
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's Reports 

2018 

INTRASPECIFIC GENETIC VARIATION, POPULATION STRUCTURE, INTRASPECIFIC GENETIC VARIATION, POPULATION STRUCTURE, 

AND PERFORMANCE OF THE INVASIVE AQUATIC MACROPHYTE AND PERFORMANCE OF THE INVASIVE AQUATIC MACROPHYTE 

EURASIAN WATERMILFOIL (Myriophyllum spicatum) IN EURASIAN WATERMILFOIL (Myriophyllum spicatum) IN 

WATERBODIES WITH AND WITHOUT HISTORIES OF CHEMICAL WATERBODIES WITH AND WITHOUT HISTORIES OF CHEMICAL 

HERBICIDE TREATMENT ACROSS MICHIGAN HERBICIDE TREATMENT ACROSS MICHIGAN 

Taylor Zallek 
Michigan Technological University, tzallek@mtu.edu 

Copyright 2018 Taylor Zallek 

Recommended Citation Recommended Citation 
Zallek, Taylor, "INTRASPECIFIC GENETIC VARIATION, POPULATION STRUCTURE, AND PERFORMANCE OF 
THE INVASIVE AQUATIC MACROPHYTE EURASIAN WATERMILFOIL (Myriophyllum spicatum) IN 
WATERBODIES WITH AND WITHOUT HISTORIES OF CHEMICAL HERBICIDE TREATMENT ACROSS 
MICHIGAN", Open Access Master's Thesis, Michigan Technological University, 2018. 
https://doi.org/10.37099/mtu.dc.etdr/699 

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr 

 Part of the Plant Breeding and Genetics Commons, Population Biology Commons, and the Weed Science 
Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/699
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/108?utm_source=digitalcommons.mtu.edu%2Fetdr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/19?utm_source=digitalcommons.mtu.edu%2Fetdr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1267?utm_source=digitalcommons.mtu.edu%2Fetdr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1267?utm_source=digitalcommons.mtu.edu%2Fetdr%2F699&utm_medium=PDF&utm_campaign=PDFCoverPages


INTRASPECIFIC GENETIC VARIATION, POPULATION STRUCTURE, AND 

PERFORMANCE OF THE INVASIVE AQUATIC MACROPHYTE EURASIAN 

WATERMILFOIL (Myriophyllum spicatum) IN WATERBODIES WITH AND 

WITHOUT HISTORIES OF CHEMICAL HERBICIDE TREATMENT ACROSS 

MICHIGAN 

 

By 

Taylor A. Zallek 

 

 

 

A THESIS 

Submitted in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

In Biological Sciences 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2018 

 

© 2018 Taylor A. Zallek 

  



This thesis has been approved in partial fulfillment of the requirements for the Degree of 

MASTER OF SCIENCE in Biological Sciences. 

 

Department of Biological Sciences 

 Thesis Advisor: Dr. Erika Hersch-Green 

 Committee Member: Dr. Casey Huckins 

 Committee Member: Dr. Christopher Webster 

 Department Chair: Dr. Chandrashekhar Joshi 

 



3 

Table of Contents 

Acknowledgements ..............................................................................................................4 

Abstract ................................................................................................................................5 

Chapter 1 - Variation in genetic diversity, structure, and patterns of hybridization among 

and within populations of invasive Eurasian watermilfoil (Myriophyllum spicatum) in 

waterbodies with and without histories of herbicide treatment across Michigan ................7 

1.1 Abstract ............................................................................................................7 

1.2 Introduction ......................................................................................................8 

1.3 Materials and Methods ...................................................................................12 

1.4 Results ............................................................................................................20 

1.5 Discussion ......................................................................................................23 

1.6 Figures ............................................................................................................31 

1.7 Tables .............................................................................................................39 

1.8 References ......................................................................................................42 

Chapter 2 - Implications for Management: Herbicide treatments may influence the 

evolution of invasiveness in Eurasian watermilfoil (Myriophyllum spicatum) .................54 

2.1 Abstract ..........................................................................................................54 

2.2 Introduction ....................................................................................................55 

2.3 Materials and Methods ...................................................................................59 

2.4 Results ............................................................................................................63 

2.5 Discussion ......................................................................................................64 

2.6 Figures ............................................................................................................68 

2.7 Tables .............................................................................................................73 

2.8 References ......................................................................................................75 

A Appendix ...................................................................................................................83 

 



4 

 Acknowledgements 

This research was supported by the Michigan Department of Natural Resources 

Invasive Species Grant (#IS14-2005), which was awarded to Dr. Casey Huckins, Dr. 

Amy Marcarelli, and Dr. Erika Hersch-Green at Michigan Technological University. 

Funding for Chapter 2 was provided by Michigan Technological University’s Ecosystem 

Science Center and Michigan Technological University’s Great Lakes Research Center. 

Special thanks to my graduate committee members Dr. Erika Hersch-Green, Dr. Casey 

Huckins, and Dr. Christopher Webster for their guidance. Thank you to Ryan Van 

Goethem, Carmen Leguizamon, Colin Brooks, Bradley Wells, Chris Adams, Angela 

Walczyk, and Will Christian for your help and friendship throughout the process. Thank 

you to Jason Broekstra (PLM Lake and Land Management Corp.), Kayla Hendricks 

(GeneSifter), Carol Mariani (Yale DNA Analysis Facility), Ben Willis (SePro Corp.), 

Barb Gajewski (Many Waters, LLC), and Bob Smith (Les Cheneaux Watershed Council) 

for their assistance. Thank you to Michigan Technological University’s Department of 

Biological Sciences, including Dr. Chandrashekhar Joshi, Tori Conners, Emily Betterly, 

Patty Asselin, Travis Wakeham, and Jeff Lewin.  

Special thanks to Annika Zallek and Eddie for their love and support. 



5 

 Abstract 

 

Populations of invasive species are often subjected to novel selective forces in the 

form of anthropogenic control agents in their introduced ranges. These control agents, 

applied unevenly among populations within a species’ new range, can send invasive 

populations on drastically different evolutionary and ecological trajectories. In these 

studies, we aimed to see if different histories of chemical herbicide treatment are 

differentially influencing the genetic diversity, structure, and performance of populations 

of invasive watermilfoil (Myriophyllum spicatum and M. spicatum x M. sibiricum 

hybrids) from waterbodies in the state of Michigan. We sampled ten waterbodies with 

different histories of herbicide treatment in order to examine patterns of genetic variation 

amongst milfoil populations, to determine the extent of admixture among invasive 

watermilfoil populations, and to assess whether histories of herbicide application have an 

impact on the abiotic environment and/or biotic macrophyte community. We also grew 

invasive watermilfoil plants that were collected from waterbodies with and without 

histories of repeated exposure to herbicides together in mesocosms to test for tradeoffs in 

the expression of invasive traits. We found that genetic diversity is greater in populations 

with no history of herbicide treatment, populations with histories of herbicide treatment 

have more admixture and evidence of hybridization, and plant communities appear to be 

differentially shaped by histories of herbicide treatment. We also found that a history of 

herbicide treatment significantly affected plant survival, net growth, and mean growth 

rate and that these effects depended upon whether neighboring plants were from 
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herbicide or non-herbicide treatment waterbodies. In general, plants from waterbodies 

with histories of herbicide treatment were more likely to survive and expressed increased 

growth relative to plants collected from waterbodies with no history of herbicide 

treatment. These findings indicate that histories of herbicide application could be 

selecting for populations comprised of less genetically diverse (but more admixed) 

individuals with potentially higher fitness for herbicide conditions. Our results suggest 

that repeated exposure to chemical herbicides could be selecting for increased 

invasiveness among invasive watermilfoil populations. This could have drastic ecological 

consequences and implications for the efficacy of long-term management efforts of 

invasive watermilfoil. 
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1 Variation in genetic diversity, structure, and patterns 
of hybridization among and within populations of 
invasive Eurasian watermilfoil (Myriophyllum 
spicatum) in waterbodies with and without histories 
of herbicide treatment across Michigan  

 

1.1 Abstract 

Novel selective forces in the form of anthropogenic control agents (such as 

chemical herbicides) can dramatically influence different evolutionary trajectories among 

populations of invasive species. Routine exposure to herbicides can lead to the selection 

for herbicide resistance traits in targeted populations and impact the potential invasibility 

of these populations through the differential expression of invasive traits between 

historically targeted populations and non-targeted populations. In this study, we 

examined whether patterns of genetic diversity and population structure of invasive 

watermilfoil (Myriophyllum spicatum and M. spicatum x M. sibiricum hybrids) 

populations differed amongst waterbodies with and without histories of herbicide 

treatment. We also examined whether histories of herbicide treatment could be impacting 

the abiotic environment or biotic plant community. We found that genetic diversity 

within populations is low while genetic variation among populations is high. Invaded 

waterbodies with histories of herbicide treatment have more admixture than non-

herbicide waterbodies. Populations are typically represented by one genetic class and 

evidence of hybridization is greatest in herbicide treatment waterbodies. Plant 

communities differ between herbicide treatment waterbodies and non-treatment 

waterbodies. Invasive watermilfoil populations in their introduced range demonstrate a 
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spectrum in genotypic diversity, admixture, and hybridization among invaded 

waterbodies with different histories of herbicide application. Routine use of herbicides 

could be sending populations of invasive watermilfoil, as well as plant communities, on 

different evolutionary and ecological trajectories. 

 

1.2 Introduction 
 

Understanding the population genetics and systematics of biological invasions can 

be a key aspect to unlocking the secrets of an invasive species’ ability to succeed in new 

environments (Baker and Stebbins 1965, Barrett 1992, Sakai et al. 2001, Tsutsui et al. 

2000, Lee 2002, Allendorf and Lundquist 2003, Ryan et al. 2009, Barrett 2015, Bock et 

al. 2015). Invasive species exist within small, genetically homogenous founding 

populations and many introduced populations are unsuccessful due to population 

bottlenecks, making it difficult for them to respond to novel selective forces found within 

the introduced range (Sax and Brown 2000, Frankham 2005, Estoup et al. 2016). 

However, recent studies have shown that some invasive populations can thrive despite 

their relatively low genetic diversity and the increased stress of novel anthropogenic 

control agents (Roman and Darling 2007, Sax et al. 2007, Schrieber and Lachmuth 2017).  

