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FET. (a) Transmission in the energy window of [-0.5 eV, 0.5 eV]. (b)

Zoomed-in version of the transmission in the energy window of [-0.15

eV, 0.15 eV]; the dotted lines represent the chemical potential window for

the respective applied bias. (Reprinted with permission from K. B. Dhun-

gana, M. Jaishi, and R. Pati, Nano Letters 2016, 16, 3995–4000. Copyright

(2016) American Chemical Society.) . . . . . . . . . . . . . . . . . . . 72

4.6 A schematic to elucidate the electronic orbital control mechanism for the

superior performance of a (b) Si-Ge core-shell nanowire quantum dot FET

over (a) the Si nanowire quantum dot FET. For the ON state, carrier trans-

port is restricted to the shell layer. The pz orbitals provide the pathway

for tunneling of electrons. (Reprinted with permission from K. B. Dhun-

gana, M. Jaishi, and R. Pati, Nano Letters 2016, 16, 3995–4000. Copyright

(2016) American Chemical Society.) . . . . . . . . . . . . . . . . . . . 73

xiii



4.7 Variation of current with the source-drain bias for different channel lengths

(L) of (a) Si nanowire junction and (b) Si-Ge core-shell nanowire junction,

in the absence of gate bias. The Isd is fitted to a straight line to calculate

the conductance (GC) for different wire lengths (L). The inset shows the

ln(GC) vs. L plot, which is fitted to a straight line to calculate the electron

tunneling decay constant (β ) of 0.37 and 0.24 Å
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core diameter 4.7 Å. (Reprinted with permission from M. Jaishi, and R.

Pati, Nanoscale 2017, 9, 13425–13431. Copyright (2017) Royal Society of

Chemistry.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xv



4.12 Transconductance and transmission function in two representative

nanowire junctions. Gate bias dependent transmission is plotted at a fixed

source-drain bias of Vds ∼ 0.27 V; dotted lines represent the chemical po-

tential window. (a, b) Ge-Si core-shell nanowire quantum dot FET with a
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Abstract

One-dimensional (1D) nanoscale systems — structures with the lateral dimensions ranging

from 1 nm to 100 nm — have received significant research interest due to their unique

structure-guided properties that promise functionalities far more superior than their bulk

counterparts. The quantum confinement effect in 1D nanostructures provides us with a very

powerful tool to tune their electrical, magnetic, optical and thermal properties and opens

the gateway for their multifunctional usages in next-generation electronics. In particular,

carbon nanotubes and semiconductor nanowires are found to offer tremendous opportuni-

ties to form the junction devices with controlled electronic and optoelectronic properties

crucial to predictable device functions. Along with the experimental progress in synthesis

and fabrication techniques leading to nano-dimensional devices with diverse applications,

theoretical insights at the level of electronic structure is equally important to tune var-

ious material properties for achieving greater device performance coupled with a wider

range of functionalities. This thesis provides a theoretical description of the quantum

transport properties in semiconductor core-shell nanowire field effect transistors (FETs)

and (8,0) single-wall carbon nanotube contacted to ferromagnetic electrodes using the first

principles density functional theory (DFT) in conjunction with the coherent single-particle

many-body Green’s functions approach. The first project of the thesis outlines the supe-

rior performance of a semiconductor Si-Ge core-shell nanowire quantum dot FET over its

pristine Si nanowire counterpart. In this work, we have unlocked the switching mechanism
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responsible for the superior performance of the Si-Ge nanowire FET with the pz-orbitals

in the (outer)shell-layer providing the carrier pathway in both nanowire FETs. This is fol-

lowed by a work on charge transport in semiconductor Ge-Si core-shell nanowire quantum

dot FETs of two different Ge-core diameters. Here, we have identified the most proba-

ble tunneling pathway of electrons in Ge-Si FETs with an orbital spatial level resolution

which demonstrates the gate-bias-driven decoupling of carrier transport between the core

and shell-region. Our calculations hold a qualitative agreement with the experimentally

reported results. Irrespective of the Ge core diameter, we observed excellent FET charac-

teristics within a certain threshold gate bias after which the drain current is found to drop

rapidly leading to the negative differential resistance (NDR). An orbital level analysis re-

veals a strong coupling between the pz-orbitals of the core-Ge and the s-orbitals of the gold

electrode giving rise to the peak state of NDR; no such coupling is found at the valley NDR

state for which the contribution comes solely from the pz-orbitals of the shell-Si. The final

project of this thesis comprises the result of our work on spin transport in an (8,0) single-

wall carbon nanotube - nickel magnetic tunnel junction. We found an oscillatory tunnel

magnetoresistance showing a wide variation in its amplitude and width with the gate bias

coupled with TMR sign reversals as observed in the experiment. Analysis of our calcu-

lation revealed a nonlinear coupling at the interface with s- and d-orbitals of different Ni

atoms hybridized with pz orbitals of different interfacial carbon atoms at each gate bias

points. Inserting an oxide layer at the interface is found to tune the oscillation in TMR in a

predictable manner resulting in a much smoother oscillation critical to its application.
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Chapter 1

Introduction

With the unparalleled advancements made over the last two decades, developements in

modern-day electronics have left every other sector far behind. The relentless quest of

creating more advanced electronic devices have revolutionized the world of electronics

with the modern-day devices becoming thinner, smarter and ever more powerful and yet,

cheaper. The enormous growth of the semiconductor industry since the 1960s is powered

by the exponential increase in the number of the transistors packed inside the microproces-

sor chip of a device[1, 2]. Moore’s law[3, 4], in this regard, has been the guiding principle

in shaping the semiconductor industry from the last five decades[5]. Unlike any other law

in physics, it is rather a prediction made by Gordon Moore, in 1965, that the number of tran-

sistors in a microprocessor chip will double each year and so will be the performance of the

device[2, 3]. Later in 1975, Moore revised his prediction for the transistor doubling time
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and made a more realistic estimate of two years[4]. Justifying Richard Feynmann’s famous

lecture ”There’s plenty of room at the bottom”, the law is followed with an uncanny accu-

racy until the first decade of the 21st century. The exponential growth that Moore predicted

transformed the world of electronics with the bulky home computers of the 1970s turn-

ing into the more advanced machines of 1980s and from there to the high-speed internet,

mobile and wearable electronics, and automated self-driving cars[1]. The simple guiding

principle of scaling down the feature size for a faster chip performance with lesser power

consumption followed, quite well, until the early 2000s[1, 2]. But as the transistor size

began to shrink below 90 nm, too much heat produced due to a faster movement of elec-

trons through the miniaturized silicon circuitry, became a matter of serious concern[1, 2].

To get rid of this problem, manufacturers slowed down the clock rates and put a limit on

electrons speed inside the chip[1, 2]. To maintain Moore’s law performance curve, the idea

of multiple processors in a single chip, then, came into practice by building machines with

up to 16 cores. Though shrinking the transistor size to be in line with Moore’s law is made

possible by using above measures, scaling further down will soon be halted as quantum

effects come into play when the feature size will reach atomic dimension. The effect has

already been felt with the state-of-the-art devices being stuck at the 14 nm node from the

last couple of years. Further scaling will soon bring the feature size to few atoms across,

at which, the behavior the electron will be governed by the probabilistic nature of quantum

mechanics; the electrons will leak across the miniaturized silicon circuitry resulting in an

unreliable transistor performance[1, 2].
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To clear the impasse looming over the future of Moore’s law, researchers all over the

world are in pursuit of a viable alternative that can bring greater device functionality with

lesser consumption of energy than the existing silicon-based CMOS technology. Efforts

in this direction have led to the design and discovery of several nano-dimensional ( 0, 1-

and 2-dimensional) semiconductor materials. Among various candidate materials, one-

dimensional semiconductor core-shell nanowires [6–29] have shown an enormous promise

in recent years. Core-shell nanowires are one-dimensional radial heterostructures having

a different atomic composition in the core and the shell region[6, 8, 13]. The pioneering

effort in this direction was made from Charles Lieber’s group with the synthesis of semicon-

ductor Si/Ge and Ge/Si core-shell and core-multishell nanowires using the chemical vapor

deposition method[6]. They reported that the lattice mismatch at the core-shell interface in

these nanowires results in band-offsets between the core and shell region; this provides an

unique opportunity to drive the carrier transport either through the core or the shell region,

thus, making it an excellent candidate material for the next-generation electronics[6]. A

high-performance behavior of Ge/Si core-shell nanowire field-effect-transistor (FET) have

also been reported experimentally[8]; it is found to exhibit a ballistic transport with the

mean free path of ∼ 500 nm at a low bias. Furthermore, the scaled transconductance

and on-current values in Ge/Si FET is reported to be more than 3 to 4 times higher than

that of state-of-the-art metal-oxide-semiconductor field effect transistors (MOSFETs)[8].

These nanowires can also be produced in high yield with reproducible electronic proper-

ties which is imperative to build the large-scale integrated systems[8]. The opportunity of
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coaxial gating in these nanowire FETs enables an excellent control over the off-state leak-

age current which helps to increase the device performance[6, 22]. Moreover, the Ge/Si

core-shell nanowires are also used to build the Josephson junctions[9]. For a Si/Ge core-

shell nanowire FET, studies have reported a significant enhancement in carrier mobility in

comparison to its pristine counterparts[30]. Because of their compatibility with the cur-

rent Si technology, the Si/Ge, and Ge/Si core-shell nanowires are seen as one of the most

promising alternatives to existing Si technology.

Besides, using electron spin instead of charge to transfer, process and store information

has also been perceived as a viable option; doing this would help to unite the memory

and processor into a single chip and would no longer require the electron to shuttle be-

tween memory and CPU at every time we retrieve some information. This, if possible,

would result in a substantial reduction of heat generated during the faster transport of

charge through various chip components. But to build such a spintronic device requires

a material with a long spin-flip scattering time to ascertain the coherent transport of spin

through the channel[31]. Carbon nanotube (CNT), owing to its low atomic number, is

found to experience a negligible spin-orbit coupling. Also, the abundant isotope of carbon,

carbon-12, is not affected by the hyperfine interaction due to the absence of any unpaired

electron. Because of these ideal features, semiconductor CNTs are considered an ideal

candidate to be used as the spin tunneling channel in magnetic tunnel junctions[31]. The

long spin-flip scattering length of 130 nm has already been reported in a ferromagnetically

contacted CNT tunnel junction[31]. Experiment showing the phase coherence length of
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250 nm and the elastic scattering length of 60 nm have also been observed[32]. The longer

spin lifetime found in CNTs has projected them as a strong candidate material to build

devices with higher tunnel magnetoresistance(TMR). TMR which underpins the modern

high-density data storage device is the relative difference in resistance between the parallel

and antiparallel spin alignments of the ferromagnetic contacts spacing a tunneling channel

in between them. Several experimental groups have, so far, measured the TMR in two and

three terminal junctions; however, the difficulties in fabricating the reproducible ferromag-

netic contacts have resulted in a variation in the TMR values reported by them[31, 33–40]

Of particular interest is an experimental result published by Sahoo et al. in 2005, where

they have reported an oscillatory variation of TMR with gate bias in CNT junctions con-

tacted with ferromagnetic PdNi electrodes[37]. They have shown an aperiodic oscillatory

behavior in both single and multiwall CNT junctions with sizable variation in amplitude

coupled with TMR sign reversals[37]. Though they have suggested quantum interference

as a possible reason, no electronic structure level description have so far been given to

address the observed oscillatory TMR feature. An attempt in this direction requires an

electronic structure level understanding of the gate bias effect on the contacts as well as on

the CNT channel structure.

This thesis aims to understand at the electronic structure level, the charge and spin transport

properties in various one-dimensional semiconductor tunnel junctions discussed above. We

used density functional theory (DFT)[41] in conjunction with the coherent single parti-

cle many-body Green’s functions approach (NEGF)[42] to study the quantum transport in
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nanoscale junctions. In chapter two, the theoretical background for solving the many-body

Schrödinger wave equation is discussed starting from the single particle Slater determi-

nant to all the way up to density functional theory utilizing the hybrid exchange-correlation

functional. Chapter three describes our quantum transport approach which includes a detail

discussion regarding the construction of Green’s function in the nonequilibrium condition

of spin-restricted and spin- polarized nanoscale tunnel junctions; the Landauer-Büttiker

formalism to obtain the drain current by integrating the transmission function within the

calculated chemical potential window is discussed further. In chapter four, the results of

the work done on one-dimensional semiconductor Si/Ge and Ge/Si core-shell nanowire

field effect transistors are described. The first part of this chapter discusses the observed

superior performance of the Si/Ge core-shell nanowire quantum dot field effect transistor

in comparison to its pristine silicon counterpart[43]. Similarly, the second part describes

the mechanism behind the gate driven negative differential resistance (NDR) behavior ob-

served in the Ge/Si core-shell nanowire quantum dot FETs[44]. The fifth chapter of the

thesis discusses, in detail, the results of the work done to elucidate the mechanism behind

the experimentally reported oscillatory TMR feature in ferromagnetically contacted carbon

nanotube junction. Finally, the thesis is concluded by proposing some future work as an

extension of the work done during my Ph.D.
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Chapter 2

Density Functional Theory

2.1 Introduction

The solution of the quantum many-body problem is central to understand the various phys-

ical, chemical and biological processes in nature. However, due to computational com-

plexities arising from the requirement of having an infinite basis set, the exact solution of

a many-body Schrödinger wave equation (SWE) is not possible. Thus, to obtain a rea-

sonably accurate description of the quantum many-body problem, various approximation

methods have been developed and the Hartree-Fock method of solving the Schrödinger

wave equation is the foremost of this kind [45–47]. It is a wavefunction based approach
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that gives very accurate results for smaller system, however, with the increase in the num-

ber of electrons, the computational cost goes dramatically high making it almost impos-

sible to use this method for systems having a large number of electrons. To overcome

this problem, a density-based approach is introduced by considering electron density n(r)

instead of the wavefunction as the fundamental quantity to calculate all the physical ob-

servables in nature [48–55]. This method of solving the quantum many-body problem is

known as density functional theory (DFT) [41]. With the availability of sufficiently accu-

rate exchange-correlation functional, it is one of the most widely used computational tools

in the modern era of computational sciences [56, 57]. In this section, the basic formal-

ism of these approximation methods for solving the quantum many-body problem will be

discussed.

2.2 Many-Body Schrödinger Wave Equation

The time-independent SWE for a many electron system is an energy eigen-value equation

which can be expressed as [45–47]:

ĤΨ(r1,r2, ....,rN) = EΨ(r1,r2, ....,rN) (2.1)

where Ĥ is the Hamiltonian operator, E is the total energy and Ψ(r1,r2, .....,rN) represents
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the wavefunction of the N-electron system. The Hamiltonian operator of a system with

N-electron and M nuclei is expressed as [45–47]:

Ĥ = −
N

∑
i=1

1

2
∇2

i −
M

∑
α=1

1

2Mα
∇2

α −
N

∑
i=1

M

∑
α=1

Zα

riα
+

N

∑
i=1

N

∑
j>i

1

ri j
+

M

∑
α=1

M

∑
β>α

ZαZβ

Rαβ
(2.2)

where Mα is the ratio of the mass of nucleus α to the mass of an electron; Zα is the atomic

number of nucleus α; ri j is the distance between electron i and j; Rαβ is the distance be-

tween nucleus α and nucleus β . The first and second terms in Eq. (2.2) are the respective

kinetic energy operators of electrons and nuclei; the third term gives the Coulomb attraction

between electrons and nuclei; the fourth and the final terms are the respective representa-

tions of the repulsion between electrons and between nuclei.

2.2.1 Born-Oppenheimer Approximation

Being much heavier than the electrons, the motion of the nuclei is negligible compared to

that of electrons. Thus, to a good approximation, the electrons can be considered to be

moving in the field of fixed nuclei. This approximation in quantum chemistry is widely

known as the Born-Oppenheimer approximation [47, 58]. Following this approximation,

the kinetic energy term of the nuclei in (2.2) can be neglected and the final term which

gives the repulsion between nuclei can be considered a constant. Thus, Born-Oppenheimer
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approximation reduces the Hamiltonian (2.2) to a form

Ĥ = −
N

∑
i=1

1

2
∇2

i −
N

∑
i=1

M

∑
A=1

ZA

riA

+
N

∑
i=1

N

∑
j>i

1

ri j
(2.3)

This is known as electronic Hamiltonian.

2.3 Hartree Product

Let us consider a non-interacting N-electron system. The Hamiltonian for such a system

consisting of non-interacting electrons can be written as

Ĥ =
N

∑
i=1

ĥ(i) (2.4)

where ĥ(i) is the operator representation for the kinetic and potential energy of the ith elec-

tron. This represents the full electronic Hamiltonian if we neglect the electron-electron

repulsion. ĥ(i), on the other hand, might be thought of as an effective one-electron Hamil-

tonian which includes the averaged electron-electron repulsion. Therefore, the operator ĥ(i)

will have a set of individual electron wavefunction {φ(i)} obeying the eigenvalue equation:

ĥ(i)φ(i) = εiφ(i) (2.5)
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As we can see that the total Hamiltonian Ĥ, is a sum of one electron Hamiltonian, it’s

eigenfunction will, thus, be the wavefunction obtained from the simple product of individ-

ual electron wavefunction

Ψ(r1,r2, .....,rN) = φ1(r1) φ2(r2) ......φN(rN) (2.6)

with eigenvalue E given as

E = ε1 + ε2 + .....+ εN (2.7)

This many-electron wavefunction Eq.(2.6) is defined as Hartree product[45, 47]. It is an

uncorrelated electron wavefunction because

|Ψ(r1,r2, ....,rN)|2dr1dr2...drN = |φ1(r1)|2dr1|φ2(r2)|2dr2.....|φN(rN)|2drN (2.8)

which means that the simultaneous probability of finding the electrons in their respec-

tive volume elements is equal to the product of the probabilities of finding the individual

electrons in their volume element. Thus, it does not consider the indistinguishability of

electrons into account and hence, violates the antisymmetry principle[47].

11



2.4 Slater Determinants

As it has been already mentioned that the Hartree product violates the antisymmetry prin-

ciple which requires that the electronic wavefunction be antisymmetric with respect to the

interchange of the coordinates of any two electrons. To resolve this issue of antisymmetry

violation, the many-electron wavefunction is represented as a single determinant[47, 59]:

Ψ(r1,r2, ....,rN) = (N!)−
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(r1) φ2(r1) .... φN(r1)

φ1(r2) φ2(r2) .... φN(r2)

. . .... .

. . .... .

