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MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression at 

transcriptional or post-transcriptional level. Let-7 family is among the first 

identified human miRNAs and regulates multiple cellular processes including 

glucose metabolism in multiple organs. It has been reported that overexpression 

of let-7 resulted in insulin resistance and impaired glucose tolerance through 

repressing insulin signaling pathway in both muscle and liver. However, the role 

and mechanism underlying let-7 function in pancreatic beta-cells have yet to be 

elucidated. 

 

Let-7 family contains nine members, which poses a significant challenge in 

complete deletion of this miRNA family. To study the function of let-7 and to 

overcome the functional redundancies of various let-7 members in pancreatic 

beta-cells, the highly expressed let-7a and let-7b were blocked simultaneously 

using short tandem target mimic (STTM) approach developed in our laboratory. 

Introducing STTM-let7 into beta-cells markedly increased the expression of 

Caspase 3, a direct target of let-7, confirming a sufficient functional knockdown of 

let-7a/b by STTM-let7. STTM-let7 enhanced apoptotic cell death induced by 

cytokine, indicating that let-7a/b is able to protect from apoptosis through 

attenuating Caspase 3 expression in pancreatic beta-cells. In contrast to the 

previous observation that let-7 silencing increases insulin signaling in muscle and 

liver, inhibition of let-7 with STTM-let7 significantly repressed glucose-stimulated 

insulin signaling in pancreatic beta-cells, leading to impaired insulin secretion and 

reduced beta-cell proliferation. Taken together, an appropriate level of let-7 is 

essential in maintaining beta-cell function and viability. Dysregulation of let-7 may 

contribute to the pathogenesis of type2 diabetes. 
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1. Introduction 

1.1 Diabetes and pancreatic beta-cells 
 

Diabetes is a disorder of metabolism in which a person has high blood glucose 

level (hyperglycemia). If left untreated, hyperglycemia can cause serious 

complications, such as heart diseases and kidney failure(1). Diabetes is due to 

either insufficient amount of insulin or dysfunction of insulin effects on the body. 

There are three types of diabetes: type 1 diabetes, type 2 diabetes and 

gestational diabetes. Type 1 diabetes (T1D) is characterized by loss of insulin- 

producing pancreatic 1-cell caused by autoimmune attack on the 1-cells. Type 1 

diabetes is usually diagnosed in children and young adults and previously called 

juvenile diabetes or "insulin-dependent diabetes"(2). Type 2 Diabetes (T2D) 

results from the combination of resistance to insulin action in muscle and 

adipocytes and insufficient insulin production 1-cells. Approximately90% of 

diabetic patients are type 2 diabetes(3). Gestational diabetes is a type of 

diabetes that only occurs during pregnancy in females who previously did not 

have diabetes. 

Type 2 Diabetes is one of the most prevalent diseases around the world. There 

were approximately 285 million people diagnosed with T2D in 2010(4). 

Development of type 2 diabetes involves multiple metabolic defects, mainly due 

to insulin resistance and 1-cell dysfunction. Most people with insulin resistance 

fail to respond to normal circulating insulin, causing reduced glucose uptake in 

muscle and fat tissues, increased glucose production and release in liver, which 

all in turn result in elevated blood glucose levels(5).If insulin resistance exists, 

much higher insulin requires to be secreted to blood from pancreatic 1-cells, a 

condition called hyperinsulinemia(6). Hyperglycemia combined with 

hyperinsulinemia generate various toxicities, such as free fatty acids, reactive 

oxygen species and inflammatory cytokines, which result in 1-cell dysfunction 

including reduced insulin secretion and insulin biosynthesis, increased 1-cell 

death and eventually loss of 1-cell mass(7-9). 

Pancreatic 1-cells are the only source for producing insulin and insulin is the key 

hormone responsible for maintaining glucose homeostasis. In 1-cell, insulin 
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biosynthesis and release are tightly regulated by insulin signaling pathway that 

maintain the 1-cell fate and activate specific transcription factors in response to 

the change of plasma glucose(10). The insulin signaling pathway involvesinsulin 

activated insulin receptor (IR), insulin receptor substrate (IRS1/2), 

phosphorylation, and activation of phosphatidylinositol 3-kinase (PI3-K), Akt (also 

known as protein kinase B), and mammalian target of rapamycin (mTOR)(Figure 

1.1)(10).Studies in diabetic animal models and humans have consistently 

demonstrated that dysregulation of insulin signaling is associated with impaired 

insulin secretion and insulin biosynthesis. Overexpression of insulin receptor in 1- 

cells was found to promote insulin transcription and regulate the steady-state 

insulin content (11). Leibiger and his colleagues reported type A insulin receptor 