As we have expanded our capabilities of transporting invasive species on a global 

scale, our efforts to manage them through means of control have expanded as well (Lowe 

et al. 2000, Donlan and Martin 2004, Pyšek and Richardson 2010). Historically, two of 

the most common means of controlling invasive species include biological control agents 
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(through the introduction of predators, herbivores, or parasites) and the use of chemical 

herbicides (Müller-Schärer et al. 2004, Prentis et al. 2008). Biological control agents and 

chemical herbicides employed to manage invasive or weedy plant species can prompt 

rapid evolutionary responses among targeted populations (Jasieniuk et al. 1996, 

Richardson 2008, Powles and Yu 2010). Often these responses include the expression of 

specific traits that increase the tolerance of or defense against control agents (Lee et al 

2002, Prentis et al. 2008). For example, some biotypes of the invasive aquatic 

macrophyte Hydrilla (Hydrilla verticillata) have evolved resistance to the herbicide 

fluridone as the result of somatic mutations to the gene that produces the enzyme 

fluridone is designed to suppress (Michel et al. 2004, Arias et al. 2005). Once established, 

herbicide resistant biotypes can rapidly cover large areas of water and displace native 

plant communities, causing significant harm to native ecosystems (Schmitz et al. 

1993, Bates & Smith 1994, Schultz et al. 2012). This places managers in a difficult 

position for determining how to best manage invasive aquatic plants, such as Hydrilla, 

without sacrificing short term or long term goals for ecological stability.   

Some of the traits that macrophytes have evolved to tolerate the physical stressors 

of their aquatic environments are often the same traits that grant them their invasive 

success. Physical aspects of these habitats often include strong wave action and barriers 

to sexual reproduction and gene flow (Santamaria 2002). In order to overcome these 

stressors, many invasive aquatic plants rely on asexual reproduction as a primary form of 

propagation (Grace 1993, Barrett et al. 1993, Santamaria 2002) and the generation of 

novel, successful phenotypes through genetic admixture (Lee 2002, Roman and Darling 
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2007). Genetic admixture in the form of hybridization between an invasive species and 

native congener can grant offspring with the ability to succeed in a multitude of 

environments (Ayres et al. 2004, Blum et al. 2007) and exhibit increased growth relative 

to parental species through hybrid vigor (Ellstrand and Schierenbeck 2000). 

Understanding the balance between alternately adaptive modes of propagation (clonal 

reproduction versus sexual recombination through admixture or hybridization) in 

invasive aquatic plants is important for understanding the mode of their success. 

Eurasian watermilfoil (Myriophyllum spicatum L.) is a submerged aquatic 

macrophyte native to Europe, Asia, and North Africa (Couch and Nelson 1985) and is 

highly invasive in North America (Aiken et al. 1979, Smith and Barko 1990, Madsen 

1994). Eurasian watermilfoil was first documented in North America in the late 

nineteenth century in the area surrounding Chesapeake Bay (Reed 1977), but can now be 

found throughout North America having currently invaded 48 out of 50 U.S. states and 3 

out of 10 Canadian provinces (United States Geological Survey 2018). Eurasian 

watermilfoil displaces native aquatic macrophytes (Smith and Barko 1990, Madsen et al. 

1991, Madsen 1994), and often forms dense stands of vegetation that alter both abiotic 

(oxygen levels) and biotic (invertebrate and fish communities) conditions of littoral zone 

communities, inhibit recreational activities, and can reduce property values (Honnell et 

al. 1992, Keast 1984, Lillie and Budd 1992, Madsen 1995, Eiswerth et al. 2000, Olden 

and Tamayo 2014). 

The rapid spread and success of Eurasian watermilfoil is in part attributed to traits 

related to its rapid growth and modes of reproduction. Eurasian watermilfoil is 
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particularly adept at reproducing asexually via fragmentation which produces clonal 

stolons that readily colonize new habitats (Aiken et al. 1979, Madsen et al. 1988). 

Propagule fragments can colonize separated water bodies as fragments have been shown 

to be transported by both human and animal vectors between lakes (Kimbel 1982, 

Clausen et al. 2002). Eurasian watermilfoil also exhibits high phenotypic plasticity and 

thrives in a multitude of aquatic environments, such as low and high nutrient 

environments (Aiken et al. 1979, Gerber and Les 1994, Madsen 1998, Buchan and 

Padilla 2000). It has recently been recognized that part of Eurasian watermilfoil’s success 

may rely on its ability to hybridize with native Northern watermilfoil (Myriophyllum 

sibiricum Komarov). Hybirdization between the two species was first documented in 

North America in 2002 (Moody and Les 2002) and has since been reported several times 

across its introduced range (Moody and Les 2007, Strutevant et al. 2009, Zuellig and 

Thum 2012, LaRue et al. 2013a, Borrowman et al. 2014). Hybridization between these 

two species has also been documented in their co-occurring native range (central Asia) as 

well (Wu et al. 2015, Moody et al. 2016). Since hybrids and parental species overlap in 

morphology and hybrid status can only be determined through genetic analyses (Moody 

and Les 2010), Eurasian watermilfoil and hybrid watermilfoil will henceforth be referred 

to as invasive watermilfoil. Invasive watermilfoil hybrids have been shown to exhibit 

increased growth rates (LaRue et al. 2013b) and to be more resistant and tolerant of 

herbicide management efforts (Poovey et al. 2007, Slade et al. 2007, Berger et al. 2009, 

Glomski and Netherland 2009, Berger et al. 2012, Thum et al. 2012, LaRue et al. 2013b, 

Parks et al. 2016, and Thum et al. 2017). However, it is unknown whether repeated 

exposure to herbicides are selecting for populations comprised of more genetically 
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diverse or hybrid, and therefore potentially more invasive, individuals in treated 

waterbodies. 

Here, we asked whether histories of herbicide treatment influenced the genetic 

composition of invasive watermilfoil populations and the abiotic and biotic 

characteristics of the invaded waterbodies. To accomplish this, we sampled ten lakes 

throughout Michigan that have either been managed with herbicides to control invasive 

macrophytes or not in order to examine patterns of genetic variation amongst milfoil 

populations, to determine the extent of admixture among invasive watermilfoil 

populations, and to assess whether histories of herbicide application have an impact on 

the abiotic environment and/or biotic plant community. Specifically, we tested the 

following hypotheses: (1) Invasive watermilfoil populations with histories of herbicide 

treatment will have increased genetic diversity, (2) Invasive watermilfoil populations 

closer in geographic proximity will exhibit more genetic similarities than geographically 

distant populations, (3) Hybridization will be more prevalent in waterbodies with 

histories of herbicide treatment as the result of selection favoring herbicide tolerant 

hybrids, (4) Repeated herbicide exposure will select for unique biotic communities in 

invaded waterbodies with histories of herbicide treatment. 

1.3 Materials and Methods 

Plant material and sampling design 

We collected leaf tissue from 1,362 individual invasive watermilfoil plants from 

10 different water bodies (lakes and bays) spanning the Lower and Upper Peninsula of 

Michigan during the summers of 2015 and 2016 (Figure 1.1, names and GPS coordinates 
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of water bodies are listed in Table A.1). We sampled from water bodies that had either 

been treated with herbicides (including 2,4-Dichlorophenoxyacetic acid and triclopyr) 

that target invasive milfoil at least once within the last five years (“herbicide treatment 

lakes,” n = 7) or that have not previously been treated with herbicides within the last five 

years (“non-herbicide treatment lakes,” n = 4) (MI DEQ 2018). Plant tissue was collected 

using a combination of rake tosses and rake twists at three spatially segregated sites per 

water body. Rake tosses utilized two metal leaf rakes fastened together with handles 

removed and replaced with a retrievable rope. The rakes were tossed over the side of the 

boat at a distance of approximately 3 m and the rake tines dragged the substrate of the 

water body and collected plants as the researcher pulled in the rope. Rake twists utilized a 

retractable gaff pole with its hook replaced with two metal leaf rakes fastened together. 

At each site, invasive watermilfoil plants were sampled at spatial intervals of 10 m in 

order to minimize sampling of clones and for each individual plant approximately 15 cm 

of tissue was stored in silica gel.  

 

Nuclear microsatellite analysis 

For each sample, total genomic DNA was extracted from approximately 2 cm2 of 

dried leaf tissue using a modified (polyvinylpyrrolidone used in place of 2-

mercaptoethanal) CTAB extraction method (Doyle and Doyle 1987). DNA was then 

spectrophotometrically (NanoDrop® ND-1000 UV-Vis spectrophotometer, Thermo 

Scientific, Washington, DE, USA) quantified and standardized to 20 ng/µl with deionized 

water.  
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To measure genetic diversity amongst our samples and populations, we amplified 

twelve polymorphic microsatellite loci that had been previously developed by Wu et al. 

2013 (Table A.2). Microsatellite loci were amplified in 10 µl polymerase chain reactions 

(PCRs) containing 20 ng DNA, 1x Qiagen Type-it® multiplex PCR master mix (Qiagen, 

Hilden, Germany), and 0.2 M each primer using the Type-it® microsatellite PCR 

protocol (Qiagen, Hilden, Germany). Forward or reverse primers were fluorescently 

labeled and markers labeled with different fluorescent dyes were simultaneously 

amplified. PCR products were resolved on an ABI 3730XL (Applied Biosystems, Foster 

City, CA, USA) using a Liz-500 internal size standard at Yale University’s DNA 

Analysis Facility (New Haven, CT) and were visually scored using the software 

GeneMarker v. 2.6.3 (SoftGenetics®, LLC, State College, PA). To score marker data, we 

sorted alleles into bins based on the electropherogram peaks in relative fluorescence units 

(RFU) and repeat motif for each marker (Table A.2). To ensure repeatability in marker 

amplification and scoring, we replicated the whole procedure from DNA extraction 

through scoring twice for 72 randomly selected individuals; all data was retained because 

all markers were repeatable. Data from these twelve markers were subsequently 

combined to obtain multilocus individual genotypes for further analyses. 