φ1(rN) φ2(rN) .... φN(rN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.9)

which is known as Slater determinant[47, 59]. In above equation, the factor (N!)−
1
2 is the

normalizing constant. This determinant has N electrons occupying N spin orbitals; rows

of this N-electron Slater determinant are labeled by the position of electrons whereas the

columns are labeled by the spin orbitals. So, the interchange of any two rows in this Slater

determinant would represent the interchange of the coordinates of any two electrons. As

per the rule of the determinant, this interchange would change the sign of the determinant

and hence, the antisymmetry is properly conserved. Next, the condition of two electrons

occupying the same spin orbital just like having two columns of the Slater determinant
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equal, thus making the determinant zero. Therefore, no more than one electron can occupy

the same spin orbital. This is the Pauli exclusion principle[45, 47]. Slater determinant

description of the wavefunction leads to the concept of exchange-correlation which implies

that the motion of electrons with parallel spins is correlated whereas the motion of opposite

spin is not.

2.5 The Hartree-Fock Approximation

The Hartree-Fock method is the most widely used traditional approximation method to

solve the many-electron Schrödinger wave equation. The derivation of Hartree-Fock equa-

tion (integrodifferential equation) utilizes the concept of variational principle[47, 60] which

states that for the ground state wavefunction, the expectation value of the Hamiltonian is an

upper bound to the exact ground state energy. Within the framework of this Hartree-Fock

approximation, each electron in an N-electron system is assumed to move in the aver-

age potential produced by all electrons including itself plus the potential due to the fixed

nuclei[45, 47]. The wavefunction for the N-electron quantum mechanical system is rep-

resented by a single Slater determinant with individual electron wavefunction of the form

[45, 47, 59]:

ΨHF =
1

(N!)
1
2

det[φ1φ2......φN] (2.10)
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The expectation value of the N-electron Hamiltonian for the ground state wavefunction

(Slater determinant) gives the Hartree-Fock energy of the form [45, 47]:

EHF = 〈ΨHF |Ĥ|ΨHF〉=
N

∑
i=1

Hi +
1

2

N

∑
i, j=1

(Ji j −Ki j) (2.11)

where,

Hi =
∫

φ∗
i (x)

[

−1

2
∇2

i +
M

∑
a=1

Za

ria

]

φi(x)dx =
∫

φ∗
i (x)h(i)φi(x)dx (2.12)

Ji j =
∫ ∫

φ∗
i (x1)φ

∗
j (x2)

1

r12
φi(x1)φ j(x2)dx1dx2 (2.13)

Ki j =
∫ ∫

φ∗
i (x1)φ

∗
j (x2)

1

r12
φi(x2)φ j(x1)dx1dx2 (2.14)

The respective integrals Ji j and Ki j are known as Coulomb and exchange integrals. These

are real integrals which satisfy the relation Ji j ≥ Ki j ≥ 0 [45, 47]. The Hartree-Fock energy

EHF in Eq.(2.11) is the function of spin orbitals φi. Thus, an infinitesimal variation δφi in

spin orbital leads to the energy variation [45, 47]:

δE = ∑
i

δHi +
1

2
∑
i, j

(δJi j −δKi j) (2.15)

Now to obtain the Hartree-Fock equations, we need to minimize the energy EHF with
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respect to the spin orbitals φi subject to the constraint that the spin orbitals are orthonormal

[45, 47]:

∫

φ∗
i (x1)φ j(x1)dx1 = δi j

⇒ 〈φi|φ j〉 = δi j (2.16)

For energy minimization, we will use the method of Lagrange’s multiplier[45, 47] and

define a function L of spin orbitals φi such that

L [{φi}] = EHF [{φi}]−
N

∑
i, j

εi j(〈φi|φ j〉 − δi j) (2.17)

where εi j form a set of Lagrange multipliers. Since L is real and 〈φi|φ j〉 = 〈φ j|φi〉∗, the

Lagrange multipliers must be Hermitian.

Now the minimization of energy EHF is obtained by minimizing L . Thus, setting the first

variation in L equal to zero

δL = δEHF −
N

∑
i, j

εi jδ 〈φi|φ j〉 = 0 (2.18)

leads to the result

f (i)φi(x) = εiφi(x) (2.19)
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where

f (i) = h(i)+∑
β

Jβ (i)−Kβ (i)

= h(i)+ vHF(i) (2.20)

is a one-electron operator called the Fock operator[45, 47] which is the sum of the

core Hamiltonian operator h(i) and an effective one-electron potential operator called the

Hartree-Fock potential vHF(i). Multiplying both sides of Eq.(2.19) by φi
∗ from the left and

integrating, we get

εi = Hi +∑
j

(Ji j −Ki j) (2.21)

Now if we simply add up all the orbital energies corresponding to N ground state electrons

by summing over i on both sides of Eq.(2.21), we get

N

∑
i

εi =
N

∑
i

Hi +
N

∑
i, j

(Ji j −Ki j) (2.22)

Comparing these result with Eq.(2.11), we found that

EHF 6=
N

∑
i

εi (2.23)

which clearly indicates that the total energy of the state ΨHF is not equal to the sum of

the orbital energies. The reasoning goes as follows: Since we are summing up twice the

exchange and Coulomb interaction term in Eq.(2.22), separately for the spin orbitals φi and
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φ j, the electron-electron interaction between the electrons in φi and φ j are added twice, and

thus, leads to the above discrepancy [45, 47]. Therefore, the correct Hartree-Fock ground

state energy is obtained by subtracting this extra summation term as shown

EHF =
N

∑
i

εi −
N

∑
j>i

(Ji j −Ki j) (2.24)

The Hartree-Fock appromixation gives a very accurate result for smaller systems but fails

to do so in the case of bigger many-body systems. Though it includes the exact exchange

between the electrons with parallel spin, the Hartree-Fock approximation does not take

into account the correlation arising due to the many-body interactions. This results in a

significant deviation from the exact non-relativistic ground state energy. To resolve this

discrepancy, many post-Hartree-Fock methods have been developed such as configuration

interaction (CI), many-body perturbation approach, and single particle many-body Green’s

function technique [41, 47]. Though all of these post-Hartree-Fock methods provide an

accurate description of the many body system by including the correlation interaction into

account, it comes at the expense of very high computational cost [41, 47]. To illustrate

this computational complexity, let us consider a wavefuntion, Ψ(r1,r2, ....,rN) representing

an N electron system in real space; the total number of coordinates needed to describe the

wavefunction Ψ will be 3N[61]. If each of these coordinates is segmented using a mesh

with 100 integration grids, it will require 1003N values to fully describe the wavefunction

Ψ [61]. But a mesh with only 100 grids is not sufficient to provide a reasonably accurate

result. For that, we need multiple higher number of integration grids which will make

17



it almost impossible to go beyond systems with few numbers of atoms. Therefore, an

alternate approach which is based on the density of electrons n(r) rather than wavefunction

is developed for solving larger many-body systems; all physical observables of a quantum

many-body system in this approach is calculated using the electron density. Since electron

density is a function of three spatial coordinates, it requires only 1003 values to describe

an N-electron system using a mesh with the same number of grids. Particularly, in the

case of Kohn-Sham density functional theory (DFT) which has largely been employed

in this thesis , a set of N single-particle orbitals are further added to form the electron

density. Therefore, it requires only N × 1003 values to represent the N-electron system

and makes a significant reduction in the computational cost in comparison to wavefunction

based methods [61]. This makes DFT, a viable alternative to wavefunction based approach

in solving the many-body quantum mechanical problem with the higher number of atoms.

Further details regarding the formulation of many-body DFT is discussed in the following

sections.

2.6 Thomas-Fermi Model

The concept of energy minimization with respect to local electron density to calculate the

ground state energy of many electron systems was initially formulated by Thomas and

Fermi in 1920 [41, 62]. Thomas-Fermi model assumes a uniform distribution of electrons

inside an atom. Now to derive the kinetic energy as a function of electron density, this
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model assumes that each phase space volume given by h3, where h is the Planck’s constant,

is occupied by two electrons and the electrons are moving in an effective potential field

determined by the nuclear charge. The density of ∆N electrons in real space within a cube

of side l is given by [41]:

n(r) =
∆N

v
=

∆N

l3
(2.25)

Within this assumption, the total kinetic energy as a functional of local electron density of

an atom is written as [41]:

T T F [n] = 2.871

∫

n5/3(r) dr (2.26)

This expression is known as Thomas-Fermi kinetic energy functional [62]. Further addi-

tion of classical electrostatic energy terms corresponding to electron-nucleus attraction and

electron-electron repulsion to Eq.(2.26) leads to the total energy functional expressed as

[41]:

ET F [n(r)] = 2.871

∫

n5/3(r)dr−Z

∫

n(r)

r
dr+

1

2

∫ ∫

n(r1)n(r2)

|r1 − r2|
dr1dr2 (2.27)

This is the Thomas-Fermi total energy functional. Now to obtain the ground state energy,

we need to minimize the energy functional (2.27) with respect to local electron density

subject to the constraint that[41]

N = N[n(r)] =
∫

n(r) dr (2.28)
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Therefore, by using the Lagrange’s multiplier scheme of functional variation as in section

2.5, we obtain

µFT =
δEFT [n]

δn(r)
=

5

3
×2.87n2/3(r)− z

r
+

∫

n(r2)

|r− r2|
dr2 (2.29)

This is known as Thomas-Fermi equation [41]. Though this model predicts a reasonably

good description of atoms, it is oversimplified and is not as accurate as other approximate

methods. Utilizing this idea of using density functional for solving the many-body problem,

Hohenberg and Kohn in 1964 proved two fundamental theorems known as the Hohenberg-

Kohn theorem [48, 49]. Within the framework of this theorem, the Thomas-Fermi model

for the ground state may be considered as an approximation to the density functional theory

[41].

2.7 The Hohenberg-Kohn Theorem

Theorem 1. (First Hohenberg-Kohn Theorem) For any system of interacting particles

in an external potential Vext(r), the potential Vext(r) is uniquely determined by the ground

state particle density n(r).
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The proof of this theorem is through reasoning by contradiction. Let us rewrite the Hamil-

tonian for an N-electron system with the non-degenerate ground state wavefunction Ψ as

Ĥ = −
N

∑
i=1

1

2
∇2

i −
N

∑
i=1

M

∑
A=1

ZA

riA

+
N

∑
i=1

N

∑
j>i

1

ri j
= T̂ + V̂ext + V̂elec (2.30)

where T̂ is the kinetic energy, V̂ext is the external potential, V̂elec is the Coulomb repulsive

potential between electrons. The electronic density for this ground state wavefunction is

defined as:

n(r) = 〈Ψ|Ψ〉 =
∫

d3r2....
∫

d3rN |Ψ(r,r2, ...,rN)|2 (2.31)

Let us suppose there exist another Hamiltonian

Ĥ
′
= T̂ + V̂

′
ext + V̂elec (2.32)

corresponding to different ground state wavefunction Ψ
′

such that the external potentials

V̂ext and V̂
′
ext differ by more than a constant but yield the same ground state density. Then

by applying the variation principle, the following relation holds true:

ε
′
= 〈Ψ′ |Ĥ ′|Ψ′〉

< 〈Ψ|Ĥ ′|Ψ〉

< 〈Ψ|Ĥ +V̂
′
ext −V̂ext |Ψ〉 (2.33)

21



which implies that

ε
′
< ε +

∫

(V̂
′
ext −V̂ext)n(r)dr (2.34)

Similarly, we can show that

ε < ε
′
+

∫

(V̂ext −V̂
′
ext)n(r)dr (2.35)

Adding above Eq.(2.34) and Eq.(2.35), we get

ε
′
+ ε < ε + ε

′
(2.36)

which is an obvious contradiction. Thus, it proves that the ground state electronic density

uniquely determines the external potential up to an additive constant.

Theorem 2. (Second Hohenberg-Kohn Theorem) The ground state energy E is also

uniquely determined by the ground-state charge density: the density that minimizes the

total energy is the exact ground state density.

The proof of second Hohenberg-Kohn (H-K) theorem immediately follows from the first
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H-K theorem. The energy as a functional of density n(r) can be expressed as [41, 63]:

E[n(r)] = 〈Ψ|T̂ +V̂elec +V̂ext |Ψ〉

= T [n(r)]+Velec[n(r)]+Vext [n(r)]

= F [n(r)]+
∫

n(r)Vextdr (2.37)

As it is proved in the previous theorem that the external potential is uniquely determined

by the density which as shown above determines the Hamiltonian as well as its associated

ground state wavefunction. This means that the wavefunction Ψ is a also a functional of

density n(r) and hence, for any arbitrary operator Ô:

〈Ψ|Ô|Ψ〉 = O[n(r)] (2.38)

Now, as the ground state energy can be uniquely determined from the ground state density

n(r), we get

ε[n(r)] = 〈Ψ|Ĥ|Ψ〉

= 〈Ψ|F̂ +V̂ext |Ψ〉 (2.39)
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From the variational principle, we know that density n
′
(r) other than the ground state den-

sity n(r) must give a higher energy [41, 63]:

ε = ε[n(r)] = 〈Ψ|F̂ +V̂ext |Ψ〉 < 〈Ψ′ |F̂ +V̂ext |Ψ
′〉 = ε[n

′
(r)] = ε

′
(2.40)

Therefore, it is proved using a variational approach that by minimizing the total energy

with respect to n(r), we obtain the total ground state energy. So, the correct density that

minimizes the total energy is the exact ground state density.

2.8 The Kohn-Sham Approach

In 1965, Kohn and Sham (KS) formulated the density functional theory in a more conve-

nient way that made it possible to implement this theory in practice [50, 52–54]. The main

idea behind the KS theory is to map the system of interacting electrons onto a fictitious

system of non-interacting electrons with both of them having the same ground state charge

density[50]. According to this formulation, the ground state charge density of a system of

non-interacting electrons is expressed as

n(r) = 2

N/2

∑
i=1

|φi|2 (2.41)
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where φi represent the one-electron Kohn-Sham orbitals. The factor two in above equation

comes from two spin states of an electron. Despite this KS orbital representation, it is the

ground state charge density which acts as the fundamental variable in determining all the

properties of a quantum many-body system. The total energy in functional in the Kohn-

Sham formulation of DFT is expressed as[50]:

E[n] = Ts[n]+ JH [n]+Exc[n]+
∫

vext(r)n(r)dr (2.42)

where the first term

Ts[n] = −1

2

N

∑
i

〈φi|∇2|φi〉 (2.43)

is the kinetic energy of the non-interacting electrons calculated in terms of KS orbitals

[41, 50]. The second term

JH [n] =
1

2

∫ ∫

n(r1)n(r2)

|r1 − r2|
dr1dr2 (2.44)

is known as the Hartree energy which, in fact, is the classical Coulomb repulsive interac-

tion between the electrons[41, 50]. The third term Exc[n] is called the exchange-correlation

energy which accounts for all the errors that crept in while mapping the real interacting sys-

tem of electrons onto a fictitious non-interacting electrons [41, 50]. Within this framework

of KS orbitals, the total energy functional can further be expressed as:

E[n] =
N

∑
i

∫

φ∗
i (r)(−

1

2
∇2)φi(r)dr+ JH [n]+Exc[n]+

∫

vext(r)n(r)dr (2.45)
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Using the method of Lagrange’s undetermined multiplier to minimize the total energy sub-

ject to the constraint that the KS orbitals are orthonormal

∫

φ∗
i (r)φ j(r)dr = δi j (2.46)

leads to following variational expression

δ

[

E[n]−
N

∑
i j

εi j

∫

φ∗
i (r)φ j(r)dr

]

= 0 (2.47)

The final expression obtained upon simplifying the above equation can be written as [41,

50]:

[−1

2
∇2 + ve f f (r)]φi(r) = εiφi(r) (2.48)

This is known as the Kohn-Sham equation of DFT. Here,

ve f f (r) =
∫

n(r
′
)

|r− r
′|dr

′
+ vxc(r)+ vext(r) (2.49)

is known as the effective potential with the exchange-correlation potential vxc(r) expressed

as [41, 50]:

vxc(r) =
δExc[n]

δn(r)
(2.50)

The Kohn-Sham DFT Eq.(2.48) looks similar to that of Hartree-Fock equation with the only

difference being the replacement of exact exchange term with that of exchange-correlation

potential vxc(r). The actual implementation of the Kohn-Sham DFT calculation is done
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using self-consistent field (SCF) method. According to this method, the calculation is

started taking a guessed value of the charge density n(r) which iterates through the KS

equation (2.48) until the difference between the newly obtained n(r) and the last one used

to construct the KS effective potential ve f f (r) is insignificant. Once the SCF cycle is con-

verged, the ground state energy is then computed using the finally obtained charge density.

Though DFT incorporates both the exchange and correlation interaction between the parti-

cles in a many-body system, the difficulty in obtaining the explicit expression of exchange-

correlation term mandates to approximate the functional Exc[n] following some educated

assumptions. The level of accuracy of the DFT calculation, thus, depends upon the choice

of an exchange-correlation energy functional [41]. In the next section, details regarding

some of the widely used exchange-correlation functional are discussed.

2.9 Local Density Approximation

The Local density approximation (LDA) is the simplest and the oldest approximation to

the exchange-correlation energy functional which is derived using the uniform-electron-

gas model of an atom [41]. Therefore, the exchange and correlation energy within this

approximation are considered same as that of locally uniform electron gas having same

electron density [41]. In general, the exchange-correlation energy functional under the
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LDA is expressed as [41]:

ELDA
xc [n] =

∫

n(r)εhom
xc (n)dr (2.51)

where n(r) represents the local density of uniform electron gas. The corresponding

exchange-correlation potential under the LDA scheme then is written as [41]:

vLDA
xc (r) =

δELDA
xc

δn(r)

= εxc(n)+n(r)
δεxc

δn
(2.52)

The function εxc(n) can further be separated into exchange and correlation contributions as

[41]:

εxc(n) = εx(n)+ εc(n) (2.53)

The exchange part in the above equation due to the Dirac exchange energy functional which

is expressed as [41]:

εx(n) = −Cxn(r)1/3 (2.54)

where,

Cx =
3

4

(

3

π

)1/3

(2.55)

The correlation energy for the homogeneous electron gas cannot be calculated in an analytic

form and is, thus, often fitted to an accurate quantum Monte Carlo calculation [41, 64].
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The LDA has long been used to successfully calculate various properties such as total en-

ergy, band structure, vibrational frequencies, elastic moduli etc. of a bulk solid. It is mostly

found that LDA underestimate the correlation energy whereas it overestimates the exchange

energy; this inherent property of systematic error cancellation qualifies it to produce a rea-

sonably accurate value of exchange-correlation energy [41]. However, it fails miserably in

predicting the binding energies, bond lengths and lattice constants in the case of insulators

and semiconductors.

2.10 General Gradient Approximation

LDA assumes the behavior of the system of interacting electrons exactly same as that of

the homogeneous electron gas. But in reality, the electron density in any such system is

inhomogeneous. To incorporate this inhomogeneous nature of electron density, the general

gradient approximation (GGA) makes the exchange-correlation energy functional to also

depend on local gradient of electron density in addition to the local density of electrons.

