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Abstract
Wildfires significantly change boreal forest ecosystem carbon balance through both direct
combustion and post-fire carbon dynamics. Affected vegetation influences soil thermal regime and
carbon cycling by impacting the surface energy balance of boreal forests. This study uses a
process-based biogeochemistry model to quantify carbon budget of North American boreal forests
during 1986–2020 based on satellite-derived burn severity data. During the study period, burn
severity generally increases. Fires remove ecosystem carbon of 2.4 Pg C and reduce net ecosystem
production (NEP) from 32.6 to 0.8 Tg C yr−1, making the forest ecosystems lose 3.5 Pg C, shifting
a carbon sink to a source. The canopy’s cooling effect leads to lower soil temperature and lower net
primary production due to lower nitrogen mineralization and uptake. Post-fire NEP decreases
from 1.6 to 0.8 Tg C yr−1. This reduction accounts for 50% of the simulated NEP when the effects
of fire-affected canopy are not considered. Our study highlights the importance of wildfires and
their induced-canopy changes in soil thermal and ecosystem carbon dynamics of boreal forests.

1. Introduction

Boreal forests store more than one-third of global
terrestrial carbon (Kasischke and Stocks 2000). This
large carbon pool is vulnerable to fire disturbance
(Helbig et al 2016) and will potentially release large
amounts of carbon into the atmosphere through
direct combustion emission and post-fire decreased
ecosystem production (Kurz and Apps 1999, Amiro
et al 2006, Yin et al 2020, Zhao et al 2021). The
warming climate under anthropogenic forcings has
increased burned area and burn severity in boreal
forests (Gillett et al 2004, Iglesias et al 2022, Zheng
et al 2023), suggesting there are positive feedbacks
between fires and global climate (Moubarak et al
2023).

Wildfires influence carbon dynamics in boreal
forests by removing vegetation carbon via crown fires
and through consumption of surface organicmatters,
including soil organic carbon (Turquety et al 2007,

Turetsky et al 2011, De Groot et al 2013, Rogers et al
2015). With changing ecosystem structure, soil mois-
ture, soil temperature, carbon dynamics can be signi-
ficantly affected (Sullivan et al 2011, Li et al 2017). Soil
organic matter (SOM) combustion can release a large
quantity of carbon into the atmosphere, accounting
for up to 90% of the total carbon emission for severe
fires (Walker et al 2018). In addition to direct com-
bustion emissions, post-fire soil respiration can also
impact the carbon budget by changing soil temper-
ature and moisture (Kulmala et al 2014). The post-
fire net primary production (NPP) can also decrease
significantly due to the loss of the canopy (Zhao et al
2021).

After fire, the loss of canopy and SOM influences
soil temperature, in turn, affecting carbon dynamics
(Drüke et al 2021,Martín Belda et al 2022,Oppen et al
2022, Xu and Zhuang 2023). Boreal forests underlain
with permafrost are especially vulnerable to this effect
since their physical properties and carbon storage
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are sensitive to soil temperature changes (Hayes et al
2014, Johnston et al 2014). After fire, the loss of can-
opy can alter the albedo of land and impact the local
radiative energy budget. This is because canopy can
reflect solar radiation and reduce the short-wave radi-
ation directly absorbed by the land (Gu et al 1999).
Canopy also influences the near-surface viscosity and
change the sensible heat flux between land and the
atmosphere (Gu et al 1999). Observations indicate
that sub-canopy temperature is 2.1 ◦C lower than free
atmosphere in summer across Europe (Zellweger et al
2020, Haesen et al 2021). Canopy presence induces
soil temperature changes and therefore the regional
carbon budget, especially for post-fire areas where
the canopy changes during the recovery process. For
example, heterotrophic respiration (RH) and nitrogen
mineralization are directly influenced by soil temper-
ature, impacting the soil carbon pool sizes. In addi-
tion, SOM loss depends on burn severity and carbon
storage. Fires influence soil thermal dynamics dur-
ing the forest recovery (Sullivan et al 2011, Zhao et al
2021). Taken together, fires will directly affect car-
bon release, canopy structure, altering surface energy
balance and soil thermal regime, indirectly impacting
carbon balance.

