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Abstract 

The sympathetic nervous system (SNS) is the main control center for the 

neurogenic regulation of blood pressure and is affected in fructose induced 

hypertension.  The brain is by far the greatest consuming and energy demanding 

organ in the body which has the ability to metabolize and generate fructose but 

with consequences.  Diets high in salt and fructose enter the body and eventually 

crosses the blood brain barrier where it exerts its effects on SNS signaling.   The 

aim of this thesis is to determine the connection between fructose and 

hypertension along with the detrimental effects of fructose within the brain.  Here 

we test the hypothesis that a high salt combined with a high fructose diet 

contributes to hypertension by increased cerebral spinal fluid (CSF) sodium 

concentrations which alter key neuronal signaling mechanisms.   
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1 Chapter 1: Introduction 

1.1 Overview and Significance  

The increased intake of fructose in diets and the subsequent rise in 

hypertension are in a parallel escalation in today’s western society[1].  It has 

been shown that fructose can provoke hypertension [1, 2], and that the 

central nervous system (CNS), particularly the sympathetic nervous system 

(SNS) exerts major regulatory control over blood pressure [3-5].  SNS 

dysfunction is also suggested as a component of fructose-induced 

hypertension.  Fructose-induced hypertension is more prevalent in those who 

have had diabetes and obesity, and this can eventually lead to a more serious 

condition like cardiovascular diseases and an increased risk of mortality [6, 7].  

According to the Center for Disease Control, cardiovascular disease killed 

nearly 801,000 people in 2017 and it’s predicted to kill 836,546 people in 

2018.  Hypertension is the primary threat for cardiovascular disease, and in 

2017 45.6% of US adults have hypertension per the American Heart 

Association[8].   

It is well-established that elevated high salt plus fructose intake is the 

primary influence in essential hypertension and the onset of other metabolic 

syndrome disorders.  It has also been established that fructose alone is 

responsible for alteration in brain genes [9, 10], synaptic plasticity, and can 

contribute to CNS impairment [11].  The majority of humans on the western 

diet with hypertension consume a larger quantity of salt and sugar.  The more 
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salt and sugar one ingests the higher their blood pressure threshold will 

become.  The less salt and sugar one consumes then the lower their blood 

pressure will be and this prevents risks for many future diseases.  It is 

obvious that there are many factors when considering increased blood 

pressure.  For example, added sugars increase the onset of obesity and bring 

about metabolic syndrome.  Lanaspa 2018 et al. demonstrated that a high 

salt diet can activate the aldose reductase-fructose kinase pathway in both 

the liver and brain in mice.  This study indicated that high salt can lead to 

endogenous fructose production and develop leptin resistance and 

hyperphagia, which is the origin for obesity, insulin resistance, and even fatty 

liver which are the hallmarks for metabolic syndrome.  In addition, a combined 

high salt and fructose diet has been known to contribute to the onset of 

hypertension as well.  Gordish K.L. and Beierwaltes W.H. 2017 have revealed 

that rats who consume a 20% fructose diet plus a high salt (4% NaCl) diet are 

predisposed  to salt-sensitivity which leads to sodium retention, and increased 

blood pressure [12].  Studies of a high salt diet combined with a sugar diet 

(fructose) is much more realistic when comparing animal models to the 

current human’s diet habits.  However, the molecular mechanisms that links 

salt and fructose to hypertension is poorly understood.  The discovery of 

innovative mechanisms whereby a high salt diet may stimulate fructose 

uptake and may contribute to hypertension via neuronal apoptosis from the 

byproduct of acetate may clarify novel objectives for future treatments.   
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1.2 Blood Pressure Regulation, Hypertension and Mean Arterial 
Blood Pressure 

According to the American Heart Association blood pressure by definition 

is “A pressure that the heart creates which allows the blood to move 

throughout the network of blood vessels including veins, arteries and 

capillaries[13].” Blood pressure variations can arise from many different 

modifiable factors including diet, smoking, alcohol, stress, exercise and more.  

However, it is possible that blood pressure can also be regulated by non-

modifiable factors such as genetics, age, ethnicity, and family history.  These 

blood pressure fluctuations, that our body experiences on a regular basis are 

monitored and regulated by our organism’s homeostatic mechanisms.  The 

blood pressure homeostatic mechanisms are very well connected to each 

other.  All mechanisms for blood pressure regulation include, but are not 

limited to: 1) the neuronal mechanisms of blood pressure regulation short 

term control, 2) the cardiovascular center via short-term control, and 3) the 

kidney’s hormone mechanisms for long term blood pressure control.   

The CNS which contains the neuronal mechanism of short term blood 

pressure control has been demonstrated to be the primary control center for 

blood pressure regulation[5].  The CNS communicates with several organs in 

the circulatory system throughout the autonomic nervous system (ANS).  The 

cardiovascular center can regulate blood pressure by managing cardiac 

output via regulating blood vessel diameter by vasodilation or 

vasoconstriction[5].  Although, vessel diameter can alter blood flow, blood 
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viscosity and the length of the blood vessel is also a major factor in 

determining blood flow resistance.  The cardiac center may also regulate 

blood pressure by either stimulating sympathetic cardiac nerves to increase 

contractility or heart rate or inhibiting cardiac output by transmission through 

parasympathetic vagus nerves to decrease heart rate.  Information about the 

state of the body can be received through baroreceptor and chemoreceptors 

by the cardiovascular center.  Baroreceptors monitor arterial blood pressure 

and are primarily located in the carotid artery and sinus or in the aortic arch 

above the right atrium.  Chemoreceptors are sensory neurons that monitor 

the body’s oxygen and carbon dioxide levels located in the carotid bodies and 

aortic bodies[5].   

1.3 Metabolic Syndrome and hypertension 

Fructose-induced hypertension is more prevalent in those who have 

symptoms of metabolic syndrome [6, 7].  Therefore it is nearly impossible to 

discuss fructose-induced hypertension without mentioning metabolic 

syndrome.  Metabolic syndrome is a cluster of cardiometabolic risk factors 

which escalates the risk for multiple chronic diseases including cardiovascular 

diseases, stroke, and type two diabetes [14].  The cluster of conditions that 

typically coincide with each other in metabolic syndrome include:  

hypertension, elevated blood sugar, excess body fat around the waist, 

obesity, abnormal cholesterol (ie. Low amount of high density lipids) and high 

triglyceride levels [14].  The metabolic syndrome has many etiological factors, 
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however, a central factor is a poor diet which consists of high amounts of 

fructose and elevated salt intake. A poor diet and sedentary lifestyle is the 

major attribution for the foundation of metabolic syndrome.  High-

carbohydrates and saturated fats may also be linked to metabolic syndrome.  

Therefore, there is no consensus of the direct cause of metabolic syndrome.   

The popular way of describing the pathophysiology of metabolic syndrome 

is by discussing insulin resistance, which is the defect in insulin action which 

results in hyperinsulinaemia, which is needed to maintain normal glycemia.  

Insulin resistance has become an issue through the means of abundant fatty 

acids because the fatty acids released adipose tissue mass.  Interestingly, we 

know that fructose is a lipogenic sugar that is directly metabolized in the liver, 

and either stays in the liver – contributing to a fatty liver—or transports directly 

to the blood stream [15, 16].  When a high concentration of fructose enters 

the blood it will directly be metabolized into fatty acids, triglycerides, lactate, 

and glycogen. This will travel around the body’s vasculature until in either 

accumulates in the blood vessel walls and/or into the cerebral spinal fluid or 

makes its way into the brain via monocarboxylate shuttles resulting in an 

increased in brain lactate and acetate (data not yet published).  When a high 

salt diet and high fructose diet is combined, the salt has the ability to stimulate 

the fructose uptake acquiring a salt-sensitivity, retaining sodium in the blood 

stream and creates an increase in blood pressure (demonstrated in rats) [12].  

The high salt and fructose diet may be contributing to an insulin resistance 

and therefore leading to hypertension or vice versa, however, detailed 
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mechanisms are still unknown.  Still, insulin resistance and fatty acids 

increase the production of glucose, triglycerides, and very low-density 

lipoproteins (VLDLs), which is very similar to how the body reacts to a high 

fructose corn syrup drink.    Hypertension has been described in a variety of 

different ways with diverse proposed mechanisms.  For example, since insulin 

is a vasodilator, and has the ability to create sodium reabsorption in the 

kidney, the vasodilator effects of insulin may become lost, and sodium 

reabsorption is conserved [15, 16].  Fatty acids have the ability to mediate 

vasoconstriction, which might be why vessels are damaged, and the side 

effect is an increase in blood pressure.  Also, hyperinsulinemia may be 

related to an increase of sympathetic nervous system activity and ultimately 

contributing to hypertension [15, 16]. 

Metabolic syndrome and its components are very intricate; however, 

abdominal obesity appears to be an important contributing factor.  In some 

theories, it has been presumed that visceral adipose tissue creates a flux of 

adipose tissue-derived fatty acids transferred to the liver from the splanchnic 

circulation, which is expected [15, 16].  This tends to increase the 

subcutaneous fat, releasing lipolysis into the systemic circulation instead of 

utilizing direct hepatic metabolism, similar to when we eat a high fructose diet. 

Although fructose is metabolized directly in the liver, the abundance is so 

shocking to the liver that it pours into the blood stream resulting in an 

increase in fatty acids contributing to visceral fats [15, 16].  Remarkably, the 
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4% NaCl plus 20% fructose drinking water has been show to generate obesity 

in Sprague Dawley rats in just three weeks (data not yet published). 

1.4 The relationship between rats and humans and their diet 
intake 

The relationship between rats and humans can be contemplative in 

science.  Often times the rat model compared to the human is not explained 

very well.  In this thesis, this thesis will iterate why the comparisons between 

a rat and human are performed.   

The rat model is the preferred model of human cardiovascular and 

neurosciences[17].  This is because the physiology of the rat is simple to 

monitor, along with the fact that we have accumulated an enormous amount 

of data[17].  It has been demonstrated that the rat model regarding physiology 

is close to the human for examples, cognition is superior in the rat and the 

rat’s neuro circuitry regarding memory and learning is quite comparable to the 

human[17].   

Interestingly a rat’s age can also be compared to the human age[18].  Per 

Robert Quinn one human year is comparable to about 10 rat days for adult 

rats which they’re considered to be adults when they reach sexual maturity 

around 6 weeks[19].  In this thesis we have used 8-week-old rats which are 2 

weeks past sexual maturity/adult hood but this is comparable to a ~18 year 

old human[19] when you use the calculations that during the rat adult phase 
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11.8 rat days equals ~1 human year.  The following flow chart below 

demonstrates the outlined ages of the rats for this thesis. 

 

In this thesis we have used 1 control diet and 3 special diets.  The normal 

salt (NS) or control group was fed 0.4% NaCl chow and normal drinking.  The 

high salt (HS) group was given a 4% NaCl diet with normal drinking water.  

