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Preface 

A majority of Chapter 4 titled “Modeling Interface Deformation and Spray Onset of a 

Ferrofluid Meniscus” appears in the following publication: 

Jackson, B. A., Terhune, K. J., and King, L. B. "Ionic liquid ferrofluid 

interface deformation and spray onset under electric and magnetic 

stresses," Physics of Fluids Vol. 29, No. 6, 2017, p. 064105. doi: 

10.1063/1.4985141 

The copyright is retained by Brandon A. Jackson. In this publication Kurt J. Terhune 

performed the experiential onset studies for the needle emitter utilized for the model 

validation. Material presented in this dissertation resulting from his efforts are credited 

where they appear. Lyon B. King motivated and guided the research, assisted in the 

preparation of the manuscript. 

 

Throughout this report the term “traditional electrospray” will be included regularly. 

This phrase will reserved to describe electrospray achieved from internally and externally 

wetted needles as well as porous emitter arrays.  





 

xv 
 

Acknowledgements 

In finishing this dissertation, I am grateful to many who have helped and supported me 

during my endeavors at Michigan Technological University. 

• First, my advisor Dr. Lyon (Brad). King. Thank you for taking a chance on me 

when I first contacted you expressing interest in working in your lab. I am thankful 

for you for giving me the opportunity to pursue a Ph.D. Your guidance as a 

mentorship were instrumental in my successful completion of this work and 

professional development. 

• My gratitude also goes out to Dr. Jeff Allen. Thank you for opening your office to 

my frequent surprise visits and providing advice and support as I completed this 

research.  

• Next, I would like to thank my parents. Since I was young, you have instilled the 

importance of education in my life and worked hard to provide me with the 

opportunities to pursue it. You have always had confidence in and believed in me, 

even though I can’t say I have always felt the same about myself. 

• Finally, I would like to thank my girlfriend Megan who has been supportive and 

patient with me as I pursued this degree. 





 

xvii 
 

Nomenclature 

ma   Lorentz Acceleration (m/s2) 

B


 Magnetic Field Vector (T) 

eB   Electric Bond Number 

mB   Magnetic Bond Number 

D


 Electric Displacement Field (C/m2)  

d   Emitter-Extractor Separation (m) 

pd   Magnetic Particle Diameter (m) 

jd   Jet Diameter (m) 

E


 Electric Field (V/m) 

aE   Apex Electric Field (V/m) 

eF


  Coulomb Force (N) 

mf


  Kelvin Force Density (N/m3) 

mF


  Kelvin Force (N) 

( )G ε   Jet scaling function 

0g   Standard Gravity (m/s2) 

H  Magnetizing Field (A/m) 

I   Emission Current (A) 

spI   Specific Impulse (s) 

K   Electrical Conductivity (S/m) 



 

xviii 
 

k   Boltzmann Constant (J/K) 

( )L α  Langevin Function 

M


 Magnetization (A/m) 

cM   Critical Magnetization for Normal-Field Instability 

dM   Saturation Magnetization (A/m) 

m   Particle/Ion Mass (kg) 

m   Mass flow rate (kg/s) 

fm   Final Payload Mass (kg) 

0m   Initial Payload Mass (kg) 

P


  Polarization (C/m2) 

inP   Electrical Input Power to Thruster (W) 

EP   Electric Stress at Apex (Pa) 

p  Fluid Pressure (Pa) 

p∆   Passive emission pressure gradient (Pa) 

Q   Volumetric Flow Rate (nL/s) 

rQ   Rayleigh Charge Limit (C) 

q   Particle/Ion Charge (C) 

0R   Characteristic Radius for Bond Number (mm) 

cR   Critical Apex Radius at Onset (m) 

meanR   Mean Curvature (m) 

*r   Characteristic Jet Radius (m) 

Lr   Larmor Radius (m) 

T   Temperature (K) 

)ideal
T P  Thrust-to-Power Ratio (N/watt) 

idealT  Idealized Thrust (N)  

1,2T  Fluid Stress Tensor (N/m2) 



 

xix 
 

eT   Electric Stress Tensor (N/m2) 

mT  Magnetic Stress Tensor (N/m2) 

sT   Stokes Stress Tensor (N/m2) 

,e mt


  Electric/Magnetic Surface Stress Vector (Pa) 

u   Fluid Velocity Vector (m/s) 

meshu   Mesh Interface Velocity (m/s) 

