural Water Systems 

Peruvian communities of fewer than 2,000 people are required to manage and maintain 

their own water system through the direction of a committee of six local volunteers 

elected for two-year terms by the community. At least two members of this committee 

must be female. All members are elected at the same time which sometimes results in a 

complete loss of knowledge of how to manage the system. Most communities reduce this 

risk by paying a permanent water operator to handle repair and maintenance. The 

committee itself is responsible for sharing information with and getting input from the 

community, collecting the monthly water fee paid by each household attached to the 

water system, and coordinating larger-scale repairs and annual maintenance work days.  

These committees are in turn overseen by the Area Technica Municipal (ATM) who 

works out of the district municipality. In the district of Suyo there were over 60 town and 

annexes, many of which were difficult to get to. With limited transportation options this 

can result in practically no oversight or assistance to towns further away. 

Many water systems are originally constructed with funds from the Peruvian government 

or an NGO. Operation and maintenance costs, as well as any wages paid to the operator, 

are paid by the committee from the monthly water fees. When the system requires repairs 

beyond the committee’s ability to pay they must either collect a one-time additional 

payment from the community members or apply to the district municipality or an NGO 

for aid. There is frequently a lack of training for operators and committee members alike. 

1.3.2 Chlorination in Peru 

Peruvian water quality limits are stipulated by MINSA (the Ministerio de Salud, ministry 

of health) in the Reglamento de la Calidad De Agua Para Consumo Humano (MINSA 

2011). Chlorine regulation consists of two parts: 90% of all measurements of chlorine 

residual taken throughout the water system must be 0.5 mg/L or above, the remaining 

10% cannot be lower than 0.3 mg/L. The minimum water quality regulations mandated 

by MINSA, the World Health Organization (WHO), and the US Environmental 

Protection Agency (EPA) are shown in Table 1-1 below. 
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Table 1-1.  Minimum Water Quality Regulations (MINSA 2011) (WHO 2017) (EPA 

2018) 

 Peru MINSA WHO EPA 

Chlorine Residual 

Min (mg/L) 

90% ≥ 0.5 

10% ≥ 0.3 

≥ 0.2 (≥ 0.5 in high 

risk circumstances) 

 

Chlorine Residual 

Max (mg/L) 

5 5 4 (as Cl2) 

Thermotolerant 

Coliforms (mg/L) 

0   

Total Coliforms 

(mg/L) 

0  0 (in 95% of 

monthly samples) 

Turbidity (NTU) ≤ 5  ≤ 5 

pH 6.5 – 8.5   6.5 – 8.5* 

Conductivity 

(µmho/cm) 

≤ 1500   

Total Dissolved 

Solids (mg/L) 

≤ 1000  ≤ 500* 

*Secondary standard 

Like the WHO, Peru places the maximum safe limit on chlorine residual in drinking 

water at 5 mg/L. The EPA uses a 4 mg/L maximum (EPA 2018). Because it is more 

conservative, 4 mg/L has been used for the purposes of this paper. 

1.4 Description of Study Area   

Peru is located on the western coast of South America, bordering the Pacific Ocean to the 

west, Ecuador and Colombia to the north, to the east by Brasil and Bolivia, and to the 

south by Chile. In 2015, approximately 31,377,000 people lived within its 494,209 square 

mile area (WHO 2017 and CIA 2018). In 2013 its Gross national income per capita (PPP 

int. $) was 11, compared to 53 in the United States in the same year. In 2015 life 

expectancy at birth was 73 and 78 years for men and women, respectively, 4 years lower 

than in the U.S. (WHO 2017). 
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Figure 1-1. A map of Peru with the district of Suyo labeled (from Google Maps). 

The study area was the City of Suyo, in the northern region of Piura. It’s location in Peru 

is shown by the map in Figure 1-1. Suyo sits only a few degrees south of the equator with 

an annual average temperature of 15 °C which climbs to 29 °C in the summer months. As 

of the 2007 Census, 11,951 people lived in the district of Suyo. Of these, 985 lived in the 

capital city, also named Suyo (Suyo 2012). The city of Suyo sits directly on the old 

panamerican highway, a well-maintained two lane highway which allows easy access to 

public transportation by taxi and bus to the regional capital city, Piura, to the Southwest 

and into Ecuador to the North. The Ecuadorian border is 15 minutes by taxi from the city 

of Suyo. Some towns within the Suyo district are along the highway. Those that are not 

are connected by dirt roads. As a general rule, the further one moves from the highway 

the worse the road quality becomes and the more expensive and time consuming 

transportation is. Spanish is the only language spoken by most residents. Roman Catholic 

is the predominant faith with an Evangelical presence. 

Suyo sits in the foothills of Ayabaca, where the desert of lower Piura begins to transform 

into mountains. Many communities have spring-fed piped water systems which flow by 

gravity although towns in the lower elevations may have to rely on pumps and river 

water. Many systems include pressure-break and purge valves although not all. 
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1.4.1 Water Quality of Study Area 

Owing to its size, the town of Suyo is capable of maintaining a water pump and, 

therefore, utilizes groundwater for its drinking water. This makes the influent water 

significantly freer of contamination than the sources used in the rest of the district, 

surface water, or a protected spring. 

