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Abstract 

Camera sensors are emerging in many applications such as Smart Buildings and 

Autonomous driving. The Data generated by multiple cameras in a smart building and 

autonomous driving applications is usually transmitted through an edge box to a cloud 

terminal. This transmitted information requires a considerable channel bandwidth, which 

is not available through current communication standards. The report proposes a Camera 

Sensor Frame Reduction method to decrease the required channel bandwidth for 

applications such as autonomous driving.  

Here, we propose a method that incorporates cross frame similarity measurement method 

to reduce the redundant frames and decrease the data rate of each camera. This approach 

adds processing to the camera sensor, which maps each camera to a smart one. In order to 

calculate cross frame correlation, each smart camera converts frames into blocks of sub-

images. Next, we incorporate consecutive blocks to compute the overall cross frame 

correlation. The report studies block size selection and its impact on processing complexity 

and performance. We used real vehicle videos in different driving speed and scenarios to 

study the complexity and performance of the proposed method. We have investigated 

frame reduction rate as a function of vehicle traffic and driving environment.  
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1 Introduction 

In recent years, there has been considerable development in the field of autonomous 

vehicles and Advanced Driver Assistance Systems (ADAS). There are vast benefits of 

autonomous cars such as improved safety, mobility, reduction in traffic collisions [1]. The 

vehicles are classified into 0-5 levels of autonomy [2, 3].In level 0, the driver controls all 

the functions of the car. Level 1, where specific tasks such as either steering or acceleration 

are done automatically. Level 2, 3 introduces the driver assistance; however, the driver is 

still always needed to be ready to take over of the vehicle. A vehicle will be able to perform 

all driving functions in level 4 automation but only under certain conditions. A vehicle of 

Level 5 will deliver all driving functions in all circumstances. To achieve level 4-5 

automation, there will be an increase in the number of sensors to sense the environment, 

localize the vehicle, and have reliable vehicle-to-vehicle communication[4].  An increase 

in the number of sensors introduces challenges such as the need for higher processing 

power and higher channel bandwidth. Specifically, this problem is critical for camera 

sensors that create a considerable amount of data; This project aims to investigate methods 

of reducing camera image data. 

1.1 Camera Data Volume and Information Content 

A camera, 1.3MP and 30 fps, will generate a raw data of 35Mbps. Video Compression 

techniques such as MPEG-4 or H.264, can reduce the data rate to 8 Mbps. A typical 

autonomous vehicle level 4-5 in Fig. 1, may use a minimum of 8 cameras that increase the 
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data rate to 64Mbps[5]. The camera may upgrade to 2MP and 60fps with a combined data 

rate from all cameras reaching 1Gbps [6]. The current communications standards are 

unable to handle this information. Consider a vehicle driving through a city in Fig. 2; it 

contains a significant amount of information such as traffic movement, road signs, road 

intersections, and most importantly pedestrians. However, a typical highway, shown in Fig. 

3 or desert is less informative as it does not have many varying components. When 

operating the camera at a fixed frame rate, there is some amount of redundant information. 

This redundant information can be reduced by using a lower frame rate. The frame rate can 

be a function of speed and information in the environment. The goal of the project is to 

develop a system to reduce the frames in low informative circumstances. 

  

 

Figure 1 Camera sensors in the Autonomous vehicle. 
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Figure 2 Urban scenario to drive vehicle. 

 

Figure 3 Highway driving scenario. 
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1.2 Image Data Reduction Methods 

In this section, we discuss the current method available to reduce data generated by the 

camera sensor. The current work, in the field of object recognition, detects an object and 

evaluates motion[7]. These motion vectors are used to classify informative and non-

informative frames. Another method is to use an inter-frame correlation to detect objects 

in a video [8]. The objects are used to identify redundant frames. In [9], the authors use 

Feature Matching to detect motion. These techniques have a high complexity and 

processing time. 

