Optimal Control of Wave Energy Converters

Shangyan Zou

MICHIGAN TECHNOLOGICAL UNIVERSITY, szou2@mtu.edu

Copyright 2018 Shangyan Zou

Recommended Citation
https://digitalcommons.mtu.edu/etdr/702
OPTIMAL CONTROL OF WAVE ENERGY CONVERTERS

By

Shangyan Zou

A DISSERTATION
Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
In Mechanical Engineering-Engineering Mechanics

MICHIGAN TECHNOLOGICAL UNIVERSITY
2018

© 2018 Shangyan Zou
This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Mechanical Engineering-Engineering Mechanics.

Department of Mechanical Engineering-Engineering Mechanics

Dissertation Advisor: Dr. Ossama Abdelkhalik

Committee Member: Dr. Rush D. Robinett

Committee Member: Dr. Nina Mahmoudian

Committee Member: Dr. Wayne W. Weaver

Department Chair: Dr. William W. Predebon
Dedication

To my mother, father, and wife

Without your love, support, and encouragement, I would neither be who I am nor would this work be what it is today.

To grandmother and grandfather

Who always believe me and expect me in completing this work.

To my advisor and teachers

Who guide, support and encourage me with your knowledge, patience, and quality.

To my colleagues and friends

Who help me and enrich my life.
Contents

List of Figures ... iii

List of Tables .. xvii

Preface .. xix

Acknowledgments .. xxii

Definitions ... xxiii

Nomenclature ... xxv

Abstract .. xcviii

1 Introduction ... 1

1.1 Overview .. 1

1.2 Optimal control of single-degree-of-freedom WEC 2

1.3 Optimal control of single body multi-degree-of-freedom WEC . . 4

1.4 Optimal control of the WEC array 5

1.4.1 The WEC array modeling and layout optimization 5
1.4.2 The optimal control of the WEC array 7
1.5 The Power take-off units ... 8
 1.5.1 General Review .. 8
 1.5.2 Air Turbines ... 8
 1.5.3 Hydro Turbines ... 9
 1.5.4 Direct Drive system ... 9
 1.5.5 The hydraulic system ... 10
 1.5.5.1 Constant pressure configuration 11
 1.5.5.2 Variable pressure .. 12
 1.5.5.3 Variable - Constant pressure 13

2 Modeling of the Wave Energy Converters 14
 2.1 Wave Model .. 15
 2.2 Single Body Heaving Wave Energy Converter 16
 2.2.1 The Wave Excitation Force 18
 2.2.1.1 The Wave Excitation Force: Pressure Accumulation 19
 2.2.2 The Hydrostatic Restoring Force 20
 2.2.3 The Radiation Force ... 21
 2.3 Single Body Pitching Wave Energy Converter 22
 2.4 Single Body Three-Degree-of-Freedom WEC 26
 2.5 Wave Energy Converters Array 31
 2.5.1 The WEC array surrogate model 33
2.5.2 The model identification

3 Optimal Control of Wave Energy Converters: Unconstrained control

3.1 Singular Arc Controller

3.1.1 Singular Arc Controller for the Simplified WEC Models

3.1.2 Singular Arc Control for the WEC Models with Radiation States

3.2 Simple Model Control

4 Optimal Control of Wave Energy Converters: Constrained control

4.1 Shape-Based Approach

4.1.1 Shape-Based Approach for Simplified WEC Model

4.1.2 Shape-Based Approach for Higher-Order Model WEC Optimal Control

4.2 Pseudospectral Optimal Control

4.2.1 System Approximation Using Fourier Series

4.2.2 Control Optimization for Linear Time-Invariant WECs

4.2.3 Control Optimization for Linear Time-Varying WECs

4.3 Linear Quadratic Gaussian Optimal Control

4.3.1 The LQ control law

4.4 Collective Control of WEC array
5 Wave Estimation for WEC control

5.1 Kalman Filter

5.1.1 Kalman Filter with the measurements of the total wave pressure

5.1.1.1 Initialization of The Kalman Filter States

5.1.1.2 Simulation results

5.2 Extended Kalman Filter

5.2.1 Extended Kalman Filter for Singular Arc Controller

5.2.1.1 Dynamic model of the Extended Kalman Filter

5.2.1.2 WEC measurements model

5.2.1.3 The Jacobian Matrices

5.2.1.4 The EKF Process

5.2.1.5 Pseudo Measurement

5.2.1.6 Simulation results

5.2.2 Extended Kalman Filter for Linear Quadratic Gaussian Controller

5.2.2.1 The Jacobian Matrices

5.2.2.2 Simulation results

5.3 Consensus estimation for the WEC array

5.3.1 The Continuous-Discrete Kalman-Consensus Filter

5.3.2 Simulation results
6 Power Take Off Constraints

6.1 Modeling of The Discrete Displacement Hydraulic Power Take-Off

6.1.1 The Hydraulic Cylinder

6.1.2 The Hoses

6.1.3 The Directional Valves

6.1.4 The Pressure Accumulators

6.1.5 The Hydraulic Motor

6.2 Numerical Validation

6.2.1 The Control Algorithm

6.2.1.1 The Buoy Control Method

6.2.2 The Force-Shifting Algorithm

6.2.3 Simulation Tool

6.2.3.1 The System Losses

6.2.4 Simulation Results

6.2.5 Discussion

7 Conclusion

7.1 Future work
List of Figures

1.1 General layout for a hydraulic power take-off (PTO). 11

2.1 The wave elevation. 16

2.2 The geometry of a heaving point absorber. 17

2.3 The geometry of the Wavestar absorber. 22

2.4 The frequency response of the dynamics of the Wavestar absorber. 25

2.5 Geometry of a 3-DoF cylindrical Buoy; MWL is the mean water level. 26

2.6 The layout of the WEC array. 31

2.7 The layout of the WEC array surrogate model. 35

2.8 The connection between body 1 and body 2. 37

4.1 SB parameters definitions. 56

4.2 The framework diagram of the logic of the control. 66

5.1 Geometry of the buoy used in the numerical simulations in this paper. 82

5.2 Comparison between the SMC, the SA, the RL and the PD in terms of harvested energy. The SMC performance is close to the ideal SA. 83
5.3 The Control force using SMC and the displacement of the buoy. No constraints on the control and the displacement are assumed.

5.4 The series expansion for the force F on the buoy is a good approximation for the true force for the linear force test case.

5.5 Schematic of the Sandia experimental WEC with locations of pressure transducers.

5.6 The extracted energy using SA control and EKF.

5.7 The estimation of the system responses, the control effort and the estimation of the excitation force.

5.8 The convergence of the estimated states.

5.9 The flow chart of LQG optimal controller.

5.10 The energy extracted by the LQG controller.

5.11 The control force.

5.12 The pitch rotation and pitch velocity.

5.13 The distribution of the buoys in the wave farm.

5.14 The average percent estimation error and the disagreement of the excitation force.

5.15 The average percent estimation error and the disagreement of the excitation force using 30 frequencies.

5.16 The average percent estimation error and the disagreement of the excitation force using 200 frequencies.
5.17 Estimation error and Disagreement obtained with different number of frequencies using the CD-KCF.

6.1 The layout of the Discrete Displacement Cylinder (DDC) hydraulic system.

6.3 An example for all discrete possible values for a PTO force.

6.4 The Simulink model of the wave energy conversion system.

6.5 The Simulink model of the hydraulic PTO system.

6.6 The pressure loss of the hose which has a 1-m length and 3.81×10^{-2} m diameter with different flow rates across the hose.

6.7 The flow loss of the generator.

6.8 The friction force of the cylinder with different velocities when the cylinder force is 100 kN.

6.10 The power extracted by the actuator and the generator and the generator speed.

6.9 The energy extracted accounting for displacement and force constraints, including the hydraulic system dynamics model.

6.11 The rotational angle and the angular velocity.
List of Tables

2.1 Model parameters for the Wavestar ... 25

6.1 The data used in the simulation of the overall WEC system. 142

6.2 Capacity requirement of the controllers without hydraulic system. . 149

6.3 Capacity requirement of the controllers with hydraulic system. ... 150
Preface

Chapter 1 provides the introduction of this dissertation with a detailed survey of the literature. Chapter 2 presents the model of the interaction between the wave and the single body heaving device, the single body pitching device, the single body three degrees of freedoms device and the Wave Energy Converters array. Chapter 3 introduces the development of the unconstrained controller, which includes the Singular Arc control and the Simple Model Control. Chapter 4 proposes the constrained control development which includes the Pseudospectral optimal control, Linear Quadratic optimal control, and the Collective Control. The state and wave estimation are introduced in Chapter 5, which includes the Kalman Filter, Extended Kalman Filter, and the Kalman-consensus Filter. Chapter 6 presents the development of the hydraulic power take-off system. The materials of Chapter 2, 3, 4, 5 and 6 are published as references [1, 2, 3, 4, 5, 6, 7, 8, 9]. The contents of Chapter 1 include part of the literature review of those articles.
Acknowledgments

I would like to express my sincere gratitude to all those who have supported me, helped me, and inspired me during my doctoral program at Michigan Technological University.

First of all, I would like to thank my advisor, Dr. Ossama Abdelkhalik. Thank you for giving me the opportunity to join your research group and pursue a Ph.D. Your guidance, support, and encouragement played a significant role in completing this work. I learned not only the knowledge but also personal qualities from you.

Second, I am grateful to Dr. Bo Chen, Dr. Lyon B. King, Dr. Rush Robinett, Dr. Umesh Korde and all the instructors and professors who provided advice and supported me when I am struggled with some problem.

Third, my gratitude also goes to my parents and grandparents. Thank you for educating me since childhood and encouraging me to explore the unknowns. You have taught me to be confident, hard-working, and gave me the harbor that I can rely on.

Next, I would like to thank my wife Xin He. Thank you for your support and company. Thank you for your understanding of my interest in academia, and supporting me as I continue my career.
Finally, I would like to thank all my colleagues and friends who have helped me and enriched my life in my doctoral program.
Definitions

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEM</td>
<td>Boundary Element Method</td>
</tr>
<tr>
<td>CCC</td>
<td>Complex Conjugate Control</td>
</tr>
<tr>
<td>CWR</td>
<td>Capture Width Ratio</td>
</tr>
<tr>
<td>DDC</td>
<td>Discrete Displacement Cylinder</td>
</tr>
<tr>
<td>DoF</td>
<td>Degrees of Freedom</td>
</tr>
<tr>
<td>FK</td>
<td>Froude-Krylov</td>
</tr>
<tr>
<td>FSA</td>
<td>Force Shifting Algorithm</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>JONSWAP</td>
<td>Joint North Sea Wave Observation Project</td>
</tr>
<tr>
<td>LQG</td>
<td>Linear Quadratic Gaussian</td>
</tr>
<tr>
<td>MPC</td>
<td>Model Predictive Control</td>
</tr>
<tr>
<td>NLP</td>
<td>Non Linear Programming</td>
</tr>
<tr>
<td>OWC</td>
<td>Oscillating Water Column</td>
</tr>
<tr>
<td>PD</td>
<td>Proportional-derivative control</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional Integral Derivative</td>
</tr>
<tr>
<td>PM</td>
<td>Pierson-Moskowitz</td>
</tr>
<tr>
<td>PMP</td>
<td>Pontryagins Minimum Principle</td>
</tr>
<tr>
<td>PS</td>
<td>Pseudospectral</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PTO</td>
<td>Power Take Off</td>
</tr>
<tr>
<td>RL</td>
<td>Resistive Loading control</td>
</tr>
<tr>
<td>SA</td>
<td>Singular Arc</td>
</tr>
<tr>
<td>SB</td>
<td>Shape-based</td>
</tr>
<tr>
<td>SMC</td>
<td>Simple Model Control</td>
</tr>
<tr>
<td>SPMG</td>
<td>Synchronous Permanent Magnet Generator</td>
</tr>
<tr>
<td>SUMT</td>
<td>Sequential Unconstrained Minimization Techniques</td>
</tr>
<tr>
<td>WEC</td>
<td>Wave Energy Converter</td>
</tr>
</tbody>
</table>
Nomenclature

The variables and parameters used in this dissertation are summarized in the Nomenclature. The scalars, vectors, and matrices are denoted as a different format. Additionally, the superscription c denotes the variables and parameters of the coupled (surge-pitch) motion, the h denotes the variables and parameters of the heave motion.

Nomenclature Chapter 1 - 5

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Frequency dependent added mass (kg)</td>
</tr>
<tr>
<td>A_1</td>
<td>Transformed state penalty matrix</td>
</tr>
<tr>
<td>A_e, B_e, C_e</td>
<td>Excitation force matrices</td>
</tr>
<tr>
<td>Apz</td>
<td>Coupling force between different masses (N)</td>
</tr>
<tr>
<td>A_r, B_r, C_r, D_r</td>
<td>Radiation force matrices</td>
</tr>
<tr>
<td>A_s</td>
<td>Surface area (m2)</td>
</tr>
<tr>
<td>B</td>
<td>Frequency dependent radiation damping (N.s.m$^{-1}$)</td>
</tr>
<tr>
<td>B_1</td>
<td>Transformed control penalty matrix of the coupled motion</td>
</tr>
<tr>
<td>B_m</td>
<td>Damping coefficient of the resistive loading control (N.s.m$^{-1}$)</td>
</tr>
<tr>
<td>B_v</td>
<td>Viscous damping coefficient (N.s.m$^{-1}$)</td>
</tr>
<tr>
<td>c</td>
<td>Artificial damping coefficient (N.s.m$^{-1}$)</td>
</tr>
<tr>
<td>c_d</td>
<td>Vertical distance from the COG to sensor’s cell (m)</td>
</tr>
<tr>
<td>c_{lin}</td>
<td>Linearized radiation damping coefficient (N.s.m$^{-1}$)</td>
</tr>
</tbody>
</table>
\(C_g \) Consensus gain

\(C \) External Force matrix of the coupled motion

\(D \) Distance between the floater and the water surface (m)

\(D_{\text{max}} \) Maximum allowable displacement (m)

\(D_\phi \) Derivative matrix

\(D_{\phi}^{-1} \) Integration matrix

\(E \) Extracted wave energy

\(F \) System matrix

\(\mathcal{F} \) System Jacobian matrix

\(F_1 \) Transformed system matrix

\(F_d \) Diffraction force (N)

\(F_e \) Excitation force (N)

\(F_{ew} \) Excitation force coefficient (N.m\(^{-1}\))

\(F_{FK} \) Froude-Krylov force (N)

\(F_r \) Radiation force (N)

\(F_s \) Hydrostatic force (N)

\(F_T \) Total wave force without infinity mass (N)

\(F_{Ts} \) Surface integration of the total wave force (N)

\(\tilde{F}_T \) Pseudo measurement of \(F_T \) (N)

\(\tilde{F}_{Ts} \) Measurement of \(F_{Ts} \) (N)

\(g \) Gravitational acceleration on earth (m.s\(^{-2}\))
$g(x)$ Inequality constraint function

G Weight matrix of the process noise

G_u Control force weight matrix

h Water depth (m)

h_{cog} Height of the center of gravity to the bottom of the cylinder (m)

h_{eq} Vertical distance between the floater and the artificial mass (m)

h_{ex} Excitation impulse response function

h_r Radiation impulse response function

H Hamiltonian

H_m Output Jacobian matrix

H_p Length of prediction horizon (s)

H_s Significant wave height (m)

J Objective function

J_r Moment of inertia of the rigid body (kg.m2)

J_{∞} Added moment of inertia at infinity frequency (kg.m2)

k Artificial stiffness coefficient (N.m$^{-1}$)

\hat{k} Unit directional vector along z direction

k State of the auxiliary equation

K Hydrostatic stiffness coefficient (N.m$^{-1}$)

K_{d} Derivative control gain

K_g Kalman gain
\(K_{moor}\) Mooring stiffness (N.m\(^{-1}\))

\(K_{\text{res}}\) Hydrostatic restoring stiffness coefficient (N.m.rad\(^{-1}\))

\(K_p\) Proportional control gain

\(L\) Horizontal distance between the floater and the artificial mass (m)

\(m\) Total mass (kg)

\(m_r\) Rigid body mass (kg)

\(m_\infty\) Added mass at infinity frequency (kg)

\(\vec{n}\) Normal direction of the surface

\(N_{cw}\) Integer number of control updates

\(N_f\) Number of Fourier terms

\(N_H\) Integer length of prediction horizon

\(p\) Pressure measured by pressure sensors (Pa)

\(P_0\) Power produced by individual floater (W)

\(P_{\text{array}}\) Total power produced by the WEC array (W)

\(P\) Estimation error covariance matrix

\(q\) Interaction factor

\(Q\) State penalty matrix

\(Q_p\) Process noise covariance matrix

\(r\) Position of the floater in the WEC array (m)

\(r_g\) Weight of external penalty function

\(R_c\) Radius of a cylinder (m)
\textbf{R} Control penalty matrix

\(R_s \) Radius of a sphere (m)

\(S(\omega) \) Wave spectrum density \((m^2.s.rad^{-1})\)

\textbf{S} State of the Riccati equation

\(T_{end} \) Total simulation time (s)

\(u \) Control force (N)

\(u_{max} \) Maximum control capacity (N)

\(\textbf{U}_1 \) Transformed control force

\(\mathbf{v} \) Measurement noise

\(v_e \) Velocity of the excitation force \((m.s^{-1})\)

\(v_h \) Heave velocity of the floater \((m.s^{-1})\)

\(v_p \) Pitch velocity of the floater \((\text{rad.s}^{-1})\)

\(v_s \) Surge velocity of the floater \((m.s^{-1})\)

\(V \) Volume of the displaced water \((m^3)\)

\textbf{W} Weight of objective matrix

\(x \) Surge displacement (m)

\(x_{CB} \) \textit{x} coordinate of the center of buoyancy (m)

\(z \) Heave displacement (m)

\(\tilde{z} \) Measurement of the heave displacement (m)

\(z_{CB} \) \textit{z} coordinate of the center of buoyancy (m)

\(z_{max} \) Maximum allowable heave displacement (m)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>Initial angle between the connector/arm and the horizontal axis (rad)</td>
</tr>
<tr>
<td>β</td>
<td>Wave direction ($^\circ$)</td>
</tr>
<tr>
<td>ϵ</td>
<td>Instantaneous change of the angle α (rad)</td>
</tr>
<tr>
<td>$\eta(\omega)$</td>
<td>Wave elevation (m)</td>
</tr>
<tr>
<td>θ</td>
<td>Pitch rotation (rad)</td>
</tr>
<tr>
<td>ρ</td>
<td>Density of water (kg.m$^{-3}$)</td>
</tr>
<tr>
<td>τ_e</td>
<td>Excitation torque (N.m)</td>
</tr>
<tr>
<td>τ_{ew}</td>
<td>Excitation torque coefficient (N)</td>
</tr>
<tr>
<td>τ_G</td>
<td>Torque due to the gravity (N.m)</td>
</tr>
<tr>
<td>τ_{PTO}</td>
<td>Power take off torque (N.m)</td>
</tr>
<tr>
<td>τ_r</td>
<td>Radiation torque (N.m)</td>
</tr>
<tr>
<td>τ_s</td>
<td>Hydrostatic restoring torque (N.m)</td>
</tr>
<tr>
<td>$\phi(\omega)$</td>
<td>Random phase shift (rad)</td>
</tr>
<tr>
<td>$\tilde{\phi}$</td>
<td>Basis function vector</td>
</tr>
<tr>
<td>ϕ</td>
<td>Basis function matrix</td>
</tr>
<tr>
<td>χ</td>
<td>Wave number (rad.m$^{-1}$)</td>
</tr>
<tr>
<td>$\Psi(\hat{x})$</td>
<td>Disagreement</td>
</tr>
<tr>
<td>ω_0</td>
<td>Fundamental frequency (rad.s$^{-1}$)</td>
</tr>
<tr>
<td>ω_n</td>
<td>nth wave frequency (rad.s$^{-1}$)</td>
</tr>
<tr>
<td>ω_p</td>
<td>Peak frequency of the wave (rad.s$^{-1}$)</td>
</tr>
</tbody>
</table>
Nomenclature Chapter 6

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{hose}</td>
<td>Area of the hose (m²)</td>
</tr>
<tr>
<td>A_v</td>
<td>Instantaneous opening area of the valve (m²)</td>
</tr>
<tr>
<td>A_0</td>
<td>Maximum opening area of the valve (m²)</td>
</tr>
<tr>
<td>A_1</td>
<td>Piston area of chamber 1 (m²)</td>
</tr>
<tr>
<td>A_2</td>
<td>Piston area of chamber 2 (m²)</td>
</tr>
<tr>
<td>A_3</td>
<td>Piston area of chamber 3 (m²)</td>
</tr>
<tr>
<td>A_4</td>
<td>Piston area of chamber 4 (m²)</td>
</tr>
<tr>
<td>C_d</td>
<td>Valve discharge coefficient</td>
</tr>
<tr>
<td>C_{Q1}</td>
<td>Flow loss coefficient of the hydraulic motor</td>
</tr>
<tr>
<td></td>
<td>($m^3.s^{-1}.Pa^{-1}$)</td>
</tr>
<tr>
<td>C_v</td>
<td>Gas specific heat at constant volume (J.(kg.K)^{-1})</td>
</tr>
<tr>
<td>d_{hose}</td>
<td>Diameter of the hose (m)</td>
</tr>
<tr>
<td>D_c</td>
<td>Characteristic dimension of the buoy (m)</td>
</tr>
<tr>
<td>D_M</td>
<td>Total hydraulic motor displacement (m³)</td>
</tr>
<tr>
<td>D_w</td>
<td>Hydraulic motor displacement (m³)</td>
</tr>
<tr>
<td>F_c</td>
<td>Force applied by the cylinder (N)</td>
</tr>
<tr>
<td>F_{fric}</td>
<td>Friction force of the cylinder (N)</td>
</tr>
<tr>
<td>F_{ref}</td>
<td>Reference control force (N)</td>
</tr>
<tr>
<td>k_{gen}</td>
<td>Number of generators</td>
</tr>
<tr>
<td>l_{hose}</td>
<td>Length of the hose (m)</td>
</tr>
<tr>
<td>p_{acc}</td>
<td>Pressure in the accumulator (Pa)</td>
</tr>
</tbody>
</table>

xxxi
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{\text{avg,exp}}$</td>
<td>Expected average power output (W)</td>
</tr>
<tr>
<td>p_{A1}</td>
<td>Pressure in chamber 1 (Pa)</td>
</tr>
<tr>
<td>p_{A2}</td>
<td>Pressure in chamber 2 (Pa)</td>
</tr>
<tr>
<td>p_{A3}</td>
<td>Pressure in chamber 3 (Pa)</td>
</tr>
<tr>
<td>p_{A4}</td>
<td>Pressure in chamber 4 (Pa)</td>
</tr>
<tr>
<td>p_f</td>
<td>Pressure drop across the hose (Pa)</td>
</tr>
<tr>
<td>p_{H}</td>
<td>Pressure of the high pressure accumulator (Pa)</td>
</tr>
<tr>
<td>p_{L}</td>
<td>Pressure of the low pressure accumulator (Pa)</td>
</tr>
<tr>
<td>p_ζ</td>
<td>Pressure drop of the fitting (Pa)</td>
</tr>
<tr>
<td>p_λ</td>
<td>Pressure drop across a straight pipe/hose (Pa)</td>
</tr>
<tr>
<td>P_{actuator}</td>
<td>Actuator power extraction (W)</td>
</tr>
<tr>
<td>P_{ave}</td>
<td>Average extracted power (W)</td>
</tr>
<tr>
<td>P_{gen}</td>
<td>Generator power output (W)</td>
</tr>
<tr>
<td>P_M</td>
<td>Motor power output (W)</td>
</tr>
<tr>
<td>P_w</td>
<td>Wave energy transport (W.m$^{-1}$)</td>
</tr>
<tr>
<td>Q_{acc}</td>
<td>Inlet flow to the accumulator (m3.s$^{-1}$)</td>
</tr>
<tr>
<td>Q_{A1}</td>
<td>Inlet flow to chamber 1 (m3.s$^{-1}$)</td>
</tr>
<tr>
<td>Q_{A2}</td>
<td>Inlet flow to chamber 2 (m3.s$^{-1}$)</td>
</tr>
<tr>
<td>Q_{A3}</td>
<td>Inlet flow to chamber 3 (m3.s$^{-1}$)</td>
</tr>
<tr>
<td>Q_{A4}</td>
<td>Inlet flow to chamber 4 (m3.s$^{-1}$)</td>
</tr>
<tr>
<td>Q_{in}</td>
<td>Inlet flow of the hose (m3.s$^{-1}$)</td>
</tr>
</tbody>
</table>
\(Q_{out} \) Outlet flow of the hose (m\(^3\).s\(^{-1}\))
\(R_{gas} \) Ideal gas constant (kg.m\(^2\))
\(Re \) Reynold’s number
\(t_v \) Valve opening and closing time (s)
\(T_{gas} \) Gas temperature (K)
\(T_w \) Hydraulic accumulator wall temperature (K)
\(u_v \) Valve opening and closing signal
\(v_c \) Instantaneous piston velocity (m.s\(^{-1}\))
\(v_{out} \) Velocity of the outlet flow of the hose (m.s\(^{-1}\))
\(V_{a0} \) Accumulator size (m\(^3\))
\(V_{ext} \) Accumulator external volume of the pipeline (m\(^3\))
\(V_g \) Accumulator gas volume (m\(^3\))
\(V_{0,A1} \) External volume of the connecting hose to chamber 1 (m\(^3\))
\(V_{0,A2} \) External volume of the connecting hose to chamber 2 (m\(^3\))
\(V_{0,A3} \) External volume of the connecting hose to chamber 3 (m\(^3\))
\(V_{0,A4} \) External volume of the connecting hose to chamber 4 (m\(^3\))
\(x_c \) Instantaneous stroke of the cylinder (m)
\(x_{c,max} \) Maximum stroke of the cylinder (m)
\(\beta(p) \) Effective bulk modulus of the fluid (Pa)
\(\zeta \) Fitting loss coefficient
\(\eta_c \) Cylinder efficiency
η_{out} Electricity generation efficiency

ν Kinematic viscosity of the fluid (m2.s$^{-1}$)

τ_a Accumulator thermal time constant (s)

ψ Motor speed control coefficient

ω_M Angular velocity of the hydraulic motor (rad.s$^{-1}$)
Abstract

In this dissertation, we address the optimal control of the Wave Energy Converters. The Wave Energy Converters introduced in this study can be categorized as the single body heaving device, the single body pitching device, the single body three degrees of freedoms device, and the Wave Energy Converters array. Different types of Wave Energy Converters are modeled mathematically, and different optimal controls are developed for them. The objective of the optimal controllers is to maximize the energy extraction with and without the motion and control constraints. The development of the unconstrained control is first introduced which includes the implementation of the Singular Arc control and the Simple Model Control. The constrained optimal control is then introduced which contains the Shape-based approach, Pseudospectral control, the Linear Quadratic Gaussian optimal control, and the Collective Control.

