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ABSTRACT

Transformers are the tie-points of electrical power systems. Their protection from power system
faults and other innate issues is of prime importance. A few of the issues that are studied in this
report are magnetic inrush currents, geomagnetically induced currents in power transformers and

Over-excitation.

This project develops a novel way of initializing and visualizing the flux linkage in the
transformer core for studies on energization inrush currents. In addition, a quasi-DC source for
GIC has been developed in order to study the GIC effects on power transformers and a
sensitivity analysis has been carried out to understand effects of GIC amplitudes and frequencies
on the transformer core. Lastly, a study has been carried out in order to understand Over-
excitation effects on transformers. The cases have been simulated in ATP (Alternative Transients

Program) using the hybrid transformer model available in the program.

The simulation results suggest the models developed are capable of providing an in depth
analysis of GIC, inrush currents and over-excitation. Future recommendations include studies on
relationship of var absorption and GIC amplitude as well as developing a model for studying

controlled switching with residual flux linkage monitoring for minimizing inrush currents.
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CHAPTER 1 - INTRODUCTION

The motivation for this project came from the fact that transformer operation is necessary for a
stable power system. Studying scenarios that could affect this stable operation can prevent
adverse circumstances in the future. The studies in this report provides a platform for analyzing
the effects of the magnetizing inrush, geomagnetically induced currents behaviors and Over-

excitation.

Magnetic inrush is a common problem in power systems which occurs when a transformer is
energized or re-energized. When energized, a transformer can draw a transient current up to 10-
15 times its rated current. The worst inrush occurs when the transformer is energized at the zero
crossing of the excitation voltage because it leaves the system with 2 times peak flux linked to
handle which results in very high current due to saturation of core. These inrush currents are very
rich in harmonics and may cause a lot of problems for power system components. Inrush
problems can be handled by controlled-separate switching of circuit breaker poles, by ensuring
that each phase is energized at the voltage peak. But this issue becomes difficult to estimate
when remnant/residual flux linkage is involved, which would be the case when the transformer is
being re-energized. It is difficult to estimate the residual flux linkage in the core and the residual
flux linkage can influence the inrush currents heavily. In this report, a study has been conducted

to better understand magnetic inrush problem better.

Geomagnetically induced currents are another problem faced by power transformers.
Geomagnetically induced currents (GIC) are induced when the electrically charged solar flares
interact with Earth’s magnetic field. This interaction results in an earth surface potential (ESP).

Neutral grounded transformers tend to induce currents due to this ESP, which is a quasi-DC



signal of frequency ranging from 0.0001-0.1 Hz. This quasi DC has very adverse effects on
transformers such as half-cycle saturation, high var absorption, winding hotspots and harmonics.
In this report a model for GIC has been established in order to study the effects of GIC on

transformers.

Over-excitation occurs when the excitation voltage to the transformer is more than the nominal
value. Over-excitation results in transformer core saturation and hence can potentially create
nuisance operation of relays. Over-excitation can also occur due to reduced frequency of the
excitation source, this can also result in core saturation. In modern day systems, over-excitation
is detected using over-fluxing protection which is essentially volts per hertz or V/f. In a healthy
system this ratio remains a constant value, any change in excitation voltage or frequency would
result in a change of this value. The protective relays are set with a pre-defined value for this
ratio. When the calculated value of E/f goes over the pre-defined value, over-fluxing is detected
and if necessary the energization source could be disconnected but this only occurs if the over-
fluxing persists for a long time. Under most cases V/f is used to block the relay operation as
over-excitation is generally a temporary situation. In this report a model of the effects of over-
excitation (frequency response and over-voltage response) is developed using the hybrid

transformer model in ATP.



CHAPTER 2 - LITERATURE SURVEY

This chapter provides a literature survey and foundational concepts on magnetizing inrush
currents, geomagnetically induced current, over-excitation and hybrid transformer modelling

using ATP.

2.1 MAGNETIZING INRUSH CURRENTS

Magnetizing inrush is one of the most common problem associated with power transformers, this
problem is usually observed while energizing a new transformer and even with charging a
transformer while there is another in-service transformer in the same system (sympathetic
inrush). The inrush currents can potentially result in false relay operations especially in
differential relays. To overcome this problem 2"* harmonic restraint or blocking is used. The
inrush currents are rich in 2" harmonics which can be detected and the operation could be
restrained or blocked but at the same time sensitivity of these relays is not compromised and they
should be able to detect a regular fault condition. To achieve this, the restraint is used only after a
particular magnitude of 2" harmonics is detected and not otherwise. These inrush currents can

be limited by controlled switching of circuit breaker poles. This controlled switching is to make
sure the circuit breaker is closed when the excitation voltage is at its peak. If done correctly this

kind of operation can restrict the inrush currents to safe limits.
For, e(t) = Esin(wt + ¢) Q)

A = [y e dt + A(0) = g(Cos (d) - Cos (wt + $)) + A(0) ()

Where E = maximum excitation voltage, w= frequency in radians, A= flux linkage, ¢= phase

angle of excitation voltage at energization.



The equivalent circuit for a transformer is given in Figure 2.1. The reduced circuit for the
transformer is shown in Figure 2.2. The dominating factors in the circuit are the magnetizing
inductance (Lm) and winding resistance R1 while core resistance (R and winding inductance
(Lz) are small in comparison to Lm and R:. The winding inductance is very small in comparison
to core inductance and can be ignored. R1 acts as a damping resistance and is responsible for
decaying of the inrush current [13].

Rl L1 R2 L2

ift) Y olex |1 n

2 fr 4]

Figure 2.1: Equivalent circuit for a single-phase transformer

R1

_I_ i)

+
w(t] elt) E Lrm

O

Figure 2.2: Reduced circuit of a transformer

A lot of factors actually affect the inrush currents, such as network topology, transformer
construction, winding coupling, residual fluxes, and circuit breakers (CB’s) current-chopping

characteristic.



2.1.1 EFFECTS

As already established from Equation (2), there are multiple factors contributing to inrush
currents. The effects of these currents are quite varied on different equipment and fault sensing

devices such as relays. A few of these effects are listed below:

1. Degrades the security of transformer differential protection. These inrush
currents may lead to mis-operation of differential relays if proper
precautions are not taken for restraint during inrush [10].

2. They also pose a threat to the other equipment which are already in
operation. Mis-operations have occurred in protection of the transformer,
generator and even the transmission line already in operation when a
transformer was being energized. When a transformer is energized in a
system where there is another transformer in operation a sympathetic
inrush is induced in the already operating transformer resulting in
saturation of the core for this transformer as well, which in turn results in

increased magnetizing current [10].

2.1.2 ENERGIZATION
Energization of the transformer is the primary reason for magnetizing inrush currents. As seen
from Equation (2) a lot depends on the term %Cos (d) where ¢ is the point (Phase angle) of the

voltage wave where energization occurs. For ¢ = 90 and v(t) = Vsin(wt + ¢), the flux linkage
would be maximum and hence the maximum inrush is observed. Similarly, for ¢ = 0, the flux

linkage is minimum and hence there is no inrush currents. A point to be noted here is that often



transformers are energized in a no-load condition which only aggravates the inrush issue and

hence limiting the inrush current is particularly important.

In order to achieve this nearly zero inrush, controlled switching is used, wherein a controller
monitors the voltage and closes the breaker when the AC voltage reaches its peak value. For 3-

phase transformers independent pole switching is used to negotiate the inrush.

Energization with residual flux, can result in high inrush currents, sometimes even worse. The
problem with energization with residual flux is that it is the most common form of inrush and
prediction of residual flux is quite difficult which is what brings the uncertainty to the switching
operation. The A(0) in Equation (2) is the residual flux linkage involved in the operation. Figure
2.3 shows the ring-down flux or residual flux in a transformer with triplex core, which was de-
energized at t=0, ring down then determines residual flux and then energized at t=0.2 s. The
residual flux depends on the phase angle of de-energization of the transformer [14]. For a 3-
legged core the A(0) for phases would be same for core legs, while the yokes will have residual

flux equal to the core legs they are parallel attached with.
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Controlled switching can be used in the case of energization with residual flux as well but
requires another parameter for monitoring in addition to the voltage, which is the residual flux of
the transformer. During de-energization residual fluxes may be calculated and when the residual
flux and prospective flux matches for a phase, the pole is closed. After the first phase is closed
the residual fluxes are brought down to zero by core flux equalization and once that has been
achieved the other poles are closed [11]. Different ways of initializing flux in the transformer

core have been discussed in [18].



2.2 OVER-EXCITATION
According to reference [16], the induced electro-motive force (EMF) in a transformer is given

by,

E=444+fxN=x*¢ (3)

Equation-3 can be re-written as,

a ¢ (4)

(l):B*A (5)

+0 é/f e

Figure 2.4: Single Phase transformer model depicting flux contributors



From Equation (4), it can be concluded that E/f is directly proportional to the flux. Over fluxing
can thereby occur if the excitation voltage is increased or the frequency of the source is
decreased. In either condition, the core of the transformer ends up in saturation, if the condition
persists. This condition is often called “over-excitation” and is generally observed when the load
increases and the generator frequency is reduced. When this generator is feeding the excitation to
a connected transformer, the transformers are affected. But because these conditions are not of
long duration, the protection devices need not trip. When over-excitation occurs, the transformer
starts to operate in the nonlinear zone of the magnetization curve, resulting in a lot of odd
harmonics at the CT secondary, which can operate the differential relays at the transformer [19].
The 3" harmonic cannot be used to block the relay operation because they are generally filtered
by the relays or the delta connections on the CT, moreover it is very difficult to discriminate
between zero sequence faults and Over-excitation using the 3™ harmonic. Hence for detection of
over-excitation the 5" harmonic is used [20]. But for conditions in which over-fluxing persists,
it is necessary to disconnect from the source. Detailed explanation of the concept and guidelines
for protection of transformers and generators from over-excitation are explained in [17] and [20].