The fructose (F) group was given a normal salt chow with 20% fructose in 

their drinking water.   Finally, the high salt plus fructose (HS+F) rat group was 

given a 4% NaCl chow plus 20% fructose in their drinking water.  The water 

was from the tap and then was autoclaved.  The fructose was added after the 

water was autoclaved.  The fructose water bottles were changed every three 

days to prevent any bacterial growth.  The diagram below indicates the 

approximate value of water and food intake per each day for each group 

(from my metabolic data, this is the averaged data for each day of 

consumption, whole numbers will be used for simple mathematics).  This will 

Wait for 
SD males 

rats to 
become 8-
weeks-old 

Give 
special 

diet for 3 
weeks

Metabolic 
cages for 

4 days

Take CSF, 
blood, and 
euthanize 

rats 
immediatly 

for tests
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be further used to explain why how diet is comparable to humans.  Data for 

metabolic cages are in the results section of this thesis. 
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The approximate value of food intake for SD adult male rats after a three 

weeks of a special diet treatment data from metabolic cage 

measurements (rounded to the nearest whole number) 

Rat 

Group 

Norma

l Chow  

4% 

NaCl 

Cho

w 

20% 

fructos

e water 

Norma

l water 

Calorie

s from 

chow 

Calorie

s from 

fructos

e water 

Total 

calori

e 

intake 

Averag

e body 

weight 

of rat  

Control  

(NS) 

22 g X X 25 mL 70 Kcal X  70 

Kcal 

377 g 

High 

Salt (HS) 

X 23 g X 45 mL  71 Kcal X  71 

Kcal 

376 g 

Fructos

e (F) 

15 g X 19 mL X  48 Kcal  76 Kcal 124  

kCal 

364 g 

High 

Salt and 

Fructos

e (HS+F) 

X 13 g 34 mL X  40 Kcal  136 

Kcal 

176 

kCal 

355 g 

Based off the following custom diet from Envigo: 

• 4.0% NaCl= 3.1 Kcal/g  Envigo TD.92034 
• 0.4% NaCl=3.2 Kcal/g  Envigo TD.96208 
• 1 gram of fructose is equal to 4 Kcal/g 

In the above table the relationship between kilocalorie (Kcal) and fructose 

consumption was made.  Body weights were given for reference.  Sprague 
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Dawley (SD) rats are comparable to healthy humans without any diseases or 

health issues.  For the control diet (NS, normal salt diet, 0.04%), this would be 

relative to a healthy human diet.  Including vegetables, protein, minimal 

carbohydrates, and no processed sugars while only drinking water.  The high 

salt (HS) diet is comparable to a human diet who consumes 4% salt or the 

equivalence of 120,000 mg of NaCl with normal drinking water per day, no 

sugary drinks.  The 20% fructose diet (F) would be comparative to a human 

diet who drank 500 calories of fructose sugary drink, whose total calorie 

consumption is based on a total of 2500 calories per day.  Finally, a high salt 

and fructose diet would consist of a human to eat a combination of about 

120,000 mg of NaCl plus drink 500 calories of fructose per day based on a 

calorie diet of 2500 calories/day.  
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2 Chapter 2:  Fructose Effects on the Central Nervous 
System; Review Article 

2.1 Abstract 

Fructose has detrimental effects on human physiology, and has been 

linked to obesity, cardiovascular diseases, and hypertension.  However, the link 

between fructose-induced hypertension within the central nervous system (CNS) 

is poorly understood.  The objective of this paper is to shed light on the research 

linking the contribution of fructose to CNS control of blood pressure. This paper 

aims to elucidate the connection of fructose to inflammation, and fructose leads 

to the elevation of lactate in the CNS which ultimately contributes to 

hypertension.  A comprehensive overview of metabolism of fructose within the 

body and CNS are discussed.  The by-product of reactive oxygen species (ROS) 

and nitric oxide (NO) from fructose feeding within areas of the brain are 

discussed as well.  This paper discusses the issue that fructose has devastating 

effects on astroglial, neuronal, and microglial cells.  Furthermore, the molecular 

mechanisms of fructose induced inflammation that regulate histone 

deacetylases3 (HDAC3) - toll-like receptor 4/ nuclear factor-kB (TLR4/NF-KB) 

pathway is discussed as one of the main molecular pathways in which 

hypertension is induced in the paraventricular nucleus (PVN).   Finally, this paper 

brings to light that fructose and salt are synergistically interconnected in the 

intestine and kidneys shown by glucose transporters and sodium hydrogen 

exchanger (NEH3) expression.   
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2.2 Introduction 

The limitless escalation of fructose in today’s western world diet is 

worrisome because it is related with a parallel increase of obesity[20, 21], 

hypertension[22], and cardiovascular diseases[23].  Fructose is incorporated into 

our foods by a more common additive known as high fructose corn syrup 

(HFCS), which is a high level processed sugar including at least one genetically 

modified organism (GMO)[21]. Specifically, fructose is a glucose sweetener used 

as an alternative for sucrose and can be found in pops, condiments, juices, 

baked goods, and candies[24].  Although a lot of the population has started to 

recognize that HFCS is linked to weight gain, hypertension, and cardiovascular 

disease some brand name products have renamed “high fructose corn syrup” on 

their food labels to “natural sugars” to trick buyers into consuming their products 

and making unhealthy decisions[25].   

Fructose is a ketonic monosaccharide consisting of a five-member ring 

structure with the same molecular formula of glucose (C6H12O6), which instead is 

a five-member ring structure and an aldehyde[24].  Fructose is commonly derived 

from sugar beets or sugar canes and is present in small amount of fruits and 

honey[24].  It is well known where we can get fructose or HFCS, but the detailed 

metabolism and transportation of fructose around the body seems to be a greater 

mystery.   

Fructose is transported passively via facilitated diffusion by a glucose 

transporter called GLUT5 [26-28].  GLUT5, a uniporter, is special in the way that 
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is can solitarily transport fructose and does not have the capability to transport 

glucose or galactose.[26, 28, 29].  GLUT5 is highly expressed in the small 

intestine while there are minimal quantities of GLUT5 expressed in the brain, 

adipose tissues, sperm, skeletal muscles, and kidneys.  Interestingly, the chronic 

ingestion of the GLUT5 substrate fructose has been linked to disorders like type 

two diabetes, hypertension, non-alcoholic fatty liver disease (NAFLD), 

inflammation, and obesity[28, 30].    

GLUT5 is only capable of transporting fructose but another glucose 

transporter, GLUT2, is the only other glucose transporter which can also transfer 

fructose but with a caveat [31].  The caveat is that GLUT2 does not solely 

transport fructose, it has the ability to convey glucose and galactose as well [31].  

GLUT2 is also a facilitative glucose transporter and has been discovered to be 

located in the pancreatic beta-cells, liver, intestinal mucosa, kidneys, and in the 

hypothalamus area [31, 32].  It seems that between GLUT2 and GLUT5 

expression, GLUT5 may have a larger connection to inducing hypertension 

rather than any other GLUT.   

Many clinical studies have been leaning toward the role of the CNS as one of the 

main connections contributing to the onset of fructose-induced hypertension [3, 

33]  However, the connotation among salt stimulated fructose induced-

hypertension is still lacking in definition because current studies have contributed 

very little to these findings.  A common fructose-induced hypertension study was 

done by Farah V. and researchers who have demonstrated that a fructose diet 
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increases mean arterial pressure (MAP) and disrupts insulin homeostasis of male 

Wistar rats when fed a 66% fructose diet over ten weeks [34].  To shed light on 

salt stimulated fructose-induced hypertension, Gordish et al. 2017,  

demonstrated that systolic blood pressure was increased when salt (4% NaCl 

chow) was added to the 20% fructose water diet in Sprague Dawley (SD) rats 

compared to the control, fructose alone, and salt alone [35]. 

This review will aim to focus on the role of fructose and its effects on the 

central nervous system, by evidence of several fructose feeding animal studies.  

Since fructose is transported by GLUT5, the expression of GLUT5 in the brain 

and spinal cord will be assessed.  The effects and actions of fructose on the CNS 

lead to increase in food intake will also be discussed.  A comprehensive 

evaluation of fructose metabolism in the body and brain will also be discussed. 

2.3 The pathway of fructose metabolism   

Fructose-1-phosphate pathway, and fructose-6-pathway are two of the 

passageways that fructose is metabolized.  Fructose 1-phosphate pathway 

requires ketohexokinase/fructokinase, an enzyme that catalyzes the transfer of a 

phosphate group from ATP to fructose.  The results of fructose 1-pathway by the 

enzyme fructosekinase traps fructose’s metabolism in the liver.  The fructose 6-

phosphate pathway is an intermediate of glycolysis and gluconeogenesis.  

However, the fructose-6-phosphate pathway has a low affinity for fructose and a 

high Km value which is unfavorable.  Km is the concentration of substrate in 
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which the enzyme is able to reach half of the catalyst rate constant[36].  The 

preferred pathway for fructose metabolism is the fructose-1-phophate pathway 

which is located almost entirely in the liver.   

Fructose is almost completely metabolized in the liver because of the 

favored fructose-1-phosphate pathway due to the low Km value and high affinity 

for fructose [26, 37].  One of the resulting products from fructose metabolism in 

the liver is glycogen[38].  Liver glycogen is considered to be a fuel reserve and 

can easily be broken down into glucose molecules when needed[38].  However, 

HFCS can often cause the liver to be overwhelmed and that can create a huge 

burden resulting in hepatic steatosis (fatty liver).  When the liver is stunned with 

excessive fructose then that fructose will become converted into free fatty acids 

via de novo lipogenesis and stored as endogenous triglycerides or very low-

density lipoproteins (VLDL)[26, 37, 39].  The storage of fatty acids, VLDL and 

triglyceride are eventually stored as fat within the liver[39].  The metabolism 

burden of fructose on the liver results in the increase of endoplasmic reticulum 

(ER) stress and reactive oxidative species (ROS) production, known to stimulate 

insulin resistance[39].  Fructose may also be metabolized in the intestine[29], 

kidney, skeletal muscles, testes[29], and the brain.[39].  The metabolism of 

fructose in the brain is further discussed in the next section. 
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2.4 The metabolism of fructose in the brain 

Fructose is not only metabolized in the liver or intestine, it is also 

metabolized by other tissues including the brain which has been shown in 

oxidative assays which measures oxidative stress of dissected brain regions from 

adult mice [12, 18].  Sarah A. Oppelt et. al. and Funari V.A. et. al. discovered that 

the cerebellum, hippocampus, cortex, and olfactory bulb of adult mouse brain 

slices included a substantial number of neurons and glial cells comprised of 

expressing genes for fructose-1-phosphate pathway cascades [12, 18, 20].  This 

suggests that fructose may be metabolized in those brain areas [12, 18, 20].  

Even in the hypothalamus, the brains metabolic control center, has been 

recognized in fructose metabolism which contributes to alterations in gene 

activity [17, 18].   

The human body and brain both contain aldose reductases, and sorbitol 

dehydrogenases which has the ability to reduce glucose to sorbitol and oxidize 

sorbitol to fructose, respectively [40].  Sorbitol (C6H14O6) is a type of sugar 

alcohol which was extracted from glucose and is commonly used as an 

alternative sugar in foods[41].  This ultimately means that glucose can be 

converted to sorbitol and then further oxidized to fructose. This is considered to 

be the polyol pathway, an alternative glucose pathway [40].   