 

Table 1-1-2. Water Quality of the Suyo Reservoir During Chlorination 

Sampling Location Reservoir 

Date 8/26/2016 

Time 7:47 AM 

Turbidity (NTU) 2.06 

Residual Chlorine 

(mg/L) 
0.11 

pH 8.11 

Conductivity 

(µmho/cm) 
832 

TDS (mg/L) 416 

Total Coliforms 

(CFU/100ml) 
0 

Thermotolerant 

Coliforms 

(CFU/100ml) 

0 

Water quality sampling was performed for multiple locations in the Suyo district August 

24th – 26th of 2016. Table 1.2 contains the water quality measurements of the city of Suyo 

reservoir after chlorination. Suyo currently employs drip chlorination. Granulated 

chlorine is mixed with water to form a concentrated chlorine solution stored in a tank 

above the reservoir with a valve and pipe system to feed the solution into the reservoir. 

As can be seen from the table, at the time of sampling residual chlorine levels fell below 

the 0.3 mg/L minimum. Even so, no coliforms were detected. The water temperature was 

not measured. 
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2 Methodology 

2.1 EPANET Model 

A map of the Suyo water system was provided by the Suyo Municipality and transcribed 

into EPANET, a public domain software created and distributed by the US EPA to model 

drinking water distribution systems. More information can be found at 

https://www.epa.gov/water-research/epanet (Rossman 2000) as well as the program 

available free to download. The original map did not include the reservoir or the full 

length of the pipe between the reservoir and the town. The reservoir’s dimensions were 

known from previous measurements. The distance between the reservoir and the town 

was approximated from GPS coordinates of the reservoir and a known point in the town. 

Six pipe nodes were added in the EPANET model along the pipeline between the 

reservoir and the town to serve as potential points for the addition of chlorine. 

Individual dwellings were not given their own nodes on the model. Instead, a node was 

placed at the mid-point of each block. Demand for each node was calculated based on the 

number of homes and businesses fed from that pipeline on the block. This simplification 

was made to increase clarity of the model and reduce potential for errors when 

transcribing the data to the model. More specific data from the EPANET model appears 

in Appendix C. 

 
Figure 2-1 EPANET schematic of the Suyo water system 

EPANET models bulk flow chlorine decay with the following first order reaction: 

R = Kb * C 

https://www.epa.gov/water-research/epanet
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R = Instantaneous rate of reaction (mg/L/hour) 

Kb = Bulk reaction rate coefficient (in this case, -1.0) 

C = Reactant concentration (mg/L) 

Boundary layer reactions, those taking place along the pipe wall, were modeled using a 

reaction coefficient of 0 (Rossman 2000).  

2.2 Demand 

A survey conducted in the neighboring annex of El Jardin in August of 2016 found there 

to be approximately 4.48 people living in each house; therefore, base demand was 

calculated from the assumption that 5 people lived in each occupied house. The map of 

the Suyo water system showed 281 occupied houses. The population was therefore 

estimated to be 1,405 inhabitants. This figure is believed to be a reasonable estimation of 

population growth since the 2007 census (Suyo 2012) at which time the Suyo population 

was 985. 

Water consumption per person was assumed to be 90 liters per capita per day (lcd) with a 

factor of safety of 1.56.  These numbers were those used by local engineers building and 

designing equivalent water systems for populations in the hotter regions of Peru where 

the majority of the population had flush toilets, as was the case in Suyo. These figures are 

supported by Twort’s demand estimates for developing countries (Ratnayaka et al. 2017). 

2.3 Calculation of Ct Value 

Calculating the concentration of the chlorine residual times the time it has had to react in 

the water (Ct) proved to be a challenge as EPANET reports water age from the reservoir 

to each node on the system but not from one node to another. One cannot, therefore, 

directly calculate the influence on the Ct value from chlorine added at a node partway 

through the system.  

First, the Ct values for all runs in which all chlorine added was added at the reservoir 

were calculated as follows: 

Ctrb = Cb * WArb * 60 min/hr 

Ctrb = Ct value at Point b due to chlorine added at the reservoir (min*mg/L) 

Cb = Chlorine concentration at Point b (mg/L) 

WArb = Water Age from the reservoir to Point b (hrs) 
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The system was then used to model different concentrations of chlorine added either at 

the reservoir or at one of six points between the reservoir and the start of the town (Node 

1). These nodes were labeled InA, InB, etc. Their locations are shown in Figure 2-2. The 

node of chlorination is referred to here as Point a. The node where the chlorine residual 

was measured is referred to as Point b. Water age from Point a to Point b was calculated 

by subtracting the water age from the reservoir to Point a from the water age from the 

reservoir to Point b using the following formula. 

Ctab = Cb * (WArb – WAra) * 60 min/hr 

Ctab = Ct value at Point b due to chlorine added at Point a (min*mg/L) 

Cb = Residual chlorine concentration measured at Point b (mg/L) 

WArb = Water Age from reservoir to Point b (hrs) 

WAra = Water Age from reservoir to Point a (hrs) 

 

 
Figure 2-2 Nodes where chlorine is added and Node 1 

This base value was used to calculate the Ct value for runs where chlorine was added at 

both the reservoir and at another point. To get the Ct contribution from the chlorine added 

part way through the system (referred to here as Point a) the chlorine residual 

concentration was calculated by taking the chlorine residual at the point measured (Point 

b) when chlorine was being added at both the reservoir and Point a and subtracting what 

the chlorine residual had been at Point b when chlorine was only being added at the 

reservoir: 

Ctrab = Ctrb + ( (Cb – Crb) * ( WArb – WAra) * 60 ) 

Ctrab = Ct value at Point b due to chlorination both the reservoir and Point a (mg*mg/L) 
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Ctrb = Ct value at Point b when chlorine was only added at the reservoir (min*mg/L) 

Cb = Residual chlorine concentration measured at Point b (mg/L) 

Crb = Residual chlorine concentration measured at Point b when chlorine was only added 

at the reservoir (mg/L) 

WArb = Water Age from the reservoir to Point c (hrs) 

WAra = Water Age from the reservoir to Point a (hrs) 

 

For the purposes of determining the minimum Ct required, the water was assumed to 

have a constant pH of 8 and a temperature of 10 °C. The minimum required Ct was then 

determined to be the Ct required for 3-log inactivation of giardia based on the minimum 

residual concentration found at Node 1 after stabilization. 