controlled insulin gene transcription whereas stimulation of type B insulin 

receptor promoted 1-cell glucokinase gene expression (12). Insulin receptor 

substrate 2 (IRS-2) branch of the insulin/insulin-like growth factor signaling is 

capable of mediating pancreatic 1-cell proliferation and function. Exendin-4 

promoted IRS-2 expression and Akt phosphorylation were able to delay 

progression of diabetes and to stimulate insulin secretion (13). IRS-2 was also 

shown to be regulated by negative feedback effects of mammalian target of 

rapamycin (mTOR). Chronic activation of mTOR resulted in degradation of IRS-2 

followed by deactivation of Akt/PKB and elevation of 1-cell apoptosis.(14) This 

work provided another mechanism indicating why 1-cell is damaged by chronic 

hyperglycemia in the development of type 2 diabetes. 
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Figure 1.1 Glucose and insulin stimulated insulin signaling pathways in 

pancreatic 1-cells. Insulin molecules interact with Insulin receptor (IR) and 

activate both the mitogenic (via MAP kinase) and metabolic branches involving 

phosphoinositide 3 (PI3)-kinase, protein kinase B (PKB, also called Akt), 

mammalian target of rapamycin (mTOR). Adapted from (10). 

The development of type 2 diabetes is associated with a loss of 1-cell mass. The 

1-cell mass is maintained by the dynamic balance of proliferation and cell death. 

Under normal conditions, the proliferation and apoptosis rate are very low(15). 

However, in the late phase of diabetes, 1-cell mass is significantly decreasing 

due to an enhanced 1-cell apoptosis. Evidences have demonstrated the 

proinflammatory cytokines stimulate 1-cell apoptosis by activating Bcl-2 regulated 

intrinsic apoptotic pathway(16)(Figure 1.2). The proapoptotic members, Bax and 

Bak, directly promote mitochondrial swelling and release of cytochrome C. 

Cytochrome C release leads to the formation of an apoptosome, which in turn 

activates caspase-3 and ultimately induces cell apoptosis(17,18). Antiapoptotic 

Bcl-2 family sequesters Bax and Bak in the cytosol, thus inhibiting apoptosis. 

Understanding how cytokine triggers 1-cell apoptosis is likely to shed new light 
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on mechanisms of 1-cell loss in diabetes and may therefore find the way to 

improve therapeutic intervention. 

 

 

 
Figure 1.2 Diagram of cell death signaling. Cell death can be initiated through 

intrinsic pathway (Mitochondria) or extrinsic pathway (ligand-receptor binding).Both 

of them require the activation of initiator caspases (CASP8, CASP9)                  

and effector caspases (CASP3). Let-7 was revealed to suppress the expression 

of Caspase-3 (19). Bax and Bcl-2 are antagonistic regulators mediate the release 

of Cytochrome C from mitochondria. 

1.2 Role of microRNA in beta cells 
 

MicroRNA (miRNA) is a small (-22 nucleotides) non-coding RNA located in the 

introns or non-coding region of genome. MiRNAs can be found in plants, animals 

and some virus, in which they regulate gene expression on transcriptional or 

post-transcriptional level. Containing the complementary sequences to the 

messenger RNA (mRNA), miRNAs interact with their target mRNA through base 

pairing, resulting in inhibition or degradation of the mRNA(20). In human body, 

miRNAs mainly repress translation by binding imperfectly with 3'-untranslated 

region of their targets. Generally, one single miRNA regulates expression of 

multiple genes and one single mRNA is controlled by a combination of multiple 
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miRNAs(20,21).In animal cells, the biogenesis of miRNAs starts from transcribing 

miRNA genes to primary transcripts (pri-miRNAs) by RNA polymerase II (Pol II). 

The poly-A tail of pri-miRNA is cropped by the Drosh complex, generating the 

precursor miRNA (pre-miRNA) which has a hairpin structure with a -2-nucleotide 

3' overhang. Pre-miRNA is recognized by exportin-5 and transported into 

cytoplasm in which the pre-miRNA is cleaved by Dicer to produce miRNA duplex. 

Dicer and Argonaute (AGO2)(22) mediate the processing of pre-miRNA and 

assemble the RNA-induced silencing complex (RISC). One strand of the miRNA 

is degraded whereas the other is incorporated into AGO protein as the mature 

miRNA. AGO2 is responsible for possessing the inhibition of target mRNA(23,24) 

(Figure 1.3). 

 

 

 
Figure 1.3 Diagram of miRNA biogenesis in animals. miRNAs are first 

transcribed into pri-miRNA and undergone the processing of Drosha. After 

exportation out of nucleus, Dicer, TAR RNA-binding protein (TARBP2), protein 

activator of the interferon induced protein kinase (PACT) and Argonaute (AGO2) 
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(22) mediate the cleavage of pre-miRNA and are assembled to RNA-induced 

silencing complex (RISC). Adapted from (24). 