( )U z  Energy of Perturbation Surface 

gU  Gravitational Energy (J) 

mU   Magnetic Field Energy (J) 

sU   Surface Energy (J) 

V   Electric Potential (V) 

V   Droplet Volume (m3) 

startV   Critical Voltage for Onset of Emission (V) 

mV   Magnetic Scalar Potential (A) 

ev   Propellant Exhaust Velocity (m/s) 

v∆   Change in spacecraft velocity (m/s) 

Z   Height for Apex Scaling (mm) 

impZ   Hydraulic Impedance 

α   Energy Ratio (mH/kT) 

β   Langevin Fit Parameter (A/m) 

γ   Surface Tension (N/m2) 

ε   Material Permittivity (F/m) 

0ε   Permittivity of Free Space (F/m) 

rε   Relative Permittivity 

η   Coulomb/Kelvin Force Ratio 

Eη   Energy Efficiency 



 

xx 
 

iη  Ionization Efficiency 

pη  Polydisperse Efficiency 

Tη  Total Power Efficiency 

trη  Transmission Efficiency 

θη   Angular Efficiency 

µ   Viscosity (mPa∙s) 

0µ   Vacuum Permeability (V⋅s/(A⋅m)) 

rµ   Relative Permeability 

ρ   Fluid Density (kg/m3) 

( )Iρ θ  Angular Current Density (A) 

1σ , 2σ  Fluid Conductivity (S/m) 

,n elecσ   Surface Normal Electric Stress (N/m2) 

,n magσ   Surface Normal Magnetic Stress (N/m2) 

τ   Langavin Fit Parameter (m/A) 

rτ   Electric Relaxation Time (s) 

φ  Volume Fraction of Nanoparticles 

mχ  Magnetic Susceptibility 

H∇   Gradient at Constant H 

t∇   Gradient along surface tangent



 

xxi 
 

Abstract 

 This dissertation presents three studies on the electrospray of ionic liquid ferrofluid. 

Ionic liquid ferrofluids are electrically conductive super-paramagnetic fluids which 

respond strongly in the presence of electric and magnetic fields. When a small reservoir of 

ionic liquid ferrofluid is positioned within a magnetic field, magnetic stresses will deform 

the fluid interface into a peak. The addition of a strong electric field will further stress the 

fluid interface until a threshold stress is reached at which point the surface tension cannot 

contain the combined stresses and a spray of fluid or ions results at the apex. This process 

is termed electrospray, albeit a less understood form of electrospray owing to the addition 

of magnetic stresses which are not present in traditional electrospray. 

 The first study included in this dissertation presents a computational fluid dynamics 

model of the combined electro-magnetic instability critical for electrospray. The developed 

model utilized the static formulation of the Maxwell equations to calculate the Maxwell 

stress tensor for an ionic liquid ferrofluid. When combined with the Stokes stress tensor, 

the duo of equations capture the fluid stresses present within the instability. The model was 

first employed to study the influence of a magnetic field on the onset potential of a capillary 

needle electrospray source. The simulation predicted onset potential agreed well with the 

experimentally captured onset under matching field conditions. The numerical tool was 

then utilized to study the dynamics of sessile ionic liquid ferrofluid droplets. The 

computational results were verified against laboratory images of sessile drops obtained 

under matching field conditions. The simulation performed exceptionally up until about 

85% of the onset potential at which point the simulation began to over predict the apex 

height of the combined instability. 



 

xxii 
 

 The second portion of this dissertation consisted of long duration emission studies of 

an ionic liquid ferrofluid normal-field source. An operational procedure was developed 

which permitted a source consisting of a single emitter to operate with constant extraction 

potential for spans in extent of 15 hours. Time-lapse imagery of source enabled the mass 

flow rate to be approximated, permitting derived propulsion performance parameters to be 

obtained. Three different magnetic field strengths were investigated, and it was found that 

the magnetic field strength has no identifiable impact on propulsion performance. On 

average, the mass flow rate of the source was 28 ng/s (15.5 pL/s), with a specific impulse 

of 1385 s and a thrust of 0.380 µN per emitter. During the telemetry, the sensitivity of the 

source was analyzed and it was found that for moderate changes in extraction potential the 

source remained stable, but for increases on the order of 25-30% of the baseline voltage 

secondary emission sites were observed to form. 