2.4 Determination of Minimum Required Ct 

Because the water in Suyo was 8.11 pH when measured it was assumed to have a pH of 8 

for the purposes of determining minimum required Ct. 

Water temperature was not measured. As Suyo itself has an average ambient temperature 

of 15 °C and the water delivered by the Suyo water system was cool to the touch, the 

minimum required Ct value was based on 3-log inactivation of giardia at 8 pH and an 

assumed water temperature of 10°C. Ct tables can be found in Appendix B. 

Ct values for a 3-log removal of Giardia and a 4-log removal of viruses were available 

and, therefore, were used in this study to test sufficient removal of both. 

2.5 Pipe Size 

After modeling a variety of chlorination concentrations at different injection points it was 

determined that an adequate Ct value to achieve 3-log inactivation of giardia was not 

being achieved. A series of models were then conducted with different diameters for 

pipes between the reservoir and Node 3 (shown in Figure 2-1). Node 3 was chosen 

because it is the first branching node in the system, to prevent pressure build up within 

the pipeline caused by suddenly shrinking the diameter of the pipe. 

2.6 Time to Stabilization 

All models were run on the assumption that chlorination would begin at midnight. This is 

by no means representative of field conditions and was done to ensure that all models 

could be objectively compared.  
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Because chlorination began at a time with very low demand, concentration of chlorine 

residual through the water system is very different in the first few hours than it is for the 

rest of the run time. For this reason the results section examines only those chlorine 

residual concentrations and Ct values which occurred after chlorine residuals within the 

system stabilized to more typical values. 10:00 AM was used as the stabilization time 

save for a few scenarios studied where the most distant node required more time. 
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3 Results 

3.1 Baseline 

As the goal was to improve the performance of the system it was important to first 

ascertain how the EPANET model would simulate current conditions: 1.5 mg/L chlorine 

addition at the reservoir. The results appear below in Tables 3.1 – 3.3. Values which fall 

outside of required ranges have been highlighted. 

  

Table 3-1. Maximum concentration of chlorine residual after stabilization due to 

chlorination of 1.5 mg/L at the reservoir. 

Max Chlorine Concentration at Node after Stabilization 

(mg/L) 
Max All 

Nodes 
Scho 76 68 52 43 34 1 2 15 

1.36 1.24 1.37 1.34 1.39 1.37 1.45 1.45 1.4 1.45 

 

 

Table 3-2. Percent of hourly residual chlorine measurements which pass Peruvian 

regulations after stabilization of 1.5 mg/L chlorine addition at the reservoir. 

     

≥ 0.5 

mg/L 

≥ 0.3 

mg/L 

% Residual Measurements after Stabilization 100% 100% 

 

 

Table 3-3. Minimum Ct value after stabilization due to 1.5 mg/L chlorination at the 

reservoir. The minimum Ct required is shown on the table. 

Minimum Ct Value at Node after Stabilization (min*mg/L) Min Ct 

Required 

(min*mg/L) Scho 76 68 52 43 34 1 2 15 

196 341 175 207 153 185 79 86 138 168 

As can be seen by these results, current chlorination in Suyo presents no health risks due 

to over-chlorination and meets Peruvian legal requirements for minimum chlorine 

residual. However, Ct values are insufficient to achieve 3-log giardia inactivation 

although they are more than sufficient for 4-log virus inactivation, Ct tables are shown in 

Appendix B. 

3.2 Chlorination at Different Locations 

The system was then modeled with chlorine addition taking place at different nodes 

between the reservoir and the city. As can be seen in Figure 3.1 below, the maximum 
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chlorine residual measured in the water system was only slightly affected by the location 

where chlorination occurred. 

 
Figure 3-1.  Maximum chlorine residual in the Suyo water system after chlorination at 

different nodes. 

In all cases the maximum chlorine concentration was found at Node 1, the node closest to 

the points of chlorination. It was found to be nearly identical to the chlorination 

concentration. 3.5mg/L was deemed close to the maximum acceptable value of 4mg/L 

without exceeding it. 

 

Table 3-4. Percent of chlorine residual measurements throughout the Suyo water system 

at least 0.5 mg/L after stabilization when chlorination took place at the specified node. 

Chlorination 

(mg/L) 

% Residual Measurements above 0.5 mg/L during 

Chlorination at Node 

Reservoir InA InB InC InD InE InF 

0.5 0% 0% 0% 0% 0% 0% 6% 

1 99% 100% 100% 100% 100% 100% 100% 

1.5 100% 100% 100% 100% 100% 100% 100% 

2 100% 100% 100% 100% 100% 100% 100% 

2.5 100% 100% 100% 100% 100% 100% 100% 

3 100% 100% 100% 100% 100% 100% 100% 
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Location of chlorination also had very little effect on percent measurements of chlorine 

residual which met the Peruvian national standards. As can be seen in Tables 3.4 and 3.5 

below, for all conditions modeled chlorination of 1.0 mg/L achieved the required 

minimum free chlorine concentrations at all nodes after stabilization. 

 

Table 3-5. Percent of chlorine residual measurements throughout the Suyo water system 

of at least 0.3 mg/L after stabilization when chlorination took place at the specified node. 