MicroRNAs play diverse roles in many biological processes, including 

proliferation, differentiation and apoptosis. Dysregulations of miRNAs thus are 

involved in various diseases like cancer and diabetes. Several miRNAs have 

been identified as pathological factors contribute to the development of 

diabetes(25).Previously, miR-375 was found to be elevated in patients with type 

2 diabetes. Overexpression of miR-375 results in reduced expression of 

mytrophin (MTPN) and t-SNAREs yeast homologue 1A (Vtila), leading to 

impairment of insulin secretion(26,27).MiR-375 was further found to be required 

for maintain 1-cell mass. Genetic deletion of miR-375 impairs the proliferation of 

pancreas and results in a severely diabetic state, whereas the miR-375 knockout 

mice have increased pancreatic alpha cell mass and glucagon levels(28). miR- 

30d was shown to associate with the expression of MafA, an insulin gene 

transcription factors as well as prevent the reduction of IRS-2 from tumor 

necrosis factor alpha(TNF-a) exposure(29).MiR-29a/b/c was increased in isolated 

islets of prediabetic non-obese diabetic (30) mice with impaired insulin 

secretion(31). Other miRNAs regulating pancreatic 1-cell function include miR- 

144 that was upregulated in blood, pancreas, liver and skeletal muscles of type 2 

diabetes model rats (32,33)and miR-24 that overpression inhibited insulin 

secretion and 1-cell proliferation by targeting two maturity onset diabetes of youth 

(MODY) genes (34). 

1.3 Let-7 family of microRNAs 
 

In this study, we identified the specific functions of a highly conserved miRNA 

family, let-7, in pancreatic 1-cells. Let-7family of miRNAs is one of the most 

abundant miRNAs expressed among animals. In mice, there are nine differentlet- 

7 members encoded by 12 genes in which let-7a has identical sequence across 

various species from C. elegans to human. All of let-7 family members are 

believed to have similar functions because of the same seed sequences in their 

mature form(35,36). Let-7 family was first identified as tumor suppressor by 

negatively regulating many oncogenes. In human cancers, loss of let-7 was 
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discovered resulting in upregulation of some cell-cycle factors, including RAS, 

MYC, HMGA2 (high mobility group AT-hook 2), cyclin D and CDC34. Increasing 

of these let-7-targeted genes leads to dysfunction of cell growth and proliferation 

and termination of normal differentiation and the emergence of malignancy(37- 

39). Interestingly, let-7a was nevertheless found to suppress cytokine-induced 

cancer cell death by inhibiting the expression of caspase-3, an executioner 

caspase that initiate apoptosis (19) (Figure 1.2). Let-7 family also regulated 

glucose metabolism in multiple organ through lin28/let-7 axis. Lin28 and let-7 

were mutually antagonistic regulators involved in glucose homeostasis. Lin28 

transgenic mice were resistant to obesity and diabetes and exhibited enhanced 

glucose tolerance. Hao Zhu and his colleagues reported that proteins associated 

with insulin signaling, such as IRS-2, IGF1R (insulin-like growth factor 1receptor), 

PIK3IP1 (phosphoinositide-3-kinase interacting protein 1), Akt2 and EIF4EBP2 

(eukaryotic translation initiation factor 4E-binding protein 2) were all predicted to 

contain let-7 binding sites(30). Further study indicated transgenic mice globally 

overexpress let-7 exhibited glucose intolerance and reduced glucose-stimulated 

insulin secretion. Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) 

in transgenic mice suggested insulin resistance in peripheral tissues and the 

reduction of glucose tolerance was caused solely by insufficient insulin. Knock 

down of let-7 was sufficient to lead to increased insulin secretion and recovery of 

insulin sensitivity(36). Although being comprehensive and insightful, previous 

studies do not provide the information onlet-7in specific tissues and the function 

of let-7 in pancreatic 1-cells is incomplete and remains to be determined. 

1.4Methods to silence/block miRNA family function 
 

miRNAs generally exist as multiple family members and display significant 

functional redundancy. Therefore, it is important to silence specific miRNA and 

reveal its biological function and its underlying regulatory networks. Currently, 

there are three approaches used for loss of miRNA function: genetic knockouts, 

miRNA sponges and antisense oligonucleotides(40). The traditional methods for 

gene functions by gene knockout are not very effective in studies of miRNA 

because of the small sizes and multiplicity of miRNA genes distributed over the 
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intergenic regions(41). miRNA sponges are transgenes that express in cells and 

generate the transcripts containing multiple miRNA binding sites. The promoter- 

driven sponges are allowed to contain a fluorescence reporter gene for 

identification and selection(42). Another approach in miRNA loss-of-function 

studies is to introduce chemically synthesized antisense oligucleotides, or 

antimiRs. The antimiRs are presumed to anneal to and block the mature miRNA 

through sequence complementarities(43). 