The general functional form of GGA is written as:

EGGA
xc [n] =

∫

f (n(r), |∇n(r)|)n(r)dr (2.56)

Unlike LDA, there is no unique form for the GGA functional, thus it exists in many flavors

which are developed to meet the requirements of the specific kind of systems. The most
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widely used GGA functional in recent times is GGA-PBE, which is due to Perdew, Burke,

and Ernzerhof [65]. In general, the GGA gives a better estimate of bond length and binding

energies but like LDA, it also fails to account for the van der Waal interaction [66, 67].

2.11 Hybrid Functionals

Hybrid functionals are another class of approximations developed to account for the short-

comings of LDA and GGA. It incorporates a portion of exact exchange taken from the

Hartree-Fock theory in addition to the exchange and correlation contributions from other

available functional. In recent times, these are the most reliable class of exchange-

correlation functional which predict very accurate results than other available functional

[52–54].These are also known as implicit density functionals because the exact exchange is

expressed in terms of Kohn-Sham orbitals rather than density. One of the most widely used

functional, as such, in recent times, is known as B3LYP functional [53, 68–70]. The cor-

relation contribution in B3LYP comes from LYP(Lee-Yang-Parr) GGA and the exchange

part is taken from the Becke’s three-parameter hybrid functional B3. [53, 68–70]. The

B3LYP hybrid exchange-correlation functional is expressed as [70]:

EB3LY P
xc = ELDA

xc +a0(E
HF
x −ELDA

x )+ax(E
GGA
x −ELDA

x )+ac(E
GGA
c −ELDA

c ) (2.57)
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where a0 = 0.20, ax = 0.72, and ac = 0.81 are the semi-empirical parameters calculated by

appropriately fitting the data of experimental atomization energies, ionization potentials,

proton affinities, and total atomic energies.

Though hybrid functionals deal with the exchange and correlation in a more accurate man-

ner than LDA and GGA, it comes at the cost of more computational power. Therefore, to

use this functional for bigger systems that involve hundreds of atoms is still a challenge.
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Chapter 3

Quantum Transport Theory

3.1 Introduction

This chapter describes in detail, the theory of electronic transport in nanoscale junctions.

At this lengthscale, the quantum effects play a major role in dictating the electronic trans-

port behavior in a junction, thus, it cannot be described by a classical transport theory

[42, 71, 72]. Therefore, to have a complete understanding of the electronic transport phe-

nomena, one needs to incorporate the quantum nature of electron by explicitly including

the electron-electron interaction into account [42, 72]. Since a minor fluctuation in device

length at nano-regime can potentially distort the whole process of electronic transport, a ba-

sic understanding of various fundamental lengthscales in crucial to developing an efficient
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nano junction device. Therefore, the first section of this chapter presents an overview of

various characteristic lengthscales in relation to the electronic transport through the nano-

junction. This will then be followed by a section on device modeling, in which, details

regarding (i) the Landauer’s formalism of electronic transport, (ii) the single-particle many-

body Green’s function approach, and (iii) the formalism of spin-dependent transport will

be discussed.

3.2 An Overview of Fundamental Lengthscales in Solids

The idea of wave-particle duality developed by de Broglie (de Broglie hypothesis) inter-

prets electron both as a particle and a wave [73]. The wavelength of an electron, also

known as de Broglie’s wavelength [73], plays a crucial role in determining the transport. It

is found that at low temperature only those electrons which are in the immediate vicinity

of the Fermi energy do contribute to the electronic transport. This further depends on the

scattering potential due to disorder or lattice vibration in the solid state system and requires

it to be comparable to the Fermi wavelength of the electrons for the quantum effects to be

more prominent. [37]. Quantitatively, the Fermi wavelength of an electron is expressed as
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[42, 72]:

λ f = 2π/k f

= 2π/
√

2πns

=
√

2π/ns (3.1)

where k f and ns are the respective Fermi wave vector and electron density of a two-

dimensional electron gas.

Now scatterings in solids can further be divided into two types: elastic scattering and in-

elastic scattering, depending upon the energy changes during the scattering process. If the

energy during the process is conserved, it is known as an elastic scattering otherwise, the

process becomes inelastic. Moreover, the average distance traveled by an electron between

two successive elastic scatterings is material characteristic known as the elastic mean free

path; during this scattering process, the phase of the electron wavefunction, too, remains

conserved. The general expression for the elastic mean free path is given as [42, 71, 72]:

lm = v f τm (3.2)

where v f and τm are the respective Fermi velocity and momentum relaxation time. In rela-

tion to the above-discussed lengthscale lm, the electronic transport in a nanoscale junction

becomes ballistic if the channel length of the device is smaller than its elastic mean free
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path, beyond which the particle is scattered during the transport, resulting into a diffusive

process.

In contrast to the above-explained elastic scattering process, there occurs a dephasing of

electron wavefunction when it encounters an inelastic scattering during the transport. This,

in turn, originates another material characteristic lengthscale known as phase coherence

length; it is defined as the average distance traveled by an electron during successive inelas-

tic scatterings. It is of utmost importance when considering transport through a mesoscopic

junction as the quantum interference effect comes into existence only if the channel length

of a device is smaller than its phase coherence length; the transport in such cases is said

to be coherent in relation to the conservation of electron wave function [42, 71, 72]. The

general expression of phase coherence length is given as

lφ = v f τφ (3.3)

where τφ is the phase relaxation time.

Finally, this section is concluded by discussing, yet another, nanoscopic lengthscale related

to spin orientation of electrons. This lengthscale known as spin diffusion length is defined

as the distance over which an electron keeps its spin (memory) intact during the transport.

Spin coherence length in terms of diffusion constant (D) and spin relaxation time τ is
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expressed as [37]:

lsd =
√

Dτ (3.4)

Since it is a material property that depends on spin-orbit coupling and hyperfine interaction,

the materials with low atomic numbers (Z) are found to have the longer spin-coherence

length.[74]. For instance, the spin-coherence length of carbon nanotube is reported to be

130 nm [31].

3.3 Device Modeling

A typical nanoscale junction consists of a channel (spacer) sandwiched between the two

electrodes (semi-infinite charge reservoir). The electrode from which electrons are pumped

into the spacer is called the source and the one into which it pumps out is called the drain.

Figure (3.1) shows a prototypical three-terminal nanoscale junction device. The electronic

transport in a nanoscale junction constitutes a non-equilibrium statistical problem [42, 72].

To solve this problem, following assumptions are made: the current in the junction is con-

stant over time and the energy levels inside the channel are discrete and stationary.

However, to work as a junction device, the channel requires to exchange it’s energy and

electrons with the external semi-infinite electrodes which constitute an open system. To

model such an open junction device of nano-dimension, we partition it into three different
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Figure 3.1: A prototypical three-terminal nanoscale junction with a nanotube spacer. The connec-

tion between the channel and the semi-infinite external electrodes is made via left and right leads of

the active scattering region; εg represents the gate field applied perpendicular to the channel.

regions; the channel, the leads and the semi-infinite electrodes [42, 75]. The channel to-

gether with the strongly coupled leads on it’s both ends form the active scattering region.

The leads at both ends of the channel are composed of few atoms, equal in number, and

are attached to the left and right semi-infinite electrodes. When attached to the extended

structure (active scattering region), the semi-infinite electrodes remain unperturbed and are

assumed to retain their bulk properties [42, 75]. To make electrons flow through the chan-

nel, we need to have a non-equilibrium situation in which the chemical potentials in the

left and right electrodes are not equal. The difference in the chemical potential is expressed

as µ1,2 = E f ∓ Vlow,high, where µ1,2 are the respective chemical potential at left and right

electrodes; E f is the equilibrium Fermi energy and Vlow,high are the voltage drops at the

respective electrodes [75]. To obtain the voltage drop at each applied dipole perturbative

field, the self-consistently calculated potentials at finite bias is averaged over the total num-

ber of atoms at each lead which is then subtracted from the similarly calculated average
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potential at zero bias for the same lead [75]. The potential difference between the source

and drain is then obtained by subtracting Vlow from Vhigh; at equilibrium Vlow = Vhigh = 0

[75]. To model the effect of the electrostatic gating, a dipole interaction term, ~εg ·∑i~r(i)

is added to the core Hamiltonian of the active scattering region;~εg is the gate field applied

perpendicular to the channel axis and~r(i) represents the coordinate of ith electron[76, 77].

The self-consistent addition of dipole interaction term in the core Hamiltonian let us incor-

porate the first and higher order Stark effect explitcitly in our calculation[76, 77]. Finally,

the calculation of tunneling current is performed by using the Landauer approach to be

discussed in the following section.

3.3.1 Electronic Transport in a Nanoscale Junction: Landauer’s Ap-

proach

The Landauer’s approach to describing the electronic transport in a semiconductor

nanoscale junction is found to be valid only for the coherent transport regime ; the de-

vice size should be shorter than the phase coherence length of the electron [42, 72, 78, 79].

Figure (3.2) shows the schematic diagram of a nanoscale junction device. Leads at both

sides of the

scattering region (channel) are identical with the electrons free to travel along the x-

direction and confined in y and z-directions. The Hamiltonian for the active scattering
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region is given as [42, 72]:

HS = − h̄2

2m
∇2 +V (r) (3.5)

which satisfies the following asymptotic conditions [42, 72]:

lim
x→−∞

HS = − h̄2

2m
∇2 +VL(r) ≡ HL, (3.6)

and

lim
x→+∞

HS = − h̄2

2m
∇2 +VR(r) ≡ HR (3.7)

Since the solutions of the Schrödinger wave equation (SWE) for both HL and HR are similar,

once solved for the one, it can be generalized for the other. Therefore, the SWE for HL is

expressed as

[

− h̄2

2m
∇2 +VL(r)

]

ψnk(r) = Enψnk(r) (3.8)

The general solution for Eq.(3.8) is expressed as the product of the transverse and longitu-

dinal components [72]:

ψnk(r) =

√

1

Lx

un(r⊥)e
ikx, −∞ < k <+∞ (3.9)

Figure 3.2: Schematic representation of a typical nanoscale junction
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with the eigen-energy

En(k) = εn +
h̄2k2

2m
(3.10)

Though Eq.(3.9) gives a finite probability of finding electron everywhere is space, only

non-decaying solutions of Eq.(3.8) do contribute to the probability density [42, 72]. Now

the solutions for HR can be obtained in a similar way.

With these, for a given E, the SWE for the Hamiltonian is written as

[

− h̄2

2m
∇2 +V (r)

]

φnk(r) = Eφnk(r) (3.11)

where the solutions φnk(r) can be determined using the asymptotic boundary conditions:

lim
x→∓∞

φnk(r) = ψnkL,R(r) (3.12)

Out of the possible eigenstates traveling both ways in the active scattering region, let’s

consider the one traveling from left to right. For this, consider an electron with energy Ei

at the region x → −∞ with the initial eigenstate ψiki
(r). It is difficult to exactly specify

the state of an electron in the active scattering region due to the complex nature of V (r),

however, in the region x →+∞ of the right electrode, the electron eigenstate can simply be

obtained from a linear combination of eigenstates of HR expressed as [42, 72]:

φ+
iki
(r)→

NR

∑
f=1

ti f ψ f k f
(r), x →+∞ (3.13)
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where NR represents the number of eigenchannels in the right lead corresponding to a given

energy and ti f are complex coefficients. The state of the electron in Eq.(3.13) is labeled with

a ’+’ symbol to show that it originated from wavefunction ψiki
(r). Furthermore, the state

of an electron in the deep left lead is not only due to the incident wave but also has some

contribution from the back-scattered states from the junction. Considering the above fact,

the electron state at the deep left lead can be written as [42, 72]:

φ+
iki
(r)→ ψiki

(r)+
NL

∑
f=1

ri f ψ f k f
(r), x →−∞ (3.14)

where NL is the number of channels in the lead for the given energy and ri f are the complex

coefficients.

Therefore, the average current I(Ei) carried by the state at energy Ei across a surface per-

pendicular to the x-axis is obtained as

Ii(Ei) = e〈φ+
iki
| ĵ|φ+

iki
〉

=
eh̄

2im

∫ +∞

−∞
dy

∫ +∞

−∞
dz

[

[φ+
iki
(r)]∗

∂φ+
iki
(r)

∂x
−φ+

iki
(r)

∂ [φ+
iki
(r)]∗

∂x

]

=
eh̄ki

mLx

=
evi(ki)

Lx
(3.15)

Following the steady-state assumption of the current throughout the system, the current in
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the deep left lead in accordance with its electron state takes the form [42, 72]:

IL(Ei) = Ii(Ei)
(

1−
NL

∑
f=1

Ri f (Ei)
)

(3.16)

where the quantity Ri f (Ei) is known as the reflection coefficient which is expressed as

Ri f (Ei) ≡ |ri f |2
|I f (Ei)|
|Ii(Ei)|

(3.17)

where Ii(Ei) is the current carried by the initial state ψiki
.

Similarly, the current deep into the right lead can be expressed as [42, 72]:

IR(Ei) = Ii(Ei)
NR

∑
f=1

Ti f (Ei) (3.18)

with the Transmission coefficient, Ti f (Ei) expressed as:

Ti f (Ei) ≡ |ti f |2
|I f (Ei)|
|Ii(Ei)|

(3.19)

Assuming a steady current throughout the device requires deep left and deep right leads to

having the same current. This implies that if we start from the right electrode with initial

wavefunction ψiki
, we would reach to similar expressions of current for the above two leads

due to the transmitted and reflected states [42, 72].

Total Current: Considering the fact that at a finite bias, the left and right electrodes will be
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at two different chemical potentials (µL,R), the distribution or the occupancy of electrons in

these electrodes will be different too. Following this in addition to the assumption that the

participating eigenchannels are independent, the total current which is the sum of currents

carried by all channels at all energies is given as [42, 72]:

I = 2

∫

dE

[

NL

∑
i=1

NR

∑
f=1

fL(E)Di(Ei)Ii(Ei)Ti f (Ei)−
NR

∑
i=1

NL

∑
f=1

fR(E)Di(Ei)Ii(Ei)Ti f (Ei)

]

(3.20)

where the factor 2 arises to account for the two different electronic spin degree of freedom;

fL and fR represent the Fermi distribution function

fL,R =
1

e(E−µL,R)/KBT +1
(3.21)

in the left and right electrodes.

The density of state Di(Ei) of a 1-D lead is given as

Di(Ei) =
Lx

2π

dki

dEi

=
Lx

2π h̄vi
(3.22)
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The transmission coefficients from right to left and left to right defined in terms of trans-

mission probabilities can be expressed as [42, 72]:

TRL(E) =
NR

∑
i=1

NL

∑
f=1

Ti f (E), R → L (3.23)

and

TLR(E) =
NL

∑
i=1

NR

∑
f=1

Ti f (E), L → R (3.24)

These transmission coefficients must be equal to conserve the particle flux during the trans-

port. Therefore,

TLR = TRL = T (E) (3.25)

Finally, substituting the expressions for density of states Di(Ei) and current Ii(Ei) in

Eq.(3.19), the total current in terms of transmission function T (E) becomes [42, 72]:

I =
e

π h̄

∫

dE [ fL(E)− fR(E)] T (E)

=
2e

h

∫

dE [ fL(E)− fR(E)] T (E) (3.26)

3.3.2 Single Particle Many-Body Green’s Function Approach

The Landauer’s approach discussed in the previous section derived the expression for elec-

tronic current in a nanoscale junction in terms of the transmission function. In this section,
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the calculation of transmission function in a nanoscale junction using the real space single

particle many-body Green’s function approach is discussed [42, 72]. As discussed previ-

ously, the nanoscale device is partition into three different regions; the left electrode, the

active scattering region including the leads and the right electrode. The electrodes do not

interact directly with each other but are coupled to the active scattering region via coupling

potentials, thereby, making the total Hamiltonian of the partitioned nanoscale heterostruc-

ture takes the form [42, 72]:

H = HL +HR +HS +CLS +C
†
LS +CSR +C

†
SR

= HL +HR +HS +CLS +CSL +CSR +CRS (3.27)

where HL, HR, and HS are the respective Hamiltonians of the left electrode, right electrode,

and the middle scattering region; (CLS,CSL) and (CSR,CRS) are the coupling potentials rep-

resenting the coupling of the middle region with left and right electrodes, respectively

[42, 72]. The Schrödinger wave equation for the Hamiltonian in the matrix form can be

written as [42, 72]:

















HL CLS 0

C
†
LS HS C

†
SR

0 CSR HR

































|ΦL〉

|ΦS〉

|ΦR〉

















= E

















|ΦL〉

|ΦS〉

|ΦR〉

















(3.28)

where |ΦL〉, |ΦS〉, and |ΦR〉 are the single particle wavefunction representing the eigen-

functions of HL, HS, and HR, respectively; E is injection energy of the tunneling electron.
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Simplifying the above matrix equation (3.28), we get:

HL|ΦL〉+CLS|ΦS〉 = E|ΦL〉 (3.29)

C
†
LS|ΦL〉+HS|ΦS〉+C

†
SR|ΦR〉 = E|ΦS〉 (3.30)

CSR|ΦS〉+HR|ΦR〉 = E|ΦR〉 (3.31)

Solving Eq.(3.29), we get:

|ΦL〉 = GLCLS|ΦS〉 (3.32)

Similarly, solving (3.31), gives:

|ΦR〉 = GRCSR|ΦS〉 (3.33)

where,

GL,R =
1

E −HL,R
(3.34)

is the Green’s function for left and right electrodes.
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Now, substituting the solutions (3.32) and (3.33) in Eq.(3.30) and solving it, we get:

C
†
LSGLCLS|ΦS〉+HS|ΦS〉+C

†
SRGRCSR|ΦS〉 = E|ΦS〉

⇒ (E −HS −ΣL −ΣR)|ΦS〉 = 0 (3.35)

where ΣL = C
†
LSGLCLS and ΣR = C

†
SRGRCSR are the respective self-energy functions for

the left and right interfaces which enable the exchange of electron and energy between the

channel and the external electrodes.

Now, the Green’s function associated with Eq.(3.35) is given as [42, 72]:

G(E) =
1

E −HS −ΣL −ΣR

(3.36)

The above result (3.36) is also known as retarded Green’s function which, in the time

domain, acts as a response function to an impulse excitation at time t=0 [42]. Thus, we have

transformed the very complicated problem involving the entire system into the problem of

active scattering region, which is open to both the electrodes through the use of self-energy

function [42, 72]. The self-energy functions are non-Hermitian matrices whose imaginary

part gives the broadening function; it broadens the energy levels in the active scattering

region when attached to the semi-infinite electrodes. The broadening function, thus, is

defined as [42, 72]:

ΓL,R = i[ΣL,R −Σ†
L,R] (3.37)
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After having defined the retarded Green’s function and the broadening function in terms of

self-energy function, we are now ready to define the transmission function as [42, 72]:

T (E) = Tr[ΓLGΓRG†] (3.38)

which gives the sum of transmission coefficients over all the eigenchannels available in the

active scattering region. The transmission function gives the probability of crossing the

active scattering region by the electron while on its way from source to drain.