The wave estimation is also discussed since it is required by the controllers. Several estimators are implemented, such as the Kalman Filter, the Extended Kalman Filter, and the Kalman-Consensus Filter. They can be applied for estimating the system states and the wave excitation force/wave excitation force field. Last, the controllers are validated with the Discrete Displacement Hydraulic system which is the Power Take-off unit of the Wave Energy Converter.
The simulation results show that the proposed optimal controllers can maximize the energy absorption when the wave estimation is accurate. The performance of the unconstrained controllers is close to the theoretical maximum (Complex Conjugate Control). Furthermore, the energy extraction is optimized and the constraints are satisfied by applying the constrained controllers. However, when the proposed controllers are further validated with the hydraulic system, they extract less energy than a simple Proportional-derivative control. This indicates the dynamics of the Power take-off unit needs to be considered in designing the control to obtain the robustness.
Chapter 1

Introduction

1.1 Overview

Wave energy is one of the reliable renewable energy sources such as solar and wind energy. Different wave energy conversion concepts are proposed based on the different mechanism of energy absorbing, different water depth and different locations of the device (shoreline, near-shore, offshore) [10]. There are three main wave energy extraction concepts [10]: oscillating water column devices [11], oscillating body systems [12], and overtopping converters. In details, the single-body heaving buoys, two-body heaving systems, fully submerged heaving systems, and pitching devices can
be considered as the oscillating body systems. In a typical heaving buoy (point absorber) system, the energy extraction results from the oscillating movement of a single body reacting against a fixed frame of reference (the sea bottom or a bottom-fixed structure). In one typical configuration of these Wave Energy Converters (WECs), hydraulic cylinders are attached to the floating body. When the float moves due to heave the hydraulic cylinders drive hydraulic motors which in turn drive a generator [13]. This type of WECs extracts the wave heave energy. There are other types of WECs that extract surge energy [14]. Moreover, there are types of WECs extract wave energy from the pitch motion [15], for instance, the WaveStar buoy. The mechanisms that translate the motion of oscillating bodies in water into useful electrical energy are usually called Power take-off (PTO) systems.

1.2 Optimal control of single-degree-of-freedom WEC

The research of the wave energy conversion and optimal control starts from the middle of the 1970s [16] [17]. For the Single-Degree-Of-Freedom (S-DoF) WEC, the classical work about wave energy is to construct the wave model as a spring-mass-damper system.

\[m\ddot{x} + c_{12}\dot{x} + Kx = F_e + u \]

(1.1)
There are many control strategies that already have been developed \[18\] \[19\] \[20\] for the single degree of freedom WEC. Reference \[21\] proposes a linear quadratic gaussian controller. The model predictive control method is addressed in reference \[22\]. In reference \[23\], pseudo-spectral (PS) method has been applied. In reference \[5\], a shape based method is developed. Reference \[24\] develops a multi-resonant feedback controller which is the time domain implementation of the Complex Conjugate Control \[25\]. In \[26\], the dynamic programming has was for maximizing energy capture. The optimal control can be analyzed using the Pontryagin minimum principle in time domain \[27\], or using resonant conditions in the frequency domain. The objective of the control is usually to maximize the extracted energy. The optimal solution computed within the context of the optimal control theory was developed in \[2\] for a S-DoF WEC.

Consider handling the constraints of the wave energy conversion problem specifically, there are several engineering implemented controllers applies discontinuous control for the wave energy conversion. The latching control is one example of a discontinuous control. Solving a continuous system with discontinuous control is known as the discontinuous system control \[28\]. In general, the discontinuity can happen in either the system or the control. Several controllers are developed which include the Bang-Bang control \[29\], the on-off control \[30\], the feedback controller \[31\] and the sliding mode control \[32\]. Although some of those controllers are not developed on a WEC problem, it is inspiring for exploring the advantage of the discontinuous control for
the WEC continuous system.

1.3 Optimal control of single body multi-degree-of-freedom WEC

Several references have motivated the use of a multiple degrees-of-freedom (multi-DoF) WEC as opposed to a single-mode WEC. Evans [33] extended the results of two-dimensional WECs to bodies in channels and accounts for the body orientation on the energy harvesting. In fact, reference [34] points out that the power that can be extracted from a mode that is antisymmetric to the wave (such as pitch and surge) is twice as much as that can be extracted from a mode that is symmetric (such as heave). One of the references that recently studied the pitch-surge power conversion is Reference [35]. Yavuz [35] models the pitch-surge motions assuming no heave motion; hence, there is no effect from the heave motion on the pitch-surge power conversion.

The mathematical model used in reference [35] for the motions in these 2-DoF WECs is coupled through mass and damping only; there is no coupling in the stiffness. However, it has been observed that floating structures can be subject to parametric instability arising from variations of the pitch restoring coefficient [36]. The reference describes an experimental heaving buoy for which the parametric excitation causes the pitch motion to grow resulting in instability. A harmonic balance approach is
implemented to cancel this parametric resonance and results of tank experiments are presented. Reference [37] investigated experimentally the performance of a surge-heave-pitch WEC for the Edinburgh Duck, on a rig that allowed the duck to move in the 3-DoF. The controller in this experiment optimized the spring and damping coefficients in each of the three modes, in addition to the product of the nod angle and velocity, which is a nonlinear term that changes with the change of linear damping due to the duck rotation.

As will be detailed in this dissertation, the equations of motion for a 3-DoF WEC have a second-order term that causes the heave motion to parametrically excite the pitch mode; and the pitch and surge motions are coupled. For relatively large heave motions, which would be needed for higher energy harvesting, it is not possible to neglect this parametric excitation term. Rather, the controller should be designed to leverage this nonlinear phenomenon for optimum energy harvesting.

1.4 Optimal control of the WEC array

1.4.1 The WEC array modeling and layout optimization

The study of the dynamics of systems of interacting bodies also started in the 1970s' when people start to explore the wave energy conversion. Reference [38] applies the
linear wave theory to solve the interaction between multiple bodies which can be considered as the first investigation of the WEC array. The interaction factor q is defined in terms of the power generated by the WEC array (P_{array}) and the power generated by the isolated buoys (P_0).

$$q = \frac{P_{\text{array}}}{NP_0}$$

Later, as shown in references [39, 40], the configuration of the WEC array can significantly improve the power extraction. The subsequent study of the hydrodynamics of the WEC array is presented in references [41, 42, 43, 44]. Due to the complexity of solving the WEC array problem analytically, the semi-analytical approach is developed. There are four main semi-analytical approaches: the point absorber method [38, 45], the plane wave method [46, 47], the multiple scattering method [42, 48], the direct matrix method [49, 50, 51, 52]. Based on the research conducted on the hydrodynamics of the WEC array, the layout optimization is explored in terms of the energy extraction. There are three main approaches for the layout optimization. The first one is the selected optimization [53, 53, 54, 55, 56] which studies the performance of particular configuration of the WEC array. The second approach optimizes the spacing of the buoys by applying the local optimization method [57]. The last approach applies the global optimization to optimize the WEC array layout for maximizing the energy absorption [51, 58, 59].
1.4.2 The optimal control of the WEC array

Due to the complexity of the hydrodynamics of the WEC array, several references \[56, 60, 61, 62, 63\] apply the BEM resource to evaluate the performance of the controller which only applies a simple control law. Several controllers have been developed recently thanks to the numerical modeling of the WEC array and the improved capacity of the computer. The coordinated control (global control) is developed in reference \[64\]. The performance of the controller is compared with the independent control where a significant improvement is found. The global control is also studied in reference \[65\] which concludes we can obtain constructive interaction between buoys with proper control. Reference \[66\] introduces the decentralized model predictive control for a WEC array which has the triangular configuration. Reference \[67\] also studies the model predictive control by neglecting the cross interaction between floaters in the array. The control informed optimization is proposed in \[68\] for the array layout optimization. The reference concludes a 40% improvement of the energy extraction can be achieved with the knowledge of the control applied in the optimization.
1.5 The Power take-off units

1.5.1 General Review

Different classes of PTO units are reviewed in this section. The first research on the PTO unit is presented in reference [69] which tests the phase latching control with the hydraulic PTO experimentally. Later, the first theoretical model of the hydraulic system is developed in reference [70]. Although references [71, 72] points out that the hydraulic system is most suitable for wave energy conversion, different types of PTO units has their different advantages and disadvantages. There are four main categories of the PTO units: the air turbine, the water turbine, the direct drive system and the hydraulic system [73].

1.5.2 Air Turbines

The air turbine is usually applied in the oscillating water columns. There are three main categories of air turbines: the Wells turbine, the Impulse turbine, and the Denniss-Auld turbine. The Wells turbine is the most popular turbine due to its simplicity and economy which is most studied among different turbines [74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84]. It is later improved in terms of the efficiency, starting
characteristic and noise level \[85, 86, 87, 88, 89, 90, 91\]. The impulse turbine is studied in references \[92, 93, 94\] which is found to have a better performance than the Wells Turbine. Reference \[85, 95, 96\] study the other types of air turbines.

1.5.3 Hydro Turbines

The hydro turbine is applied for power generation for many decades. Although the hydro turbines have no water shortage problem, do not require a return pipe, and no damage to the environment \[74\], the energy extraction with hydro turbines require a sufficient head.

1.5.4 Direct Drive system

The direct drive system is also popular for the point absorber WEC. The direct drive system can also be categorized as the direct mechanical drive system and the direct electrical drive system. For the direct mechanical drive system, reference \[97\] introduces a direct driven rotary wave energy point absorber. Later reference \[98\] points out that the direct drive rotary system is more suitable for a high power level system, and the synchronous permanent magnetic linear generator (SPMG) is more suitable for a low power level system. A suboptimal controller is developed for a
References [100, 101, 102] present the direct electrical drive PTO unit which has no requirement of the intermediate mechanical devices by combining the linear electrical generator with the WEC directly. The direct electrical drive PTO is found to have a good performance in terms of the energy conversion efficiency of a surge WEC in reference [103]. Additionally, as shown in reference [104], the global energy conversion efficiency can be improved by considering the electrical losses in designing the control. References [105, 106] develop the passive tuning control and the reactive control respectively with the direct drive system to maximize the energy extraction.

1.5.5 The hydraulic system

This section presents a review of hydraulic PTO units. Figure 1.1 is a general layout for a typical hydraulic PTO. The hydraulic system is composed of the actuator, the valve, the accumulators and the motor. The motion of the buoy will compress/decompress the chamber of the actuator and transfer the wave power to the hydraulic system. All the hydraulic systems can be categorized into three main groups: the constant-pressure, the variable-pressure, and the constant-variable pressure hydraulic systems [107, 108].
1.5.5.1 Constant pressure configuration

The first configuration is constructed with a low-pressure (LP) accumulator and a high-pressure (HP) accumulator. This type of hydraulic system can be achieved with a simple mechanism, and the control level is low.

![Figure 1.1: General layout for a hydraulic power take-off (PTO).]

The typical configuration of a constant-pressure hydraulic system is presented in detail in [109, 110], using phase control. Control of the constant-pressure hydraulic system is achieved by implementing auxiliary accumulators in [111]. The latching and declutching controls are demonstrated in [112] using a constant-pressure hydraulic system. Additionally, a declutching control is presented in [113] for controlling a hydraulic PTO by switching on and off using a by-pass valve. The method is also tested with the SEAREV WEC with an even higher energy absorption. A detailed image of a single acting hydraulic PTO system with the phase control is presented in [70, 114].
The hydraulic system implemented in SEAREV is presented in [115]. In [116], a novel model of the hydraulic PTO of the Pelamis WEC is developed, with the ability to apply reactive power for impedance matching. In [117], a double-action WEC with an inverse pendulum is proposed. The authors of [117] report that a double-action PTO can supply the output power in each wave period without large instantaneous fluctuating power. A double-acting hydraulic cylinder array is developed in [118], where the model is found to be adaptive to different sea states to achieve higher energy extraction. The authors of [119] present the optimization of a hydraulic PTO of a WEC for an irregular wave where optimal damping is achieved by altering the displacement of the variable-displacement hydraulic motor. The authors of [120] present the design and testing of a hybrid WEC that obtains higher energy absorption than a single oscillating body with a hydraulic PTO. A discrete-displacement hydraulic PTO system is studied in [15] for the Wavestar WEC. An energy conversion efficiency of 70% is achieved. Additionally, adjustment of the force applied by the PTO is accomplished through implementing multiple chambers.

1.5.5.2 Variable pressure

A variable-pressure hydraulic system is suggested in [121, 122, 123]. In this situation, the piston is connected directly to a hydraulic motor. This system can achieve better
controllability, but the fluctuation of the output power is not negligible. Two hydraulic PTO systems are compared in [124], where constant-pressure hydraulic PTO and variable-pressure hydraulic PTO systems are compared. It was shown that a variable-pressure hydraulic PTO system would have a higher efficiency. The variable-pressure approach was also investigated in [125], where the hydraulic motor is used in order to remove the accumulator and control the output using the generator directly. A comparison between a constant-pressure system and a variable-pressure system was conducted in [126]; validation was conducted using AMEsim and demonstrated a good agreement. Power smoothing was achieved in [127] by means of energy storage.

1.5.5.3 Variable - Constant pressure

The variable–constant pressure hydraulic system is constructed with two parts: the variable pressure part and the constant pressure part. The variable pressure part is accomplished by a hydraulic transformer. A generic oil hydraulic PTO system, applied to different WECs, is introduced in [128]. The authors of [129] developed a PID controller, with the reactive power supplied by the hydraulic transformer (working as a pump). A suboptimal control is suggested in [129] for practical implementation in terms of the efficiency of the PTO.
Chapter 2

Modeling of the Wave Energy Converters

Energy can be extracted from the wave based on the interaction between the absorbers and the wave. Accordingly, it is essential to describe the interaction mathematically for the controller design. The model of the WEC varies for different configurations which include the freedom of motion, nonlinear effect, interaction with other absorbers and so on. Hence this chapter introduces the modeling of the WEC and focuses on discussing several configurations in details. The model of the ocean wave is first introduced in Section 2.1. Section 2.2 introduces the model of a single-degree-of-freedom heaving WEC which is the most classical configuration in the research of WEC. The model of the WaveStar, a pitching WEC, is developed in Section 2.3.
Further, the model of a three-degree-of-freedom WEC which includes the surge, heave, and pitch motion is discussed in Section 2.4. The following section (Section 2.5) extend the work to the study of the model of the WEC array.

2.1 Wave Model

Ocean waves can be viewed as the irregular wave. The irregular wave is the superposition of multiple regular waves with different amplitude, frequency and random phase shift. To describe the irregular wave, the wave spectrum is applied. There are several commonly used wave spectrum, for instance, the Joint North Sea Wave Observation Project (JONSWAP) spectrum, the Pierson-Moskowitz (PM) Spectrum, the Bretschneider spectrum and so on. In this dissertation, the Bretschneider spectrum is mostly applied. The spectral density of the Bretschneider spectrum can be expressed as:

\[
S(\omega) = \frac{5}{16} \frac{\omega_p^4}{\omega^5} H_s^2 e^{-5\omega_p^2/(4\omega^4)}
\]

(2.1)

where \(\omega_p\) is the peak frequency, and \(H_s\) is the significant height of the wave. Those two quantities are the essential parameters of the ocean wave spectrum. Figure 2.1 presents the frequency dependent wave elevation of a Bretschneider wave which has a significant height of 1m and a peak period of 9s.

The reason to select the Bretschneider spectrum is that it is a more conservative choice
by considering the power absorption estimation. The JONSWAP spectrum, which is frequently applied, has a narrow frequency band. However, the Bretschneider spectrum has a wider frequency band which makes the energy extraction more difficult. Consequently, the Bretschneider spectrum is applied to prevent the overestimation of the energy extraction.

2.2 Single Body Heaving Wave Energy Converter

The most studied WEC model is the single body heaving WEC. This section also introduces the modeling of a heaving point absorber. The geometry of the WEC is depicted in Figure 2.2.

The x denotes the surge direction, z denotes the heave direction. The dynamics of
the wave and buoy interaction can be described as:

\[m_r \ddot{z} = F_e + F_r + F_s + u \]

(2.2)

where in the equation \(m_r \) represents the rigid body mass of the point absorber. \(F_e \) denotes the wave excitation force which comes from the incoming wave. The excitation force is the summation of the Froude-Krylov (FK) force and the diffraction force \((F_e = F_{FK} + F_d) \). It can be precisely calculated by the surface integration of the pressure on the wet surface. \(F_r \) represents the radiation force which is generated by the radiated wave. \(F_s \) is the hydrostatic restoring force which results from the gravity and buoyancy. \(u \) is the control force. The equation can be further expanded which follows the Cummin’s equation [130]:

\[m \ddot{z} = F_e + u - Kz - \int_0^t h_r(\tau) \dot{z}(t-\tau) d\tau \]

(2.3)

where in the equation \(m = m_r + m_\infty \) indicates the total mass which is the summation of the rigid body mass and the added mass at the infinity frequency. \(K \) is the
hydrostatic stiffness coefficient. h_r is the radiation impulse response function. The energy extracted over the time interval $[0, T]$ from the wave energy converter can be computed as:

$$E = - \int_0^T \{u(t)\dot{z}(t)\} dt \quad (2.4)$$

2.2.1 The Wave Excitation Force

The excitation force is the force from the incoming wave acting on the floater which can be expressed by the summation of independent wave components:

$$F_e = \sum_{n=1}^{N} \mathcal{R}(F_{ew}(\omega_n)\eta(\omega_n)e^{i(-\omega_n t + \phi(\omega_n))}) \quad (2.5)$$

where F_{ew} is the frequency dependent excitation force coefficients which can be computed by the Boundary Elements Method (BEM) softwares. For instance, WAMIT [131], Nemoh [132], Ansys AQWA [133]. $\eta(\omega_n)$ presents the frequency dependent wave elevation which is dependent on different wave spectrum. $\phi(\omega_n)$ is the random phase shift in the time domain of particular frequency ω_n. The excitation force also can be presented by the convolution:

$$F_e = \int_{-\infty}^{\infty} h_{ex}(t - \tau)\eta(\tau)d\tau \quad (2.6)$$
where \(h_{ex}(t) \) is the excitation impulse response function, and \(\eta(t) \) is the time domain wave elevation.

2.2.1.1 The Wave Excitation Force: Pressure Accumulation

To precisely compute the wave excitation force, the pressure accumulation can be applied. As mentioned before, the excitation force has two components: the Froude Krylov (FK) force and the diffraction force. However, for low frequencies, the diffraction forces are small compared to the Froude Krylov force \[25\]. In this section we will neglect the diffraction forces and hence the excitation force refers to the Froude Krylov force. The excitation force is modeled as the integration of the excitation pressure over the wet buoy surface. The excitation pressure distribution on the buoy surface is computed using the potential flow theory as follows. The surface is divided into a grid of cells, each cell is assumed to have uniform pressure over its area. Each cell is identified by two indices \(j \) and \(k \); the index \(j \) determines the vertical position of a cell and \(k \) denotes the surface number in a certain vertical position \(j \). The excitation force is then computed as \[134\]:

\[
F_e = \sum_j \sum_k A_{s,jk} \bar{n}_{jk} \hat{k} \sum_{n=1}^{N} \left(\rho \eta(\omega_n) \frac{\cosh(\chi_n(z + z_{j,k} + h))}{\cosh(\chi_n h)} \cos(\chi_n x_{j,k} - w_n t + \phi_n) \right)
\]

(2.7)
where $A_{s,jk}$ is the surface area of the cell $\#jk$. η_n is the wave amplitude at frequency ω_n, χ_n is the wave number, $\chi_n = 2\pi / \lambda_n$ where λ_n is the wavelength associated with the frequency ω_n. The vector \vec{n}_{jk} is the normal to the surface $\#jk$, \hat{k} is the downward unit vector which is $[0; 0; -1]$, h is the mean water level height, $x_{j,k}$ and $z_{j,k}$ denotes the coordinate of the cell $\#jk$. χ_n has to satisfy the dispersion relation:

$$\omega_n^2 = g\chi_n \tanh(h\chi_n)$$ \hspace{1cm} (2.8)

2.2.2 The Hydrostatic Restoring Force

The hydrostatic restoring force is a spring-like force which is composed by the gravity and buoyancy. When the buoy is partially submerged in the water, the hydrostatic force can be expressed as:

$$F_s = -Kz$$ \hspace{1cm} (2.9)

where K is the hydrostatic stiffness coefficient. Normally, for a heaving cylindrical WEC, the hydrostatic coefficient can be approximated as:

$$K = \rho g \pi R_c^2$$ \hspace{1cm} (2.10)
where r is the radius of the surface at the bottom of the cylinder. Moreover the hydrostatic force also can be evaluated by the surface integration as:

$$F_s = \sum_j \sum_k A_{s,jk} \bar{n}_{jk} \hat{k}(-\rho g (z + z_{j,k}))$$

(2.11)

2.2.3 The Radiation Force

The radiation force, F_r, is due to the the radiated wave from the moving float. It can be modeled as [130]:

$$F_r(t) = -m_\infty \ddot{z}(t) - \int_0^t h_r(\tau) \dot{z}(t - \tau) d\tau$$

(2.12)

Instead of evaluating the convolution, a state space model can be applied to simplify the calculation of the radiation force [135]:

$$\dot{x}_r = A_r \bar{x}_r + B_r v$$

$$F_r = C_r \bar{x}_r$$

(2.13)

where v is the heaving velocity of the WEC, \bar{x}_r is the radiation state vector. The A_r, B_r and C_r are the radiation matrices which can be obtained by approximating the
impulse response function $h_r(t)$ in the Laplace domain $H_r(s)$ as follows:\[H_r(s) = \frac{p_n s^n + p_{n-1} s^{n-1} + \ldots + p_1 s + p_0}{q_m s^m + q_{m-1} s^{m-1} + \ldots + q_1 s + q_0} \]

(2.14)

where $n < m$. The radiation matrices then can be identified based on the transfer function.

2.3 Single Body Pitching Wave Energy Converter

In this section, the dynamic model of the single body pitching WEC is introduced. The pitching WEC is referred to the WaveStar absorber [112]. The floater has a single degree of freedom motion which is the pitch rotation. The geometry of the proposed absorber is depicted in Figure 2.3.
The WEC dynamic model can be described based on linear wave theory by Equa-
tions (2.15) to (2.22):

\[J_r \ddot{\theta} = \tau_e + \tau_s + \tau_r - \tau_G - \tau_{PTO} \]

(2.15)

where \(J_r \) is the moment of inertia of the rigid body. \(\theta \) is the pitch rotation of the floater. \(\tau_e \) is the wave excitation torque acting on the buoy, \(\tau_s \) is the restoring momentum, \(\tau_r \) is the radiation torque, and \(\tau_G \) is the torque caused by the gravity. \(\tau_{PTO} \) is the PTO torque. The equation of motion can be further expanded as:

\[\ddot{\theta} = \frac{1}{J} (\tau_e - \tau_{PTO} - K_{res} \theta - h_r \ast \dot{\theta}) \]

(2.16)

where \(J = J_r + J_\infty \) is the total moment of inertia and \(J_\infty \) is the moment of added mass at infinite frequency, \(K_{res} \) is the coefficient of the hydro-static restoring torque, and \(h_r \) is the radiation impulse response function. In Equation (2.16), the radiation torque is expanded as:

\[\tau_r = -J_\infty \ddot{\theta} - \tilde{\tau}_r \]

(2.17)

\[\tilde{\tau}_r = h_r \ast \dot{\theta} \]

(2.18)

The \(\ast \) operation is the convolution between the impulse response function and the
angular velocity $\dot{\theta}$ which can be approximated by a state space model as:

$$\dot{x}_r = A_r x_r + B_r \dot{\theta}$$ \hspace{1cm} (2.19)$$

$$\tau_r = C_r x_r + D_r \dot{\theta}$$ \hspace{1cm} (2.20)$$

Since the excitation torque can be expressed by the convolution between the impulse response function and the wave elevation ($\tau_e = h_{ex} * \eta$). The convolution can be approximated by a state space model as:

$$\dot{x}_e = A_e x_e + B_e \eta$$ \hspace{1cm} (2.21)$$

$$\tau_e = C_e x_e$$ \hspace{1cm} (2.22)$$

where A_e, B_e, and C_e are the excitation matrices which are identified from the excitation impulse response function. The parameters of the floater are listed in Table 2.1. The viscous damping is not considered in the proposed dynamic model because it is assumed to be negligible based on linear wave theory. In this designed study the extreme wave motion will not be achieved due to the limited capacity of the PTO unit. As a result, the small wave assumption can be held. The frequency response of the proposed WEC dynamic model without control is shown in Figure 2.4.
Figure 2.4: The frequency response of the dynamics of the Wavestar absorber.

Table 2.1
Model parameters for the Wavestar.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>3.8×10^6</td>
<td>kg m2</td>
</tr>
<tr>
<td>K_{res}</td>
<td>14×10^6</td>
<td>Nm/rad</td>
</tr>
</tbody>
</table>

The transfer function $H_r(s)$

$\left(b_0, b_1, ..., b_5 \right)$

$(0.01, 1.44, 62.4, 816, 1310, 144) \times 10^4$

$\left(a_0, a_1, ..., a_5 \right)$

$(0.001, 0.0906, 1.67, 6.31, 13.3, 9.18)$

The transfer function $H_{ex}(s)$

$\left(b_0, b_1 \right)$

$(5.4, 270) \times 10^4$

$\left(a_0, a_1, ..., a_4 \right)$

$(0.036, 0.39, 1.5, 2.6, 1.6)$
Consider a cylindrical buoy has the heave, pitch and surge motion with base radius \(R_c \), and a mass \(m_r \). The geometry of the floater is plotted in Figure 2.5.