In this study, we construct the short tandem target mimic (STTM) to block the 

functions of miRNA. STTM is a powerful technology complementary to miRNA 

sponges. STTM is an artificial non-coding RNA consists of two miRNA binding 

sites and a spacer linker(Figure 1.4).The binding sites for a miRNA are perfectly 

complementary to their targets with a bulge at the central three nucleotides in 

order to prevent miRNA mediated cleavage and degradation. The spacer is 48- 

88 nucleotides long with a weak hairpin secondary structure (41,44). 

Effectiveness of STTM has been confirmed by STTM-165/166 in plant (45) and 

STTM-30 in pancreatic 1-cells (44). 

 

 
 

Figure 1.4 Structure of STTM RNA transcripts. A 48-88 nt spacer with the 

stem loop structure is flanked by two small RNA binding sites. The bulge 
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introduced into binding sites stabilizes the interactions with miRNA and prevents 

itself from being cleaved. Adapted from (44). 
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2. Objective 

In this study, the objective was to identify the biological functions of let-7 

microRNA in pancreatic 1-cells by blocking expression of endogenous let-7 using 

STTM methods. The hypothesis is that changes of let-7 in pancreatic 1-cells can 

result in significant differences in cell proliferation, cell death as well as insulin 

secretion of 1-cells. The mainly objective of this work is to examine the target 

gene regulated by let-7 and investigate the molecular mechanisms underlying the 

biological alterations. 
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3. Materials and methods 
 

Construction of STTM-let7 
 

To block the expression of both let-7a and let-7b in pancreatic 1-cells, a STTM 

sequence complementary to let-7a (AACTATACAACCctaTACTACCTCA) and 

let-7b (AACCACACAACCctaTACTACCTC) with an 88 nt spacer in between 

(total 138 bp) was synthesized and cloned into the pEGP-miR vector as 

described (44) (Figure 3.1). 

 

 
 

Figure 3.1 Schematic representations of pEGP-miR cloning and expression 

vector for STTM-let7a/b and pEGP-miR Null control vector. (A) pEGP-miR 

(4972bp). The two sites for cloning of STTM in Human 1-globin intron are BamHI 

and NheI. Positions indicating EF-1a promoter, GFP-Puro fusion protein, SV40 

Polyadenylation signal and the human 1-globin intron are shown in the diagram. 

(B) pEGP-miR Null (4.7kb). The pEGP-miR Null control vector cannot be 

digested with BamHI due to secondary structure. (C) The sequences of STTM- 

let7a/b cloned into pEGP-miR vector. Two restriction enzyme recognition sites 

(BamHI and NheI) are shown. 

Cell culture and transfection 
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The pancreatic 1-cell line MIN6 was cultured in DMEM/high glucose (Thermo 

Scientific, Waltham, MA) with 15% fetal bovine serum (FBS) (Atlanta biologicals, 

Flowery Branch, GA), 100U/ml penicillin and 100 U/ml streptomycin. Cells were 

maintained in a 5% CO2 humidified atmosphere incubator (Thermo Scientific, 

Waltham, MA) at 37 C. The culture medium was replaced every 48h. For 

transfection, MIN6 cells were trypsinized and pelleted at 700 rpm for 3 min. Cell 

pellets were resuspended in 100 µl Nucleofector buffer (4D Nucleofector X kit L) 

(Lonza, Basel, Switzerland). 10 µg of plasmids for pEGP-STTM-let7 and pEGP- 

Null control vector were used for transfection according to the protocol. 3 days 

after transfection, MIN6 cells were treated with cytokines mix (10ng/ml, IL-11, 

IFN-y and TNF-a) for 12-24h. 

Isolation of pancreatic islets and virus infection 
 

Islets were isolated from 10- to 16-week wild type mouse using collagenase 

digestion and cultured in RPMI medium. After incubating for 24h, islets were 

infected with recombinant adenovirus as previously described (46)and plated in 

60 mm Petri-dish. Islets were collected 2 days after infection and perform 

western blot as described below. 

Luciferase reporter assay 
 

To evaluate the silencing efficiency of STTM-let7, let-7a complementary 

sequence or mutant was subcloned into the pRLTK vector (Promega, Madison, 

WI). For the luciferase reporter assay, pRLTK reporter constructs (2 µg) were 

electorporated into MIN6 cells (106) with pEGP-STTM-let7 or pEGP-Null control 

vector using Amaxa (Lonza). The plasmid PGL-3 containing firefly luciferase (2µg) 

was co-transfected together to normalize for transfection efficiency. Luciferase 

activity was measured with a dual-luciferase reporter assay kit (Promega) two 

days after transfection. 
 