Now, to calculate the self-energy matrices and the Green’s function for a real system under

the non-equilibrium situation, we apply an electric field ~ε along the channel axis. We

incorporate this field effect in the Hamiltonian of the active scattering region by defining a

perturbed Hamiltonian as [42, 72]:

H(E,ε) = H0 +~ε.∑
i

~r(i) (3.39)

where H0 and~r(i) are the respective unperturbed Hamiltonian of the active scattering re-

gion and the coordinates of the ith electron. The single electron energy levels of the active

scattering region are obtained through self-consistent field calculation using the finite clus-

ter density functional theory. The use of real space approach for the active scattering region

allows the partition of H(E,ε) to obtain the molecular Hamiltonian HM(E,ε) representing

only the channel part [42, 72]. The bias-dependent single particle Green’s function of the
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molecular or the channel portion of the active scattering region is then given as

GM(E,ε) = [E ×S−HM(ε)−ΣL(ε)−ΣR(ε)]
−1 (3.40)

where E is the injection energy of the tunneling electron; S is an overlap matrix of the same

dimension as that of HM; ΣL and ΣR are the respective bias-dependent self-energy functions

which enable the lead-molecule interaction. The bias-dependent self-energy functions ΣL,R

are related to the orthogonalized bias-dependent coupling matrices CL,R through the relation

[42, 72]:

ΣL,R = C
†
L,RGpCL,R (3.41)

where Gp is the Green’s function for both the leads as we considered same leads on either

side of the channel. In the wideband approximation, Gp is obtained by calculating first

the bulk density of states (DOS) of the metal of which the lead is made from. Then, we

calculate the DOS per electron in the unit cell (η(E)) and use it to express Gp as:

Gp(E) = −iπη(E)× I (3.42)

where I represents an n×n identity matrix; n is the total number of Gaussian basis functions

used to represent the atoms forming the leads in the active scattering region.
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3.3.3 Theory of Spin Transport

The discussion of the electronic transport, done so far, emphasized only the charge aspect

of an electron. Since our study of electronic transport includes both the charge (spin-

unpolarized) as well as the spin (spin-polarized) transport, this section is devoted to dis-

cussing the spin-polarized electron transport in a nanoscale junction. Utilizing the spin

degree of freedom to build the nanoscale magnetic devices can be realized in two different

ways: the first one is to take the magnetic electrodes such as Ni, Co, and Fe and a non-

magnetic channel; the other way is to take the non-magnetic electrodes and the magnetic

channel. A device built with a non-magnetic channel sandwiched in between two magnetic

electrodes is known as a spin valve device [80–82]. And, the one in which a magnetic

channel is sandwiched in between two non-magnetic electrodes is called a spin filtering

device [83, 84]. Let us first discuss the transport in a spin-valve device. Depending upon

the magnetic orientation of the electrodes, there are two possible configurations of the spin

valve device. The one in which both the electrodes are having the same magnetic orien-

tation is known as parallel configuration (PC) and the other configuration in which two

electrodes are magnetized in the opposite direction is known as antiparallel configuration

(APC). Attaching a non-magnetic channel with the magnetic electrodes partially magne-

tizes the channel at the interface due to the magnetic proximity effect [75]. Because of this,

the molecular Hamiltonian, as well as the self energy matrices, become magnetic in nature
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and the Green’s function for the molecular part of a spin valve becomes [75]:

Gσ
M(E,ε) = [E ×S−Hσ

M(ε)−Σσ
L (ε)−Σσ

R (ε)]
−1

(3.43)

where σ represents the different spin states (↑ or ↓) of an electron.

Similarly, the spin-polarized self-energy matrices are expressed as [75]:

Σσ
L,R = C

σ†
L,RGσ

pCσ
L,R (3.44)

where the spin-polarized Green’s function of the leads Gσ
p is given as

Gσ
p = −iπησ × I (3.45)

If Gσ
pL

and Gσ
pR

are the respective Green’s function of the left and right lead?

then, in the case of PC, we get

Gσ
pL

= −iπησ × I; Gσ
pL

= Gσ
pR

(3.46)

But, in the case of APC where the leads have opposite magnetic orientation, we have two

different possibilities.
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For σ = ↑

G↓
pR

= −iπη↓× I; G↑
pL

= −iπη↑× I (3.47)

and for σ = ↓

G↑
pR

= −iπη↑× I; G↓
pL

= −iπη↓× I (3.48)

where η↑ and η↓ are the respective DOS per electron in the unit cell for UP and DOWN spin

states. The spin-polarized bulk DOS of magnetic electrodes is calculated using the periodic

density functional theory. To bring the energy level of the semi-infinite electrodes and the

active scattering region at the same scale, the Fermi energy of the bulk electrode is aligned

with the Fermi energy of the active scattering region at equilibrium. The equilibrium Fermi

energy of the active scattering region for PC and APC is given by the highest occupied

molecular orbital (HOMO). The finite lead at each end of the active scattering region and

the respective semi-infinite electrode are assumed to have the same magnetic domain [75].

Now, let us consider the transport in the case of the spin-filtering device. As it is built from

a non-magnetic electrode, the Green’s function for the lead would be spin-unpolarized.

The molecular Hamiltonian and the self-energy function, on the other hand, would be spin-

polarized because of a magnetic channel. The Green’s function of the molecular part of

the active scattering region and the rest of the transport theory would be same as that of a

spin-valve device.
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Chapter 4

Semiconductor Core-Shell Nanowire

Field Effect Transistors†

4.1 Introduction

Semiconductor core-shell nanowires are one-dimensional radial heterostructures having a

different atomic composition in the core and the shell region [6–29]. Due to its unique

electronic structure [8], this nanowires [6–29] have shown exciting promise in recent years

†Portion of this chapter is adapted from the Nano Letters vol.16, page 3995-4000, year 2016 by Kamal B.

Dhungana, Meghnath Jaishi, and Ranjit Pati (Kamal B. Dhungana initiated this project and is not a part of his

thesis; the major portion of the calculation, analysis and writing work for this project is done by Meghnath

Jaishi under the guidance of Prof. Ranjit Pati) and the Nanoscale vol.9, page 13425-13431, year 2017 by

Meghnath Jaishi and Ranjit Pati. Copyright: Appendix A - DOI: 10.1021/acs.nanolett.6b00359 & Appendix

B - DOI: 10.1039/c7nr05589g
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with applications in quantum computing [12, 24], field effect transistors [6, 8, 17, 18, 21],

Josephson junctions[9], thermoelectric materials[19], and Esaki tunnel diodes[26, 85]. The

valence band offsets in these nanowires help to reduce the carrier scattering at the nanowire

surface and provide a unique opportunity to drive the carrier transport through either core or

shell region [6–8, 11, 18, 21]. The recent improvements in synthesis techniques have made

it possible to prepare these nanowires in high yield with reproducible electronic properties

coupled with the ability to control their diameter as well as the core-shell interface [6, 8,

86, 87].

Furthermore, these nanowires provide us with an excellent opportunity of coaxial gating

which helps to suppress the off state leakage current for high-performance FET[6, 22].

Due to these important features and its compatibility to the present Si-based technology,

the core-shell nanowire is considered as a viable alternative for the next-generation elec-

tronics. For instance, the Ge-Si core-shell nanowire with transparent contacts has been

demonstrated to exhibit ballistic transport (mean free path ∼ 500 nm) [8] behavior at a

low bias. The scaled transconductance and ON current in this heterostructure are reported

to be 3 to 4 times higher than that observed in state-of-the-art metal oxide semiconductor

field effect transistors (MOSFETs) [8]. These materials also do not require doping [7, 8]

and are compatible with the current CMOS technology as dry or wet oxidation approach

at elevated temperature can be used to form an insulating oxide layer around the nanowire

for coaxial gating[6, 22]. High-performace Esaki tunnel diodes have also been fabricated
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from small-diameter Ge/Si core-shell nanowires vertically grown on Si substrate[85]. Sig-

nificant enhancement in mobility is also reported for a coherently strained Ge-Si core-shell

nanowire channel [28]. Programmable nanowire field effect transistors (FETs) made out of

Ge-Si core-shell nanowires have also been proposed [20]. In the case of a Si-Ge core-shell

nanowire FET, a significant enhancement in carrier mobility is observed upon reducing

the Si-core size [30]. These pioneering experimental works [6–8, 13, 20, 30, 86] provide

an ideal testing ground for quantum theory to investigate transport phenomena in this low

dimensional system.

There have been numerous theoretical works carried out to understand the electronic struc-

ture, energetics, quantum confinement effects, the role of doping, core-shell composition

dependent strain, and thermoelectric properties in Ge-Si core-shell nanowires [88–104].

But, only limited attention has been given thus far to comprehend the observed electron

transport phenomena in the semiconductor core-shell nanowire-metal junction[13, 105].

Electron transport in a low dimensional nanoscale junction is a non-equilibrium quantum

mechanical process[42, 72]; it cannot simply be assessed adequately from the energy band

diagram of the current carrying channel structure alone; the effect of the external bias in-

cluding the electrostatic gating effect as well as the metal/nanowire contact structure need

to be considered explicitly to gain insights into the transport phenomena. Therefore, a de-

tailed understanding of carrier transport in a nanoscale junction requires a first principles

approach that does not make any assumption on electronic structure, charge and potential

profile of the device. So far, only a semi-classical, ballistic transport model [13] has been
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adopted to analyze the observed superior performance of the Ge-Si core-shell nanowire

FET. However, a visual manifestation of the electronic quantum path within the Ge-Si core-

shell nanowire FET in a nonequilibrium condition would provide a detailed insight into the

quantum origin of its functionality, which is not attainable by a semi-classical approach.

In this chapter, the results of work done to investigate the quantum transport properties of

semiconductor Si-Ge and Ge-Si core-shell nanowire quantum dot field effect transistors of

different core diameter are presented. The first section of this chapter explains the observed

superior performance of Si-Ge core-shell nanowire field effect transistor in comparison to

its homogeneous silicon counterpart. Similarly, the results of quantum transport study that

explains the observed anomalous gate driven negative differential resistance behavior in

Ge-Si core-shell nanowire field effect transistor at a higher gate bias is discussed in the

next section.

4.2 Superior Performance of a Si-Ge Core-Shell Nanowire

Field Effect Transistor

The sustained advancement in semiconductor core-shell nanowire technology has unlocked

a tantalizing route for making next-generation field effect transistor (FET). Understanding

how to control carrier mobility of these nanowire channels by applying a gate field is the
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key to developing a high-performance FET. Herein, we have identified the switching mech-

anism responsible for the superior performance of a Si-Ge core-shell nanowire quantum dot

FET over its homogeneous Si counterpart. A quantum transport approach is used to inves-

tigate the gate-field modulated switching behavior in electronic current for ultranarrow Si

and Si-Ge core-shell nanowire quantum dot FETs. To avoid unintended scattering, the un-

saturated surface states of the nanowire quantum dots are passivated by hydrogen atoms.

Irrespective of channel length, our calculations yield excellent gate field induced switch-

ing behavior in current for both the pristine Si and the Si-Ge core-shell heterostructure

nanowire quantum dots. Within the gate bias range considered here, the transconductance,

dIsd/dVg, is found to be much higher in the case of a Si-Ge core-shell nanowire FET than

in the Si nanowire FET; this suggests a much higher mobility in the Si-Ge nanowire device.

The gate bias dependent transmission and participating spatial pathway (frontier orbital in

the active scattering region) are analyzed to understand the observed superior performance

of the Si-Ge core-shell nanowire quantum dot FET. For the ON state, the gate-field induced

transverse localization of the wave function restricts the carrier transport to the outer (shell)

layer with pz orbitals providing the pathway for tunneling of electrons in the channels. The

higher ON state current in the Si-Ge core-shell nanowire FET is attributed to the pz orbitals

that are distributed over the entire channel; in the case of Si nanowire, the participating pz

orbital is restricted to a few Si atoms in the channel resulting in a higher tunneling barrier

and thus the smaller ON state current. For the OFF state, no quantum states are available

within the chemical potential window to observe any appreciable current at a low bias.
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4.2.1 Computational Methods

The cross-sectional and the extended perspective view of the relaxed 〈110〉 Si and Si-Ge

core-shell nanowires used in this investigation are shown in Figure 4.1. A periodic den-

sity functional theory (DFT) [41] that employs plane wave basis functions and generalized

gradient approximation (GGA) for the exchange-correlation is used to determine their elec-

tronic structures.

Figure 4.1: Optimized structures of the H-passivated Si and Si-Ge core-shell nanowires along

the 〈110〉 direction. A cross-sectional view of (a) Si nanowire and (b) Si-Ge core-shell nanowire;

extended view of (c) Si nanowire and (d) Si-Ge core-shell nanowire. (Reprinted with permission

from K. B. Dhungana, M. Jaishi, and R. Pati, Nano Letters 2016, 16, 3995–4000. Copyright (2016)

American Chemical Society.)
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We have used the projector augmented wave (PAW) pseudopotentials to describe the

valence-core interactions. For the geometry optimization, the atomic structure of the

nanowires are allowed to relax without symmetry constraint until the residual force on

each atom becomes less than 0.01 eV/Å; the energy convergence criterion is set at 10−6 eV.

The optimum lattice parameter of the nanowire is obtained by minimizing the total energy

with respect to the variation of lattice parameter along the z-axis; the lattice parameters are

found to be 3.90 and 4.09 Å for the Si nanowire and Si-Ge core-shell nanowire, respec-

tively. Table 4.1 and 4.2 show the respective optimized coordinates of the atoms in the unit

cell of Si and Si-Ge core-shell nanowires. We have the Vienna ab initio simulation code

(VASP) [106, 107] to perform the calculation. The kinetic energy cutoff of 18.37 Ry and a

supercell comprised of 40 atoms (24 Si and 16 H for the Si nanowire; 6 Si, 18 Ge and 16 H

for the Si-Ge core-shell nanowire) are considered. To minimize the spurious interaction be-

tween the nanowire and its periodic images, we have considered a supercell of 35 Å along

the x- and y-direction to ensure large enough vacuum space (more than 20 Å) between the

nearest H atoms of the neighboring nanowires. The Monkhorst-Pack (MP) scheme with

the (1×1×7) k-point grid is used to sample the Brillouin zone. To ensure the accuracy of

our electronic structure calculations, extensive convergence tests are carried out by varying

the k-point mesh and the vacuum space used in the supercell. Changing the supercell size

from 35 to 40 Å along the x- and y-direction yields only a change of 5 meV in total energy

(less than 0.12 meV per atom). Varying the k-point from (1× 1× 7) to (1× 1× 13) also

leads to a much smaller change in the fundamental gap (less than 1 meV
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Table 4.1

The optimized coordinates of the atoms in a 〈110〉 Si nanowire unit cell. (Reprinted with

permission from K. B. Dhungana, M. Jaishi, and R. Pati, Nano Letters 2016, 16, 3995–4000.

Copyright (2016) American Chemical Society.)

Translational lattice parameter = 3.90 Å

Serial Number Atom X(Å) Y(Å) Z(Å)

1 Si 13.0086 7.62523 1.9518

2 Si 14.94758 8.91663 2.30214

3 Si 16.88404 7.62203 1.95181

4 Si 18.81782 8.92459 2.2767

5 Si 18.83384 10.26854 0.32409

6 Si 20.74803 11.64953 0.3028

7 Si 20.74645 12.98028 2.25426

8 Si 18.83237 14.36226 2.23464

9 Si 18.81726 15.70674 0.28142

10 Si 16.88606 17.01318 0.60749

11 Si 14.94915 15.71696 0.26796

12 Si 13.0115 17.0077 0.62225

13 Si 11.08147 15.70117 0.29832

14 Si 11.06522 14.35811 2.24982

15 Si 9.14692 12.98197 2.26385

16 Si 9.14808 11.6517 0.31174

17 Si 11.0657 10.27526 0.32448

18 Si 11.0785 8.93214 2.27622

19 Si 13.00733 12.99725 2.2612

20 Si 14.95033 14.35808 2.2226

21 Si 16.89327 12.99591 2.25783

22 Si 16.89357 11.63386 0.31005

23 Si 14.94886 10.2753 0.34764

24 Si 13.00725 11.63707 0.31241

25 H 13.03438 17.2265 2.1115

26 H 9.85112 16.57204 0.31501

27 H 20.04821 16.57775 0.29427

28 H 7.92773 13.86974 2.26044

29 H 21.96922 13.86255 2.25433

30 H 21.97071 10.76658 0.30341

31 H 7.93022 10.76234 0.31553

32 H 9.84622 8.06355 2.262

33 H 20.0467 8.05073 2.26778

34 H 16.86229 7.40096 0.46311

35 H 13.03061 7.40572 0.46284

36 H 13.0029 6.24663 2.54126

37 H 16.8829 6.24546 2.54586

38 H 16.8729 17.24054 2.09445

39 H 16.8808 18.38814 0.00996

40 H 13.00632 18.38603 0.03266
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Table 4.2

The optimized coordinates of the atoms in a 〈110〉 Si-Ge core-shell nanowire unit cell. (Reprinted

with permission from K. B. Dhungana, M. Jaishi, and R. Pati, Nano Letters 2016, 16, 3995–4000.

Copyright (2016) American Chemical Society.)

Translational lattice parameter = 3.90 Å

Serial Number Atom X(Å) Y(Å) Z(Å)

1 Si 13.00545 12.97187 2.18768

2 Si 13.00534 11.66018 0.14012

3 Si 14.94709 10.28418 0.14306

4 Si 16.88816 11.66054 0.14033

5 Si 14.94723 14.3485 2.18934

6 Si 16.88812 12.97133 2.18772

7 Ge 11.01264 14.37682 2.18563

8 Ge 8.95872 13.00474 2.18457

9 Ge 8.9588 11.62758 0.13706

10 Ge 11.01272 10.25496 0.13814

11 Ge 10.98494 8.84922 2.18549

12 Ge 12.97925 7.42596 2.18647

13 Ge 14.9478 8.91379 2.19133

14 Ge 16.91813 7.42828 2.17128

15 Ge 18.91173 8.85245 2.18711

16 Ge 18.88208 10.25772 0.13951

17 Ge 20.93817 11.62692 0.13734

18 Ge 20.93778 13.00457 2.18494

19 Ge 18.88186 14.37461 2.18733

20 Ge 18.91121 15.77964 0.13994

21 Ge 16.91896 17.2056 0.14669

22 Ge 14.94878 15.71925 0.14245

23 Ge 12.97958 17.20607 0.13977

24 Ge 10.98484 15.78287 0.13798

25 H 13.02428 18.14798 1.37363

26 H 9.66391 16.63092 0.13828

27 H 20.23468 16.62376 0.13941

28 H 7.72655 13.97638 2.18415

29 H 22.16759 13.97949 2.18423

30 H 22.16832 10.65226 0.13699

31 H 7.72681 10.65573 0.13665

32 H 9.6642 8.00101 2.18581

33 H 20.234 8.00649 2.18641

34 H 16.86794 6.51219 0.91887

35 H 13.03023 6.48658 0.95112

36 H 13.02338 6.48217 3.41878

37 H 16.87291 6.46171 3.38613

38 H 16.87336 18.14155 1.38499

39 H 16.8695 18.15148 3.01119

40 H 13.02823 18.14794 3.00098
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change in the energy gap between valence and conduction band at the Γ-point). This clearly

suggests that the use of Monkhorst-Pack (MP) scheme with (1×1×7) k-point mesh to sam-

ple the Brillouin zone is sufficient to achieve the desired accuracy in energy band structure.