[18] Also discusses strategies to tackle this issue for relays.



2.3 GEOMAGNETICALLY INDUCED CURRENTS

Geomagnetically induced currents are induced in the ground connected neutrals of power
transformers when a geomagnetic disturbance takes place due to the magnetically charged solar
flares interaction with earth’s magnetic field. These disturbances induce a quasi-dc (a signal of
very small frequency, mostly 0.0001-0.1 Hz) voltage which results in a geomagnetically induced
current in the transformer neutral which then flows through the transformer windings to the
network. This quasi-dc current results in half-cycle saturation of the transformer core leading to
hotspot heating, increased reactive power absorption and also harmonics [3], [8]. The GIC can be

between 10 A to 100 A in amplitude, while the induced voltage could be between 1-10 V/km

[2].[3].

Vinducc:l GIC
N e
p—y

\."im fuced
- —>
-

l Vi nduced
-\ —>

t S

Figure 2.5: GIC Flow in simple Power System [3]
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2.3.1 HOW ARE THEY INDUCED

Geomagnetically induced currents are formed by the interaction of magnetically charged solar
flares from sun and earth’s magnetic field. This interaction results in geomagnetic fluctuation
which is termed as a geomagnetic storm. These geomagnetic fluctuations induce an earth surface
potential and this in turn induces a current component with a frequency of 0.0001-0.1 Hz, which
is also referred to as a quasi-DC component in grounded power transformers. This current carries

from the ground to the whole network [1], [3], [8].

2.3.2 EFFECTS OF GIC ON POWER TRANSFORMERS

Effects of GIC can be understood from the understanding of the effects of DC on a power
transformer. When a DC bias is applied to a transformer core, a unidirectional flux is developed
in the core, the magnitude of which is dependent on the magnitude of the DC, number of windings
and the reluctance of the path of this DC flux. This DC flux adds to one half-cycle of AC flux and
subtracts from other half-cycle of AC flux. For a high enough DC flux half-cycle saturation is
observed in the core [2]. Because of this half-cycle saturation and narrow current pulse, the
system’s var requirements increase resulting in increase in requirement of currents from var
compensators and capacitor banks, which in turn can trip the relays protecting these banks and
hence affect the stability of the power system [2] ,[6]. The GIC and var consumption follows a
linear relationship irrespective of the size or core structure of the transformer, which means for an
increase in the GIC a linear increase in var consumption will be seen [7]. Figure 2.9 from [7]

explains this relationship. For details on experimental results for GIC vs vars, please refer to [7].

11
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Figure 2.8: Half-cycle saturation due to DC [2], Copyright © 2011, IEEE
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Figure 2.9: GIC vs var absorption in transformer [7], Copyright © 2011, IEEE

13



The effect of the DC signal depends on the core construction, core type and the geometry. The
effect is more prevalent when the core reluctance is low and diminishes when the reluctance is
high. The magnetization current and DC current comparison for single phase and 3-legged 3-
phase is provided in [2]. In GIC there is a significant amount of harmonics generated which also
depends on the core type and design. These harmonics are evenly distributed among lower and
higher orders in the case of single phase transformers. In the case of a 3-phase transformer, the
lower order harmonics are generally higher in comparison to the higher order harmonics. For 3-
phase 3-legged transformers, the 2" order harmonics amplitude is quite high and is easily
monitored by the differential relays in operation. For other constructions and single phase
transformers the amplitude of 2" order harmonics is not as high and can result in improper

operation of relays [2].

Hot spots in the windings and the core is another problem associated with GIC. High
magnetizing current rich in harmonics results in higher eddy current and circulating current
losses in the windings. This can lead to a rise in the windings temperature. Reference [2]
compares the winding temperature rise for different GICs in a 1-phase transformer. When the
core flux density reaches the saturation flux density levels, there will be a spillage of flux to
other structural parts of the transformers such as the tank, tie plates, yoke clamps, etc. The
comparison of the tie plate’s temperature for different GIC levels is shown in [2]. Reference [2]
also claims after comparison that the hot spot is not a major problem with GIC because the
duration of a peak GIC is typically 1-2 min and overall GIC could typically last half hour, which

will not increase temperature to any dangerous levels [2].
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2.4 HYBRID TRANSFORMER MODEL

The hybrid transformer model of ATP is one of the most sought after models for transient
simulation. This model can handle frequencies from near DC upto 3-5 kHz. The hybrid model
(XFMR) includes the leakage effects in the core and coil. Different transformer cores have been
included, and the effects of distributed capacitance have been considered. In addition to these, a
topographically correct nonlinear duality-transform-based core model has been implemented and
it also utilizes frequency-dependent winding resistances to produce the correct results. More on
this model is given in [21]. The model has been found to be topologically correct and quite
effective for transient simulations. The model development and parameter estimation of the

transformer has been discussed in [21].

The hybrid model has been tested based on parameters estimation, factory test reports, design
data and core ratings in [21]. Reference [22] discusses how the hybrid model parameters can be
obtained with direct laboratory measurements and how these tests are to be conducted. The
results from short-circuit tests, open-circuit tests and zero-sequence tests were used to calculate
the positive-sequence and zero-sequence impedances. Reference [22] also shows how data
waveforms can be used to calculate similar parameters. The results from these tests used in the
hybrid model and compared with the factory tests reports have been published in [22]. The
model benchmarking for steady-state tests such as open-circuit, harmonics and for inrush tests
have been done and the results have also been published in [22]. More details on the XFMR

model and parameter estimation can be found in [23], [24] and [25].

The hybrid model provides option for the type of nonlinear inductance used for the B-H curve.
The available model includes 3 different types of nonlinear inductors: pseudo-nonlinear (98),

true nonlinear (93) and hysteretic (96). Types-93 and type-98 are non-hysteretic magnetizing
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inductors while type-96 is a simplified hysteretic inductor. Type-96 is modeled with loops that
are empirically based and do not exactly replicate the magnetic material behavior. Type-98 is
modeled by linearized value at each time step. Type-93 is solved iteratively at each time step.
Reference [21] describes the in-depth differences between the three types of nonlinear inductors

and the math behind calculations of magnetization curves for each nonlinear inductor in ATP.

The 3-legged 3-phase transformer core representation is provided in the Figure 2.10, a third delta

tertiary winding is also present in all cases studied. Triplex core representation is shown in

Figure 2.11.
Phase A Phase B Phase C
[ L, [.
+ 1 + 4 ] T I
v‘: = v'ﬁ.j vﬁ: winding 1
et +ls oL
v, g Vg Vi~ eerhes
o F—— =4 —] 2

Figure 2.10: 3-Legged core type 3-Phase representation of transformer in ATP [26]

Figure 2.11: Triplex core type representation of transformer in ATP
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Air core inductance or final slope of the core inductance La is another essential parameter which

can affect the peak magnetizing current and especially inrush. Even a small change in this value

can greatly affect the inrush current peaks.
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Figure 2.12: A-1 curve depicting the final slope La
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CHAPTER 3 - DEVELOPMENT, IMPLEMENTATION AND
RESULTS

3.1 TRANSFORMER INRUSH CURRENTS MODEL

Models for transformer inrush currents are developed in this section for an autotransformer bank
made up of a) three individual transformers and b) 3-phase 3-legged autotransformer. For inrush
modelling, residual flux linkage values have been assumed in the transformer. Initialization of

flux linkage is done using the .atp file generated for each model. The procedure is as follows:

1. In the .atp file find out the nonlinear core characteristics.

2. Under the characteristics would be the two nodes which form the
nonlinear core inductance with the type of nonlinearity chosen in the
hybrid model i.e. type-96, type-93 or type-98.

3. The flux linkage can then be initialized using the node names under the
initialization row below the source description.

4, The first field has the nodes, second field has values for the initialized
current and third column has the values for the initialized flux linkage.

5. Please keep in mind the initialized values of currents should be between
columns 25-29 and initialized flux linkage between columns 39-44.

6. Below figure shows the initialization syntax.

7. The initialized flux linkages are calculated by using the steady-state flux
linkage of each phase. The flux linkages are then calculated using the

steady-state values in accordance the percentages of residual flux linkages.
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8. For a 3-legged core the total flux linkage should sum to zero for core legs

and the yokes follow the flux linkage of the core leg it is magnetically

parallel with.
0. For the Triplex core, the flux linkage initialization is done individually.