 The final set of studies included in this dissertation focuses investigated the angular 

divergence of ferrofluid electrospray emitting via the normal-field instability. The angular 

current density was measured through the use of a segmented Faraday probe and quantified 

in terms of an angular power utilization efficiency factor. For the source, the average power 

efficiency was found to be 94%. A strong correlation was found between increased 

emission current and increased mass flow rate and decreased power efficiency. Finally, a 

very small difference in efficiency was resolved between the positive and negative 

emission polarities. 

The last chapter of this dissertation models the magnitude of the Kelvin and Lorentz 

forces in the emission plume to determine their potential to influence particle trajectories. 

It was found that in the apex region, the Coulomb force dominates the Kelvin force by 

several orders of magnitude – indicating that the Kelvin force is unlikely to affect the 

trajectories of emitted magnetic particles. It was also found that the magnitude of the 

Lorentz force in the apex region was too small to influence particle trajectories for even 

the lightest ions expected.
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Chapter 1 Electric Spacecraft Propulsion 

 Electrically powered spacecraft thrusters are a highly efficient means of providing in 

space propulsion for a spacecraft. This technology utilizes electrical energy to accelerate a 

propellant which in exchange changes the velocity of a spacecraft. This is typically done 

by ionizing the propellant and accelerating it using an electric field, or through using an 

electric current to rapidly heat propellant.* As a result, a very large amount of energy can 

be used to accelerate a given mass of propellant. Electric propulsion (EP) systems generally 

acquire their energy from the sun via solar panels; however, nuclear batteries have the 

potential of providing the required energy. 

In contrast, chemical propulsion systems acquire their energy via combustion or 

catalytic decomposition of propellants. This process is limited by the amount of energy per 

unit mass of reactants released during the reaction–yielding a barrier on the maximum 

achievable exhaust velocity. Electric propulsion technologies, free of this heat of reaction 

barrier, can deliver more energy per unit exhaust mass, thus permitting a higher propellant 

velocity and mass efficiency. 

In 1903, the Russian scientist Konstantin Tsiolkovsky presented an equation relating 

the propellant velocity, desired change in spacecraft velocity, and mass change of the 

spacecraft. This relation came to bear his name, although it is worth noting that several 

                                                 

* A detailed summary of electric propulsion is provided by Jahn and Choueiri in “Electric 
Propulsion” in the Encyclopedia of Physical Science and Technology.3 
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previous authors had published the relationship before him.† The Tsiolkovsky equation is 

also known simply as the ideal rocket equation. This relation reads as follows: 

 0lne
f

mv v
m

 
∆ =   

 
  (1.1) 

Where v∆  (delta-v) is the change in spacecraft velocity, ev  is the propellant velocity, 0m  

and fm  are the mass of the spacecraft before and after the maneuver, respectively. The 

difference between 0m  and fm  is the amount of propellant that is consumed. Simply 

stated, m∆  is the required propellant mass necessary to yield a spacecraft velocity change 

of v∆  for a given propellant velocity. The relation can also be expressed in terms of the 

specific impulse, spI  , where: 

 0e spv I g=   (1.2) 

The parameter 0g  is the standard acceleration of gravity defined at sea level. The specific 

impulse has units of seconds and is often used as a metric to compare propulsion systems. 

A higher specific impulse denotes a more efficient use of the propellant mass as 

demonstrated in Figure 1.1.‡ The higher efficiency of the propulsion system can enable (1) 

a lower launch mass, (2) a higher payload mass, or (3) a longer mission. 

                                                 

† In 1813, the British mathematician William Moore published his “Treatise on the Motion 
of Rockets: To which is Added an Essay on Naval Gunnery in Theory and Practice.” 
Moore’s essay presented an equation relating of rocket motion closely resembling 
Tsiolkovsky’s equation.4  
‡ Bipropellant propulsion systems (solid or liquid) have specific impulses on the order of 200-
468 seconds. Hall effect EP systems range from 1000-1700 seconds.5 Advanced Hall effect 
thruster designs have demonstrated impulses around 3000 seconds.6, 7 Electrostatic ion 
engines range from 1200-5000 seconds.5 
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Figure 1.1: Propellant mass requirements to deliver a specific delta-v for a 1000 kg 
spacecraft. A spacecraft requiring a delta-v of 3 km/s using a propulsion system with 
an Isp of 300 would require 1772 kg of propellant. By comparison, a similar mission 
with a 1500 s Isp propulsion system would require 226 kg. 