The fundamental gaps for Si and Si-Ge core-shell nanowires are found to be 1.73 and 1.24

eV, respectively. Both nanowires exhibit direct band gaps at Γ point, which are consistent

with previous reports [97–100]. The significant reduction (∼ 28%) in the energy band gap

of the Si-Ge core-shell nanowire is due to the intrinsic strain caused by the lattice mismatch

at the Si-Ge interface [97]. To gain deeper insights into the strain caused by the lattice mis-

match, we analyze the relaxed atomic structures of Si and Si-Ge core-shell nanowires. In

the case of a Si nanowire, the Si-Si distances are found to be 2.37 Å for the core Si atoms

and 2.35 Å for the surface Si atoms that are saturated by H atoms. The core-shell interfacial

Si-Si distances are found to be 2.38 Å. The Si-H bond lengths are found to vary between

1.51 to 1.50 Å depending upon whether the corresponding Si atom is passivated by one or

two hydrogen atoms. A similar variation in the bond lengths is reported in H-passivated Si

nanowire [108]. For the Si-Ge core-shell nanowire, the Si-Si distances are stretched to 2.43

Å in the core region exhibiting a 2.5% tensile strain, which is in agreement with the pre-

vious result [97]. The surface Ge-Ge distances are found to be 2.47 Å, Ge-H bond lengths

vary between 1.57 to 1.55 Å and the interfacial Si-Ge distances are found to be 2.46 Å.

Then, we recourse to a real space bias-dependent single particle many-body Green’s func-

tion approach [42, 72, 75, 76, 109, 110] to model the Si and Si-Ge nanowire quantum dot

FETs. A fragment of the optimized nanowire directed along the 〈110〉 direction is used as
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a channel between a pair of semi-infinite gold electrodes to model an open device struc-

ture; 24 gold atoms are explicitly included in the active scattering region of the device to

incorporate the charging effect on the nanowire. To discern the role of the channel from

contacts, we have used the same interface geometry for both the nanowire FETs. It should

be noted that the growth direction of Si and Ge nanowires depends upon the size of the

nanowires: they most likely prefer to grow along the 〈110〉 direction when the diameter of

the nanowire becomes less than 20 nm [111, 112]. Because the unsaturated surface states

of the nanowire are passivated by hydrogen atoms and electrons are strongly confined to

the nanowire, we term the nanowire channel as a quantum dot.

For our current calculation, we have used the posteriori hybrid density functional method

(B3LYP) (see section 2.11) [70, 76] that includes a part of the exact Hartree-Fock (HF)

exchange and is proven to give better result for conductance than the conventional density

functional approach (LDA/GGA) (see section 2.9 & 2.10) [76]. The inclusion of exact ex-

change from the HF method corrects partly the self-interaction error that occurs in conven-

tional DFT. Though a true dynamical exchange-correlation corrected potential[113] with a

higher level GW approach [114] would provide a much better description of transmission

through the channel, its complete implementation is prohibitively difficult here. We have

used the LAND2DZ pseudopotential Gaussian basis set[70] to describe the atoms in the

active scattering part of the device. A single particle dipole interaction term~εg.∑i~r(i) is

included in the core Hamiltonian to simulate the effect of the electrostatic gating[76, 77].

The gate field,~εg, is applied in the direction perpendicular to the channel axis (x-axis);~r(i)
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is the coordinate of the ith electron. We have aligned the Fermi energy of the active scatter-

ing region of the device with that of the bulk gold electrode at equilibrium[75]. The gate

bias, Vg, is obtained from the voltage drop across the radial direction for each applied gate

field. The self-consistent inclusion of dipole interaction term in the Hamiltonian allows us

to include both first and higher order Stark effects explicitly in our calculations[76, 77].

4.2.2 Results and Discussions

4.2.2.1 Current-Voltage Characteristics

Current-voltage characteristics for the Si and Si-Ge core-shell nanowire quantum dot FETs

are presented in Figure 4.2. For a small bias range considered here, both FETs show linear

I-V characteristic in the absence of gate bias. When the gate bias is included, source-drain

currents for the FETs increase nonlinearly with an increase in bias; a linear and a saturated

regime (ON-state) in the current, which is a typical feature of an FET, is clearly noticeable

for a higher gate bias. A similar FET feature has been reported in the Si nanowire transis-

tors [115], fabricated using atomic force microscopy nanolithography with channel width

as small as 4 nm. To confirm the current-voltage characteristics obtained here as a general

feature of these quantum dot FETs irrespective of channel lengths, we have presented re-

sults for two different channel lengths. Though the same number of atoms are considered

to model the channel, the channel length in the Si nanowire quantum dot FET is slightly
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Figure 4.2: Gate bias dependent current-voltage characteristics. (a, b) Si nanowire quantum dot

FETs of channel lengths 13.65 and 17.55 Å, respectively. (c, d) Si-Ge core-shell nanowire quantum

dot FETs of channel lengths 14.30 and 18.40 Å, respectively. (Reprinted with permission from K. B.

Dhungana, M. Jaishi, and R. Pati, Nano Letters 2016, 16, 3995–4000. Copyright (2016) American

Chemical Society.)

smaller than that in the Si-Ge nanowire FET due to a lattice mismatch between Si and Ge.

For similar dimensions (for example, Figure 4.2b,d), the Si-Ge nanowire FET exhibits a

higher current than the Si nanowire FET at the same gate bias. For the quantitative compar-

ison of performance between Si and Si-Ge nanowire FETs, we have plotted source-drain

current as a function of gate bias (Figure 4.3a,b) for the fixed source-drain bias of ∼0.2

V. Despite having a longer channel length than its homogeneous Si counterpart, the Si-Ge

core-shell nanowire quantum dot FET yields the higher ON-state current.
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4.2.2.2 Transconductance

Figure 4.3: Source-drain current (Isd) and transconductance as a function of gate bias (Vg) for the

Si and Si-Ge core-shell nanowire quantum dot FETs at a fixed source-drain bias of ∼0.2 V. (a, c)

Channel lengths for the Si and Si-Ge nanowire devices are 13.65 and 14.30 Å, respectively. (b,

d) Channel lengths for the Si and Si-Ge nanowire devices are 17.55 and 18.40 Å, respectively.

(Reprinted with permission from K. B. Dhungana, M. Jaishi, and R. Pati, Nano Letters 2016, 16,

3995–4000. Copyright (2016) American Chemical Society.)

To further substantiate the results obtained from the current-voltage characteristics, we have

plotted transconductance - a key metric in benchmarking the transistor performance, using

the consecutive data points from the Isd versus Vg plot (Figure 4.3a,b), the transconductance

is calculated as dIsd/dVg = (Isd(n+ 1)− Isd(n))/(Vg(n+ 1)−Vg(n)). We have assigned
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this transconductance value to a gate bias of (Vg(n+ 1)+Vg(n))/2; n is the index of the

data sets. The results for two different channel lengths are summarized in Figure 4.3c,d.

Irrespective of the gate bias and the channel length, the transconductance is found to be

substantially higher in the Si-Ge core-shell nanowire than in the Si nanowire FET. For

example, for the longer channel length (Figure 4.3d), the transconductance at Vg = 1.5V is

found to be 1.68 nS and 9.69 nS for Si and Si-Ge nanowire FET respectively; dIsd/dVg is

∼475% higher in the case of a Si-Ge core-shell nanowire FET. For a higher gate bias of

5.5 V, the dIsd/dVg in the Si-Ge nanowire FET is found to be 93.25 nS (244% higher) as

compared to 27.09 nS for the Si nanowire FET. This suggests that the mobility, which is

proportional to dIsd/dVg, would be much higher in the Si-Ge core-shell nanowire FET than

in the Si nanowire FET for switching the device from the OFF state to the ON state.

4.2.2.3 Transmission

To understand the superior performance of the Si-Ge core-shell nanowire FET over the

Si nanowire FET; we have calculated the transmission as a function of injection energy

for different gate bias; transmission represents the sum of transmission probabilities over

all eigenchannels in the device [75]. These results are summarized in Figure 4.4. Several

remarks are in order. First, in the absence of gate bias, no transmission peaks are observable

in the vicinity of Fermi energy resulting in a much smaller current for the OFF state. As the

gate bias increases, more and more transmission peaks appear within the [-0.5 eV, 0.5 eV]
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Figure 4.4: Transmission as a function of injection energy for different gate bias at equilibrium (Vsd

= 0.0 V). (a, b) Data for a Si nanowire FET of channel length 17.55 Å. (c, d) Data for a Si-Ge core-

shell nanowire FET of channel length 18.40 Å. (Reprinted with permission from K. B. Dhungana,

M. Jaishi, and R. Pati, Nano Letters 2016, 16, 3995–4000. Copyright (2016) American Chemical

Society.)

energy window. For a higher gate bias, the number of transmission peaks that appear within

the energy window is higher in the case of a Si-Ge core-shell nanowire FET than in the Si

nanowire FET. This explains the higher ON state current in the Si-Ge core-shell nanowire

FET. Second, a strong gate bias induced shift in transmission peak position toward the

Fermi energy is noted for the Si-Ge nanowire FET. This unambiguously explains why a

smaller gate bias is required to switch the Si-Ge nanowire FET from the OFF state to the

70



ON state relative to that in the Si nanowire FET. It should be noted that we have considered

the transmission energy window range from -0.5 eV to +0.5 eV in order to elucidate the

gate bias induced shifting of transmission peak positions. For our current calculation, we

have integrated the transmission function between the chemical potential window (CPW),

which are determined from the voltage drop at the electrodes [75–77], for Vsd of 0.2 V, the

CPW is [-0.1 eV, 0.1 eV].

A close examination of currents for shorter channel lengths also shows a negative differen-

tial resistance (NDR) behavior [116] at a higher gate bias (Figure 4.2a,c). To understand

this intriguing behavior, we have calculated the transmission as a function of source-drain

bias in the Si-Ge core-shell nanowire quantum dot FET at a gate bias of 9.5 V. For brevity,

we have considered only the Si-Ge nanowire FET of channel length 14.30 Å. The source-

drain bias of 0.14 V (the peak current state) and 0.20 V (a valley current state following

the peak current state) are considered; the results are presented in Figure 4.5. Figure 4.5a

shows a shift in transmission peak positions away from the Fermi energy as the bias in-

creases from 0.14 to 0.20 V. As can be seen in Figure 4.5b, the chemical potential window

increases with an increase in bias from 0.14 to 0.20 V. However, the value for the transmis-

sion coefficient decreases as we increase the bias leading to a decrease in area under the

curve within the CPW. This results in a drop in current as we increase the bias from 0.14 to

0.20 V leading to an NDR behavior.
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Figure 4.5: Transmission as a function of injection energy for different source-drain bias (Vg= 9.5

V; channel length is 14.30 Å) in the Si-Ge core-shell nanowire FET. (a) Transmission in the energy

window of [-0.5 eV, 0.5 eV]. (b) Zoomed-in version of the transmission in the energy window of

[-0.15 eV, 0.15 eV]; the dotted lines represent the chemical potential window for the respective

applied bias. (Reprinted with permission from K. B. Dhungana, M. Jaishi, and R. Pati, Nano Letters

2016, 16, 3995–4000. Copyright (2016) American Chemical Society.)

4.2.2.4 Orbital Level Explanation

Transmission clearly explains the observed superior performance of Si-Ge core-shell

nanowire FET over its homogeneous Si counterpart, however, several questions arise: Why

does the Si-Ge core-shell nanowire FET exhibit a stronger response to the gate bias than

Si nanowire FET? Does the core Si layer or the shell Ge layer provide the pathway for

electron transport in the Si-Ge nanowire FET? To answer these subtle questions, we have

analyzed the frontier orbitals in the active scattering part that contribute to the transmission

(highest occupied orbital in this case) in the ON-state for both the channels. Orbital anal-

ysis shows that for the ON state, the gate field-induced transverse localization (direction

perpendicular to the channel axis) of the wave function restricts the carrier transport to the

shell layer. In the case of the Si nanowire channel, the outer Si layer offers the pathway for

72



electron transport. For the Si-Ge core-shell nanowire channel, electrons tunnel through the

shell Ge layer of the channel. In both cases, the pz orbitals in the channel that couple to

the s-orbitals of the Au lead provides the spatial pathway for electron tunneling as shown

in Figure 4.6. For the ON state, in the case of the Si-Ge core-shell nanowire channel, the

pz orbitals are distributed over the entire channel length (Figure 4.6b), which leads to the

higher ON-state current. On the other hand, the participating pz orbitals are restricted to a

few Si atoms in the outer layer of the channel for the Si nanowire FET (Figure 4.6a). The

stronger response to the gate bias observed in the Si-Ge nanowire FET as compared to the

Si nanowire FET can be understood as follows. First, due to a strong structural asymmetry

Figure 4.6: A schematic to elucidate the electronic orbital control mechanism for the superior

performance of a (b) Si-Ge core-shell nanowire quantum dot FET over (a) the Si nanowire quantum

dot FET. For the ON state, carrier transport is restricted to the shell layer. The pz orbitals provide

the pathway for tunneling of electrons. (Reprinted with permission from K. B. Dhungana, M. Jaishi,

and R. Pati, Nano Letters 2016, 16, 3995–4000. Copyright (2016) American Chemical Society.)

in the radial direction, the symmetry of the wave function in the Si-Ge nanowire is broken

along the direction perpendicular to the channel-axis (in the absence of gate field). This

results in a strong mixing of broken symmetry eigen-channel states upon the application

of the transverse gate field, which causes a shift of eigen-channel toward the Fermi energy

73



(Figures 4.4c,d). Second, in the Si-Ge core-shell nanowire FET, the lattice mismatch in-

duced strain in the radial direction develops a strong dipole moment and polarizability in

the transverse direction as shown in Table 4.3, which results in a much stronger response

to the transverse electric field via the Stark effect.

Table 4.3

Dipole moment and polarizability. Components of dipole moment (α) and polarizability (β ) for

the Si and Si-Ge core-shell nanowire junctions. The channel lengths for Si and Si-Ge core-shell

nanowires are 17.55 Å and 18.40 Å, respectively. (Reprinted with permission from K. B.

Dhungana, M. Jaishi, and R. Pati, Nano Letters 2016, 16, 3995–4000. Copyright (2016) American

Chemical Society.)

Dipole moment (a.u.) Polarizability (a.u.)

Nanowire αx αy αz β xx β yx β yy β zx β zy β zz

Si -0.71 0.52 -0.46 3976.74 -1.23 3591.14 -3.22 -25.77 6051.23

Si-Ge -1.05 0.26 0.04 4387.76 -1.72 3883.38 -2.72 -25.9 7081.26

4.2.2.5 Length-dependent Transport

We have also calculated the current-voltage characteristics of Si and Si-Ge core-shell

nanowires in a two-probe set up for additional channel lengths (at Vg = 0.0 V) as shown

in Figure 4.7. The results reveal the electron tunneling decay constant to be 0.37 Å
−1

in

the case of the Si nanowire as compared to the 0.24 Å
−1

for the Si-Ge core-shell nanowire

which reaffirms our conclusion of superior-mobility in the Si-Ge nanowire device. We

also note that even though the diameter of the channel considered in our study is relatively

smaller (∼1.4 nm) than that used in the experimental measurement, we expect the pro-

posed switching mechanism and the observed superior performance behavior of the Si-Ge
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core-shell nanowire FET to hold for a larger diameter due to the following reasons. DFT

Figure 4.7: Variation of current with the source-drain bias for different channel lengths (L) of (a)

Si nanowire junction and (b) Si-Ge core-shell nanowire junction, in the absence of gate bias. The

Isd is fitted to a straight line to calculate the conductance (GC) for different wire lengths (L). The

inset shows the ln(GC) vs. L plot, which is fitted to a straight line to calculate the electron tunneling

decay constant (β ) of 0.37 and 0.24 Å
−1

for Si and Si-Ge core-shell nanowire junction respectively.

(Reprinted with permission from K. B. Dhungana, M. Jaishi, and R. Pati, Nano Letters 2016, 16,

3995–4000. Copyright (2016) American Chemical Society.)

calculations based on a local density approximation show that due to the lattice mismatch

at the core-shell interface, the strain to core atoms initially increases and then almost satu-

rates when we increase the shell thickness to increase the diameter of the Si-Ge core-shell

nanowires from 2.5 to 4.7 nm [97]. On the basis of this result, we expect the strain in the

shell layer of the Si-Ge core-shell nanowire to increase if we increase the core thickness

to increase the diameter. The increase of radial strain in the nanowire with the increase of

diameter would increase the polarizability resulting in a stronger response to gate bias via

the Stark effect, which would significantly boost the ON state current value in the Si-Ge

nanowire FET. This would then lead to a higher ON/OFF current ratio and transconduc-

tance in the Si-Ge core-shell nanowire FET as compared to that in the Si nanowire FET.
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Because the radial strain would saturate after we reach an optimum diameter, the polariz-

ability will saturate as well as the ON/OFF ratio and the transconductance.

4.2.2.6 Conclusions

In summary, using an exhaustive first-principles quantum transport approach, we have un-

raveled the gate field-induced switching mechanism which is responsible for the superior

performance of the Si-Ge nanowire quantum dot FET over the Si nanowire FET. The Si-

Ge core-shell nanowire FET exhibits a much stronger response to the gate field due to the

Stark effect as compared to the Si nanowire FET. The transconductance is found to be sub-

stantially higher in the Si- Ge core-shell nanowire FET. In the case of a Si-Ge nanowire

FET (for the ON state), the gate field-induced transverse localization of the wave function

restricts the carrier transport to the shell Ge layer and the pz orbitals that are distributed

over the entire channel provide the pathway for electron tunneling. In contrast, for the Si-

nanowire FET, the pz orbitals that contribute to the current for the ON state are restricted

to a few Si-atoms in the outer Si-layer. This results in a higher tunneling barrier in the

Si-nanowire FET as compared to that in the Si-Ge core-shell nanowire FET. We expect

that the electronic orbital level understanding gained in this study would prove useful for

designing a new generation of coreshell nanowire FET.
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4.3 Imaging the Quantum Path of Electron in Real Space

Inside a Ge-Si Core-Shell Nanowire Transistor

Catching the electron in action in real space inside a semiconductor Ge-Si core-shell

nanowire field effect transistor (FET), which has been demonstrated (J. Xiang, W. Lu, Y.