Chlorination 
(mg/L) 

% Residual Measurements above 0.3 mg/L during 
Chlorination at Node 

Reservoir InA InB InC InD InE InF 

0.5 99% 99% 99% 99% 99% 99% 99% 

1 100% 100% 100% 100% 100% 100% 100% 

1.5 100% 100% 100% 100% 100% 100% 100% 

2 100% 100% 100% 100% 100% 100% 100% 

2.5 100% 100% 100% 100% 100% 100% 100% 

3 100% 100% 100% 100% 100% 100% 100% 

As was the case in the baseline model, attaining a minimum Ct value for 3-log giardia 

removal was found to be the most limiting condition. Tables 3-6 through 3-12 show the 

minimum Ct value achieved after stabilization at the nodes studied under different 

chlorination conditions. The required minimum Ct is included in the table. Nodes which 

do not achieve it have been highlighted. 

 

Table 3-6. Minimum Ct at node specified after stabilization from different concentrations 

of chlorination added at the reservoir. 
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Minimum Ct Value at Node after Stabilization (min*mg/L) 

M
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t 
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) 

 

Scho N76 N68 N52 N43 N34 N1 N2 N15 

C
h
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n

 a
t 

R
e
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ir

 

0.5 65 113 59 70 51 61 26 29 47 149 

1 130 225 116 140 102 124 52 57 93 158 

1.5 196 341 175 207 153 185 79 86 138 168 

2 261 456 234 279 203 248 105 114 186 174 

2.5 325 566 293 349 255 309 131 142 232 182 

3 390 682 350 420 305 372 158 171 278 190 

3.5 456 794 409 490 356 433 184 200 326 197 
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Table 3-7. Minimum Ct at node specified after stabilization from different concentrations 

of chlorination added at node InA. 
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 Minimum Ct Value at Node after Stabilization (min*mg/L) 
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 Scho N76 N68 N52 N43 N34 N1 N2 N15 

C
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t 
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0.5 63 111 59 68 48 61 24 26 45 149 

1 127 224 115 136 98 123 48 52 88 158 

1.5 189 335 172 206 147 185 72 79 134 168 

2 253 448 229 272 195 245 96 105 178 174 

2.5 316 559 284 340 244 306 120 131 222 182 

3 379 672 340 408 293 367 144 158 265 190 

 

 

Table 3-8. Minimum Ct at node specified after stabilization from different concentrations 

of chlorination added at node InB. 
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Scho N76 N68 N52 N43 N34 N1 N2 N15 
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0.5 61 108 54 66 47 58 21 24 42 149 

1 122 220 108 131 93 116 43 47 84 158 

1.5 183 328 162 198 139 174 65 71 126 168 

2 244 442 216 264 186 231 86 95 168 174 

2.5 305 550 270 330 232 289 107 119 209 182 

3 365 659 325 395 279 347 129 143 251 190 

  

Table 3-9. Minimum Ct at node specified after stabilization from different concentrations 

of chlorination added at node InC. 
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0.5 59 107 52 63 45 56 19 21 40 149 

1 117 216 104 128 89 112 38 43 80 158 

1.5 177 325 157 193 134 167 58 64 120 168 

2 236 434 209 255 177 223 77 86 160 174 

2.5 294 543 261 319 222 279 96 108 200 182 

3 353 650 312 384 266 335 116 129 239 190 
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Table 3-10. Minimum Ct at node specified after stabilization from different 

concentrations of chlorination added at node InD. 
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C
h

lo
ri

n
at

io
n

 a
t 

In
D

 

0.5 53 102 48 60 39 38 15 17 35 149 

1 107 209 95 119 78 77 29 34 71 158 

1.5 160 313 144 178 118 116 44 51 106 168 

2 213 420 191 236 157 154 59 68 141 174 

2.5 266 524 239 295 196 193 73 85 177 182 

3 320 628 286 355 236 231 88 102 212 190 

 

Table 3-11. Minimum Ct at node specified after stabilization from different 

concentrations of chlorination added at node InE. 
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0.5 47 99 43 54 29 45 10 12 31 149 

1 95 201 84 108 57 89 20 24 60 158 

1.5 142 303 127 161 86 133 29 36 92 168 

2 190 400 169 216 114 177 39 48 121 174 

2.5 237 504 212 270 143 222 49 61 152 182 

3 284 603 254 325 172 266 59 73 183 190 

 

Table 3-12. Minimum Ct at node specified after stabilization from different 

concentrations of chlorination added at node InF. 
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Scho N76 N68 N52 N43 N34 N1 N2 N15 
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0.5 42 93 31 49 18 38 5 7 22 149 

1 83 189 62 99 36 76 10 15 44 158 

1.5 124 285 94 148 55 113 15 22 67 170 

2 166 376 125 196 73 151 20 30 88 179 

2.5 208 472 156 245 91 188 25 37 111 186 

3 249 565 186 295 110 226 30 45 133 194 
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The closer to the town that chlorine was injected, the lower the Ct values achieved 

throughout the system. Indeed, with the original pipe diameter none of the chlorination 

strategies modeled were able to deliver 3-log giardia inactivation to the entire town. 

3.3 Chlorination at Multiple Locations 

Models were run to simulate chlorination of 0.5 mg/L at the reservoir as well as 

secondary chlorination at one of three nodes between the reservoir and the town. Figure 

3-2 shows that, as before, the node of additional chlorination made minimal difference to 

the maximum chlorine residual found in the system. 