For some reason the brain can bypass the rate-limiting step in glycolysis 

but with consequences.  This rate-limiting step results in the phosphorylation of 

fructose-6-phosphate to form fructose-1,6-bisphosphate. The purpose is to 
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convert fructose directly to malonyl-CoA, which requires energy to elongate the 

fatty acid chain[42].  The result is that the metabolism of fructose in the CNS 

rapidly depletes hypothalamic adenosine triphosphate (ATP)[42].   The 

exhaustion of ATP in the hypothalamus will then lead to the upsurge of 

adenosine monophosphate (AMP) and initiation of adenosine monophosphate 

kinase (AMPK) signaling, plus increase of food intake which can result in the 

consequence of weight gain[42].  Interestingly, it is unclear whether fructose 

crosses the blood-brain barrier but it’s known that fructose can be endogenously 

produced from glucose to sorbitol and finally to fructose [19].  However, 

according to researchers Janice J. Hwang et. al. from Yale University the polyol 

pathway subsidizes fructose production in the CNS from glucose, which is 

related to intracerebral fructose changes and is not correlated to the human 

plasma fructose levels[43].   

2.5 Fructose effects on the CNS  

Overwhelming publications demonstrate that the CNS play a more 

imperative role in the control of blood pressure and cardiovascular function than 

was previously thought.  The CNS is responsible for regulating the sympathetic 

nerve activity (SNA) and blood pressure which directly contributes to dissimilar 

types of hypertension [44].  In some way the CNS indirectly contributes to all 

categories of hypertension but the mechanisms have remained 

undistinguishable.  Remarkably, the CNS is considered to be the main regulator 
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for blood pressure control due to the sympathetic nervous system (SNS) which is 

part of a larger system called the autonomic nervous system (ANS).   

2.6 Fructose effects on obesity related hypertension 

Melanocortin, a collection of peptide hormones derived from the pro-

opiomelanocortin (POMC) in the pituitary gland, and its receptor activities in the 

brain has been demonstrated to regulate blood pressure and the SNS activity in 

humans and animal models [33, 45, 46].  POMC neurons tend to result in a 

decrease of food consumption along with weight loss[47].  However, the 

activation of neuropeptide Y and agouti-regulation protein (NPY-AGRP) neurons 

consequence in weight gain and increased food consumption[47].  Melanocortin-

4 receptor (MC4R) has been known to play a role in body weight regulation, 

feeding behavior, the regulation of metabolism, and blood pressure regulation 

[46].  MC4R is the key mediator of the two neurons POMC and NPY-AGRP and 

has an effect to determine which will be activated specifically in areas including, 

but not limited to, the paraventricular nucleus (PVN)[47].   

Obesity-related hypertension is highly linked to MC4R and has shown to 

be MC4R dependent[48]. Animals with hypertension and an increased SNS 

activity were given a blockade of MC4R which decreased blood pressure, heart 

rate, and the SNS response.  MC4R is important for the control of food because 

it mediates NPY-AGRP and POMC neurons which is linked to the initiation of 

signaling cascades involved with leptin receptors.  Leptin is primarily involved in 
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the regulation of food consumption. It is a hormone secreted from white adipose 

cells that is associated with inhibiting the hunger sensation by acting on 

receptors in the arcuate nucleus of the hypothalamus (ANH).  Leptin intravenous 

infusions have been found to increase blood pressure in rodents with severe 

obesity[49].   The leptin obese rodents produced continuing increases in blood 

pressure (6 mm Hg after 7 days), heart rate, and adrenergic activity[50].  Clinical 

studies on hypertensive humans have shown that elevated plasma leptin has a 

correlation between high levels of leptin which occurred in hypertensive patients 

compared to non-obese normotensive patients [49, 51].  The CNS links the 

MC4R-expressing neurons to the POMC and NPY-AGRP neurons by projections 

in the area of the PVN.   MC4R is located on the axon terminal of the PVN and 

can increase the amount of gamma-amino butyric acid (GABA) that can be 

released to the neurons of the PVN, and has a strong connection to obesity-

related hypertension [48]. When GABA, a neurotransmitter, is secreted from 

NPY/AGRP neuronal axon terminals this will block the POMC neurons ultimately 

resulting in weight gain and uncontrollable feeding[52].  The increasing levels of 

leptin in obese hypertensive humans are in correlation to increased MCR4 in the 

CNS [53, 54].  Obesity is linked with increased levels of MC4R which is known to 

be related to increased activity of renal SNS and increased sodium absorption 

which further associates it to induced hypertension[54]. 
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2.7 Fructose effects on the CNS contribute to hypertension 

Fructose is vastly connected to obesity and hypertension in the today’s 

western society [20, 55].   NPY itself is involved in enhanced food intake, 

involved with obesity, and is the most abundant peptide in the CNS[53].  MC4R-

expressing neurons are involved in both hypertensive and obese rodents and 

humans[54].  Fructose is consistently used in our daily processed foods and 

although fructose is mainly metabolized in the liver, small amounts are 

metabolized in the intestines and will contribute to enhance feeding due to 

continuing MC4R expression of neuron in the NPY.  Taken together these all 

suggest that CNS plays a more critical role in the control of fructose-induced 

hypertension [33, 45, 46].   

The CNS play an imperative role on fructose-induced hypertension by the 

involvement of neuronal nitric oxide synthase (nNOS) in the NTS, reactive 

oxygen species (ROS) in the RVLM, and downregulating superoxide dismutase 

SOD1 and SOD2.   

2.8 The role of a high fructose diet on nitric oxide production 

Nitric oxide is considered to be a radical gas, but it has an important role 

in biological processes such that it is an important molecule in signaling 

cascades. [56, 57].  There are three types of nitric oxide synthase which are 

neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), 

and inducible nitric oxide synthase (iNOS)[56].   
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NO in the blood vessel wall is produced via the cascade of the calcium-

calmodulin scheme; endothelial nitric oxide synthase (eNOS) is critical for 

preventing damage to the walls of vasculature[58, 59]  Particularly, eNOS 

dysfunctions have been linked to hypertension as well [58].  However, there are 

other areas in your body such as in the CNS where nitric oxide plays a critical 

role in synaptic plasticity, sleep-wake cycles, and the regulation of hormone 

cycles [56, 58].   

Within the CNS of a healthy individual, nNOS, reacts with any superoxides 

(O2•-) that have accumulated from risk factors like fructose-induced hypertension 

or glucose increases[56].   Following this reaction, nNOS and O2•- will then 

combine together to form peroxynitrite, which reduces ROS scavenging 

capabilities for the neuron cells [58].  When the body undergoes salt 

consumption or obesity, sympathoexcitation occurs from oxidative stress in the 

rostral ventrolateral medulla (RVLM).  Fructose has been shown to stimulate 

sympathetic over activity and excite the brain during fructose intake.  However, 

when adult normotensive rats were subjected to an 8 week diet of fructose 

(increased risk factor), nNOS developed a vicious cycle and eventually 

generated enzymes that produced superoxides[60].  The tissue of the rostral 

ventrolateral medulla (RVLM) level of NO was shown to decrease and ROS 

production increased simultaneously [60].  nNOS protein expression in the RVLM 

was significantly increased after the 8 week diet of fructose intake of these 

rats[60].  The superoxides that started to build up in the RVLM eventually 
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resulted in free radicals and the consequence that of oxidative stress, leading to 

fructose-induced hypertension and sympathoexcitation [60].   

nNOS has been linked to hypertension due to that fact that nNOS is dominantly 

contributed to the control of intracellular calcium homeostasis in the heart[57] and 

in the CNS[61, 62].  Blood pressure is highly regulated by intracellular calcium 

because an influx of calcium into vascular smooth muscles can result in an 

intensified muscular morphology, tone, and increasing vascular resistance thus 

resulting in elevated blood pressure[63, 64].   Cirello J et. al, 2012 has revealed 

that a calcium regulating glycoprotein hormone stanniocalcin-1 has been 

demonstrated in the nucleus solitary tract (NTS) was involved in the regulation of 

neurons that participate in controlling arterial blood pressure via the baroreceptor 

reflex[65].  It has been demonstrated that extracellular-signal-regulated kinase 

(ERK) is involved in the regulation of blood pressure in the NTS[62].  With this 

evidence, it is indicated that the CNS plays an important role in hypertension 

from the contribution of nNOS and eNOS synthases.   

Other studies have showed that microinjection of angiotensin I and 

angiotensin II into the third cerebral ventricle of the brain considerably elevated 

blood pressure compared to the administration of the drugs in the peripheral 

blood of rats[66] and dogs[67].  These results further demonstrate that the 

elevation of blood pressure originated from activating neuronal mechanisms 

rather than peripheral vasoconstriction activities[66].   Specifically, it has been 

demonstrated that brain angiotensin II is one of the notable contributors which 
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links the CNS to reactive oxygen species-dependent hypertension (discussed 

later) [67].  

2.9 The role of a high fructose diet and ROS production 

Interestingly, ROS is generated from neuron cells itself and is also 

generated by microglial cells and astrocytes which can transform communication 

to and from neurons by inducing long-term potentiation or modulating synaptic 

plasticity [68].  We have mentioned above that GLUT5 is localized in microglial 

cells and it’s capable of depleting ATP levels and increasing AMP levels in the 

CNS [69].  However, during the depletion of ATP levels, fructose is eventually 

metabolized to uric acid and uric acid has been found to stimulate ROS by the 

activation transforming growth factor beta-1 and nicotinamide adenine 

dinucleotide phosphate (NADPH)[70].  Fructose has also been linked to 

intracellular phosphate depletion as well as a significant decrease in AMPK 

phosphorylation.  A rise in intracellular uric acid is proficient in producing 

proinflammatory effects on the CNS, liver, and vascular cells.  For example, 

metabolizing fructose during a fructose load generates a surge in intracellular 

uric acid levels, and with a continuous consumption of fructose intake signals 

your body to produce fructose enzymes.  The fructose enzymes allow your cells 

to become sensitive which contributes to an overproduction of uric acid known as 

hyperuricemia, triglycerides and free radicles[71].  Fructose, which produces uric 

acid as a byproduct when metabolized, has been linked to metabolic diseases 

particularly in connection with hypertension. The amplification in uric acid has 
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been shown to decrease nitric oxide (NO) levels and is likely the incentive for 

oxidative stress[71].   

Keep in mind that the microglial cells are a specialized type of 

macrophages within the CNS and contributes to an enormous part of the 

inflammatory and immune responses of the CNS during fructose loading [41].  

High levels of fructose contributes to elevated levels of intracellular uric acid 

which can induce oxidative stress in the CNS, vascular cells and liver.  When 

oxidative stress is induced, the macrophages in the CNS produce a response via 

signaling molecules.  However, when reactive oxygen species (ROS) occurs 

during fructose loading the cell’s oxidative damage results in intracellular DNA 

damage, this sends out a stress response to release the pro-inflammatory 

cytokines (PIC)[72].  The increase in oxidative stress and ROS are both 

important pathogenic influences regarding hypertension development and 

diagnosis [56].  ROS that is produced in the neuronal, vascular system, or renal 

system is able to influence signaling molecules and can lead to hypertension 

[56].  For example, when rats were fed 10% fructose for 4 weeks they formed 

fructose induced hypertension and their ROS levels in the nucleus tractus solitarii 

(NTS) tissue were significantly greater and the NO levels were significantly 

reduced [2].  When ROS occurs during fructose loading the cell’s oxidative 

damage results in intracellular DNA damage which sends out a stress response 

to release pro-inflammatory cytokins (PICs)[72].   
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2.10 The role of high fructose and antioxidant imbalance 

When free radicles are formed in the body antioxidants can 

inactivate/quench them. Superoxide dismutase 2 (SOD2) is an antioxidant 

enzyme within the mitochondrial matrix that has the ability to destroy superoxide 

anion radicles that are toxic to the neurons [2].  The mutation of SOD2 has even 

been linked to neurodegenerative diseases like amyotrophic lateral sclerosis or 

leigh syndrome[73].  SOD is usually the immediate defense against ROS 

production and the decrease of SOD2 indicates that fructose feeding promotes 

ROS imbalance [2].  SOD2 was demonstrated to be significantly down regulated 

in the NTS of the fructose fed (10%) rats compared to the control while their 

systolic blood pressure become elevated (~15mm Hg compared to control)[2].  