SSOURCE
C < n lx<>< ampl. =< Freq. »<PhasesTO»< 41 >< Tl =< TSTART »>< TSTOP >
145RCA 112676, 528 60, -1. 1.E3
14=5RCE 112676, 528 60, =120, -1. 1.E3
14=RCC 112676, 528 60, =240, -1. 1.E3
i CCUrr > <Fluxs
JINITIAL

4X0003ATO00LA, 0.0 23,91

4=0003BTO00LE 0.0 1.91

4X0003CTO00LC 0.0 -25.8

40003 Bx<0004 0.0 -23.9

400030004 0.0 -25.8

Figure 3.1: Flux linkage initialization syntax

Another important thing to implement after initializing the flux linkage is visualizing this flux
linkage on a plot. Currently this feature is not available from the ATP GUI. So the following
procedure needs to be followed in order to visualize the initialized flux linkage with the plot

program.

a. A TACS probe was required to visualize this flux linkage.

b. The nodes for the nonlinear inductance that was initialized earlier were chosen and a new
node was generated.

c. The generated node name must not match with an existing node name.

d. The new node is then initialized with the flux linkage initialization value. The syntax is
mentioned in Figure 3.2, which shows the syntax for visualization of a 3-legged core
transformer flux linkage (3 core legs and 2 yokes).

e. The initialized value of the flux linkage should be set between columns 16-21.
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Figure 3.2: GUI representation of initialized flux linkage across a type-93 inductance

JTACS
TACS HYBRID
BOX0003.4
SOTO0OLA
1xx0003  +X00034 -TOO0LA 1.
1.
1.
S0X0003E
S0TO00LE
1xx0004  +x00036 -TOO0L1E 1.
1.
1.
B0X0003C
S0TO00LC
To00lD +=0003C —T0O001C 1.
1.
1.
B0X0003E
BOXX0004
1xx0009  +X00036 —xx0004 1.
1.
1.
SO0003C
B0X0004
1xx0011  +X0003C —xx0004 1.
1.
1.
330003
3320003
330004
330004
3330010
3330010
33320009
333x0009
330011
3320011
F7HX0003 23.91
T 0004 1.91
TTHH00L0 -25.8
770009 -23.9
770011 -25.8

Figure 3.3: Syntax for initialized flux linkage visualization
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The circuit model for the energization is shown below.

ST _ -

%
<%T Vo load’

Source Impedance is assumed to 5% =
on 100MVA base

Figure 3.4: ATP model for 3- legged core

Following are a few assumptions made while modeling for inrush current:

1. Source reactance was considered to be 5% on the 100 MV A base in both cases (from HV
and LV). Parallel resistance to source reactance is the numerical damping resistance of
2000 ohms.

2. Transformer rating is 138/69-13.8 kV (Yn(auto)D).

3. The energization was considered at no-load condition.

4. The source was assumed to be feeding in the steady-state.

5. The switch was closed at 0 ms, to accommodate for the initialized nonlinear type-93
inductance of the transformer.

6. The analysis was conducted for 3 different residual flux linkage values in the range of 30-
50 % of the steady state flux linkage.

7. The peaks of the inrush currents were compared for each residual flux linkage value.

8. For sensitivity with respect to magnetization slope at saturation (La), the slope values for
La chosen were 2, 5.5 and 8. The core chosen was 3-legged core with no residual flux
linkage.

21



Fluz-Linkeage [A] Core Leg-4

Fluz-Linkage [A] Core Leg-C

Fluz-Linkeage [A] Core Tole-2

9. The initialized flux linkage leakages are shown for one case in the next section.

10. The complete results for inrush currents are attached in the appendices.

11. The parameters for the hybrid model are attached in the Appendix B.

Figure 3.5: Flux linkage with initialized flux linkage
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3.1.1 ENERGIZATION

HIGH VOLTAGE SIDE

Case-1: 3-Legged Type Core

Comparison between different initialized flux linkages (the method followed is written in flux

initialization part) from 30-50% of the steady state flux linkage is depicted in the waveforms

below.
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Figure 3.6: Inrush current comparison for 30-50% initialized flux linkage in triplex core for all phases

from HV side
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Table 3.1: Energization from HV side Peak currents for 3-legged core

3-Legged Core

Initialized Flux linkage Phase A peak (A) Phase B peak (A) Phase C peak (A)
50% 538 630 -1080

42% 511 618 -1027

30% 446 590 -900

Triplex Core

50% 383 592 -837

42% 364 580 -798

30% 317 550 -701
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LOW VOLTAGE SIDE

Case-1: 3-Legged transformer
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Figure 3.8: Inrush current comparison for 30-50% initialized flux linkage in 3-legged core for all phases

from LV side
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Case-2: Triplex core transformer
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Figure 3.9: Inrush current comparison for 30-50% initialized flux linkage in Triplex core for all phases

from LV side
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Table 3.2: Energization from LV side peak currents for 3-legged and triplex core

3-Legged Core

Initialized Flux linkage Phase A peak (A) Phase B peak (A) Phase C peak (A)
50% 1350 1608 -2701

42% 1283 1573 -2567

30% 1117 1488 -2235

Triplex Core

50% 952 1504 -1968

42% 904 1467 -1877

30% 784 1375 -1650

Discussion:

1. The results attached for 3-legged core and triplex core when the energization is done

from LV or HV side suggests that the residual flux linkage plays an important part in

defining the peak inrush current on energization.

Initialization of flux linkage was performed using the mentioned method and is working
correctly, this can be extrapolated through the results obtained.

It has been observed that more residual flux linkage will lead higher peak inrush current.
In addition, the model developed seems capable of predicting the effect of residual flux
linkage quite well in general as well as mathematically.

Point 3 is observed from the fact that for a 3-legged core transformer energized from LV
side with residual flux linkage equal to 50% of steady state flux linkage draws an inrush
current of 1350 A in phase-A compared to 1117 A for 30% residual flux linkage.

The protection guidelines for inrush currents have not been studied in this report but
Appendix C can be referenced in order to establish settings for differential relays for

addressing problems due to different type of inrush in transformers.
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3.1.2 SENSITIVITY TO MAGNETIZATION SLOPE AT SATURATION (La)
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Table3.3: Sensitivity analysis for slope La

Slope | Phase-A inrush current | Phase-B inrush current | Phase-C inrush current
La Amplitude (Amps) Amplitude (Amps) Amplitude (Amps
2 806 1385 -1603
5.5 609 981 -1235
8 515 826 -1068
Discussion:

The sensitivity analysis gives an idea of how important La or air core inductance of transformer

core is. This value is the final slope of the magnetization curve and can have a significant impact
on the peak of inrush currents. Hence the correct data for this slope is necessary or in case the

data is not available the estimate function in the core parameters option can be used to

approximately estimate the value of Lj.
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3.2 OVER-EXCITATION

Over-excitation is another common problem associated with transformers, especially when they
are directly fed from a generator. In this section the problem of Over-excitation is simulated and
its effects on transformer cores are studied. The ATP model used for this simulation is attached

below.

@LV

_< e
Y On foad

XO005

Figure 3.11: ATP model for Over-excitation

Following are a few assumptions made while modeling for over-excitation:

1. Source reactance was considered to be 5% over the 100 MVA base on HV side.

2. Transformer rating is 138/69-13.8 kV (Yn(auto)D).

3. The Sources were assumed to be feeding in the steady state to observe the saturation of
core.

4. For frequency response a 50 Hz frequency was assumed in place of 60 Hz nominal.

5. For voltage response, the excitation voltage was assumed to be 120% of the nominal

value of 138 kV.
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model and are attached in Appendix B.

The parameters used for the hybrid XFMR model are same as the one used for inrush

The harmonic estimation of the excitation is done using the harmonic model available in

the ATP GUI which uses Discreet Fourier Transform (DFT) for estimation.

The core response for over-excitation is attached in the results in the coming section.

3.2.1 FREQUENCY RESPONSE

Triplex Core
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Figure 3.12: A-1 Characteristic of Triplex core for 50 Hz under frequency
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The harmonics were obtained using the harmonics block available in the ATP GUI which uses

DFT for its calculations.
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3-Legged Core
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Figure 3.14: A-1 Characteristic of 3-legged core for 50 Hz under frequency
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under frequency

The harmonics were obtained using the harmonics block available in the ATP GUI which uses

DFT for its calculations.

Table 3.4: Magnetization Current Comparison for under-frequency response

3-Legged Core

Voltage response Phase A peak (A) Phase B peak (A) Phase C peak (A)
120% 225 370 215

Triplex Core
120% | 340 | 340 | 340

Table 3.5: 1% and 5" Harmonics as seen by relays in the excitation current for 50 Hz under frequency

3-Legged Core

Voltage response 1° Harmonic (A) 5% Harmonic (A)
120% 288 21

Triplex
120% 287.5 21
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3.2.2 OVER-VOLTAGE RESPONSE

Triplex Core
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Figure 3.16: A-1 Characteristic of Triplex core for 120% of nominal excitation
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Figure 3.17: 1% and 5™ Harmonics as seen by relays in the excitation current for Triplex core for 120%

excitation voltage

The harmonics were obtained using the harmonics block available in the ATP GUI which uses

DFT for its calculations.
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Figure 3.19: 1 and 5™ Harmonics as seen by relays in the excitation current for 3-legged core for 120%
excitation voltage

The harmonics were obtained using the harmonics block available in the ATP GUI which uses

DFT for its calculations.

Table 3.6: Magnetization Current Comparison for over-voltage response

3-Legged Core

Voltage response Phase A peak (A) Phase B peak (A) Phase C peak (A)
120% 215 360 205

Triplex Core
120% | 340 | 340 | 340

Table 3.7: 1% and 5" Harmonics as seen by relays in the excitation current for 120% excitation voltage

3-Legged Core (Phase-A)

Voltage response

1° Harmonic (A)

5% Harmonic (A)

120%

330

13.3

Triplex

120%

332

11
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Discussion:

1. Response of transformer to over-voltage and under-frequency conditions is very similar.
The peak currents in each case underlines this fact.

2. Triplex core is observed to be badly impacted by Over-excitation problem in comparison
to the 3-legged core. But irrespectively, the cores for either geometry are saturated under
over-excitation conditions.

3. The results also suggests a considerable amount of 5" harmonic component, as predicted.
This component can be used to detect the over-excitation condition and restrain/block the
relay operation.