 

Plant community and environment sampling 

To test if water bodies with differences in herbicide treatment history had 

differences in their abiotic environments and/or biotic plant communities, we collected 
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abiotic environmental data and biotic plant community data from 6 of the 10 sampled 

water bodies (Figure 1.1).  

Abiotic data included total dissolved nitrogen (TDN - µg/L), total dissolved 

phosphorus (TDP - µg/L), dissolved organic carbon (DOC - mg/L), and were determined 

by collecting filtered lake water followed by acidification with hydrochloric acid using a 

Shimadzu TOC-5000A analyzer (Shimadzu Corporation, Kyoto, Japan). Conductivity 

(cond. - ms/cm), temperature (temp. - degrees celsius), pH, turbidity (turb. - NTU), and 

dissolved oxygen (DO - mg/L) were measured using a YSI Sonde 6920 V2 (YSI 

Incorporated, Yellow Springs, OH, USA). All measurements were taken just below the 

water’s surface. Samples for all variables were collected a minimum of three times per 

lake at the same initial 50 m plant sampling site for each transect. 

Biotic data consisted of relative abundance and diversity data for other plant 

species in the subset of waterbodies. Plants were sampled along a minimum of three 

spatially separated transects per lake. The first sampling point of each transect was 

approximately 50 m from the shoreline and subsequent sampling locations occurred 

along a transect running tangent to the shoreline in intervals of 50 m until the edge of the 

littoral zone. Macrophytes were sampled using a standard rake toss method (Kenow et al. 

2007), visually identified to species, and scored for relative abundance measured using a 

rake fullness ordinal scale (Figure 1.2). 

 

STATISTICAL ANALYSES 

Genetic diversity analysis 
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Based upon data on the number of bands observed per locus (Table 1.2), 

preliminary flow cytometry data (Hersch-Green unpublished results), and published 

chromosome karyotype reports (Löve 1961, Löve and Ritchie 1966), we suspected that 

all sampled plants were hexaploids (2n = 6x = 42). Because polyploidy hinders the 

determination of allelic dosage and genotype determination, we manually converted the 

microsatellite data into a dominant, presence/absence format (Lynch 1990, Falush et al. 

2007) for all subsequent genetic analyses. 

To assess allelic diversity per locus, we calculated the number of alleles per locus 

(NA), the minimum number of alleles per locus (MinA), the maximum number of alleles 

per locus (MaxA), and the mean number of alleles per locus (MeanA) using the R software 

(R Development Core Team 2011) package POLYSAT (Clark and Jasieniuk 2011). To 

examine genetic diversity within and among populations, we calculated the number of 

genotypes (G) using the program GENOTYPE (Merimans and Van Tienderen 2004) and 

calculated the effective number of genotypes (GEff - Lehman & Wayne 1991), genotypic 

evenness (GEve - Grünwald et al. 2003), genetic diversity corrected for sample size (Nei’s 

SS - Nei 1987), and Shannon-Weiner diversity index corrected for sample size (HSS - 

Chao & Shen 2003) using the program GENODIVE (Merimans and Van Tienderen 

2004). 

 

Genetic differentiation and population structure across spatially separate lakes 

We performed an analysis of molecular variance (AMOVA; Excoffier et al. 1992) 

to assess genetic differentiation among populations and individuals and a Mantel test 

(Mantel 1967) to assess the relationship between genetic and geographic distance 
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(isolation by distance, Wright 1943). Both analyses were implemented using the software 

GenAlEx v. 6.5 (Peakall and Smouse 2012).  

We used several methods to examine patterns of genetic structure within and 

across water bodies. First, we used a Bayesian clustering method implemented in the 

program STRUCTURE version 2.3.4 (Pritchard et al. 2000). This program uses a 

Bayesian algorithm to determine the proportion of an individual's’ allelic composition 

that groups into a predetermined number of clusters (K) whose members share similar 

patterns of genetic variation (Porras-Hurtado et al. 2013). We examined the probabilities 

of observing the data for K = 1-10, using admixture ancestry models with independent 

allele frequencies and 20,000 iteration burn-in period followed by 100,000 Markov Chain 

Monte Carlo (MCMC) iterations. We performed twenty independent runs for each K 

before incorporating posthoc analyses based on identifying the greatest rate of change in 

log likelihood of K (Evanno et al. 2005) to determine the most likely number of genetic 

clusters among the 10 sampled water bodies using the software STRUCTURE 

HARVESTER version 0.6.94 (Earl and vonHoldt 2012). Individual admixture 

proportions (Q) for best fit K were then collated from the 20 STRUCTURE runs at 

optimal K using the software CLUMPP (Jakobsson and Rosenberg 2007), employing the 

GREEDY model with 100 repeats. 

Second, because Bayesian clustering models assume Hardy-Weinberg equilibrium 

and are likely violated when examining structure across separate water bodies, we 

examined population structure using a discriminant analysis of principal components 

(DAPC, Jombart et al. 2010) to test the generality of our results. The DAPC was 

performed in R (R Development Core Team 2011) using the software package adegenet 
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(Jombart 2008). DAPC requires no group priors, does not assume Hardy-Weinberg 

equilibrium, and uses sequential K-means clustering and model selection to determine 

genetic clusters. Sixty principal components were retained in the initial PCA and the 

number of clusters (K) was evaluated based on the value of Bayesian Information Criteria 

(BIC) versus number of clusters (K=1 through K=10). Eigenvalues for the discriminant 

analysis were calculated using 50 principal components.  

Lastly, a principal coordinate analysis (PCoA) was conducted. The PCoA was 

performed on pairwise genetic Lynch distances (Lynch 1990) obtained using the R 

package Polysat (Clark and Jasieniuk 2011) among all respective genotypes from the 10 

waterbodies combined and performed using the software GenAlEx v. 6.5 (Peakall and 

Smouse 2012). 

 

Patterns of hybridization and population genetic structure within lakes 

To examine patterns of genetic structure and admixture within the waterbodies, 

we employed a Bayesian clustering method implemented in the software STRUCTURE 

version 2.3.4 (Pritchard et al. 2000). Since the program STRUCTURE assumes 

populations and their alleles are in a state of Hardy-Weinberg equilibrium, Bayesian 

clustering was performed on an individual water body basis so that Hardy-Weinberg 

assumptions were less likely to be violated. We examined the probabilities of observing 

the data for K = 1-10, using admixture ancestry models with independent allele 

frequencies and a 20,000 iteration burn-in period followed by 100,000 Markov Chain 

Monte Carlo (MCMC) iterations. Twenty independent runs for each K were performed 

before incorporating posthoc analyses based on identifying the greatest rate of change in 
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log likelihood of K (Evanno et al. 2005) to determine the most likely number of clusters 

within a population using the software STRUCTURE HARVESTER version 0.6.94 (Earl 

and vonHoldt 2012). Individual admixture proportions (Q) for the greatest likelihood of 

K for each population were then collated from the 20 STRUCTURE runs using the 

software CLUMPP (Jakobsson and Rosenberg 2007), employing the GREEDY model 

with 100 repeats. 

 

Differences in abiotic environment and biotic plant community between waterbodies 

To examine whether the 6 (4 herbicide treatment, 2 non-treatment) sampled 

waterbodies (Figure 1.1) differed in their abiotic environments, we performed a principal 

component analysis (PCAs) on the means of 8 abiotic environmental variables (TDN, 

TDP, DOC, cond., temp., pH, turb., and D). Abiotic data was averaged using the mean 

values for each variable recorded per site. The PCA was performed using the software 

PC-ORD version 6 (McCune and Mefford 2011) and produced using correlation 

coefficients in the cross-products matrix. 

A similar analysis was performed to see if these same 6 waterbodies differed in 

their biotic plant communities. We performed a PCA using the relativized abundance of 

30 plant species collected at sixteen sites across the subset of 6 water bodies (4 herbicide 

treatment/2 non-treatment) (Figure 1.1). Biotic plant community data was relativized by 

taking the sum of all rake abundance scores for each plant species per site and dividing 

by the total number of rake tosses per site in order to account for different sampling 

efforts per site. The PCA was performed using the software PC-ORD version 6 (McCune 
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and Mefford 2011) and produced using correlation coefficients in the cross-products 

matrix. 

 

1.4 Results 

Genetic diversity 

Allelic marker polymorphism in the 10 invasive watermilfoil populations ranged 

from 2 to 11 alleles and although Myrsp6 had the greatest number of alleles expressed 

across all 10 populations (NA = 11), Myrsp5 had the highest mean number of alleles per 

individual (MeanA = 4.4) (Table 1.1). Across the 10 populations, a total of 69 unique 

alleles were expressed across all 12 microsatellite markers. Among the 1,362 individuals 

genotyped, we found 99 unique invasive watermilfoil genotypes (Table 1.2 and Figure 

1.3). All genotypes were unique and exclusive to their respective waterbodies with the 

exception of one overlapping genotype between two waterbodies. Overall, waterbodies 

were dominated by one primary genotype with a few minority genotypes also present 

(Figure 1.3). Populations with no prior history of herbicide treatment had greater 

genotypic diversity (average number of genotypes = 19) than populations previously 

treated with herbicides (average number of genotypes = 4), (Table 1.2). These numbers 

could be affected by unequal sampling or the uneven distribution of genotypes (lower 

genotypic evenness) across waterbodies within each category. However, when controlled 

for sample size, the non-herbicide waterbodies had a greater Nei’s genetic diversity index 

and Shannon-Weiner diversity index than the herbicide treatment water bodies (Table 

1.2). Counter to our hypothesis that herbicide treatment waterbodies would have 
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individuals with greater genetic diversity, populations from non-herbicide waterbodies 

had the greatest genetic diversity in our study. 

 

Genetic differentiation and population structure across spatially separate lakes 

The analysis of molecular variance (AMOVA) indicates that ninety-five percent 

of the genetic variation observed in the 1,362 individuals occurred between populations 

while only five percent of the total genetic variation occurred within waterbodies (Table 

1.3). Genetic variation was correlated with geographic distance such that more similar 

genotypes were observed in waterbodies closer in geographic proximity (IBD, r
2
 = 0.216, 

P > 0.01). 