In [10], the author compares template matching and proposes a matching algorithm based 

on similarity measure using the Sum of Absolute Differences (SAD). The author also 

compares the similarity measurement techniques such as Sum of Absolute Differences 

(SAD), Sum of Squared Differences (SSD) and Normalized Cross Correlation (NCC). In 

[9] the author gives an idea about the methods used in image analysis. The author in [11] 

compares images using a Joint histogram method. It is a classification technique, which 

calculates the distance between the images using Histogram. The Drawback of using 

histogram is that it may produce unstable indication because different images may have the 

similar histogram [12]. The author in [13] uses Harris-Laplacian feature detector to detect 

interest point and then compares it with the target Image. The Paper studied the effect of 

rotation and scaling of the objects based on NCC. The method is useful in matching objects 

but fails to provide motion of the objects and uses limited features. This method will have 
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low accuracy on high-resolution images [14]. To address this issue, the image is divided 

into smaller sub-images.  

In [14], the author addresses the issue to process high-resolution images and proposes an 

adaptive block-processing algorithm. Using Scale Invariant Feature Transform (SIFT) 

algorithm to match features and identify the objects by dividing the image into smaller 

images. The author in [15] explains potential improvements in speed by using block 

partitioning. The method in [15] is used for image compression using parallel processing.   

The author [16] uses temporal information in the image to calculate static frames, low 

motion content in a network for frame dropping. It uses an 𝑋𝑂𝑅 operation to calculate 

temporal processing. However, no reference technique has higher chances of false 

positives, and it tries to address this challenge by use of separate thresholds. The author 

[17] implements the frame-dropping algorithm, to reduce the slow changing frames, using 

time-varying hidden Markov model. The author implements this method to reduce the 

frame in the speech signal using Euclidean distance to calculate similarity. 

1.3 The Proposed Technique 

We propose a Temporal Block processing method that increases processing speed and 

reduces the complexity of the existing methods. The frames are preprocessed to mitigate 

the effects of intensity, illumination, and noise. We divide the frames into smaller blocks 

of sub-images.  We process these blocks independently to find information between 

recurring frames. We will use Euclidean distance to calculate the similarity between the 
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blocks. A decision stage compares the number of informative blocks with a threshold to 

decide to discard or save the frame. The process is repeated through the sequences, and 

previous discarded frame acts as the reference frame for the next frame.  

1.4 The Report Outline  

We organize this report in the following style. In Chapter 2, we propose the Cross Frame 

Similarity Measurement method in detail. We discuss systematic implementation in each 

section of this Chapter.  Chapter 3 is the results of evaluations of the proposed method over 

test case scenarios. In Chapter 4, we discuss the observations, future scope and conclude 

the report.  
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2 The Similarity-Based Data Reduction method 

In this section, we discuss the implementation of the proposed similarity-based data 

reduction method. We divide this Chapter into sections for systematic implementation of 

the proposed method. In 2.1, we explain the need for block partitioning and the process of 

its implementation. In the next section, we define a temporal processing method based on 

the similarity measurement. We also discuss the selection of image distance calculation 

methods. In section 2.3, we implement a threshold selection based on the Training model. 

Section 2.4 uses this threshold in the decision stage to detect informative and non-

informative image. 

 

Figure 4 Block diagram of the system. 
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Fig. 4 represents the block diagram of the proposed method. The video in succession of 

frames is acquired from the camera sensor. We then pre-process the images to reduce the 

effect of intensity and noise in the frames. The frames are then divided into sub-images, 

which are easier to process than the whole image. The temporal processing stage calculates 

the similarity between the two images and extracts features. These features are then 

compared with a threshold 𝜆 received from the training stage to decide to save or discard 

the frame. All the blocks are discussed in more detail in the subsequent sections.  

2.1 Block Partitioning  

Consider an image with the resolution of 1280 × 1024 (1.3 MP). To measure the similarity 

of two consecutive image frames, the distance between the two image frames is calculated. 