Previous studies have modeled fire or canopy’s
influences on carbon dynamics with limitations.
Many of them mainly focus on direct combustion
emission (Conard and Ivanova 1997, Amiro et al
2001, French et al 2002), and have not considered
the impacts of burn severity because it is unavail-
able or difficult to obtain (Kasischke et al 2005,
Balshi et al 2007). Some studies have tried to over-
come these limitations by using process-basedmodels
(Zhao et al 2021) but did not consider the impacts of
fire-induced canopy changes on soil thermal regime
and carbon budget. For studies that have included
canopy’s influence,many of themhave not used expli-
cit burn severity information (Martín Belda et al
2022, Xu and Zhuang 2023). In all, carbon modeling
studies can be improved by using the data of satel-
lite data of burn severity and fire-induced canopy
changes.

This study revises a sophisticated process-based
model, the terrestrial ecosystem model (TEM)
(Zhuang et al 2002) to quantify the influence of fire
and canopy change on regional carbon dynamics
in North American boreal forests. The interactions
between canopy, fire and soil thermal dynamics are
modeled. We incorporate a soil surface energy bal-
ance model (Xu and Zhuang 2023) to a previous
TEM model (Zhao et al 2021). The revised-TEM is
then used to evaluate the spatial and temporal carbon
dynamics based on satellite burn severity data during
1986–2020. The revised-TEM is expected to better
estimate the soil temperature under the influence
of fire-induced canopy changes, the carbon storage
changes, combustion emissions, and net ecosystem
carbon exchanges.

2. Data andmethods

2.1. Burn severity data development
Historical fire burn areas were retrieved from 1986 to
2020 for 45 degrees latitudes northward in North
America, based on the data from the Bureau of
Land Management & Alaska Fire Service Alaska
Interagency Coordination Center, the Canadian
National Fire Database, and the United States geo-
logical survey combined wildfire dataset (Welty and
Jeffries 2020). The Alaska, Canada, and contiguous
U.S. perimeters were created by their respective agen-
cies through a combination of methods over the
period of interest, with older fires (pre-Landsat) typ-
ically requiring field data and aerial imagery, and
more recent fires being satellite-derived. All NA fire
perimeters were standardized through a series of
sequential dissolves to fix issues regarding fire ID
uniquity using GIS-based tools available in QGIS or
ArcGIS Pro. Fire perimeters were then simplified to
a 60-meter resolution to improve run time of sub-
sequent processing steps.

A google earth engine (GEE) script was developed
to calculate a pre- and post- normalized burn ratio
(NBR) value (Miller and Thode 2007) from within
each perimeter, as well as from within a 300 m buf-
fer ring offset 1.5 km from the perimeter. Because
Landsat Collection 2 was not yet available on GEE
at time of analysis, data were sourced from Landsat
Collection 1. Use of Landsat Collection 2 GEE
product in a future data product release would
provide image calibration and other improvements
relative to Collection 1 (Crawford et al 2023). Landsat
sensors 4–8 were used after applying a cloud, cloud
shadow, snow, and water mask. NBR for each fire
was calculated as the ratio between the near infrared
(NIR) and short-wave infrared bands for the available
Landsat mission:

NBR =
NIR− SWIR

NIR+ SWIR
. (1)

Pre-fire data use the median pixel values of
the image collection, with images filtered to the
approximate snow-free fire season of 15 June to 15
September, from the two years before the fire. Post-
fire data use the median pixel values from the image
collection 15 June to 15 September the year follow-
ing the fire. The median pixel values from within the
perimeter and buffer ring averaged to create a pre-fire
NBR and post-fire NBR for each perimeter and buf-
fer ring. These NBR values were written out of GEE
along with each unique fire ID. Methods in the GEE
code for masking and pooling the Landsat 4–8 data
were sourced from Holsinger et al (2021).