Hu, Y. Wu, H. Yan and C. M. Lieber, Nature, 2006, 441, 489) to outperform the state-of-

the-art metal oxide semiconductor FET, is central to gaining unfathomable access into the

origin of its functionality. Here, using a quantum transport approach that does not make

any assumptions on electronic structure, charge, and potential profile of the device, we

unravel the most probable tunneling pathway for electrons in a Ge-Si core-shell nanowire

FET with orbital level spatial resolution. Our calculation yields excellent transistor charac-

teristics as noticed in the experiment [8]. Upon increasing the gate bias beyond a threshold

value, we observe a rapid drop in drain current resulting in a gate bias driven negative dif-

ferential resistance behavior and switching in the sign of transconductance. We attribute

this anomalous behavior in drain current to the gate bias induced modification of the carrier

transport pathway from the Ge core to the Si shell region of the nanowire channel. A new

experiment involving a four-probe junction is proposed to confirm our prediction on gate

bias induced decoupling.
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4.3.1 Quantum Modeling

Figure 4.8: Atomic model of the Ge-Si core-shell nanowire. A perspective view of the optimized

nanowire structure along the 〈110〉 direction. (a) Core (Ge) diameter is 11.7 Å. (b) Core (Ge)

diameter is 4.7 Å. (Reprinted with permission from M. Jaishi, and R. Pati, Nanoscale 2017, 9,

13425–13431. Copyright (2017) Royal Society of Chemistry.)

The atomic model of the Ge-Si core-shell nanowires (for two different core diameters) used

in our investigation is illustrated in Fig. 4.8; unsaturated surface states are passivated by

hydrogen atoms to avoid unintended scattering during the carrier transport. We have con-

sidered the nanowire along the 〈110〉 direction as it has been reported to be the preferred

growth direction for Ge-Si core-shell nanowires with a diameter smaller than 20 nm[8].

A periodic density functional theory (DFT) that employs plane wave basis sets and a gen-

eralized gradient approximation for the exchange-correlation part is used to optimize the

atomic coordinates of Ge-Si core-shell nanowires and determine its energy band structure.

We have used the projector augmented wave (PAW) approach to include the valence-core
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interaction. During the geometry optimization, structural relaxations are carried out with-

out symmetry constraint until the residual force on each atom reduces to 0.01 eV Å
−1

; the

convergence criterion for the total energy is set at 106 eV. We have used a supercell of

35 Å along the x and y-direction to avoid spurious interaction between the nanowire and

its replicas; the equilibrium lattice parameter is obtained by minimizing the total energy

with respect to the variation of primitive unit cell length along the z-axis. The 1× 1× 7

k-point grid within the MonkhorstPack (MP) scheme, which has been reported to be suffi-

cient to achieve the desired accuracy in energy band structure of semiconducting core-shell

nanowires[117], is used to sample the Brillouin zone. We have used the Vienna ab initio

simulation package (VASP) to perform this calculation[106, 107]. The optimized primitive

unit cell lengths along the z-axis (wire axis) are found to be 3.96 Å for the model nanowire

shown in Fig. 4.8a and 3.91 Å for the nanowire in Fig. 4.8b. The optimized coordinates

of atoms in the unit cell of Ge-Si core-shell nanowires with the Ge-core diameters of 4.7

and 11.7 Å are shown in Table 4.4 and 4.5 respectively. The expansion of lattice parameter

due to an increase of Ge core thickness in the core-shell nanowire (Fig. 4.8a) is expected

as the bulk Ge lattice parameter (5.658 Å) is higher than that of Si (5.430 Å). A similar

trend in lattice parameter with the variation in core thickness has been reported in Ge-Si

core-shell nanowires[88, 89]. Bond length analysis in optimized structures shows that the

Ge-Ge bond lengths for the core-Ge in Fig. 4.8b is under compressive strain (∼ 0.8%) as

compared to the bond lengths in the core structure of Fig. 4.8a.
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Table 4.4

Optimized atomic coordinates in the unit cell of Ge-Si core-shell nanowire grown along 〈110〉;
Ge-core diameter is 4.7 Å; lattice parameter is 3.91 Å. (Reprinted with permission from M. Jaishi,

and R. Pati, Nanoscale 2017, 9, 13425–13431. Copyright (2017) Royal Society of Chemistry.)

Serial Number Atom X(Å) Y(Å) Z(Å)

1 Ge 13.40939 13.19978 0.343533

2 Ge 15.41443 14.6291 0.344314

3 Ge 17.42524 13.20633 0.343256

4 Ge 17.42851 11.73809 2.297581

5 Ge 15.42357 10.30864 2.297846

6 Ge 13.41284 11.7314 2.298

7 Si 13.45014 7.605664 0.342602

8 Si 15.42644 8.906776 0.342842

9 Si 17.40756 7.612876 0.340909

10 Si 21.27749 11.79481 2.295661

11 Si 21.27478 13.16284 0.34135

12 Si 17.38901 17.33058 2.300016

13 Si 15.41155 16.03094 2.299463

14 Si 13.43066 17.32602 2.301072

15 Si 9.560493 13.14257 0.342611

16 Si 9.563571 11.77403 2.297065

17 Si 5.716806 13.11722 0.339229

18 Si 25.11934 13.15295 0.337419

19 Si 25.12154 11.81878 2.292

20 Si 5.720001 11.78279 2.294034

21 Si 23.17207 9.079847 0.335673

22 Si 7.679529 9.0507 0.337488

23 Si 19.39577 10.35182 2.295081

24 Si 23.21028 10.42775 2.291092

25 Si 11.45071 10.33749 2.296799

26 Si 7.636336 10.39883 2.292792

27 Si 7.665144 15.85873 2.299941

28 Si 23.16017 15.88468 2.299247

29 Si 19.388 14.59959 0.343571

30 Si 23.20304 14.53642 0.343327

31 Si 11.442 14.58687 0.34468

32 Si 7.62732 14.50992 0.34422

33 Si 11.4878 15.94099 2.30028

34 Si 9.550457 17.29796 2.305634

35 Si 19.3367 15.95312 2.299244

36 Si 21.26991 17.31555 2.304434

37 Si 19.35028 8.998013 0.339489

Continued on next page
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38 Si 21.28725 7.641165 0.332927

39 Si 11.50221 8.983601 0.341376

40 Si 9.570169 7.619544 0.33591

41 Si 21.2358 18.6568 0.35107

42 Si 17.3791 18.68575 0.344556

43 Si 13.43705 18.68161 0.345457

44 Si 9.581287 18.64018 0.352026

45 Si 21.25736 6.299181 2.286691

46 Si 17.40166 6.257301 2.296813

47 Si 13.46091 6.250301 2.298395

48 Si 9.605137 6.277435 2.289822

49 Si 19.3463 4.89959 2.309652

50 Si 15.43392 4.919628 2.336795

51 Si 11.52147 4.885299 2.313056

52 Si 19.3203 20.04873 0.332036

53 Si 15.40683 20.01725 0.307924

54 Si 11.49265 20.03994 0.331909

55 Si 19.2952 21.38916 2.285868

56 Si 15.40588 21.37308 2.25839

57 Si 11.51584 21.38099 2.285405

58 Si 19.32519 3.558583 0.356326

59 Si 15.43711 3.564036 0.386968

60 Si 11.54882 3.544487 0.359638

61 Si 17.34342 22.6691 2.611173

62 Si 13.46682 22.66503 2.612065

63 Si 13.50182 2.26427 0.036755

64 Si 17.37635 2.271493 0.035766

65 H 4.483465 13.98582 0.338636

66 H 26.34777 14.02826 0.336219

67 H 26.35332 10.94826 2.293286

68 H 4.490911 10.90854 2.294685

69 H 24.41427 8.223427 0.337124

70 H 6.440373 8.190032 0.339011

71 H 6.422316 16.7147 2.300359

72 H 24.39907 16.74626 2.300504

73 H 22.45632 19.54382 0.350633

74 H 8.357311 19.52264 0.350502

75 H 22.48219 5.417975 2.288908

76 H 8.383883 5.391972 2.292173

77 H 20.51161 22.28047 2.301186

78 H 10.29834 22.27109 2.300461

79 H 20.54495 2.672271 0.342343

Continued on next page
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80 H 10.33331 2.652602 0.345849

81 H 17.31873 22.88799 0.190512

82 H 17.33588 24.0482 2.022505

83 H 13.49149 22.88427 0.191526

84 H 13.47568 24.04376 2.022829

85 H 13.52879 2.036616 2.459404

86 H 13.51125 0.8894 0.63372

87 H 17.34876 2.041989 2.458127

88 H 17.37282 0.896354 0.633548

Table 4.5

Optimized atomic coordinates in the unit cell of Ge-Si core-shell nanowire grown along 〈110〉;
Ge-core diameter is 11.7 Å; lattice parameter is 3.96 Å. (Reprinted with permission from M. Jaishi,

and R. Pati, Nanoscale 2017, 9, 13425–13431. Copyright (2017) Royal Society of Chemistry.)

Serial Number Atom X(Å) Y(Å) Z(Å)

1 Ge 13.41796 7.43168 3.265047

2 Ge 15.42623 8.874996 3.266321

3 Ge 17.43972 7.438885 3.263995

4 Ge 21.48012 11.7411 1.282765

5 Ge 21.47743 13.21566 3.263426

6 Ge 17.4222 17.5059 1.289895

7 Ge 15.41336 16.06344 1.288673

8 Ge 13.39951 17.499 1.289365

9 Ge 9.35808 13.1958 3.265823

10 Ge 9.361645 11.72068 1.285247

11 Ge 13.39783 13.19282 3.267877

12 Ge 15.41567 14.61379 3.268619

13 Ge 17.43804 13.19942 3.266333

14 Ge 17.44049 11.74614 1.285964

15 Ge 15.42319 10.32479 1.286333

16 Ge 13.40093 11.73932 1.287528

17 Ge 19.45496 10.32253 1.283503

18 Ge 11.39172 10.30851 1.285474

19 Ge 19.44816 14.62885 3.266896

20 Ge 11.38266 14.61584 3.268358

21 Ge 11.36116 16.07803 1.288823

22 Ge 19.46482 16.09093 1.287477

23 Ge 19.47707 8.86065 3.263145

24 Ge 11.37517 8.84622 3.265095

25 Si 5.60446 13.11989 3.26221

26 Si 25.23259 13.15342 3.258715

Continued on next page
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27 Si 25.23522 11.81526 1.277888

28 Si 5.607594 11.7814 1.281391

29 Si 23.36241 8.947122 3.255456

30 Si 7.489799 8.9189 3.258739

31 Si 23.41883 10.2902 1.276233

32 Si 7.428697 10.26204 1.279528

33 Si 7.475896 15.99072 1.2896

34 Si 23.35037 16.0157 1.286891

35 Si 23.41125 14.67275 3.26551

36 Si 7.41921 14.64702 3.268363

37 Si 9.367335 17.4519 1.29615

38 Si 21.45451 17.47072 1.294118

39 Si 21.47079 7.486862 3.253768

40 Si 9.386508 7.465036 3.256393

41 Si 21.33001 18.80349 3.275827

42 Si 17.38635 18.89856 3.269141

43 Si 13.43049 18.89176 3.268614

44 Si 9.487955 18.78548 3.277831

45 Si 21.35079 6.153448 1.272599

46 Si 17.40889 6.045923 1.284891

47 Si 13.4536 6.038655 1.285965

48 Si 9.511399 6.131875 1.275184

49 Si 19.40412 4.76385 1.29369

50 Si 15.43379 4.716309 1.327077

51 Si 11.4632 4.749073 1.295981

52 Si 19.37812 20.18595 3.257675

53 Si 15.40608 20.22117 3.229049

54 Si 11.43558 20.17421 3.259191

55 Si 19.33797 21.51572 1.276751

56 Si 15.40483 21.55816 1.243103

57 Si 11.47325 21.50447 1.278367

58 Si 19.36816 3.433633 3.274915

59 Si 15.43674 3.379242 3.313535

60 Si 11.50494 3.419135 3.277307

61 Si 17.37834 22.80732 1.592667

62 Si 13.42848 22.80286 1.593999

63 Si 13.4649 2.12696 2.965656

64 Si 17.41285 2.134083 2.964797

65 H 4.303361 13.88501 3.260802

66 H 26.52973 13.92502 3.257209

67 H 26.53488 11.04791 1.276663

68 H 4.310495 11.00968 1.280036

Continued on next page
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69 H 24.60484 8.089003 3.254612

70 H 6.250462 8.056266 3.257949

71 H 6.233953 16.8498 1.289127

72 H 24.59004 16.87788 1.286709

73 H 22.50201 19.75579 3.272856

74 H 8.312959 19.73421 3.275176

75 H 22.52646 5.205878 1.274374

76 H 8.339404 5.179732 1.276591

77 H 20.53552 22.43286 1.289447

78 H 10.27438 22.41976 1.289876

79 H 20.56784 2.519477 3.262566

80 H 10.30908 2.499517 3.264598

81 H 17.3626 23.04672 3.079274

82 H 17.41146 24.17567 0.979171

83 H 13.44387 23.04163 3.080615

84 H 13.38951 24.17102 0.981004

85 H 13.48113 1.883454 1.480264

86 H 13.43197 0.76136 3.584024

87 H 17.39523 1.889539 1.479473

88 H 17.45198 0.768292 3.583394

Upon decreasing Ge core diameter from 11.7 Å to 4.7 Å, the Ge-Si core-shell interface

bond lengths decrease by 0.4%. To elucidate the impact of these structural differences

on the electronic structure of these nanowires, atom decomposed energy band structure

together with charge density profiles at valence band maximum and conduction band min-

imum are plotted in Fig. 4.9. Both nanowires (Fig. 4.8a and b) exhibit valence band

offset between the Ge-core and Si-shell with a direct band gap at the Γ point; the respec-

tive fundamental gaps are found to be 0.89 eV and 0.90 eV, which are consistent with the

previous results [88, 89, 93, 94]. From Fig. 4.9a and b, one can also notice that the core

Ge atoms primarily contribute to the valence band at the Γ point and the shell Si atoms to

the conduction band irrespective of their core diameter. This behavior is also evident from
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Figure 4.9: Electronic band structure, band-decomposed charge density, and device configuration.

Atom decomposed electronic band structure of surface passivated Ge-Si core-shell nanowires. (a)

Ge core-diameter 11.7 Å. (b) Ge core-diameter 4.7 Å. Size of the circle determines the weightage

of the atom. (c) & (d) Represent charge density plot (2D) at valence band maximum (VBM) and

conduction band minimum (CBM) respectively for core diameter 11.7 Å. (e) & (f ) Represent charge

density plot at VBM and CBM respectively (core diameter 4.7 Å). (g) Schematic representation of

a core-shell nanowire field effect transistor. (Reprinted with permission from M. Jaishi, and R. Pati,

Nanoscale 2017, 9, 13425–13431. Copyright (2017) Royal Society of Chemistry.)

the band decomposed charge density plots (Fig. 4.9c-f ), which show a strong localization

of wave function into the Ge-core region of the nanowire for the valence band maximum;

for the conduction band minimum, the wave function is localized on the shell Si atoms.

However, a vivid difference in band structure is noticeable between two nanowires as we

move away from the high symmetry Γ point; Ge wave function contributes significantly to

the conduction band edge near the X-point for the bigger Ge-core nanowire. In contrast,

Si wave function dictates the conduction band for the smaller Ge-core nanowire. Since

the main focus of this investigation is to unravel the functionality of the Ge-Si core-shell

nanowire FET at the electronic level, we construct a prototypical nanowire junction by
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sandwiching a finite segment of the optimized 〈110〉 Ge-Si core-shell nanowire between

a pair of semi-infinite gold electrodes (Fig. 4.9g); two representative junctions are mod-

eled using nanowire channels of different core diameters with the electrode to electrode

distance of ∼2 nm. To mimic the nanowire junction in experimental measurement, and

to circumvent the problem associated with the conductivity mismatch and charge trapping

at the nanowire/lead interface, we passivated the unsaturated dangling states by hydrogen

atoms at the interface as done for the unsaturated surface states of the nanowire. We term

the core-shell nanowire channel as a quantum dot from here on due to confinement of elec-

trons. As the nanowire quantum dot (QD) is allowed to exchange its energy and electrons

with the semi-infinite leads upon contact, the junction constitutes an open system.

Subsequently, we recourse to a quantum transport approach [75, 76] to calculate the gate

bias dependent electronic current in the open Ge-Si core-shell nanowire QD junction. The

key quantity in this approach is the retarded many-body Greens function of the open

nanowire QD-metal junction [42, 72, 75, 76, 110, 117–119] that includes the effect of

applied bias, charging/broadening effects due to coupling with the semi-infinite electrode,

and the electrostatic gating effect. As typically done, we divide the nanowire junction into

two regions[75, 76]. The first part is the active scattering region, which consists of the core-

shell nanowire QD and a finite number of gold atoms (24 gold atoms) from the contacts

to include the charging effect on the nanowire. The second part is the semi-infinite gold

electrode part, which is assumed to be unperturbed (retain its 3D bulk properties) when

the scattering region is connected to the electrode; the active scattering part is open to the
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semi-infinite electrodes through the bias dependent self-energy function[75, 76]. Electron-

electron interaction in this many-body system is explicitly taken into account through the

use of an orbital-dependent, posteriori hybrid density functional method (B3LYP) (see sec-

tion 2.11) [70] that partially removes the self-interaction error by including part of the exact

Hartree-Fock exchange interaction. This method has been found to provide a much bet-

ter description of the transmission than that obtained with conventional, orbital-free local

density functional approximation (LDA) or generalized gradient corrected approximation

(GGA) (see section 2.9 & 2.10)[76]. A LANL2DZ pseudo potential Gaussian basis set[70]

that includes scalar relativistic effects is used to describe the Ge and Si atoms in the device

including the gold atoms from the lead; terminal H atoms are described by all-electron

6-311g* Gaussian basis set[70]. The dimension of the Hamiltonian matrix of the active

scattering region is 3044×3044 for both the prototypes considered here. A single particle

dipole interaction term~εg.∑i~r(i) is included in the core Hamiltonian to mimic the electro-

static gating effect[76, 77].~εg, is the gate field applied in the direction perpendicular to the

current carrying axis (x-axis) and~r(i) is the coordinate of the ith electron. The convergence

criteria for energy, maximum density, and root mean square density are set to 106, 106, and

108 au respectively to ensure tight convergence during the self-consistent calculation; ultra-

fine 99,590 pruned grids are used for numerical integration. The self-consistent inclusion of

the dipole interaction term in the Hamiltonian allows us to include the first and higher order

Stark effects, which are essential to examine non-linear transport phenomena[76, 77, 117].

The gate bias is obtained from the self-consistent voltage drop across the radial direction
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of the nanowire for each applied ~εg. The Fermi energy of the active scattering region of

the device is aligned with that of the bulk gold at equilibrium (the configuration where

the left and right leads are at equal potential)[75, 76]. Coherent single particle scattering

approach[42, 72] is used to calculate the gate bias dependent electronic current. The details

of our method can be found in our peer-reviewed journal articles[75, 76].