The resultant set of features is compared to a threshold based detection method to detect 

redundant or informative images. Without block partitioning there would be 1,310,720, 

(1280 × 1024) set of features making the detection process complex and slow. Block 

partitioning would reduce the features to 𝑇 vectors. This reduces the computational time 

and complexity.  

Block partitioning is a method to process the image by dividing it into sub-images to have 

lower complexity. An image can be divided into smaller images which can be processed 

independently [15]. It is a widely used technique in satellite image processing, fingerprint 

matching and video compression [14, 15, 18]. Since we process each block as a separate 

image, it is possible to compute each block in parallel.  
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The flowchart of the block partition algorithm is shown in Fig. 5. 𝑊, 𝐻 are the width and 

height of the image in the frames of the video. Consider we divide the image into blocks 

represented by 𝑁 ×  𝑀, and the total number of blocks is 𝑇. We crop each block using the 

dimension of the rectangle obtained from this partitioning method. The rectangle is 1 × 4 

matrix represented as (𝑟, 𝑐, 𝑤, ℎ), where, 𝑟 (row), and 𝑐 (column) is the location of the first 

element, and 𝑤, ℎ are the width and height of the rectangle. The dimensions of each 

rectangle are calculated and stored in a matrix of dimension that is 𝑇 × 4. Each row in the 

matrix represents the dimension of the block. Subsequently, 1 × 𝑇 will the dimension of 

the features and the thresholds in the future stages.  
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Width(W), Height(H),  Number of blocks(N ×  M)

Start

H1 = H/N
W1 = W/M

Rec(c,1:4) = [i × W1,jj,W1,H1]
i  = i + 1 
c=c+1

i= 1, j=1, c=1
Rec1=[i,j,W1,H1]

j<= M

i<= N j=j+1

i=1
jj = j  ×  M 

End 

 

Figure 5 Flowchart of partitioning the blocks in images. 
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A sub-image is a two-dimensional matrix with width (𝑊1) × height (𝐻1) pixels as shown 

in Fig. 6. The row of the 𝑅𝑒𝑐 represents the block number and columns represents the 

dimension of the rectangle used to crop the sub-image. 

1              2          3          4         .

Image

Block 
partitioning

H

W

1

2

3

.

.

.

N

1 2 3 4 . . . M

 r = 1,c =1
H1

W1

 

Figure 6 Image and its subsequent blocks. 

To process the images in real time, the processing time of the system should be in the order 

of 0.033 secs for a 30fps video. However, the accuracy of detection of motion is inversely 

proportional to the size of blocks. Therefore, when we use block partitioning, there is a 

tradeoff between processing time and the accuracy of the similarity calculation. 

2.2 Temporal Processing 

As explained in [19], ‘There are many ways to estimate the amount of motion content in a 

video sequence, such as the Difference of Histogram, Block histogram difference, 

histogram of difference image, and block variance difference. All these measures need 

extra calculation.’ 
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The use of histogram may be suitable for clustering or classification of the images [11]. 

Using Histogram method, we would be able to classify the blocks; however, it would not 

be able to detect motion in the objects. After considering template-matching techniques, 

and motion vector based similarity detection, we found temporal processing to be ideal for 

this application in autonomous vehicles.  

 

  

Euclidean Distance 
between two frame

Features

 

Figure 7 Temporal information between frames using Euclidean Distance. 

 

Consider a video sequence with series of frames {𝑓𝑖}𝑖=1
𝑛  as shown in Fig. 7. Temporal 

processing is an analysis of the data varying over time [20]. The features of image in frame 

𝑓𝑖 are compared with the features of image in frame 𝑓𝑖−1. Temporal processing is used to 

detect the significant motion in a video sequence.  
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Figure 8 Temporal Information between two frames at 𝑖 and 𝑖 − 1. 