The values in the buffer ring are used to correct
for differences between the imagery not related to the
fire (e.g. phenology, plant health), as this land area
is assumed to have not burned. One caveat is that
in some areas that had nearby fires within the same
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year, there may be some overlap between the buffer
ring and another fire perimeter, however these cases
are uncommon. The difference between the pre-fire
NBR and the postfire NBR is known as the delta NBR
(dNBR) and can be used to represent burn severity for
a fire:

dNBR = NBRprefire−NBRpostfire. (2)

In addition to calculating dNBR for each indi-
vidual fire over 1986–2020, data were aggregated at
a 0.5◦ × 0.5◦ grid cell for each year in order to incor-
porate these data into TEM simulations.

2.2. Model description
TEM is a process-based biogeochemical model
(Zhuang et al 2002) that quantifies carbon and nitro-
gen dynamics in terrestrial ecosystems. TEMhas been
used to simulate fire disturbance impacts on carbon
dynamics in North America (Zhuang et al 2002, Zhao
et al 2021). In addition to the direct combustion
emission, TEM can also estimate carbon dynam-
ics during post-fire recovery (Zhao et al 2021). The
foliage recovery is assumed linear for the first 5 years
and sigmoid for the following years. In TEM, the soil
thermalmodule uses surface air temperature as upper
boundary condition to simulate soil thermal dynam-
ics, which might cause large uncertainties (Haesen
et al 2021), especially in summer when solar radiation
is very strong (Xu and Zhuang 2023). In this study,
we incorporate a surface energy balance scheme into
TEM by considering the influences of plant canopy
on soil surface temperature. The model is then used
to evaluate the impacts of fire disturbance on regional
carbon dynamics. More details of this scheme can be
found in the supporting information (figure S1).

The calculated dNBR, representing burn severity
for fires, is used to estimate the proportion of veget-
ation and soil carbon consumption in TEM. In the
model, fires remove vegetation and soil carbon based
on the burn severity (Zhuang et al 2002, Zhao et al
2021). Fires with greater burn severity remove more
carbon and nitrogen from the ecosystem. Following
fire, soil organic carbon composition can vary more
drastically than vegetation carbon due to reduction in
litterfall while the vegetation recovers. This reduced
vegetation carbon and soil nitrogen storage results
in lower ecosystem production during the recovery
phase. In addition, fires impact soil thermal dynam-
ics (i.e. soil temperature), together with the canopy’s
influence on soils, further changing carbon and nitro-
gen dynamics, such as RH and vegetation nitrogen
uptake.

2.3. Model validation
The revised-TEM is calibrated using observation data
from black spruce ecosystems in Alaska (Zhuang et al
2002, Zhao et al 2021). The canopy energy balance
scheme is calibrated using publicly available soil tem-
perature observation data, collected and published

by AmeriFlux (Xu and Zhuang 2023). This scheme
better estimates the soil thermal regime. The para-
meters used in this study are from previous stud-
ies (Zhao et al 2021, Xu and Zhuang 2023). Canopy
reflects short-wave radiation and has a cooling effect
on the soil surface, especially in summer when the
shortwave radiation is the strongest in a year. This
influence is close to zero when it is winter (Xu and
Zhuang 2023). Here, we compare simulated sum-
mer soil surface temperature with observation data
from AmeriFlux (Black 2016a, 2016b, 2023, Ueyama
et al 2023). Simulated soil surface temperature in July
is generally higher than observations when canopy’s
effect is not considered (figure 1). When canopy’s
effect is considered, the simulated soil surface temper-
ature is much closer to the observations.