![Geometry of a 3-DoF cylindrical Buoy; MWL is the mean water level][1]

where \(d_1 \), \(d_3 \), and \(\theta_5 \) denotes the surge \(x \), heave \(z \) and pitch \(\theta \) motion respectively. \(h_{cog} \) is the height of the center of gravity from the base. \(G \) represents the center of gravity and \(B \) represents the center of buoyancy of the floater. Assuming a body fixed coordinate system located at the buoy’s center of gravity. The pitch restoring moment is:

\[
\tau_s = -\rho g V x_{CB} \quad (2.23)
\]

where \(x_{CB} \) is the x-coordinate of the center of buoyancy, and \(V \) is the submerged
volume which can be computed as:

\[V = \pi R_c^2 \left(h_{cog} + \frac{z}{\cos(\theta)} \right) \]

(2.24)

The coordinates of the center of buoyancy are:

\[x_{CB} = \frac{\sin(\theta) \left(R_c^2 \cos(\theta)^2 + R_c^2 + 4h_{cog}^2 \cos(\theta)^2 + 8h_{cog}z \cos(\theta) + 4z^2 \right)}{8 \cos(\theta) (z + h_{cog} \cos(\theta))} \]

(2.25)

\[z_{CB} = \frac{\left(R_c^2 \cos(\theta)^2 - R_c^2 + 4h_{cog}^2 \cos(\theta)^2 + 8h_{cog}z \cos(\theta) + 4z^2 \right)}{8 (z + h_{cog} \cos(\theta))} \]

(2.26)

The resulting pitch restoring moment is:

\[\tau_s = -\pi \rho g R_c^2 \sin(\theta) \left(h_{cog} + \frac{z}{\cos(\theta)} \right) \frac{\left(R_c^2 \cos(\theta)^2 + R_c^2 + 4h_{cog}^2 \cos(\theta)^2 + 8h_{cog}z \cos(\theta) + 4z^2 \right)}{8 \cos(\theta) (z + h_{cog} \cos(\theta))} \]

(2.27)

Linearizing Eq. (2.27) using Taylor expansion to a first order, we get:

\[\tau_s \approx -\pi \rho g R_c^2 \sin(\theta) \left(h_{cog} + \frac{z}{\cos(\theta)} \right) \frac{\left(R_c^2 + 2h_{cog} \cos(\theta)^2 + 4h_{cog}z \cos(\theta) + 2z^2 \right)}{4} \theta \]

(2.28)

The heave restoring force is:

\[F_s = \rho g \pi R_c^2 \left(\frac{z}{\cos(\theta)} - z_0 \right) \]

\[\approx \rho g \pi R_c^2 \left(z \left(1 + \frac{\theta^2}{2} \right) - z_0 \right) \]

(2.29)
where z_0 is the vertical position of the center of gravity at equilibrium, for $\theta = 0$. The system equations of motion are then:

\[
(m_r + m_{11}^{\infty}) \ddot{x} + m_{15}^{\infty} \ddot{\theta} + B_{v1} \dot{x} + K_{moor} x = F_r^1 + F_e^1 + u_1 \tag{2.30}
\]

\[
(m_r + m_{33}^{\infty}) \ddot{z} + B_{v3} \ddot{z} + \rho g \pi R_c^2 \left(z \left(1 + \frac{\theta^2}{2} \right) - z_0 \right) = F_r^3 + F_e^3 + u_3 \tag{2.31}
\]

\[
(J_r + J_{55}^{\infty}) \ddot{\theta} + J_5^{\infty} \ddot{x} + B_{v5} \dot{\theta} + \frac{\pi \rho g R_c^2}{4} \left(R_c^2 + 2h_{cog}^2 + 4h_{cog} z + 2z^2 \right) \dot{\theta} = F_r^5 + F_e^5 + u_5 \tag{2.32}
\]

The radiation forces can be expressed as:

\[
F_r^1 = -h_{r,11} \ast \dot{x} - h_{r,15} \ast \dot{\theta}
\]

\[
F_r^3 = -h_{r,33} \ast \ddot{z}
\]

\[
F_r^5 = -h_{r,51} \ast \dot{x} - h_{r,55} \ast \dot{\theta}
\]

where $h_{r,ij}$ are the radiation impulse response functions. Eqs. (2.30)–(2.32) are coupled and nonlinear. If we linearize Eq. (2.31), the heave equation becomes linear and decoupled from the surge-pitch equations. If we linearize the surge-pitch equations assuming the higher order terms $z \times \theta$ and $z^2 \times \theta$ are small, we get a coupled system of equations of the form:

\[
\mathbf{m} \ddot{x} + \mathbf{C} \dot{x} + \mathbf{K} x = \vec{F}_e + \vec{F}_r + \vec{u} \tag{2.33}
\]

28
where the excitation force vector $\vec{F}_e = [F^1_e, F^3_e, F^5_e]^T$, the control force vector $\vec{u} = [u_1, u_3, u_5]^T$, the matrix \mathbf{m} is:

$$
\mathbf{m} = \begin{bmatrix}
m_r + m_{11}^\infty & m_{15}^\infty \\
J^{51}_\infty & J_r + J^{55}_\infty
\end{bmatrix}
$$

(2.34)

the matrix \mathbf{C} is:

$$
\mathbf{C} = \begin{bmatrix}
B_{v1} & 0 \\
0 & B_{v5}
\end{bmatrix}
$$

(2.35)

and the matrix \mathbf{K} is:

$$
\mathbf{K} = \begin{bmatrix}
K_{\text{moor}} & 0 \\
0 & K_{\text{res}}
\end{bmatrix}
$$

(2.36)

where K_{moor} is the mooring stiffness in surge direction. K_{res} is a time-varying stiffness in pitch direction which has a constant part and a time varying part: $K_{\text{res}} = K_c + K_p(t)$. The expression for K_c and $K_p(t)$ is:

$$
K_c = \frac{\pi \rho g R_c^2}{4} \left(R_c^2 + 2 h_{cog}^2 \right)
$$

(2.37)

$$
K_p(t) = \pi \rho g R_c^2 h_{cog} z
$$

(2.38)

Thus the pitch-surge system of equations are coupled linear time varying, and the
heave model is an uncoupled linear time invariant equation. The problem is more challenging than S-DoF WECs due to this coupled motion. The heave motion also influences the surge and pitch motion and it is independent of the other two modes itself. A similar problem is found in mechanical vibrations. The excitation from heave motion in coupled motion is called the parametric excitation. For the single degree of freedom, this parametric excitation phenomenon is modeled through Mathieu’s equation. The analysis of the system with parametric exciting starts from the 1990s [137] [138]. Researchers work on the S-DoF WECs with single frequency parametric exciting term has found that the energy harvested from the parametrically excited system is much more than non-parametric excited [139] [140] and the stability is also discussed by [141] [142] [143]. Then the problem has been expanded to the single degree of freedom with the multi-frequency parametric exciting system recently. The analysis of the system excited by the multi-frequency parametric excitation terms has been done by [144] [145] [146], although there is no controller included for energy harvesting. In our problem, the coupled motion can be considered as a two-degree-of-freedom (2-DoF) motion with the multi-frequency parametrically excited system, and the main purpose of designing the controller is to maximize the energy capture.
2.5 Wave Energy Converters Array

The dynamic model of the WEC array is presented in this section. The WEC array has three spherical Wave Energy Converters which has 2m radius. The three buoys have a triangular layout which is shown in Fig. 2.6.

The positions of those three bodies expressed in the global coordinates are (0, 5), (5, 0) and (0, −5) respectively. The wave direction of the wave farm is 0°. The dynamics of the WEC array can be described as:

\[
\ddot{z} = m^{-1}(\ddot{x} + \ddot{u} - Kz - Crr)
\]

\[
\dot{x}_r = Arx_r + Brv
\]

(2.39)
where the \vec{z} is the heave displacement of the three bodies respectively. The total mass $m = m_r + m_\infty$ can be expressed by the summation of the rigid body mass and the added mass. The rigid body mass and the added mass are written as:

$$m_r = \begin{bmatrix}
m_{r,11} & 0 & 0 \\
0 & m_{r,22} & 0 \\
0 & 0 & m_{r,33}
\end{bmatrix}$$

(2.40)

$$m_\infty = \begin{bmatrix}
m_{\infty,11} & m_{\infty,12} & m_{\infty,13} \\
m_{\infty,21} & m_{\infty,22} & m_{\infty,23} \\
m_{\infty,31} & m_{\infty,32} & m_{\infty,33}
\end{bmatrix}$$

(2.41)

Additionally, K represents the hydrostatic coefficients.

$$K = \begin{bmatrix}
K_{11} & 0 & 0 \\
0 & K_{22} & 0 \\
0 & 0 & K_{33}
\end{bmatrix}$$

(2.42)

The \vec{x}_r is the radiation state vector, and A_r, B_r and C_r are the radiation matrices which can be identified from the radiation damping B_{ij} and the added mass A_{ij} of the ith body influenced by the motion of the jth body. The construction of the total radiation matrices is introduced in reference [147]. The $\vec{F}_e = [F_{e,1}, F_{e,2}, F_{e,3}]^T$ is the
vector of the incoming wave excitation force which can be expressed as:

\[F_{e,i}(t) = \sum_{n} \Re(F_{ew,i}(\omega_n)\eta(\omega_n)e^{i(-\omega_nt+\phi_n)}) \] (2.43)

where \(F_{ew,i}(\omega_n), i = 1, 2, 3 \) is the frequency domain excitation force coefficient which takes the position of the floater in the array into consideration. The \(\vec{u} = [u_1, u_2, u_3]^T \) is the control force vector.

2.5.1 The WEC array surrogate model

The hydrodynamics of the floaters in the WEC array are coupled. Hence, to avoid the evaluation of the complex hydrodynamics, the details of the surrogate model which is identical to the hydrodynamic model is proposed in reference [148]. The surrogate model applies mechanical elements which includes the spring, damper and masses to
approximate the hydrodynamics behavior. The model can be expressed as:

\[
\begin{align*}
\dot{x}_1 &= x_4 & \dot{x}_2 &= x_5 & \dot{x}_3 &= x_6 \\
\dot{x}_4 &= \frac{1}{m_1}(F_{e,1} + Apz_1 - K_{11}x_1 + u_1) \\
\dot{x}_5 &= \frac{1}{m_2}(F_{e,2} + Apz_2 - K_{22}x_2 + u_2) \\
\dot{x}_6 &= \frac{1}{m_3}(F_{e,3} + Apz_3 - K_{33}x_3 + u_3) \\
\dot{x}_7 &= x_{10} & \dot{x}_8 &= x_{11} & \dot{x}_9 &= x_{12} \\
\dot{x}_{10} &= \frac{1}{m_4}(Apz_4 - m_{r,4}g) \\
\dot{x}_{11} &= \frac{1}{m_5}(Apz_5 - m_{r,5}g) \\
\dot{x}_{12} &= \frac{1}{m_6}(Apz_6 - m_{r,6}g)
\end{align*}
\] (2.44)

where \(x_1, x_2, x_3\) represents the displacement of the three bodies respectively. \(x_4, x_5, x_6\) are the velocities of the three buoys. Further, \(x_7, x_8, x_9\) are the displacement of the three artificial masses. The \(x_{10}, x_{11}, x_{12}\) are the velocities of the three artificial masses. We can denote three floaters and artificial masses in the WEC array as shown in Fig. 2.7.

The \(m_i = m_{r,i} + m_{\infty,i}, i = 1, 2, \ldots, 6\) represents the total mass of the \(i\)th body, where \(m_{r,i}\) is the rigid body mass and \(m_{\infty,i}\) is the added mass. The added mass of the three bodies can be obtained from WAMIT, while the added mass of the artificial masses can be computed by \(m_{\infty,i} = \rho \frac{1}{3} \pi R_{s,i}^3, i = 4, 5, 6\). The \(F_{e,i}\) is the excitation force of the
\(i \)th body which is described in Eq. (2.43). The hydrodynamics coupling are described by the internal forces of the Surrogate model:
\[Apz_1 = -k_{14}(z_1 - z_4) \sin(\alpha_0 + \epsilon_{14}) - c_{14}(v_1 - v_4) \sin(\alpha_0 + \epsilon_{14}) \]
\[- k_{16}(z_1 - z_6) \sin(\alpha_0 + \epsilon_{16}) - c_{16}(v_1 - v_6) \sin(\alpha_0 + \epsilon_{16}) \] \hspace{1cm} (2.45)

\[Apz_2 = -k_{24}(z_2 - z_4) \sin(\alpha_0 + \epsilon_{24}) - c_{24}(v_2 - v_4) \sin(\alpha_0 + \epsilon_{24}) \]
\[- k_{25}(z_2 - z_5) \sin(\alpha_0 + \epsilon_{25}) - c_{25}(v_2 - v_5) \sin(\alpha_0 + \epsilon_{25}) \] \hspace{1cm} (2.46)

\[Apz_3 = -k_{35}(z_3 - z_5) \sin(\alpha_0 + \epsilon_{35}) - c_{35}(v_3 - v_5) \sin(\alpha_0 + \epsilon_{35}) \]
\[- k_{36}(z_3 - z_6) \sin(\alpha_0 + \epsilon_{36}) - c_{36}(v_3 - v_6) \sin(\alpha_0 + \epsilon_{36}) \] \hspace{1cm} (2.47)

\[Apz_4 = k_{14}(z_1 - z_4) \sin(\alpha_0 + \epsilon_{14}) + c_{14}(v_1 - v_4) \sin(\alpha_0 + \epsilon_{14}) \]
\[+ k_{24}(z_2 - z_4) \sin(\alpha_0 + \epsilon_{24}) + c_{24}(v_2 - v_4) \sin(\alpha_0 + \epsilon_{24}) \] \hspace{1cm} (2.48)

\[Apz_5 = k_{25}(z_2 - z_5) \sin(\alpha_0 + \epsilon_{25}) + c_{25}(v_2 - v_5) \sin(\alpha_0 + \epsilon_{25}) \]
\[+ k_{35}(z_3 - z_5) \sin(\alpha_0 + \epsilon_{35}) + c_{35}(v_3 - v_5) \sin(\alpha_0 + \epsilon_{35}) \] \hspace{1cm} (2.49)

\[Apz_6 = k_{16}(z_1 - z_6) \sin(\alpha_0 + \epsilon_{16}) + c_{16}(v_1 - v_6) \sin(\alpha_0 + \epsilon_{16}) \]
\[+ k_{36}(z_3 - z_6) \sin(\alpha_0 + \epsilon_{36}) + c_{36}(v_3 - v_6) \sin(\alpha_0 + \epsilon_{36}) \] \hspace{1cm} (2.50)

where

\[\epsilon_{ij} = \frac{z_i - z_j}{\sqrt{L^2 + \frac{h_{eq}^2}{L} \cos(\alpha_0)}} \] \hspace{1cm} (2.51)

where \(k_{ij} \) and \(c_{ij} \) represent the artificial stiffness and damping between the \(i \)th and
jth body. The α_0 is the initial angle between the spring-damper connector and the horizontal axis. The ϵ_{ij} describes the instantaneous change of the angle α which is denoted in Fig. 2.8.

![Figure 2.8: The connection between body 1 and body 2](image)

The proposed surrogate model will replace the hydrodynamic model to simulate the hydrodynamic behavior and predict the energy absorption of the wave farm.

2.5.2 The model identification

To approximate the hydrodynamic model of the WEC array accurately, the parameters of the surrogate model need to be identified properly. The unknown parameters of the surrogate model of the three body WEC array are:

$$P = \begin{bmatrix} k_{14}, k_{16}, k_{24}, k_{25}, k_{35}, k_{36}, c_{14}, c_{16}, c_{24}, c_{25}, c_{35}, c_{36}, \\ m_{r,4}, m_{r,5}, m_{r,6}, R_{s,4}, R_{s,5}, R_{s,6} \end{bmatrix}$$ \hspace{1cm} (2.52)
Since the wave direction in this paper is 0°, the system response of the buoy 1 and buoy 3 are identical. The spring, damper and artificial masses are symmetric about the x axis. Hence, the variables need to be identified can be reduced to:

$$P = [k_{14}, k_{24}, k_{16}, c_{14}, c_{24}, c_{16}, m_{r,4}, m_{r,6}, R_{s,4}, R_{s,6}]$$

(2.53)

The objective function of the system identification is set up as:

$$\text{Minimize : } J = \sum_{i=1}^{3} e_i^T e_i$$

(2.54)

$$i = 1, 2, 3$$

(2.55)

where e_i represents the approximation error of the displacement of the ith body:

$$e_i = \tilde{z}_i - z_i$$

(2.56)

where \tilde{z}_i is the displacement propagated based on the surrogate model and z_i is the displacement of the ith body which is obtained from the AQWA simulation. The Genetic Algorithm [149] is applied for the system identification to identify the optimal parameters of the Surrogate model.
Chapter 3

Optimal Control of Wave Energy Converters: Unconstrained control

Based on the dynamic model of the buoy and wave interaction introduced in the last chapter, the controller needs to be designed for different WECs. The essential part of the wave energy conversion is the design of the controller since the control force is the external force that will extract energy from the ocean. There is a significant effort made by the researchers on developing the controllers to maximize the energy capture. In this dissertation, the proposed controllers also aim at absorbing the maximum energy. In this chapter, the proposed controllers only consider the energy extraction regardless of the constraint on the displacement, velocity, and control capacity. Section 3.1 introduces the Singular Arc controller which is developed based
on the optimal control theory. The Simple Model Control is introduced in Section 3.2 which is designed based on the knowledge of the total wave force. The total wave force combines all the wave force acting on the floater which provides the benefit that the people working with wave energy conversion do not require a background of each wave force.

3.1 Singular Arc Controller

The Singular Arc (SA) controller is developed based on the optimal control theory. The Singular Arc means when we solve optimal control of the wave energy conversion, the singularity will happen. However, the controller is still solvable.

3.1.1 Singular Arc Controller for the Simplified WEC Models

In this section, the SA controller is derived for a heaving point absorber with simplified WEC model. The simplified WEC model has a frequency-independent radiation force. Hence the model presented in Eq. (2.3) will be modified as:

\[m\ddot{z} = (F_e + u - K\dot{z} - c_{lin}\dot{z}) \]

(3.1)
The simplified WEC model can be presented in a state space format as:

\[
\begin{align*}
\dot{x}_1 &= x_2, \quad \dot{x}_3 = 1 \\
\dot{x}_2 &= \frac{1}{m}(F_e(x_3) + u - Kz - c_{lin}x_2)
\end{align*}
\] (3.2)

where \(c\) denotes the linearized radiation damping. The optimal control then can be solved for the simplified WEC model. Assuming no limits on the control value, the optimal control problem is then defined as:

\[
\begin{align*}
\text{Min} : J((x(t), u(t)) &= \int_0^t \{u(t)x_2(t)\}dt \\
\text{Subject to} : \text{Equations (3.2)}
\end{align*}
\] (3.3)

The Hamiltonian [27] in this problem is defined as:

\[
H(x_1, x_2, x_3, u, \lambda_1, \lambda_2, \lambda_3) = ux_2 + \lambda_1x_2 + \frac{\lambda_2}{m}(F_e(x_3) + u - c_{lin}x_2 - Kx_1) + \lambda_3
\] (3.4)
where $\vec{\lambda} = [\lambda_1, \lambda_2, \lambda_3]^T$ are Lagrange multipliers. The necessary conditions for optimality show that the optimal solution $(x_1^*, x_2^*, x_3^*, u^*, \lambda_1^*, \lambda_2^*, \lambda_3^*)$ should satisfy the Euler-Lagrange equations:

$$
\begin{align*}
\frac{\partial H}{\partial \lambda} &= \dot{x} \\
\frac{\partial H}{\partial x} &= -\dot{\lambda} \\
\frac{\partial H}{\partial u} &= 0
\end{align*}
$$

(Eq. 3.5)

Evaluating the Hamiltonian partial derivatives in Eq. (3.5), we find that the optimal trajectory should satisfy the motion constraints in (3.2) in addition to:

$$
\begin{align*}
\dot{\lambda}_1 &= \frac{K}{m} \lambda_2 + x_2 + \frac{\lambda_2}{m} = 0 \\
\dot{\lambda}_2 &= -\lambda_1 + \frac{c_{\text{lin}}}{m} \lambda_2 - u \\
\dot{\lambda}_3 &= -\frac{1}{m} \frac{\partial F_e(x_3)}{\partial x_3} \lambda_2
\end{align*}
$$

(Eq. 3.6-3.8)

Since the Hamiltonian H is linear in the control u, the optimality conditions (3.6)- (3.8) do not yield an expression for u, which means that the solution is a singular arc control. For this singular arc, it is possible to show that the optimal control is given by [150]:

$$
u = m \frac{2c_{\text{lin}}}{2c_{\text{lin}}} \frac{\partial F_e(x_3)}{\partial x_3} + c_{\text{lin}}x_2 + Kx_1 - F_e(x_3)
$$

(3.9)
If we consider a limitation on the control force, the Pontryagin’s Minimum Principal can be applied to determine the optimal switching condition between the SA controller and the saturation.

\[
\begin{align*}
 u &= \begin{cases}
 u_{sa}, & \frac{\partial H}{\partial u} = 0; \\
 \gamma, & \frac{\partial H}{\partial u} < 0; \\
 -\gamma, & \frac{\partial H}{\partial u} > 0;
 \end{cases}
\end{align*}
\]

(3.10)

where \(\gamma \) is the maximum available control level, and \(u_{sa} \) is the SA control defined in Eq. (3.9).

3.1.2 Singular Arc Control for the WEC Models with Radiation States

Let us consider the dynamics described in Eq. (2.3) without simplification where the radiation force is dependent on the frequency which can be expressed by a state space model (Eq. (2.13)). The system model can then be represented by a state space
\[\dot{x}_1 = x_2 \]
(3.11)

\[\dot{x}_2 = \frac{1}{m} (F_e(x_3) - C_r \vec{x}_r - Kx_1 + u) \]
(3.12)

\[\dot{x}_3 = 1 \]
(3.13)

\[\dot{x}_r = A_r \vec{x}_r + B_r x_2 \]
(3.14)

Define \(\vec{x} = [x_1, x_2, x_3, \vec{x}_r] \) as the state vector. The cost function is the same as that defined in Eq. (3.3). The Hamiltonian in this case is defined as:

\[H =ux_2 + \lambda_1 x_2 + \lambda_2 \left(\frac{1}{m} (F_e(x_3) - C_r \vec{x}_r - Kx_1 + u) \right) + \lambda_3 + \vec{\lambda}_r (A_r \vec{x}_r + B_r x_2) \]
(3.15)

where \(\vec{\lambda}_r \in \mathbb{R}^{1 \times n_r} \) are the costate associated with the radiation states. The optimality conditions are also derived from Eq. (3.5):

\[\dot{\lambda}_1 = \frac{K}{m} \lambda_2 \]
(3.16)

\[\dot{\lambda}_2 = -\lambda_1 - u - \vec{\lambda}_r B_r \]
(3.17)

\[\dot{\lambda}_3 = -\lambda_2 \frac{\partial F_{ext}(x_3)}{\partial x_3} \]
(3.18)

\[\dot{\vec{\lambda}}_r = \frac{\lambda_2}{m} C_r - \vec{\lambda}_r A_r \]
(3.19)

\[x_2 + \frac{\lambda_2}{m} = 0 \]
(3.20)
The optimality conditions in Eqs. (3.11)–(3.14) and (3.16)–(3.20) can be solved for the control \(u(t) \). One way to solve these equations is to use Laplace transform to convert this system of differential equations to a system of algebraic equations in the \(S \) domain; this derivation is detailed in reference [2]. The obtained optimal control force in the \(S \) domain, \(U(s) \), is of the form \(U(s) = U_1(s) + U_2(s) \) where:

\[
U_1(s) = \frac{N_1(s)}{D_1(s)}
\]

\[
N_1(s) = (ms^2 + (C_r(sI + A_r)^{-1}B_r - B_v)s + K)F_e(s)
\]

\[
D_1(s) = s(C_r(sI - A_r)^{-1}B_r - C_r(sI + A_r)^{-1}B_r + 2B_v) \tag{3.21}
\]

\[
U_2(s) = \frac{N_2(s)}{D_2(s)}
\]

\[
N_2(s) = \left((\lambda_{20} + \lambda_{r0}(sI + A_r)^{-1}B_r) s - \lambda_{10} \right) (ms^2 + (C_r(sI - A_r)^{-1}B_r + B_v)s + K)
\]

\[
D_2(s) = s^2(C_r(sI - A_r)^{-1}B_r - C_r(sI + A_r)^{-1}B_r + 2B_v) \tag{3.22}
\]

The \(U_2(s) \) is a transient term that depends only on the initial values of the co-states and is independent from the excitation force. So, for the steady state solution, the \(U_2(s) \) term will be dropped, and \(U(s) = U_1(s) \). The inverse Laplace of the \(U_1(s) \) term depends on the size and values of the radiation matrices, which would vary depending on the desired level of accuracy. In general, the inverse Laplace transform of \(U_1(s) \) will have harmonic terms and exponential terms. All exponential terms are dropped when considering the steady state solution.
3.2 Simple Model Control

Consider the system dynamics described in Eq. (2.3). The wave forces acting on the floater can be combined as a total force. This section, a Simple-Model-Control (SMC) is proposed for a heaving point absorber based on the total wave force. Since the total wave force is composed by the excitation force, hydrostatic force, radiation force (velocity dependent part). The system dynamics can be expressed based on the total force as:

\[(m_r + m_\infty)\ddot{z} = F_T(z, \dot{z}, t) + u\] \hspace{1cm} (3.23)

Note that the total force \(F_T(z, \dot{z}, t)\) is assumed a function of time, buoy position, and buoy velocity. Although, the dependency of the total force is determined, the explicit format of the total force is assumed to be unknown. The dependence on time is intuitive since part of this force is due to the wave pressure on the buoy surface, and the wave pressure is time dependent. The buoy position determines the hydrostatic force, and hence the force \(F_T\) should be function of the position \(z\). Also, the buoy velocity creates waves which affects the force on the buoy, and hence \(F_T\) is made also function of \(\dot{z}\). Let the state vector \(\bar{x} = [x_1, x_2, x_3]^T\) and \(m = m_r + m_\infty\), the dynamic
model in Eq. (3.23) can be written in the state space form:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= \frac{1}{m}(F_T(x_1, x_2, x_3) + u) \\
\dot{x}_3 &= 1
\end{align*}
\] (3.24)

where the \(x_1 \) and \(x_2 \) represent the position and velocity of the buoy respectively, \(x_3 \) represents the time \(t \). Since the objective is to maximize the harvested energy, the cost function is the same as defined in Eq. (3.3). The Hamiltonian can be written as:

\[
H(x_1, x_2, x_3, F_T, \lambda_1, \lambda_2, \lambda_3) = ux_2 + \lambda_1 x_2 + \frac{\lambda_2}{m}(F_T + u) + \lambda_3
\] (3.25)

The necessary conditions for optimality are shown in Eq. (3.5). By evaluating those partial derivatives, we find that the optimal trajectory should satisfy the motion constraints in (3.24) in addition to:

\[
\begin{align*}
\dot{\lambda}_1 &= -\frac{\partial H}{\partial x_1} = -\frac{\lambda_2}{m} \frac{\partial F_T}{\partial x_1} \\
\dot{\lambda}_2 &= -\frac{\partial H}{\partial x_2} = -u - \lambda_1 - \frac{\lambda_2}{m} \frac{\partial F_T}{\partial x_2} \\
\dot{\lambda}_3 &= -\frac{1}{m} \frac{\partial F_T(x_3)}{\partial x_3} \lambda_2 \\
\frac{\partial H}{\partial u} &= x_2 + \frac{\lambda_2}{m} = 0
\end{align*}
\] (3.26-3.29)
The optimal control force can be solved by solving the system dynamics and the optimality conditions simultaneously. The equation is:

\[
\begin{align*}
 u^* &= m x_2 \frac{\partial F_T}{\partial x_1} - \dot{F}_T - \frac{\partial F_T}{\partial x_2} F_T / m - x_2 \frac{d}{dt} \frac{\partial F_T}{\partial x_2},
\end{align*}
\]

where \(u^* \) denotes the optimal control. To implement this control law in time domain, we need to compute \(F_T, \dot{F}_T, x_2, \frac{\partial F_T}{\partial x_1} \) and \(\frac{\partial F_T}{\partial x_2} \). These calculations are discussed in Section 5.1.1. The equation of the optimal controller also indicates the SMC is adaptive to different format of the total force which means it is adaptive to different dynamics or different nonlinearities.
Chapter 4

Optimal Control of Wave Energy

Converters: Constrained control

In the last section, we discussed the optimal control without considering the constraint on the displacement, velocity, and control capacity. However, in the real ocean, those physical constraints usually existed. Hence, to develop a more realistic controller which takes the constraints into consideration is necessary. Section 4.1 presents the development of the Shape-Based controller. The proposed controller assumes the trajectory of the velocity and solves the control and energy by applying the system dynamics. The trajectory of the velocity will be adjusted to satisfy the constraint on the displacement and control. Section 4.2 presents the Pseudospectral optimal
control which approximates the dynamics with series expansion. The optimal control can then be solved numerically with the consideration of the constraints. The Linear Quadratic Gaussian Optimal Control is introduced in Section 4.3. The LQG controller implements the constraints by applying the penalty function to the state vector and the control force. Finally, the development of the controller is extended to the array of WECs. Section 4.4 derives the Collective Control for the WEC array. The controller applies the Proportional-Derivative control law where the control coefficients are optimized based on the overall performance of the WEC array by satisfying the constraints.