4.3.2 Results and Discussion

4.3.2.1 Current-Voltage Characteristics

Fig. 4.10 shows the calculated current-voltage characteristics of the core-shell nanowire

QD FETs for two representative channel structures (Fig. 4.8). In both cases, our calcula-

tions yield typical FET features with the source-drain currents (Ids) rising initially and then

saturating (ON-state) with the increase of applied bias (Fig. 4.10a and c) as observed in the

experiment[8]. This non-linear behavior in Ids persists for the entire gate bias range that we

have considered here. However, as the gate bias increases beyond a threshold value (V th
g ),

we find that the saturation current decreases. To further illustrate this intriguing finding,

we plot the Ids as a function of Vg for the fixed source-drain bias (Fig. 4.10b and d). First,

we focus on a smaller gate bias range (Vg < 2 V). For a fixed Vds, no appreciable change

in Ids is noticeable with the variation of Vg. When we increase the gate bias (Vg > 2 V), an

upsurge in Ids is seen until the gate bias reaches the V th
g following which the drain current
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Figure 4.10: Current (I)-Voltage (V) characteristics of the transistor. (a, b) Ge-Si core-shell

nanowire quantum dot FET with a core diameter of 11.7 Å. (c, d) Ge-Si core-shell nanowire quan-

tum dot FET with a core diameter of 4.7 Å. (Reprinted with permission from M. Jaishi, and R. Pati,

Nanoscale 2017, 9, 13425–13431. Copyright (2017) Royal Society of Chemistry.)

decreases rapidly to reach a valley point, resulting in a gate-bias-driven negative differen-

tial resistance (NDR) behavior. Both nanowire QD FETs exhibit the similar NDR feature

in drain current. It is important to note here that the experimental transfer characteristics

recorded from the Ge-Si core-shell nanowire FETs with much longer channel lengths of 1

µm and 190 nm also indicate rapid drops in Ids with the increase of gate bias[8]; further

increase of gate bias yields an increase in Ids. Though we cannot make a quantitative com-

parison between our result and the experimental observation due to the much smaller size

of the channel in our model, the rapid drop in Ids with the increase of gate bias in our results
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is similar to the observed decrease in drain current from the experimental measurement[8].

This remarkable agreement between our results and the experimental observation provides

good confidence in the ability of our approach in describing a three-terminal nanowire FET.

In the case of nanowire channel with a bigger Ge-core diameter, the V th
g is found to be 7.05

V (Fig. 4.10b) and the peak to valley current ratio (PVR) varies from 4.65 to 2.72 with the

increase of bias from 0.09 V to 0.27 V; for the smaller Ge core, V th
g is found to be 4.05 V

and PVR varies from 8.99 to 6.28 for the same applied bias range (Fig. 4.10d). We also

did calculations at a low Vds of 0.08 V which reveal a high PVR value of ≥18.87 when

we increase the channel length of the smaller Ge-core FET from ∼2 nm to ∼2.44 nm; the

result is shown in Figure 4.11b.

Figure 4.11: Drain current vs. Gate voltage plot at a fixed source-drain bias in a Ge-Si core-shell

nanowire FETs; (a) Ge-core diameter 11.7 Å, and (b) Ge-core diameter 4.7 Å. (Reprinted with

permission from M. Jaishi, and R. Pati, Nanoscale 2017, 9, 13425–13431. Copyright (2017) Royal

Society of Chemistry.)

This clearly suggests that the threshold gate bias required to reach the peak current state

as well as the PVR value in the nanowire QD FET can be tuned by changing the Ge core
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diameter of the channel, which is also evident from the distinct valence band offsets found

between Ge and Si for different core diameter (Fig. 4.9); channel length dependent study

reveals that the PVR value can be substantially enhanced by increasing the channel length

of the transistor. We note here that the PVR values presented here should represent the

lower bound as the actual valley currents could be lower with a finer step size in the applied

gate bias. The drop in PVR value with the increase of applied bias in our calculation is

also in qualitative agreement with the experimental observation [8] that indicates a drop in

ON/OFF current ratio with the increase of applied bias.

4.3.2.2 Transconductance and Transmission

To corroborate the observed anomalous behavior in Ids with applied gate bias, we have

calculated the transconductance (gm = dIds/dVg)[117] using the data plotted in Fig. 4.10b

and d. The results are summarized in Fig. 4.12. Though the values of gm vary from

one device to the other, both FETs exhibit switching in the sign of transconductance. In

the case of the FET with a bigger Ge-core channel (Fig. 4.12a), gm switches sign from

positive to negative at a higher gate bias as compared to the smaller Ge-core channel (Fig.

4.12c), which reconfirms our previous observation. To understand the origin of gate bias

driven NDR and switching in the sign of gm, we have calculated the gate bias dependent

transmission function; Ids is obtained by integrating the transmission function within the

chemical potential window. For brevity, we have only considered the peak (ON) and the
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Figure 4.12: Transconductance and transmission function in two representative nanowire junctions.

Gate bias dependent transmission is plotted at a fixed source-drain bias of Vds ∼ 0.27 V; dotted lines

represent the chemical potential window. (a, b) Ge-Si core-shell nanowire quantum dot FET with

a core diameter of 11.7 Å. (c, d) Ge-Si core-shell nanowire quantum dot FET with a core diameter

of 4.7 Å. Lower panels in the transmission plots represent the ON states and upper panels represent

the OFF states. (Reprinted with permission from M. Jaishi, and R. Pati, Nanoscale 2017, 9, 13425–

13431. Copyright (2017) Royal Society of Chemistry.)

valley (OFF) current states at a low applied bias of 0.27 V. From the transmission plot

(Fig. 4.12b and d), several features are clearly noticeable. First, both nanowire FETs

exhibit similar characteristic with much-broadened transmission peaks for the ON state and

sharper peaks for the OFF state. Second, none of the transmission peaks appear within the

low bias electrochemical potential energy window (CPW) considered here. However, the
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higher contribution from the tail end of the broadened transmission peak within the CPW

leads to a much higher current for the ON state. We should note that the transmission peaks

that are contributing to the current are from the frontier eigenstate with energy smaller than

the Fermi energy. A closer examination of the transmission within the CPW reveals that

the ratio of transmission coefficients between the ON and the OFF state is much higher in

the smaller Ge core-channel than that in the bigger Ge-core, which reaffirms our finding of

higher PVR value in the smaller Ge-core FET. Next, we turn our focus to the high gate bias

regime beyond the OFF state. A sharp increase in drain current upon increasing gate bias

is noticeable for the smaller Ge-core FET. To understand this, we analyze the transmission

function at Vg = 11.02 V for the smaller Ge-core channel. Comparing the transmission at the

valley current state (Vg = 9.5 V) to that at Vg = 11.02 V, we find that the transmission peak

height in the vicinity of Fermi energy decreases upon increasing the gate bias. However,

the shift in transmission peak position into the CPW upon increasing gate bias from 9.5 V

to 11.02 V results in a sharp increase in drain current. A similar behavior in drain current

is observed for the higher gate bias beyond the valley point in the case of the larger Ge core

FET as shown in Figure 4.11a and 4.13a.

4.3.2.3 Role of Frontier Orbitals and Interfacial Coupling

To gain a deeper insight into the origin of observed transmission feature between the ON

state and the OFF state, we have analyzed the coefficient of highest occupied molecular
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Figure 4.13: Gate bias dependent transmission at a fixed source-drain bias of Vds (0.27 V) in Ge-

Si core-shell nanowire FETs. (a) Ge-core diameter is 11.7 Å, (b) Ge-core diameter is 4.7 Å; dotted

lines represent the chemical potential window. (Reprinted with permission from M. Jaishi, and R.

Pati, Nanoscale 2017, 9, 13425–13431. Copyright (2017) Royal Society of Chemistry.)

orbital in the active scattering region (at respective gate bias points) that contributes to the

transmission within the CPW for both the FETs. For the ON state, the dominant contribu-

tion comes from the pz orbitals of the Ge atoms at the core/shell interface and s-orbitals of

the Au lead; the electronic coupling between the s states and pz states at the lead/nanowire

interface is responsible for the strong broadening in transmission spectra. A closer exam-

ination reveals the pz orbitals that form a channel along the current carrying axis (z-axis)

provide the most probable tunneling pathway for electrons as shown in Fig. 4.14a.

It should be noted that in the case of a Si-Ge core-shell nanowire FET[117], though we

did not find gate bias driven NDR feature as revealed here (for the same gate bias range),

we found a similar behavior with pz orbitals of the shell Ge forming a channel for electron

tunneling at the ON state. This unambiguously establishes that the observed high per-

formance behavior in Ge-Si or Si-Ge core-shell nanowire FET is dictated by the electron
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Figure 4.14: Decoupling of carrier transport. Schematic illustration of the gate biased induced

decoupling of electron transport between the core and shell region of the Ge-Si core-shell nanowire

channel in the x-z plane; z-axis is the current carrying axis; gate field is applied along the x-axis;

alternative atoms are in different planes. (a) Peak state of the current (ON state): pz orbital of the Ge

atom at the core-shell interface provides the most probable tunneling pathway for carrier transport.

(b) One of the intermediate states between the ON and OFF states shows the decreased participation

of Ge with the increase of gate bias. (c) Valley state of the current (OFF state): pz orbital at the shell

Si atom provides the current path; core Ge atoms do not participate in tunneling. (Reprinted with

permission from M. Jaishi, and R. Pati, Nanoscale 2017, 9, 13425–13431. Copyright (2017) Royal

Society of Chemistry.)

tunneling through the pz orbitals of the Ge layer and the Ge offers a low barrier height at

the nanowire/lead interface in the ON state. Upon increasing the gate bias beyond the ON

state, the gate field induced transverse localization of wave function along the x-axis (axis

for the applied gate field) restricts the participation of Ge atoms in electron tunneling (Fig.

4.14b). For the OFF state, the molecular orbital that contributes to transmission is localized

on the outer Si atoms of the shell layer (Fig. 4.14c) with almost no contribution from the

gold resulting in a much weaker electronic coupling and large tunneling barrier between

the nanowire and lead. This explains why we observe sharp transmission peaks for the OFF

state. We thus can conclude that the gate bias induced decoupling of carrier transport be-

tween Ge-core and Si-shell is responsible for the observed NDR feature in Ge-Si core-shell

nanowire QD FET.
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Figure 4.15: Sketch of the proposed experiment. Plausible four probe junctions for studying gate

bias induced decoupling of carrier transport in co-axially gated Ge-Si core-shell nanowire junction.

Id1 refers to the drain current from the Ge core and Id2 refers to the drain current from the Si shell of

the nanowire. (Reprinted with permission from M. Jaishi, and R. Pati, Nanoscale 2017, 9, 13425–

13431. Copyright (2017) Royal Society of Chemistry.)

A new experiment based on four-probe junctions with coaxial gating (Fig. 4.15) is proposed

to validate our conclusion on decoupling of carrier transport between the core and the shell

layer; the comparison of measured drain currents Id1 and Id2 at different gate bias would

provide quantitative insights into the carrier decoupling in the Ge-Si core-shell nanowire

channel.

4.3.2.4 Conclusions

In summary, we have used an exhaustive quantum transport approach to unravel the

electronic quantum path in real space within a Ge-Si core-shell nanowire transistor in a

nonequilibrium condition, which demonstrates, unambiguously, the gate bias induced car-

rier decoupling between the core and shell region of the nanowire. At the peak NDR state,
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the pz-orbital of the core Ge layer is found to strongly couple with the s-orbital of the

gold electrode which results in a higher value of current, whereas, no such hybridization

at the interface is found exist at the valley NDR state, which is contributed solely from the

pz-orbital in the shell Si-layer. We expect our present findings should solidify the core-

shell nanowire technology, where controlled transport of electrons holds the key for their

multifunctional usages such as in next-generation electronics and quantum computing.
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Chapter 5

Tunnel Magnetoresistance in a Three

Terminal Carbon Nanotube Junction

5.1 Introduction

Tunnel magnetoresistance (TMR) which underpins the modern high-density data storage

device comes into effect due to the relative difference in resistance between the parallel and

antiparallel spin configurations of the ferromagnetic electrodes with a semiconductor or an

insulator tunneling channel sandwiched between them[120–123]. To build such a spin tun-

neling junction requires the channel material with a long spin-flip scattering length[31];

this is essential for maintaining the coherent transport of electron spin through the channel
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of the magnetic tunnel junction (MTJ). Carbon nanotube (CNT), in this regard, is found to

adequately fulfill the requirement by having a negligible spin-orbit coupling owing to its

low atomic number. Also, the abundant isotope of carbon, carbon-12, is not affected by the

magnetic hyperfine interaction due to the absence of any unpaired electron. These excellent

features make semiconductor CNT, an ideal candidate for the channel in a MTJ[31]. For

example, a long spin-flip scattering length of 130 nm has already been reported in a ferro-

magnetically contacted CNT tunnel junction[31]. The phase coherence length of 250 nm

and the elastic scattering length of 60 nm have also been observed in a ferromagnetically

contacted CNT junction[32]. Exploiting this CNT feature, several experimental groups

have, so far, measured the TMR in two and three terminal MTJs built out of CNT[31, 33–

40]; however, the difficulties in fabricating the reproducible ferromagnetic contacts have

led to a wide variation in the measured TMR values[31, 33–40]. Of particular interest

is an experimental result published by Sahoo et al. in 2005, where they have shown an

oscillatory TMR behavior in three terminal CNT junctions contacted with ferromagnetic

PdNi electrodes[37]. In this work, they have reported the TMR measurements in single

and multi-wall CNT based MTJs with both of them showing the aperiodic oscillatory TMR

coupled with multiple sign reversals[37]. The ability to control this intriguing TMR feature

in a predictable manner could potentially lead to its multifunctional usages, however, what

causes the CNT based MTJs to exhibit such an unusual TMR feature is still far from being

known. Though quantum interference has been suggested to be the primary reason[37], no

quantum mechanical description has, yet, been outlined to explain the observed oscillations
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in TMR. In the following, using the real space density functional theory (DFT) in conjunc-

tion with the single particle many-body Green’s functions approach, we have investigated

the gate field driven magnetoresistive effects in an (8,0) single-wall carbon nanotube-nickel

(SWCNT-Ni) MTJ. Irrespective of different source-drain bias, our calculations conform to

the experimentally reported oscillatory TMR feature[37] accompanied by a wide variation

in amplitude and TMR sign reversals. Within the considered gate bias range, calculated

current in parallel (PC) and antiparallel (APC) configuration show a nonlinear behavior

with crossovers between them noticed at multiple gate-bias points. Further analysis has re-

vealed a much higher value of polarizability along the gate field applied y-axis for both PC

and APC leading to the second-order Stark effect which clearly explains the observed non-

linear PC and APC current. The majority and minority spin current contributions for PC

and APC show the spin injection efficiency to decrease with the increase in source-drain

bias applied along the channel axis. The gate bias dependent transmission and frontier

orbitals in the active scattering region are analyzed to understand the observed aperiodic

TMR oscillations. We found the hybridization at the interface between s- and d-orbitals of

the Ni electrode and pz-orbital of the interfacial carbon atoms to change with the increase in

the gate bias. This gate modulated change in coupling with different interfacial atoms par-

ticipating at different gate bias regime leads to the changes in the spin-transport pathways

along the channel resulting in a nonlinear current behavior. Inserting an oxide layer at the

interface has resulted in a substantial increase in TMR accompanied with a much smoother

oscillations; the observed improvement in TMR oscillation can be ascribed to the greater
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control achieved at the interface due to the insertion of aluminum oxide tunnel barrier.

5.2 Computational Methods

We have considered a semiconductor single-wall carbon nanotube (SWCNT) of chirality

(8,0) for our study. The electronic structure calculation of (8,0) SWCNT is performed

using the periodic density functional theory (DFT) that employs plane wave basis functions

and generalized gradient approximation (GGA=PW91). The valence-core interaction is

described by using the projector augmented wave (PAW) pseudopotential. For geometry

optimization, the atomic structure of the nanotube is allowed to relax without symmetry

constraint until the residual force on each atom becomes ≤ 0.01 eV/Å; the convergence

criteria for total energy is set at 10−6 eV. We have used a k-mesh of 1× 1× 17 under the

Monkhorst pack scheme to sample the Brillouin zone. The kinetic energy cut-off of 29.40

Ry and a supercell comprised of 32 carbon atoms are considered. The lattice parameter

after the geometry of (8,0) SWCNT is optimized is found to be 4.27 Å. The diameter of the

relaxed (8,0) SWCNT is found to be ∼0.64 nm which is quite reasonable since the CVD

synthesis of freestanding SWCNT of about 0.426 nm has already been reported[124]. To

minimize the spurious interaction between the nanotube and its replicas, a large supercell

of 30 Å along the x- and y-axis with a vacuum space of more than 20 Å is considered.

Table 5.1 summarizes the structure of our optimized (8,0) SWCNT in cartesian coordinates.
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Table 5.1

The optimized coordinates of the atoms in an (8,0) SWCNT unit cell.

Translational lattice parameter = 4.27 Å

Serial Number Atom X(Å) Y(Å) Z(Å)

1 C 8.12194 5.62116 4.00512

2 C 8.12194 5.62116 1.15288

3 C 7.64794 6.76917 1.87018

4 C 7.64794 6.76917 3.28782

5 C 6.76917 7.64794 4.00518

6 C 6.76917 7.64794 1.15282

7 C 5.62116 8.12193 1.87011

8 C 5.62116 8.12193 3.28789

9 C 4.37884 8.12194 4.00512

10 C 4.37884 8.12194 1.15288

11 C 3.23083 7.64794 1.87018

12 C 3.23083 7.64794 3.28782

13 C 2.35206 6.76917 4.00518

14 C 2.35206 6.76917 1.15282

15 C 1.87807 5.62116 1.87011

16 C 1.87807 5.62116 3.28789

17 C 1.87806 4.37884 4.00512

18 C 1.87806 4.37884 1.15288

19 C 2.35206 3.23083 1.87018

20 C 2.35206 3.23083 3.28782

21 C 3.23083 2.35206 4.00518

22 C 3.23083 2.35206 1.15282

23 C 4.37884 1.87807 1.87011

24 C 4.37884 1.87807 3.28789

25 C 5.62116 1.87806 4.00512

26 C 5.62116 1.87806 1.15288

27 C 6.76917 2.35206 1.87018

28 C 6.76917 2.35206 3.28782

29 C 7.64794 3.23083 4.00518

30 C 7.64794 3.23083 1.15282

31 C 8.12193 4.37884 1.87011

32 C 8.12193 4.37884 3.28789

The band structure calculation performed by taking the optimized (8,0) SWCNT show a

direct band gap of 0.58 eV at the Γ point which is found to be consistent with the results

reported previously[125–127]. Fig. 5.1 shows the band structure plot of (8,0) SWCNT.