4. Another sophisticated way of detecting the over-excitation is V/f. This method is also

very widely used.
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3.3 GEOMAGNETICALLY INDUCED CURRENTS MODEL

As discussed in Chapter 1 and Chapter 2, GICs are quasi-DC signals. Although they are quasi-
DC most of research that has been conducted on GIC has been with the GIC being purely DC.
That is because most of the transient’s simulation programs do no support sources with different
frequencies. ATP has had a similar problem but in this section a TACS model was developed in
order to overcome the problem of multiple frequencies. This TACS model generates a quasi-DC

signal for the GIC study. Given below is the code used to generate the quasi-DC signal.

DATA Iml {DFLT:10} -- Magnitude of AC current signal
Freql {DFLT:60} -- Frequency of AC signal 1

OUTPUT 10 —-— Output Quasi-DC signal

VAR 10, Sigl — Variables
INIT
ENDINIT

EXEC
Sigl:=Im1*C0OS(2*3.141593*Freql*T)

10:=Sigl
ENDEXEC
ENDMODEL  — = — = = = e

The Model used for GIC study is shown below, it also shows how the GIC has been injected in

the system from the TACS source.
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Figure 3.20: ATP model for GIC studies

Following are a few assumptions made while modeling for GIC:

1. Source reactance was considered to be 5% on the 100 MV A base on HV side. Parallel
resistance to source reactance is the numerical damping resistance of 2000 ohms.

2. Transformer rating is 345/118-34.5 kV Yn(auto)D.

3. The parameters for hybrid XFMR model are attached in the Appendix B.

4. The Source was assumed to be feeding in the steady state.

5. GIC of 50 A at 0.01 Hz was introduced at 100 ms through the grounded neutral on HV
side.

6. For sensitivity analysis four different values of GIC i.e. 25 A, 50 A, 75 A and 100 A at

0.01 Hz were injected at 100 ms.

The results from the model for 3-legged transformer core and triplex core are attached in the next

section. The core currents and A-i characteristics have been attached as the outputs.
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3.3.1 GIC WITH 3-LEGGED CORE
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Figure 3.21: Magnetizing Currents in the core of 3-legged xfmr showing half-cycle saturation in core
legs
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3.3.2 GIC WITH TRIPLEX CORE
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Figure 3.23: Magnetizing Currents in the core of Triplex core xfmr showing half-cycle saturation in core
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Figure 3.24: A-I characteristics for core parts of Triplex core Transformer

Table 3.8: GIC response comparison between 3-legged core and triplex core

3-Legged Core

Core Leg-A Current

590

Core Leg-A Current

590

Core Leg-A Current

590

GIC at0.01 Hz

50 A

Triplex Core

| 775

| 775

| 775

50 A
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Discussion:
1. Half-cycle saturation is correctly observed in the results for core leg. This can observed
in the A-I characteristics obtained and the magnetizing current waveforms.
2. Core saturates earlier and magnetizing current is higher for triplex core in comparison to
the 3-legged core.

3. The quasi-DC model is found to be quite effective for GIC studies.
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3.3.3 SENSITIVITY ANALYSIS
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Figure 3.25: Sensitivity analysis for different GIC amplitudes for 3-legged core
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Table 3.9: Sensitivity analysis of 3-legged Transformer Core with respect to GIC level

GIC(in Ampere) at 0.01 Hz Peak current in core leg-A (A) Time at Peak current (sec)
25 118 20
50 595 15
75 890 13
100 1150 11

Core Leg-2 Zurrent

Core Leg-2 Current

Titne [3]

MAGICA 01H:

.....................

I
|
1
1
[y R — daaaa
1
|
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|
1
T

Time [3]

AAGICH 0.01H:z

Figure 3.26: Sensitivity analysis for different GIC frequencies for 3-legged core

Table 3.10: Sensitivity analysis for different frequencies of GIC for 3-legged core

GIC Frequency in Hzat 50 A

Peak Current in Core Leg-A (A)

0.1

5.5

0.01

595
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Triplex Core
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Figure 3.27: Sensitivity analysis for different GIC for Triplex core

Table 3.11: Sensitivity analysis of Triplex Transformer Core with respect to GIC level

Time at Peak current (sec)

12

Peak current in core leg-A (A)

400
790
1075

1350

GIC(in Ampere) at 0.01 Hz

25
50
75

100

50
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Figure 3.28: Sensitivity analysis for different GIC for Triplex core

Table 3.12: Sensitivity analysis for different frequencies of GIC for Triplex Core

Peak Current in Core Leg-A (A)

25

790

GIC Frequency in Hzat 50 A

0.1
0

.01
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Discussion:

1. Triplex core seems to be rather severely impacted by GIC compared to the 3-legged core.

2. Higher GIC currents lead to faster saturation and higher peak magnetizing currents, as
can be seen in the results above. For a GIC of 25 A at 0.01 Hz in a 3-legged core the peak
magnetizing current is 118 A and peak was attained at 20 s, while for a GIC of 100 A at
0.01 HZ, the peak magnetizing current is 1150 A and peak was reached at 11 s.

3. The sensitivity analysis for different frequencies of GIC suggests that the frequency of
GIC plays a pivotal role in transformer core performance. For a triplex core with 50 A
GIC at 0.1 Hz frequency the peak magnetizing current observed is 25 A while for 50 A
GIC at 0.01 Hz the peak current observed is 790 A. It’s clear that transformer core is

more severely saturated when the frequency of GIC is lower.
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CHAPTER 4 - SUMMARY AND CONCLUSIONS

4.1 SUMMARY

Chapter 1 discussed the motivation behind this report and gave a brief description of inrush
currents, effects of geomagnetically induced currents and over-excitation. Chapter 2 delved
deeper into these issues through literature surveys of recent papers, journals and other guidelines
which formed the basis of ATP modelling and the expected results. This chapter also discussed
the specific components that were used in the ATP modelling. Chapter 3 discussed the modelling
and implementation of these issues including the development of a quasi-DC source for GIC
studies, initialization of residual flux linkage for type-93 inductance and representation of

steady-state and residual flux linkage on the plot.

4.2 CONCLUSIONS

In the report below results were quantified in Chapter 3.

1. For magnetizing inrush the residual flux linkage can be initialized for a type-93
inductance in XFMR model. Although there is no direct way of initializing this flux
linkage via GUI, this can be done in the .atp file of the model with proper syntax.

2. The comparison of inrush currents for different residual flux linkages underlined that the
magnetizing inrush issue is worse with higher residual flux linkage. For a 3-legged core
transformer energized from LV side with residual flux linkage equal to 50% of steady
state flux linkage, it draws an inrush current of 1350 A in phase-A compared to 1117 A

for 30% residual flux linkage.
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. Visualization of steady state flux linkage with residual flux linkage is tricky and there
should be a direct way showing it via GUI of ATP. Although, visualization of this flux
linkage has been done in Chapter 3 and can be done using a similar syntax.

. Sensitivity analysis with respect to slope of magnetization curve in saturation region
quantified the importance of getting this slope right as it can greatly influence the inrush
currents in full saturation region. For slope L. equal to 2 the peak inrush observed was
806 A while for slope equal to 8 the peak inrush observed was 516 A.

For GIC, half-cycle saturation of core legs can be seen in the results.

. The developed quasi-DC model for GIC is a very good tool for studying GIC in the
future and could be used to produce more realistic analysis of GIC.

. A'lot depends on the amount of GIC in the circuit. For higher values of GIC, core
saturation will be faster and current peaks will be higher, the results for which have been
quantified in the sensitivity analysis with respect to the GIC injected. For a GIC of 25 A
at 0.01 Hz in a 3-legged core the peak magnetizing current is 118 A and peak was
attained at 20 s, while for a GIC of 100 A at 0.01 HZ, the peak magnetizing current is
1150 A and peak was reached at 11 s.

. Another observation was that the frequency of the GIC is an important factor in core
saturation. This is intuitive since A(t) = fot v(t) dt, so a lower frequency voltage will yield

higher magnitude 1. A GIC with a higher frequency will not saturate the core as much
compared to a lower frequency GIC of the same amount. For a triplex core with 50 A
GIC at 0.1 Hz frequency the peak magnetizing current observed is 25 A while for 50 A

GIC at 0.01 Hz the peak current observed is 790 A.
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9. Frequency response and voltage response in over-excitation suggests that it can
potentially saturate the core if kept unattended for a longer period of time, but because
Over-excitation is generally a short period phenomenon, it is often harmless and relay

operation should be blocked if Over-excitation is non-persistent.

10. For the detection of over-excitation, 5 harmonic component can be used for

blocking/restraining operation of differential relays.

4.3 REPORT CONTRIBUTIONS

Below are a few contributions on the research report:

1. A model way of initializing the type 93 true nonlinear inductance for inrush studies was
developed for ATP, this would help in future studies on inrush currents for transformer
energization.

2. A source for GIC was developed in order to study the exact effects of GIC on power
transformers. This would help in further studies and analysis involving quasi-DC GIC on
power system and power transformers.

3. Sensitivity analysis for GIC helped understand the effect of GIC amplitudes on the core
saturation.

4. Sensitivity analysis for GIC involving different frequencies of GIC helped understand

that lower frequencies of GIC can saturate core at lower amplitudes if GIC.
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4.4 FUTURE RECOMMENDATIONS

Below are a few recommendations on future scope of work:

1. The flux linkage initialization process should be made using the ATP GUI, it is a bit
complex to figure out the proper syntax inside of the .atp file.