 

 
Figure 3-2. Maximum chlorine residual in the Suyo water system after chlorination of 

0.5 mg/L at the reservoir and additional chlorination at different nodes 

 

All secondary chlorination above 0.5 mg/L achieved minimum Peruvian water quality 

standards for residual chlorine measurements (Tables 3-14 and 3-15). 
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Table 3-13. Percent of chlorine residual measurements at least 0.5 mg/L after 

stabilization from 0.5 mg/L chlorination at reservoir and additional chlorination at nodes 

InD, InE, and InF. 

Secondary 

Chlorination 

(mg/L) 

% Residual Measurements above 0.5 

mg/L during Chlorination at Reservoir 

and Node 

InD InE InF 

0.5 75% 76% 86% 

1 100% 100% 100% 

1.5 100% 100% 100% 

2 100% 100% 100% 

 

Table 3-14. Percent of chlorine residual measurements at least 0.3 mg/L after 

stabilization from 0.5 mg/L chlorination at reservoir and additional chlorination at node 

InD, InE, and InF. 

Secondary 

Chlorination 

(mg/L) 

% Residual Measurements above 0.3 

mg/L during Chlorination at Reservoir 

and Node 

InD InE InF 

0.5 100% 100% 100% 

1 100% 100% 100% 

1.5 100% 100% 100% 

2 100% 100% 100% 

As with chlorination at only a single node, however, none of the permutations of two-

node chlorination achieved minimum required Ct for 3-log giardia inactivation. Again, 4-

log virus inactivation was achieved (Tables 3-15 through 3-17). 

 

Table 3-15. Minimum Ct at node specified after stabilization from 0.5 mg/L chlorination 

at the reservoir and different concentrations of chlorination added at node InD. 
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 Scho 76 68 52 43 34 1 2 15 
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0.1 75 133 68 82 59 72 29 32 54 149 

0.5 118 219 106 130 90 113 41 46 82 158 

1 171 321 154 188 129 163 55 62 117 168 

1.5 225 428 201 248 169 214 70 79 152 174 

2 278 532 250 307 208 265 85 96 187 182 

 

 

 



21 

 

 

Table 3-16. Minimum Ct at node specified after stabilization from 0.5 mg/L chlorination 

at the reservoir and different concentrations of chlorination added at node InE. 
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0.1 74 134 67 81 58 71 28 31 53 149 

0.5 113 214 102 124 85 107 36 41 77 158 

1 160 316 145 178 117 151 46 53 108 168 

1.5 207 415 188 232 150 197 56 65 138 174 

2 255 517 230 285 184 241 65 77 169 182 

 

Table 3-17. Minimum Ct at node specified after stabilization from 0.5 mg/L chlorination 

at the reservoir and different concentrations of chlorination added at node InF. 
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0.1 74 133 66 80 57 70 27 30 52 149 

0.5 107 209 97 120 78 101 31 36 73 158 

1 148 306 134 169 103 139 36 43 98 168 

1.5 189 401 170 218 128 177 41 51 121 179 

2 231 500 207 267 152 215 47 58 143 182 

3.4 Chlorination with Larger Pipe 

Models were run to simulate chlorination at the reservoir with larger pipe diameters 

between the reservoir and Node 3 to increase chlorine contact time and therefore increase 

the Ct value.  Velocity is less in a larger pipe since V=Q/A where V is velocity, Q is 

discharge, and A is the pipe cross-sectional area. Simulations were run for pipe diameters 

of 5”, 6”, 7”, and 8”. Pipe diameter was found to make a small difference to maximum 

chlorine residual with smaller diameter pipes delivering higher concentrations of free 

chlorine as showing in Figure 3-3. 
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Figure 3-3. Maximum Chlorine Residual found in the Suyo Water System after 

Chlorination at the reservoir with different inflow pipe diameters. 

For chlorination concentrations of 1.0 mg/L and above all studied pipe diameters 

delivered high enough residual chlorine throughout the water system to be consistent with 

Peruvian regulations (Tables 3-18 and 3-19). 

 

Table 3-18. Percent of chlorine residual measurements at least 0.5 mg/L after 

stabilization from chlorination at the reservoir with different pipe sizes. 

Chlorine 
% Residual Measurements above 0.5 mg/L after 

Chlorination with Pipe Diameter 

(mg/L) 5" 6" 7" 8" 

1 100% 100% 100% 99% 

1.5 100% 100% 100% 100% 

2 100% 100% 100% 100% 

2.5 100% 100% 100% 100% 

3 100% 100% 100% 100% 

 

All modeled pipe sizes can achieve 3-log giardia inactivation throughout the water 

system with a chlorination concentration of 3 mg/L or lower (Tables 3-20 through 3-23). 

Larger pipes deliver consistently higher Ct values and can, therefore, achieve 3-log 

giardia inactivation at lower chlorine concentrations. 
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Table 3-19. Percent of chlorine residual measurements at least 0.3 mg/L after 

stabilization from chlorination at the reservoir with different pipe sizes. 