4.1 Shape-Based Approach

This Shape-Based (SB) controller is developed in this section. The velocity of the floater is approximated by series expansion. The position, acceleration, control forces are computed based on the system dynamics based on the knowledge of the excitation force. The velocity profile will then be optimized in terms of the energy extraction and constraints. The following Section 4.1.1 derives the SB controller with the simplified WEC model. The controller is further derived based on the higher-order WEC model in Section 4.1.2.
4.1.1 Shape-Based Approach for Simplified WEC Model

The equation of motion of a single body heaving point absorber is presented in Eq. (2.3). However, in this section, the SB concept is first explained here for the simplified dynamic model of a heaving point absorber which can be written as [26]:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix} =
\begin{bmatrix}
0 & -K \\
\frac{1}{m} & \frac{-1}{m}(c_{lin} + B_v)
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} +
\begin{bmatrix}
K \\
\frac{c_{lin}}{m}
\end{bmatrix} v_e +
\begin{bmatrix}
0 \\
\frac{-1}{m}
\end{bmatrix} u
\]

(4.1)

where \(m\) is the total mass of the float including the radiation added mass. \(c_{lin}\) is the hydrodynamic damping of the float, \(B_v\) is the coefficient of the friction force acting on the float. \(K\) is the hydrostatic stiffness. \(x_1\) and \(x_2\) represent the spring force and the velocity of the float respectively. \(v_e\) is the vertical velocity of the wave and \(u\) is the control force. The distance between the floater and the water surface impacts the linearity of the model above. When the distance \(D\) exceeds the limitation, the buoyancy force gets smaller due to a smaller cross section of the buoy at the water level. Hence the spring force \(x_1\) is constrained as:

\[
x_1 =
\begin{cases}
\frac{K}{k_{non}}(D_{max}(k_{non} - 1) + D) & \text{if } D > D_{max} \\
KD & \text{if } |D| \leq D_{max} \\
\frac{K}{k_{non}}(D_{max}(1 - k_{non}) + D) & \text{if } D < -D_{max}
\end{cases}
\]

(4.2)
where \(k_{\text{non}} \) is a nonlinearity coefficient, \(D_{\text{max}} \) is the maximum allowable displacement and is set as a given constraint, and \(D \) is computed as:

\[
D(t) = \int_0^t (v_e(\tau) - v_h(\tau)) \, d\tau
\]

(4.3)

where \(v_h \) is the second state \(x_2 \). The Shape-Based (SB) approach assumes a Fourier series representation for the buoy velocity \((v_h \equiv x_2) \) with unknown Fourier coefficients.

\[
v_h(t, a_0, \cdots, a_N, b_1, \cdots, b_N) = \frac{a_0}{2} + \sum_{n=1}^{N_f} \left(a_n \cos \left(\frac{n\pi}{H_p} t \right) + b_n \sin \left(\frac{n\pi}{H_p} t \right) \right)
\]

(4.4)

where \(H_p \) is the time interval over which the objective function will be optimized, and it is assumed that we have a model for the wave velocity over this horizon \(H_p \), \(N_f \) is the number of Fourier terms and it is a design parameter. The SB approach seeks to optimize the Fourier coefficients so that the extracted energy of the horizon \(H_p \) is maximum. The frequencies in the Fourier expansion in Eq. (4.4) can be extracted from the predicted excitation force so that the frequencies in the velocity Fourier expansion match the frequencies in the predicted excitation force, \(\omega_n, n = 1, \cdots, N_f \).

Hence the velocity can be written as:

\[
v_h(t, a_0, \cdots, a_N, b_1, \cdots, b_N) = \frac{a_0}{2} + \sum_{n=1}^{N_f} (a_n \cos (\omega_n t) + b_n \sin (\omega_n t))
\]

(4.5)
For a given buoy velocity representation, the derivative of the velocity $\dot{v}_h(t)$ can be evaluated analytically. Given a model for the wave vertical velocity, $v_e(t)$, the vertical displacement between the float and the water surface is computed based on Eq. (4.3). The spring force x_1 then can be computed based on Eq. (4.2). Resultantly, the control force can be computed by applying Eq. (4.1):

$$u(t, a_0, \cdots, a_N, b_1, \cdots, b_N) = x_1(t) - (c_{lin} + B_v)v_h(t) + c_{lin}v_e(t) - m\dot{v}_h(t) \quad (4.6)$$

The optimal control problem can then be formulated as follows:

Max $E(t) = -\int_0^T u(t)x_2(t)dt$, Subject to:

1. $|u| \leq u_{max}$,
2. $|D| \leq D_{max}$
3. The equations of motion defined in Eq. (4.1).

The design variables are the Fourier coefficients a_0, a_n, and b_n, $\forall n = 1 \cdots N_f$. The optimization algorithm used to solve this optimization problem is the interior point method [151]. The optimization process requires an initial guess for the coefficients. A good initial guess for the coefficients is one that is close to the optimal solution so that the computational cost of the optimization process is small. A good initial guess can be obtained using the available wave prediction; the Fourier coefficients
are initialized such that the velocity matches the wave vertical velocity. To do that, the predicted wave velocity is expanded using Fourier series as follows:

\[
v_e(t) = \frac{c_0}{2} + \sum_{n=1}^{N_f} \left(c_n \cos \left(\frac{n\pi}{T} t \right) + d_n \sin \left(\frac{n\pi}{T} t \right) \right)
\]

(4.7)

In Eq. (4.7), the coefficients \(c_0, c_n,\) and \(d_n\) can be computed given the prediction for \(v_e(t)\). These coefficients are used as initial guess for the coefficients \(a_0, a_n,\) and \(b_n,\) respectively, \(\forall n = 1 \cdots N_f.\)

4.1.2 Shape-Based Approach for Higher-Order Model WEC Optimal Control

For the performance model described in Eq. (2.3), the SB approach still approximates the buoy velocity using Fourier series as described in the last section. The optimization design variables are still the Fourier coefficients in the velocity Fourier expansion. For a given shape of the velocity (given a set of the design variables), the control force and the objective function (extracted energy) are evaluated as follows. The vector of radiation states \(\vec{x}_r\) can be propagated in time over the Horizon \(H_p\) using the velocity profile, as described in Eq. (2.13). The history of the radiation states is then used along with the history of the velocity over \(H_p\) to compute the control force.
using Eq. (2.3):

\[u = (m_r + m_\infty) \ddot{x}_2 - F_e + C_v \ddot{x}_r + Kx_1 + B_v x_2 \] (4.8)

where \(\ddot{x}_2 \) is the derivative of the velocity which can be computed analytically by taking the derivative for the velocity Fourier expansion. Once the input control \(u \) is computed over the horizon \(H_p \) it is used to propagate the whole system over the horizon \(H_p \) using Eq. (2.3), and the corresponding extracted energy is computed using Eq. 2.4. This completes the evaluation of the control and the corresponding energy at any time step; this process is repeated as the simulation marches in time.

As a way to save on the computational cost, it is possible to take advantage of the fact that at each time a control command is needed we compute the control over a horizon \(H_p \) starting at that time. In other words, at a given time step, the SB approach computes the required control at each time step over \(H_p \). This control history is stored and is used to save on the computational time. This control history is used at subsequent time steps without updating the control. This saving on the computational effort reduces the optimality of the solution since a control predicted at a previous time step is suboptimal. To implement this concept, we define the number of time steps in which new control calculations are not needed as the integer parameter \(CtrlInteg \). The following parameters are also defined:

\[N_H : \text{an integer that represents the Horizon length in units of wave period} \]
N_{cw}: an integer that determines the number of control updates in one wave period

N_f: the number of Fourier terms

Figure 4.1 is an illustration that shows these parameters. Algorithm 1 shows an outline for the SB algorithm. The variable t is the time, T_{end} is the end of simulation time. As can be seen from the above presentation, the SB method can be considered as a particular form of the model predictive control with a different parameterization than the standard piecewise constant input trajectory used in the literature [23].

Algorithm 1 Outline for the SB Algorithm

```plaintext
for all $t \in 0, ..., T_{end}$ do
    if $t < Ctrl\text{Integ}$ steps of time then
        Use the wave perdition data to compute buoy velocity over the time horizon
        Optimize the Fourier coefficients for maximum energy extraction over the time horizon
        Save the computed control for the future $Ctrl\text{Integ}$ time steps
    end if
    Apply control at current time $t$
end for
```
4.2 Pseudospectral Optimal Control

The Pseudospectral (PS) optimal control is introduced in this section. The proposed approach solves the control numerically by approximating the states and the control force with series expansion. The controller is derived for a single body 3-degree-of-freedom (surge, heave, pitch) WEC. Two cases will be investigated, the first case considers the linear dynamics without parametric excitation. The second case includes the parametric excitation.

4.2.1 System Approximation Using Fourier Series

The control forces and the states each is approximated by a linear combination of the basis functions, \(\phi_k(t) \). For the WEC problem, and due to the periodicity nature of the wave, it is intuitive to select a Fourier series to be the basis functions. A truncated Fourier Series that has zero mean is used with \(N_f \) terms. Since we have both sine and cosine functions, \(N_f \) is an even number and is equal to twice the number of cosine (or sine) functions in the Fourier series. The vector of basis functions is:

\[
\tilde{\Phi}(t) = [\cos(w_0t), \sin(w_0t), ..., \cos\left(\frac{N_f}{2}w_0t\right), \sin\left(\frac{N_f}{2}w_0t\right)] \quad (4.9)
\]
where $w_0 = 2\pi / T_{\text{end}}$ is the fundamental frequency, T_{end} represents the total simulation time. The states and the controller can be approximated using $\Phi(t)$ as follows:

$$
\begin{align*}
x_i(t) &= \sum_{k=1}^{N/2} x_{ik}^c \cos(kw_0 t) + x_{ik}^s \sin(kw_0 t) = \Phi(t) \hat{x}_i \\
u_j(t) &= \sum_{k=1}^{N/2} u_{jk}^c \cos(kw_0 t) + u_{jk}^s \sin(kw_0 t) = \Phi(t) \hat{u}_j
\end{align*}
$$

where in the above two equations, i is the state index, and j is the control index. In Eq. (4.10) x_{ik}^c / x_{ik}^s denotes the k_{th} coefficient of cosine/sine term of basis function for i_{th} state. In Eq. (4.11) u_{jk}^c / u_{jk}^s denotes the k_{th} coefficient of cosine/sine term of basis function for j_{th} control. The Fourier coefficients (or weight vectors) are grouped as follows:

$$
\begin{align*}
\hat{x}_i(t) &= [x_{i1}^c, x_{i1}^s, x_{i2}^c, x_{i2}^s, \ldots, x_{iN_f}^c, x_{iN_f}^s]^T \\
\hat{u}_j(t) &= [u_{j1}^c, u_{j1}^s, u_{j2}^c, u_{j2}^s, \ldots, u_{jN_f}^c, u_{jN_f}^s]^T
\end{align*}
$$

In the problem the variables need to be optimized are the velocity of surge motion $v_s(t)$, the velocity of pitch rotation $v_p(t)$, the controller in surge direction $u_s(t)$ and
the controller in pitch direction \(u_p(t) \). So we have \(i = 1, 2; j = 1, 2 \):

\[
v_s(t) \approx x_1(t) = \Phi(t)\dot{x}_1 = (4.14)
\]

\[
v_p(t) \approx x_2(t) = \Phi(t)\dot{x}_2 = (4.15)
\]

\[
u_s(t) \approx u_1(t) = \Phi(t)\dot{u}_1 = (4.16)
\]

\[
u_p(t) \approx u_2(t) = \Phi(t)\dot{u}_2 = (4.17)
\]

The main advantage of selecting the Fourier Series to be the basis function is that we can compute the derivative and integration of the approximation easier than the other orthogonal polynomials. The differentiation of the approximated states can be expressed as:

\[
\dot{x}_i = \Phi(t)\dot{x}_i = \Phi(t)D_\phi \dot{x}_i = (4.18)
\]

Because the basis function is the only time dependent term of the approximated states, and for a zero-mean Fourier Series, the derivative can be conveniently expressed as a matrix \(D_\phi \in \mathbb{R}^{N \times N} \). The matrix is block diagonal, where each block \(D_\phi^k \) can be expressed as:

\[
D_\phi^k = \begin{bmatrix}
0 & k\omega_0 \\
-k\omega_0 & 0
\end{bmatrix}
\]

where the matrix \(D_\phi \) is invertible, and its inverse is the matrix used to compute the integration of a state. The integration matrix is still block diagonal. Each block of

59
The integration matrix can be written as:

$$D^{-k}_\phi = \begin{bmatrix} 0 & -\frac{1}{k\omega_0} \\ \frac{1}{k\omega_0} & 0 \end{bmatrix}$$ (4.20)

This state approximation can be used to approximate all other quantities that are functions of the states. The viscous damping in the surge direction F^s_b can be expressed as:

$$F^s_b = B_{v,11}v_s = B_{v,11}\bar{\Phi}(t)\hat{x}_1$$ (4.21)

The hydrostatic force F_s can be expressed as:

$$F_s = K_{11}z = K_{11}\bar{\Phi}(t)\hat{x}_2 = K_{11}\bar{\Phi}(t)D^{-1}_\phi \hat{x}_1$$ (4.22)

The radiation forces can also be approximated using this Fourier series representation for the states eliminating the need for convolution integral evaluation. The radiation force in the surge mode can be written as:

$$F^r_{11} = \int_{-\infty}^{\infty} h_{r,11}(t-\tau)x_1^N(\tau)d\tau + \int_{-\infty}^{\infty} h_{r,15}(t-\tau)x_2^N(\tau)d\tau$$

$$= F^{11}_r + F^{15}_r$$ (4.23)
where each of the above two terms can be approximated as [152]:

\[
F_{r}^{11} = (h_{r,11} * \tilde{\Phi}(t))\dot{x}_1 = \tilde{\Phi}(t)(G_{r,11} - m_{\infty}^{11}D_{\phi})\dot{x}_1 \\
F_{r}^{15} = (h_{r,15} * \tilde{\Phi}(t))\dot{x}_2 = \tilde{\Phi}(t)(G_{r,15} - m_{\infty}^{15}D_{\phi})\dot{x}_2
\] (4.24)

where \(m_{\infty}\) denotes the added mass at infinite frequency. The matrix \(G_{r} \in \mathbb{R}^{N \times N}\) is block diagonal, the k-th block is:

\[
G_{r,k} = \begin{bmatrix}
B(k\omega_0) & k\omega_0A(k\omega_0) \\
-k\omega_0A(k\omega_0) & B(k\omega_0)
\end{bmatrix}
\] (4.26)

The excitation force can also approximated by Fourier Series.

\[
F_{e}^{1} \approx \tilde{\Phi}(t)\dot{\hat{e}}_1 \\
F_{e}^{5} \approx \tilde{\Phi}(t)\dot{\hat{e}}_2
\] (4.27)
Substituting these approximated forces and states in the system’s dynamics Eq. (2.33), we get:

\[
\begin{align*}
 r_1 &= ((m_r + m_{11}^\infty) \bar{\Phi}D_\phi + B_{v,1} \bar{\Phi} + K_{11} \bar{\Phi}D_\phi^{-1} + h_{r,11} * \bar{\Phi}) \hat{x}_1 \\
 &\quad - \bar{\Phi} \hat{c}_1 - \bar{\Phi} \hat{u}_1 + (m_{15}^\infty \bar{\Phi}D_\phi + h_{r,15} * \bar{\Phi}) \hat{x}_2 \\
 r_2 &= ((J_r + J_{55}^\infty) \bar{\Phi}D_\phi + B_{v,5} \bar{\Phi} + K_{55} \bar{\Phi}D_\phi^{-1} + h_{r,55} * \bar{\Phi}) \hat{x}_2 \\
 &\quad - \bar{\Phi} \hat{c}_2 - \bar{\Phi} \hat{u}_2 + (J_{51}^\infty \bar{\Phi}D_\phi + h_{r,51} * \bar{\Phi}) \hat{x}_1
\end{align*}
\]

(4.29) (4.30)

where \(r_1 \) and \(r_2 \) are residuals due to the approximation. In the Galerkin method, the residuals are orthogonal to the basis function. That is:

\[
\begin{align*}
 < r_1, \phi_j > &= 0 \\
 < r_2, \phi_j > &= 0
\end{align*}
\]

(4.31) (4.32)

where \(j = 1, ..., N \). This implies that the residuals vanish at all the collocation points.
4.2.2 Control Optimization for Linear Time-Invariant WECs

The objective of the proposed controller is to maximize the energy conversion of the surge and pitch mode. Hence the objective function can be expressed as:

\[J = \int_0^T \ddot{u}^T \ddot{\ddot{v}} dt = \frac{T}{2} (\hat{u}_1\hat{x}_1 + \hat{u}_2\hat{x}_2) \] \hspace{1cm} (4.33)

So the optimal control problem is to minimize Eq. (4.33) subject to Eqs. (4.29) and (4.30). For the system dynamics described in Eq. (2.33) with constant pitch stiffness \(K_{res} = Const \), the equation of motion can be written in matrix form as:

\[
\begin{bmatrix}
F_{d,11} & F_{d,12} \\
F_{d,21} & F_{d,22}
\end{bmatrix}
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{bmatrix}
=
\begin{bmatrix}
\dot{u}_1 \\
\dot{u}_2
\end{bmatrix}
+
\begin{bmatrix}
\hat{e}_1 \\
\hat{e}_2
\end{bmatrix}
\hspace{1cm} (4.34)
\]

where \(F_{d,ij} \) are given as a block diagonal matrix. The \(k \)th block is:

\[
F_{d,ij}^k = \begin{bmatrix}
D_{ij}^k & M_{ij}^k \\
-M_{ij}^k & D_{ij}^k
\end{bmatrix}
\hspace{1cm} (4.35)
\]

where \(i, j = 1, 2 \) and

\[
D_{ij}^k = B_{ij}(k\omega_0) + B_{v,ij} \\
M_{ij}^k = k\omega_0(m_{r,ij} + A_{ij}(k\omega_0)) - K_{ij}/(k\omega_0)
\]
where $A_{ij}(k\omega_0)$ denotes the added mass at kth frequency of ith mode due to jth mode. It is possible to solve for the optimal control analytically \cite{23} by setting the partial derivative of \tilde{J} with respect to the control to zero; that is $\frac{\partial \tilde{J}}{\partial u} = 0$. Hence, the expression of the optimal control is:

$$\hat{u}^* = -(F_d^{-1} + F_d^{-T})^{-1}F_d^{-1}\hat{e}$$

(4.36)

4.2.3 Control Optimization for Linear Time-Varying WECs

When the pitch stiffness is a function of the heave amplitude, the pitch stiffness term K_{res} has a time-varying term $K_p(t)$. This is usually referred to as parametric excitation since the heave motion excites the pitch motion, which is coupled with the surge. Then the system becomes a time-varying system. This affects the second constraint Eq. (4.30) which becomes as follows in a Linear Time-Varying WEC:

$$r_2 = ((J_r + J_{55}^{55})\Phi D_{\phi} + B_{v,55}\Phi + (K_c + K_p)\Phi \Phi^{-1}D_{\phi}^{-1} + h_{r,55}^* \Phi)\hat{x}_2$$

$$- \Phi \hat{e}_2 - \Phi \hat{u}_2 + (J_{51}\Phi D_{\phi} + h_{r,51}^* \Phi)\hat{x}_1$$

(4.37)

The time-varying stiffness can be approximated as:

$$K_p(t) = \Phi(t)\hat{s}$$

(4.38)
So the \(r_2 \) residual can be expressed as:

\[
\begin{align*}
 r_2 &= ((J_r + J^{55}_\infty) \vec{\Phi}_j \vec{D}_\phi + B_{v,55} \vec{\Phi} + K_c \vec{\Phi}_j \vec{D}_\phi^{-1} + \vec{\Phi}_j \vec{s} \vec{\Phi}_j \vec{D}_\phi^{-1} + h_{r,55} \vec{\Phi}) \dot{x}_2 \\
 &\quad - \vec{\Phi}_j \dot{e}_2 - \vec{\Phi}_j \dot{u}_2 + (J^{51}_\infty \vec{\Phi}_j \vec{D}_\phi + h_{r,51} \vec{\Phi}) \dot{x}_1
\end{align*}
\]

(4.39)

The \(r_1 \) residual remains the same. The residuals can be discretized at collocation points:

\[
\begin{align*}
 r_1^j &= ((m_r + m_{11}^{\infty}) \vec{\Phi}_j \vec{D}_\phi + B_{v,11} \vec{\Phi}_j + K_{11} \vec{\Phi}_j \vec{D}_\phi^{-1} + h_{r,11} \vec{\Phi}) \dot{x}_1 \\
 &\quad - \vec{\Phi}_j \dot{e}_1 - \vec{\Phi}_j \dot{u}_1 + (m_{15}^{\infty} \vec{\Phi}_j \vec{D}_\phi + h_{r,15} \vec{\Phi}) \dot{x}_2
\end{align*}
\]

(4.40)

\[
\begin{align*}
 r_2^j &= ((J_r + J^{55}_\infty) \vec{\Phi}_j \vec{D}_\phi + B_{v,55} \vec{\Phi}_j + K_c \vec{\Phi}_j \vec{D}_\phi^{-1} + \vec{\Phi}_j \vec{s} \vec{\Phi}_j \vec{D}_\phi^{-1} + h_{r,55} \vec{\Phi}) \dot{x}_2 \\
 &\quad - \vec{\Phi}_j \dot{e}_2 - \vec{\Phi}_j \dot{u}_2 + (J^{51}_\infty \vec{\Phi}_j \vec{D}_\phi + h_{r,51} \vec{\Phi}) \dot{x}_1
\end{align*}
\]

(4.41)

where \(\vec{\Phi}_j = \vec{\Phi}(t_j) \), the nodes \(t_j \) are uniformly spaced between 0 and \(T_{\text{end}} \):

\[
t_j = j\delta t \quad \text{with} \quad \delta t = T_{\text{end}}/(N - 1) \quad \text{and} \quad j = 0, ..., N - 1
\]

(4.42)

The objective function will be the same as the time-invariant system in Eq. (4.33). To solve for the control, a Nonlinear Programming (NLP) approach will be implemented. The NLP is then to minimize Eq. (4.33), subject to Eqs. (4.40) and (4.41), which have a total of \(2N \) equality constraints.
To further explain the logic of the controller, a framework diagram is included in Figure 4.2. In the figure, the switch is on when we need to compute the control history over the prediction horizon. The switch is off when the time is between the beginning of the prediction horizon and the end. When the switch is off the controller will be extracted from the control history directly and feed to the dynamics system. When the time reaches the end of the prediction horizon, the switch is on again to compute the control history of the next prediction horizon.

Figure 4.2: The framework diagram of the logic of the control \[\text{I}\]
4.3 Linear Quadratic Gaussian Optimal Control

Another classical control, the Linear Quadratic Gaussian (LQG) optimal control will be implemented here for a single body 3-degree-of-freedom WEC. The controller aims at absorbing the maximum energy within the constraints. The constraints are implemented in the cost function as penalty functions. Further, the optimal control problem is split into two parts. The first part is the LQ optimal controller which computes the control assuming the availability of the estimated states; this part requires, as input, the wave prediction and the estimation of the states. The second part is an LQ optimal estimator which generates the estimation and prediction. Only the control strategy will be discussed in this section. The estimator will be introduced in Section 5.2.2.

4.3.1 The LQ control law

As mentioned before, for a 3-dof WEC, the heave motion is uncoupled from the other two modes. Hence, the heave motion can be controlled by the SA controller [2]. The control for the coupled surge-pitch modes will be designed using a time-varying Linear Quadratic Gaussian optimal control approach. The objective is set to maximize the energy over the simulation time period within the state and control constraints; hence
we can write the objective function as:

\[
\text{Minimize } J = \int_0^{\text{End}} \left((x^c)^T Q^c x^c + (u^c)^T W^c x^c + \frac{1}{2}(u^c)^T R^c u^c \right) dt \tag{4.43}
\]

The Lagrangian for surge-pitch motion then can be defined as:

\[
L^c = (x^c)^T Q^c x^c + (u^c)^T W^c x^c + \frac{1}{2}(u^c)^T R^c u^c \tag{4.44}
\]

where \(Q^c \) and \(R^c \) are the state and control penalty matrix respectively. \(x^c \) is the state vector of the coupled system. \(u^c \) is the control vector of the coupled motion.