Generally speaking, electric propulsion systems offer much lower thrust levels than 

those achievable by chemical means. Any maneuver performed with electric propulsion 

tends to take a longer duration to achieve the same delta-v which may be undesirable in 

certain scenarios. The source of propulsion most optimal depends on the mission 

objectives; however, in the case of interplanetary travel where delta-v requirements are 

substantial and communication satellites for station keeping, EP obtains a large market 

share. 

Common types of electric propulsion include: gridded ion thrusters, Hall-effect 

thrusters, resistojets, and arcjets. Spacecraft operating on these technologies have launch 

masses ranging from 1000-7000 kg.8 With the advent of microsatellite (10 to 100 kg) and 

nanosatellites (1-10 kg) a desire for suitable micropropulsion systems has materialized. 

Micropropulsion systems for this class of satellites are an enabling technology capable of 

improving mission capability by providing propulsion for orbital maintenance, orbital 

changes, station keeping, and potentially missions beyond Earth orbit. 

One promising solution for electric micropropulsion are colloid/electrospray thrusters. 

The term colloid thruster is typically reserved to describe electrospray thrusters operating 



 

4 
 

in the droplet emission regime. Electrospray thrusters use an electric field to extract 

droplets or ions from a liquid, which are then accelerated away from the spacecraft—

imparting a small thrust on the spacecraft. Individual emitters can be manufactured on a 

sub-millimeter scale, yielding compact scalable thrusters. These thrusters use inert, non-

toxic propellant and operate at high specific impulses. 

This chapter will investigate the history of electrospray propulsion, the target market 

for electrospray propulsion, propulsion performance parameters, and ionic liquid ferrofluid 

electrospray. 

1.1 Application of Electrospray Propulsion 

In 1999, a trio of researchers from California Polytechnic State University and Stanford 

started what would eventually develop into the cubesat standard nanosatellites. The 

standard specifies a 1-U 10x10x10 cm cube form factor which integrates satellite with a 

deployment system, called a P-POD. A satellite can be composed of multiple units, with a 

3U 10x10x30 cm form factor being very popular.  

The adoption of the standard combined with the increased availability of low-cost 

commercial off-the-shelf (COTS) electronics and willingness of launch providers to allow 

ride-along secondary payloads has resulted a rapid growth in CubeSat launches. A 

nanosatellite database compiled by nanosats.eu shows that as of the 1st of January 2018, 

811 satellites abiding by the CubeSat standard have been launched. §  Companies and 

universities are the leading developers of CubeSats. 

Quick to design and build, low-cost and capable of being deployed in large numbers 

these satellites have potential applications ranging from Earth observation and sensing, 

communications, and space exploration. Unfortunately, the lack of an efficient propulsion 

systems has limited CubeSats from reaching their full potential. Differential drag can be 

used to help phase a constellation of satellites in an orbital plane,9 however, drag 

compensation, plane changes, and raising an orbit all require controllable propulsion. 

                                                 

§ Nanosatellite Database by Erik: http://www.nanosats.eu/index.html#database 
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The CubeSat standard limits the amount of stored chemical energy permitted onboard 

the satellite without a waiver to protect the primary and other secondary payloads. Because 

of these strict launch restrictions, few viable propulsion systems exist. Cold-gas thrusters 

are ineffective at providing any considerable v∆  to the spacecraft due to their lack of 

energy. 10 Traditional electric propulsion systems like Hall-thrusters and gridded ion 

thrusters are unable to scale to the size levels of these satellites while maintaining a 

reasonable level of efficiency. Consequently, electrospray propulsion has received 

considerable attention to provide nanosatellites with in space propulsion. 

1.2 Electrospray Propulsion – Past and Present 

Electrospray was first investigated as a potential means of providing spacecraft 

propulsion in the 1960s and early 1970s. The early thrusters developed used a glycerol 

propellant doped with agents to increase their conductivity.11, 12 Early research into 

electrospray propulsion faded in the 1970s, which has been attributed, in part, to (1) 

improved performance of competing propulsion systems, (2) an inability to achieve the 

required levels of thrust, and (3) technical challenges related to the high voltages required 

to achieve emission using propellants available at the time.13 Interest in the technology was 

recently renewed primarily as a result of miniaturization of spacecraft. Additionally, 

developments in electrospray13 and MEMS manufacturing pioneered by other fields has 

overcome many of the challenges faced by early researchers. 