Populations with histories of herbicide treatment exhibited greater admixture 

(Figure 1.4-A). Optimal K for the entire dataset of 1,382 individuals, calculated using 

Evanno’s ΔK method, was reported as K = 5. Individuals from herbicide treatment 

waterbodies had Q values comprised of multiple clusters while individuals from non-

herbicide treatment waterbodies were represented by one primary cluster (Figure 1.4-A). 

Seven discriminant functions were retained from the DAPC for an overall K 

means clustering of K = 6 (Figure 1.5). The DAPC showed similar results as 

STRUCTURE (optimal K = 5 versus K = 6) as individuals from separate waterbodies 

clustered in similar patterns (Figure 1.5-A). In contrast to STRUCTURE, the DAPC 

cluster assignment within each population was >95% towards one cluster with the 

exception of one waterbody, which was represented by multiple clusters (Figure 1.5-B). 

Compared to the results of the IBD analysis, clusters in the DAPC were not completely 

segregated in space as many populations shared a cluster with populations that spanned 
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across the state of Michigan. The PCoA displayed similar groupings of individual 

genotypes as STRUCTURE and DAPC in graphical space (Figure 1.6).  

 

Patterns of hybridization and population genetic structure within lakes 

Performing post hoc selection of K, we found that K = 2 best described the data 

with the exception of 1 waterbody where optimal K = 3. (Figure 1.4-B). Evidence of 

admixture is more evident in populations from waterbodies with histories of herbicide 

treatment as individuals from all 6 treatment waterbodies have Q values between 0.01 

and 0.99 and mean Q values approaching 0.50 (Figure 1.4-B and Table 1.4). However, 

the extent of admixture is difficult to determine because putative pure clusters of either 

Eurasian watermilfoil or Northern watermilfoil in our study could be comprised of highly 

advanced backcrossed hybrids. Since Q values only represent the probability of 

admixture and do not reflect the genetic contribution from parental species, individuals 

with Q values approximating 0 or 1 could still be the result of past hybridization events. 

 

Differences in abiotic environment and biotic plant community between lakes with 

different histories of herbicide treatment 

The PCA for abiotic environmental variables shows no discernible trends or 

patterns between herbicide treatment and non-herbicide waterbodies or environmental 

eigenvectors (Figure 1.7-A). In contrast, the PCA for biotic plant community shows stark 

differences between herbicide treatment and non-herbicide waterbodies across principal 

component axis 1 (Figure 1.7-B). Plant species that cluster towards herbicide treatment 

waterbodies (n = 11) across the first principal component axis are comprised entirely of 
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monocot species with the exception of Eurasian watermilfoil (dicot) and aquatic moss 

(Drepanocladus sp.), a non-vascular plant. Plant species that cluster towards non-

herbicide waterbodies across principal component axis 1 (n = 19) include a variety of 

monocot and dicot plants. 

1.5 Discussion 

Understanding how histories of management influence the genetic structure of 

invasive populations may help with the efficacy and long-term viability of control efforts. 

We found that invasive watermilfoil populations are dominated by one primary genotype 

often with a few, minority genotypes present. Populations with no prior history of 

herbicide treatment have greater genotypic diversity than populations previously treated 

with herbicides, yet they have less admixture. Evidence of hybridization is more apparent 

in waterbodies with histories of herbicide treatment, potentially as the result of repeated 

selection pressure. The biotic communities in waterbodies with histories of herbicide 

treatment are shifted towards less diverse communities represented disproportionately by 

monocot plant species.  

Waterbodies with histories of herbicide treatment displayed reduced genetic 

diversity  

In general, marker polymorphism is lower among sampled waterbodies in the 

introduced range than in the native range (Table 1.1, Wu et al. 2013). For example, Wu et 

al. 2013 published marker data for two waterbodies in the native range and found that the 
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number of alleles per marker found in just one population exceeded the number of alleles 

per marker among all 10 of our sampled waterbodies combined. This indicates that allelic 

polymorphism is significantly reduced in the introduced range, potentially as the result of 

a post-establishment bottleneck. It also might limit the ability to properly utilize these 

markers in the introduced range for hybridization analyses like STRUCTURE, which 

often require 80-100 unique alleles to accurately assign individuals’ admixture (Pritchard 

et al. 2000). We found that invasive watermilfoil populations are dominated by one 

primary genotype (Figure 1.3 and Table 1.2). This finding is significant because previous 

studies in the invaded and native ranges have focused on minimal sampling 

(approximately 10-20 individuals per water body or population) to understand genetic 

structure within lakes (Moody & Les 2007, Zuellig & Thum 2012, Wu et al. 2015, Wu et 

al. 2016). This established pattern of genotypic monomorphism across waterbodies could 

have implications for the efficacy of invasive watermilfoil sampling for genetic 

screenings in order to prescribe subsequent management efforts when resources for plant 

collection and processing of genetic data is limited.  

On average, we found that populations with no history of targeted herbicide 

treatment had greater genetic diversity than populations with previous treatment histories 

(Figure 1.3 and Table 1.2). It’s possible that the targeted removal efforts select for a 

single, resistant genotype that persists under the stressful conditions of herbicide 

application. However, lower diversity might also be due to other factors relating to the 

duration of invasion and number of introductions to each waterbody. The fact that almost 

half of the genotypes in our study (46 out of 99 genotypes) were found in just one 
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population is worth noting (Figure 1.2 and Table 1.2). This outlier population could be 

gaining its genetic diversity through increased introduction of invasive watermilfoil 

propagules or, as the waterbody is likely fed by a stream where the invasive status of 

watermilfoil is unknown, could be a “sink” for exotic genotypes that occur upstream. 

Perhaps because this waterbody (and other non-treatment waterbodies) is relatively 

secluded and free from herbicides and other disturbances, the population is allowed to 

maintain relatively high levels of genetic diversity. Herbicides could therefore be 

selecting for genotypes that rely on quick, vegetative growth while populations under 

relaxed pressure could ultimately benefit long-term from increased genetic diversity by 

relying on sexual reproduction as a primary means of propagation. 

Genetic structure among lakes differs based on history of herbicide treatment and 

geography 

The AMOVA indicates that the majority of genetic variation (95%) occurs between 

populations (Table 1.3). These findings are consistent with other studies of submerged 

aquatic macrophytes (Koga et al. 2007), but is at odds with others (Martinez-Garrido et 

al. 2017) including a study that investigated the genetic relationships among lake 

populations of Eurasian watermilfoil in its native range (Cao et al. 2017). It is difficult to 

make interpretations on our results based on the differences observed in sources of 

genetic variation in other studies because they take place over different scales, but it is 

possible that the high genetic variation occurring between populations observed in our 

study could be the result of multiple introductions from geographically and genetically 

distant source populations. This could also be the result of significantly lower 
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polymorphism observed within our study sites in the introduced range compared to sites 

in the native range (Table 1.1, Wu et al. 2013).  

The statistically significant isolation by distance result (IBD, r
2
 = 0.216, P > 0.01) 

corroborates the findings from the AMOVA and together can be interpreted to suggest 

that individuals within a single invasive watermilfoil population are genetically very 

similar to one another and are genetically dissimilar from individuals from other 

waterbodies. Given that macrophyte populations exist within aquatic islands surrounded 

by terrestrial seas, it is common for strong positive correlations to exist between genetic 

and geographic distances (i.e. isolation by distance) in aquatic plant communities (Barret 

et al. 1993, Santamaria 2002). The findings also suggest that watermilfoil colonization 

events into new water bodies likely occur at relatively short geographical distances. The 

genetic disparities between populations could be the result of multiple introductions of 

invasive watermilfoil across Michigan. It could also be that long histories of invasion and 

establishment of populations within the introduced range (Reed 1977) prevents or 

excludes further introduction in these same water bodies from new genotypes.  

Although populations with no history of targeted herbicide treatment have greater 

genetic diversity than populations with previous treatment histories (Table 1.2), 

populations with histories of herbicide treatment exhibit greater admixture while 

populations with no history of herbicide treatment display less admixture between 

clusters (Figure 1.4-A). Admixed individuals could exhibit herbicide tolerant traits as 

mentioned in previous studies (Slade et al. 2007, Berger et al. 2009, Glomski and 

Netherland 2009, Berger et al. 2012, Thum et al. 2012) and are potentially undergoing 
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positive selection in herbicide treated waterbodies. It could also be the result of an 

increased number of vectors (trailered boats, homes, visitors, etc) on herbicide treated 

waterbodies, which the researchers anecdotally noted appeared to have more 

development and recreational activity than the non-herbicide waterbodies.  

In contrast to the AMOVA and IBD results, the DAPC and PCoA analyses show 

that populations don’t always share the same cluster (or group) as the waterbody closest 

in geographic proximity (Figures 1.5 and 1.6). While some nearby populations shared the 

same cluster, some clusters stretch across large geographic areas, spanning the Upper and 

Lower Peninsulas of Michigan. In the southern half of the state, clusters largely overlap. 

This could be the result of a longer history of invasion in southern Michigan relative to 

the northern portion of the state. It could also be the result of an increased number of 

human vectors through larger human populations, connections via highways, and easy 

access to public boat landings that allow for increased mixing across water bodies in the 

south relative to the north. 

 

Evidence of hybridization occurred more frequently in waterbodies with histories of 

herbicide treatment  

The results of STRUCTURE run at the individual population scale indicate that 

most populations are dominated by a single genetic class with very little overlap or co-

occurrence of multiple watermilfoil classes within the same waterbody (Figure 1.4-B). 

These findings are similar to the findings of Moody and Les 2010 (introduced range) and 

Wu et al. 2015 (native range) which showed a pattern of isolation and dominance of 
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either Eurasian, Northern, or hybrid watermilfoil genotypes within lakes but little to no 

evidence of these classes co-occurring within the same lake. This pattern of limited co-

occurrence of genetic classes could indicate that some form of competitive exclusion is 

taking place between classes in both the native and introduced ranges. As one genotype 

or genetic class establishes, it could quickly and significantly reduce available niche 

space making further colonization difficult. It could also indicate a relative rarity of pure 

Northern watermilfoil lineages in Michigan and the potential for a cryptic invasion as 

Northern watermilfoil genes and populations become supplanted by Eurasian 

watermilfoil genes through gradual introgression and advanced backcrossing towards 

Eurasian watermilfoil genomes. A similar pattern occurred during hybridization events in 

the species’ co-occurring native range when admixed individuals showed significant 

backcrossing towards Eurasian watermilfoil (Wu et al. 2015).  