2. Flux linkage visualization that includes the initialized flux linkage offset is very complex
and needs a straight-forward GUI function.

3. Controlled switching needs to be studied more with the initialized flux linkage.

4. GIC studies could be extended onto the power system, it would be really interesting to
see how exactly the other power system equipment’s would be affected by GIC.

5. Var absorption during GIC should be studied in more detail in time domain, it will be

interesting to see more on relationship between var absorption and GIC.
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APPENDICES

A
Complete Results for Magnetizing Inrush from HV side

Case-1:3-legged core
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Figure A.1: Inrush Currents in Phase-A, Phase-B and Phase-C with 42% residual flux linkage for 3-
legged core from HV side
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Figure A.3: Inrush Currents for Phase A, Phase B and Phase C at 50% residual flux linkage 3-legged
core from HV side

The above results show higher peak inrush currents for higher residual flux linkages. They also

show the inrush current decay for each case.
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Case-2 Triplex core transformer
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Figure A.4: Inrush Currents for Phase A, Phase B and Phase C at 42% residual flux linkage for Triplex

core from HV side
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Figure A.6: Inrush Currents for Phase A, Phase B and Phase C at 50% residual flux linkage for Triplex

core from HV side

The above results show higher peak inrush currents for higher residual flux linkages. They also

show the inrush current decay for each case.
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Complete Results for Magnetizing Inrush from LV side

Case-1: 3 —legged transformer
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Case-2: Triplex core transformer
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Figure A.10: Inrush Currents for Phase A, Phase B and Phase C at 40% residual flux linkage for Triplex

Core from LV side
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Figure A.12: Inrush Currents for Phase A, Phase B and Phase C at 50% residual flux linkage for Triplex

Core from LV side

The above results show higher peak inrush currents for higher residual flux linkages. They also

show the inrush current decay for each case.
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Transformer parameters for Inrush and Over-excitation models
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Figure B.1: Parameters for Hybrid XFMR model used in inrush and Over-excitation modelling

Note: For 3-legged core just changed the transformer core to 3-legged stacked.
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Transformer parameters for Inrush and Over-excitation models
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Figure B.2: Parameters for Hybrid XFMR model used in inrush and Over-excitation modelling

Note: For 3 single phase transformer arrangement just changed the type of core to Triplex
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Report for isolation of inrush currents for differential relays
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Executive Summary

Transformers are a very important part of the power system infrastructure and protecting them is of a great
importance in order to keep the power system stable. A very common problem associated with transformers
is of the inrush currents. There can be three kinds of inrush currents, namely energization inrush,
sympathetic inrush and recovery inrush. In this report we studied different inrush phenomenons by
modeling them on ATP using hybrid transformer model and used the generated current data for
development of a differential relay setting that can detect and restrain the relay operation when inrush is
detected. The setting developed was downloaded in SEL-787 transformer differential relay and tested with
the same data that was generated after simulation on ATP. We used harmonic restraint for blocking the
operation in case of inrush while making sure the relay operates for actual transformer faults. All the cases

were tested and results were found to be satisfactory.
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1. Introduction

Power transformers are more prominent to electrical transients after the transmission line. The primary of
the transformer draws a very high current from the source which is transient in nature when power
transformer is switched on without any load on secondary. Inrush current does not create any permanent
faults in the transformer, but they can lead to unnecessary tripping of circuit breakers at the time of
charging of transformer. Inrush current occurs during energization of the transformer, in power
transformer, the magnitude of inrush current is two to five times the rated load current. The magnitude of
inrush current is depended on the transformer design and installation parameters. Also, inrush current
shape and magnitude is dependent on several other factors like network topology, transformer
construction, winding coupling, and residual flux. The inrush current exceeds saturation current, the
inrush current affects the magnetic property of transformer’s core. The focus is modeling of the
transformer where inrush current during energization of the transformer is an issue related to relay

settings, voltage harmonic distortion, and inrush mitigation. [1]

Magnetizing inrush current can be categorized as current during energization, current during recovery,
and sympathetic inrush current. During energization, inrush current is present after a last instance of de-
energization and it can lead to heavy current flow in the transformer. Recovery inrush current occurs
when the voltage is stabilizing after the occurrence of a fault. Sympathetic inrush current can occur when
the transformer is nearly energized. This phenomenon occurs when a transformer is switched on in power
system which contains other transformers which are already energized. The inrush current finds a parallel

path in the previously energized path. This is known as sympathetic inrush current. [1][4]

At extreme saturation, UMEC and XFMR model have limitations, models cannot retain a residual flux
value after de-energization, and simulations are restricted to zero residual flux initial condition. So,
developed model overcomes all the constraints. Transformers need to install with certain protective relays
depending on the size of transformer and load capacity. The empirical protection scheme for transformers
is differential protection scheme. Differentiating between transformer magnetizing inrush condition and
the internal fault condition is one of the key issues while dealing with protection scheme for power
transformers. One of the methods used to discriminate was based on deactivating or delaying the relay to
compensate transients, which were inefficient as transformers might expose to fault for longer duration
which would damage the transformer furthermore, power flow can be used to detect inrush current, and,

some researchers have proposed fuzzy logic technique to detect inrush current. [1][2]

The models have been developed and explained in sections and simulated results are compared with

hardware in the loop on SEL — 787 differential relay. The choice of protection scheme is mainly



dependent on the size of the transformer, its application and detection time required. We have shown the
protection approach using transformer differential scheme to eliminate malfunction due to magnetizing

inrush current during energization, re-energization, and sympathetic inrush current.
2. Background

The models used for simulation can be XFMR and UMEC, but, we chose to work with the XFMR model
from ATP. The models UMEC and XFMR have limitations related to the accuracy of extreme saturation
and the proper representation of the hysteretic behavior of the core. These Transformers also do not have
any direct mechanism to initiate residual flux and while it's possible it is very complex to initialize these
transformers for residual flux. A new transformer model based on the hybrid model of ATP. The
construction of the transformer chosen was for a 3-legged type transformer. The Author starts from its core
construction and develops its Hopkinson’s equivalent as well as the duality transform model, which was
then used as the Hybrid Model. [1]

The residual flux can’t be initialized in existing model and it is because the model mainly comprises of
linear resistances and inductances. The residual flux is just trapped energy inside the transformer core, now
because these models are just linear expressions of the real transformers and there is no way energy can
remain trapped inside of these components in absence of capacitor, hence residual flux is not possible with
the existing model. The developed model is validated with the analytical equations and the data available
from the manufacturer. The sensitivity analysis is done to know the effect of parameters on inrush current.
Residual flux can greatly affect the magnetic inrush and author states that for a variation of 20% of the
residual fluxes, a mean variation of 9% for ungrounded-wye and 14% for grounded-wye is experienced in
the inrush first peak was one of the major findings, also, capacitances can be estimated from direct
capacitance measurements at the transformer terminals, but these measurements are highly susceptible to

error. [1]

The residual flux is calculated from below equation.
A(t) = Ay sin(wt + ¢p) — A, sing + A(0) (D)
Where,

A(0) is residual flux

The model developed gives out satisfactory results and performs well when compared to the empirical data

from the field, also, the capability of this model to predict residual fluxes with different disconnection



conditions should be further verified. The model is highly effective and has been found to be very useful in
different studies. [1]

The paper has explained the mitigation techniques used to enable per phase control switching based on a
residual magnetic flux estimation. Paper has briefly explained the results of reconstruction process for
sympathetic inrush in the Slovenian power system. Wide area monitoring systems are used for the
measurements. From the study author has found out that measurements provide misleading information
about an actual situation. Also, qualitative observations of phasor parameters are reasonable until electrical
variables are purely sinusoidal. For non-sinusoidal, inrush current waveforms RMS value calculated by
PMU are not close to the actual values, it doesn’t imply that the event cannot be recognized by the

operator’s observation of RMS current waveform. [2]

When loaded parallel transformer exists in the substation, the winding current of an operational
transformer carries magnetizing as well as load current. It is necessary to know such events to be aware of
their occurrence in the system. The WAMS measurements, as well as the over-current protection relay,
indicated sympathetic inrush occurred between two parallel 400/110 kV transformers in Slovenian power
system, due to the magnetization of a second transformer in parallel to fully loaded transformer in the
substation. [2]

The model topology includes reflecting an actual core structure, includes leakage core and coils. The
model also represents the internal core and coil arrangements which can be applied for delta, wye, auto or

zig-zag connections. [3]

While designing the hybrid model, components can be connected normally in the circuit only ground
nodes cannot be directly grounded when the capacitance is considered, several components cannot be
connected to the same bus, and switches should be used to maintain unique names for nodes in both
cases. Also, the line to line voltage rating, power transformer MVA rating, type of coupling and phase
shift between windings should be specified. Three settings are referred to the hybrid transformer primary
(P) on the left side, secondary on the right side (S), and tertiary winding at the top (T). Primary and
secondary nodes can be swapped with an edit-flip option if necessary. While designing hybrid

transformer, if the sequence is not mentioned then inner winding has the lowest voltage. [3]

Triplex, 3-legged stacked core, 5-legged stacked core, and shell form core are the different types of cores

that can be configured. The structure and calculation of core model would be dependent on the type of



core. Saturation characteristics for outer legs will be available in the 5-legged core, and zero sequence

behavior can be observed in the 3-legged core. [3]

Non- linear inductance type 98 or type 96 can be used. As type 98 inductance can move from one
segment to next in one-time step, so, a large number of segments needs smaller time steps. We have
selected type 96 inductance for a hybrid transformer, 50% of loss in the core is included in the hysteresis

and the rest in a constant parallel resistor. [3]