Various approaches have been employed for the design electrospray thruster. In 2015, 

MIT developed the Scalable ion Electrospray Propulsion System (S-iEPS) thruster which 

is manufactured via laser ablation of porous glass to provide hydraulic impedance.14 Two 

graduate students from MIT worked to commercialize this technology which is sold by 

Accion Systems. The University of California Irvine recently demonstrated a 64 emitter 

MEMS fabricated microchannel thruster etched out of silicon with microchannels for flow 

impedence.2 Researchers at EPFL also fabricated a thruster using MEMS fabrication but 

filled the emitter capillary with microbeads to provide hydraulic impedance.15 This was by 
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no means a comprehensive list of all the research being performed on electrospray thrusters 

and is simply intended to present a list of the paths being pursued.  

Current research utilizes room temperature ionic liquids for the spray fluid, which are 

often simply referred to as ionic liquids (IL). Ionic liquids are best described as room 

temperature molten salts. As a result of their ionic forces within the liquid and the low 

melting point, these fluids have extremely low vapor pressures16—a fluid property ideal 

for electrospray propulsion, otherwise the propellant will evaporate in a vacuum without a 

heavy pressure vessel or a propellant cooling system. Ionic liquids also have favorably high 

conductivities ranging from 0.1-1 S/m,17 a range of conductivities enabling the ionic 

emission electrospray regime to be achieved.18 Electrospray propulsion systems operating 

in the ionic emission mode, rather than the droplet mode, achieve a higher specific impulse 

while having a lower thrust-to-power ratio. Performance characterization of electrospray 

thrusters will be elaborated on in the Section 1.3. 

From a propellant storage standpoint, ionic liquids have excellent propellant storage 

densities without using pressurized storage vessels. EMIM-Ntf2 and EMI-BF4, two 

common ionic liquids used in electrospray propulsion research, have densities of 1523 

kg/m3 and 1294 kg/m3, respectively.19 By comparison, Xenon, a common propellant 

utilized in Hall-effect and gridded ion thrusters at 50 °C requires a storage pressure of 126 

bar to obtain storage density of 1500 kg/m3.  

In December 2015, Busek Co. Inc became the first company to have a flight-qualified 

electrospray thruster launch on the LISA Pathfinder spacecraft.20 In November 2016, an 

electrospray thruster developed by the Space Propulsion Lab at MIT was launched aboard 

two AeroCube 8 cubesats, built by the Aerospace Corporation. At the time of writing, no 

published work regarding the on-orbit performance of these thruster was found in the 

literature, likely a consequence of the recent mission launch dates. 

1.3 Performance Characterization 

To analyze the propulsive performance of an electrospray thruster, we will first 

investigate an idealized thruster. For this, we will consider an electrospray thruster which 
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emits a single species of particles with a mass m  and charge q  and have an initial 

electrical potential V . This can be considered an ideal electrospray thruster and provides 

an excellent metric for the role of particle mass-to-charge ratios on power and thrust. As 

the particles travel through the electric field towards the extractor electrode, electrical 

potential energy is converted into kinetic energy—accelerating the particles.  

 21 2
2 e e

qmv qV v V
m

= ⇒ =   (1.3) 

If the emitted particles possess no off-axis velocities, thrust produced by the electrospray 

source becomes: 

 ( ) 2
ideal e

d VT mv I
dt q m

= =
   (1.4) 

where I  is the total emission current. Substituting Eq. (1.3) into Eq. (1.2) yields the ideal 

specific impulse for this electrospray thruster: 

 ,
0 0

1 2e
sp sp ideal

v qI I V
g g m

= ⇒ =   (1.5) 

If no electrical inefficiencies are present within the system, the thrust-to-power ratio 

becomes: 

 
2

ideal

T m
P qV
 =


  (1.6) 

From Eq. (1.4), it can be observed that thrust can be increased by increasing emission 

current, the mass-to-charge ratio of the emitted particles, or by increasing the extraction 

voltage. However, increasing the mass-to-charge ratio has the adverse effect of decreasing 

specific impulse (Eq. (1.5)) while increasing the thrust to power ratio (Eq. (1.6)). The 

optimal propellant and electric propulsion technology will ultimately depend on more than 
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just specific impulse. Factors including mission requirements, power limitations, ionizing 

energy, and storage capacity must all be considered. For example, a higher thrust, lower 

specific impulse thruster operation could be desirable if a more rapid orbital transfer is 

acceptable at the cost of more propellant. 