Fructose feeding for 4 weeks in rats enhanced ROS production in the NTS and 

that has been linked to neuropathogenesis of hypertension, neurodegenerative 

diseases, and the pathophysiology or cardiovascular diseases [2].  There are 

other sources of ROS that maybe linked to ROS-dependent hypertension; for 

example NADPH oxidase (NOX) [66, 67].   

2.11 Fructose and the blood brain barrier  

In the CNS, cells are responsible for their own energy, metabolizing 

glucose and lipids. However, the brain alone is one of the most energy 

demanding organs in the human body because it is full of neurons that starve for 

glucose.  It is well known that glucose is the primary substrate needed for the 

brain to carry out its functions and that glucose can cross the blood brain barrier 
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by the help of glucose transporters.  Although there seems to be a large debate 

in regard to fructose - fructose can pass through blood brain barrier?  This 

section does not choose one side instead you will see the data behind both 

ideas. 

8 healthy women and men were given a 20% dextrose (sucrose and 

fructose mixture) though a constant 4 hour intravenous injection to their arm, the 

dextrose levels were held at the same concentration (220 mg/dl) for 4 hours long 

[20].   Janice J. Hwang et. al. found that these participants had high levels of 

intracerebral fructose levels by magnetic resonance spectroscopy (MRS) 

scanning[43].  Furthermore, they discussed that the reason is due to the polyol 

pathway which suggests that fructose is produced endogenously in the human 

brain from the process of glucose to sorbitol to fructose [43].  In another study 

from Janice, the fructose measurements within the cerebral spinal fluid were 20 

times higher compared to the concentration of plasma fructose levels from 

healthy and obese pregnant woman [40] suggesting that the polyol pathway is 

involved in fructose endogenous CNS creation.  In both studies Janice J. Hwang 

et. al. suggested that fructose is generated from glucose in the human brain 

during hyperglycemia[40][20].  Results from Janice J. Hwang et. al. experiment 

indicated that glucose levels mediate fructose levels in the brain. In addition, any 

increase in blood glucose contributed to fructose’s effects on the brain [20] .  This 

compelling evidence demonstrates that fructose may not pass through the blood 

brain barrier rather fructose can be generated by the brain.   



28 

Contradicting experiments indicate that fructose can enter the brain by a 

presence of GLUT5 in the blood brain barrier in rats that consume a high fructose 

diet [26].  Shu HJ et. al. has shown that brain cerebrum mRNA levels of GLUT5 

increase 1.5-fold in male rats after only seven days of fructose feeding[26].  It is 

suggested that fructose can be utilized as an alternative energy source in the 

brain during a time of critical need [22, 26, 27].  With the provided data, fructose 

was demonstrated to cross the blood brain barrier when fructose was given 

though ingested (feeding) and given by an intraperitoneal injection [42, 74].   

2.12 Fructose Causes Lactate Elevation Which May Contribute to 
Hypertension 

When 10 volunteers received a 10% intravenous (IV) dose of fructose at 

0.5 grams per kilogram of body weight per hour for two hours it was found that 

their serum lactate rose significantly during this fructose administration[75]. 

Interestingly, lactate is able to cross the blood brain barrier (BBB), and can easily 

be taken up by the brain[76].  When lactate levels rise in the blood from IV 

fructose[76], then we can assume that there is a net influx of lactate from the 

blood into the brain.  Elevated blood lactate levels have been linked to 

hypertension especially in women[77].  In another study, blood lactate was 

elevated twice as much in obese-hypertensive patients compared to their lactate 

levels after weight loss[78].  It seems that lactate levels fluctuate with blood 

pressure, when patients are hypertensive they had elevated lactate levels in their 

blood[78].  Fructose given by IV was shown to increase blood lactate, with what 
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we know lactate can cross the blood brain barrier[76], and can definitely 

influence hypertension.  Lactate is a product of anaerobic metabolism and is a 

link between oxidative metabolism and glycolysis and furthermore after lactate is 

formed, pyruvate can be converted to glucose in the gluconeogenesis 

pathway[79].  It is known that muscles can generate lactate especially during 

high intensity exercising, and also that the heart, liver and kidneys can use 

lactate as fuel[79].  However, in the brain the role of lactate in sparing amounts 

may be used in assistance to neuronal action potentials firing rates.  When 

lactate is in the brain in large quantities it may be linked to neurodegenerative 

diseases and is not used as an energy source[79].  In the brain, lactates utilize 

an astrocyte-neuron lactate shuttle which has been hypothesized that “astrocytes 

metabolize glycogen and glucose to lactate which is transferred to neurons 

through the axons juxta synaptic process according to Smith et al. 2003. [79]”  

Since hypertension is regulated by mechanisms in the SNS[78] which are 

ultimately controlled by the CNS we can conclude that fructose[75] causes 

lactate elevation this lactate then leads to the CNS transferring across the BBB 

[76] into neuronal cells creating excitation and neuronal apoptosis contributing to 

the possible onset of hypertension. 

2.13 Fructose in the CNS is linked to inflammation  

GLUT5 has been shown to be expressed in the CNS, and it has the ability 

to transport fructose in microglial cells.  The transportation of GLUT5 may have 

an effect on glial and neuronal interactions.  For example, glial cells can multiply 
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when the brain experiences inflammation, in a sense this also occurs when 

angiotensin II brings about hypertension [21] and fructose induced hypertension.  

A high fructose diet has been linked to inducing hypothalamic proinflammatory 

cytokine (PICs) production and astrogliosis, which is the increase in astrocyte 

production due to the fate of neighboring neurons becoming traumatized, 

infected, or inflamed[22].  According to Jian-Mei Li et. al., fructose induced 

astrocytosis inflammation was associated with the TLR4/NF-kB pathway, which 

is the main control of hypothalamic inflammatory response and controls the 

expression of cytokine genes [80].  Jian-Mei Li et. al. further suggests that 

increased histone deacetylase 3 (HDAC3) is associated with fructose induced 

inflammation by activation  of NF-kB transcription regulator and that the 

suppression of HDAC3 overexpression restored fructose neuronal injury[81].  In 

addition, the suppression of TLR4/NF-kB pathway also showed restoration from 

fructose induced neuronal injury in brain astrocytes [80].  Remarkably, this 

demonstrated that theTLR4/NF-kB pathway and HDAC3 are interconnected due 

to hypothalamic fructose induced neuronal inflammation [80].  Fascinatingly, NF-

kB has a primary role in hypertension because NF-KB increased the expression 

of pro-inflammatory cytokine (PICs) gene creating inflammation in the PVN which 

contributes to hypertension [80].  The connection that inflammation in the brain 

occurs and the result is the onset of hypertension is due to a large variety of rat 

models, which confirms that abnormal inflammation in the brain contributes to the 

rise in mean arterial blood pressure and that respond to the inflamed vasculature 

in the brain [25-27].  When rats were intracerebroventricularly (ICV) infused with 
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angiotensin II, the brain renin-angiotensin system activated NF-kB in the PVN 

which then contributed to an increase in oxidative stress, mean arterial blood 

pressure, PICs, aldosterone and norepinephrine [28, 29].  What is unique is that 

HDAC3 has the ability to bind to NF-kB inhibitory subunit α which increases 

transcription, this resulting in inflammation and then permitted the macrophages 

to yield an overwhelming supply of cytokines in the PVN [80, 81].   

 Brain astrocytes and microglial express GLUT5, the main glucose 

transport protein for fructose, and are highly localized in the brain[30].  Astrocytes 

in the PVN and superaoptic nucleus (SON) display great anatomical plasticity 

and are capable of extensive transformation [82].  Astrocytes also play an 

important role in synaptic plasticity and metaplasticity mechanisms [83].  

Nevertheless, GLUT5 expression has been particularly linked to synaptic activity 

dysfunction due to fructose induced hypertension and high fat plus high fructose 

diets [83].  During the 4% high salt chow plus 20% fructose drinking water diet in 

SD rats for 3 weeks, GLUT5 expression in the PVN was increased dramatically 

compared to control, 4% high salt diet, and 20% fructose alone diet (data not yet 

published).  When rats were fed a high fat and high fructose diet for 8 months 

there was a noticeable reduction in spine density, synaptic plasticity, and low 

levels of brain-derived neurotrophic factor (BDNF) [84].   In another study, adult 

male SD rats were given a high fructose solution alone and that showed an 

impact on synaptic plasticity by utilizing a synaptic growth marker, 

synaptophysin, which was measured and found to be decreased during a high 
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fructose diet.  According to Shi et. al., when fructose induced hypertension 

occurred there was an activation of glial cells and an increase in proinflammatory 

cytokines in the paraventricular nucleus (PVN) of the brain [85].  The 

inflammation from hypertension recruits the glial cells to develop properties 

similar to that of macrophages [86].  This includes glial cells which then release 

chemical mediators that may be associated between neuron cells and synaptic 

strength, density, and size [86].  As stated by Pedro Cisternas et. al., an 

observed decrease in postsynaptic density (PSD) from 68 nm to 33 nm was 

indicated in fructose-fed groups of mice as well [11].   

2.14 Model: fructose and high salt mediates hypertension  

It is believed that fructose and salt synergistically have a hypertensive 

effects[87].  Fructose stimulates salt absorption in the small intestine specifically 

the jejunum, and the kidney [88].  Interestingly, it is thought that GLUT5 is 

responsible for enhancing the absorption of fructose and salt in the intestine [27, 

87].  Enterocytes lining the villus of the intestine have used GLUT5 as the major 

fructose transporter to pass fructose, rapidly, through the apical membrane [26].  

GLUT5 wild type mice when given a high fructose diet (60% fructose) for a total 

of 14 weeks have increased salt absorption is facilitated through increased 

expression of a putative anion transporter 1 (PAT1) and sodium hydrogen 

exchanger (NHE3) in their jejuna and kidney tubules. [87].  In addition, Sharon 

Barone et. al. then demonstrated that the GLUT5 wild type mice with a high salt 

and high fructose diet have developed systemic hypertension compared to the 
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GLUT5 knockout mice [27].  Fascinatingly, there is no known research that aims 

to find whether the brain synergistically uses fructose and salt combination to 

bring about the onset of hypertension.  Given this, we live in a day where our 

diets include high fructose corn syrup (HFCS) and substantial amounts of salt, 

but the molecular effects of the high salt and fructose in the CNS remain in 

unclear.   

2.15 Review Article Conclusion  

These reviewed studies and metabolism of fructose in the body and brain 

suggest that fructose plays a large role on the effects of the central nervous 

system.  We also suggest that fructose effects the CNS, not only by its ability to 

generate fructose from glucose, but also that high fructose levels can disrupt glial 

and neuronal interactions resulting in consequences.  Our future study will 

investigate whether or not fructose and salt synergistically mediate hypertension.  

We will focus on fructose effects of the CNS and ultimately aim to find fructose’s 

contribution to hypertension. 