The base paper has developed ATPDraw model with a hybrid transformer, but, Author has not considered
a type of inductor. We have developed model with the hybrid transformer with 96 inductor to know the
effect of non-linearized inductor on the circuit. A model has been developed by Author which can be used
to study the effect of inrush currents and extreme saturation. The model can be used to initialize and
understand the effect of residual flux, similarly, we have developed a model for three different cases i.e.
energization, recovery inrush, and sympathetic inrush with the differential relay. [1][2]

The model gives a good platform for testing inrush currents in 3 phase 3 legged transformers with an added
advantage of simulating with residual fluxes, but it seemingly does not take into consideration or does not
explain the effect of different non-linearized inductors i.e. type 96, type 98 etc. on the results, the different
values of residual fluxes can affect the inrush currents, how the residual fluxes should be input for the
transformer. The author has not discussed on what range of values for residual flux is acceptable and if

there is any way i.e. analytically that values of residual fluxes are balanced. [1]

3. Proposed Approach

3.1 Overview of proposed approach

The transformer model has been selected for simulation is Hybrid transformer as per the reference paper.
The hybrid model supports 3-phase transformers with two or three windings coupled as Wye, Delta or
Auto. Final slope of inductance is important for the calculation of inrush current. Inductance, resistance,
and core are selected as test report, and capacitance value is kept as typical values. The hybrid model data
in detailed is shown in appendix figure (10). We have used 3-legged stacked cores model for developing
ATP simulation model for three type of inrush i.e. energization, re-energization, and sympathetic inrush

current. [3]



For the energization case, the inrush current flowing is very high when excitation is done at zero crossing
of voltage. We have used 96 inductors as 50% of losses of the core are included in hysteresis. The
energization can lead to false tripping of differential relays. When the fault occurs, there would be a
significant drop in voltage and energization of the transformer. The recovery inrush occurs when the
circuit breaker clears the fault and during re-energizing, the recovery inrush would flow through the
circuit as excitation of the transformer would increase after clearing the fault. The relay may potentially
see it as another fault and trip again. For recovery inrush, we have simulated with a load on transformer
side. Sympathetic inrush occurs when one transformer is already operating and another transformer with
no load is added and the current finds a parallel path to flow through the circuit. All the simulations were

carried out keeping in mind the scenarios mentioned.
The currents from all the above simulations gave us good analytical data to extrapolate and implement a

setting for the SEL-787 relay which can isolate the inrush current situation completely and can avoid any

kind of nuisance relay operation due to inrush of any kinds.

3.2 Development and Implementation

Parameter
Cases Source voltage Inductance (ohms) | Resistance (ohms)
Case 1, 2,3 138 kV 8.516 4.251
Table 1.1

For all the cases voltage, source reactance is same, the source impedance chosen was 5% on the base of
100 MVA. For case 1 energization, worst case is considered at voltage zero crossing.

For case 2 recovery inrush, two switches are connected as after fault clearance by one switch (circuit
breaker), a large inrush would flow through the circuit. For case 3 sympathetic inrush, two transformers
connected to each has its own switch at HV side of the transformer. The detailed parameters structure is
shown in (11).

For Hybrid Model

While designing the hybrid model transformer 3-leg stacked core, the values for resistance and

inductances are same and capacitance was set to typical values. For all the three cases i.e. energization,



recovery inrush and sympathetic inrush, model parameters are same with 138 kV primary side voltage, 69

kV secondary side voltage and 13.8 kV tertiary voltage. Core values selected for a model are shown in

appendix figure (11).
CT Ratio LV HV
600 300
Table (1)
Hybrid transformer : =

Structure Ratings & connections
Mumber of phazes 3 Frim. Sec. Tert.
Nurnber of windings | 3 v L-L woltage (kW] SEEE 138
Time e FHeqg stacked v Pawer [MW&]  BD &0 12
Test iemerep [H Connections 2 I o]
D ata bazed on Cap. Core Phase shifts 0 o a0
Deszign param. O O Mode names Hv Ly ®ooon2
Test report (

Typical values

Winding sequence Ext. neutral connection:
. core-inner-outer [ Hide core nodes

Data
Inductance | Resistance I Capacitanice | Core |
Data equal to Resistance’s Test repart
q P Zem sequence data available
positive sequence Zero sequence
Imp. [%] Pow. [MWA] Logs [khw] Imp. [%] Pow. [MWa] Loss [khw]
PS 8.027 G0 101.428 PS 7.299 G0 58.37
P-T 5.041 12 18.537 P-T 21.547 &0 E.816
Sl 3.042 12 19.182 Sl 1376 0 4736
Oicer: [0 | Label | | Comment: [core data hefore dislectic test | T

T 17 17 17 1T 1

(1) Hybrid Transformer data




4. Implementation and Modelling of Transformer Magnetic Inrush

1. Case Study — ATP model for energization

|=
SRC | B M N Y =5 @LV
S— = -
Case HV %‘ No load
= {"
L L
Case 1

(2) Energization (3 phase transformer)

Transformer energization can create a high value of transient inrush current when the transformer's
cores saturated which includes DC components as well. To study the effect of energization, 3
phase transformer model have been developed in ATP. EMTP model consists of 3 phase power
transformer, lines, generator, cables and circuit breakers with source impedance connected to HV
side. For the energization case, the secondary of the transformer is at no load, the highest inrush
current flows during the energization of the transformer. When the inrush current flows, we would
get the harmonics and accordingly the differential relay won’t operate. We energized and re-
energized the transformer in the same simulation, as type 96 inductance in transformer retains the
value of residual flux in accordance of time of de-energization. For the transformer energization

case one switch has been connected to the HV side.

2. Case Study — ATP model for Recovery inrush
When a fault occurs, voltage drops significantly as transformer excitation decreases. After a fault
is cleared by a circuit breaker, the voltage recovers, and the transformer is excited by the normal
voltage again and hence, inrush current is observed from the source to transformer. In this case,

transformer keeps on operating at initial load value.



SRC X e

On load

(3) Recovery inrush
During this period, the transformer would have large inrush current for a shorter time and
differential relay should not trip during recovery inrush. From the current flowing in the circuit, the

harmonics (2"%) generated would restrain, hence the differential relay won’t operate.

3. Case Study — ATP model for Sympathetic Inrush Current

On load

X0009

—_—

* No load

(4) Sympathetic Inrush



Sympathetic inrush occurs when two transformers are connected in parallel and one of the
transformers is on loaded and another transformer is added in the network then the inrush current
finds a parallel path in the previously energized transformer. The current flowing through this path
would be known as sympathetic inrush current. For simulation, two transformers are connected in
parallel, one is a fully operational mode with a load connected on the secondary side and another
transformer is newly added with no load. Both transformers would have respective inrush current
flowing, while new transformer would see energization inrush and operating transformer as
sympathetic inrush. In either case, inrush current would reach in 2" harmonics and can be used to
restrain or blocking operation. Sympathetic inrush stays for longer period as compared to other

type of inrush but is not as serious as energization inrush.

5.Hardware in Loop (HIL)

Hardware in the loop (HIL) testing using 787 differential relay was carried out to verify the results with
doble power simulator in the lab. Refer relay settings files attached for logic created in SEL 787 relay in
the appendix (14). The hardware in loop simulation was carried out for 4 cases to know whether relay
correctly operates. We used the ATPDraw current values of HV and LV side for hardware in the loop
testing. The values of current on either side were extracted and COMTRADE format.

Case 1: Energization

For the energization case, we added current probe on HV and LV side of the transformer, and the values
obtained from the HV and LV side current were then saved in PL4 format, converted into COMTRADE
version and transferred to doble power simulator with COMTRADE file uploaded. When the large inrush
flows, the transformer is energized the relay does not trip during energization. The input value of current
and settings are shown in the appendix. 2" harmonic obtained for energization case is 131.40%, the

differential relay did not trip.



] AcSELerator® QuickSet - [Device 1D: SEL-787-3E (SEL-787-4 001 HMI Driver]] ‘ |

File Edit View Communications Tools Windows Help Language ==
CBRIHE |8 w®|on
- Device Overview . . .
- Fundsmental Differential Metering Values
- Differential
- Phasors SEL-787-3E Date: 04/24/2018 Time: 12:20:36.459
Max/Min TRNSFRMR RELAY Time Source: Internal
Demand
Peak Demand I0P1 I0E2 I0P3
RMS Cperate (pua) 0.17 0.40 0.39
Harmonics
Energy IRT1 IRT2 IRT3
Thermal Restraint (pu) 1.53 1.70 1.49
Synchrophasors
Through-Fauit Events IOP1F2 IOP2F2 IOP3F2
-~ Breaker Monitor 2nd Harmonic (%) 131.40 43.60  48.37
- Analog Tnputs
- Math Variables IOP1F4 IOP2F4 IOP3F4
- Remote Analogs 4th Harmonic (% 31.40 20.20 22.31
~Load Profie
- Targets ICP1F5 IQP2F5 IOP3FS
- Status 5th Harmonic (%) 4.65 6.40 §.27
SER
Contral Window

Enable Update

SEL-787-4 001 HMI Driver  Driver Version: 64.0.2 Driver Date:  Configuration: Default 1

(5) Energization
Case 2: Recovery Inrush

The same process was carried out for recovery inrush to transfer current of HV and LV side to doble
power simulator. The relay did not trip even when the transformer has large inrush for some time after
clearing the fault. The ATPDraw model developed for recovery inrush gave satisfactory results. The
percentage of the second harmonic was 34.85% which was used to restrained tripping of the differential
relay during recovery inrush. The input data and results obtained for recovery inrush are attached in
appendix (17).