We compare the simulated carbon dynamics with
field measurements in July 2015 from Köster et al
(2017) at two sites burned in 1990 and 2012, respect-
ively (table 1). The model can well estimate the veget-
ation carbon, soil carbon, soil organic nitrogen, and
surface soil temperature.

2.4. Regional input data and simulation protocols
Data required to drive TEM includes monthly mean
surface air temperature, cloudiness, precipitation,
vapor pressure, and surface wind speed, which are
from ERA5 from 1986 to 2020 (Hersbach et al 2020).
Spatially-explicit soil texture (percentage of silt, clay
and sand), elevation, plant function types and annual
CO2 concentrations of the atmosphere are also used
(Melillo et al 1993, Zhuang et al 2002). The model
is spun-up for 120 years before 1986 with cyclic cli-
mate data from 1986 to 2000 to achieve an equilib-
rium state. Then transient simulations from 1986 to
2020 are conducted for each grid cell at a spatial res-
olution of 0.5◦ × 0.5◦ for the North American boreal
forests.

Two regional simulations are conducted, with and
without fire disturbance considered, respectively. Fire
polygons are dissected into each unit with unique fire
history and then intersected with each grid cell when
considering fire impacts. The output values for each
grid cell are area-weighted mean of each fire polygon
and no-burn area within the cell (Zhao et al 2021).
An extra simulation with fire considered but without
a canopy energy balance scheme is also conducted for
quantifying the impact of the canopy.

3. Results

3.1. Regional burn area and severity
Most grid cells (0.5◦ × 0.5◦) are burned for less
than 15% while the maximum burn proportion in
a grid cell can exceed 80%, which mainly occurred
in Alaska, Central Canada and Quebec (figure 2).
The average dNBR value is 200–400 for the most
burned area (figure S2(a)), which agrees with previ-
ous studies (Key and Benson 2006, Allen and Sorbel
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Figure 1. Observed (blue) and simulated (red lines are simulations without considering canopy influence, black lines are
considering canopy influence) mean surface soil temperature in July at four sites: (a) University of Alaska, Fairbanks (US-Uaf),
(b) Saskatchewan—Western Boreal, Mature Black Spruce (CA-Obs), (c) Saskatchewan—Western Boreal, Mature Aspen (CA-Oas)
and (d) British Columbia—1949 Douglas-fir stand (CA-Ca1).

Table 1. Comparison between observed and modeled variables.

Vegetation C (g m−2) Soil organic C (g m−2) Soil organic N (g m−2) Soil temperature 5 cm (oC)

Burn year Obs Model Obs Model Obs Model Obs Model

1990 698.9± 178.2 701.2 7460.9± 8298.7 5043.7 264.5± 294.2 211.0 9.8± 0.5 9.8
2012 220.4± 88.4 287.6 2612.3± 1422.2 3441.0 108.1± 58.8 124.6 9.6± 2.8 8.6

Figure 2. Fire burn proportion and severity (delta normalized burn ratio, dNBR value) in North American boreal forests from
1986 to 2020: (a) burn proportion (units: %), (b) burn severity (mean dNBR). The black lines mark the boundary of boreal
forests.

2008). The overall area-weighted value is 368.0, which
is slightly higher than the estimates in Zhao et al
(2021). There is a slightly increasing trend for the

annual area-weighted dNBR value (figure S2(b)),
indicating the burn severity is increasing in this
region.
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Figure 3. Differences of the simulated mean soil temperature with and without canopy’s influence in July (with canopy simulation
minus without canopy simulation) and fire (with fire simulation minus without fire simulation) at 5 cm depth (a), (b) and 20 cm
depth (c), (d) from 1986 to 2020.

3.2. Fire impacts on soil thermal regime
Compared with the no-fire simulation, simulated
mean soil temperature increases (figure 3(b)) (Zhao
et al 2021) since burning heats the soil surface and
removes the ground moss layer which serves as a heat
insulator. Deep soil temperature change follows the
spatial pattern of surface soil temperature but with a
smallermagnitude (figure 3(d)). Overall fires increase
mean soil surface temperature about 0.1 ◦C for burn
areas in 2020 (figure S3(b)).