Temporal Information (𝑇𝐼) is calculated as the distance between the two consecutive 

images as shown in Fig. 8. We can calculate the similarity using correlation function. The 

correlation function has higher time complexity than algorithms like SAD or SSD. Feature 

detection techniques such as SIFT, SURF, and Features from Accelerated Segment Test 

(FAST) use SAD and SSD. SAD and SSD are highly reliable, fast and have low 

complexity. Another method to detect similarity is Normalized Cross Correlation (NCC) 

which is sensitive to image calculations and but has higher computational complexity. To 

calculate the similarity of two consecutive frames,  𝑓 and 𝑓 − 1, we compute 𝑆𝑆𝐷𝑓 that is 

defined as the summation of the square of the elementwise difference in the recurring 

images and corresponds to:  



14 

 

  𝑆𝑆𝐷𝑓 = ∑ (𝐼𝑓(𝑥, 𝑦) − 𝐼𝑓−1(𝑥, 𝑦))2(𝑊,𝐻)
(𝑥=1,𝑥=1)                                    (1) 

Here, 𝐼𝑓(𝑥, 𝑦) and 𝐼𝑓−1(𝑥, 𝑦) ) are the images in the video at frame 𝑓  and  𝑓 − 1 . 𝑊 and 

𝐻 are the width and height of the image. 𝑆𝑆𝐷𝑓 is the similarity measure at frame 𝑓 

compared with frame 𝑓 − 1. Similarly, 𝑆𝐴𝐷𝑓is the summation of elementwise absolute 

difference of the two images, and is defined as: 

 𝑆𝐴𝐷𝑓 = ∑ |𝐼𝑓(𝑥, 𝑦) − 𝐼𝑓−1(𝑥, 𝑦)|
(𝑊,𝐻)
(𝑥=1,𝑥=1)                                   (2) 

Here, 𝐼𝑓(𝑥, 𝑦) and 𝐼𝑓−1(𝑥, 𝑦) are the images in the video at frames 𝑓  and 𝑓 − 1, 

respectively. 𝑊 and 𝐻 are the dimensions of the image as explained in (1). 𝑆𝐴𝐷𝑓 is the 

similarity measure of frame 𝑓 when compared with frame 𝑓 − 1. The resultant distances 

are a scalar value and the distance calculation methods will change the threshold linearly. 

Hence, for simplicity of representation, we use Euclidean distance to calculate distance. 

Euclidean distance is the square root of SSD. Temporal Information represents the 

similarity measurement defined by the Euclidean distance between blocks at the same 

position within consecutive frames. Consider a block  𝑖 as shown in Fig. 8 at frame 𝑓. This 

block is compared with block 𝑖 at frame 𝑓 − 1 to find the temporal information. Therefore, 

the temporal information between two images is expressed as: 

𝑇𝐼𝑖,𝑓 = √∑ (𝐼𝑖,𝑓(𝑥, 𝑦) − 𝐼𝑖,𝑓−1(𝑥, 𝑦))2(𝑛,𝑚)

(𝑥=1,𝑦=1)
                             (3) 
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where,  𝐼𝑖,𝑓(𝑥, 𝑦) and 𝐼𝑖,𝑓−1(𝑥, 𝑦) are the sub-images cropped by block 𝑖 at frame 𝑓 and 

𝑓 − 1 . 𝑇𝐼𝑖,𝑓 is the temporal information within the block 𝑖 for the frame 𝑓.  

We compare this 𝑇𝐼𝑖,𝑗  with threshold 𝜆𝑖 obtained from the training procedure to decide if 

the block 𝑖 is informative. The resultant is the Spatial information which is defined as: 

𝑆𝐼𝑖,𝑓 = {
1 𝑖𝑓 𝑇𝐼𝑖,𝑓 ≥  𝜆𝑖

0 𝑖𝑓 𝑇𝐼𝑖,𝑓 <  𝜆𝑖
                                                   (4)  

where 𝑆𝐼𝑖,𝑗 is the spatial information of block 𝑖 at frame 𝑓, and is 1 if the 𝑇𝐼𝑖,𝑗 is greater 

than the threshold 𝜆𝑖 else 0. Using this spatial information we can make a decision to 

save or discard the frame at the decision stage. 