Case 3: Sympathetic Inrush

As per the logic developed in ATPDraw, one transformer is fully loaded and another transformer with no
load was connected, the current of these both transformers obtained were sent to doble power simulator,
new settings were created in Doble simulator, when a large inrush flowed through the circuit, the
differential relay did not trip, hence the experiment carried out with relay in lab was successful. The
results obtained from differential relay are shown in below figure, the 2™ harmonic obtained is used to
restrain the differential relay from tripping. The input data used for the doble power simulator from
ATPDraw is attached in appendix (18).

10



mmmmmnﬂ-?ﬁ-4 001 HMI Driver)] r — Elﬂlﬂ

File Edit View Communications Tools Windows Help Language — = x
GRBIHO | B N Y]
- Device Overview ) : .
Fundamental Differential Metering Values
- Differential
- Phasors SEL-T87-3E Date: 04/24/2018 Time: 13:27:08.980
- MaxMin TRNSFRMR RELAY Time Source: Internal
Demand
- Peak Demand I0P1 I0P2 ICP3
--RMS Cperate (pu) 0.58 0.55 0.60 '
-~ Harmonics
Energy IRT1 IRIZ IRTI3
- Thermal Restraint (pu) 0.36 1.00 0.95
- Synchrophasars
-~ Through-Fault Events TGP1F2 TGP2F2  TGOP3F2
Breaker Monitor 2znd Harmonic (%) @.20 8.73 10.89
- Analog Inputs |
-~ Math Variables I0P1F4 ICP2F4 TOP3F4
-~ Remote Analogs 4th Harmonic (%) 6.04 6.60 4.07
Load Profile
| - Targets IQP1Fs ICP2FS IQFP3FD
- Status 5th Harmonic (%) 3.02 4.63 6.18
SER
Control Window

Enable Update

SEL-787-4 001 HMI Driver Driver Version: 54.0.2 Driver Date:  Configuration: Default1
TXD[] RXD[] Open: Connected 17218.0.46 23 Terminal = Telnet  File transfer = YMadem

(6) Harmonics for sympathetic inrush

Case 4: Normal Fault condition

Differential relay should be able to identify fault from inrush. We applied fault current in doble simulator
and the relay tripped when the fault current is applied. The figure in the appendix shows the amplitude of

fault current.

6. Results:
Case 1 - Energization:

The results obtained form ATPDraw as shown in the below figure, the current during the initial excitation
period is high and decreases with time. When the inrush current flows, the harmonics obtained are used to
restrain and the differential relay won’t operate. When energization case was simulated in a lab with 787

differential relay, the relay did not trip during energization condition.
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-1000

_1500 T T T T T T T L] T
0.0 03 0.6 0.9 1.2 [g] 15

(file RE-energzation_3ph.pld; x-var t) cX0005A-HVA ¢ XDODSE-HV ¢ X0005C-HVC
(7) Current during Energization

Case 2 — Recovery Inrush

Current shown below is for HV side of the transformer for recovery inrush. During recovery inrush,
voltage recovers after a fault and the transformer is excited by normal voltage again and as shown in the
below figure inrush is observed again. When same was performed on SEL 787 in lab results were

satisfactory with no tripping of the differential relay.
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(file Recovery_inrush.pld; x-var t) c(0005A-HVA  c:XDD0DSE-HVE  c:XDDOSC-HVC

(8) Current during Recovery Inrush
Case 3 — Sympathetic Inrush:

As the results shown below, the current flowing is normal when only one transformer at full load is
connected. When another transformer is connected in the circuit the current would flow through parallel
path. This current is known as sympathetic inrush current. The sympathetic inrush current amplitude is
high and relay did not trip when the same case was carried out in a lab with SEL 787 differential relay.
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200

100

-100

-200 4

-300

0.0 0.5 1.0 1.5 2.0 2.9 [s] 3.0
(file Sympathetic-inrush.pM; x-var f) c:X0010A-HVA  cXDD10B-HVE  c:XDD1OC-HVC

(9) Current during Sympathetic Inrush

Cases CT Ratio Maximum Current 2nd Harmonic Trip
(HVILV) A B C
Energization 300/600 840.1 | 957 1463 | 131.40% NO
Recovery Inrush | 300/600 5368 | 262 249 | 34.85% NO
Sympathetic 300/600 284 279 279 | 9.90% NO
Inrush
Normal Fault 300/600 1500 | 1500 | 1500 | None YES
Table (1.3)

Table shown above is the results obtained from hardware in loop performed in lab on SEL 787 relay.

7. Conclusion
1. Hybrid model was found to be very useful tool for transformer inrush studies and simulations.
2. The results obtained from ATPDraw simulations were verified and matched with base paper.
3. The hardware in loop testing and doble power simulator settings were obtained from ATPDraw
and settings were used to isolate inrush and avoid nuisance tripping.

4. The setting developed, and lab experiment carried out gave expected results during all inrush
conditions and fault condition.

14




8. Future Recommendations:

1. Empirical data from real world transformer from test report would have given out more realistic
results.

2. Ratio of over excitation can also be address with similar approach in ATPDraw to ensure the
transformer differential relay is able handle different fault phenomenon.
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9. Appendix

Hybrid Model Parameters

Structure
Humber of phazes
Hurber af windings

Type of core

Test frequency [Hz]

[Data bazed on [hd.

D'esign param. i
Test report (O]
Typical values i

Drata

Hybrid transformer :

Ratings & connections

Prirn.

L-L woltage [ki] HEEE

3
2 vl
| Heg stacked W |

Power [k4WA] G0

|EIII

Res.

Cap. Core

=
I-\.!.-I [

positive sequence

90 16.345
100 22139
105 26.253
110 32475

Wolt (%]  Loss [kKw law [%]

0.041
0.048
0.063
0126

Performed at Awerage cuments
[]Zero seq. available

(=60 [MYA]

Connections bl
Phasze shifts 1]

Mode names H

Sec. Tert.
138

B0 12

&, D

1] 30

L X000z

Ext. neutral connectior

YWinding zequence
i i
care-inner-outer [ ] Hide core nodes

| Inductance | Resistance | Eapacitance| Care |

Relative dimenzsions
Fatioz ref. leq | Area Length

Yoke

[mitialize

“iew I

"Yiew core

Settings...

(10) Hybrid Model
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Hybrid Model Parameters

Structure

Murber of phazes 3

Hybrid transformer :

R atings & connections

Mumber of windings | 3

Type of core | Heg

stacked W | Power [Mi)

Test frequency [Hz] | E0

| Connections

Data bazed aon Ind.  Res Cap. Caore

D'eszign param. i i
Test report (O
Typical values O

Data

Phasze shiftz
0 D MNode narnes
| 3 |i|

Inductance | Resistance Eapacitancel Core |

Winding sequence
care-inner-auker

Frim.
vl L-L voltage [kv] REE
B0
A
0
Hy

=
Sec. Tert.
E3 128
B0 12
& D
0 30
LY *0ooz2

IEI Ext. neutral connection:
[ ]Hide core nodes

positive seqgu

Data equal to Resistance's Test repart

ence

F-5 8.027 B0
P-T 5.041 12
5T 2.042 12

Imp. [%] Powe. [MYA] Loss [k

101.428 P-S
18.537 P-T
19182 5T

Zerm zequence data available

Zero sequence

Imp. [%]
7299
21.547
1376

Fow. [M4A] Loss [k

B0 58.37
G0 E.816
B0 4736

Order: | 0 | Label: |

| Comment; ||:|:-re data before dielectic test

| []Hid

(11) Inductance Data for Hybrid Transformer
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Source impedance

Attributes

DATA UNIT ~ | | NODE PHASE NAME
R_1 Ohms j IN1 ABC SRC
L1 Ohm ouT1 ABC »0005
C1 pF 0

R_2 Ohms 4.258

L2 Ohm 8516

C2 pF il

R_3 Ohms 4.258

L3 Ohm 8516 .

2y Copy [y Paste v [ ] Reset Order: D Label ‘

Comment: | ‘
Output
(] Hide
|0-No v [ $vintage.1
| Edit definitions 0K Cancel Help

(12) Source impedance data

18



Load

Aftributes

DATA
R_1
L1

Ohm
Ohm

C_1

uF

R_2
L_2

Ohm
Ohm

C_2

uF

R_3

Ohm

L3

Ohm

23Copy [ Paste ~ | ] Reset

Comment: |

Output

|1-l:urrent
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HIL DOBLE SIMULATOR DATA