RNA isolation and real-time PCR 
 

Total RNA from MIN6 or islets was extracted using Trizol reagent (Roche, Basel, 

Switzerland) or miRNasy Mini Kit (QIAGEN, Venlo, Netherlands) and reverse- 

transcribed using TaqMan MicroRNA Reverse Transcription Kit (Applied 
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Biosystems, Carlsbad, CA). Quantitative RT-PCR was performed using the 

SYBR Green Master Mix and StepOnePlus Real-Time PCR System (Applied 

Biosystem). miRNA levels were normalized by the relative expression of U6. 

Western blot analysis 
 

MIN6 cells were cultured and treated as described above and lysed with lysis 

buffer containing 50 mM HEPES, 150 mM NaCl, 1 mM EDTA, 1% Triton, 0.2% 

SDS, phosphatase inhibitor and proteinase inhibitor (1 ml, Sigma, St. Louis, MO). 

Protein concentration was determined using PierceBCA Protein Assay Kit 

(Thermo Scientific) and 150µgtotal protein samples were separated by SDS- 

PAGE. Immunoblotting was performed with antibodies purchased from Cell 

Signaling (Beverly, MA) diluted according to the protocols. 

Cell proliferation assay 
 

DNA synthesis was measured using cell proliferation ELISA kit (Roche). MIN6 

cells were transfected as described. At 48h after transfection, cells were 

collected and seeded in a 96-well plate to the density of 4x104 per well. BrdU 

were added to culture medium to a final concentration of 10µM. After BrdU 

labeling for 12-24h, the cells were processed according to the protocol. 

Cell Apoptosis 
 

At 48h after transfection, cells were collected and seeded in a 96-well plate. After 

incubating in the plate for 24h, cytokines mix was added to culture medium to the 

final concentration of 10ng/ml. According to the cell death detection ELISA 

(Roche) kit, anti-histone biotin and anti-DNA-POD were added to each well to 

measure the levels of cell death. 

Glucose Stimulated Insulin secretion 
 

As described above, MIN6 cells were seeded in 35 mm dish and incubated for 3 

days followed by 12-24h treatment of cytokines mix. Afterwards, cells were pre- 

incubated for 2h in Krebs-Ringer bicarbonate HEPES buffer (KRB) and then 

cultured in KRB containing 25mM glucose for 1h. After the incubation period, 

supernatants were collected for stimulated insulin secretion and cell pellets were 
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processed for total insulin content. Insulin levels were measured using Mouse 

Insulin ELISA Kit (Mercodia, Uppsala, Sweden) and normalized to DNA 

concentration of the cell pellets. 

Statistical analysis 
 

For comparisons, statistical significance was evaluated using a two-tailed 

Student t test. A p value of less than 0.05 was considered significant. 
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4. Results 
 

4.1 STTM-let7 reduces expression of let-7 in 1-cells 
 

The STTM-let7a/b constructed was synthesized and ligated with pEGP-miR 

vector that digested using BamHI and NheI as described above. To investigate 

the expression of STTM-let7 and inhibition of endogenous let-7, pEPG-Null 

control vector and pEGP-STTM-let7 were transfected into MIN6 cells respectively. 

Cells were collected for Northern blot to detect the expression level of let-7a. 

Endogenous let-7a was down-regulated in cells transfected withSTTM-let7 

compared with control group(Figure 4.1 A).In order to further determine the 

silencing efficiency of STTM-let7, let-7a or mutant let-7 recognition sites were 

cloned into 3'UTR of pRLTK luciferase vector and luciferase reporter assays 

were performed. Co-transfection with STTM-let7was capable of decreasing 

luciferase activity of the wild type constructs, whereas the reporter with mutant 

let-7 sites was not affected (Figure 4.1 B). 

 

 
 

Figure 4.1 STTM-let7 reduces the expression of let-7. A: Northern blot 

analysis of total RNA from MIN6 cells transfected with pEGP-STTM-let7 or 

pEGP-Null control vectors with 32P-labeled let-7a probe (left). Let-7 level was 

normalized to U6 as fold change(right). B: the pRLTK-let7 luciferase reporter 

construct was co-transfected into MIN6 cells along with pEGP-STTM-let7 or 

pEGP-Null control, respectively. The luciferase activities were normalized by the 

co-transfected pGL3 firefly luciferase activity.**, P<0.01 
 

4.2 Let-7 suppress cell death by targeting caspase-3 
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To understand the biological effects caused by the decrease of let-7 in 1-cells, 

we examined the expression level of let-7 targets by western blot. As expected, 

expression of caspase-3, which was reported to be one oflet-7 targets(19), was 

elevated when endogenous let-7 was inhibited by STTM (Figure 4.2 A, B) in 

MIN6 cells and islets. Caspase-3 belongs to the group of effector caspase family, 

which are located downstream of cell death pathway and can be activated 

through intrinsic pathway (Mitochondria) or extrinsic pathway (ligand-receptor 

binding)(17). Activation of Caspase-3 requires proteolytic cleavage of itself into 