3.3. Fire impacts on carbon dynamics
When there is no fire, the whole ecosystem acts as a
net carbon sink in this region with highest net eco-
system production (NEP) in east Canada and Alaska
(figure 4(b)). The regional 35 year mean NEP is
32.6 Tg C yr−1 (table 2). When there is fire, the NEP
significantly decreases with many regions changing
from a carbon sink to a source (figure 4(a)). This is
consistent with other estimates, showing fires greatly
reduce the productivity of boreal forests (Amiro et al
2006, Zhao et al 2021). The regional 35 year mean
NEP is 0.8 Tg C yr−1 (table 2). The NEP affected by
fire (figure 4(c)) shows a similar spatial pattern of fire
areas (figure 2(a)). A similar spatial pattern is also
found for ecosystem carbon storage (figures 4(d)–
(f)), where areas with large fires lose more ecosystem
carbon (vegetation carbon plus soil carbon storage).

When fire is not considered, the estimated eco-
system carbon gradually increases from 1986 to 2020
(figure S4(d)), acting as a net carbon sink. With the
fire disturbance, there is an opposite trend, resulting
in a net carbon source. With and without fire, NPP,
RH and NEP are synchronous with each other (figure
S4). Fires reduce NPP by 154.8 g Cm−2 yr−1 on aver-
age, which agrees with previous studies (Hicke et al

2003, Sparks et al 2018). Fires increase soil temper-
ature (figure 3), enhancing RH. On the other hand,
fires also significantly remove soil carbon (figure
S4(d)), decreasing RH. Overall, fires reduce RH by
31.5 g C m−2 yr−1 on average.

When canopy’s influence is not considered, TEM
estimates the regional mean NEP is 1.6 Tg C yr−1

(table 2). It is slightly lower than the estimate by
Zhao et al (2021), which might be due to the rel-
atively higher burn severity in our data. When can-
opy’s influence is considered, the mean NEP under
fire in this region is 0.8 Tg C yr−1 (table 2) while the
combustion emissions are 67.7 Tg C yr−1 (table 2).
That means although the boreal forests show a car-
bon sink during the post-fire recovery, the whole
region still acts as a carbon source and will release
2340.5 Tg C into the atmosphere during the study
period (66.9 Tg C yr−1). Compared with the no-fire
simulation, the whole ecosystem carbon storage is
reduced by 3481.5 Tg C or 99.5 Tg C yr−1 (figure S4).

3.4. Impacts of fire-induced canopy changes on soil
thermal regime and carbon dynamics
The fire-induced changes in canopy can significantly
influence ecosystem carbon dynamics (Martín Belda
et al 2022, Oppen et al 2022, Xu and Zhuang 2023).
Here we compare the simulations between with and
without the canopy energy balance scheme in the
model in addition to considering fire impacts.

Spatial differences of the simulatedmonthlymean
soil temperature in July (when solar radiation is the
strongest) for the period of 1986–2020 due to the
influences of the canopy are significant (figure 2). Soil
surface temperature at 5 cm soil depth (figure 3(a))
is consistently lower with a magnitude of about 1 ◦C
for most grid cells (Zellweger et al 2020, Haesen et al
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Figure 4. Spatial pattern of carbon dynamics during 1986–2020: (a) cumulative NEP considering fires; (b) cumulative NEP
without considering fires; (c) differences of NEP with and without considering fires (a minus b); (d) time-mean ecosystem carbon
storage (vegetation carbon plus soil carbon) considering fires; (e) ecosystem carbon storage without considering fires; (f)
differences of carbon storage with and without considering fires (d minus e).

Table 2. Regional mean NPP, RH, NEP and combustion emissions from three simulations.