34 

3 Chapter 3:  Methods 

3.1 Animal Models, Diets, Blood Pressure, and Metabolic Cages 

Male rats were purchased from Charles River Laboratories in Wilminton, 

MA.  Sprague Dawley (SD) eight-week-old rats were started on a specialized diet 

including 1) normal chow (0.4% NaCl, Envigo RMS, IN, USA) with normal 

drinking water, 2) high salt chow (4% NaCl, Envigo, RMS, IN, USA) with normal 

drinking water, 3) normal chow with 20% D-(-)-fructose (Sigma-Aldrich) drinking 

water, and 4) high salt chow with 20% D-(-)-fructose (Sigma-Aldrich) for a total of 

3 weeks. The tap water was autoclaved for 15 minutes at 150°C prior to adding 

the fructose into it and then stored in a 4°C fridge.  Fructose was not autoclaved 

in this experiment.  Fructose water bottles were changed every 3 days to prevent 

mold from growing. Prior to giving SD rats these specialized diets their blood 

pressure (baseline) recordings were tested using the methods as described in 

the section “blood pressure measurements”.  Rats were given free access to 

food and water.  Rats with fructose water were given a supplemental water bottle 

with normal drinking water in it.  All rats were housed three rats per cage in a 

temperature (22.7 ± 1.0 °C) and humidity (60 ± 10%).  When rats were 

transferred to the metabolic cages, the rats maintained their specialized diet and 

were housed independently.  Rats were given 24-hours to acclimate to their 

environment and any measurements within the first 24-hours was discarded.  A 

12-hours light and 12-hour dark cycle was maintained between 0700ET-1859ET 

and 1900ET-0659ET, respectively.  Experimental operations were completed 
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within the Animal Care Facility at Michigan Technological University.  All proper 

care and procedures of the rats was maintained throughout this study. 

Prior to the diet treatment mean arterial blood pressure in conscious SD 

male rats were measured by non-invasive tail cuff using CODA© systems from 

Kent Scientific Corporation.  Measurements for each male rat represents two 

separate recordings per week.  Prior to the tail cuff recordings and specialized 

diets, all rats were acclimated to the animal holders for three consecutive days 

for 10 minutes each day.  On the day of the recordings, each rat was place in the 

animal holder for 10 minutes before each blood pressure reading was recorded.  

For each blood pressure recording, the first five of the twenty cycles total were 

dismissed from this experiment during each run.  After 3 weeks of measuring 

blood pressure and weights, rats were placed in the metabolic cages.  Each rat 

has its own metabolic cage.  24-hours was allowed for the rats to acclimate to the 

metabolic cages and then measurements were recorded for the following three 

consecutive days.  Rats maintained their specialized diet while in the metabolic 

cages.  On the fourth day, rats were euthanized for brain tissue sampling as 

described below.   

3.2 Paraformaldehyde infusion and brain sectioning 

Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups 

and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% 

NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 
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4% NaCl and 20% fructose water) for 3 consecutive weeks.  Adult male SD rats 

were euthanized by being injected with pentobarbatol (0.1 ml per 100g of body 

weight, 50 mg/kg).  When the rats demonstrated a surgical level of anesthesia 

via toe pinch-response method, they were transferred into a surgical hood.  

Positioning the rat in a supine position, an incision in the integument and 

abdomen wall inferior to the rib cage was made.  The diaphragm was completely 

cut in order to expose the pleural cavity.  A continuous cut was made along the 

rib cage to the collar bone and repeated on the contralateral side.  The sternum 

was clamped with the hemostat and placed over the rats head, and additional 

tissues connected to the heart was trimmed away to expose the beating heart.  

An incision to the right atrium was made and the 22-guage perfusion need was 

placed into the left ventricle towards the ascending aorta.  After eliminating air 

bubbles from the tube, the 4% paraformaldehyde was infused into the rats 

system.  Fixation tremors were observed within seconds of infusion and the rat 

was infused with PFA for a total of 10-15 minutes.  The head from the rat was 

removed, and the brain was carefully removed from the skull.  The brain 

remained in 4% paraformaldehyde in -4°C for 24-hours in a test tube and then 

was placed in 30% sucrose water for 3-4 days.   Brain sections were cut no 

longer than 4 days in 30% sucrose using the cryostat machine (Leica 

Biosystems©).  Brain cross-sections, specifically the paraventricular nucleus 

(PVN), were cut at 25µm starting from the optic nerve.   
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3.3 Immunostaining 

Immunostaining of PVN GLUT5 was performed with the succeeding 

procedures:  brain coronal sections (25um) containing the PVN was first washed 

in PBS for 3 times for 10 minutes total.  After washing the slices with PBS, then 

the brain cross sections were incubated with 5% horse serum in PBS for 30 

minutes.  Then the cross sections were incubated with anti-GLUT5-antibody 

(Santa Cruze Biotechnology, CA, USA) with a 1:100 dilution in PBS containing 

0.5% Triton C-100 and 5% horse serum for 3 days at 4⁰C (trays were wrapped in 

parafilm to prevent dehydration).  After 3 days, brain cross sections were washed 

with PBS 3 times for 10 minutes each.  After the washing, the brain sections 

were then incubated with secondary antibody donkey Anti-Mouse IgG, Alexa 

Fluro® 488 (1:500 dilution) overnight at 4⁰C while covered in aluminum foil to 

prevent photo-bleaching.  In order to confirm that the observed antibody was 

staining, a negative control was performed for each antibody.  The negative 

control was subjected to identical protocol for consistency similar to that of 

regular immunostaining.  Instead, the negative control had PBS to ensure there 

was non-specific binding to other cellular sections that could possibly fluoresce.  

All sections were mounted in Vectashield© medium and glass slides and photos 

of each section were taken with Leica© DMIL microscope.  

3.4 Fructose Assay 

Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups 

and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% 
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NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 

4% NaCl and 20% fructose water) for 3 consecutive weeks.  Adult male SD rats 

were euthanized, blood serum and CSF was collected from each rat and 20uL of 

serum and CSF was used to determine the rat’s true physiological measurement 

of fructose within itself after each specialized diet intake.  Following the 

manufacturer’s instructions data was obtained. 

3.5 Real-time PCR (qPCR) Analysis of PVN GLUT5 mRNA 
Expression 

 Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups 

and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% 

NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 

4% NaCl and 20% fructose water) for 3 consecutive weeks.  Following the 

special diet treatment, rats were euthanized and their brains were removed.  

Paraventricular nucleus (PVN) tissue from the hypothalamus was punched.  

Punched PVN tissues were exposed to RNA isolation (RNeasy plus mini kit, 

Qiagen, CA, USA), and manufacture’s guidelines were followed.  qPCR was 

used to measure mRNA levels of GLUT5 using a primer or probe from the Real 

Time PCR System (Applied Biosystems, CA, USA).  All data here was 

normalized to the housekeeping gene GAPDH mRNA.   

3.6 Ion Chromatography 

Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups 

and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% 
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NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 

4% NaCl and 20% fructose water) for 3 consecutive weeks.  Rats were then 

euthanized and blood, CSF and brains were collected.  CSF and Serum samples 

were drawn for ion chromatography data.  As previously described by Andrew 

Chapp 2018 et. al., serum and CSF samples were prepared to be tested in ion 

chromatography by adding 10uL of serum or CSF with 9.990 mL of ddH20 (18 

MΩ), and then samples were vortexed and filtered from a syringe into sterilized 

vials [89].  Blood serum and CSF samples were then run by ion chromatography 

to determine their anions and cations [89].   

3.7 Neuronal Culture Isolation 

Primary neurons cultures were isolated using sterile technique from 24 

hour old SD rats.  Rat under 24 hours of age were euthanized and their whole 

brain was immediately separated apart from the cranium and vigilantly dropped 

into sterile DPBS solution.  From the whole brain, neuron cells were carefully and 

quickly isolated and then plated into poly-L-lysis cultured dishes.  It is known that, 

neuronal cultures contain mostly primary neuron cells and only about 5% 

astroglial cells.  Primary neuronal cells medium that was used contained 1% 

penicillin and 10% horse serum in Dulbecco’s Modified Eagle Medium© (DMEM).  

After two days from neuronal isolation, 50uL of ARC was added to 50mL of fresh 

medium, the cytosine arabinoside (ARC) sat in the isolated neuron cells for no 

more than 48 hours and then medium was changed back to fresh 1% penicillin 

plus 10% horse serum in DMEM (without ARC).  Medium was not changed here 
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after this point, if needed, no more than 100uL of new medium was added one 

week after neuronal isolation.  Primary neuron cells were maintained for 10-14 

days old to ensure neuron cells had proper dendritic connections with other 

neuron cells or the plate.   

3.8 Measurement of pro-inflammatory cytokines by Real-Time 
PCR in primary neurons cells 

Primary neurons cultures were isolated using sterile technique from 24 

hour old SD rats as described above.  Cultures were made from Sprague Dawley 

(SD) rats whole brains containing the PVN.  Momentarily, SD rats were 

euthanized and then the whole brain was immediately removed and tissues were 

combined.  Neurons were disconnected with each other and promptly plated in 

poly-l-lysine coated dishes.   Neuronal cultures contain nearly ~95% of neurons 

the remaining ~5% are astroglia cells.  On the fourteenth day of neuron cells 

being plated in the sterile dish they were then subjected to treatments of fructose, 

sodium chloride (NaCl) and a combination of both at different concentrations.  A 

control (no treatment what-so-ever) was always accounted for in each 

experiment.   

3.9 Osmolarity  

Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups 

and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% 

NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 

4% NaCl and 20% fructose water) for 3 consecutive weeks.  Rats were put in 
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metabolic cages for 4 nights then immediately after they were euthanized and 

blood, CSF and brains were collected.  Urine, serum and CSF OSM was 

determined by the osmometer machine on the male SD rats for each rat group.  

Fresh ddH2O (18Ω) water was used in this osmometer.  The machine was 

cleaned and standard solutions (290 mmol/kg and 1000 mmol/kg X3 runs) were 

used to calibrate the OSM machine prior to running any samples.  Urine samples 

were diluted 10X in order for the machine to determine the value.  CSF and blood 

serum were not diluted for determining OSM.  (Data of osmolarity will not be 

provided for this thesis) 

3.9 Data Analysis 

Summary data is expressed in standard error of the mean (±SEM).  Both in 

vitro and in vivo data were analyzed using a one-way Anova or unpaired student 

t-test.  Evidences against the null hypothesis was considered statistically 

significant only if the P-value is < 0.05 indicated with an asterisk (*).  A P-value > 

0.05 would indicate weak evidence so that data would be considered failure to 

reject the null hypothesis.   
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4 Chapter 4:  Results 

4.1 A High Salt plus Fructose Diet Increases Blood Pressure in 
SD Rats 

 In order to prove that a 4% NaCl high salt diet plus 20% fructose water 

diet (HS+F) stimulated hypertension in SD rats and not on other specialized 

diets; eight-week-old male SD rats with the same ages were placed on either a 

NS or HS diet with and without fructose drinking water (NS, HS, F, HS+F) for 3 

weeks.  Blood pressure was measured via non-invasive tail-cuff 

plethysmography twice a week for 3 weeks (Figure 4.1a) and body weight was 

measured once per week for 3 weeks (Figure 4.1b).  After 3 weeks of diet 

treatment the rats were housed independently in metabolic cages.  Food and 

water intake along with urine and fecal output was measured for 4 consecutive 

days (Figure 4.1c).  The first day of the metabolic data was discarded since the 

change of surroundings causes a rat to stress this day was reserved for 

acclimation to the metabolic cages.  SD male rats on the NS (control) diet before 

the 3 weeks (91 mm Hg) compared to after 3 weeks (89 mm Hg) showed no 

statistical difference in mean arterial blood pressure (MAP) which is expected for 

control (Figure 4.1a).  The SD male HS rat group 3 weeks before the HS chow 

treatment (93 mm Hg) showed no significant difference in MAP compared to 3 

weeks after the HS diet treatment (96 mm Hg) (Figure 4.1a) .  The SD male F rat 

group 3 weeks before the 20% fructose drinking water treatment (97 mm Hg) and 

after 3 weeks of 20% fructose in drinking water treatment (98 mm Hg) showed no 

statistical difference in MAP as well (Figure 4.1a).  Surprisingly, the HS+F SD 
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male rat group (HS+F baseline: 98 mm Hg) showed a significant statistical 

difference in MAP after the 3 weeks of a HS chow combined with 20% fructose in 

drinking water (126 mm Hg) (Figure 4.1a). 