Evidence of admixture and hybridization appears to be more frequent in 

waterbodies with histories of herbicide treatment (Figure 1.4-B). At least one previous 

study has indicated that, in its introduced range, hybrid watermilfoil occurs more 

frequently in 2,4-D treated waterbodies belonging to the same watershed (LaRue et al. 

2013b). As studies have demonstrated that hybrid watermilfoils can display less 

sensitivity to herbicides, herbicides could be selecting for admixed individuals that 

possess these herbicide resistant traits. Given their potential dominance under these 

artificial selection regimes, this could also explain why hybrid lineages rarely co-occur 

with pure parental lineages in the same herbicide-treated waterbody (Figure 1.4-B). 
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Biotic communities with histories of herbicide treatment are different than 

communities in non-treatment waterbodies 

Waterbodies with histories of herbicide treatment group together across the first 

principal component axis (Figure 1.7-B). All plant species with a positive value for axis 1 

and an eigenvector towards herbicide treatment waterbodies (n = 11) are monocots with 

the exception of Eurasian watermilfoil and a non-vascular aquatic moss species. This 

shift towards monocots in herbicide treatment water bodies is logical given that 

herbicides used in these waterbodies (2,4-D and triclopyr) are broadleaf selective 

herbicides meaning that they are designed to target dicots (like watermilfoils) while not 

harming aquatic grasses and pondweeds (monocots) (Tu et al. 2001). Similar findings of 

healthy monocot communities in waterbodies being treated with the herbicide fluridone 

in order to target invasive watermilfoil have been previously reported (Madsen et al. 

2002). This shift towards monocot dominated communities could be beneficial if thin-

leaved monocot species can effectively compete against invasive watermilfoils. However, 

the continued use of herbicides targeting dicots could suppress growth of plants such as 

native watermilfoils, which could potentially compete more effectively with invasive 

watermilfoils in a sustained management scenario.  

Management implications 

Our research suggests that repeated exposure to herbicides could be selecting for 

populations of invasive watermilfoil that have lower genetic diversity, yet possess the 

capacity to sustain invasions in waterbodies with histories of herbicide treatment. We 

found that populations with histories of herbicide treatment have more admixture than 
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non-herbicide treatment populations. These populations could be more tolerant and better 

able to withstand herbicide stressors than populations comprised of non-admixed 

individuals. This could create some difficult scenarios for lake managers who want a fast 

and relatively inexpensive treatment method (such as herbicides) but might pay greater 

costs over time as herbicides select for increased admixture and resistance. Somewhat 

surprisingly, plant communities appear to be shaped by histories of herbicide treatment 

too. These findings indicate that herbicides are likely impacting the ecology and 

competitive environment for aquatic macrophytes. Further study into the competitive 

dynamics between plants in or from herbicide treatment environments could shed light on 

the potential long term ecological impacts of herbicide treatments.  
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1.6 Figures 

 

Figure 1.1 – Sampled populations of invasive watermilfoil across 10 water bodies in 

Michigan. (See Table A.1 for water body names and geographic positioning coordinates). 

*Asterisk denotes water bodies sampled for abiotic and biotic data as described in text. 

 

 

 

Figure 1.2 – Ordinal metric of relative aquatic macrophyte abundance retrieved during 

rake tosses. Images from Many Waters, LLC. and USFS Ottawa National Forest. 
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Figure 1.3 – Genotypic diversity among populations of invasive watermilfoil across 10 

Michigan water bodies with histories of herbicide treatment (red)  and water bodies with 

no history of herbicide treatment (black). Pie charts represent the genotypic composition 

of water bodies and individual segments represent the relative proportion of an individual 

genotype. The first number above each pie represents the water body identification 

number specified in Table 1.1 followed by the (number of individuals sampled and 

number of genotypes identified within each water body). This map was produced using 

ArcMap (ESRI 2018 - v. 10.6) and geographic data taken from Michigan GIS Open Data 

(State of Michigan 2018). 

 

 

 



33 

A. 

 

B. 
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Figure 1.4 – A.) Admixture coefficient and optimal number of clusters based on rate of 

change in log likelihood of ∆K (Evanno et al. 2005) for all 1,362 sampled watermilfoil 

plants from 10 Michigan waterbodies run simultaneously. Optimal number of clusters 

was K = 5 for all populations. Numbers across x-axis represent individual water bodies 

found in (Table 1). A single vertical bar displays the membership coefficient of each 

individual and colors represent individual assignment to one of 5 clusters. B.) Admixture 

coefficient and optimal number of clusters based on rate of change in log likelihood of 

∆K (Evanno et al. 2005) for all 1,362 sampled watermilfoil plants from 10 Michigan 

waterbodies run on an individual waterbody basis. Optimal number of clusters was K = 2 

for each population with the exception of one lake which had an optimal number of 

clusters of K = 3. Numbers across x-axis represent individual water bodies (found in 

Table 1). A single vertical bar displays the membership coefficient of each individual. 

Blue represents the putative Eurasian watermilfoil (M. spicatum) cluster and red 

represents the putative Northern watermilfoil (M. sibiricum) cluster. 
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Figure 1.5 – A. Map of discriminant analysis of principle component (DAPC) clusters 

produced using default settings in the R package adegenet. Populations are represented as 

circles and clusters as inertia ellipses. Cluster assignment within each population was 

>95% towards one cluster, with the exception of Carter Lake (B.), which was represented 

by multiple clusters. Segments within the pie chart represent the proportion of individuals 

belonging to corresponding clusters with the same ellipse color. This map was produced 

using ArcMap (ESRI 2018 - v. 10.6) and geographic data taken from Michigan GIS Open 

Data (State of Michigan 2018). 
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Figure 1.6 – Principal coordinate analysis (PCoA) of the pairwise genetic Lynch 

distances (Lynch 1990) among all sampled genotypes from 10 populations of invasive 

watermilfoil in Michigan water bodies. PCoA performed using the software GenAlEx v. 

6.5 (Peakall and Smouse 2012) with pairwise genetic Lynch distances calculated using 

the R package POLYSAT (Clark and Jasieniuk 2011). Red symbols represent genotypes 

found in herbicide treatment water bodies and black symbols represent genotypes found 

in non-herbicide water bodies. 
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A. 

 

B. 
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Figure 1.7 – Principal component analysis (PCA) of A.) abiotic environmental variables 

and B.) biotic plant communities per site. Red symbols represent waterbody sites with 

histories of herbicide treatment and black symbols represent sites with no history of 

herbicide treatment. Blue arrows represent the corresponding eigenvectors for PC 1 and 

PC 2 for abiotic variables and green arrows represent the corresponding eigenvectors for 

PC 1 and PC 2 for biotic plant communities. 
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1.7 Tables 

Table 1.1 – Locus, repeat unit, and allelic diversity results per marker for 12 

microsatellite loci (developed by Wu et al. 2013) used in the study of invasive 

watermilfoil populations in 10 Michigan water bodies. NA = total number of alleles per 

loci, MinA = minimum number of alleles per loci, MaxA  maximum number of alleles per 

loci, MeanA = mean number of alleles per loci.  

 

Locus Repeat unit NA MinA MaxA MeanA 

Myrsp1 Tri 4 2 4 2.4 

Myrsp4 Di 8 2 6 3.3 

Myrsp5 Di 7 3 6 4.4 

Myrsp6 Di 11 1 5 2.9 

Myrsp8 Di 2 2 2 2.0 

Myrsp9 Tri 5 2 4 2.7 

Myrsp10 Tri 5 2 4 2.5 

Myrsp12 Di 3 1 2 1.9 

Myrsp14 Di 7 3 5 3.3 

Myrsp15 Di 9 3 6 3.9 

Myrsp16 Di 4 3 4 3.5 

Myrsp18 Tri 4 2 3 2.4 
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Table 1.2 – Genetic diversity indices of 10 populations of invasive watermilfoil across 

Michigan in A.) water bodies with histories of herbicide treatment, and B.) water bodies 

with no history of herbicide treatment. N = number of individual plants sampled per 

water body, G = number of genotypes identified per water body using the software 

GENOTYPE (Merimans & Van Tienderen 2004). Genetic diversity indices were 

calculated using the software GENODIVE (Merimans & Van Tienderen 2004) and 

included, Ge = effective number of genotypes (Lehman & Wayne 1991). Eve. = genotypic 

evenness. Nei’s SS = Nei’s genetic diversity corrected for sample size (Nei 1987). HSS = 

Shannon-Weiner diversity index corrected for sample size (Chao & Shen 2003). 

 

 

 

 

 

 

 

 

 

 

A. Herbicide N G GEff GEve Nei’s SS HSS
 

1 Fine Lake 180 1 1.00 1.00 0.00 -0.00 

2 Jordan Lake 85 5 1.16 0.23 0.14 0.20 

3 Lake Geneva 150 3 1.03 0.34 0.03 0.06 

4 Budd Lake 80 1 1.00 1.00 0.00 -0.00 

5 Pike Bay 90 11 2.20 0.20 0.20 0.63 

6 Torch Bay 90 3 1.06 0.35 0.06 0.09 

 Mean  4 1.24 0.52 0.07 0.16 

B. Non-Herbicide N G GEff GEve Nei’s SS HSS 

7 Long Lake 167 4 1.05
 

0.26 0.05 0.08
 

8 Carter Lake 135 46 7.98 0.17 0.88 1.44 

9 Lake Ovid 241 12 1.21 0.10 0.17 0.27 

10 Silver Lake 144 14 1.41 0.10 0.29 0.45 

 Mean  19 2.91 0.16 0.35 0.56 
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Table 1.3 – Analysis of molecular variance (AMOVA) table for populations of invasive 

watermilfoil in 10 Michigan lakes. AMOVA calculated using the software GenAlEx v. 

6.5 (Peakall and Smouse 2012).  

Source df MS Percent molecular variance P 

Among Populations 9 1287.008 95% 0.001 

Within Populations 1352 0.532 5%  

Total 1361  100%  

 

 

 

Table 1.4 – Admixture analysis for 10 populations of invasive watermilfoil across 

Michigan in A.) water bodies with histories of herbicide treatment, and B.) water bodies 

with no history of herbicide treatment. Admixed defined as individuals with Q values 

0.01<Q<0.99. 