17kDa and 12kDa subunits. The intrinsic apoptotic pathway is mainly mediated 

by Bcl-2 family members that center at mitochondria. Bax and Bcl-2, two 

antagonistic Bcl-2 family proteins regulating apoptosis, were all increased by 

STTM-let7independent of cytokines induced extrinsic cell death pathway. The 

elevation of Bcl-2 family by inhibition of let-7 suggested let-7 might play critical 

roles on regulating cell death. 

The effect of let-7 on cell death was confirmed through cell death assay in MIN6 

cells. In the presence of cytokines treatment, inhibition of let-7 by introducing 

STTM-let7 significantly increased cell death, which was correlated to the 

increased Caspase-3 expression (Figure 4.2 C). Under normal growth conditions, 

MIN6 cells displayed a low level of cell death rate and inhibition of let-7 had no 

effect. 
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Figure 4.2 Inhibition of let-7 by STTM-let7 induces cell death by targeting 

caspase-3. A: STTM-let7 increased the expression of caspase-3 and Bax. MIN6 

cells were transfected with STTM-let7 or control vector, After 48 h, cells were 

treated with cytokine (10 g/ml) for 16 h and the expression of caspase-3, 

cleaved caspase-3, Bcl-2 and Bax were measured by Western blot. B: STTM-let7 

increased the expression of caspase-3 and Bax in isolated islets infected with 

AD-STTM-let7 virus. C: STTM-let-7 Increased cytokine-induced cell death in 

MIN6 cells. *, P<0.05. 

4.3 Let-7 promotes 1-cell proliferation 
 

To assess the contribution of let-7 to cell proliferation, BrdU incorporation was 

performed in MIN6 cells after transfection. After incubating for 24h, STTM-let7 

was capable of decreasing BrdU signal and inhibiting cell proliferation (Figure 4.3 

A).For the cells treated with cytokines, there was no difference in BrdU signal 

because of the intensive cell death rate. Western blot analysis indicated that IRS- 
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2 and mTOR, two factors involved in insulin signaling and regulate 1-cell function, 

were both down-regulated by STTM-let7 (Figure 4.3 B). However, the expression 

of Akt and phosphor-Akt was not changed significantly. Akt2 was predicted 

containing the miRNA recognition sites of let-7 and it was phosphorylated by 

mTOR complex 2 (mTORC2) at Serine 473 (47). Activation of Akt2 subsequently 

phosphorylates mTOR at Serine 2448 and results in activation of mTOR complex 

1 (mTORC1). On the other hand, one of the insulin transcription factors, MafA, 

was not affected by STTM-let7 as expected for the reason of lacking let-7 

recognition sites. However, STTM-let7 had no significant effects on the 

expression of mTOR, IRS-2 and Akt in islets with AD-STTM-let7 (data not 

shown). 

 

 
 

Figure 4.3 Inhibition of let-7 by STTM-let7 inhibit 1-cell proliferation by 

down-regulating insulin signaling. A: MIN6 cells were transfected with STTM- 

let7 or control vector. After 48 h, cell proliferation was measure by BrdU 

incorporation after incubated with cytokine (10 g/ml) for 16 h. B: Western blot 

validated that STTM-let7 decreased the expression of IRS-2, p-Akt, p-mTOR and 

mTOR. The expression of MafA had no significant effect. 
 

4.4 Let-7 positively regulates glucose-stimulated insulin secretion 
 

Glucose stimulated insulin secretion assay of MIN6 cells was performed to 

investigate the effects of let-7 on 1-cell function. Increased glucose level is 
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capable of inducing insulin secretion by causing production of ATP and elevation 

of cellular Ca2+, and finally leads to the release of synthesized insulin from 

secretory vesicles. Consistent with the repressed insulin signaling,STTM- 

let7inhibited glucose-stimulated insulin secretion as well as total insulin 

content(Figure 4.4 A, B). Given the previous studies about insulin exocytosis was 

associated with insulin signaling (15), IRS-1 and PI3 kinase act as regulators 

controlling intracellular Ca2+ released from endoplasmic reticulum. As a result, 

the inhibition of insulin signaling in 1-cells also contributes to the reduction of 

insulin secretion. 