In summary, after three weeks of special diets SD rats on a NS diet (89 

mm Hg), HS alone diet (96 mm Hg), and F alone diet (98 mm Hg) showed no 

change in MAP.  However only when the combined diet HS+F (127 mm Hg) was 

given there was an increase in MAP.  The SD rat group for NS has a significant 

(P<0.000001) increase in MAP by a total of ~36 mmHg compared to itself prior to 

receiving a special diet treatment (Baseline of NS rats: 91±3 mmHg vs. HS+F 

rats after 3 weeks of diet 127±6 mmHg) (Figure 4.1a).   

 

Figure 4.1a Conscious mean arterial blood pressure (MAP) for Sprague Dawley 
(SD) rats on a normal salt (NS; 0.4% NaCl and normal water; n=15), high salt 
(HS; 4% NaCl and normal water; n=15), fructose (F; normal chow and 20% 
fructose water, n=15), and high salt plus fructose (HS+F; 4% NaCl chow plus 
20% fructose water, n=15) diet before and after 3 weeks of diet treatment.   
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Figure 4.1b Rat’s body weights were measured for each rat given a normal salt 
(NS; 0.4% NaCl and normal water, n=5), high salt (HS; 4% NaCl and normal 
water n=5), fructose (F; normal chow and 20% fructose water; n=5), and high salt 
plus fructose (HS+F; 4% NaCl chow plus 20% fructose water, n=5) diet before 
and after 3 weeks of diet treatment.   
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Figure 4.1c After 3 weeks of each rat given a normal salt (NS; 0.4% NaCl and 
normal water), high salt (HS; 4% NaCl and normal water), fructose (F; normal 
chow and 20% fructose water), and high salt plus fructose (HS+F; 4% NaCl chow 
plus 20% fructose water) diet they were subjected to metabolic cages.  Rat’s 
food and water intake along with urine and fecal output was measured every 24 
hours for 4 days. *P<0.05, student paired t test.  One Way Anova performed on 
urine and water intake P<0.005.  (n=15 per each group). 

4.2 Immunostaining 

 To provide results that GLUT5 was demonstrated to be expressed in the 

rats PVN brain area and plays a role in whether a HS+F diet alters GLUT 

expression in SD rats and age matched those of the NS.  Eight-week-old male 

SD rats were fed either a NS or HS diet with and without fructose drinking water 
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(NS, HS, F, HS+F) for 3 weeks.  After 3 weeks, SD male rats were euthanized 

and whole brains were taken and immediately frozen in liquid nitrogen.  Brain 

slices were cut on a cryostat machine at 20µm thick.  PVN area were used for 

immunostaining with GLUT5.  All groups were stained (not shown).  HS alone 

diet and F alone diet groups of brain GLUT5 immunostaining did not show any 

expression, all images were dark so they are not revealed in the following figure.  

GLUT5 is highly expressed in the high salt plus fructose treatment of the brain 

hypothalamic PVN tissue (Figure 4.2 c,d).   

 

Figure 4.2 The area of the PVN surrounding the third ventricle (3V) is shown by 
4X magnification (a) of the PVN for the NS (control group), and (b) demonstrates 
the area in the box at 20X magnification for the NS group.  The area of the PVN 

Control 4X Control 20X 

HS+F 4X HS+F 20X 
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sounding the 3V is shown by 4X magnification (c) for the HS+F group and (d) 
shows the area of the box at 20X magnification of the HS+F group. 

 

4.3 Real Time Polymerase Chain Reaction of GLUT5 

 To further provide evidence that GLUT5 is expressed in the brain 

hypothalamic PVN we performed Real Time PCR (qPCR) of the PVN area. 

Eight-week-old male SD rats were fed either a NS or HS diet with and without 

fructose drinking water (NS, HS, F, HS+F) for 3 weeks and their age matched 

that of the previous rats.  The SD male rats were euthanized after their special 

diet treatment (NS, HS, F, HS+F), PVN tissue was punched out and qPCR was 

performed to evaluate the neuronal maker for fructose which was GLUT5 mRNA 

levels.  SD rats on a NS, HS and F alone diet showed not significant difference in 

the change of PVN mRNA levels of GLUT5 (NS: XX, HS: XX, F: XX) compared 

to HS+F SD eight-week-old male rats (P<0.05).  GLUT5 was confirmed to be 

upregulated in the brain hypothalamic PVN tissue for the HS+F rats compared to 

the NS, HS, and F rat groups (Figure 4.3). 
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Figure 4.3  Real Time PCR (qPCR) data for four different groups: NS (control), 
HS (4%NaCl chow, normal drinking water), F (normal chow, 20% fructose 
drinking water), HS+F (4%NaCl chow with 20% fructose drinking water), 
respectively.  GLUT5 is upregulated in HS+F group.  (NS: n=5, HS: n=3, F: n=2, 
HS+F: n=4) 

4.4 Fructose Assay   

 To determine the physiological concentration of fructose from in vivo of the 

rat’s blood serum and CSF fructose assay kit was utilized.  This was done to 

ensure similar concentrations were used for in vitro studies.  Eight-week-old male 

SD rats were fed either a NS or HS diet with and without fructose drinking water 

(NS, HS, F, HS+F) for 3 weeks and their age matched that of the previous rats.  

The SD male rats were euthanized after their special diet treatment (NS, HS, F, 

HS+F), and blood serum, CSF and whole brains were collected.  Manufactures 

instructions were followed for the fructose assay kit.  Fructose concentrations in 

blood serum increased to 359µM in the fructose group, and to 409µM in the 
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HS+F group (P<0.05) compared to NS group of 253µM (Figure 4.4a).  CSF 

fructose decreased in the F group to 230µM (P<0.05) compared to the NS group 

of 290uM (Figure 4.4b).   

 

Figure 4.4a Blood serum of 8-week-old Sprague Dawley (SD) rats were 
withdrawn from four different groups:  NS (control), HS (4%NaCl chow, normal 
drinking water), F (normal chow, 20% fructose drinking water), HS+F (4%NaCl 
chow with 20% fructose drinking water), respectively.  Serum concentration 
increased in the F and HS+F group. (NS: n=5, HS: n=3, F: n=4, HS+F: n=5).   
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Figure 4.4b CSF of 8-week-old Sprague Dawley (SD) rats were withdrawn from 
four different groups: NS (control), HS (4%NaCl chow, normal drinking water), F 
(normal chow, 20% fructose drinking water), HS+F (4%NaCl chow with 20% 
fructose drinking water), respectively .  CSF fructose decreased in the F group 
compared to the NS group.  (NS: n=5, HS: n=3, F: n=4, HS+F: n=5). 

4.5 Ion Chromatography  

 To determine the anions and cations of the SD male rat’s CSF, ion 

chromatography was utilized for this purpose.  After 3 weeks of each SD male rat 

given a normal salt (NS; 0.4% NaCl and normal water), high salt (HS; 4% NaCl 

and normal water), fructose (F; normal chow and 20% fructose water), and high 

salt plus fructose (HS+F; 4% NaCl chow plus 20% fructose water) diet their CSF 

sodium, acetate, lactate, magnesium, potassium, and calcium was measured 

(Table 1).  A significant difference water determined (P<0.05) between sodium 

and the control/NS group (150.47 mM) vs. the HS+F (160.6 mM) group (Figure 

4.5a) and there was also a statistically significant difference (P<0.05) regarding 
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acetate levels in the CSF between control (0.0715 mM) vs. F (0.1007 mM) and 

control (0.0715 mM) vs. HS+F (0.1945 mM) groups (Table 1). 

Averaged CSF Electrolytes for Eight-Week-Old Male SD Rats After 3 

Weeks of A Special Diet Treatment Give 

 Cations Anions 

Diet 
Group 

Calcium 
(mM) 

Potassi
um 

(mM) 

Sodium 
(mM) 

Magne
sium 
(mM) 

Acetate 
(mM) 

Lactate 
(mM) 

Chloride 
(mM) 

NS 3.1 2.5 150.5 2.1 0.0715 2.6 119.3 

HS 3.5 2.3 158.1 2.2 0.1551 2.5 124.3 

F 3.4 2.1 155.1 1.9 *0.1007 2.1 120.9 

HS+F 2.9 2.1 *160.6 2.1 *0.2 2.8 125.1 

Table 1 Eight-week-old male Sprague Dawley (SD) rats were divided into 4 
groups and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 
4% NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose 
(HS+F: 4% NaCl and 20% fructose water) for 3 consecutive weeks.  Rats were 
euthanized and CSF was withdrawn from the rats.  CSF was tested for calcium, 
potassium, sodium, magnesium, acetate, lactate, and chloride.  *P<0.05 
compared to the control (NS) group. (n=5 per each group).  
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Figure 4.5a Eight-week-old male Sprague Dawley (SD) rats were divided into 4 
groups and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 
4% NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose 
(HS+F: 4% NaCl and 20% fructose water) for 3 consecutive weeks.  Rats were 
euthanized and CSF was withdrawn from the rats.  Sodium in cerebrospinal fluid 
(CSF) was obtained by ion chromatography.  Control (NS): 150.4739 mM; HS: 
158.0899 mM; F: 155.1233 mM; HS+F: 160.6339 mM.  *P<0.05 compared to the 
control (NS) group. (n=5 per each group).  

4.6 Real Time PCR for Pro-inflammatory Cytokines of Brain 
Neurons   

In order to determine the inflammatory responsible for inducing pre-inflammatory 

cytokines during a high salt and fructose treatment, primary neuronal cultures 

from the whole brain of less than 24-hour old SD male rats were incubated with 

high salt, fructose, and a combination of high salt and fructose treatment for 6 

hours.  Real time PCR was performed to measure mRNA levels of NfKB1 

(Figure 4.6a) and IL6 (Figure 4.6b).  

 

 * 
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Figure 4.6a Primary neuron cells were isolated from SD rats within 24 hours of 
birth.  12-day-old neurons were treated with different doses of salt and fructose 
for 6 hours and then RNA was extracted and then converted to cDNA followed by 
RT PCR.  HS represents 5mM of NaCl treatment, F indicated 5mM of fructose 
and HS+F indicates 5mM of high salt combined with 5 mM of fructose.   