2.3 Training model  

The training model is based on Classification problem in machine learning. Each block is 

classified into redundant and informative based on the 𝑇𝐼, defined in (3), between the 

recurring images. To make a decision, a threshold is computed to find an optimum value 

to evaluate the occurrence of an event within a block. If 𝑇𝐼 is more than the threshold, we 

classify the block as informative and vice versa.  

After block partitioning, the image is divided into 𝑇 blocks. To detect an event in a block 

𝑖 we need to calculate a threshold for the block in the image. To do this, we generate frames 

in random and calculate the Euclidean distance between the consecutive frames within 

block 𝑖. Consider a block 𝑖 obtained from the block partitioning stage as shown in Fig. 8. 
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To incorporate the threshold for detecting an object within the block, 𝐾 frames are taken 

into consideration and the cross-frame Euclidean distance is calculated for all 𝐾 frames. 

We can calculate the threshold of the image block 𝑖, as the average of the Euclidean 

distances across all 𝐾 frames that corresponds to: 

𝜆𝑖 =
∑ 𝑇𝐼𝑖(𝑘)

𝐾

𝑘=1

𝐾
                                    (5) 

where, 𝑇𝐼𝑖(𝑘) is the Euclidean Distance of block 𝑖 with the same block at its previous 

frame, and 𝐾 is the total number of frames. We repeat this process to calculate the threshold 

for all the blocks. This results in a threshold for each block within the image. Therefore, 

the dimension of 𝜆  is 1 × 𝑇.  

We use 𝛾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 to distinguish between informative or non-informative frames. The 

𝛾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 is average of the sum of 𝑇𝐼 in a particular scenario and is defined by the following 

equation: 

                  𝛾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 =
1

K
∑ (∑ {𝑆𝐼𝑖,𝑗}𝑇

𝑖=1 )𝐾
𝑗=1                                             (6) 

where, 𝐾 is the total number of training frames, 𝑇 is the total number of blocks after block 

partitioning and 𝑆𝐼𝑖,𝑗 is the spatial information of block 𝑖 at frame 𝑓.   

2.4 Decision Making  

 The thresholds 𝜆 ( 1 × 𝑇) are compared elementwise to the TI obtained from the temporal 

processing block. If the 𝑇𝐼 at block 𝑖 obtained from (3) is greater than threshold 𝜆𝑖, we 
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detect an event else the block is non informative. Accordingly, this decision making 

process can be summarized via:  

             𝜆𝑖 >
0

1
< √(∑ (𝐼𝑖,𝑓(𝑥, 𝑦) − 𝐼𝑖,𝑓−1(𝑥, 𝑦))𝑌

𝑥=1,𝑦=1
2

                                  (7) 

where, 𝑇 is the total number of blocks, 𝐼𝑖,𝑓 and 𝐼𝑖,𝑓−1 are Image matrices of frame 𝑓 at block 

𝑖. and {𝜆𝑖}𝑖=1
𝑇  are the threshold for block 𝑖. Thus, the output of (5) is Boolean of 1 × 𝑇 

dimensions. Each block which is less than the threshold 𝜆  is discarded whereas more than 

threshold 𝜆 in informative and is saved. The number of informative blocks defers 

depending on the scenario, Highway or City, and traffic speed. 

 Once we get spatial information from (4) we use the following equation to calculate 

informative and non-informative frames: 

𝐼𝑛𝑓𝑜(𝑓) = ∑{𝑆𝐼𝑖,𝑓}

𝑇

𝑖=1

 ≷ 𝛾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜                                                 (8) 

where 𝐼𝑛𝑓𝑜(𝑓) is the information of frame 𝑓, which is 1 (informative) if the sum of 𝑆𝐼𝑖,𝑗 

is greater than threshold 𝛾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜, else it is 0 (non-informative). The 𝑆𝐼𝑖,𝑗 is same as 

defined in (4).  