 

 

Figure 4.4 Inhibition of let-7 by STTM-let7 decreased insulin secretion in 

pancreatic beta cells.MIN6 cells were transfected with STTM-let7 or control 

vector. After 48 h, the secreted insulin in the medium (A) and insulin content (B) 

were quantified using mouse insulin ELISA and normalized to total DNA. The 

presented data are the average of three independent experiments S.D. 
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5. Discussion 
 

In this study, we observed that the expression of let-7 family was successfully 

blocked by the newly developed STTM technology. Inhibition of let-7 by STTM- 

let7 reduced 1-cell proliferation and induced 1-cell death through Caspase-3 

mediated apoptosis pathway. Moreover, reduced let-7 expression impaired 

insulin signaling and decreased glucose-stimulated insulin secretion. Taken 

together, let-7 promotes 1-cell proliferation and protects against cytokine-induced 

apoptosis. Let-7 also plays a key role in regulating insulin secretion by activating 

insulin signaling. 

Although let-7 was revealed to regulate apoptotic cell death by negatively 

regulating Caspase-3, whether other factors involved in cell death signaling are 

affected is less known. In this study, we show that let-7 inhibits two factors 

controlling initiation of cell death, Bax and Bcl-2. The elevation of Bax and Bcl-2 

can be observed in MIN6 cells transfected with STTM-let7 with or without 

cytokines treatments, indicating let-7 regulates cells death independent of 

cytokine-induced extrinsic pathway. Cell death ELISA assay indicates that up- 

regulation of Caspase-3 by STTM-let7 sufficiently lead to a significant increase in 

cell death after cytokines inducement. Caspase-3 exists as an inactive form that 

is triggered by extracellular or intracellular stimulations through activation of 

initiator caspases (Caspase 8, 9 and 10) (17). Although increased Bax/Bcl-2 ratio 

was observed associated with increased Caspase-3 and apoptosis (48), the 

other caspases (caspase-8 or -9) downstream from Bax/Bcl-2 were not affected 

in the studies where caspase-3 was inhibited by overexpression of let-7(19). It 

could be the reason that Bax and Bcl-2 are up-regulated at the same extent and 

Bax/Bcl-2 ratio remains the same without affecting the downstream cell signaling. 

Whether let-7 inhibits the expression of Bax and Bcl-2 directly is unknown, 

however, let-7plays a role in regulating the center of cell death, Caspase-3. 

Based on previous reports that let-7 can regulate glucose metabolism through 

Lin28/let-7 axis (30), let-7 controls glucose homeostasis and affects insulin 

sensitivity in muscles and liver by suppressing insulin signaling pathways. Insulin 

receptor (INSR), IRS-2, insulin-like growth factor 1 receptor (IGF1R), mTOR and 

Akt2 were confirmed to be regulated by let-7 through luciferase reporter assay 

(30,36). However, the previous studies primarily focused on insulin action on 
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insulin-target tissues rather than insulin secretion. Here, let-7 was revealed to 

promote insulin secretion and insulin signaling in 1-cells. IRS-2, which capable of 

promoting 1-cell growth and function (13), could play critical roles in let-7 

mediated activation of insulin signaling. Decreased insulin secretion observed in 

cells transfected with STTM-let7 can be caused by inactivation of insulin 

signaling or impaired cell proliferation. Frost and Olson (36) have reported the 

decreased insulin secretion in let-7 globally knock-out mice. Theoretically, absent 

of let-7 in pancreas should promote insulin signaling and result in enhanced 1- 

cell function. However, a low level of insulin secretion in transgenic mice was 

observed, suggesting the potential effects of let-7 on maintaining glucose 

homeostasis. In our study, the inhibition of IRS-2 and mTOR in the presence of 

STTM-let7 indicates the reversal of let-7 effects on the mRNA of these genes. In 

contrast, the other let-7 target, Akt2 was not changed. The other isoform of Akt, 

Akt1 was ever revealed to regulate cell cycle by regulating Cyclin D1 and cyclin- 

dependent kinase-4 (49). Both of Akt1 and Akt2 were activated through 

mTORC2-mediated phosphorylation at Serine 473(47) although only Akt2 was 

predicted to be regulated by let-7. Absence of the alteration in Akt and p-Akt 

could be caused by the slight change of Akt expression and the antibody 

targeting total Akt content. The unaffected phosphor-Akt also suggests 

phosphorylation of Akt was not influenced by the decreased mTOR in mTOR 

Complex 2. Although an intact mTOR Complex requires phosphorylation of 

mTOR, recent data renders that mTOR is phosphorylated diversely when 

associated with mTORC1 and mTORC2 (50). The specific phosphorylation of 

mTOR in mTORC1 is primarily on Serine 2448 whereas mTOR in mTORC2 is 

phosphorylated on Serine 2481. It is mTORC2 that phosphorylate Akt1 and Akt2 

at Serine 473. mTORC1 locates downstream from Akt and is activated through 

insulin signaling. Phospho-mTOR at Serine 2448 was detected and revealed to 

be repressed because of STTM-let7 (Figure 4.3 B). Unaltered phosphor-Akt 

provides the evidence that decrease of phosphor-mTOR only results from the low 

expression of mTOR, regardless of the activation of phosphor-Akt. Indeed, Ser- 

2448 phosphorylation of mTOR was reported to be regulated by p70S6 kinase 

downstream from mTOR (51). 