 

Figure 4.6b Primary neuron cells were isolated from SD rats within 24 hours of 
birth.  12-day-old neurons were treated with different doses of salt and fructose 
for 6 hours and then RNA was extracted and then converted to cDNA followed by 
RT PCR.  HS represents 5mM of NaCl treatment, F indicated 5mM of fructose 
and HS+F indicates 5mM of high salt combined with 5 mM of fructose.   
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4.7 Flow Cytometry of Primary Neuron Cells 

 Isolated primary rat neuronal cells demonstrated apoptosis as a reaction 

to fructose and/or sodium chloride (NaCl) treatments. Incubation of brain neurons 

isolated from neonatal SD rats with 200µM (17.2%, P<0.05) and 1mM (22.5%, 

P<0.005) of a 6 hour fructose treatment stimulated neuronal apoptosis (Figure 

4.+-7) compared to the control (14.1%).  Isolated neurons were also subjected to 

a 6 hour treatment of NaCl alone (19.1%, no significant difference), and a 

combination of 200µM fructose + 5mM NaCl (22.3%, P<0.005) (Figure 4.7).  

Finally, we tested 1mM of fructose + 5mM NaCl (24.3%, P<0.005) on primary rat 

neuronal cells (Figure 4.7).  This study demonstrated that HS+F diet decreases 

CSF fructose concentration, and that the physiological amount of fructose 

concentration is shown to stimulate neuronal apoptosis in brain neurons, and 

increases PVN GLUT5 expression, which may result in hypertension. 
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Flow Cytometry Data from Primary Isolated Neuron Cells Treated 

with Either NaCl, Fructose and Both 

(a) (b) 

  

(c) (d) 

  



56 

(e) (f) 
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(g) 

 

Figure 4.7 Primary neuron cells were isolated from SD rats within 24 hours of 
birth.  12-day-old neurons were treated with different doses of fructose for 6 
hours and then stained with propidium iodine (PI) and flow cytometry was 
performed.  (a) Represents the control group, (b) is the 5mM of NaCl treated 
neuron cells for 6 hours.  (c) is the 200µM fructose treated neurons for 6 hours, 
and (d) is 1mM of fructose treatment for 6 hours.  (e)  Represents the 
combination of 6 hour treatments 200µM Fructose+5mM NaCl and (f) is the 
combined 6 hour treatment of 1mM fructose+5mM NaCl.  (g) Is the percentages 
of neuronal apoptosis of from each treatment depicted in (a-f).  *P<0.05, 
#P<0.005.   (n=4 per each group).   
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5 Chapter 5:  Discussion 

5.1 Main Idea 

The central nervous system (CNS) plays an imperative role in blood pressure 

regulation and has been thought to be the primary role of fructose-induced 

hypertension. The sympathetic nervous system (SNS) plays a more important 

role in controlling blood pressure (BP).  More specifically, the pre-sympathetic 

neurons with efferent projections to the brainstem areas are the central regulator 

of the SNS.  The pre-sympathetic neurons contribute to the main role in blood 

pressure regulation and sympathetic nervous system activity (SNA).  However, 

the key area that has control of BP and SNA is the paraventricular nucleus of the 

hypothalamus (PVN).   The PVN includes monosynaptic, and glutamatergic 

projections to the rostral ventrolateral medulla (RVLM) which impacts 

sympathoexcitation.   

Taking everything into consideration evidence suggests that a high salt and 

fructose diet alters neuronal cells by stimulating neuronal apoptosis and fructose 

stimulates salt uptake in brain CSF resulting in upregulation of GLUT5 in brain 

paraventricular nucleus (PVN) of the hypothalamus.  Since the PVN is a key pre-

sympathetic region with regulatory control over BP and SNA then we have shown 

here that the high salt and fructose diet combined is the main contributor to BP 

regulation and responsible for the increase in BP.   
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Evidence that the PVN tissue expressed GLUT5 demonstrates that a combined 

high salt and fructose diet may play a more central role in of cardiovascular 

function contributing to hyperactivity in the PVN area resulting to neurogenic 

hypertension[90].  The mechanism of fructose induced hypertension is not 

known.   This study is also the first to determine that elevated sodium levels is 

seen in a SD male rats after three weeks of diet treatment of 4% NaCl combined 

with 20% fructose drinking water (HS+F) relative to the control; NS, normal salt 

plus normal drinking water.   

First, MAP is increased by a total of 37 mmHg in eight-week-old SD male rats 

after just 3 weeks of a HS+F diet compared to NS rats.  Second, the expression 

of GLUT5, a fructose transporter, is expressed in brain PVN and quantified by 

real time PCR demonstrated upregulation of GLUT5 in PVN tissue.  Third, brain 

hypothalamic primary neurons exposed to fructose plus sodium uptake in brain 

neurons results in apoptosis in just 6 hours of treatment.  Finally, CSF sodium 

was increased is those rats who were given a 20% fructose diet and even a 

higher increase in sodium from the rats who received HS+F diet treatment.  

Although, CSF fructose concentrations of the HS+F rats decreased compared to 

control may be an indication that a moderate fructose consumption alone may 

stimulate sodium uptake in CSF of adult Sprague Dawley (SD) male rats.  What 

is interesting is that Per Enshe Jiang et. al. 2018, confirmed that CSF sodium 

concentrations of Dahl salt sensitive rats was elevated when given a HS 4% 

NaCl diet (158 mM) [91] compared to this study when SD rats when fed a HS+F 
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diet (160 mM).  As you can see the CSF sodium concentrations of the Dahl salt 

sensitive rats compares to the HS+F SD rats.  This further indicates that the 

combined high salt and fructose diet stimulates salt sensitivity linking to an 

increase in mean arterial blood pressure through means of the PVN.  Since the 

PVN includes the monosynaptic and glutamatergic projections to the rostral 

ventrolateral medulla (RVLM) which impacts sympathoexcitation.  Simply put, 

this combined high salt and fructose diet creates the abnormalities of the central 

regulation of SNA which dysregulates the pre-sympathetic neurons.  

Furthermore, we have sought here that salt changes the GLUT5 protein 

transporter in the PVN under a high salt and fructose combined diet.  The 

changes made in the GLUT5 protein transporter may be the contribution to 

inflammation and neuronal apoptosis further linking to hypertension.  

Collectively, our results demonstrated that fructose may cause hypertension 

through the mechanism of neuronal apoptosis in the PVN and that a HS+F diet 

contributes to salt sensitivity in SD rats.  The PVN, protected by the blood brain 

barrier, is the main site for neuroendocrine and automatic function [92, 93].  

Expression of GLUT5 after high salt and fructose diet is unknown to be 

widespread in the entire body, but the PVN area demonstrated GLUT5 

expression which may be the missing link when contribute to blood pressure 

regulation during fructose-induced hypertension.   
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5.2 Summary 

Here we have demonstrated that fructose and salt synergistically create 

hypertension in eight-week-old male Sprague Dawley (SD) rats.  Furthermore, 

we have demonstrated that an increased expression of GLUT5 in the PVN of SD 

rats who were given a 4% high salt and 20% fructose drinking water (HS+F) diet 

for 3 weeks.  This suggests that a HS+F diet stimulates the uptake of fructose 

into neuronal cells which results in the increase of intracellular fructose and an 

increase in CSF sodium concentrations.  The increase in CSF sodium 

concentrations is comparable to Dahl salt sensitive rats on a high salt diet [91].  

The upregulation of nuclear factor NS-kappa B (NFkB1) in the PVN of the HS+F 

rats further demonstrates that a fructose and high salt diet is linked to 

inflammation and inappropriate immune cell damage in the CNS.   

To review the data, this study demonstrated that a just 3 weeks of a HS+F 

diet increased MAP in SD male adult rats.  Chow (food) intake decreased in F 

and HS+F SD rat groups.  Water intake and urine output increased significantly 

in HS and H+F rat groups only which is hallmark for diagnosing hypertension. 

Rat’s fructose concentration increased in serum in F and HS+F but decreased in 

CSF for F and HS+F SD male rat.   HS+F SD male rat group increased GLUT5 

expression in the brain hypothalamus and in the PVN area.  Increased mRNA 

expression of GLUT5 in the PVN area was demonstrated by real time PCR 

compared to NS, HS, and F groups.  CSF sodium increased in HS+F group 

which is comparable to Dahl salt sensitive rats on a high salt diet.   
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5.3 Outlooks 

This research sheds light on the gap in knowledge between the connection 

of fructose and salt intake and hypertensions within the CNS.  Those with 

hypertension or pre-hypertension and metabolic syndrome are at risk for stroke, 

cardiovascular disease, and heart failure.  Increase salt and fructose combined 

intake contributes to both hypertension especially in metabolic syndrome 

patients.  It is of great interest for those with pre-hypertension to decrease intake 

of fructose and salt consumption.  For further treatment and to reduce the 

number of cardiovascular deaths the salt sensitive population should watch both 

salt and fructose intake.  This study indicates that a combined salt and fructose 

diet increase CSF acetate and mediates hypertension through neuronal 

apoptosis and increasing pro-inflammatory cytokines. 

5.4 Future Studies and Restrictions 

 Brain PVN punch tissue is not exact, and obtaining a portion of the other 

brain areas may occur.  The blood pressure tail cuff method was used, but to 

better this study the renal transducers should be implanted in the rats to 

determine a more accurate blood pressure recording.  Other future studies 

include an interperotoneal injection of fructose to determine a more acute 

increase of lactate response in the cerebral spinal fluid (CSF) by measurements 

done from ion chromatography. 
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6 Chapter 6:  Supplementary Tables and Diagrams 

6.1 Animal Model Timeline for Diet Treatments and Metabolic 
Cage Measurements 
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6.2 Blood Pressure Apparatus  
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6.3 Primary Cultured Neuron Cells for RT PCR and Flow 
Cytometry 

 

 

 
  

 

 

(#) represents the concentration used for flow cytometry; (*) represents the 
concentrations used for real time PCR 
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6.4 Immunostaining Flow Diagram 
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6.5 Co-Immunostaining Brain Section Pictures 

Control X4 Control X20 

  

 

HS 4X HS 20X  

  

 

Fructose 4X Fructose 20X 
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HS+F 4X HS+F 20X 
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	Other studies have showed that microinjection of angiotensin I and angiotensin II into the third cerebral ventricle of the brain considerably elevated blood pressure compared to the administration of the drugs in the peripheral blood of rats[66] and d...

	2.9 The role of a high fructose diet and ROS production
	Interestingly, ROS is generated from neuron cells itself and is also generated by microglial cells and astrocytes which can transform communication to and from neurons by inducing long-term potentiation or modulating synaptic plasticity [68].  We have...
	Keep in mind that the microglial cells are a specialized type of macrophages within the CNS and contributes to an enormous part of the inflammatory and immune responses of the CNS during fructose loading [41].  High levels of fructose contributes to e...

	2.10 The role of high fructose and antioxidant imbalance
	When free radicles are formed in the body antioxidants can inactivate/quench them. Superoxide dismutase 2 (SOD2) is an antioxidant enzyme within the mitochondrial matrix that has the ability to destroy superoxide anion radicles that are toxic to the n...

	2.11 Fructose and the blood brain barrier
	In the CNS, cells are responsible for their own energy, metabolizing glucose and lipids. However, the brain alone is one of the most energy demanding organs in the human body because it is full of neurons that starve for glucose.  It is well known tha...
	8 healthy women and men were given a 20% dextrose (sucrose and fructose mixture) though a constant 4 hour intravenous injection to their arm, the dextrose levels were held at the same concentration (220 mg/dl) for 4 hours long [20].   Janice J. Hwang ...
	Contradicting experiments indicate that fructose can enter the brain by a presence of GLUT5 in the blood brain barrier in rats that consume a high fructose diet [26].  Shu HJ et. al. has shown that brain cerebrum mRNA levels of GLUT5 increase 1.5-fold...