A. Herbicide  Mean Q   Admixed individuals Percent admixed 

1 Fine Lake 0.50 180 100% 

2 Jordan Lake 0.49 85 100% 

3 Lake Geneva 0.50 150 100% 

4 Budd Lake 0.50 80 100% 

5 Pike Bay 0.36 90 100% 

6 Torch Bay 0.50 90 100% 

B. Non-herbicide  Mean Q  Admixed individuals  Percent admixed 

7 Long Lake 0.02 2 1% 

8 Carter Lake 0.37 50 37% 

9 Lake Ovid 0.39 239 99% 

10 Silver Lake 0.11 138 96% 
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2 Implications for Management: Herbicide treatments 
may influence the evolution of invasiveness in 
Eurasian watermilfoil (Myriophyllum spicatum) 

2.1 Abstract 

Invading populations often occupy novel environments in their introduced range, 

which can have dramatically different biotic and abiotic conditions relative to their natal 

environments. These novel environments have the potential to shape the post-

establishment evolution of invading populations, further influencing their fitness and can 

have long-term implications for management practices. Here, we sought to understand 

whether repeated exposure to herbicides (a novel environment) might affect the survival 

and/or growth of the invasive macrophyte, Eurasian watermilfoil (Myriophyllum 

spicatum). We grew invasive watermilfoil plants that were collected from lakes with and 

without a history of repeated exposure to herbicides together in mesocosms. Furthermore, 

because nutrient levels (specifically nitrogen and phosphorus) in the water column can 

vary and influence growth and survival, we also experimentally manipulated nutrient 

levels (low or high) among mesocosms. We found that a history of herbicide treatment 

significantly affected plant survival, net growth, and mean growth rate and the effects 

depended upon whether neighboring plants were from herbicide or non-herbicide 

treatment lakes. Plants from lakes with histories of herbicide treatment were more likely 

to survive and grew faster than plants collected from lakes with no prior exposure to 

herbicides, but these differences were lessened when grown with other plants from 

herbicide treated lakes. Surprisingly, nutrients did not affect plant survival and had a 

marginal significant outcome on net total growth. Our results suggest that repeated 
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exposure to chemical herbicides could select for faster growing, and thereby more 

invasive, Eurasian watermilfoil genotypes. This could have implications for sustaining 

long-term management efforts as populations routinely treated with herbicides could 

exhibit increased growth and survival relative to their non-herbicide counterparts. 

2.2 Introduction 

Biological invasions occur when a population of an introduced species gains a 

competitive advantage following the removal of natural restrictions to its propagation, 

which allows for rapid spread and colonization of novel territory in ecosystems where it 

has a dominant ecological impact (Valéry et al. 2008, Lodge et al. 1993, Vitousek et al. 

1996). Selective forces during biological invasions, such as abiotic and biotic 

environmental attributes and requirements for suitable mates, can contribute to whether 

some species are able to invade and/or proliferate in novel habitats (Havel et al. 2005, 

Lee and Gelembuik 2008, Hufbauer et al. 2012). While some invading populations might 

benefit from a release of constraints found in their native range, such as the removal of 

top-down control agents like herbivores, predators, or parasites that would regulate 

population sizes (Keane and Crawley 2002, Colautti et al. 2004), others may face novel 

forces in their introduced range in the form of control agents and uneven distribution of 

resources (Mooney and Cleland 2001, Davis et al. 2000). Different histories of exposure 

to control agents between introduced populations of the same species can influence the 

evolutionary trajectories of invading populations and their relative expression of invasive 

traits (Müller-Schärer et al. 2004, Prentis et al. 2008, Tayeh et al. 2014). Traits that are 

common among invasive species include relatively fast growth (Sakai et al. 2001, Van 



56 

Kleunen et al. 2010) large reproductive output (Lockwood et al. 2005), and a high degree 

of phenotypic plasticity (Richards et al. 2006, Davidson et al. 2011). How different 

histories of exposure to control agents influence the evolutionary trajectory of invading 

populations and their relative expression of invasive traits remains to be thoroughly tested 

in many invasive aquatic plant species. 

Populations of invasive or weedy plants routinely exposed to chemical herbicides 

as control agents often evolve coping mechanisms for tolerating the stress of targeted 

control (Jasieniuk et al. 1996, Richardson 2008, Powles and Yu 2010). For example, 

some biotypes of the invasive aquatic macrophyte Hydrilla (Hydrilla verticillata) have 

evolved resistance to the herbicide fluridone as the result of somatic mutations to the 

gene that produces the enzyme fluridone is designed to suppress (Michel et al. 2004, 

Arias et al. 2005). Once established, herbicide resistant biotypes can rapidly cover large 

areas of water and displace native plant communities, causing significant harm to native 

ecosystems (Schmitz et al. 1993, Bates & Smith 1994). These herbicide resistance traits 

can be advantageous for invasive species, but does the expression of herbicide resistance 

traits come at an evolutionary or ecological expense? 

In many invasive plant species, fitness tradeoffs are thought to arise because plants 

allocate resources to survival or stress tolerance that would otherwise be allocated to 

growth or reproduction if the herbicide resistance traits were not expressed (Vila-Aiub et 

al 2009, van Etten et al. 2016, Bingham et al. 2017). In a meta-analysis of over 200 plant 

species, Bergelson & Purrington (1996) found that more than 50% of the populations that 

they reviewed that had been exposed to herbicides showed measurable fitness tradeoffs in 
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the form of reduced growth or reproductive output. However, on rare occasions increased 

growth and/or reproduction have been reported despite the development of herbicide 

resistance (Wang et al 2010, Vila-Aiub et al 2015, Wu et al. 2018).  

Eurasian watermilfoil is an aquatic macrophyte that is native to Europe, Asia, and 

North Africa (Couch and Nelson 1985), but highly invasive in North America (Aiken et 

al. 1979, Smith and Barko 1990, Madsen 1994). Eurasian watermilfoil was first 

documented in North America in the late nineteenth century in the area surrounding 

Chesapeake Bay (Reed 1977) and is now widespread across North America, occurring in 

48 out of 50 U.S. states and 3 out of 10 Canadian provinces (United States Geological 

Survey 2018). Eurasian watermilfoil is successful in part because it grows quickly 

relative to other macrophytes, forming dense canopies that outcompete and displace 

native vegetation through exclusion to resources such as light (Smith and Barko 1990, 

Madsen et al. 1991, Madsen 1994). Eurasian watermilfoil thrives in environments rich 

with available resources such as nitrogen and phosphorus (Omernick et al. 1991, Buchan 

and Padilla 2000, Feng et al. 2015) and dominates plant communities through increased 

competitiveness under these elevated resource conditions (Madsen 1998). It has recently 

been documented that part of Eurasian watermilfoil’s success may rely on its ability to 

hybridize with native Northern watermilfoil (Myriophyllum sibiricum Komarov). 

Hybirdization between the two species was first documented in North America in 2002 

(Moody and Les 2002) and has since been reported several times across its introduced 

range (Moody and Les 2007, Strutevant et al. 2009, Zuellig and Thum 2012, Borrowman 

et al. 2014) and the two species’ co-occurring native range of central Asia (Wu et al. 



58 

2015). It has also been reported that hybrid watermilfoil can exhibit increased growth 

rates relative to its parent species (LaRue et al. 2013), possibly as the result of the novel 

recombination of genomes and subsequent trait expression (i.e. “heterosis”, Ellstrand and 

Schierenbeck 2000). Since hybrids and parental species overlap in morphology and 

hybrid status can only be determined through genetic analyses (Moody and Les 2010), 

Eurasian watermilfoil and hybrid watermilfoil will henceforth be referred to as invasive 

watermilfoil. 

Treatments for the eradication and control of invasive watermilfoil include 

application of chemical herbicides (e.g., 2,4-Dichlorophenoxyacetic acid, triclopyr, and 

fluridone), the physical removal of plant material (e.g., mechanical and diver assisted 

harvesting), biological control agents (e.g.,  milfoil weevils, Euhrychiopsis lecontei and 

the fungus Mycoleptodiscus terrestris) and/or some combination of the above. While 

these treatments have shown short term viability, in many instances they have not proven 

to be successful long term and populations of invasive watermilfoil have rebounded 

(Nichols and Shaw 1983, Roley and Newman 2006, Nelson and Shearer 2008, Poovey et 

al. 2007, Berger et al. 2012). Increasing rates of herbicide resistance have been reported 

among populations of invasive watermilfoil, possibly as the result of hybridization (Slade 

et al. 2007, Berger et al. 2009, Glomski and Netherland 2009, Berger et al. 2012, Thum et 

al. 2012). 

Here, we tested whether Eurasian watermilfoil (Myriophyllum spicatum) plants 

from waterbodies that have experienced repeated exposure to herbicides expressed 

reduced fitness (survival or growth rates) as compared to invasive watermilfoil plants 
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from waterbodies that have not been treated with herbicides. We grew invasive 

watermilfoil plants collected from lakes with and without histories of repeated exposure 

to herbicides together in mesocosms where we also manipulated nutrient levels among 

mesocosms. We varied nutrient levels in order to examine whether any measured growth 

or evolutionary responses to herbicide exposure may be dependent upon nutrient 

availabilities as invasive watermilfoils exhibit a spectrum in their invasibility across 

habitats that range in available nutrients (Madsen 1998). We predicted that populations 

with histories of herbicide treatment would exhibit a tradeoff in their expression of 

invasive traits related to growth as the result of prior selection towards the allocation of 

resources to tolerate against repetitive herbicide exposure. 

2.3 Materials and Methods 

2.2 Experimental design 

We collected plants from four water bodies in Michigan (Figure 2.1): two water 

bodies with repeated treatments of the herbicides 2,4-D and triclopyr between 2013-2016 

(H) and two water bodies that have had no documented history of being previously 

treated with chemical herbicides (C; MI DEQ 2018). As invasive watermilfoil reproduces 

asexually through horizontal stolon growth, plant fragments were collected using a 

combination of rake tosses and rake twists (Kenow 2007) at spatial intervals of 5 m in 

order to reduce the number of individuals belonging to the same ramet. To acclimate 

plants to similar environmental conditions prior to experimentation, we planted 10-20 cm 

of a growing tip from a healthy plant (fragments) in 70 cm
2
 plastic pots filled with potting 
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soil and capped with sand. All pots were then placed into 2,650 liter flow-through tanks 

(Living Stream®, Frigid Units Inc., Toledo, OH, USA) that were continuously filled with 

water from the nearby Portage Lake Canal and exposed to a 12/12 hour light/dark cycle 

(8 Sylvania 40W Gro-Lux wide spectrum lights). 