With fire Without fire

Units: Tg C yr−1 With canopy Without canopy With canopy

NPP 729.4 755.3 773.5
RH 728.6 753.7 740.9
NEP 0.8 1.6 32.6
Combustion 67.7 69.2 /

2021). Deep soil temperature (20 cm, figure 3(b))
exhibits a similar pattern to the soil surface with smal-
ler magnitude of changes since the deep soil is less
impacted by the air and land surface processes. The
regional mean difference is about 0.9 ◦C for soil sur-
face temperature (figure S3(a)) and 0.6 ◦C for deep
soil temperature, indicating a persistent cooling effect
from 1986 to 2020.

Both NPP and RH decreased due to the can-
opy’s cooling effect (figure 5). The magnitude of the
changes shows a similar pattern to the soil temper-
ature changes (figure 3), which means stronger cool-
ing led to higher carbon changes. The regional dif-
ferences of NPP and RH (figure S5) remain negat-
ive for each year during 1986–2020. In all, the whole
ecosystem has a decreased NEP of 0.8 Tg C yr−1

(table 2) since the decreased regional mean NPP

is higher than RH, resulting in more carbon being
released to the atmosphere due to the canopy’s influ-
ence. The estimated vegetation carbon and soil car-
bon are lower (figure S6), making the whole ecosys-
tem lose 670.3 Tg C/year with 370.8 Tg C yr−1 from
vegetation and 299.5 Tg C yr−1 from soils during
1986–2020.

4. Discussion

4.1. Canopy’s influence on carbon dynamics
Fire-induced canopy changes significantly affect car-
bon dynamics both directly and indirectly. First, the
fire-induced canopy changes directly affect GPP, thus
NPP. Second, the canopy changes affect soil surface
energy balance and soil temperatures, influencing
soil respiration (RH) and nitrogenmineralization and
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Figure 5. Canopy’s cumulative influence (with canopy minus without canopy) on (a) NPP, (b) RH, (c) NEP, (d) nitrogen uptake,
(e) nitrogen mineralization during 1986–2020.

plant nitrogen uptake, thus NPP. While our previous
analysis indicated that RH decreases due to canopy’s
cooling effect on soil temperatures (Jiang et al 2016),
the effects of fire-induced canopy changes have not
been analyzed. Here we show that nitrogen miner-
alization and uptake decreased due to the canopy’s
cooling effect. The reduced nitrogen uptake inhibits
GPP and NPP (figure 5(a)), resulting in a net carbon
source. In addition, the spatial patterns of NEP are
consistent with soil temperature changes (figure 3).

Our simulated NPP and RH are both lower
considering fire-induced canopy changes compar-
ing with the simulations without considering canopy
changes (table 2). The estimated decrease ofNEPwith
0.8 Tg C yr−1 accounts for about 50% of the origin-
ally simulated NEP without considering fire-induced
canopy effects (table 2). The lower ecosystem carbon
storage due to canopy’s influence (figure S6) causes a
lower combustion emissions (table 2). Overall, can-
opy’s cooling effects significantly affect GPP and NPP
and regional carbon dynamics (Martín Belda et al
2022, Oppen et al 2022, Xu and Zhuang 2023), espe-
cially when fire disturbance exists.

4.2. Comparison with previous estimates
In comparison with previous studies (table S1), our
estimated combustion emissions in Alaska agree well
with Wiedinmyer and Neff (2007), but higher than

Zhao et al (2021) and Kasischke and Hoy (2012),
lower thanChen et al (2017), Goetz et al (2012). These
differences are potentially due tomost of these studies
focusing on Alaska while our study covers the boreal
forests in whole northern North America. For the
Canadian region, our estimates are generally higher
(Goetz et al 2012, Zhao et al 2021) but agree with
Chen et al (2017). For the whole North America, our
estimates of combustion emissions generally agree
with some newly-published studies (Phillips et al
2022, Potter et al 2023) but is a little higher than some
previous studies (van der Werf et al 2010, Zhao et al
2021). This might be explained by relatively higher
burn severity in our data compared with Zhao et al
(2021).