Therefore, we have the informative frames which will be saved and the non-informative 

frames which will act as the reference frame when comparing the new image.  
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3 Results  

In order to study the performance of the proposed data reduction method, a video [21] from 

a dataset is taken and divided into training and the testing segments. We implemented the 

test on MATLAB running on an Intel Xeon 3.70GHz processor with 16Gb ram. The test 

video consists of 17341 frames out of which we randomly selected 1734 for calculation of 

the threshold. The testing video includes scenarios of a vehicle in no motion, the vehicle 

moving in low traffic and high traffic. 

 
Figure 9 Image divided with Block partitioning. 

 

Fig. 9 is an output of the image after dividing it into sub-images. We divide the image into 

100 blocks as shown in Fig. 6. Each block shown in the Fig. 9 is processed as a separate 

image. The accuracy and the processing time is sensitive to the number of blocks used.  
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Figure 10 Processing time of one frame vs. number of blocks. 

 

Fig. 10 shows the processing time for (5) vs. the number of blocks. If we process the image 

without using the blocks, the processing time for 1.3MP camera sensor is 0.3875 secs. We 

can process the same amount of data 12 times faster by using 100 blocks. Table 1 displays 

the effect of the using the number of blocks on the accuracy. Partitioning the image into 

more blocks will result in better accuracy. However, it may result in more processing time 

making it difficult to implement in real time. There is a trade-off between the accuracy and 

processing time when using block partitioning. The accuracy itself is less sensitive to the 

threshold as it can be seen in Table 1. With the use of a greater number of blocks the change 
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skipped frames is not significant and hence the fewer blocks can be used to give better 

accuracy.   

Using Fig. 10 and Table 1 we can select the optimum number of blocks. In this example, 

we have considered a video with 30 fps frame rate. Therefore each frame needs to be 

processed within 
1

30
 i.e. 0.033 𝑠𝑒𝑐𝑠. Therefore from Fig. 10, we can use maximum use 130 

blocks. The Table 1 we can observe that the difference in accuracy will be small with an 

expense of greater difference in time complexity. Therefore, we select the image to be 

partitioned into 100 blocks.     

Table 1 Effect of the number of blocks on the accuracy. 

Number of 

blocks 

Saved frames in video 

sequence having 

redundant information 

Saved frames in video 

sequence having important 

information 

Without 

Blocks 
6.12% 68.74% 

25 Blocks 11.85% 89.17% 

100 Blocks 13.58% 91.83% 

400 Blocks 14.15% 90.23% 

900 Blocks 16.06% 89.88% 
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We selected one of the blocks to display the calculation of the threshold for the particular 

block. We calculate the Euclidean Distances as a temporal information measure using (3). 

The Euclidean distance of the block is represented in Fig. 11. The values closer to zero are 

highly correlated and contain redundant sub-image. The data is highly weighted towards 

zero. Analysis by synthesis is carried out to find the threshold, and statistical mean divides 

the blocks into redundant and informative Fig. 12 and Fig. 13. 

 

Figure 11 Euclidean Distances of a block over consecutive frames. 

Fig. 12 represents the blocks with distance less than the threshold, which are detected as 

redundant information. The information content in the images of Fig. 12 have less 

information than the images of Fig. 13. Fig. 13 consists of the images that are higher than 

the threshold and are informative.  
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Figure 12 Detection of redundancy in the block. 

 

 

Figure 13 Detection of the events in the block. 

After the threshold is calculated for all the blocks using (5) and (6), these thresholds are 

used to detect redundant frames in video. To test the performance of the system, we create 

test scenarios in different driving conditions and environments. The test scenarios 

constitute of a halted vehicle, vehicle in low traffic and vehicle in high traffic. 
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In test 1-2, we selected a case where the vehicle has no or little motion. The method reduces 

the redundant frames when the vehicle is stopped and saves the frames only when the 

vehicle shows movement. The frame rate in such a situation can be set to minimum to save 

processing power and channel bandwidth.  