Further, the matrices \(W^c \) and \(R^c \) are selected as:

\[
W^c = \begin{bmatrix}
0^{2 \times 2} \\
I^{2 \times 2} \\
0^{n_r \times 2}
\end{bmatrix} \tag{4.45}
\]

\[
R^c = \begin{bmatrix}
\epsilon_{r,1} & 0 \\
0 & \epsilon_{r,5}
\end{bmatrix} \tag{4.46}
\]

The Lagrangian can be transformed to the following convex format:

\[
L^c = \frac{1}{2} (x^c)^T (Q^c - W^c (R^c)^{-1} (W^c)^T) x^c + \\
\frac{1}{2} (u^c + (R^c)^{-1} (W^c)^T x^c)^T R^c (u^c + (R^c)^{-1} (W^c)^T x^c) \tag{4.47}
\]
If we do not included any constraint for the states of surge and pitch, the state penalty matrix is set as $Q^c = 0$. Let us define $A_1^c = (Q^c - W^c(R^c)^{-1}(W^c)^T)$, $B_1^c = R^c$ and $U_1^c = (u^c + (R^c)^{-1}(W^c)^T x^c)$. The system dynamics described in Eq. (2.33) can be compacted in a state space format as:

$$\dot{x}^c(t) = F^c(t)x^c(t) + G^c(t)u^c(t) + c^c(t)$$

where

$$F^c(t) = \begin{bmatrix}
0^{2\times2} & I^{2\times2} & 0^{2\times n_r} \\
-m^{-1}K & -m^{-1}C & -m^{-1}C_r \\
0^{n_r \times 2} & B_r & A_r
\end{bmatrix}$$

$$G^c = \begin{bmatrix}
0^{2\times2} \\
m^{-1} \\
0^{n_r \times 2}
\end{bmatrix}$$

$$c^c(t) = \begin{bmatrix}
0^{2\times2} \\
m^{-1} \\
0^{n_r \times 2}
\end{bmatrix} \begin{bmatrix}
\hat{F}_1^e \\
\hat{F}_5^e
\end{bmatrix}$$

The dynamics can also be transformed to the format based on the new controller U_1^c:

$$\dot{x}^c(t) = F_1^c(t)x^c(t) + G^c(t)U_1^c(t) + c^c(t)$$
where \(\mathbf{F}_1^c(t) = \mathbf{F}^c(t) - \mathbf{G}^c(\mathbf{R}^c)^{-1}(\mathbf{W}^c)^T \). Hence the Hamiltonian can be defined as:

\[
H = \frac{1}{2}(\mathbf{x}^c)^T \mathbf{A}_1^c \mathbf{x}^c + \frac{1}{2}(\mathbf{U}_1^c)^T \mathbf{B}_1^c \mathbf{U}_1^c + \mathbf{x}^c(\mathbf{F}_1^c(t)\mathbf{x}^c(t) + \mathbf{G}^c(t)\mathbf{U}_1^c(t) + \mathbf{c}^c(t)) \tag{4.53}
\]

Applying the necessary conditions for optimality, we get:

\[
\dot{\lambda}^c = -\frac{\partial H}{\partial \mathbf{x}^c} \equiv -\mathbf{A}_1^c \mathbf{x}^c - (\mathbf{F}_1^c(t))^T \lambda^c \tag{4.54}
\]

\[
\frac{\partial H}{\partial \mathbf{U}_1^c} \equiv \mathbf{B}_1^c \mathbf{U}_1^c + \mathbf{G}^c \lambda^c = 0 \tag{4.55}
\]

\[
\frac{\partial H}{\partial \lambda_i^c} = \dot{x}_i^c \tag{4.56}
\]

Hence, based on Eq. (4.55), the optimal control law is:

\[
\mathbf{U}_1^c = -(\mathbf{B}_1^c)^{-1}(\mathbf{G}^c)^T \lambda^c \tag{4.57}
\]

which requires evaluation of the costates. This system is inhomogeneous due to the excitation force \((\mathbf{c}^c(t))\) in Eq. (4.52), then the costate is assumed in the form [153]:

\[
\lambda^c = \mathbf{S}^c \mathbf{x}^c + \mathbf{k}^c \tag{4.58}
\]

where the term \(\mathbf{k}^c\) is added due to the inhomogeneity of the system. Taking the derivative for Eq. (4.58) and solving Eq. (4.52), (4.54), (4.57) and (4.58) together, we
obtain the Riccati and the auxiliary equations as:

\[
\dot{S}^c + S^c F_1^c(t) + F_1^c(t)^T S^c - S^c G^c (B_1^c)^{-1} (G^c)^T S^c + A_1^c = 0 \tag{4.59}
\]

\[
\dot{k}^c + F_1^c(t)^T k^c - S^c G^c (B_1^c)^{-1} (G^c)^T k^c + S^c c^c(t) = 0 \tag{4.60}
\]

Since there is no constraint on the final conditions, then the final conditions of the Riccati and Auxiliary equations are \(S^c(t_f) = 0, \ k^c(t_f) = 0 \). These two equations can be propagated backward to get the time history of the optimal feedback gain. Then the optimal control is:

\[
U_1^{c*} = -(B_1^c)^{-1} (G^c)^T (S^c(t) x^c(t) + k^c(t)) \tag{4.61}
\]

Finally the expression of the control force can be obtained after transforming back \(U_1^{c*} \) to get:

\[
u^{c*} = -((B_1^c)^{-1} (G^c)^T S^c(t) + (B_1^c)^{-1} (W^c)^T) x^c(t) - (B_1^c)^{-1} (G^c)^T k^c(t) \tag{4.62}
\]

A similar approach can be developed for the heave control to get:

\[
u^{h*} = -((B_1^h)^{-1} (G^h)^T S^h(t) + (B_1^h)^{-1} (W^h)^T) x^h(t) - (B_1^h)^{-1} (G^h)^T k^h(t) \tag{4.63}
\]
where

\[
W^h = \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}
\]

\[B^h_1 = R^h = \epsilon_{r,3}\]

\[\text{(4.65)}\]

\[\text{(4.64)}\]

4.4 Collective Control of WEC array

The control development is finally extended to the WEC array. To obtain a overall maximum energy extracted from the WEC array, the collective control is proposed in this section. The controller applies the PD feedback control law which can be expressed as:

\[
\ddot{u} = -K_p \ddot{z} - K_d \ddot{v}_h
\]

\[\text{(4.66)}\]
where K_p and K_d are the feedback gains of the controller. The PD control gains matrices take the form of:

$$
K_p = \begin{bmatrix}
K_{p,11} & 0 & 0 \\
0 & K_{p,22} & 0 \\
0 & 0 & K_{p,33}
\end{bmatrix}
$$

(4.67)

$$
K_d = \begin{bmatrix}
K_{d,11} & K_{d,12} & K_{d,13} \\
K_{d,21} & K_{d,22} & K_{d,23} \\
K_{d,31} & K_{d,32} & K_{d,33}
\end{bmatrix}
$$

(4.68)

To have the maximum energy absorption and satisfy the constraints, the control feedback gains need to be optimized. The objective function can be expressed as:

Minimize : $J = \sum_i \int_0^T u_i v_{h,i} dt$ \hspace{1cm} (4.69)

Sub to:

$|z_i| - z_{max} \leq 0$

$|u_i| - u_{max} \leq 0$

$i = 1, 2, 3$ \hspace{1cm} (4.70)

where the variables of the optimization are:

$$
\vec{x} = [K_{p,11}, K_{p,22}, K_{p,33}, K_{d,11}, K_{d,12}, K_{d,13}, K_{d,21}, K_{d,22}, K_{d,23}, K_{d,31}, K_{d,32}, K_{d,33}]$$

(4.71)
The u_i and v_i can be obtained by the propagation of the Surrogate model which is described in Eq. (2.44). The z_{max} is the maximum displacement of the floaters in the wave farm and u_{max} is the maximum control capacity. The constraint on the control force is dependent on the capacity of the device, it is a hard constraint. Hence, the control force is saturated by the control limitation in the simulation. The constraint on the displacement is implemented as an exterior penalty function in the cost function. The original cost function can be transformed as:

$$
\text{Minimize} : \quad J = -E + \frac{1}{2} r_g \sum_{i=1}^{3} (\max(0, g_i))^2 \\
\quad i = 1, 2, 3
$$

where g_i represents the inequality constraints:

$$
g_i = \left| z_i \right| - z_{max} \quad (4.74)
$$

And the control force is saturated by the maximum control force u_{max}. The weight of the penalty function can be identified iteratively by applying the Sequential Unconstrained Minimization Techniques (SUMT) [151]. The details of the SUMT algorithm are summarized in Algorithm. 2.

The parameters of the SUMT need to be carefully selected to guarantee the optimality and the efficiency of the optimization.
Algorithm 2 The SUMT algorithm with the exterior penalty function

1: **Initialization**: Choose \bar{x}_0 (Initial guess of the optimization variable)
 N_s (Number of SUMT iterations)
 N_u (Number of Sequential Quadratic Programming iterations)
 ϵ_i’s (Stopping criteria)
 r_g (Weight of the penalty function)
 c_g (Scaling multiplier for r_g)

2: **while** $q \leq N_s$ and $\Delta J^2 \geq \epsilon_1$ and $\Delta \bar{x}^T \Delta \bar{x} \geq \epsilon_2$ **do**

3: Call Sequential Quadratic Programming to minimize $J(\bar{x}^q, r_g^q)$
 Output: \bar{x}^q

4: Compute the stopping criteria
 $\Delta J = J(\bar{x}^q, r_g^q) - J(\bar{x}^{q-1}, r_g^{q-1})$
 $\Delta \bar{x} = \bar{x}^q - \bar{x}^{(q-1)*}$

5: Update the states and parameters
 $q = q + 1$
 $r_g^q = c_g r_g^{q-1}$
 $\bar{x}^q = \bar{x}^{(q-1)*}$

6: **end while**
Chapter 5

Wave Estimation for WEC control

The wave estimation and forecasting are required by the optimal controller. Hence it is necessary to provide the development of the estimator. There are several estimation techniques can be applied for wave estimation. Section 5.1 presents the Kalman Filter. The developed sequential estimator does not require a large data collection. The extended Kalman Filter (EKF) is introduced in Section 5.2 for a system has nonlinear dynamics. The EKF linearize the nonlinear system dynamics with the first order approximation. The last Section 5.3 presents the derivation and development of the consensus estimator for the estimation of the WEC array. The communication technology is applied to improve the wave estimation and forecasting.
5.1 Kalman Filter

The sequential estimator Kalman Filter is implemented for the wave estimation. In the wave energy conversion problem, the measurements (ex, position, velocity) collected is discrete, however, the system behaves continuously. Hence the continuous-discrete Kalman Filter is developed for different models. In this section, the details of the implementation of the Kalman Filter for the Simple Model Control is introduced.

5.1.1 Kalman Filter with the measurements of the total wave pressure

In this section, the Kalman Filter is designed for a heaving point absorber with the measurements of the total wave pressure acting on the floater. It is assumed that we measure the buoy position x_1, its velocity x_2, and also the total pressure using multiple pressure sensors on the buoy surface, as detailed in reference [4]. The surface pressure can then be used to compute the total force F_{Ts}. Let \tilde{x}_i be the measurement of x_i and \tilde{F}_{Ts} be the measurement of F_{Ts}. The measurement \tilde{F}_{Ts} is then added to the quantity $m_\infty \dot{x}_2$ to obtain \tilde{F}_T as a pseudo-measurement. These measurements will also be used to estimate the quantities \dot{F}_T, $\partial F_T/\partial x_1$ and $\partial F_T/\partial x_2$ which are required by the SMC controller.
Since we need to estimate the derivatives of the force F_T with respect to time and the states, it is convenient to approximate the force F_T using a series expansion. This way, it is possible to compute approximate expressions for the derivatives once the coefficients of the polynomial are determined. Moreover, it is possible to compute approximate expressions for the control force and the harvested energy analytically. Toward that end, it is assumed that the following series expansion approximates the force F_T:

$$\bar{F}_T = a_1x_1 + a_2x_2 + b_1x_1^3 + b_2\text{sign}(x_2)x_2^2 + \sum_{n=1}^{N}(c_n \cos(\omega_n t) + d_n \sin(\omega_n t)) \quad (5.1)$$

The above series expansion is selected intuitively and in a general form. Higher order terms can be added to the polynomial terms if needed. While this series expansion is suitable for 1-DoF point absorbers, it is straightforward to write similar expansions for other types of WECs or extend it to account for multi-DoF WECs.

The coefficients in the Eq. (5.1) are estimated using a Kalman filter such that the square error between \bar{F}_T and F_T is minimized. The frequencies $\omega_n, \forall n$, are assumed fixed and equally spaced in a particular range. This assumption enables the use of a linear Kalman filter. If desired, these frequencies could be appended to the Kalman filter state vector to be estimated; in such case, an extended Kalman filter would be needed for the resulting nonlinear system. If we use a sufficiently large number of frequencies, the assumption of fixed frequencies provides reasonable accuracy.
The Kalman filter uses the measurements to update the estimates of the coefficients in \tilde{F}_T sequentially in time. The state vector of the Kalman filter is selected as:

$$\tilde{x} = [\hat{a}_1, \hat{a}_2, \hat{b}_1, \hat{b}_2, \ldots, \hat{c}_N, \hat{d}_1, \ldots, \hat{d}_N]^T$$ (5.2)

The dynamic equation of the Kalman filter is:

$$\dot{\tilde{x}} = \vec{0}$$ (5.3)

where $\vec{0}$ is a vector which components are all zeros. The coefficients \hat{x} are assumed to be constant in the dynamic model; yet they can be updated based on measurements in the Kalman update step. Each measurement is simulated as a zero mean white noise added to its true signal. The Kalman filter output equation is:

$$\hat{y} = \hat{F}_T = \hat{a}_1 \tilde{x}_1 + \hat{a}_2 \tilde{x}_2 + \hat{b}_1 \tilde{x}_1^3 + \hat{b}_2 \text{sign}(\tilde{x}_2) \tilde{x}_2^2 + \sum_{n=1}^{N} (\hat{c}_n \cos(\omega_n t) + \hat{d}_n \sin(\omega_n t))$$ (5.4)

The process of implementing the Kalman filter in this dissertation is standard and is not presented; reference [155] presents the details on the process of linear Kalman filters. At each time step, the partial derivatives of F_T can be evaluated by taking
the derivatives of Eq. (5.1), and using the estimated states as follows:

\[
\frac{\partial F_T}{\partial t} = \sum (-\hat{c}_n \omega_n \sin(\omega_n t) + \hat{d}_n \omega_n \cos(\omega_n t)) \\
\frac{\partial F_T}{\partial \tilde{x}_1} = \hat{a}_1 + 3\hat{b}_1 \tilde{x}_1^2 \\
\frac{\partial F_T}{\partial \tilde{x}_2} = \hat{a}_2 + 2\hat{b}_2 \text{sign}(\tilde{x}_2)\tilde{x}_2, \quad \frac{d}{dt} \frac{\partial F_T}{\partial \tilde{x}_2} = 2\hat{b}_2 \text{sign}(\tilde{x}_2) \dot{\tilde{x}}_2
\]

These partial derivatives are substituted in Eq. (3.30) to compute the control force.

As a result, the proposed control force only requires the current states which can be obtained from the state estimation by using Kalman Filter. The wave prediction is not required for the SMC controller.

5.1.1.1 Initialization of The Kalman Filter States

The initial conditions of the state vector \(\hat{\tilde{x}}_0 \) dictate the effectiveness of the Kalman filter in estimating the coefficients. In this problem, in particular, there are multiple local solutions that the Kalman filter can converge to that are not the true values of the coefficients. Hence, it is critical to have a good initial guess for the coefficients.

In this study, the initial guess values are obtained via an optimization process that is here described. First, measurements are collected over some period, called the initialization period \(T_0 \). In the simulations conducted in Section 5.1.2, \(T_0 = 100 \) seconds and measurements are collected every \(\Delta t = 0.05 \) seconds. The optimization
problem is to find the vector $\hat{\mathbf{x}}_0$ that minimizes the function:

$$J = \sum_{i=1}^{N_D} \| \tilde{F}_T \left(\hat{\mathbf{x}}_0, \tilde{x}_1(i\Delta t), \tilde{x}_2(i\Delta t), i\Delta t \right) - \bar{F}_T(i\Delta t) \|^2 \quad (5.6)$$

where N_D is the number of data points. A sequential quadratic programming algorithm was used to solve this optimization problem. It is noted here that this process works even when sea state changes over time. This is because data are collected continuously and used to update the estimate of the coefficients \hat{x} via the Kalman update step. In the simulations conducted, data collected over 100 s are used for this update step. Hence the introduced initialization of the Kalman Filter is adaptive to the changing environment using the collected data.

5.1.1.2 Simulation results

The simulation results are presented in this section. The performance of the SMC controller with Kalman Filter is shown. The numerical testing was conducted using the buoy shown in Figure 5.1. The dynamic model applied in the WEC plant in the simulation is the Cummins’ equation (Eq. (2.3)), although the controller is derived based on the simple model by defining a total force. A Bretschneider wave is realized using 200 frequencies equally spaced in the range $0 - 4 \text{ rad/s}$. The significant wave height is 0.3 m, and the peak period is 7 s. The hydrodynamic and hydrostatic forces
on the buoy are simulated using force coefficients that are computed using Nemoh \[132\]. These forces, in addition to the viscous damping force, are considered as data that simulates the force measurements \tilde{F}_{Ts}. These forces are also used to propagate the buoy motion and generate simulated measurements for the buoy position and velocity. The derivative of the measured velocity is computed at each time step and is used to compute the force \tilde{F}_T. The numerical parameters used to generate the data are as follows: the mass of the buoy is 4.637×10^3 kg, the stiffness of hydrostatic force is 4.437×10^4 N/m, and the viscous damping coefficient is 6.1525 Nm/s. The effectiveness of the proposed control system is assessed by comparing the harvested energy obtained using the proposed SMC to the optimal harvested energy as computed by the singular arc control (SA) \[2\]. The SA is computed assuming perfect measurements (noise free measurements) so that we can use the harvested energy from SA as a reference. Figure 5.2 shows the harvested energy over 10 minutes. In the

Figure 5.1: Geometry of the buoy used in the numerical simulations in this paper.
Figure 5.2: Comparison between the SMC, the SA, the RL and the PD in terms of harvested energy. The SMC performance is close to the ideal SA.

first 100 seconds, no control was applied; rather only measurements were collected and used to initialize the Kalman filter. Three different controls are presented in Figure 5.2. The SA is the maximum energy curve computed using the singular arc control. The SMC line is the energy harvested using SMC. The RL line is the energy harvested using the resistive loading control: \(u = -B_m x_2 \). Finally, the PD line is the energy extracted using the Proportional Derivative control \(u = -K_p x_1 - K_d x_2 \).

The feedback gain of the RL and PD controllers are optimized in terms of energy extraction. As can be seen in Figure 5.2, the harvested energy using the SMC is very close to the optimal one, and it is significantly larger than the RL harvested energy. The control force produced using the SMC is shown in Figure 5.3 and the displacement of the buoy over time is shown in the same figure. To emphasize the accuracy of the assumed force series expansion in Eq. (5.1) when the actual forces on the buoy are linear, Figure 5.4 shows both the true and the approximate forces on the buoy surface.
Figure 5.3: The Control force using SMC and the displacement of the buoy. No constraints on the control and the displacement are assumed.

Figure 5.4: The series expansion for the force F on the buoy is a good approximation for the true force for the linear force test case
5.2 Extended Kalman Filter

The Extended Kalman Filter is introduced in this section. The EKF is usually applied for a nonlinear system and applies the first order approximation. The details of implementing the EKF for the SA controller and the LQG controller will be introduced in the following sections.

5.2.1 Extended Kalman Filter for Singular Arc Controller

The EKF will be first combined with the SA controller for wave and state estimation of a heaving point absorber. The nonlinearity happened in computing the excitation force when the surface integration is applied. In this case, the pressure will be measured by the pressure sensors.

5.2.1.1 Dynamic model of the Extended Kalman Filter

Define the state vector \vec{x} of the estimation as:

$$\vec{x} = [x_1, x_2, \vec{x}_r, \vec{\eta}, \vec{\omega}, \vec{\phi}]^T$$ \hspace{1cm} (5.7)
where \(\eta_i \) is the wave amplitude at frequency \(\omega_i \), and \(\phi_i \) is the phase associated with \(\omega_i \). Further, \(\eta_i, \omega_i, \phi_i \) are the elements of the \(\vec{\eta}, \vec{\omega} \) and \(\vec{\phi} \). The EKF estimates the most \(N \) dominating frequencies in the wave, where \(N \) is a design variable. The heave dynamic equations in terms of the state vector \(\vec{x} \) can be written as:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
(m_r + m_\infty) \dot{x}_2 &= F_T + u \\
\dot{\vec{\eta}} &= \vec{0} \\
\dot{\vec{\omega}} &= \vec{0} \\
\dot{\vec{\phi}} &= \vec{0}
\end{align*}
\]

where Eq. (5.9) is similar to Eq. (2.3), except Eq. (5.9) considers the viscous damping force. The \(F_T \) is the total wave force including the excitation force, radiation force, hydrostatic force and the viscous damping force. The excitation force is computed based on Eq. (2.7). The radiation force can be evaluated by the state space model (Eq. (2.13)). The hydrostatic force is computed based on Eq. (2.11). The viscous damping can be expressed by a linear damping force:

\[
F_v = -B_v x_2
\]
5.2.1.2 WEC measurements model

The radiation force on the buoy is mainly a function of the buoy motion and hence it can be computed in real time. The hydrostatic force is also a function of the buoy position and hence it can be computed as a function of the buoy state. The excitation force, on the other hand, is a function of the buoy motion as well as the wave potential field. That means we need to know the wave and its potential field in order to compute the excitation force so that we can compute the control force \(u(t) \). Hence, measurements are collected to estimate the excitation force. Typically, buoy position is measured. The buoy position, however, is a result of the interaction of the wave with the buoy body and hence it is not a direct measurement of the excitation force. Sensing the pressure at a few points on the buoy surface provides measurements that are more direct to the excitation force.

In this analysis, it is assumed that the measurements are: the position of the buoy, the pressure values at \(N \) points distributed on the buoy surface. The pressure is measured using pressure sensors which locations are known. Hence the output model for this system is constructed as follows:

\[
\bar{y} \equiv [x_1, p_1, p_2, \cdots, p_N]^T = [h_{m,1}(\vec{x}), h_{m,2}(\vec{x}), \cdots, h_{m,N+1}(\vec{x})]^T \tag{5.14}
\]
where the pressure at a cell of vertical distance $c_{d,j}$ from the center of gravity is:

\[p_j = \sum_{n=1}^{N} \rho g \eta_n \frac{\cosh(\chi_n(x_1 + c_{d,j} + h))}{\cosh(\chi_n h)} \cos(-\omega_n t + \phi_n) - \rho g (x_1 + c_{d,j}) - \frac{B_v x_2}{A_s} - \frac{C_r \vec{x}_r}{A_s} \]

where A_s is the total surface area of the buoy. The first term in Eq (5.15) is the excitation pressure; the last term is the radiation pressure; the second term is the hydrostatic pressure, and the third term is the viscous damping pressure. The measurements are related to the output model through Eq. (5.16).

\[\tilde{y} = \vec{y} + \vec{v}(t) \]

where $\vec{v}(t)$ is the vector of sensors noises.

5.2.1.3 The Jacobian Matrices

To implement the EKF, we need to compute the partial derivatives of the functions in the dynamic model (from Eq. (5.8) to Eq. (5.12)) with respect to the state vector defined in Eq. (5.7). These derivatives are collected in the Jacobian matrix \mathcal{F}. Note that the pressure on a vertical surface does not contribute to the heave motion. In this analysis where we focus on the heave motion, the cells on non-vertical surfaces will be referred to as heave-effective cells. Assuming that the pressure sensors that are
on heave-effective cells are always submerged in the water then \mathcal{F} can be computed as shown in Eq. (5.17), where:

$$
\mathcal{F} = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
\frac{\partial F_T}{\partial x_1} & \frac{\partial F_T}{\partial x_2} & \frac{\partial F_T}{\partial x_r} & \frac{\partial F_T}{\partial \eta} & \frac{\partial F_T}{\partial \beta} & \frac{\partial F_T}{\partial \phi} \\
0 & \frac{\partial F_T}{\partial x_2} & \frac{\partial F_T}{\partial x_r} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
$$

(5.17)

where

$$
\frac{\partial F_T}{\partial x_1} = \frac{1}{m} \sum_j \sum_k A_{s,jk} \vec{n}_{jk} \hat{k}
$$

$$
\left\{ \sum_n \left[\rho g \eta_n \frac{\sinh(\chi_n(x_1 + z_{j,k} + h))}{\cosh(\chi_n h)} \cos(\chi_n x_{j,k} - \omega_n t + \phi_n) - \rho g \right] \right\} - \rho g
$$

(5.18)

$$
\frac{\partial F_T}{\partial x_2} = -\frac{1}{m} B_{visc}
$$

(5.19)

$$
\frac{\partial F_T}{\partial x_r} = -\frac{1}{m} C_r T
$$

(5.20)

$$
\frac{\partial F_T}{\partial \eta_n} = \frac{1}{m} \sum_j \sum_k A_{s,jk} \vec{n}_{jk} \hat{k} \rho g \frac{\cosh(\chi_n(x_1 + z_{j,k} + h))}{\cosh(\chi_n h)} \cos(\chi_n x_{j,k} - \omega_n t + \phi_n)
$$

(5.21)

$$
\frac{\partial F_T}{\partial \omega_n} = \frac{1}{m} \sum_j \sum_k t A_{s,jk} \vec{n}_{jk} \hat{k} \rho g \eta_n \frac{\cosh(\chi_n(x_1 + z_{j,k} + h))}{\cosh(\chi_n h)} \sin(\chi_n x_{j,k} - \omega_n t + \phi_n)
$$

(5.22)
\[
\frac{\partial F_T}{\partial \phi_n} = -\frac{1}{m} \sum_j \sum_k A_{s,jk} \tilde{n}_{j,k} \rho g \eta_n \frac{\cosh(\chi_n(x_1 + z_{j,k} + h))}{\cosh(\chi_n h)} \sin(\chi_n x_{j,k} - \omega_n t + \phi_n)
\]

(5.23)

\[\forall n = 1 \cdots N\]

The Jacobian matrix, \(H_m\), of the output equations is evaluated as follows.

\[
H_m(j, i) = \frac{\partial h_{m,j}}{\partial x(i)} \quad (5.24)
\]

where for \(j = 1\):

\[
\frac{\partial h_{m,1}}{\partial x(1)} = 1, \quad \frac{\partial h_{m,1}}{\partial x(l)} = 0, \forall l = 2, \ldots, N + 1 \quad (5.25)
\]

where for \(j = 2, 3, \cdots, N + 1\), we can write the following gradient functions for each frequency \(n \in \{1, \cdots, N\}\):

\[
\frac{\partial h_{m,j}}{\partial \eta_n} = \rho g \frac{\cosh(\chi_n(x_1 + z_{j,k} + h))}{\cosh(\chi_n h)} \cos(-\omega_n t + \phi_n) \quad (5.26)
\]

\[
\frac{\partial h_{m,j}}{\partial \omega_n} = \rho g \eta_n \frac{\cosh(\chi_n(x_1 + z_{j,k} + h))}{\cosh(\chi_n h)} t \sin(-\omega_n t + \phi_n) \quad (5.27)
\]

\[
\frac{\partial h_{m,j}}{\partial \phi_n} = -\rho g \eta_n \frac{\cosh(\chi_n(x_1 + z_{j,k} + h))}{\cosh(\chi_n h)} \sin(-\omega_n t + \phi_n) \quad (5.28)
\]
For \(j = 2, 3, \cdots, N + 1 \), we can write the following gradient functions with respect to the heave position:

\[
\frac{\partial h_{m,j}}{\partial x_1} = \sum_n \rho g \eta_n \frac{\sinh(\chi_n (x_1 + z_{j,k} + h)) \chi_n}{\cosh(\chi_n h)} \cos(-\omega_n t + \phi_n) - \rho g
\] \hspace{1cm} (5.29)

\[
\frac{\partial h_{m,j}}{\partial x_2} = - \frac{B_{visc}}{A_s}
\] \hspace{1cm} (5.30)

\[
\frac{\partial h_{m,j}}{\partial \vec{x}_r} = - \frac{C_r}{A_s}
\] \hspace{1cm} (5.31)

5.2.1.4 The EKF Process

The WEC system under consideration is a continuous system while the measurements are collected at discrete points. Hence a continuous-discrete Extended Kalman Filter will be implemented \[155\]. Associated with the estimated state vector \(\hat{x}(t) \) is the matrix \(P(t) \) which is the covariance of the state error vector. The covariance matrix propagates in time according to the Riccati equation:

\[
\dot{P}(t) = \mathcal{F}(\hat{x}(t), t)P(t) + P(t)\mathcal{F}^T(\hat{x}(t), t) + G(t)Q_p(t)G^T(t)
\] \hspace{1cm} (5.32)

At each measurement time a Kalman gain is computed using Eq. (5.33).

\[
K_{g,k} = P_k^{-1}H_{m,k}^T(\hat{x}_k^-) \left[H_{m,k}(\hat{x}_k^-)P_k^{-1}H_{m,k}^T(\hat{x}_k^-) + R_k \right]^{-1}
\] \hspace{1cm} (5.33)
The process of the continuous-discrete EKF implemented on the WEC system is here briefed:

1. Propagate the current state using Eqs. (5.8) to (5.12) to the next measurement time \(k \); the resulting state is \(\mathbf{x}^-_k \)

2. Propagate the covariance matrix to the next measurement time \(k \) using the Riccati equation (5.32). The resulting covariance is \(\mathbf{P}^-_k \)

3. Compute the Kalman Gain using Eq. (5.33).

4. Update the state \(\mathbf{\hat{x}}^-_k \) using: \(\mathbf{\hat{x}}^+_k = \mathbf{\hat{x}}^-_k + \mathbf{K}_{g,k}[\mathbf{\bar{y}}_{m,k} - \mathbf{\bar{y}}(\mathbf{\hat{x}}^-_k)] \)

5. Update the covariance \(\mathbf{P}^-_k \) using: \(\mathbf{P}^+_k = (\mathbf{I} - \mathbf{K}_{g,k} \mathbf{H}_{m,k}(\mathbf{\hat{x}}^-_k)) \mathbf{P}^-_k \)

6. The current state is \(\mathbf{\hat{x}}^+_k \) and the current covariance is \(\mathbf{P}^+_k \). Go to step 1).

The EKF needs to be initialized with initial guesses for the state vector and the covariance, \(\mathbf{\hat{x}}(0) \) and \(\mathbf{P}_0 \), respectively. This EKF generates an estimate for the state vector \(\mathbf{\hat{x}} \) at each time step \(k \). Using the estimated state vector, \(\mathbf{\hat{x}} \), an estimate for the excitation force \(\mathbf{\hat{F}}_e \) can be computed using Eq. (2.7), where the states \(x_1, \omega_n, \phi_n \), and \(\eta_n \) are replaced by their estimates.
5.2.1.5 Pseudo Measurement

The velocity is not being measured in the problem. Preliminary simulation results show that the estimated excitation force converges to the true excitation force with reasonable accuracy after a transient period. In this transient period, the estimates of the amplitudes, frequencies, and phases deviate away before they converge to their true signals. Aiming at eliminating this deviation in the initial phase and improving the estimation accuracy, a pseudo-velocity measurement is added. The pseudo velocity measurement is generated by taking the derivative of the position, capitalizing on the available very accurate position sensors. This pseudo measurement is appended to the measurements vector and is handled as other measurements. The new output model is:

\[
\tilde{y} \equiv [x_1, x_2, p_1, p_2, \cdots, p_N]^T = [h_{m,1}(\vec{x}), h_{m,2}(\vec{x}), \cdots, h_{m,N+2}(\vec{x})]^T
\]

(5.34)
5.2.1.6 Simulation results

The simulation results are presented in this section. Figure 5.5 presents the floater (Sandia experimental buoy) applied in the simulation and the location of the pressure sensors. The device has a mass of 858.4 kg, a volume of 0.8578 m3, and a diagonal inertia matrix of [83.9320, 83.9320, 137.5252] kg m2. The wave applied has a Bretschneider wave spectrum with totally 32 frequencies. It is assumed that there are 8 pressure sensors on one quadrant of the buoy surface at different heights.