After a minimum of 3 generations of vegetative propagation, we selected 96 

healthy fragments (48 from herbicide and non-herbicicde treated lakes); due to some 

mortality of cultured plants, the number of plants from the four different lakes were 

unevenly represented. Plants were planted together with another plant in a pot to 

represent one of three different types of neighborhood treatments: plants collected from 

herbicide treatment lakes grown with plants collected from herbicide treatment lakes, 

plants collected from herbicide treatment lakes grown with plants collected from non-

herbicide control lakes, and plants collected from non-herbicide treatment lakes grown 

with plants collected from non-herbicide control lakes (Figure 2.2). Within each pot, 

plants were separated 10 cm from each other and the walls of the pot to maintain 314 

cm
2
/10 cm radius circle of uninhibited initial growth. All pots were filled with 

approximately 40% potting soil and capped with ~5 cm of sand to prevent the soil from 

leaching into the water column. 

Pots were then divided into eight 378.5-L mesocosms (6 pots/mesocosm) and 

nutrients were altered such that 4 mesocosms had low nutrient additions and 4 had high 

nutrient additions. The low nutrient treatments were comprised of dissolved inorganic 

nitrogen (DIN) and soluble reactive phosphorus (SRP) in a 16 to 1 N:P molar ratio 

(Redfield 1934) in order to simulate concentrations of nutrients (18 µg/L DIN, 2 µg/L 
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SRP) found in the nearby Portage waterway (Ortiz et al. 2017). Four mesocosms were 

supplied with a higher dose of nutrients equivalent to concentrations of total phosphorus 

(20-30 µg/L) reported in lakes with littoral zones dominated by Eurasian watermilfoil 

(Madsen 1998) while maintaining Redfield ratio (180 µg/L DIN, 20 µg/L SRP). Nutrients 

were added every five days in the form of aqueous concentrated solutions to each 

mesocosm’s water column. Mesocosms were continuously filled at an approximate rate 

of 1 liter per minute with water from the Portage Lake Canal. To reduce heating from 

sunlight radiation and to prevent release of pollen in the event of flowering, all 

mesocosms were covered with a 70% shade cloth.  

We measured plant survival (yes or no), days from planting to mortality, plant 

growth metrics, and algal cover every five days for all plants for 7 weeks (August 9
th

 to 

September 28
th

 2017). Plant growth was measured as 1.) net total growth (sum total 

length of all stems to the nearest 0.2 cm minus the initial length) and 2.) mean relative 

growth rate (net total growth rate/number of days of observation or survival). Because all 

plants were covered with epiphytic algae, which could influence survival or growth of 

plants, we also measured algae coverage on an ordinal scale with 0 = no algae coverage, 

1 = 1-33% algae coverage, 2 = 34-66% algae coverage, 3 = 67-99% algae coverage, and 

4 = 100% algae coverage. Plant mean algae coverage scores were calculated as the sum 

of the algae coverage scores divided by the number of measurement dates each plant had 

survived.  

Statistical Analyses 
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We examined whether a history of herbicide treatment (H or C) for an individual 

focal plant, the history of herbicide treatment in their neighbor (H or C), the nutrient 

environment (low or high), and/or epiphytic algal load influenced mortality and growth 

metrics using a series of statistical tests. In all analyses, factors were treated as fixed 

effects and transformations were made to meet model assumptions where required (as 

noted below). Tukey’s HSD tests were used to compare for significant differences among 

means when an interaction was significant (P < 0.05). All analyses were conducted in 

JMP
®
 version 13.0 (SAS Institute Inc., Cary, NC). 

To test whether a history of herbicide treatment for an individual plant, the history 

of herbicide treatment for their neighbor, the nutrient environment, and/or interactions 

among these variables influenced the probability of survival (yes or no) we used nominal 

logistic regression. Because many of the plants were covered with algae, we also used 

logistic regression to examine whether a history of herbicide treatment and/or algae 

coverage influenced plant survival (yes or no).  

Before subsequent analyses, we excluded 8 plants that experienced broken stems 

during the study and we could not obtain accurate measures of growth. To test whether a 

history of herbicide treatment for an individual focal plant, the history of herbicide 

treatment for their neighbor, the nutrient environment, and/or interactions among these 

variables influenced net total growth rate (log10 transformed) or mean growth rate 

responses, we used analysis of variance (ANOVA) models. 
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2.4 Results 

Out of the 96 plant fragments, 49 survived until the end of the experiment. 

Overall, the herbicide history of the focal plant had a significant effect on the likelihood 

of plant survival (Table 2.1) where plants from herbicide treatment lakes were more 

likely to survive (32 out of 48 plants survived) than plants with no history of herbicide 

treatment (17 out of 48 plants survived). However, the effect of the herbicide history of 

the focal plant depended upon the herbicide history of its neighbor. Whereas focal plants 

from herbicide treatment lakes were more likely to survive when the neighbor was from a 

non-herbicide treatment lake, focal plants from non-herbicide treatment lakes were less 

likely to survive when growing with plants from herbicide treatment lakes (Figure 2.1). 

History of herbicide treatment had a significant impact on plant survival while mean 

algae growth had a marginally significant impact on plant survival (Table 2.2)  

Where an invasive watermilfoil plant was collected (its history of herbicide 

treatment) significantly affected its growth attributes (Tables 2.3 and 2.4). For net growth 

and mean relative growth rate, the effects depended upon whether neighbors were from 

herbicide treatment lakes or non-herbicide control lakes (Tables 2.3 and 2.4). Plants from 

lakes with histories of herbicide treatment growing with plants from the same source 

expressed significantly increased net growth and mean relative growth rate compared to 

plants from non-treatment lakes growing with other plants from non-treatment lakes 

(Figures 2.4 and 2.5). Nutrient treatment also had a marginal significant effect (P = 

0.0543) on net total growth of plants (Figure 2.4). For net growth, plants growing in high 

nutrient treatments exhibited a least squares mean of 8.46 cm (± 1.204 standard error) 
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while plants growing in low nutrients had a least squares mean of 5.1 (± 1.198 standard 

error) following back transformation.  

2.5 Discussion 

Understanding how repeated efforts to control biological invasions influence a 

population’s expression of invasive traits is important for predicting future invasion 

dynamics and enlisting the best possible management practices. Our findings demonstrate 

that invasive watermilfoil plants from lakes with histories of repeated exposure to 

chemical herbicides are better survivors and exhibit increased growth relative to plants 

from lakes with no history of herbicide treatment.  

Performance depends on treatment history and neighbors 

Although plants collected from waterbodies with a history of chemical treatment 

performed better than plants collected from waterbodies with no history of treatment, 

plant performance was dependent on the neighborhood that a focal plant occupied. Plant 

survival was greatest among plants from herbicide treatment water bodies when growing 

alongside plants from non-herbicide treatment waterbodies (Figure 2.3). In contrast, plant 

survival was lowest among individuals from non-herbicide treatment waterbodies 

growing alongside other individuals from non-herbicide treatment waterbodies (Figure 

2.3). These patterns of highest performance (H plant grown with C plant) and lowest 

performance (C plant grown with C plant) were similar for net total growth and relative 

growth rate (Figures 2.4 and 2.5). 
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Although not directly measured, more intraspecific competition could be taking 

place between genetically similar individuals grown together in the same neighborhood 

as focal plants expressed increased survivorship and growth when grown with neighbors 

from different populations (Figures 2.3, 2.4, 2.5). In another study that examined the 

population genetic structure of invasive watermilfoil in these same lakes, we found that 

most lake populations were composed of a few genotypes and that individuals within 

lakes shared more genetic similarities with each other than with individuals from other 

lakes (Zallek 2018, unpublished master’s thesis). Populations of genetically and 

phenotypically similar individuals often exhibit increased intraspecific competition 

between individuals as they compete for shared resources in similar ways (Wilson and 

Turelli 1986, Abrams et al. 2008, Bolnick et al. 2011). If survivorship of individual plants 

is dependent upon the genetic composition of its neighbor, then we could predict that 

populations of invasive watermilfoil with increased genetic richness will be able to grow 

in higher densities than populations comprised of a single genotype.  

Another explanation for the variation in expression of growth traits and 

survivorship among plants in this study could be the result of variation in genetic 

diversity and admixture among sampled source populations. At least one previous study 

has indicated that as Eurasian watermilfoil hybridizes with Northern watermilfoil, hybrid 

offspring can exhibit increased growth rate and demonstrate less sensitivity to herbicides 

relative to pure parental species (LaRue et al. 2013). Although the plants in this study 

were not genotyped or tested for admixture, our knowledge of the background levels of 

genetic diversity and admixture within the study populations indicates that the plants 
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from source populations comprising the majority of our plant samples have very different 

patterns of genetic diversity and admixture. Herbicide treatment lakes have less genotypic 

diversity and more evidence of admixture relative to populations from non-herbicide 

control lakes (Zallek 2018, unpublished master’s thesis). Plants from herbicide treatment 

lakes (populations with greater admixture but less genotypic richness) experienced less 

mortality and increased growth relative to plants from non-herbicide control lakes, which 

have less admixture but more genotypic diversity. Therefore, herbicides could be 

selecting for populations comprised of fewer genotypes exhibiting increased admixture 

and invasiveness. Since herbicide treatment lakes are characterized by very few 

genotypes, herbicides could also be selecting for invasive watermilfoil lineages that 

disproportionately rely on fragmentation and asexual reproduction as a primary means of 

propagation. 