 

 

Figure 14 Video sequence of the output of test 2. 
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Figure 15 Vehicle driving on a road with low traffic. 

 

Test 3-4 shown in Fig. 15 contains a vehicle moving in light traffic. Such a scenario 

contains fewer vehicles and would need a lower frame rate. We were able to reduce the 

frame rate to 20-24fps shown in Table 2.  

 

Figure 16 Vehicle moving in high traffic. 
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Test 5 shown in Fig. 16 consists of vehicle in high moving traffic, which is more 

informative and a higher frame rate is required in such a scenario. Since it contains more 

information than the other test, more frame rate is required to represent the information. 

We were able to reduce the frame rate to only 28fps. 

 

 

Table 2 Result of the testing scenarios. 

Video Description 

Percentage 

of skipped 

frames 

Optimum 

frame rate 

Test1 
Stopped at 

Traffic Signal 
71.55 % 9 fps 

Test2 

Vehicle 

stopped with 

no traffic 

90.63 % 3 fps 

Test3 

Vehicle 

moving on a 

clear road 

27.27% 22 fps 

Test4 

Vehicle 

moving in 

light traffic 

22.93% 24fps 

Test5 

Vehicle 

moving in 

high traffic 

8.96 % 28 fps 
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We create test scenario to check the algorithm and the results are shown in Table 2.  When 

moving in high traffic we could still reduce the frames by almost 9% and by almost 90% 

when there is no motion of the vehicle. Test 1 and 2 are similar while Test 3 and 4 are 

similar with respect to the vehicle speed. Therefore, We can also see from Table 2 that the 

frame rate should be a function of the vehicle speed as well information change in the 

environment. 
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4 Conclusions and Future Work 

This report presents a solution to the high communication bandwidth required for 

autonomous vehicles, as they need to process and send a large number of image data. The 

report presents a high-performance frame reduction method, which can be used to reduce 

data in real-time applications such as Autonomous vehicles and connected vehicles. 

This solution is achieved by removing redundancy in specific scenarios. The method can 

reduce the required frame rate from a camera sensor by 30% in scenarios such as a vehicle 

driving in low traffic or on a highway. It is observed that the processing time taken by the 

blocks is lower than the processing without using the blocks. We can exploit the block 

processing method coupled with motion estimation using motion vector to improve the 

performance of the system.  

The method verifies the need for higher frame rate in vehicles moving in high traffic, 

changing directions, or moving through downtown. It demonstrates that the frame rate can 

be reduced in certain circumstances. Typically, high frame rate scenarios such as 

downtown are more populated and have additional access points to accommodate extra 

bandwidth. They may also use methods such as carrier aggregation to utilize unlicensed 

band for additional bandwidth. However, low frame rate scenarios are places such as 

desert, forest or highway, which do not need higher bandwidth and indeed such bandwidth 

is not available to them. Data reduction method can be used to transmit only the necessary 

data in such locations.   
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There are many problems that can be investigated to improve the proposed method. We 

can estimate the threshold used to compare 𝑇𝐼 by using methods such as Expectation- 

Maximizations (EM) to cluster the data. Certain block according to their spatial position 

may generate false alarm in the sense that the content is declared informative for vehicles, 

while they are not really informative. These blocks are typically located at the frame edges, 

which may detect movement of trees, and building as informative. We can also use spatial 

processing to find the information entropy of a block of sub-image to reduce the erroneous 

data. We can implement stereo cameras to calculate depth and detect objects, which will 

improve the system by adding spatial processing. We can further use data from the Cloud 

Terminal and Global Positioning Systems (GPS), to optimally determine event detection 

threshold within the processor for a particular area and share the threshold of the scenario 

with an Autonomous Vehicle.  
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