Figure 5.6 shows the energy absorbed using a complex conjugate control assuming perfect knowledge of the excitation force (ideal CCC in Figure 5.6), the energy absorbed using a SA control assuming perfect knowledge of the excitation force (ideal SA in Figure 5.6), and the energy absorbed using SA control assuming noisy measurements and using the EKF to estimate the excitation force (Real SA in Figure 5.6). The energy harvested using the baseline resistive loading control based on the estimated buoy states (Real RL) is also shown in Figure 5.6. The energy of the ideal CCC matches that of the ideal SA, which highlights the effectiveness of the SA control. As expected, the real SA produces lower energy harvesting due to the presence of measurements noises and model uncertainties, which result in errors in estimating the excitation force. Yet, the energy harvested using the real SA is high compared to the energy harvested using the real RL control.
The corresponding system response (ex, position, velocity), the control force and the excitation force are shown in Figure 5.7. From the figures, we can tell that the estimated position matches the true one. The error in velocity estimation is also very small. The estimation of the excitation force is accurate. Figure 5.8 shows the convergence of the estimated states, the wave frequency, and the wave amplitude respectively.
5.2.2 Extended Kalman Filter for Linear Quadratic Gaussian Controller

In this section, the wave estimation for the LQG controller by applying EKF is introduced. The EKF is designed for a single body 3-DoF WEC. The wave excitation force can be approximated by Fourier Series:

\[
\hat{F}_e = \sum_{n=1}^{N_f} (a_n \cos(\omega_n t) + b_n \sin(\omega_n t)) \tag{5.35}
\]
where N_f represents the number of Fourier terms used to approximate the excitation force. Since in this problem the surge-pitch motion is excited by heave motion, two Kalman filters are built to estimate the states: one for the coupled motion (surge and pitch), and one for the heave motion. Although we can combine those two Kalman filters into one, separating them reduces the computational cost. They are still coupled because the heave motion excites the surge and pitch motion. The current estimate of heave displacement is fed into a Kalman filter to estimate the states of surge and pitch motions.

In Fig. 5.9, the Kalman Filter 1 estimates the states of heave motion. The state vectors for Kalman Filter 1 and Kalman Filter 2 are:

\[
\hat{\mathbf{x}}^h = [z, \dot{z}, \ddot{x}_r, \ddot{\theta}, \ddot{r}, \ddot{\phi}, \ddot{\omega}]^T \quad (5.36)
\]

\[
\hat{\mathbf{x}}^c = [x, \theta, \dot{x}, \dot{\theta}, \ddot{x}_r, \ddot{x}_c, \ddot{a}_1, \ddot{a}_5, \ddot{b}_1, \ddot{b}_5, \ddot{\omega}_1, \ddot{\omega}_5]^T \quad (5.37)
\]
The equations of motion of the dynamic system described in Eq. (2.33) and Eq. (2.31) can be written as a state space model. The detailed state space representation of Eq. (2.33) is presented in Section 4.3. Hence, in this section, we will mainly introduce the state space expression of Eq. (2.31). Let the first part of the states of Kalman Filter 1 be $\bar{x}_h^{1} = [d_3, \dot{d}_3, \bar{x}_r^3]^T$. Hence the equation of motion of the heave motion can
be written as:

\[
\dot{x}^h(t) = F^h(t)\dot{x}^h(t) + G^h(t)u_3(t) + c^h(t) \tag{5.38}
\]

where

\[
F^h(t) = \begin{bmatrix}
0 & 1 & 0 \\
\frac{1}{m^3}K_{33} & -\frac{1}{m^3}B_{v3} & -\frac{1}{m^3}C_{r3} \\
0 & B^3_r & A^3_r
\end{bmatrix} \tag{5.39}
\]

\[
G^h = \begin{bmatrix}
0 \\
\frac{1}{m^3} \hat{F}^3_e \\
0 \\
0
\end{bmatrix} \tag{5.40}
\]

\[
c^h(t) = \begin{bmatrix}
0 \\
\frac{1}{m^3} \hat{F}^3_e \\
0
\end{bmatrix} \tag{5.41}
\]

The \(\hat{F}_e \) represents the estimation of excitation force. In this dissertation, a short-term prediction for excitation force will be needed to compute the control. The sea states are assumed to be steady within this short prediction period. Hence, the dynamics
of the states for estimating the excitation force are:

\[
\begin{align*}
\dot{\vec{a}} &= \vec{0} \quad (5.42) \\
\dot{\vec{b}} &= \vec{0} \quad (5.43) \\
\dot{\vec{\omega}} &= \vec{0} \quad (5.44)
\end{align*}
\]

where \(\vec{a} = [\vec{a}^1, \vec{a}^3, \vec{a}^5]^T\), \(\vec{b} = [\vec{b}^1, \vec{b}^3, \vec{b}^5]^T\), \(\vec{\omega} = [\vec{\omega}^1, \vec{\omega}^3, \vec{\omega}^5]^T\).

5.2.2.1 The Jacobian Matrices

To implement the Extended Kalman Filter, we need to construct the Jacobian matrices from the nonlinear system. The partial derivatives are computed for Eq. (5.38), Eq. (4.48) and Eqs. (5.42) to (5.44). To write the partial derivatives in matrix format, the following matrices are defined:

\[
\phi^c = \begin{bmatrix}
\phi^1_c & \phi^1_s & 0 & 0 \\
0 & 0 & \phi^5_c & \phi^5_s
\end{bmatrix} \quad (5.45)
\]

\[
\phi^h = \begin{bmatrix}
\phi^3_c & \phi^3_s
\end{bmatrix} \quad (5.46)
\]

\[
D^c_\phi = \begin{bmatrix}
D^1 & 0 \\
0 & D^5
\end{bmatrix} \quad (5.47)
\]

\[
D^h_\phi = D^3 \quad (5.48)
\]
where

\[
\phi_c^j = \begin{bmatrix}
\cos(\omega^1_{jt}) \cdots \cos(\omega^j_{jt})
\end{bmatrix}
\]

\[
\phi_s^j = \begin{bmatrix}
\sin(\omega^1_{jt}) \cdots \sin(\omega^j_{jt})
\end{bmatrix}
\quad j = 1, 3, 5 \quad (5.49)
\]

where \(D^1, D^3\) and \(D^5\) are row vectors of size \(n\). The \(k^{th}\) component of the \(D^j\) vector can be expressed as:

\[
D^j_k = -a^j_k \sin(\omega^j_{kt})t + b^j_k \cos(\omega^j_{kt})t \quad (5.50)
\]

where \(j = 1, 3, 5\) and \(k = 1, \ldots, n\). The Jacobian matrix can then be written in the form:

\[
\mathcal{F}^c(t) = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & m^{-1} \phi^c & m^{-1} D^c & m^{-1} D^c \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} \quad (5.51)
\]

In this study, it is assumed that the displacement and velocity will be measured for each of the surge, pitch and heave motions. For the coupled motion we can write the
measurements vector as:

\[\mathbf{y}^c_m = \begin{bmatrix} x, \theta, \dot{x}, \dot{\theta} \end{bmatrix}^T + \mathbf{v}^c(t) \] \hspace{1cm} (5.52)

where \(\mathbf{v}^c(t) \sim N(\mathbf{0}, \mathbf{Q}^c_p(t)) \) which is assumed to be white noise with normal distribution. So the Jacobian matrix of the output model of the surge-pitch motion is:

\[
\mathbf{H}_m^c(t) = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}
\] \hspace{1cm} (5.53)

In a similar way, the Jacobian matrices of heave motion can be derived to get:

\[
\mathbf{H}_m^h(t) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\] \hspace{1cm} (5.55)
where, the output model of the heave motion is:

\[
y^h_m = [z, \dot{z}]^T + v^h(t),
\]

(5.56)

and the \(v^h(t) \sim N(0, Q^h_p(t))\) is the measurement noise of heave motion which is also assumed to be white noise.

As indicated in Fig. 5.9, two Kalman Filters are implemented to generate estimation. The procedure of updating the estimation is the same as introduced in Section 5.2.1.4. Once the estimation of the states at a current time is available, Eq. (5.35) can be used for predicting the excitation force for a future short period.

5.2.2.2 Simulation results

In this section, the performance of the LQG controller is presented. The total simulation time is 200s. The motion is constrained; the constraint for the surge is 1m, for the heave is 0.2m, and for the pitch is 1rad. The wave applied in the simulation has a Bretschneider wave spectrum. The absorbed energy is shown in Figure 5.10. The first figure compares between the energy absorption using the LQG controller and energy absorption using the LQ controller. The latter represents the ideal situation when we assume we have perfect knowledge of the wave. As can be seen in Fig. 5.10, the energy captured by the LQG controller is around 61.6% of the energy captured
by the LQ controller. The second figure shows the energy extracted from the surge, heave, and pitch mode respectively. From the figure, we can tell the total energy is 3.56 times the energy captured by heave motion only. Note that it can be shown that the maximum ratio between the total energy and heave energy is 3 when the system is linear (without parametric excitation) and in the absence of viscous damping. The control force is presented in Fig. 5.11; the maximum control force is around 20kN. Fig. 5.12 shows the pitch rotation and the pitch velocity. As can be seen in Fig. 5.12, the pitch rotation is within the specified constraints.

5.3 Consensus estimation for the WEC array

The consensus estimation is implemented in this section for the estimation of the wave field in the WEC array. The consensus estimation applies the communication technology to improve the performance of the estimation. The developed estimator
is extended from the discrete KCF developed in [156]. Then the derivation of the proposed Continuous-Discrete KCF is presented. Since most of the variables in the mathematical derivations and models are in the vector or matrix format, the different denotations for the scalar, vector, and matrix are neglected except a real number is included.
5.3.1 The Continuous-Discrete Kalman-Consensus Filter

When we have a continuous dynamic system and discrete measurements, a Continuous-Discrete Kalman-Consensus Filter becomes necessary. The continuous dynamics of each agent of the WEC array is described in Eq. (2.3), since the coupling between different agents is neglected. The dynamics can be presented in a state space format as:

\[
\dot{\mathbf{x}}_i = F \mathbf{x}_i + G_u u_i + G w_i \\
\mathbf{y}_{m,i} = H_{m,i} \mathbf{x}_i + v_i
\] \hspace{1cm} (5.57) \hspace{1cm} (5.58)

where \(\mathbf{x}_i \) is the state of the \(i \)th agent, \(u_i \) is the control input and \(\mathbf{y}_{m,i} \) is the measurement output. The \(w_i \) and \(v_i \) are the process noise and measurement noise of \(i \)th agent, respectively. The \(F \) is the system matrix, \(G_u \) is the control matrix, \(G \) is the process noise gain matrix and \(H_{m,i} \) is the output matrix. The proposed CD-KCF
The model can be summarized as:

\[
\dot{\hat{\mathbf{x}}}_i = F\hat{\mathbf{x}}_i + G_u u_i
\]

\[
\dot{\mathbf{P}}_i(t) = F(t)\mathbf{P}_i(t) + \mathbf{P}_i(t)F^T(t) + G(t)Q_p(t)G^T(t)
\]

\[
\hat{\mathbf{x}}_{k,i}^+ = \hat{\mathbf{x}}_{k,i}^- + K_{g,k,i}(\bar{y}_{m,k,i} - H_{m,k,i}\hat{\mathbf{x}}_{k,i}^-) + C_{g,k,i} \sum_{N_i}(\hat{\mathbf{x}}_{k,j}^- - \hat{\mathbf{x}}_{k,i}^-)
\]

\[
\mathbf{P}_{k,i}^+ = (I - K_{g,k,i}H_{m,k,i})\mathbf{P}_{k,i}^-
\]

\[
K_{g,k,i} = \mathbf{P}_{k,i}^- H_{m,k,i}^T(R_{k,i} + H_{m,k,i}\mathbf{P}_{k,i}^- H_{m,k,i}^T)^{-1}
\]

where \(\hat{\mathbf{x}}_i\) is the states of the estimation of the \(i\)th agent. \(\bar{y}_{m,k,i}\) is the measurements of the \(k\)th stage of the \(i\)th agent. \(\mathbf{P}\) is the error covariance matrix of the state estimation, \(Q_p\) is the process noise covariance matrix, \(R\) is the measurement noise covariance matrix. \(K_{g,k,i}\) is the Kalman gain and \(C_{g,k,i}\) is the consensus gain. Algorithm 3 shows the process of the CD-KCF. Furthermore, the stability of the proposed CD-KCF is shown in Appendix A.

Algorithm 3 Continuous-Discrete Kalman-Consensus Filter: a Continuous-Discrete observer with a consensus term.

1. **Initialization:** \(\mathbf{P}_i = \mathbf{P}_i,0, \hat{\mathbf{x}}_i = \hat{\mathbf{x}}_i,0\)
2. **while** new data exists **do**
3. Compute the Kalman Gain \(K_{g,k,i} = \mathbf{P}_{k,i}^- H_{m,k,i}^T(\mathbf{R}_{k,i} + H_{m,k,i}\mathbf{P}_{k,i}^- H_{m,k,i}^T)^{-1}\)
4. Update the current estimation based on consensus law \(\hat{\mathbf{x}}_{k,i} = \hat{\mathbf{x}}_{k,i}^- + K_{g,k,i}(\bar{y}_{m,k,i} - H_{m,k,i}\hat{\mathbf{x}}_{k,i}^-) + C_{g,k,i} \sum_{N_i}(\hat{\mathbf{x}}_{k,j}^- - \hat{\mathbf{x}}_{k,i}^-)\)
5. Propagate the estimation \(\dot{\hat{\mathbf{x}}}_i = F\hat{\mathbf{x}}_i + G_u u_i\)
6. **end while**
5.3.2 Simulation results

In this section, the simulation results are presented to validate the performance of the proposed estimator for different cases. The measured states are only subset of the estimated states. The first case is designed to test the proposed CD-KCF for the WEC array interacts with regular wave. The second test case apply the CD-KCF for the WEC array interacts with the irregular wave. The performance of the regular Kalman Filter (KF) is also presented to compare it to the performance of the CD-KCF. To analyze the performance of the CD-KCF and KF, the following quantities are defined. The disagreement among the array is defined as:

$$\Psi(\hat{\vec{x}}) = \left(\sum_{i=1}^{N} \delta_i^2 \right)^{\frac{1}{2}}$$

The above equation can be further expanded to be: $$\Psi(\hat{\vec{x}}) = \left(\sum_{i=1}^{N} \sum_{j=1}^{M} \delta_{i,j}^2 \right)^{\frac{1}{2}}$$, if the basis vectors are orthogonal, where M is the number of elements in the $\vec{\delta_i}$ vector.

Additionally, $\vec{\delta_i} = \hat{\vec{x}}_i - \vec{\bar{x}}$, where $\vec{\bar{x}}$ represents the average estimation which is computed as $\vec{\bar{x}} = \frac{1}{N} \sum_i \hat{x}_i$.

108
5.3.2.1 Test Case 1

The first test case is the estimation of the position and velocity of each buoy in a wave farm, in addition to the excitation force field using the CD-KCF. Practically, the estimated quantities are required by the controller. By applying the proposed estimator, a better energy extraction is expected if the more precise information is provided. Additionally, since the CD-KCF estimates in a distributed fashion, the wave farm will have a more stable performance even if the data collection and communication of some agents collapse. In this case, the wave farm has 16 buoys; only the heave motion is considered for each of them. The interaction between buoys is neglected in this section. The direction of the incoming wave β is 20°, where β represents the angle between the wave propagation direction and the x axis. The distribution of the buoys is shown in Fig. 5.13.

![Figure 5.13: The distribution of the buoys in the wave farm](image)

Figure 5.13: The distribution of the buoys in the wave farm
For observing the excitation force field, we need to introduce the expression of the excitation force field. The excitation force is function of the wave elevation; the wave elevation field can be expressed as \([157, 158]\):

\[
\eta(t) = \sum_{j=1}^{N_w} \Re(\eta(\omega_j) e^{i(x_j r - \omega_j t + \phi_j)})
\]

(5.61)

where \(N_w\) is the total number of frequencies, \(\eta(\omega_j)\) is the wave elevation at frequency \(\omega_j\), \(\phi_j\) is the random time domain phase shift of particular frequency \(\omega_j\), \(k_j\) is the wave number which can be computed as \(\chi = \omega^2 / g\), where the deep water assumption is applied. The position \(r\) is expressed as:

\[
r = x \cos(\beta) + y \sin(\beta)
\]

(5.62)

The excitation force field can be expressed as:

\[
F_e(t) = \sum_j \Re(F_{ew}(\omega_j) \eta(\omega_j) e^{i(x_j r - \omega_j t + \phi_j)})
\]

(5.63)

where \(F_e(\omega_j)\) is the frequency domain excitation force coefficient. The system dynamics of each agent is described in Eq. \((2.3)\). However, the radiation damping is approximated with a linear damping force as:

\[
F_r = c_{lin} \ddot{z}_i
\]

(5.64)
where z_i is the heave displacement of each agent. There is no control force included in the simulation ($u = 0$), only free motion is considered. Additionally:

$$F_{e,i}(t) = \sum_j \Re(F_{ew}(\omega_j)\eta(\omega_j)e^{i(\chi_j r_i - \omega_j t + \phi_j)})$$

(5.65)

Consequently, the state space model of the unforced and uncoupled wave farm can be expressed as:

$$\dot{x}_{1,i} = x_{2,i}$$

(5.66)

$$\dot{x}_{2,i} = \frac{1}{m}(F_{e,i}(t) - Kx_{1,i} - c_{lin}x_{2,i})$$

(5.67)

To estimate the excitation force, a Fourier Series approximation for the excitation force is used:

$$F_{e,i}(t) \approx \sum_{j=1}^{N_f} a_j \cos(\chi_j r_i - \omega_j t) + b_j \sin(\chi_j r_i - \omega_j t)$$

(5.68)

$$\approx \phi(r_i, t)[\vec{a}, \vec{b}]^T$$

(5.69)

where N_f is the number of Fourier terms in the approximation, $\phi(r_i, t) = [\cos(\vec{\theta}_i), \sin(\vec{\theta}_i)]$ and $\vec{\theta}_i = \vec{\chi} r_i - \vec{\omega} t$. Hence, the dynamics of the estimator can be
expressed as:

\[\dot{x}_{1,i} = \dot{x}_{2,i} \]
\[\dot{x}_{2,i} = \frac{1}{m} (\phi(r_i, t)[\hat{a}, \hat{b}]^T - K\hat{x}_{1,i} - c_{lin}\hat{x}_{2,i}) \]
\[\dot{\hat{a}} = 0^{N_f \times 1} \]
\[\dot{\hat{b}} = 0^{N_f \times 1} \]

The differential equations can be written in a state space form as \(\dot{\hat{x}} = F_i \hat{\hat{x}} \), where \(\hat{x} = [\hat{x}_{1,i}, \hat{x}_{2,i}, \hat{a}, \hat{b}]^T \) and:

\[
F_i = \begin{bmatrix}
0 & 1 & 0^{1 \times N_f} & 0^{1 \times N_f} \\
-\frac{K}{m} & -\frac{c}{m} & \frac{\cos(\theta_i)}{m} & \frac{\sin(\theta_i)}{m} \\
0^{N_f \times 1} & 0^{N_f \times 1} & 0^{N_f \times N_f} & 0^{N_f \times N_f} \\
0^{N_f \times 1} & 0^{N_f \times 1} & 0^{N_f \times N_f} & 0^{N_f \times N_f}
\end{bmatrix}
\]

where the estimated quantities are the position, velocity of each agent and the unknown coefficients of the wave field which are generally required by the controller. Although the unknown coefficients are unmeasurable, the position and velocity are measurable. Additionally, for more realistic case, the WEC system becomes more stochastic (ex, nonlinear effect). Consequently, it is appropriate to select Kalman filter to develop consensus estimation of the wave field. The dynamics of the coefficients \(\hat{a} \) and \(\hat{b} \) are 0 which means they are not propagated. However, they are not fixed
during the estimation. The coefficients will be adjusted based on the new collected measurements which accounts for the stochastic wave condition. In this model, it is desired to have a consensus among the agents in the WEC array only on the coefficients of the excitation force \hat{a} and \hat{b}. The position and the velocity of each agent are not required to have a consensus. As a result, the algorithm of the CD-KCF is modified to be suitable for this WEC array problem, by multiplying the consensus update term by a matrix that eliminates the unnecessary states from the consensus update, as shown in Algorithm 4, step 4 where $P_{k,i,22}^-$ represents the covariance matrix of the states which requires consensus update.

Algorithm 4 Continuous-Discrete Kalman-Consensus Filter: the consensus update term accounts only for a partial state vector.

1: **Initialization:** $P_i = P_{i,0}$, $\hat{x}_i = \hat{x}_{i,0}$
2: **while** new data exists **do**
3: Compute the Kalman Gain
 \[K_{g,k,i} = P_{k,i}^{-} H_{m,k,i}^T (R_{k,i} + H_{m,k,i} P_{k,i}^{-} H_{m,k,i}^T)^{-1} \]
4: Update the current estimation based on consensus law
 \[\begin{align*}
 \hat{x}_{k,i}^- &= \hat{x}_{k,i}^+ + K_{g,k,i} \left[\bar{y}_{m,k,i} - H_{m,k,i} \hat{x}_{k,i}^+ \right] + \gamma \left[\begin{array}{c}
 0_{\text{size}(P_{k,i,11}^-)} \\
 0_{\text{size}(P_{k,i,12}^-)} \\
 0_{\text{size}(P_{k,i,21}^-)} \\
 P_{k,i,22}^-
 \end{array} \right] \sum_{N_i} \sum_{k,j} \left(\hat{x}_{k,j}^- - \hat{x}_{k,i}^- \right)

 P_{k,i}^- &= (I - K_{g,k,i} H_{m,k,i}) P_{k,i}^-
 \end{align*} \]
5: Propagate the estimation
 \[\hat{x}_{i}^- = F \hat{x}_{i} + G_a u_i \]
 \[\hat{P}_{i}(t) = F(t) \hat{P}_{i}(t) + \hat{P}_{i}(t) F^T(t) + G(t) Q_p(t) G^T(t) \]
6: **end while**

The performance of this CD-KCF is tested numerically. The wave farm interacts with a regular wave which has a significant height of 0.3 m and a peak period of 7 s. The rigid body mass of the buoy is 4637 kg, the added mass at infinity frequency is
The average percent estimation error and the disagreement of the excitation force

Fig. 5.14 shows the average percent estimation error of the excitation force of all the agents, which is defined as

$$\bar{e}_e = \frac{\sum_i \left(\left| \hat{F}_{e,i} - F_{e,i} \right| \right)}{\max \left| F_{e,i} \right|} / N \quad (5.75)$$

As shown in Fig. 5.14, the estimation error of the CD-KCF has slightly better convergence compared to the standard KF. The disagreement of the estimation is also shown in the figure. The states of the estimation for the WEC array contains the position, velocity and the coefficients \hat{a} and \hat{b}. Since the agents in the WEC array only have consensus on the coefficients which represents the wave field. The disagreement is computed only based on the coefficients. The disagreement of the CD-KCF converges significantly faster than the KF which means all the agents reach a consensus quickly in this case. The computational cost of the CD-KCF is 263.37s which is less than the standard KF which takes 268.38s.