	2.12 Fructose Causes Lactate Elevation Which May Contribute to Hypertension
	When 10 volunteers received a 10% intravenous (IV) dose of fructose at 0.5 grams per kilogram of body weight per hour for two hours it was found that their serum lactate rose significantly during this fructose administration[75]. Interestingly, lactat...

	2.13 Fructose in the CNS is linked to inflammation
	GLUT5 has been shown to be expressed in the CNS, and it has the ability to transport fructose in microglial cells.  The transportation of GLUT5 may have an effect on glial and neuronal interactions.  For example, glial cells can multiply when the brai...
	Brain astrocytes and microglial express GLUT5, the main glucose transport protein for fructose, and are highly localized in the brain[30].  Astrocytes in the PVN and superaoptic nucleus (SON) display great anatomical plasticity and are capable of ext...

	2.14 Model: fructose and high salt mediates hypertension
	It is believed that fructose and salt synergistically have a hypertensive effects[87].  Fructose stimulates salt absorption in the small intestine specifically the jejunum, and the kidney [88].  Interestingly, it is thought that GLUT5 is responsible f...

	2.15 Review Article Conclusion
	These reviewed studies and metabolism of fructose in the body and brain suggest that fructose plays a large role on the effects of the central nervous system.  We also suggest that fructose effects the CNS, not only by its ability to generate fructose...


	3 Chapter 3:  Methods
	3.1 Animal Models, Diets, Blood Pressure, and Metabolic Cages
	Male rats were purchased from Charles River Laboratories in Wilminton, MA.  Sprague Dawley (SD) eight-week-old rats were started on a specialized diet including 1) normal chow (0.4% NaCl, Envigo RMS, IN, USA) with normal drinking water, 2) high salt c...
	Prior to the diet treatment mean arterial blood pressure in conscious SD male rats were measured by non-invasive tail cuff using CODA© systems from Kent Scientific Corporation.  Measurements for each male rat represents two separate recordings per wee...

	3.2 Paraformaldehyde infusion and brain sectioning
	Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 4% NaCl and 20% fructose water...

	3.3 Immunostaining
	Immunostaining of PVN GLUT5 was performed with the succeeding procedures:  brain coronal sections (25um) containing the PVN was first washed in PBS for 3 times for 10 minutes total.  After washing the slices with PBS, then the brain cross sections wer...

	3.4 Fructose Assay
	Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 4% NaCl and 20% fructose water...

	3.5 Real-time PCR (qPCR) Analysis of PVN GLUT5 mRNA Expression
	Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 4% NaCl and 20% fructose wate...

	3.6 Ion Chromatography
	Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 4% NaCl and 20% fructose water...

	3.7 Neuronal Culture Isolation
	Primary neurons cultures were isolated using sterile technique from 24 hour old SD rats.  Rat under 24 hours of age were euthanized and their whole brain was immediately separated apart from the cranium and vigilantly dropped into sterile DPBS solutio...

	3.8 Measurement of pro-inflammatory cytokines by Real-Time PCR in primary neurons cells
	Primary neurons cultures were isolated using sterile technique from 24 hour old SD rats as described above.  Cultures were made from Sprague Dawley (SD) rats whole brains containing the PVN.  Momentarily, SD rats were euthanized and then the whole bra...
	Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 4% NaCl and 20% fructose water...

	3.9 Data Analysis
	Summary data is expressed in standard error of the mean (±SEM).  Both in vitro and in vivo data were analyzed using a one-way Anova or unpaired student t-test.  Evidences against the null hypothesis was considered statistically significant only if the...


	4 Chapter 4:  Results
	4.1 A High Salt plus Fructose Diet Increases Blood Pressure in SD Rats
	In order to prove that a 4% NaCl high salt diet plus 20% fructose water diet (HS+F) stimulated hypertension in SD rats and not on other specialized diets; eight-week-old male SD rats with the same ages were placed on either a NS or HS diet with and w...
	In summary, after three weeks of special diets SD rats on a NS diet (89 mm Hg), HS alone diet (96 mm Hg), and F alone diet (98 mm Hg) showed no change in MAP.  However only when the combined diet HS+F (127 mm Hg) was given there was an increase in MAP...
	Figure 4.1a Conscious mean arterial blood pressure (MAP) for Sprague Dawley (SD) rats on a normal salt (NS; 0.4% NaCl and normal water; n=15), high salt (HS; 4% NaCl and normal water; n=15), fructose (F; normal chow and 20% fructose water, n=15), and ...
	Figure 4.1b Rat’s body weights were measured for each rat given a normal salt (NS; 0.4% NaCl and normal water, n=5), high salt (HS; 4% NaCl and normal water n=5), fructose (F; normal chow and 20% fructose water; n=5), and high salt plus fructose (HS+F...
	Figure 4.1c After 3 weeks of each rat given a normal salt (NS; 0.4% NaCl and normal water), high salt (HS; 4% NaCl and normal water), fructose (F; normal chow and 20% fructose water), and high salt plus fructose (HS+F; 4% NaCl chow plus 20% fructose w...

	4.2 Immunostaining
	To provide results that GLUT5 was demonstrated to be expressed in the rats PVN brain area and plays a role in whether a HS+F diet alters GLUT expression in SD rats and age matched those of the NS.  Eight-week-old male SD rats were fed either a NS or ...
	Figure 4.2 The area of the PVN surrounding the third ventricle (3V) is shown by 4X magnification (a) of the PVN for the NS (control group), and (b) demonstrates the area in the box at 20X magnification for the NS group.  The area of the PVN sounding t...

	4.3 Real Time Polymerase Chain Reaction of GLUT5
	To further provide evidence that GLUT5 is expressed in the brain hypothalamic PVN we performed Real Time PCR (qPCR) of the PVN area. Eight-week-old male SD rats were fed either a NS or HS diet with and without fructose drinking water (NS, HS, F, HS+F...
	Figure 4.3  Real Time PCR (qPCR) data for four different groups: NS (control), HS (4%NaCl chow, normal drinking water), F (normal chow, 20% fructose drinking water), HS+F (4%NaCl chow with 20% fructose drinking water), respectively.  GLUT5 is upregula...

	4.4 Fructose Assay
	To determine the physiological concentration of fructose from in vivo of the rat’s blood serum and CSF fructose assay kit was utilized.  This was done to ensure similar concentrations were used for in vitro studies.  Eight-week-old male SD rats were ...
	Figure 4.4a Blood serum of 8-week-old Sprague Dawley (SD) rats were withdrawn from four different groups:  NS (control), HS (4%NaCl chow, normal drinking water), F (normal chow, 20% fructose drinking water), HS+F (4%NaCl chow with 20% fructose drinkin...
	Figure 4.4b CSF of 8-week-old Sprague Dawley (SD) rats were withdrawn from four different groups: NS (control), HS (4%NaCl chow, normal drinking water), F (normal chow, 20% fructose drinking water), HS+F (4%NaCl chow with 20% fructose drinking water),...

	4.5 Ion Chromatography
	To determine the anions and cations of the SD male rat’s CSF, ion chromatography was utilized for this purpose.  After 3 weeks of each SD male rat given a normal salt (NS; 0.4% NaCl and normal water), high salt (HS; 4% NaCl and normal water), fructos...
	Table 1 Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 4% NaCl and 20% fructo...
	Figure 4.5a Eight-week-old male Sprague Dawley (SD) rats were divided into 4 groups and were fed a normal salt chow (NS: 0.4% NaCl), high salt chow (HS: 4% NaCl), NS with fructose (F: 20% fructose water), and HS plus fructose (HS+F: 4% NaCl and 20% fr...

	4.6 Real Time PCR for Pro-inflammatory Cytokines of Brain Neurons
	In order to determine the inflammatory responsible for inducing pre-inflammatory cytokines during a high salt and fructose treatment, primary neuronal cultures from the whole brain of less than 24-hour old SD male rats were incubated with high salt, f...
	Figure 4.6a Primary neuron cells were isolated from SD rats within 24 hours of birth.  12-day-old neurons were treated with different doses of salt and fructose for 6 hours and then RNA was extracted and then converted to cDNA followed by RT PCR.  HS ...
	Figure 4.6b Primary neuron cells were isolated from SD rats within 24 hours of birth.  12-day-old neurons were treated with different doses of salt and fructose for 6 hours and then RNA was extracted and then converted to cDNA followed by RT PCR.  HS ...

	4.7 Flow Cytometry of Primary Neuron Cells
	Isolated primary rat neuronal cells demonstrated apoptosis as a reaction to fructose and/or sodium chloride (NaCl) treatments. Incubation of brain neurons isolated from neonatal SD rats with 200µM (17.2%, P<0.05) and 1mM (22.5%, P<0.005) of a 6 hour ...
	Figure 4.7 Primary neuron cells were isolated from SD rats within 24 hours of birth.  12-day-old neurons were treated with different doses of fructose for 6 hours and then stained with propidium iodine (PI) and flow cytometry was performed.  (a) Repre...
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	5 Chapter 5:  Discussion
	5.1 Main Idea
	The central nervous system (CNS) plays an imperative role in blood pressure regulation and has been thought to be the primary role of fructose-induced hypertension. The sympathetic nervous system (SNS) plays a more important role in controlling blood ...
	Taking everything into consideration evidence suggests that a high salt and fructose diet alters neuronal cells by stimulating neuronal apoptosis and fructose stimulates salt uptake in brain CSF resulting in upregulation of GLUT5 in brain paraventricu...
	Evidence that the PVN tissue expressed GLUT5 demonstrates that a combined high salt and fructose diet may play a more central role in of cardiovascular function contributing to hyperactivity in the PVN area resulting to neurogenic hypertension[90].  T...
	First, MAP is increased by a total of 37 mmHg in eight-week-old SD male rats after just 3 weeks of a HS+F diet compared to NS rats.  Second, the expression of GLUT5, a fructose transporter, is expressed in brain PVN and quantified by real time PCR dem...
	Collectively, our results demonstrated that fructose may cause hypertension through the mechanism of neuronal apoptosis in the PVN and that a HS+F diet contributes to salt sensitivity in SD rats.  The PVN, protected by the blood brain barrier, is the ...

	5.2 Summary
	Here we have demonstrated that fructose and salt synergistically create hypertension in eight-week-old male Sprague Dawley (SD) rats.  Furthermore, we have demonstrated that an increased expression of GLUT5 in the PVN of SD rats who were given a 4% hi...
	To review the data, this study demonstrated that a just 3 weeks of a HS+F diet increased MAP in SD male adult rats.  Chow (food) intake decreased in F and HS+F SD rat groups.  Water intake and urine output increased significantly in HS and H+F rat gro...

	5.3 Outlooks
	This research sheds light on the gap in knowledge between the connection of fructose and salt intake and hypertensions within the CNS.  Those with hypertension or pre-hypertension and metabolic syndrome are at risk for stroke, cardiovascular disease, ...

	5.4 Future Studies and Restrictions
	Brain PVN punch tissue is not exact, and obtaining a portion of the other brain areas may occur.  The blood pressure tail cuff method was used, but to better this study the renal transducers should be implanted in the rats to determine a more accurat...
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