 The efficiency at which the available electrical power on the spacecraft is utilized in 

the production of thrust can be described by the thrust power efficiency factor Tη  : 

 
2

2T
in

T
mP

η =


  (1.7) 

For the idealized thruster model discussed previously in the section, Tη  will simply be 1. 

However, the assumption that all particles are emitted at the same mass-to-charge ratio 

deviates significantly from what is observed in practice for electrospray and colloid 

thrusters. Additionally, emitted particles are not born at a uniform potential V  and often 

have off-axis velocity components. 

 Lozano presented a model to describe the efficiency of a thruster that bridges the gap 

between the idealized thruster previously discussed and a physical thruster. In his model, 

the thrust efficiency is expressed as a product of individual factors which contribute to the 

overall inefficiency.21 This relation becomes: 

 2
T i tr E Pθη ηη η η η=   (1.8) 

in which iη  and trη  are the ionization and transmission efficiencies, respectively. These 

terms account for account for inefficiencies in ionizing all of the available propellant and 

intercepted current by the extractor or accelerator. The angular power efficiency is 

expressed as θη , while Eη  is the energy efficiency, which accounts for the inefficiencies 

resulting from not accelerating a particle to the full extraction potential. Finally, Pη  is the 

polydispersive efficiency, which accounts for energy wasted accelerating particles of 

different charge-to-mass ratios. Note: Eq. (1.8) makes the assumption that the efficiency 
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factors are completely decoupled and that there is, for example, no angular dependence in 

the polydispersive efficiency. In practice, some terms are observed to have angular 

dependence; however, this model serves as a concise statement of various factors impacting 

efficiency. 

Real thrust production and power efficiency can be determined experimentally from 

one of two approaches; through direct measurement or indirectly by determining angular 

divergence and simultaneous measuring the distribution of the charge-to-mass ratio and 

electric potential. A direct measurement of thrust can be difficult to achieve. Thrust 

produced by existing electrospray thrusters, which contain multiple thruster units, ranges 

up to 100 μN.22 The precise design, calibration, and measurement noise intrinsic of these 

systems presents formidable challenges. However, thrust stands have been developed to 

achieve measurements in this range.23, 24 

Indirect measurements to obtain a thrust are not free of imposing challenges. The 

comprehensive set of measurements necessary with minimal approximation would require 

the net emission current and mass-to-charge ratio spectrum at each retarding potential. 

These measurements must be taken at each angular location within the spray. Such a 

compilation of measurements could be obtained by integrating a retarding potential 

analyzer with a time-of-flight mass spectrometer. However, certain assumptions can be 

employed to simplify indirect measurements with only minimal loss in accuracy.2, 25 

1.4 Ionic Liquid Ferrofluid Electrospray Thrusters 

In 2013, Meyer and King at Michigan Technological University were the first to 

demonstrate that electrospray emission can be achieved ionic liquid ferrofluids (ILFF).26-

28 At the time of their research, only one other publication could be found to exist in the 

literature dealing with electrospray from any ferrofluids. This research, conducted by 

Mkrtchyan et al, used a very low conductivity fluid.29 A ferrofluid is an intriguing class of 

colloidal fluid. These fluids exhibit super paramagnetic behavior, and will be discussed in 

detail in Chapter 3. For now, these fluids are special because they exhibit an ability to form 

sharp peaks in the presence of a magnetic field. Meyer and King’s technique utilizes this 
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ferrofluid instability to create the initial concentration in the electric field necessary to 

achieve electrospray emission. When an electric field is applied to this formation, the peaks 

grow and become progressively sharper until electrospray emission can be achieved from 

one or more of the peaks. The process of emission is discussed in Figure 1.2: 

 
Figure 1.2: Electrospray emission from a combined ferro-electrohyrodynamic 
instability: (a) In the absence of an applied field, a sessile drop of ILFF spreads. (b) 
The application of a magnetic field stresses the fluid interface resulting in the fluid 
rising into a peak. (c) Finally, the addition of a strong electric field further stresses 
the fluid interface until emission results. The onset potential required for the 
combined ferro-electrohydrodynamic instability is less than the potential required to 
emit from configuration (a) as a result of the preconditioning provided by the 
magnetic stresses isolated in (b). 