2702kg, the hydrostatic stiffness is 4.44×10^4 N.m$^{-1}$ and the linear damping is 1064 N.s.m$^{-1}$. Fig. 5.14 shows the average percent estimation error of the excitation force of all the agents, which is defined as

$$\bar{e}_e = \frac{\sum_i \left(\left| \hat{F}_{e,i} - F_{e,i} \right| \right)}{\max \left| F_{e,i} \right|} / N \quad (5.75)$$

As shown in Fig. 5.14, the estimation error of the CD-KCF has slightly better convergence compared to the standard KF. The disagreement of the estimation is also shown in the figure. The states of the estimation for the WEC array contains the position, velocity and the coefficients \hat{a} and \hat{b}. Since the agents in the WEC array only have consensus on the coefficients which represents the wave field. The disagreement is computed only based on the coefficients. The disagreement of the CD-KCF converges significantly faster than the KF which means all the agents reach a consensus quickly in this case. The computational cost of the CD-KCF is 263.37s which is less than the standard KF which takes 268.38s.
5.3.2.2 Test Case 2

The second test case presents the estimation of the position, velocity, and the excitation force field in a wave array that is subject to an irregular wave. The irregular wave has the Bretschneider wave spectrum. The significant height of the wave is 0.3 m and the peak period is 7 s. The total number of frequencies of the wave field is assumed 200 ranging from 0.1 rad.s\(^{-1}\) to 4 rad.s\(^{-1}\). The initial guess for the coefficients is assumed of the form:

\[
\vec{a}_i = \alpha_i(\vec{a}_e \cos(\phi) - \vec{b}_e \sin(\phi))
\]

\[
\vec{b}_i = \alpha_i(-\vec{a}_e \sin(\phi) - \vec{b}_e \cos(\phi))
\]

where \(\alpha_i\) is a random weight on the initial guess for different agents, \(\vec{a}_e = \Re(F_e(\omega)\eta(\omega))\) and \(\vec{b}_e = \Im(F_e(\omega)\eta(\omega))\). Two different simulations are presented in this section. The first simulation assumes less number of frequencies in the estimator while the true model is simulated using 200 frequencies. Specifically, 30 different frequencies are assumed in the CD-KCF model, which means the state vector includes 30 \(a\) and \(b\) coefficients. The main reason for using fewer frequencies in the estimation model is the computational cost. The computational cost of the CD-KCF is 1493.13s compared to 1560.40s of the standard KF. The CD-KCF is slightly faster than the standard KF. The average percent estimation error of the excitation force is shown
The percent estimation error converges to about 25% as shown in Fig. 5.15 when using only 30 frequencies in the estimator model, whereas it converges to about 0% when
Figure 5.16: The average percent estimation error and the disagreement of the excitation force using 200 frequencies

using 200 frequencies, as shown in Fig. 5.16. This is expected since the estimation with less number of frequencies cannot fully capture the true wave spectrum. To highlight the impact of the number of frequencies on the estimation performance, Fig. 5.17 show simulations using 30, 100, and 200 frequencies in the estimator model of the CD-KCF. Both the estimation error and the disagreement significantly improved by increasing the number of frequencies. Moreover, from the figures regarding the estimation error, we can tell that the required time to obtain reasonable low-level error is less than 40s. Typically, the sample time of the ocean observation is around 15-30mins within which the sea state is reasonably described [159]. Apparently, the converging time of the developed estimator is significantly less than the sample time. Additionally, based on the wave conditions applied in references [160, 161], we can consider an even faster wave dynamics where the sea state changes around 120s. It is still much larger than 40s. Hence, the proposed estimator is able to catch the constantly changing wave.
Figure 5.17: Estimation error and Disagreement obtained with different number of frequencies using the CD-KCF
Chapter 6

Power Take Off Constraints

This Chapter introduces the Power take-off constraints of the WEC. In previous chapters, the optimal control and the optimal estimation are proposed for the WEC. Although some of them consider the constraint on the displacement and the control force. The realistic performance of the controller with the Power take-off (PTO) unit implemented is not validated. Among the different categories of PTO units, the hydraulic system and direct drive system are mainly applied for WEC control. Section 6.1 introduces the modeling of the discrete displacement hydraulic PTO. The details of the dynamics of the hydraulic cylinder, hoses, directional valves, pressure accumulators and the hydraulic motor are presented in this section. Section 6.2 presents the numerical validation on the proposed system. The control algorithms that will be applied to the hydraulic system and the simulation tool are introduced
first. The simulation results are then presented.

6.1 Modeling of The Discrete Displacement Hydraulic Power Take-Off unit

In this dissertation, the Discrete Displacement Cylinder (DDC) hydraulic system is used to apply the PTO torque. A simplified illustration for this system is shown in Figure 6.1. More details about the DDC hydraulic system can be found in [15]. As shown in Figure 6.1 the DDC hydraulic system is mainly composed of the actuator/cylinder, the manifold valves, the manifold accumulators, and the generator. The PTO torque is computed in the Equation (6.1) as the product of the cylinder force and the moment arm:

\[\tau_{PTO} = Fcl_1 \] \hspace{1cm} (6.1)

where the moment arm can be expressed by Equation (6.2):

\[l_1 = \frac{l_2l_3\sin(\theta - \alpha_0)}{x_c + l_4} \] \hspace{1cm} (6.2)

\[x_c = -l_4 + \sqrt{-2l_2l_3\cos(\theta - \alpha_0) + (l_2^2 + l_3^2)} \] \hspace{1cm} (6.3)
6.1.1 The Hydraulic Cylinder

The actuator force F_c is generated by the hydraulic cylinder and can be computed by Equations (6.4) and (6.5):

$$\tilde{F}_c = -p_{A1}A1 + p_{A2}A2 - p_{A3}A3 + p_{A4}A4 \quad (6.4)$$

$$F_c = \tilde{F}_c - F_{fric} \quad (6.5)$$

where p_{Ai} is the pressure of the ith chamber and Ai is the area of the piston. F_{fric} is the cylinder friction force. The dynamics of the chamber pressure can be described
by flow continuity Equations (6.6) to (6.9):

\[
\dot{p}_{A1} = \frac{\beta(p_{A1})}{A1(x_{c,\text{max}} - x_c)} + V_{0,A1}(Q_{A1} - v_c A1) \quad (6.6)
\]

\[
\dot{p}_{A2} = \frac{\beta(p_{A2})}{A2 x_c} + V_{0,A2} (Q_{A2} + v_c A2) \quad (6.7)
\]

\[
\dot{p}_{A3} = \frac{\beta(p_{A3})}{A3(x_{c,\text{max}} - x_c)} + V_{0,A3} (Q_{A3} - v_c A3) \quad (6.8)
\]

\[
\dot{p}_{A4} = \frac{\beta(p_{A4})}{A4 x_c} + V_{0,A4} (Q_{A4} + v_c A4) \quad (6.9)
\]

where \(V_{0,A1}, V_{0,A2}, V_{0,A3}, \text{ and } V_{0,A4}\) are the volumes of the connecting hoses of different chambers. \(x_{c,\text{max}}\) is the maximum stroke of the cylinder. \(x_c\) and \(v_c\) are the position and velocity of the piston, respectively, which are defined positive down. \(\beta(p_{Ai})\) is the effective bulk modulus of the fluid based on different pressures, and is assumed to be constant in this study. Additionally, \(Q_{Ai}\) is the flow from the connecting hose to the \(i\)th chamber. The cylinder friction is expressed by Equation (6.10):

\[
F_{\text{fric}} = \begin{cases}
\tanh(a_f v_c) \left| \tilde{F}_c \right| (1 - \eta_c), & \text{if } F_c v_c > 0 \\
\tanh(a_f v_c) \left| \tilde{F}_c \right| \left(\frac{1}{\eta_c} - 1 \right), & \text{otherwise}
\end{cases} \quad (6.10)
\]

where \(a\) is the coefficient used to smooth the friction curve versus velocity. \(\eta_c\) is a constant efficiency of the cylinder.
6.1.2 The Hoses

The hoses connected between the cylinder and the manifold valves are modeled by Equations (6.11) and (6.12) which refer to [15]:

\[
\dot{Q}_{\text{out}} = \frac{(p_1 - p_2)A_{\text{hose}} - p_f(Q_{\text{out}})A_{\text{hose}}}{\rho l_{\text{hose}}}
\] (6.11)

\[
\dot{p}_1 = \frac{(Q_{\text{in}} - Q_{\text{out}})\beta}{A_{\text{hose}} l_{\text{hose}}}
\] (6.12)

where \(Q_{\text{in}}\) and \(Q_{\text{out}}\) are the fluid flows in and out of the hose, and \(p_1\) and \(p_2\) are the pressures of the inlet and outlet of the hose, respectively. \(A_{\text{hose}}\) is the area of the hose, \(l_{\text{hose}}\) is the length of the hose, \(\rho\) is the fluid density, and \(p_f(Q_{\text{out}})\) is the pressure drop across the hose. The pressure drop across a straight pipe/hose can be modeled by the equation:

\[
p_\lambda = \frac{0.3164l_{\text{hose}} \rho Q_{\text{out}} |Q_{\text{out}}| (0.5 + \tanh(\frac{2300 - Re}{100}))}{2Re^{0.25}d_{\text{hose}}^2 (0.25d_{\text{hose}}^2 \pi)^2}
\]

\[
+ \frac{128\nu \rho l_{\text{hose}} Q_{\text{out}}}{\pi d_{\text{hose}}^4} (0.5 + 0.5 \tanh(\frac{-2300 + Re}{100}))
\] (6.13)

where \(\nu\) is the kinematic viscosity of the fluid. \(Re\) represents the Reynolds number which can be computed by Equation (6.14):

\[
Re = \frac{v_{\text{out}}d_{\text{hose}}}{\nu}
\] (6.14)
Equation (6.13) combines the pressure loss of the laminar flow and the turbulent flow by the hyperbolic-tangent expression. Consequently, a continuous transition of the pressure loss between the laminar and turbulent flow can be created. When the Reynold number is less than 2200, \((0.5 + 0.5 \tanh(\frac{2300 - Re}{100}))\) is close to zero, which means the pressure drop is contributed by the laminar flow. On the other hand, when the Reynold number is greater than 2400, \((0.5 + 0.5 \tanh(\frac{-2300 + Re}{100}))\) is close to zero, which means the pressure drop is contributed by the turbulent flow. Another source of pressure drop is the fitting loss, which can be computed by Equation (6.15):

\[
p_\zeta = \zeta \frac{\rho}{2} Q_{out} \left| \frac{1}{Q_{out}} \right| \frac{1}{\left(0.25d_{hose}^2\pi\right)^2}
\]

(6.15)

where \(\zeta\) is the friction coefficient for a given fitting type. Finally, the total resistance in the hose with \(n\) line pieces and \(m\) fittings can be computed by Equation (6.16):

\[
p_f(Q_{out}) = p_{\lambda,1}(Q_{out}) + \ldots + p_{\lambda,n}(Q_{out}) + p_{\zeta,1}(Q_{out}) + \ldots + p_{\zeta,m}(Q_{out})
\]

(6.16)

In this dissertation, the pressure loss of the hoses is modeled by the Equation (6.17):

\[
p_f(Q_{out}) = p_{\lambda}(Q_{out}) + p_{\zeta,M}(Q_{out}) + p_{\zeta,C}(Q_{out})
\]

(6.17)

where \(p_{\zeta,M}\) represents the fitting resistance which considers the internal pressure drops in the manifold and \(p_{\zeta,C}\) represents the cylinder inlet loss.
6.1.3 The Directional Valves

The two-way two-position directional valves are used in this model. The flow across the valve can be described by the following orifice Equation (6.18):

\[Q_v = \text{sign}(\Delta p)C_dA_v(\alpha)\sqrt{\frac{2}{\rho} |\Delta p|} \]

(6.18)

where \(\Delta p \) is the pressure difference across the valve, \(C_d \) is the discharge coefficient, and \(A_v(\alpha) \) is the opening area which can be computed by Equations (6.19)–(6.21):

\[A_v(\alpha) = \alpha A_0 \]

(6.19)

\[\dot{\alpha} = \begin{cases}
\frac{1}{t_v}, & \text{if } u_v = 1 \\
-\frac{1}{t_v}, & \text{if } u_v = 0
\end{cases} \]

(6.20)

\[0 \leq \alpha \leq 1 \]

(6.21)

where \(A_0 \) is the maximum opening area of the valve. In this paper, a total of eight valves are used to control the actuator force. The \(t_v \) represents the opening and closing time of the valve. The shifting algorithm of the valve applied in this paper can be further improved [162] to reduce the pressure oscillations and improve the energy efficiency. Moreover, the different opening time has a significant impact on the cylinder pressure [163]. The opening time \(t_v \) is selected to be 30 ms in this paper.
to avoid the cavitation or pressure spikes and to have a relatively fast response to the reference control command. Since the focus of this paper is to examine the controllers’ performance practically, the influence of different opening times is not investigated in this paper.

6.1.4 The Pressure Accumulators

The accumulators in the DDC system are used as pressure sources and also for energy storage. The dynamics of the pressure accumulator can be modeled with the Equations (6.22)–(6.24) \[15\]:

\[
\dot{p}_{\text{acc}} = \frac{Q_{\text{acc}} + \frac{1}{1 + \frac{R_{\text{gas}}}{C_v}} \frac{V_g}{T_{\text{gas}}} \frac{1}{\tau_a} (T_w - T_{\text{gas}})}{V_{a0} - V_g + V_{\text{ext}}} + \frac{1}{1 + \frac{R_{\text{gas}}}{C_v}} \frac{V_g}{p_{\text{acc}}}
\]

(6.22)

\[
\dot{V}_g = -Q_{\text{acc}} + \frac{\dot{p}_{\text{acc}}}{\beta} \frac{V_{a0} - V_g + V_{\text{ext}}}{\beta}
\]

(6.23)

\[
\dot{T}_{\text{gas}} = \frac{1}{\tau_a} (T_w - T_{\text{gas}}) - \frac{R_{\text{gas}} T_{\text{gas}}}{C_v V_g} \dot{V}_g
\]

(6.24)

where \(p_{\text{acc}} \) is the pressure of the accumulator, \(Q_{\text{acc}} \) is the inlet flow to the accumulator, \(R_{\text{gas}} \) is the ideal gas constant, \(C_v \) is the gas specific heat at constant volume, \(T_w \) is the wall temperature, \(\tau_a \) is the thermal time constant, \(\beta \) is the bulk modulus of the fluid in the pipeline volume \(V_{\text{ext}} \), \(V_{a0} \) is the size of the accumulator, \(V_g \) is the gas volume, and \(T_{\text{gas}} \) is the gas temperature. Hence the state of the accumulator contains
the pressure, the gas volume and the gas temperature. Initially, the state can be
specified based on the standard gas law by Equation (6.25):

\[V_g = \frac{T_{\text{gas}} p_{a0}}{T_0} \frac{V_{a0}}{p_a} \] (6.25)

where \(p_{a0} \) is the pre-charged pressure of the gas at the temperature \(T_0 \).

6.1.5 The Hydraulic Motor

For the system presented in this dissertation, there are 4 chambers and 2 different
pressures: the high pressure and the low pressure. The hydraulic motor is connected
between the high pressure accumulator and the low pressure accumulator. The flow
of the hydraulic motor can be modeled by Equation (6.26):

\[Q_M = D_w \omega_M - \Delta p C_{Q1} \] (6.26)

where \(D_w \) is the displacement of the hydraulic motor, which is constant for a fixed
displacement motor, \(\Delta p \) is the pressure across the motor, \(C_{Q1} \) is the coefficient of the
flow loss of the motor, and \(\omega_M \) is the rotational speed of the motor which is defined
by Equation (6.27):

\[\omega_M = \frac{p_{\text{avg,exp}}}{p_H k_{\text{gen}} D_M} \] (6.27)
where $p_{\text{avg,exp}}$ is the expected average power output, p_H is the pressure of the high pressure accumulator, k_{gen} is the number of generators, D_M is the total motor displacement, and ψ is a coefficient for the motor speed control to prevent the high pressure from depletion or saturation which is formulated by Equations (6.28) and (6.29):

$$k = \frac{4}{(p_{H,\text{max}} - p_{H,\text{min}})} \quad (6.28)$$

$$\psi = \begin{cases}
 k(p_H - p_{H,\text{min}}), & \text{if } p_H > p_{H,\text{min}} \\
 0, & \text{otherwise}
\end{cases} \quad (6.29)$$

To achieve the desired motor speed introduced in Equation (6.27), the generator torque control needs to be included. In this paper, the generator and inverter are not modeled and the desired motor speed is assumed achievable. The power in the hydraulic motor can be computed by Equation (6.30):

$$P_M = \Delta p Q_M \quad (6.30)$$

This completes the modeling of DDC hydraulic system; the control algorithm is introduced in the next section.
6.2 Numerical Validation

6.2.1 The Control Algorithm

Two parts will be presented in this section: the control method for the buoy and the force-shifting algorithm for controlling the valves. The control method for controlling the buoy computes a reference value for the control force at each time step. This reference control force is then used as an input to the PTO, and the actual control force that results from the PTO is computed using the force-shifting algorithm. Each of the two parts is detailed below.

6.2.1.1 The Buoy Control Method

Several control methods will be tested in this paper using a simulator that simulates the PTO unit. Some of these controller were originally developed for heave control. It is relatively straightforward, however, to extend a control method from the heave motion to the pitch motion. For example, the singular arc (SA) control method [2] can be used to compute the control torque by the following Equation (6.31):

\[\tau_{PTO}(s) = \frac{N(s)}{D(s)} \]

(6.31)
where:

\[N(s) = (Js^2 + (Cr(sI + Ar)^{-1}Br - Dr)s + K)\tau_e(s) \]

\[D(s) = s(Cr(sI + Ar)^{-1}Br - Cr(sI - Ar)^{-1}Br - 2Dr) \quad (6.32) \]

where the excitation torque can be expressed as Fourier series expansion by Equation (6.33):

\[\tau_e = \sum_{i=1}^{n} \Re(\tau_{ew}(\omega_i)\eta(\omega_i)e^{i(-\omega_i t + \phi_i)}) \quad (6.33) \]

An inverse Laplace transformation is then applied to the SA control to obtain the control in the time domain. The required information to compute the control is the time \(t \), the excitation torque coefficient \(\tau_{ew} \), the wave frequency vector \(\vec{\omega} \) and the time domain phase shift vector \(\vec{\phi} \). A reference control method is the feedback proportional-derivative (PD) control. The PD control takes the form of Equation (6.34):

\[\tau_{PTO} = K_p \theta + K_d \dot{\theta} \quad (6.34) \]

where \(K_p \) is the proportional gain and \(K_d \) is the derivative gain. In addition to the above two control methods, simulated with the hydraulic system are model predictive control (MPC) [164], shape-based (SB) control [5], proportional-derivative complex conjugate control (PDC3) [24], and pseudo-spectral (PS) control [165]. Each one of these methods is well documented in the literature, so the details of each control methods are avoided in this section.
In the original developments, the SA control and the PDC3 control compute a control force that is equivalent to the complex conjugate control (C3), and hence the maximum possible harvested energy in the linear domain. However, the C3 does not account for constraints on the buoy displacement. In fact, since the C3 criterion is to resonate the buoy with the excitation force, the motion of the buoy always violates displacement constraints when controlled using the SA and PDC3 controls. On the other hand, the MPC, SB, and PS control methods compute a control force in an optimal sense, taking displacement constraints into account. Figure 6.2 shows a simulation for 5 min for the above six control methods when a constraint on the buoy displacement is assumed. The simulation parameters are detailed in Section 6.2.3. This simulation does not account for the PTO dynamics and is here presented to highlight the impact of including the PTO into the simulations in Section 6.2.3. As can be seen from Figure 6.2, among the six control methods, the MPC and PD controls performed best, then the SB method, then the PS, and then the PDC3 and SA methods. The two methods (SA and PDC3) that perform best without displacement constraints actually have the poorest performance when accounting for the constraints.
6.2.2 The Force-Shifting Algorithm

The force-shifting algorithm (FSA) is introduced in this section. The FSA used in this paper is described by Equation (6.35):

\[
\{ F_c(t) = \bar{F}[k] \mid k = \arg \min | F_{\text{ref}}(t) - \bar{F}[k] | \} \tag{6.35}
\]

where \(F_{\text{ref}} \) is the reference control force (computed for instance using one of the six control methods described above), and \(\bar{F} \) is the vector of the possible discrete values for the force. With different permutations of valve openings, it is possible to produce different levels of constant forces, as shown in Figure 6.3, where it is assumed that \(p_H = 200 \) bar and \(p_L = 20 \) bar. The FSA selects the discrete force level that is closest to the reference control force. It is noted here that the discrete force changes over time due to the fluctuation of the pressures in the accumulators.
Figure 6.2: When accounting for displacement constraints, some unconstrained methods harvest less energy. PD: proportional-derivative; SA: singular arc; PDC3: proportional-derivative complex conjugate control; SB: shape-based; MPC: model predictive control; PS: pseudo-spectral.

Figure 6.3: An example for all discrete possible values for a PTO force.
6.2.3 Simulation Tool

A tool for simulating the dynamics of the WEC including the motion dynamics, the hydrodynamic/hydrostatic force calculations, and the PTO hardware model was developed in MathWorks Simulink®. The detailed Simulink model of the wave energy conversion system is shown in Figure 6.4. The Plant block simulates the dynamics of the buoy. The PTO block simulates all the equations of the valves, hoses, and accumulators. As can be seen in Figure 6.4, the excitation force is an input that is computed outside the Plant block. The control force command is computed in the block ‘Control Command’. Despite the name, six different controllers were tested in the ‘Control Command’ block. A detailed Simulink model of the hydraulic system is shown in Figure 6.5, this model is inside the PTO block in Figure 6.4. The parameters of the dynamic model of the WaveStar used in the simulations in this dissertation are listed in Table 2.1.
Figure 6.4: The Simulink model of the wave energy conversion system.
The irregular waves are simulated in this study using the stochastic Pierson–Moskowitz (PM) spectrum. The wave used in the simulation has a significant height of 1.75 m and a peak period 5.57 s. With regard to the significant height and peak period applied in the simulation, they are selected from the validated wave climate in [112, 166] for the Wavestar C5. The proper range so that the wave for C5 can have major energy absorption is with a significant height from 0.5 m to 3 m and peak period from 2 s to 7 s. The wave climate applied in this study is in the middle of the range to avoid losing generality.
6.2.3.1 The System Losses

The system losses are computed in this study. The system losses include the pressure loss of the hoses, the flow loss of the generator, and the friction of the cylinder. The pressure loss is shown in Figure 6.6 in which the vertical line represents the transition between the laminar flow and the turbulent flow when the Reynold number is \(Re = 2300 \), for each of the two possible directions of the fluid flow. The amount of the flow loss and the friction force of the cylinder are shown in Figures 6.7 and 6.8. All the system parameters used in the simulations are listed in Table 6.1.

6.2.4 Simulation Results

The above Simulink tool is used to simulate the performance of the above six control methods. The energy extracted by those methods is shown in Figure 6.9. In this simulation, there are limitations on the maximum stroke and the maximum control force. In addition, the PTO dynamics are simulated. The maximum control force in the cylinder in the simulations presented in this paper is assumed to be 215 kN. The maximum allowable displacement in the simulations presented in this paper is assumed to be 1.2 m. As can be seen in Figure 6.9, the MPC and PD control methods harvest the highest energy level compared to the other methods. The SB
method comes next. The SA, PDC3, and PS control methods come next, and the three of them perform about the same. For further analysis of the performance of the controllers, the capture width ratio (CWR) is evaluated:

\[CWR = \frac{P_{\text{ave}}}{DP_w} \] \hspace{1cm} (6.36)

where \(P_{\text{ave}} \) is the average power extraction of the buoy, \(P_w \) is the wave energy transport, and \(D \) is the characteristic dimension of the buoy. The CWRs of the MPC, PD, SB, SA, PDC3, and PS controllers are 51.21\%, 50.92\%, 44.68\%, 37.60\%, 37.14\%, and 36.86\% respectively. According to the [166], the CWR of the performance of the floater with the applied wave ranges from 40\% to 50\%. Hence, the performance of the proposed controllers is in the reasonable range in terms of energy extraction. Comparing Figure 6.9 to Figure 6.2 we can see that by including the PTO model, the performance of the SA method improves slightly, while the performance of the PS degrades slightly, and as a result, the three methods PS, SA, and PDC3 perform about the same. The performance of the MPC, PD, and SB control methods actually slightly improve when the PTO model is included.
Figure 6.6: The pressure loss of the hose which has a 1-m length and 3.81×10^{-2} m diameter with different flow rates across the hose.

Figure 6.7: The flow loss of the generator.
Another important result to examine is the output mechanical power at the actuator and the output power from the generator. These two quantities are compared in the first part of Figure 6.10. From the figure, we can tell that the power absorbed in the generator side is much smoother than the power extracted by the actuator. The hydraulic accumulators act as a power capacitor for energy storage, resulting in this relatively smooth power profile at the generator output. As can be seen in the figure also, the actuator power includes reactive power; these are the times at which the actuator power is negative. At these times, the PTO actually pumps power into the ocean through the actuator. The generator output power does not have any reactive power, confirming that all the reactive power come from the accumulators.
The efficiency of the system is defined by Equation (6.37):

\[
\eta_{\text{out}} = \frac{P_{\text{gen}}}{P_{\text{actuator}}}
\]

(6.37)

The efficiency depends on the control method. For example, in this test case, the efficiency of the SB controller is 80.15\%, for the MPC it is 72.58\%, for the PS it is 67.34\%, for the SA it is 64.36\%, and for the PD controller it is 71.76\%, over 300 s.

In the context of comparing the performance of different control methods, it is important to highlight one significant difference between them that emanates from the theory behind each control method. Each of the MPC, SB, and PS control methods requires wave prediction. That is, wave information (or excitation force) is needed over a future horizon at each time step in the simulation. In the simulations in this paper, this future horizon is assumed to be 0.6 s for the SB and MPC control methods and is assumed to be 60 s for the PS control. Wave prediction is assumed perfect in these simulations. Non-perfect wave prediction would affect the results obtained using these methods. The PD, SA, and PDC3 control methods do not need future wave prediction.