Chlorination 
% Residual Measurements above 0.3 mg/L after 

Chlorination with Pipe Diameter 

(mg/L) 5" 6" 7" 8" 

1 100% 100% 100% 100% 

1.5 100% 100% 100% 100% 

2 100% 100% 100% 100% 

2.5 100% 100% 100% 100% 

3 100% 100% 100% 100% 

 

Table 3-20. Minimum Ct at node specified after stabilization from chlorination at the 

reservoir with a 5” pipe diameter. 
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1 73 78 111 121 143 151 155 140 244 158 

1.5 110 118 167 182 212 226 237 210 372 168 

2 146 156 224 241 284 302 315 279 491 174 

2.5 183 195 279 302 355 377 394 349 616 179 

3 220 234 335 362 426 453 472 420 741 186 

 

Table 3-21. Minimum Ct at node specified after stabilization from chlorination at the 

reservoir with a 6” pipe diameter. 
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1 98 101 137 143 164 175 183 162 270 162 

1.5 146 153 206 215 246 261 273 243 404 170 

2 195 204 274 287 328 350 363 324 540 179 

2.5 244 255 341 359 411 436 454 405 674 190 

3 293 305 411 431 493 523 544 486 807 197 
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Table 3-22. Minimum Ct at node specified after stabilization from chlorination at the 

reservoir with a 7” pipe diameter. 
  

 Minimum Ct at Node after stabilization (min*mg/L) 
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1 126 131 163 169 194 199 211 192 290 162 

1.5 188 198 245 255 288 300 321 286 436 170 

2 251 264 324 340 385 398 427 382 579 179 

2.5 315 330 408 424 482 498 532 478 722 190 

3 377 395 489 509 578 597 639 574 869 197 

 

Table 3-23. Minimum Ct at node specified after stabilization from chlorination at the 

reservoir with an 8” pipe diameter. 
  

 Minimum Ct at Node after stabilization (min*mg/L) 

M
in

 C
t 

R
e

q
u

ir
e

d
 

(m
in

*m
g/

L)
 

  

 1 2 15 43 34 Scho 52 68 76 

8
" 

P
ip

e 

C
h

lo
ri

n
e

 a
d

d
e

d
 a

t 
R

e
se

rv
o

ir
 (

m
g/

L)
 

1 161 167 200 205 223 230 248 221 313 158 

1.5 241 250 302 310 333 345 371 332 470 170 

2 321 334 399 413 445 461 497 441 626 179 

2.5 401 415 502 515 558 578 619 553 786 186 

3 482 499 601 618 668 694 742 662 942 194 
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4 Conclusions and Recommendations 

The Suyo water system is currently delivering water which achieves Peruvian legal 

standards of water quality,  4-log inactivation of viruses, and is well below EPA and 

WHO standards of safe free chlorine concentration. It does not, however, achieve 3-log 

giardia inactivation.  An effective method of upgrading the current system such that 3-log 

inactivation is achieved would be to replace the pipe between the reservoir and the town 

to 8” in diameter. This would increase the ability of the chlorine to interact with the 

water, raising Ct values to within required levels. 

Increasing the concentration of chlorination was found to provide 3-log inactivation of 

giardia to a larger percentage of the town but did not provide full coverage for all users. 

No benefit was found in moving the point of chlorination closer to the city nor in 

chlorinating both at the reservoir and at an additional node. Doing so made minimal 

impact on maximum chlorine residual concentrations while reducing the amount of time 

the chlorine had to disinfect the water, thereby reducing the Ct. 
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5 Discussion 

This study identified time as the main limiting factor of effectiveness of chlorination. It 

was found that lower concentrations of chlorination could be equally effective or more 

effective than higher concentrations as long as there was more time for the chlorine 

disinfect the water. The only method studied was to increase the diameter of the pipe 

between the reservoir and the town, however, other methods may be equally productive 

such as increasing the size of the reservoir to increase tank residence time. 

It is also important to note that although increasing the pipe diameter improved 

effectiveness of chlorination, the benefit of physically replacing the pipe, at least in this 

instance, did not outweigh the cost. At the time of the study,the Suyo system met 

Peruvian legal requirements for a water system. Current chlorination practices provide 

sufficient protection against viruses and Giardia, used as the main indicator for Ct value, 

had not been an issue. When the pipe needs to be replaced due to maintenance it may be 

beneficial to replace it with a wider diameter but to do so before hand would be an 

unnecessary expense to the community.  

The EPANET model itself could be improved by using field data of on-site chlorine 

residuals to determine more accurate coefficients to model bulk and wall reactions for 

chlorine decay. 

It must also be kept in mind that Suyo utilizes ground water. Towns which rely on 

surface water will need to pay more attention to organic materials which may react with 

chlorine, potentially creating harmful byproducts or at least reducing the effectiveness of 

the chlorination. 
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A Copyright documentation 

Figure 1.1: A map of Peru with the district of Suyo labeled. This figure comes from 

Google Maps and is fair use for research papers. Accessed April 2018. 
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B Ct Tables 

The following tables are US EPA Ct values in min*mg/L for the inactivation of Giardia 

Cysts and viruses by free chlorine published by Clean Water Systems in 2007. 

 

Table B-1 Ct values for 3-log (99.9%) inactivation of Giardia cysts by free chlorine at 

water temperature 10.0 °C (50 °F) 

Free 

Residual 

(mg/L) 

pH 

≤ 6.0 6.5 7.0 7.5 8.0 8.5 ≤ 9.0 

≤ 0.4 73 88 104 125 149 177 209 

0.6 75 90 107 128 153 183 218 

0.8 78 92 110 131 158 189 226 

1.0 79 94 112 134 162 195 234 

1.2 80 95 114 137 168 200 240 

1.4 82 98 116 140 170 206 247 

1.6 83 99 119 144 174 211 253 

1.8 88 101 122 147 179 215 259 

2.0 87 104 124 150 182 221 265 

2.2 89 105 127 153 186 225 271 

2.4 90 107 129 157 190 230 276 

2.6 92 110 131 160 194 234 281 

2.8 93 111 134 163 197 239 287 

3.0 95 113 137 166 201 243 292 

 

Table B-2 Ct values for inactivation of viruses by free chlorine 

Temperature 

(°C) 

Log Inactivation 

2.0-log 3.0-log 4.0-log 

pH 6-9 pH 10 pH 6-9 pH 10 pH 6-9 pH 10 

0.5 6 45 9 66 12 90 

5 4 30 6 44 8 60 

10 3 22 4 33 6 45 

15 2 15 3 22 4 30 

20 1 11 2 16 3 22 

25 1 7 1 11 2 15 
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C EPANET Model Data 

For the EPANET model, the pipes within the city are labeled after the streets they run 

under. For example, the segments of pipe which run under Avenida Amazonas are 

labeled “AMAZ1”, “AMAZ2”, etcetera. The segments of pipe leading from the reservoir 

to the town are simply labeled “Pipe 1”, “Pipe 2”, and so on. Information used to model it 

appears in Tables C-1. 