(15) Energization Transformer HIL Relay Harmonics

20

COMTRADE Analog Channel Details Files Info E]
Transformer Ratio Test Values
c}‘a""el ! Channel ID ; FormulaID  Phase pf;':lue F& Source /s ?::"‘::]"; {S"‘“‘ v"'“e)
@! Primary Secondary Y. Y. Scaling Maximum
1 E] XD00BA-HVA | Analogl 1w 300 1 P [r| sa0713A 2.802 A 1.0 2.802A
2 [D X0006B-HVB Analog2 w 300 1 P v 957.113 A 3194 1.0 3194
3 [D X0006C-HVC Analog3 3 R 300 1 P =] 1463.580 A 4.879A 1.0 4879 A
4 E] LVA -X00..: Analog4 - 500 1 P [« ss5a03a 0.925 A 1.0 09254
5 E] LVB -¥00..: Analog5 B v 600 1 P [« s54699a 0.9244 1.0 0.924A
] E] LVC -X00..: Analogh € v 600 1 P vl ss4770m 0.9254 1.0 0.925A
EMNeserEE 1
COMTRADE Digital Channel Details
Channel Index Channel ID Phase Enable F& Output Normal State
Select all Select none Select all analog Deselect all analog Select al digital Deselect all digital Hide unused
(14) Energization HIL Relay
SEL-787-3E Date: 04/24/2018 Time: 12:16:
TRNSFEMR RELAY Time Source: Internal
InWl IBW1 ICW1 IaWz  IBW2Z  ICW2
Fund (sec) 0.7 0.8 0.6 0.8 0.8 0.6
2nd (%) 31.0 18.1  26.7 5.4 3.5 5.0
3rd (%) 20.2 8.6 13.3 5.0 2.8 3.3
4th (%) 7.3 7.1 9.5 2.6 2.7 3.9
sth (%) 1.7 1.6 2.4 0.6 1.1 1.0
THD (%) 35.3 20.8 30.0 7.8 5.4 T.2
IZW3 IBW3 ICW3 IN VAB VBC VCA
Fund (sec) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2nd (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3rd (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ath (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5th (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TED (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0




HIL DOBLE SIMULATOR DATA

COMTRADE Analog Channel Details

Formula ID

i Channel ID Phase F6 Source : i S Pfs S = - )
trdex Playbnce " T IS rmam) (Sccondam) g
i g] HD005A-HVA Analogl I ﬁ 300 1 P Z 5368572 A 17.895 A 1.0 17.89!
2 g] ¥00058-HVE Analog? 2 Ls 300 1 P Z 262837 A 0.876 A 1.0 0.876
3 g] ¥D005C-HVC Analog3 3 Ls 300 1 P Z 249217 A 0.8314 1.0 0.831
4 g] LVA -X0DDBA Analog4d Ic L§ 500 1 P Z 2398.648 A 3908 A 1.0 3.898
5 g] LVB -X0006B Analogs B Ls 500 1 P Z 250,543 A 0.485 A 1.0 0.485
5 g] LVC -X0006C Analogh n Lg 500 1 P Z 294,651 A 0.491 A 1.0 0491
1 m | [
'COMTRADE Digital Channel Details
Channel ID Phase Enable F& Output MNormal State

(16) Recovery inrush HIL Relay
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HIL DOBLE SIMULATOR DATA

§ AcSELerator® QuickSet - [Device 1D: SEL-787-3 (SEL-787-4 001 HMI Driverl]_-'_ - - ‘

csile Edit View Communications Tools Windows Help

Language

E@RIHG | BR| 00 || er | cal|BE G

~ Device Overview

- Fundamental
| Differential |

- Phasors

- MaxMin

- Demand

- Peak Demand

- Harmonics

- Energy

- Thermal

- Synchrophasors

- Through-Fault Events
Breaker Monitor

- Analog Inputs

- Math Variables
Remote Analogs

- Load Profile

- Targets

- Status

.. SER.

- Control Window

Differential Metering Values

SEL-787-3E

TRNSFRMR RELAY

Cperate

Restraint

2nd Harmonic

4th Harmonic

5th Harmonic

IOP1 I0P2 IOP3

(pu) 0.01 0.01 0.01
IRT1 IRT2 IRT3

(pu) 0.01 0.01 0.01
IOP1F2 IOP2F2 IOP3F2

(%) 0.00 0.00 0.00
IOP1F4 IOP2F4 IOP3F4

(%) 0.00 0.00 0.00
IOP1F5 IOP2FS IOP3F5

(%) 0.00 0.00 0.00

Date: 04/24/2018
Time Source: Internal

Time:

13:07:30.415

— &= X

EL-787-4 001 HMI Driver

Driver Version: 6.4.0.2 Driver Date:  Configuration: Default1

(17) Recovery inrush HIL Relay output
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HIL DOBLE SIMULATOR DATA

Define COMTRADE file channels, inputs, outputs and triggering for Transient Playback test

COMTRADI

=V Somces V/ Warkeheat Vmoute V/mere V outoute |V states | tave Gen Ve Swina | Ptote 1/ Natee Ve Recording |

COMTRADE Analog Channel Details File
Transformer Ratio Test Values
iz Channel ID Formula ID ©  Phase s F& Source p/s :‘“ ‘H"]‘ ("“ """‘]
E! Index Playback Primary Secondary Primary’ Secondary] Scaling Masim
1 E] LvA -X0011A Analogl I Lv 300 1 P | 284325 A 0.948 A 1.0 0.948
2 E] LVB -X0011B Analog2 4 300 1 P (=] 279744 A 0.932 A 1.0 0.932
3 E] LVC -X0011C Analog3 3 4 300 1 P =] 279745 A 0.832A 1.0 0.932 [
4 E] X0005A-HVA Analog4 [N 600 1 P =] 270319 A 0451 A 1.0 0451
5 E] X00058-HVE Analog5 1B Lvﬁ 600 1 P =] 254191 A 0424 A 1.0 0424
6 E] X0005C-HVC Analogf IC Lv— 600 1 P v 233.201A 0.389A 1.0 0.389
ezl i ]
‘COMTRADE Digital Channel Details
Channel Index Channel ID Phase Enable F& Output Normal State
Select all Select none Select all analog Deselect all analog Select all digital Deselect all digital Hide unused

(18) Sympathetic inrush HIL Relay output
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HIL DOBLE SIMULATOR DATA

Define test parameters, measurement ranges and triggering for Control Panel test.

(&)

Overview
5A
Sources : [ Show Symm Components ] e -
Enable : : Base Frequency 60 Hz
Name : Label - Color : DC Range Step | e Y &
Ramp | Amplitude : Phsse @ Frequency
n |7 | N 754w 5.000 A 0.0° 60Hz i[5 o] O
B [~ O 7.54 - 5.000 & 24000 B0Hz ifY oy )
© [+] | B2 N 7.54 - 5.000 & 12000 B0Hz ([ oy i
B |- H -~ O 7.54 v 0.000 A 0.0° 60Hz (2 Lo
|- ¥ O 7.54 v 0.000 A 24000 60Hz i o) o
2 |+ | 2 N 7.58 v 0.000 & 1200°  60Hz (3 o] O ,
[ e— PhaseRotate | [ Save {Enable Al
Step, Ramp, and Pulse Settings Timer Values
[ Caarse 1 2 i3 ia 5 6 7 8
St 0.10 .00
or Metering values
Ramp Rate 0,10 .00
o s fs |7 Enabled
Stop Ramp on Sense None |Z|
Logic Inputs and Outputs Timer Status
Pulse duration 10.0 ms gie Inp! P e [Z] Turn battery off when
disconnectin
clelelelelolele 9
Apply to | Stop | | Reset |
wie (YYD ¥
® e © Prase © Frequey OOO0O00000

[] manually control Logic Outputs

(19) Normal Fault
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Relay Settings

Configuration

MVA Maximum Transformer Capacity (MVA)
60.0 Range = OFF,0.2-5000.0

ICOM Define Internal CT Conn. Compensation
N v Select: Y, N

Winding 1

W1CT Winding 1 CT Connection

WYE v Select: DELTA, WYE

CTR1 Winding 1 Phase CT Ratio
300 Range = 1-10000

WICTC Winding 1 CT Conn. Compensation
(12 | Range = 0-12

VWDG1 Winding 1 Line-to-Line Voltage (kV)
138.00 Range = 0,20-1000.00

Winding 2

W2CT Winding 2 CT Connection

WYE « Select: DELTA, WYE

CTR2 Winding 2 Phase CT Ratio
600 Range = 1-10000

\f{ZCT C Winding 2 CT Conn. Compensation
(12 | Range = 0-12

VWDG2 Winding 2 Line-to-Line Voltage (kV)

69.00 Range = 0.20-1000.00

(20) Relay Settings



Relay Settings

Transformer Differential Elements

E87 Enable Transformer Differential Protection
¥ v Select: ¥, N

TAP1 Winding 1 Current Tap (Auto. Calculated)
0.84 Range =0.50-31.00

TAP2 Winding 2 Current Tap (Auto. Calculated)
0.84 Range =0.50-31.00

OB7P Restrained Element Operating Current PU {multiple of tap)
0.60 Range =0.10-1.00

87AP Differential Current Alarm PU (multiple of tap)
0.30 Range = OFF,0.05-1.00

87AD Differential Current Alarm Delay (seconds)
5.0 Range = 1.0-120.0

SLPI Restraint Slope 1 Percentage
25 Range = 5-80

SLP2 Restraint Slope 2 Percentage
70 Range = 5-S0

IRS1 Restraint Current Slope 1 Limit
6.0 Range = 1.0-20.0

UB7P Unrestrained Element Current PU
15.0 Range = 1.0-20.0

PCT2 Second-Harmonic Blocking Percentage
10 Range = OFF,5-100

PCT4 Fourth-Harmonic Blocking Percentage
OFF Range = OFF,5-100

(21) Relay Settings
PCT4 Fourth-Harmonic Blocking Percentage
OFF Range = OFF,5-100

PCTS Fifth-Harmaonic Blocking Percentage
OFF Range = OFF,5-100

THSP Fifth-Harmonic Alarm Threshold
OFF Range = OFF,0.02-3.20

THSD Fifth-Harmonic Alarm Delay (seconds)
(1.0 | Range = 0.0-120.0

HRSTR Harmonic Restraint
¥ v Select: Y, N

HBLK Harmonic Blocking
N v Select: Y, N

(22) Relay Settings
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