Meyer developed a 5-tip electrospray emitter. This emitter struggled to achieve steady 

simultaneous emission from all emission sites, although this is not an uncommon issue in 

electrospray. During this research, Meyer demonstrated that his ferrofluid electrospray 

emitter was capable of self-repair after a destructive event such as emitter to extractor 

arcing. In such a case, the fluid was observed to simply reflow towards the emission site, 

the peak would reform, and emission would restart. Work by Meyer also investigated the 

spacing between the normal-field instability in non-uniform fields.30 

(a) (b) (c)

B EB

Magnet Magnet
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Figure 1.3: Electrospray emission from an emitting peak formed using a combined 
magneto-electric instability. 

Kurt J. Terhune conducted additional work in ionic liquid ferrofluid electrosprays. 

Work performed by Terhune focused primarily on emission from capillary needle sources 

such that comparisons could be made against traditional electrospray emitters. Terhune’s 

work collected time-of-flight mass spectrometry measurements and retarding potential 

analyzer (RPA) spectrum for ferrofluid of varying nanoparticle concentrations in magnetic 

fields.31-35 Terhune found that the minimum stable flow rate of a capillary source decreased 

when an ionic liquid ferrofluid was sprayed in the presence of a magnetic field.  

Experiments performed by Madden discovered a similar trend.36  Terhune also performed 

time-of-flight mass spectrometry measurements on a normal-field emission source, similar 

to that shown in Figure 1.3, and found  the source to emit in a mixed ion-droplet mode.
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Chapter 2 Overview of Electrospray and 

Electrohydrodynamics 

When a strong electric field is applied to a conductive, or dielectric liquid drop, which 

is surrounded by an insulating medium, a droplet will stretch due to the electric field. The 

interface geometry of the droplet will be a balance between the capillary stress, internal 

pressure, and the electric stresses. For the case of a highly conductive fluid at equilibrium, 

the interface balance becomes: 

 ( )2

0
1 ˆ 2
2 meanp E n Rε γ∆ + ⋅ =



  (2.1) 

where p∆  is the difference in hydrostatic pressure across the fluid interface, ( ) 2
01 2 nEε  is 

the electric stress on the interface, and 2 meanRγ  is the capillary stress. The component 

meanR  is the mean curvature at the interface location. 

For a sufficiently strong electric field, a condition can be achieved whereby the electric 

stresses will become too large to be constrained by the capillary stress. At this point, the 

meniscus will form into a structure known as a Taylor cone.37 When this limit is reached, 

a phenomenon occurs whereby a spray of fluid results at the apex of the deformed meniscus 

which will then accelerate in the direction of the applied field. This process has been termed 

electrospray. 

To reduce the electric potential required to achieve emission, a supporting structure 

such as a capillary or externally wetted needle is used to enhance the electric field. The 

emission from the meniscus can be a jet, ions, droplets, or a combination of the previous. 



 

14 
 

The mode of emission depends deeply on the fluid properties, emitter type, and the 

operation mode of the emitter.18, 38-40 

 
Figure 2.1: (Left) Diagram of an electrospray emission source. The fluid meniscus is 
stretched by applying an electric potential between the capillary needle and 
extraction electrode. (Right) Sectional view of the fluid meniscus.  

 

 
Figure 2.2: Fluid meniscus of an emitting Taylor cone. Emission can take the form of 
a jet, ionic emission, or a combination of both. The mode of emission that develops 
will depend on the emitter configuration and fluid properties. The jet length L is a 
function of the fluid conductivity and surface tension.41 

Figure 2.1 shows the basic setup of an electrospray apparatus. In this setup, fluid is fed 

to the emission site through a capillary needle. An electric field applied between the needle 

and extraction electrode stressed the fluid meniscus until a cone forms. Once the electric 

stress overcomes the surface tension emission will occur, a process which is illustrated in 

Figure 2.2. Depending on the properties of the sprayed fluid, a jet may form, the length of 

which is found to be strongly dependent on the conductivity and surface tension of the 
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fluid. Higher conductivities and higher surface tensions yields in a shorter jet length.39, 41 