Treatment to control invasive species may influence invasiveness 

Invasive watermilfoil plants from herbicide treatment lakes express significantly 

greater net total growth and relative growth rates when grown alongside other plants from 

herbicide treatment lakes versus plants from non-herbicide control lakes growing with 

other plants from non-herbicide control lakes. These results are counter to our initial 

hypothesis that invasive watermilfoil populations from non-herbicide lakes will exhibit 

increased invasiveness (demonstrated through increased growth) relative to populations 

from herbicide treatment lakes (e.g. a fitness tradeoff). Repeated exposure to herbicides 

could be selecting for populations of invasive watermilfoil expressing invasive traits 

related to growth and hardiness to novel environments as adaptive means for overcoming 
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the stress of herbicides. Repeated exposure to herbicides could therefore be promoting 

invasiveness among populations of invasive watermilfoils. Counter to studies that have 

documented suppressed growth as an adaptive herbicide resistance trait in other plant 

species (Vila-Aiub et al 2009, van Etten et al. 2016, Bingham et al. 2017), increased 

growth rates in invasive watermilfoil could be beneficial for escaping the harmful effects 

of concentrated aqueous herbicides. 

Management implications 

Histories of exposure to herbicides could be beneficial for promoting invasive 

traits related to survival and growth in invasive watermilfoil. Given that invasive 

watermilfoil plants from herbicide treatment lakes have more invasive characteristics, 

this could have implications for future management of invasive populations. Lakes 

continually managed for invasive watermilfoil through the use of herbicides could 

potentially select for increasingly invasive populations that would not only make control 

through the use of herbicides more difficult, but could also make other forms of treatment 

(i.e. mechanical or biological control agents) challenging and more costly as increased 

growth and survivorship could impair the efficacy of those treatments as well. In 

addition, invasive watermilfoil populations exhibiting increased invasiveness could more 

effectively outcompete native vegetation, reducing native plant diversity and paving the 

way for future invasions of watermilfoil or other invasive aquatic plants. Our findings 

reveal that repeated exposure to herbicides could be generating invasive watermilfoil 

lineages possessing increased invasive traits. This could pose a threat to all types of 

waterbodies regardless of their herbicide treatment or invasion history. 
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2.6 Figures 

 

Figure 2.1 – Locations of four lakes from which invasive watermilfoil fragments were 

collected.  Geographic data is from Michigan GIS Open Data (State of Michigan 2018), 

parentheses give latitude and longitude of waterbody, and the map was produced using 

ArcMap (ESRI 2018 - v. 10.6). 
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Figure 2.2 – Experimental design of eight mesocosms (large rectangles); two plants were 

planted per pot (circles) at 10 cm apart from each other, where C = plants collected from 

non-herbicide treated waterbodies and H = plants collected from herbicide treated 

waterbodies. Nutrients were applied to the mesocoms as low (unshaded rectangles) and 

high dose (shaded rectangles). 
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Figure 2.3 – Percent plant survival for focal plants grown with different neighbor plants 

where H = plants collected from herbicide treated lakes and C = plants collected from 

non-herbicide treated lakes. Sample sizes (N) represent the number of plants from each 

group that survived until the completion of the experiment. 

 



71 

 

Figure 2.4 – Least square means ± 1 standard errors of net total growth (cm) measured by 

taking the log 10 transformed value of the final total length minus the initial total length 

(values were back transformed for graphical purposes, McDonald 2014.) of focal plants 

grown with different neighbor plants where H = plants collected from herbicide treated 

lakes and C = plants collected from non-herbicide treated lakes. Different letters 

represent significantly different least squares means according to Tukey’s HSD test and 

sample sizes (N) are shown.  
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Figure 2.5 – Least square means ± 1 standard errors of mean relative growth rate 

(measured by taking the net total growth rate/number of days of observation or survival) 

of focal plants grown with different neighbor plants where H = plants collected from 

herbicide treated lakes and C = plants collected from non-herbicide treated lakes. 

Different letters represent significantly different least squares means according to 

Tukey’s HSD test and sample sizes (N) are shown. 
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2.7 Tables 

 

Table 2.1 – Logistic regression results for the effects of source of focal plant (C, H), 

source of neighbor (C, H), nutrient level (high, low) and/or interactions among factors on 

plant survival. P-values in bold are statistically significant at α = 0.05. 

 

Table 2.2 – Logistic regression for the effects of source of focal plant (C, H) and 

individual mean algae coverage score on plant survival. P-values in bold are statistically 

significant at α = 0.05. 

 

Source DF Chi-Square P 

Focal source water body 

Mean algae growth 

Focal source water body x Mean algae growth 

Difference 

1 

1 

1 

3 

6.7379 

3.5776 

0.1064 

16.2824 

0.0094 

0.0586 

0.7443 

0.0010 

 

 

 

 

 

 

 

 

 

Source DF Chi-square P 

Focal source waterbody (FSW) 1 10.5310 0.0012 

Neighbor source waterbody (NSW) 

Nutrient treatment (NT) 

1 

1 

0.4737 

0.8118 

0.4913 

0.3676 

FSWx NSW 1 13.0128 0.0003 

FSWx NT 1 1.2330 0.2668 

NSWx NT 1 2.1809 0.1397 

FSWx NSW x NT 

Difference 

1 

7 

0.4707 

25.3726 

0.4927 

0.0007 
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Table 2.3 – ANOVA effect test results for the effects of source of focal plant (C, H), 

source of neighbor (C, H), nutrient level (high, low) and/or interactions among factors on 

net growth (log-transformed). P-values in bold are statistically significant at α = 0.05. 

 

Table 2.4 – ANOVA effect test results for the effects of source of focal plant (C, H), 

source of neighbor (C, H), nutrient level (high, low) and/or interactions among factors on 

mean relative growth rate (MRGR). Bold font indicates statistically significance results at 

the 0.05 significance level. P-values in bold are statistically significant at α = 0.05. 

 

 

 

 

 

Source Parameters  SS F Ratio P 

Focal source waterbody (FSW) 1 2.7467 11.321 0.0012 

Neighbor source waterbody (NSW) 

Nutrient treatment (NT) 

1 

1 

0.3477 

0.9266 

1.4331 

3.8192 

0.2349 

0.0543 

FSW x NSW  1 1.3516 5.5712 0.0208 

FSW x NT 1 0.2951 1.2162 0.2735 

NSW x NT 1 0.1679 0.6919 0.4080 

FSW x NSW x NT 1 0.0012 0.0051 0.9434 

Model 

Error 

7 

80 

6.9721 

18.9237 

4.1054 0.0007 

Source Parameters SS F Ratio P 

Focal source waterbody (FSW) 1 0.3785 15.384 0.0002 
Neighbor source waterbody (NSW) 

Nutrient treatment (NT) 

1 

1 

0.0085 

0.0540 

0.3452 

2.1954 

0.5585 

0.1424 

FSW x NSW  1 0.1163 4.7257 0.0327 
FSW x NT 1 0.0071 0.2885 0.5927 

NSW x NT 1 0.0523 2.1269 0.1486 

FSW x NSW x NT 1 0.0004 0.0162 0.8990 

Model 

Error 

7 

80 

0.7076 

1.9683 

4.1088 

 
0.0007 
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A Appendix 

Table A.1 – Source water bodies for EWM samples and corresponding lake codes and 

approximate geographic coordinates 

Water body # Water body Latitude Longitude 

1 Fine Lake 42.443697 -85.299310 

2 Jordan Lake 42.761334 -85.146254 

3 Lake Geneva 42.834216 -84.584735 

4 Budd Lake 44.015803 -84.793895 

5 Torch Bay 47.090681 -88.464459 

6 Pike Bay 47.032970 -88.513108 

7 Long Lake 42.470782 -85.242860 

8 Carter Lake 42.670366 -85.311866 

9 Lake Ovid 42.942351 -84.410610 

10 Silver Lake 43.920779 -84.963968 

    

    

Table A.2 – Characteristics of twelve microsatellite markers developed for Myriophyllum 

spicatum by Wu et al. 2013. Ta = annealing temperature (°C). Locus superscripts indicate 

whether forward (
F
) or reverse (

R
) primer was labeled with fluorescent dye. Fluorescent 

dye superscripts indicate the dye set group that the primers were multiplexed in. 

Locus Primer sequences (5′–3′) Repeat motif Fluorescent dye 

Myrsp1
F
 F: GTCAAAGCAGCCACTCGG 

R: GGCAACAATGCAGCTAACC 

(TCA)3(TCAGCA)2(G

CA)3 

6-FAM
1 

Myrsp4
R 

F: ACTGGCTAATGATATGCTGA 

R: TCTTTCCACGCCTCTTC 

(TC)17(AC)9 PET
3 

Myrsp5
 F

 F: GGGAAGCCGACAAGAAA 

R: CGAAGACGGAGTTATCAAG 

(TC)11 6-FAM
3 

Myrsp6
 R

 F: TAACAAACCGTACATTACAAGC 

R: TTTCTCTGGGAGCCATAAC 

(TC)17 6-FAM
2 

Myrsp8
 F

 F: GCACCATTAGGAGGAGAAC 

R: CTGCCGAAGATGAAACG 

(CA)9 VIC
1 

Myrsp9
 F

 F: TCCCCATCTGGTTCGTAT 

R: GGAAGGTAGCGGAGTGC 

(ATC)5(TTCATC)2(TT

C)2 

VIC
2 

Myrsp10
F
 F: CTAATCCCAGTCCACGG 

R: GCTGAAATTGAAGCCTCT 

(TCA)4(GCA)5 VIC
3 

Myrsp12
F
 F: CGCTTCACAAGTATTCTG 

R: TTCATGGTAGCCGTCA 

(TC)18(AC)10 NED
1 

Myrsp14F F: TTCCCATCCTTCTCCTG 

R: CCAAGTAAGTGTCCCAAAC 

(TA)2(TG)8(TA)8(G

A)4 

PET
2 

Myrsp15
F
 F: TCTTTCCACGCCTCTTC 

R: ACTGGCTAATGATATGCTGA 

(TG)7(AG)9 NED
2 

Myrsp16
F
 F: GGCTGCCCTATGCTAA 

R: ATCCCACTGAAGTCAAACT 

(TG)2(CA)8(TA)6(GA)

6 

NED
3 

Myrsp18
F
 F: GACGCCAAATCCAACT 

R: AATGATGTGCCTATACTGAA 

(TCA)11 PET
1 
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