 

Table C-1 EPANET model network pipes 

Pipe ID                 Length          
(ft) 

Diameter        
(in)  

Roughness        
Bulk 

Coeff.      
Wall 

Coeff.      Connected 
Nodes 

Ama1                421 1 100 -1 0 16,15 

Amaz2               93 1 100 -1 0 17,16 

Amaz3               92 2 100 -1 0 17,18 

Amaz4               110 2 100 -1 0 19,18 

Amaz5               71 2 100 -1 0 20,19 

Amaz6               66 2 100 -1 0 20,21 

Amaz7               146 2 100 -1 0 22,21 

Avelar              209 4 100 -1 0 1,2 

Bol1                138 4 100 -1 0 2,3 

Bol10               198 1 100 -1 0 66,67 

Bol2                118 4 100 -1 0 3,12 

Bol3                124 4 100 -1 0 12,19 

Bol4                134 2 100 -1 0 19,24 

Bol5                75 2 100 -1 0 24,26 

Bol6                127 2 100 -1 0 26,30 

Bol7                108 2 100 -1 0 30,45 

Bol8                48 2 100 -1 0 45,56 

Bol9                126 2 100 -1 0 56,57 

Cem1                173 2 100 -1 0 4,3 

Cem2                49 1 100 -1 0 5,3 

Cem3                276 1 100 -1 0 6,5 

Cem4                183 1 100 -1 0 6,7 

CemTankLine         1 2 100 -1 0 4, CemTank 

Escalera            468 2 100 -1 0 34,school 

Grau1               125 1 100 -1 0 48,49 

Grau2               97 1 100 -1 0 48,50 

Grau3               133 1 100 -1 0 50,51 

Grau4               127 1 100 -1 0 51,52 
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Guep1               141 2 100 -1 0 35,34 

Guep10              41 1 100 -1 0 47,48 

Guep2               182 2 100 -1 0 37,35 

Guep3               183 2 100 -1 0 39,37 

Guep4               63 2 100 -1 0 42,39 

Guep5               110 2 100 -1 0 42,43 

Guep6               106 2 100 -1 0 44,43 

Guep7               99 2 100 -1 0 45,44 

Guep8               149 2 100 -1 0 45,46 

Guep9               152 2 100 -1 0 47,46 

Iquit1              268 1 100 -1 0 40,39 

Iquit2              188 1 100 -1 0 41,39 

JRMV1               106 1.5 100 -1 0 28,32 

JRMV2               135 1.5 100 -1 0 32,47 

JRMV3               73 1.5 100 -1 0 47,60 

JRMV4               269 1.5 100 -1 0 60,71 

JRMV5               197 1 100 -1 0 71,72 

Leti                127 2 100 -1 0 14, 21 

Leti1               99 2 100 -1 0 25,21 

Leti10              153 2 100 -1 0 73,74 

Leti11              131 2 100 -1 0 74,75 

Leti12              542 1 100 -1 0 75,76 

Leti2               82 2 100 -1 0 25,27 

Leti3               124 1 100 -1 0 31,46 

Leti4               87 2 100 -1 0 46,59 

Leti5               86 2 100 -1 0 59,58 

Leti6               59 2 100 -1 0 58,69 

Leti7               87 2 100 -1 0 69,68 

Leti8               284 2 100 -1 0 68,70 

Leti9               301 2 100 -1 0 70,73 

Lima1               151 2 100 -1 0 26,27 

Lima2               140 2 100 -1 0 27,28 

Lima3               247 2 100 -1 0 22,28 

Lima4               112 1 100 -1 0 7,9 

Lima5               192 1 100 -1 0 7,8 

Mara1               303 1 100 -1 0 37,38 

Mara2               123 1 100 -1 0 35,36 

Mara3               315 1 100 -1 0 36,64 

Mara4               433 1 100 -1 0 64,65 

NoNem               158 1 100 -1 0 35,33 
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Ojeda1              175 1 100 -1 0 62 to 66 

Ojeda2              146 1 100 -1 0 66 to 68 

Ojeda3              116 2 100 -1 0 71,68 

Pipe 1                   1 4 100 -1 0 Res,InA 

Pipe 2                   1 4 100 -1 0 InA,InB 

Pipe 3                   1 4 100 -1 0 InB,InC 

Pipe 4                   1164 4 100 -1 0 InC,InD 

Pipe 5                   1164 4 100 -1 0 InD,InE 

Pipe 6                   1164 4 100 -1 0 InE,InF 

Pipe 7                   1164 4 100 -1 0 InF,1 

Piura1              196 1 100 -1 0 11,10 

Piura2              141 1 100 -1 0 12,11 

Piura3              96 2 100 -1 0 12,13 

Piura4              40 2 100 -1 0 13,14 

Prado1              124 1 100 -1 0 54,41 

Prado2              103 2 100 -1 0 55,54 

Prado3              102 2 100 -1 0 57,55 

Prado4              157 2 100 -1 0 58,57 

Ugart1              155 1 100 -1 0 17,23 

Ugart2              221 1 100 -1 0 23,29 

Ugart3              106 1 100 -1 0 43,29 

Ugart4              112 1 100 -1 0 43,53 

Ugart5              72 1 100 -1 0 53,54 

Ugart6              105 1 100 -1 0 54,61 

Ugart7              53 1 100 -1 0 61,62 

Ugart8              211 1 100 -1 0 62,63 

 

Apart from the school, the reservoir, and the water tank in the cemetery the labels 

generated automatically by EPANET were kept as labels for the nodes. The data used to 

model them appears in Table C-2. 