This simulation tool also provides detailed operation information that is useful for characterizing different components in the system. For example, the generator speed is computed in the simulation and is shown in the second part of Figure 6.10. As
shown in the figure, the speed is oscillating around 1200 RPM.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of the arms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_2</td>
<td>3</td>
<td>m</td>
</tr>
<tr>
<td>l_3</td>
<td>2.6</td>
<td>m</td>
</tr>
<tr>
<td>l_4</td>
<td>1.6</td>
<td>m</td>
</tr>
<tr>
<td>Length of the hoses C2M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l_{A1}</td>
<td>1</td>
<td>m</td>
</tr>
<tr>
<td>l_{A2}</td>
<td>1</td>
<td>m</td>
</tr>
<tr>
<td>l_{A3}</td>
<td>1</td>
<td>m</td>
</tr>
<tr>
<td>l_{A4}</td>
<td>1</td>
<td>m</td>
</tr>
<tr>
<td>Diameter of the hoses C2M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{A1}</td>
<td>1.5</td>
<td>in</td>
</tr>
<tr>
<td>d_{A2}</td>
<td>1.5</td>
<td>in</td>
</tr>
<tr>
<td>d_{A3}</td>
<td>1.5</td>
<td>in</td>
</tr>
<tr>
<td>d_{A4}</td>
<td>1.5</td>
<td>in</td>
</tr>
<tr>
<td>Maximum stroke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x_{c,max}$</td>
<td>3</td>
<td>m</td>
</tr>
<tr>
<td>Area of the chambers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>A_1</td>
<td>113.4×10^{-4} m2</td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td>32.55×10^{-4} m2</td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td>80.85×10^{-4} m2</td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td>162.75×10^{-4} m2</td>
<td></td>
</tr>
</tbody>
</table>

Max Area of the valves

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{01}</td>
<td>1.6×10^{-4} m2</td>
<td></td>
</tr>
<tr>
<td>A_{02}</td>
<td>1.6×10^{-4} m2</td>
<td></td>
</tr>
<tr>
<td>A_{03}</td>
<td>1.6×10^{-4} m2</td>
<td></td>
</tr>
<tr>
<td>A_{04}</td>
<td>1.6×10^{-4} m2</td>
<td></td>
</tr>
</tbody>
</table>

Accumulator size

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{a0}</td>
<td>100×10^{-3} m3</td>
<td></td>
</tr>
</tbody>
</table>

Pressure drop coef

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ_M</td>
<td>1.3</td>
</tr>
<tr>
<td>ζ_C</td>
<td>1</td>
</tr>
</tbody>
</table>

Specific time constant S

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_I</td>
<td>23 s</td>
<td></td>
</tr>
<tr>
<td>τ_H</td>
<td>34 s</td>
<td></td>
</tr>
</tbody>
</table>

Initial pressure of the accumulators

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{a,l}$</td>
<td>20 bar</td>
<td></td>
</tr>
<tr>
<td>$p_{a,h}$</td>
<td>130 bar</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Initial angle</td>
<td>α_0</td>
<td>1.0821 rad</td>
</tr>
<tr>
<td>Control parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>-9.16×10^6</td>
<td>Nm/rad</td>
</tr>
<tr>
<td>B</td>
<td>4.4×10^6</td>
<td>Nms/rad</td>
</tr>
<tr>
<td>Valve opening time</td>
<td>t_v</td>
<td>30×10^{-3} s</td>
</tr>
<tr>
<td>Wall temperature</td>
<td>T_w</td>
<td>50</td>
</tr>
<tr>
<td>Ideal gas constant</td>
<td>R</td>
<td>276</td>
</tr>
<tr>
<td>Gas specific heat at constant volume</td>
<td>C_v</td>
<td>760</td>
</tr>
<tr>
<td>Motor displacement</td>
<td>D_w</td>
<td>100</td>
</tr>
<tr>
<td>Flow loss coefficient</td>
<td>C_{Q1}</td>
<td>5.4×10^{-12} m3/s/Pa</td>
</tr>
<tr>
<td>Fluid bulk modulus</td>
<td>β</td>
<td>1.5×10^9 Pa</td>
</tr>
</tbody>
</table>
To present detailed plots for the response of the buoy, only one control method is selected as a sample to avoid excessive figures in the paper. The SB method is selected here to present the detailed WEC response in this section. The angular displacement of the buoy is shown in the first part in Figure 6.11: the maximum angular displacement is about 10 degrees and it is below 5 degrees most of the time. The angular
Figure 6.11: The rotational angle and the angular velocity of the buoy is shown in the second part in Figure 6.11. The cylinder force and the PTO torque are shown in Figures 6.12, respectively. Both the reference and actual values are plotted in each of the two figures. As can be seen in Figure 6.12, the control force is below the force limit of 215 kN. The accumulator pressure is shown in Figure 6.13. The high pressure is oscillating around 100 bar, while the low pressure is stable around 20 bar. The chamber pressure is also shown in Figure 6.13. Significant fluctuations can be observed when the hydraulic system is extracting energy. This is necessary to be able to track the reference control command effectively. However, those fluctuations may be reduced by increasing the valve opening area or including relief valves.
6.2.5 Discussion

In this study, different recent control methods are tested using a simulation tool that simulates a hydraulic PTO system. In a theoretical test (where PTO is assumed to track the reference control command ideally and in the absence of all constraints,) the SA controller has the best performance in terms of energy extraction. However, the performance of the SA controller with the hydraulic system model included is
the poorest among the tested six control methods. To get more insight into this phenomenon, consider Table 6.2 that presents data for three controllers (SA, PD, and PDC3) in the theoretical test case. As can be seen in Table 6.2, the energy extracted by the PD controller in this theoretical test is about 60% of that of the SA controller. However, the buoy maximum displacement associated with the SA control is significantly greater than that of the PD control (almost three times higher) which makes it more difficult to achieve. Similarly, the maximum control force required by the SA control is significantly greater than that of the PD control, which means a PTO might not be able to track the command force at all times when using a SA control, while it is more likely to track a command force generated using a PD control. The data of the PDC3 control in Table 6.2 also highlights that the PDC3 control in this test case generates about the same level of average power, but in a higher displacement range and with higher force capability. This indicates that including a model for the PTO would result in favorable performance for the PD control compared to the PDC3. To highlight the impact of the PTO model on the performance of the different control strategies, consider Table 6.3. The data are presented for all the six control methods. As can be seen from Table 6.3, all the control methods reached the maximum possible control capacity allowable by the PTO. Since this maximum control force is well below that needed by the SA in Table 6.2, the amount of harvested energy in this practical case is significantly less than that computed in the theoretical case (13.49 kW compared to 35.11 kW in average power). The drop
in energy harvested using the PD control, however, is less since the maximum force needed theoretically was as high as that of the SA. The displacement of the PDC3 reached the maximum displacement allowable by the WEC (1.2 m.) This is expected since the PDC3 tends to increase the displacement and hence it would reach a limit imposed by the WEC system.

Table 6.2
Capacity requirement of the controllers without hydraulic system.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>The SA controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{PTO,max}$</td>
<td>3705</td>
<td>kN</td>
</tr>
<tr>
<td>$x_{c,max} - x_{c,min}$</td>
<td>3.2</td>
<td>m</td>
</tr>
<tr>
<td>P_{ave}</td>
<td>35.11</td>
<td>kW</td>
</tr>
<tr>
<td>The PD controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{PTO,max}$</td>
<td>1119</td>
<td>kN</td>
</tr>
<tr>
<td>$x_{c,max} - x_{c,min}$</td>
<td>1.1</td>
<td>m</td>
</tr>
<tr>
<td>P_{ave}</td>
<td>21.00</td>
<td>kW</td>
</tr>
<tr>
<td>The PDC3 controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{PTO,max}$</td>
<td>1404</td>
<td>kN</td>
</tr>
<tr>
<td>$x_{c,max} - x_{c,min}$</td>
<td>1.6</td>
<td>m</td>
</tr>
<tr>
<td>P_{ave}</td>
<td>21.08</td>
<td>kW</td>
</tr>
</tbody>
</table>
Table 6.3
Capacity requirement of the controllers with hydraulic system.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>The SA controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{PTO,max}$</td>
<td>215</td>
<td>kN</td>
</tr>
<tr>
<td>$x_{c,max} - x_{c,min}$</td>
<td>0.96</td>
<td>m</td>
</tr>
<tr>
<td>P_{ave}</td>
<td>13.49</td>
<td>kW</td>
</tr>
<tr>
<td>The PD controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{PTO,max}$</td>
<td>215</td>
<td>kN</td>
</tr>
<tr>
<td>$x_{c,max} - x_{c,min}$</td>
<td>1.1</td>
<td>m</td>
</tr>
<tr>
<td>P_{ave}</td>
<td>18.26</td>
<td>kW</td>
</tr>
<tr>
<td>The PDC3 controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{PTO,max}$</td>
<td>215</td>
<td>kN</td>
</tr>
<tr>
<td>$x_{c,max} - x_{c,min}$</td>
<td>1.2</td>
<td>m</td>
</tr>
<tr>
<td>P_{ave}</td>
<td>13.32</td>
<td>kW</td>
</tr>
<tr>
<td>The SB controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{PTO,max}$</td>
<td>215</td>
<td>kN</td>
</tr>
<tr>
<td>$x_{c,max} - x_{c,min}$</td>
<td>0.8</td>
<td>m</td>
</tr>
<tr>
<td>P_{ave}</td>
<td>16.02</td>
<td>kW</td>
</tr>
<tr>
<td>The MPC controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$F_{PTO,max}$</td>
<td>215</td>
<td>kN</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>$x_{c,\text{max}} - x_{c,\text{min}}$</td>
<td>1.1 m</td>
<td></td>
</tr>
<tr>
<td>P_{ave}</td>
<td>18.37 kW</td>
<td></td>
</tr>
</tbody>
</table>

The PS controller

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{\text{PTO,\max}}$</td>
<td>215 kN</td>
</tr>
<tr>
<td>$x_{c,\text{max}} - x_{c,\text{min}}$</td>
<td>0.90 m</td>
</tr>
<tr>
<td>P_{ave}</td>
<td>13.22 kW</td>
</tr>
</tbody>
</table>
Chapter 7

Conclusion

The optimal control of the Wave Energy Converters is presented in this dissertation. The proposed controllers aim at absorbing the maximum wave energy. Several controllers are derived without considering the constraints on the displacement, velocity and the control force. However, most of the controllers consider the constraints without losing the optimality in terms of the energy extraction. The wave estimation is required for the controller, several wave estimation techniques are introduced. Further, the novel consensus estimator is developed for the estimation of the wave field in the WEC array by applying the timely communication technology. To further validate the performance of the controller, the hydraulic Power Take off unit is implemented to examine the controllers. The focus of this dissertation is on developing and validating optimal controllers.
The first part of this dissertation is regarding the development and validation of the optimal controllers for the single body WEC. The single body WEC, in this study, can be categorized as the single body heaving WEC and the single body pitching WEC. The controllers developed for these two systems have similar derivation and format since they are all single-degree-of-freedom. The single body WEC has relatively simple dynamics, hence it is convenient for the control design. The Singular Arc control (Section 3.1), the Simple Model Control (Section 3.2) and the Shape-based control (Section 4.1) are proposed for the single body WEC. The SA control and SMC control are derived based on the optimal control theory without considering the motion and control constraints. Both controllers require the wave estimation, specifically, the performance of the SA controller relies on the goodness of the estimation of the excitation force. On the other hand, the performance of the SMC control relies on the estimation of the total wave force acting on the floater. The simulation results of the SA controller is presented in Section 5.1. The results show that when the SA controller has perfect knowledge of the wave, the energy extracted by the SA controller is the same as the Complex Conjugate Controller. That confirms the SA controller is a time domain implementation of the Complex Conjugate Control. Further, the energy extracted by the SA controller with wave estimation is still close to the Complex Conjugate Controller. Section 5.2.1 shows the simulation results of the SMC. When there is an accurate estimation of the total wave force, the energy extracted by the SMC controller can be very close to the Ideal SA controller which is simulated based
on perfect knowledge of the wave.

Considering the constrained optimal control developed for the single body WEC. The SB controller is derived by assuming the trajectory of the velocity of the buoy and solve the coefficients of the velocity profile by optimization. It can be considered as a numerical optimal control. The SB controller is further validated with the hydraulic system which is shown in Section 6.2.4. The performance of the SB controller is worse than the PD and MPC controller, however, it is better than the PDC3, PS and SA controller. Hence it has a good robustness with the complex dynamics.

The second part of this dissertation presents the control design for the single body three-degree-of-freedom WEC. The three-degree-of-freedom WEC moves in the surge, heave and pitch mode. The heave motion is proven to be independent of the other two modes when the motion is small. Hence, the control design can be separated as the control design for the heave motion (1-DoF) and for the surge-pitch coupled motion (2-DoF). The Pseudospectral optimal control and the Linear Quadratic Gaussian optimal control are implemented for the 3-DoF system. Although those two controllers both require the wave estimation, only the performance with wave estimation of the LQG controller is discussed in this dissertation. The simulation results of the LQG controller is shown in Section 5.2.2. The results show that with a good accuracy of the estimation, the LQG controller can extract the major amount of energy of the LQ controller which assumes the perfect knowledge of the wave. Additionally, the
energy extracted from the three modes is significantly higher than 3 times the heave-only mode due to the parametric excitation. That also indicates with the proper controller, the nonlinearity of the wave energy conversion problem can be utilized to generate more energy. The PS control is validated with the hydraulic system presented in Section 6.2.4. The performance of the PS controller is worse than the other optimal controllers which indicate the PS controller is hard to be adaptive to complex dynamics.

Based on the simulation results shown in Section 6.2.4, we can also point out the PD control and the MPC control has the best performance. However, to implement the MPC control, the wave prediction is required and it is relatively computational expensive than the PD control. Although the optimal controls are derived based on maximizing the energy capture, the PD control is very simple to be implemented and is very robust. Additionally, most of the optimal controllers, although shows a good performance theoretically (without real PTO implementation), they are not robust when they are implemented with the PTO unit. That does not mean the optimal control are always worse than the PD control. That indicates the optimal control needs to be solved by considering the dynamics not only of the wave-buoy interaction but also of the wave estimation unit and PTO unit.

In the last, we discuss the Collective Control and the consensus estimation of the WEC array. The Collective Controller applies the PD feedback control law, where the PD
feedback control gains are optimized in terms of energy extraction and constraints. The Consensus estimation of the WEC array applies the communication technology to improve the estimation. The simulation results show a significant improvement of the accuracy of the estimation and the disagreement among all the agents in the WEC array.

7.1 Future work

Regarding the research of the WEC array, the Collective Control is only preliminarily constructed for the WEC array. Additionally, the Consensus estimation of the wave field is only validated for an uncoupled, unforced WEC array. Hence, the future work will focus on the development of the controllers, estimators and PTO units of the WEC array.

First, the Collective control needs to be further optimized to have a robust performance. Second, the consensus estimation needs to be extended to a coupled, forced WEC array. Finally, the PTO units need to be considered in the control design. So that we can validate our controllers through a realistic wave to wire model.
References

[34] M. French and R. Bracewell, “Ps frog a point-absorber wave energy converter working in a pitch/surge mode,” in *Fifth International Conference on Energy Options: The Role of Alternatives in the World Energy Scene, University of*

[69] K. Budal, “Model experiment with a phase-controlled point absorber,” in *2nd

[99] Y. Sang, *A suboptimal control strategy for a slider crank wave energy converter power take-off system*. Western Carolina University, 2015.

[123] J. Hals, R. Taghipour, and T. Moan, “Dynamics of a force-compensated two-body wave energy converter in heave with hydraulic power take-off subject to

[224] C. Wang and G. Wu, “Interactions between fully nonlinear water waves and
cylinder arrays in a wave tank,” Ocean Engineering, vol. 37, no. 4, pp. 400–417,
2010.

for extreme wave and structure interactions,” in ASME 2005 24th International
Conference on Offshore Mechanics and Arctic Engineering. American Society

structure interaction simulation of an ocean wave energy extraction device,”

damping via 3d-cfd modelling of a floating wave energy device,” in Proceedings
of the 9th European Wave and Tidal Energy Conference, Southampton, UK,
2011.

[228] S. Bellew and T. Stallard, “Linear modelling of wave device arrays and com-
parison to experimental and second order models.”

ular wave interaction factors in closely spaced arrays,” IET renewable power

A.1 Stability of The CD-KCF

In this section, the stability of the CD-KCF is proved based on a Lyapunov-like stability analysis. Since most of the variables in the mathematical derivations and models are in the vector or matrix format, the different denotations for the scalar, vector, and matrix are neglected except a real number is included.

Proposition 1. Consider a Continuous-discrete Kalman-Consensus Filter with the estimation model in Eq. (5.59), and let $C_{g,i} = \gamma P_i$. Suppose $\gamma > 0$ is sufficiently small
and the covariance matrix P_i is positive definite and is bounded:

$$\beta_1 I \leq P_i \leq \beta_2 I$$ \hspace{1cm} (A.1)

Then the collective dynamics of the estimation error $e_i = \hat{x}_i - x_i$ is globally asymptotically stable.

Proof. Assume a globally positive definite Lyapunov function $V(e) = \sum_{i=1}^{N} e_i^T P_i^{-1} e_i$. The differential between the true dynamics (without noise) and the estimator dynamics gives the dynamics of the estimation error:

$$\dot{e}_i = Fe_i$$ \hspace{1cm} (A.2)

The update of the estimation is:

$$\hat{x}_{k+1,i} = \hat{x}_{k,i} + K_{g,k,i}(\tilde{y}_{k,i} - H_{m,k,i}\hat{x}_{k,i}) + C_{g,k,i} \sum_{N_i} (\hat{x}_{k,j} - \hat{x}_{k,i})$$ \hspace{1cm} (A.3)

For the true system, we have $x_{k,i} = x_{k,i}^-$. Hence, the update of the error is:

$$e_{k+1,i} = [I - K_{g,k,i}H_{m,k,i}]e_{k,i} + C_{g,i} \sum_{j=1}^{N} (e_{k,j}^- - e_{k,i}^-)$$ \hspace{1cm} (A.4)
The derivative of the Lyapunov function can be computed as:

\[
\dot{V} = \sum_{i=1}^{N} \dot{e}_i^T P_i^{-1} e_i + \dot{e}_i^T P_i^{-1} \dot{e}_i + e_i^T \dot{P}_i^{-1} e_i
\]
(A.5)

\[
= \sum_{i=1}^{N} \dot{e}_i^T P_i^{-1} e_i + e_i^T P_i^{-1} \dot{e}_i - e_i^T (P_i^{-1} \dot{P}_i P_i^{-1}) e_i
\]
(A.6)

Using the propagation model of the covariance matrix and Eq. (A.2), we get:

\[
\dot{V} = \sum_{i=1}^{N} e_i^T F^T P_i^{-1} e_i + \dot{e}_i^T P_i^{-1} F e_i -
\]

\[
e_i^T (P_i^{-1} (F(t)P_i(t) + P_i(t)F^T(t) + G_i(t)Q_p(t)G_i^T(t))P_i^{-1}) e_i
\]
(A.7)

\[
= -e_i^T P_i^{-1} G_i(t)Q_p(t)G_i^T(t)P_i^{-1} e_i \leq 0
\]
(A.8)

At any time \(t = t_k \), since \(\dot{V} < 0 \quad \forall e \in R^n \setminus \{0\} \), we have:

\[
V(t_{k+1})^- \leq V(t_k)^+
\]
(A.9)

where the equality only holds when the estimation error \(e_i = 0 \). For \(t = t_{k+1} \), the Lyapunov function is:

\[
V(t_{k+1})^- = \sum_{i=1}^{N} (e_{k+1,i}^-)^T (P_{k+1,i}^-)^{-1} e_{k+1,i}^-
\]
(A.10)

\[
V(t_{k+1})^+ = \sum_{i=1}^{N} (e_{k+1,i}^+)^T (P_{k+1,i}^+)^{-1} e_{k+1,i}^+
\]
(A.11)

To make the notation simple, the \(t_k \) and \(k \) will be dropped in the rest of the derivation.
If we substitute Eq. (A.4) into Eq. (A.11), and let $M_i = I - K_{g,i}H_{m,i}$ then:

$$V^+ = \sum_i (M_i e_i^- + C_{g,i} \sum_j (e_j^- - e_i^-))^T (P_i^-)^{-1} M_i^{-1}$$

$$= \sum_i ((e_i^-)^T M_i^T (P_i^-)^{-1} e_i^- + \gamma (e_i^-)^T M_i^T (P_i^-)^{-1} M_i^{-1} P_i^- \sum_j (e_j^- - e_i^-) + \gamma \sum_j (e_j^- - e_i^-)^T e_i^- + \gamma^2 \sum_j (e_j^- - e_i^-)^T M_i^{-1} P_i^- \sum_j (e_j^- - e_i^-))$$ (A.12)

The second term can be simplified by applying the update law of the covariance matrix:

$$T_{a2} = \gamma (e_i^-)^T M_i^T (P_i^-)^{-1} M_i^{-1} P_i^- \sum_j (e_j^- - e_i^-)$$

$$= \gamma (e_i^-)^T (P_i^-)^{-1} (P_i^-)^T M_i^T (P_i^-)^{-1} M_i^{-1} P_i^- \sum_j (e_j^- - e_i^-)$$ (A.14)

$$= \gamma (e_i^-)^T (P_i^-)^{-1} P_i^+ (P_i^-)^{-1} M_i^{-1} P_i^- \sum_j (e_j^- - e_i^-)$$ (A.15)

$$= \gamma (e_i^-)^T (P_i^-)^{-1} P_i^+ (P_i^-)^{-1} P_i^- \sum_j (e_j^- - e_i^-)$$ (A.16)

$$= \gamma (e_i^-)^T \sum_j (e_j^- - e_i^-)$$ (A.17)
Hence:

\[
V^+ = \sum_i ((e^i_\to)^T M^i (P^-_i)^{-1} e^i_\to + 2\gamma (e^i_\to)^T \sum_j (e^j_\to - e^i_\to) + \\
\gamma^2 \sum_j (e^j_\to - e^i_\to)^T M^{-1}_i P^-_j \sum_j (e^j_\to - e^i_\to)) \tag{A.18}
\]

\[
= V^- - \sum_i (e^i_\to)^T (K_{g,i} H_{m,i})^T (P^-_i)^{-1} e^i_\to + \\
\sum_i 2\gamma (e^i_\to)^T \sum_j (e^j_\to - e^i_\to) + \\
\sum_i \gamma^2 \sum_j (e^j_\to - e^i_\to)^T P^-_i (P^-_i^+)^{-1} P^-_i \sum_j (e^j_\to - e^i_\to) \tag{A.19}
\]

Since the covariance matrix is bounded, hence:

\[
V^+ \leq V^- - \sum_i (e^i_\to)^T (K_{g,i} H_{m,i})^T (P^-_i)^{-1} e^i_\to + \\
2\gamma \sum_i (e^i_\to)^T \sum_j (e^j_\to - e^i_\to) + \\
\frac{\gamma^2 \beta^2}{\beta_1} \sum_i \sum_j (e^j_\to - e^i_\to)^T \sum_j (e^j_\to - e^i_\to) \tag{A.20}
\]

The second term can be proved to be negative definite by substituting the Kalman
Gain:

\[\forall e \in \mathbb{R}^n \setminus \{0\} \]

\[T_{b2} = - \sum_i (e_i^-)^T (K_{g,i} H_{m,i})^T (P_i^-)^{-1} e_i^- \] \hspace{1cm} (A.21)

\[= - \sum_i (e_i^-)^T H_{m,i}^T K_{g,i}^T (P_i^-)^{-1} e_i^- \] \hspace{1cm} (A.22)

\[= - \sum_i (e_i^-)^T H_{m,i}^T (R_i + H_{m,i} P_i^- H_{m,i}^T)^{-1} H_{m,i} e_i^- < 0 \] \hspace{1cm} (A.23)

To solve for the last two terms in Eq. (A.20), let us define a quadratic function which is similar to the disagreement function as:

\[\Phi_G = \sum_i \sum_j (e_j - e_i)^T \sum_j (e_j - e_i) \] \hspace{1cm} (A.24)

The \(\Phi_G \) is a positive definite function. Since:

\[\sum_i \sum_j e_j^T \sum_j (e_j - e_i) \] \hspace{1cm} (A.25)

\[= \sum_i \sum_j e_j^T \sum_j e_j - \sum_i \sum_j e_j^T \sum_j e_i \] \hspace{1cm} (A.26)

\[= N \sum_j e_j^T \sum_j e_j - N \sum_j e_j^T \sum_i e_i = 0 \] \hspace{1cm} (A.27)
The disagreement function can be simplified as:

$$\Phi_G = N \sum_i -e_i^T \sum_j (e_j - e_i) \geq 0 \quad (A.28)$$

So we define:

$$L = \sum_i e_i^T \sum_j (e_j - e_i) \leq 0 \quad (A.29)$$

Hence, Eq. (A.20) can be further simplified as:

$$V^+ \leq V^- - \sum_i (e_i^-)^T (K_{g,i}H_{m,i})^T (P_i^-)^{-1} e_i^- + 2\gamma L + \frac{\gamma^2 \beta_2}{\beta_1} \Phi_G \quad (A.30)$$

Since $\Phi_G = -NL$, then:

$$V^+ \leq V^- - \sum_i (e_i^-)^T (K_{g,i}H_{m,i})^T (P_i^-)^{-1} e_i^- + 2\gamma L - \frac{\gamma^2 \beta_2^2 N}{\beta_1} L \quad (A.31)$$

Since the second term is negative definite, then to guarantee the summation of the last two terms is still negative definite the following condition should be satisfied:

$$2\gamma - \frac{\gamma^2 \beta_2^2 N}{\beta_1} \geq 0 \quad (A.32)$$
Hence we can solve:

\[\gamma \leq \frac{2\beta_1}{\beta_2 N} \]

(A.33)

We define \(\tilde{\gamma} \leq \frac{2\beta_1}{\beta_2 N} \), if \(0 < \gamma \leq \tilde{\gamma} \), then \(V^+ < V^- \ \forall e \in \mathbb{R}^n \setminus \{0\} \) which means \(\delta V = V^+ - V^- < 0 \ \forall e \in \mathbb{R}^n \setminus \{0\} \). Recall Eq. (A.9), we can write:

\[V(t_{k+1})^+ \leq V(t_{k+1})^- \leq V(t_k)^+ \]

(A.34)

where the equality only holds when the estimation error \(e_i \) converges to 0. As time goes to infinity \((t \to \infty) \), the Lyapunov function will asymptotically converge to zero \((V(e) \to 0) \) for \(0 < \gamma \leq \tilde{\gamma} \) which also indicates \(\hat{x}_i \to x \) (reach the consensus).

Moreover, since both the update \(\delta V \) and the derivative \(\dot{V} \) of the Lyapunov function is globally negative definite. Hence the error dynamics is globally asymptotically stable.

This completes the proof. \(\square \)
Appendix B

Letters of Permission

In this chapter, the permission letters from the journals for approving the reuse of the materials in the papers are listed.

1. The permission letter is shown in Figure B.1 for using the paper from the Journal of Renewable Energy, Elsevier.

2. The permission letter is shown in Figure B.2 for using the paper from IEEE Transactions on Sustainable Energy.

3. The permission letter is shown in Figure. B.3 for using the paper from International Journal of Control, Taylor & Francis.

4. The permission letter is shown in Figure. B.4, B.5, and B.6 for using the paper from Journal of Ocean Engineering and Marine Energy, Springer Nature.

5. The permission letter is shown in Figure. B.7 for using the paper from the Journal of Marine Science and Engineering, MDPI.

6. The permission letter is shown in Figure. B.8 and B.9 for using the paper from the Journal of Dynamic Systems, Measurement, and Control, ASME.
Figure B.2: The permission letter of reusing the paper [3].
7. The permission letter is shown in Figure. B.10 and B.11 for using the paper from the Journal of Renewable Energy, Elsevier.

8. The permission letter is shown in Figure. B.12 for using the paper from IEEE Transactions on Sustainable Energy.

9. Since the content of the article listed below applied in this dissertation is a draft, the authors retain the copyright of the draft [9].
Figure B.4: The permission letter of reusing the paper [5], (1)
Figure B.5: The permission letter of reusing the paper [5]. (2)
Figure B.6: The permission letter of reusing the paper [5]. (3)
Figure B.7: The permission letter of reusing the paper [6].

Figure B.8: The permission letter of reusing the paper [1]. (1)
Figure B.9: The permission letter of reusing the paper [1]. (2)

Figure B.10: The permission letter of reusing the paper [7]. (1)
Figure B.11: The permission letter of reusing the paper [7]. (2)
Figure B.12: The permission letter of using the paper [8]