Other studies demonstrate that the effect of let-7a on target mRNA is reversed in 

immune-stimulated cells (52) and translation of HMGA2 is activated by let-7 in 
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the cells arrested in G0phase of cell cycle (53).Bhattacharyya, et al discovered 

that he reversal of miRNA repression was mediated by mRNA processing bodies 

(P bodies) in response to different stress conditions (54). However, it is not 

confirmed whether the activation of insulin signaling by let-7 results from stress- 

induced reversal of mRNA repression. And in islets consist of alpha cells and 1- 

cells, IRS-2 and mTOR wasn't changed significantly by STTM-let7, suggesting 

let-7 may play different roles in different types of cell. 

The decrease of insulin secretion caused by down-regulation of let-7 in MIN6 

cells can be a combination of inhibited 1-cell growth and deactivation of insulin 

signaling. Changes of total insulin content suggest the let-7 promotes insulin 

expression by regulating cell proliferation. And essentially, insulin signaling also 

influences the Ca2+level and directly affect the exocytosis of insulin vesicles (15). 

As mentioned above, increase of Ca+ was revealed partially dependent on IRS-1 

and PI3 kinase(55). Recent data also indicates various intracellular factors 

involved in cell signaling contribute greatly to GSIS in compared with glucose 

itself (56). From the previously studies regarding the effects of insulin molecules 

on insulin secretion (15), it can be inferred there is a complex feedback 

mechanism that helps 1-cells auto-regulate their functions through insulin 

signaling. 
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6. Future work 
 

In this study, the effects of let-7 on pancreatic 1-cells were mainly focused on 

MIN6 cell line. And the molecular mechanisms underlying the biological changes 

were not fully understood. In future work, STTM-let7 can be used for repression 

of let-7 in mice islets. Insulin promoter region will be used driving the expression 

of STTM in the 1-cell of mouse pancreas. Whether let-7 regulates 1-cell function 

can be determined in vivo by examining glucose metabolism in the transgenic 

mice. Globally inhibition of let-7 in mouse had been shown associated with 

increased insulin sensitivity and enhanced glucose tolerance (36). For the mouse 

specifically inhibit let-7 in 1-cells, glucose tolerance tests (GTT) will be performed 

to confirm the response of 1-cell to glucose stimulation. 

The action of let-7 in other tissue cells should be examined for comparison with 

let-7 in 1-cells. Insulin signaling pathways in different tissues may be responsible 

for various functions and thus they are mediated in different manners. Another 

strategy resolving the question is to silence one of the genes involved in insulin 

signaling. Let-7 mediated 1-cell function could base on either a combination of 

multiple let-7 target genes or a few critical genes. In addition, the activation time 

of insulin signaling presumably leads to diverse effects on insulin secretion in 

response to glucose (15). 

Although well known as a tumor suppressor, let-7 was recently reported to 

regulate cell death by targeting Fas (57) and Caspase-3 (19). Our work further 

revealed let-7-mediated apoptosis was associated with Bax/Bcl-2 ratio in 

mitochondria. It is essential to examine the miRNA involved cell death signaling 

in other types of cell. Overexpression of let-7 in those cells will provide more 

information about let-7 effects on cell growth and cell death. 

Finally, 1-cell mass can be measured in isolated islets from the transgenic mice 

specifically silence let-7 in pancreas. Considering the low proliferation rate and 

apoptosis rate of 1-cells, whether absence of let-7 will result in a significant 

difference is unknown. Since let-7 is responsible for regulating glucose 

homeostasis and insulin sensitivity, dysfunction of let-7 in 1-cells may also 

contribute to the development of type 2 diabetes. 

7. Conclusion 
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Short tandem target mimic (STTM) is capable of inhibiting the expression of 

endogenous microRNA let-7 in pancreatic 1-cells. Let-7 miRNA family plays 

significant roles on the normal function of 1-cells. Through STTM approach, let-7 

was shown to protect 1-cells from cytokine induced cell death by suppressing 

Bax-Caspase-3 apoptotic cascade. Moreover, for the first time let-7 was revealed 

to regulate insulin signaling by controlling the expression of several factors 

responsible for 1-cell proliferation and insulin secretion.IRS-2 and mTOR were 

both found to be promoted by let-7. The study of let-7 in pancreatic 1-cells 

suggests the function of insulin signaling pathways in insulin-producing cells and 

provides potential targets that may contribute to therapeutic treatments of type 2 

diabetes. 
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