 

Table C-2 EPANET model network nodes 

Node ID                 
Elevation       

(ft) 

Base 
Demand     
(GPM) 

Initial 
Quality 

(hrs) 

Junc 1                   1414 0 0 

Junc 2                   1414 1.4 0 

Junc 3                   1414 0 0 

Junc 4                   1420 0.38 0 
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Junc 5                   1400 0.38 0 

Junc 6                   1390 1.53 0 

Junc 7                   1390 0 0 

Junc 8                   1380 0.64 0 

Junc 9                   1385 0.64 0 

Junc 10                  1394 0.38 0 

Junc 11                  1394 1.53 0 

Junc 12                  1394 0 0 

Junc 13                  1394 0.51 0 

Junc 14                  1394 0.13 0 

Junc 19                  1384 0 0 

Junc 18                  1381 0.89 0 

Junc 17                  1381 0 0 

Junc 16                  1381 0.83 0 

Junc 15                  1381 1.14 0 

Junc 20                  1390 0.38 0 

Junc 21                  1390 0 0 

Junc 22                  1393 0.68 0 

Junc 23                  1376 0.51 0 

Junc 24                  1381 1.27 0 

Junc 25                  1366 1.14 0 

Junc 26                  1374 0 0 

Junc 27                  1342 0.26 0 

Junc 28                  1352 0.13 0 

Junc 29                  1371 0.26 0 

Junc 30                  1369 0.76 0 

Junc 45                  1361 0 0 

Junc 43                  1371 0 0 

Junc 44                  1366 1.27 0 

Junc 42                  1371 4.55 0 

Junc 39                  1371 0 0 

Junc 37                  1359 0 0 

Junc 35                  1359 0 0 

Junc 34                  1359 1.02 0 

Junc Scho                1400 4.59 0 

Junc 46                  1361 0 0 

Junc 31                  1352 1.02 0 

Junc 32                  1369 0.76 0 

Junc 47                  1356 0 0 

Junc 48                  1346 0 0 
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Junc 49                  1346 0.51 0 

Junc 50                  1346 1.28 0 

Junc 51                  1346 0.14 0 

Junc 52                  1346 0.13 0 

Junc 56                  1366 0.13 0 

Junc 57                  1366 0 0 

Junc 59                  1361 0.76 0 

Junc 58                  1361 0 0 

Junc 55                  1371 0.51 0 

Junc 54                  1381 0 0 

Junc 53                  1376 0.51 0 

Junc 41                  1391 1.4 0 

Junc 40                  1371 1.53 0 

Junc 61                  1381 0.26 0 

Junc 62                  1385 0 0 

Junc 63                  1389 0.76 0 

Junc 69                  1361 0.34 0 

Junc 68                  1361 0 0 

Junc 70                  1361 1.78 0 

Junc 66                  1371 0 0 

Junc 67                  1373 1.78 0 

Junc 60                  1359 0.55 0 

Junc 71                  1361 0 0 

Junc 72                  1361 0.72 0 

Junc 73                  1361 0.64 0 

Junc 74                  1361 0.89 0 

Junc 75                  1361 0.13 0 

Junc 76                  1361 0.26 0 

Junc 38                  1331 0.89 0 

Junc 33                  1331 0.77 0 

Junc 36                  1331 0.51 0 

Junc 64                  1336 0 0 

Junc 65                  1336 0.26 0 

Junc InC                 1490 0 0 

Junc InB                 1490 0 0 

Junc InA                 1490 0 0 

Junc InD                 1472.85 0 0 

Junc InE                 1453.3 0 0 

Junc InF                 1433.75 0 0 

Resvr RES                1493 #N/A             0 
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Tank 
CemTank             1420 #N/A             0 

 

There was one tank in Suyo. It was an open air tank in the cemetery. Information used for 

modeling it is in Table C-3. 

 

Table C-3 EPANET model tank 

Cemetary Tank 

Label CemTank 

Elevation 1420 

Initial Level (ft) 4 

Minimum Level (ft) 0 

Maximum Level (ft) 4.5 

Diameter (ft) 3.9 

 

Table C-4 EPANET model demand pattern 

Hour 

Demand 
Pattern 

1 0.5 

2 0.2 

3 0 

4 0 

5 0.2 

6 0.5 

7 1.5 

8 1.5 

9 1.5 

10 1 

11 1 

12 1 

13 1.5 

14 1.5 

15 1.5 

16 1 

17 1 

18 1 

19 1.5 

20 1.5 
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21 1.5 

22 1 

23 1 

24 1 

 

 


	OPTIMIZING CHLORINE DISINFECTION BY CHLORINE INJECTION LOCATION AND PIPE DIAMETER SELECTION IN A WATER DISTRIBUTION SYSTEM
	Recommended Citation

	Graduate School Thesis Template