4.3. Uncertainties and limitations
Using dNBR to represent burn severity to estim-
ate fire impacts on carbon might have resulted in
uncertainties of carbon dynamics since other factors
such as moisture, elevation and time of burn are not
considered in this study (Tan et al 2007, Kasischke
and Hoy 2012, Zhao et al 2021). For example, it
tends to be wetter and more difficult to burn in
lower elevation forests. Additionally, the relationship
between dNBR and combustion proportion is estab-
lished based on black spruce dominated forests while
North American boreal forests also include white
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spruce or pines and other forest types. Thismight bias
burn severity estimations since black spruce tends to
show higher dNBR than white spruce with the same
burn severity (Rogers et al 2015). For simplicity, this
study did not distinguish between these two types but
more detailed vegetation types of specific burn sever-
ity is needed to better simulate the regional forests
response to fire (Amiro et al 2001, Stinson et al 2011).
Our model was originally calibrated with field data
from forests in Alaska. Itmight also induce uncertain-
ties when the parameters are applied for whole boreal
forests in North America (Zhao et al 2021).

In developing our burn severity data, we used a
burn severity product as a (Loboda et al 2018). This
dataset does not cover all of North America boreal
forests, just the western half of the region and its
temporal coverage ends in 2015. Thus, our carbon
analysis is based on more spatially and temporally
complete burn severity data that are expanded from
Loboda et al (2018).

While we have considered vegetation and moss
regrowth and soil carbon recovery and their impacts
on soil thermal and carbon dynamics (Zhuang et al
2002), we have not explicitly modeled the shift of
vegetation type after fire (Gewehr et al 2014, Stuenzi
et al 2022). Severe fires might shift dominant veget-
ation type from slow-growing black spruce to fast
growing deciduous trees, resulting in a difference
of carbon storage (Mack et al 2021). In addition,
the post-fire recovering process of moss (Zhuang
et al 2002) and soil surface organic matter recover-
ing and their impacts on soil thermal regime were
modeled with a generic formulation of the recover-
ies. However, due to lacking information on regional
moss dynamics, such as moss thickness, the regional
simulations have not considered these effects in a spa-
tially explicit manner. Finally, the burn severity might
influence the presence of permafrost (Lucash et al
2023), which has not been evaluated in this study
while our focus is on examining how fires-induced
canopy changes affect soil temperature changes in
upper soil layers, in turn, influencing carbon dynam-
ics. These complex vegetation and soil dynamics and
their interactions after fire shall be incorporated into
future ecosystem carbon modeling for this region.

5. Conclusions

Using satellite-derived burn severity data, our quanti-
fication shows that boreal forest wildfires significantly
reduce ecosystem carbon storage through combus-
tion emissions at 67.7 Tg C yr−1 with total 2.4 Pg C
during 1986–2020 and reduce post-fire ecosystem
production from 32.6 Tg C yr−1 to 0.8 Tg C yr−1. As
a result, wildfires cause the North American boreal
forests to lose 3.5 Pg C during the study period
and change the boreal forests from a carbon sink
to a source. With lower soil temperature simulated
by considering the canopy influence on soil thermal

dynamics, the revised model estimates a lower NPP
due to inhibited nitrogen uptake and mineralization
and lower heterotrophic respiration due to lower soil
temperature. Despite their counteractive effects, fire-
induced canopy changes lead to a reduced post-fire
NEP from1.6TgCyr−1without considering canopy’s
influence to 0.8 Tg C yr−1 with considering canopy’s
influence during 1986–2020. This reduction accounts
for 50% of the originally simulated post-fire NEP
that does not consider canopy influences. This study
highlights the importance of considering forest burn
severity and fire-induced canopy changes in regional
carbon dynamics in boreal forests of North America.
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