We have used the codes employed in the Vienna ab-initio simulation package (VASP)[106,
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Figure 5.1: Band Structure plot of (8,0) SWCNT showing a fundamental gap of 0.58 eV at Γ point;

the presence of a definite band gap ascertains the semiconductor behavior of (8,0) SWCNT.

107] to perform the periodic DFT calculation.

Then, we recourse to the spin-unrestricted real space DFT in conjunction with the spin-

polarized coherent single particle many-body Green’s functions approach to calculate spin

transport in an (8,0) SWCNT-Ni MTJ. To construct the junction, a finite portion of CNT is

sandwiched between the Ni source and drain electrodes; see section 3.3.3 of this thesis for a

detail information of our method. Fig. 5.2 shows the schematic of a prototypical magnetic

tunnel junction built out of semiconductor SWCNT for both PC and APC. For the real

space electronic structure calculation, we used the posteriori hybrid DFT method (B3LYP)

(see section 2.11 of this thesis for more details); an all-electron 6-311 G* [128] basis set is

used for all the atoms in the active scattering region. A finite perturbative approach is used

to include the source-drain as well as the gate bias effects self-consistently; see section 3.3
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Figure 5.2: A three terminal (8,0) single-wall carbon nanotube-Ni magnetic tunnel junction; εg

represents the gate field applied perpendicular to the channel axis. PC and APC refer to the parallel

and antiparallel spin configuration of ferromagnetic source and drain electrodes.

of this thesis for further details. We have aligned the Fermi energy of the active scattering

region with that of bulk Ni electrodes at equilibrium. The gate bias, Vg is obtained from the

voltage drop across the radial direction for each applied gate field at equilibrium.

5.3 Results & Discussions

5.3.1 Magnetoresistance in CNT-based Tunnel Junction

Fig. 5.3 shows the calculated TMR for two different source-drain bias in an MTJ

built out of semiconductor (8,0) SWCNT. The TMR is obtained using the expression

((IPC − IAPC)/IAPC × 100 %) [75]. Irrespective of different source-drain bias, we found
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oscillations and sign reversals of the TMR with the increase of applied gate bias. It is im-

portant to note here that a similar TMR feature has already been reported experimentally in

ferromagnetically contacted CNT junctions[37]. To explain this intriguing TMR features,

we examined a representative case with VDS ∼ 0.80 V (Fig. 5.3a). The calculated TMR in

the absence of gate bias (Vg) is found to be 22.32 % which is in agreement with the reported

magnetoresistance of ∼20 % in a two terminal CNT spin-valve junction[129].

Figure 5.3: TMR in an MTJ built out of semiconductor (8,0) SWCNT. TMR is plotted as a function

of gate bias for the fixed source-drain bias of (a)∼0.80 V and (b) ∼1.55 V.

Upon increasing the gate bias from 0.0 V to 0.39 V, a rapid drop in TMR is noticed; a

subsequent increase of Vg to 0.81 V causes a rise in TMR up to 17.82 %. Thereafter,

a steady drop to 9.89 % is noticed in TMR following which it surges again to 10.78 %

at Vg=1.56 V. This oscillatory TMR behavior persists as we go up to a higher gate bias;

the sign reversal of TMR is seen at a higher gate bias. To ascertain the general nature
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of the observed non-linear TMR feature, we calculated it again at a higher source-drain

bias of ∼1.55 V (Fig. 5.3b). Here, we found a negative TMR of -2.58 % at zero gate

bias; upon increasing the gate bias, TMR is found to drop rapidly until it becomes -21.81

% at Vg=0.39 V following which it increases to a positive value of 11.65 % at Vg=1.19

V. A subsequent dip in TMR is observed again upon increasing the gate bias to higher

values. This confirms that the gate-bias-driven oscillatory and sign reversal behavior of

TMR in CNT junctions observed here is independent of applied source-drain bias. Despite

a significant increase in amplitude along with multiple sign reversals in TMR noticed in

our calculations for the higher source-drain bias (Fig. 5.3b), the oscillations in both cases

(VDS ∼ 0.80 V (Fig. 5.3a) and VDS ∼ 1.55 V (Fig. 5.3b)) are found to be aperiodic in

nature. This result is fully consistent with the aperiodic behavior of TMR reported in

the experiment[37]. Though, quantitative comparison cannot be made between our results

and the experiment[37] because of different length scales, chirality conditions as well as

the lack of atomic-level structural information of the CNT/lead interfaces in the fabricated

device, reproducing an oscillatory TMR feature as that of the experiment[37] provides

confidence on the robustness of the our approach.

5.3.2 Current-Voltage Characteristics in (8,0) SWCNT-Ni MTJ

To analyze the oscillation and sign reversal TMR feature observed in a CNT-Ni MTJ, we

have plotted the drain current (IDS) as a function of gate bias (Vg) for both representative
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configurations shown in Fig. 5.3. The current-voltage characteristics for the PC and APC

are summarized in Fig. 5.4. Regardless of applied source-drain bias, IDS vs. Vg plots (Fig.

5.4a & 5.4b) show a nonlinear behavior accompanied by crossovers between the PC and

APC current. Examining the results from Fig. 5.4a, we found a higher current in PC (12.77

µA) than that of APC (10.44 µA) at Vg=0.00 V; this explains the higher positive value

of TMR at zero gate bias (Fig. 5.3a). When we increase the gate bias to Vg=0.39 V, the

current in the APC rapidly rises to 11.47 µA while a small drop in PC current to 12.45

µA is noticed; this results in a decrease in the difference between PC and APC current and

hence, a smaller TMR value is noted at Vg=0.39 V (Fig. 5.3a). A subsequent increase in

gate bias to Vg=1.19 V results in a rapid decrease of current in APC and a gradual drop in

current for PC leading to a higher TMR value. An approximate in-phase behavior in PC

and APC current is observed as we increase the gate bias to 2.65 V and 2.86 V respectively

following which a crossover occurs at Vg =-2.91 V between the currents in PC and APC;

this results in a negative TMR as shown in Fig. 5.3a. In the case of the higher source-drain

bias (Fig. 5.4b), crossover between PC and APC currents are noted at several gate bias

points resulting in multiple sign reversals and oscillatory behavior in TMR (Fig. 5.3b).

5.3.3 Spin-resolved Current-Voltage Characteristics

Since TMR is a spin-dependent phenomenon where both majority and minority spin car-

riers have their contributions in PC as well as APC current, a detailed analysis of the role
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Figure 5.4: Current-voltage characteristics in an (8,0) SWCNT-Ni MTJ. Drain current (IDS) is

plotted as a function of gate bias (Vg) for the fixed source-drain bias of (a)∼0.80 V and (b) ∼1.55

V.; PC and APC refer to parallel and antiparallel spin alignments between the Ni electrodes.

played by these spin carriers would help to gain a deeper understanding of the observed

TMR and spin behavior in CNT junction. The contributions from the majority and mi-

nority spin carriers to drain current as a function of gate bias is depicted in Fig. 5.5. For

the source-drain bias of ∼0.80 V (Fig. 5.5a), minority spin states’ (Down) contribution

is found to be appreciably larger than that of the majority states’ (Up) in PC; the magni-

tude of spin injection factor, η = (U p−Down)/(U p+Down), is found to be -0.22 at zero

gate bias. While in the case of APC, the Up states’ contribution is higher than that of the

Down states’ resulting in an η value of 0.20 at Vg=0 V. When we increase the source-drain

bias from ∼ 0.80 V to ∼1.55 V (Fig. 5.5b), majority and minority spin states exchange

their roles in PC; Up states’ contribution to current is found to be higher than that of the

Down states’ over all the gate bias range considered here. The η values in PC and APC

decreased to 0.01 and 0.08, respectively upon increasing the source-drain bias from ∼0.80
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V to ∼1.55 V at zero gate bias. These observed values of η are much smaller than that

found in a boron nitride nanotube-nickel junction[130], which suggests that an appropriate

tunnel barrier at the CNT/Ni junction is necessary to boost the spin injection efficiency and

TMR. A high TMR value varying from -80 % to 120 % has been observed [34–36, 131] in

weakly coupled two terminal carbon nanotube based MTJs.

Figure 5.5: Spin-resolved current-voltage characteristics in an (8,0) SWCNT-Ni MTJ. Drain current

(IDS) contributions from the majority and minority spin carriers is plotted as a function of gate bias

(Vg) for the fixed source-drain bias of (a)∼0.80 V and (b) ∼1.55 V; Up and Down represent the

respective drain current contributions from spin-up and spin-down electrons.

5.3.4 Multichannel Transmission Function

To understand the origin of the observed asymmetry between the majority and minority spin

states’ currents in PC as well as APC, we analyzed the multi-channel transmission function,
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which is defined as the sum of transmission coefficients over all the eigenchannels; its

integration within the chemical potential window gives us the drain current. For brevity,

we have plotted the transmission as a function of injection energy for VDS ∼0.80 V at three

different gate bias points; Fig. 5.6 shows the transmission plots within [-0.5, 0.5] energy

window for the majority and minority carriers in PC and APC. In the case of PC (Fig. 5.6a),

Down-states’ contribution to transmission is significantly higher than the Up-states in the

vicinity of Fermi energy.

Figure 5.6: Spin-dependent transmission in a semiconductor SWCNT contacted with Ni electrodes.

Transmission function is plotted at different gate bias for the fixed source-drain bias of ∼0.80 V; (a)

and (b) represent the majority (Up) and minority (Down) states’ contribution to transmission in PC

and APC, respectively.

This explains the higher observed spin-Down current in PC (Fig. 5.5a). When we increase

the gate bias, the value of the transmission coefficient decreases in a non-linear way result-

ing in a decreasing Down-state current. However, in the case of APC (Fig. 5.6b), Up states’

contribution is higher than that of the Down states resulting in a higher Up-state current;

upon increasing gate bias, Up states’ contribution to transmission increases leading to an
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increase in the Up-state current. The observed broadening in transmission is due to the

metal-induced broadening caused by strong chemical bonding at the channel-lead interface

between the Ni atoms of the lead and the C-atoms of the nanotube channel.

5.3.5 Nonlinear Interfacial Coupling

Analysis of frontier spin orbitals in the active scattering part of the junction indicates a

strong hybridization between the d- as well as s- states of Ni and the p- as well as s- states

of C at the interface. A closer examination of the orbital coefficients reveals that differ-

ent Ni atoms at the interface contribute to spin-dependent hybridization at different gate

bias; some Ni atoms are strongly coupled to the interfacial C atoms than the others. The

Figure 5.7: Schematic highlighting the distinct nature of the spin-dependent hybridization between

the Ni and C atoms at the interface of the (8,0) SWCNT-Ni MTJ at different gate bias points. The

width of the line indicates the strength of the coupling; VG1, VG2 and VG3 refer to three different gate

voltages.

schematic summarized in Fig. 5.7 highlights the nature of spin-dependent hybridization

taking place at the CNT-Ni interface. Coupling change at the interface does not behave
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Table 5.2

Dipole moment and polarizability. Components of dipole moment (α) and polarizability (β ) in a

CNT-Ni MTJ.

Dipole moment (a.u.) Polarizability (a.u.)

CNT-Ni junction αx αy αz β xx β yx β yy β zx β zy β zz

PC 1.61 -0.05 0.09 1046.00 -158.52 1284.20 9.61 5.58 2932.18

APC -0.43 0.04 -0.86 -618.24 -688.11 935.61 414.13 156.96 2835.90

linearly with applied gate bias due to the strong nonlinear Stark effect as evident from the

calculated polarizability data (Table 5.2). The unique electron density distribution with dis-

tinct dipole moment and polarizability in PC and APC along the applied gate field direction

(Y-axis) is responsible for the strong nonlinear response to the gate bias, which lead to an

aperiodic oscillatory behavior of TMR in CNT-Ni MTJ.

5.3.6 Effects Induced by an Oxide Tunnel Barrier

Further investigations focused on achieving the predictable control over the observed os-

cillatory TMR feature is carried out by engineering a new junction structure with an alu-

minum oxide (Al2O3) tunnel barrier inserted at the CNT-Ni contacts. Fig. 5.8 summarizes

the modulation of TMR and drain current due to Al2O3 tunnel barrier. For brevity, we have

included only the results calculated at a source-drain bias 1.50 V. Within the considered

gate bias range, TMR (Fig. 5.8a) is found to be entirely negative, however, the charac-

teristic aperiodic nature of the TMR observed earlier is no more evident. For example,

at Vg = 0.00 V, the TMR is found to be -7.68 % which goes down further to -84.66 % at
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Figure 5.8: Tuning the spin-transport characteristics by inserting an Aluminum oxide (Al2O3) tun-

nel barrier at the (8,0) SWCNT-Ni contacts. (a) & (b) represent the respective TMR and IDS vs.

Vg plots at the VDS = 1.50 V; PC and APC represent the parallel and parallel spin alignment of Ni

electrodes.

a gate bias of 0.37 V beyond which the TMR is found to rise up again becoming -18.28

% at Vg = 0.54 V. A subsequent increase in gate bias causes a substantial drop in TMR

reaching to similar a value observed at Vg = 0.37 V. This periodic oscillatory behavior is

found to persists for the whole gate range considered in for our calculation. To substanti-

ate the barrier modulated oscillatory TMR feature, we have analyzed the behavior of drain

current for PC and APC within the same gate bias range (Fig 5.8b). In the absence of gate

bias, we found the respective PC and APC currents to be 10.57 µA and 11.45 µA; the

slightly higher APC current explains the observed negative TMR of a smaller magnitude.

Increasing the gate bias causes a dip in PC current while a smaller rise in APC is noted

which justifies the TMR drop observed at Vg = 0.37 V; a similar consistency is observed

for the rest of the gate bias range considered. While the current in APC behaves randomly

for the complete gate bias range, the striking oscillatory behavior observed in PC current is
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found to dominate the observed TMR feature. We expect this barrier modulated feature in

TMR to persist regardless of source-drain bias applied along the channel axis. Achieving

a predictable control over the oscillatory TMR feature is critical to its potential usages in

various electronics applications.

5.4 Conclusions

We have found an aperiodic oscillatory TMR feature in a semiconductor (8,0) SWCNT-Ni

magnetic tunnel junction which qualitatively agrees with the experimental TMR findings.

Our real space DFT calculation revealed a distinct nature of hybridization at the CNT-Ni

interface at each gate bias points responsible for the nonlinear spin tunneling behavior. The

plausible removal of the observed aperiodicity in TMR oscillation is anticipated with the

insertion of an insulating oxide tunnel barrier at the metal-semiconductor interface. We ex-

pect our theoretical result would provide a roadmap toward the predictable tuning of TMR

in magnetic tunnel junctions for its multifunctional usages in next-generation electronics.
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Chapter 6

Conclusions and Future Perspectives

6.1 Conclusions

This thesis describes the charge and spin-transport properties in one-dimensional nanoscale

junctions using the first- principles density functional theory in conjunction with the coher-

ent single particle many-body Green’s functions (NEGF) approach. The first project of

this thesis elucidates the superior performance of Si-Ge core-shell nanowire quantum dot

field effect transistor (FET) in comparison to its pristine Si counterpart. In this work, we

have identified the gate-modulated switching mechanism responsible for the superior FET

performance of Si-Ge nanowire FET. For the on-state, the gate-field induced transverse lo-

calization of the wave function is found to restrict the carrier transport to the shell layer;
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the pz-orbitals provide the tunneling pathway for electrons through the channel in both Si-

Ge and Si nanowires. The higher on-current observed in Si-Ge core-shell nanowire FET

is explained by the distribution of pz-orbitals over the entire channel of the device; for Si

nanowire FET, the distribution of pz- orbitals is found to be restricted to few shell-Si atoms

leading to a smaller tunneling current. The Si-Ge nanowire FET is found to have a very

high transconductance in comparison to Si nanowire suggesting higher values of mobility

in Si-Ge nanowire junctions.

The second project of this thesis outlines the quantum transport properties of Ge-Si core-

shell nanowire quantum dot FETs of two different Ge-core diameters. In this work, we

have unlocked the most probable tunneling pathway for the electrons in Ge-Si nanowire

FETs with the orbital-level resolution. Our calculations conform with the experimentally

observed transport characteristics showing high-performance FET behavior below a certain

threshold gate bias following which there is a gate-driven negative differential resistance

(NDR) observed at higher gate bias. Our calculation revealed the gate-field induced de-

coupling of carrier transport between the core and shell regions of these nanowires, which

clearly explains the observed gate-driven NDR; for peak state, the participatory pz-orbitals

in core-Ge layer is found to strongly couple with s-orbitals from the gold electrode while

no such coupling at the nanowire/lead interface is observed for the valley current-state,

which is contributed solely from the pz orbitals in the shell Si-layer. We have proposed a

four-probe experimental set-up to measure the drain current separately from the core and
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the shell region in a surround gated Ge-Si core-shell nanowire junction to validate our pre-

diction on the gate-induced decoupling of carrier transport between the core and the shell

region.

In the final project of this thesis, we studied the spin transport in a semiconductor (8,0)

single-wall carbon nanotube (SWCNT) contacted with ferromagnetic Ni electrodes. The

spin-unrestricted DFT combined with the spin-polarized NEGF method is used to explore

the magnetoresistive effects in a three-terminal CNT-Ni junction. Our calculations show an

oscillatory tunnel magnetoresistance (TMR) accompanied by a sizable variation in width

and amplitude with the increase in gate bias; TMR sign reversals are noted at higher gate

bias. Though an exact comparison cannot be made between our theoretical results and

experimental findings because of the lack of information regarding the interface structure,

and chirality of the CNT as well as due to the difference in the length of the channel, our

calculation holds a qualitative agreement with the results reported in the experiment. Our

orbital-level analysis reveals a nonlinear spin-dependent hybridization at the interface be-

tween the s- and d- orbitals of the Ni electrodes and the pz- orbitals of the interfacial carbon

atoms in the channel; this non-linear variation in coupling at the interface is responsible for

the oscillatory TMR behavior. Inserting an aluminum oxide layer as a tunnel barrier is

found to result in a much smoother TMR oscillation by controlling the interaction at the

nanotube/lead interface.

119



6.2 Future Perspectives — A bird’s-eye view

Because of its unique electronic structure and quantum confinement effects, one-

dimensional core-shell nanowires promise a wide range of functionalities in addition to

its excellent charge transport feature. In regard to these possibilities, it would be worthy

to extend the study of one-dimensional semiconductor core-shell nanowires considered in

this thesis to explore some of the possible features described below.

1. First-principles DFT calculation of electronic thermal conductivity and phonon-

dispersion relation to exploring the thermal transport features in 〈110〉 semiconductor

Si-Ge and Ge-Si core-shell nanowires with and/or without doping.

2. Photo-voltaic applications of Si-Ge and Ge-Si core-shell nanowires by calculating the

variation of absorption spectra with the photon energy for different lengths followed

by the modeling of an appropriate Schottky junction to calculate the photocurrent

density.

3. Spin transport in Si/Ge core-shell nanowire contacted to ferromagnetic junctions to

explore the magnetoresistive effects for applications in next-generation electronics.
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