For high conductivity liquids, like those of liquid metals or ionic liquids, pure ionic 

emission can be achieved for which droplet and jet formation does not occur.38, 39 For ion 

emission to develop, electric fields on the order of 1 V/nm are necessary.42 

The spray illustrated in Figure 2.2 will experience a certain level of divergence. This 

divergence can result from numerous factors, originating within the plume or at the location 

of emission. Within the plume, space charge will result in a self-repulsion force which can 

result in a radial spreading of the beam. Likewise, fragmentation of emitted ion clusters 

and droplets can produce offspring with strong mutual repulsion capable of providing 

radial velocity components. The emission dynamics, illustrated in Figure 2.2, also has 

considerable influence on the spray distribution. At the emission site, the geometry of the 

cone-jet region can produce areas of intense electric field with considerable radial 

components, which can generate a non-zero radial term in the velocity vector of the emitted 

ions and droplets. 

2.1 History of Electrospray 

The first observations of this phenomena were taken centuries ago by Jean-Antoine 

Nollet at a time when the understanding of electricity was still in its infancy. In 1750, 

Nollet, comically noted that “a person, electrified by connection to a high-voltage 

generator, would not bleed normally if he were to cut himself; blood would spray from the 

wound.” *44 One of the early pioneers of electrospray was John Zeleny, who did research 

focusing on both liquid metal and non-metallic liquid sprays.45, 46  

Possibly the most renowned researcher of electrosprays is G.I. Taylor who developed 

the theoretical foundation of electrospray physics. Taylor is perhaps best known for his 

                                                 

*  Jean-Antoine Nollet conducted numerous experiments with electricity. In one 
experiment, he attempted to measure the speed of electricity by connecting 700 people in 
a human chain and measuring how quickly the shock propagation through the chain. Nollet 
also used electricity to try and heal paralysis and control growth rate as well as studying 
the sweating behavior of electrified animals.43 
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mathematical description in his 1964 paper titled “Disintegration of Water Droplets in an 

Electric Field.” This analysis yielded the 49.3° half angle limit for the Taylor cone 

interface.37, 47, 48 The theory developed can also be used to describe electrospray emission 

from needle sources. 

In 2002, the Nobel Prize in chemistry was awarded in part to John Fenn, whose research 

in electrosprays is utilized in mass spectrometry systems to identify large biological 

molecules.49 In addition to being a propulsion source for satellites, other applications of 

electrosprays include: pharmaceutical production, nano-manufacturing, liquid-metal ion 

sources. 

2.2 Electric Stress Tensor 

Before proceeding to discuss the electrostatic stress tensor, it may be helpful to briefly 

review concepts in electrostatics. For an electrically insulating material, the effect of the 

electric field causes bound electrons within a molecule to separate, resulting in each 

molecule possessing a dipole moment. The polarization field, P


, is a measure of this dipole 

moment per unit volume. The combination of the electric field, E


, and polarizing field 

yield the displacement field D


. The displacement field can also be expressed in terms of 

the relative permittivity rε  per Eq. (2.2). 

 0 0rD E P Eε ε ε= + =
   

  (2.2) 

  For non-linear mediums, the relative permittivity can depend on the electric field. The 

resulting stress tensor, eT , for such a non-linear incompressible fluid becomes:50 

 
0

D

e E D E dD DE
  = − ⋅ + ⋅ + 
  

∫T I


     

  (2.3) 
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2.2.1 Electric Body Forces 

The electric body force density on an element of fluid is equivalent to the divergence 

of the electric stress tensor: 

 2 21 1
2 2e ef qE E aEε ε = ∇ ⋅ = − − ∇ +∇ 

 
T




  (2.4) 

The first term, qE


 is the coulomb force and is dependent on the free charge density q . 

The second term is the dielectric force and results when a non-homogeneity exists in the 

dielectric medium. The third term is the electrostrictive pressure where a  is a 

compressibility coefficient of the dielectric fluid, equal to ( )( )T
a ρ ε ε ρ= ∂ ∂ .50 For a 

material that lacks free charge, the first term becomes zero. Likewise, for an incompressible 

medium, the third term is also zero. Finally, for the work presented in this dissertation, no 

factors are present (e.g., temperature gradient or colloid concentration gradient) to result in 

a gradient in the dielectric constant within the fluid. Therefore, it is safe to assume that no 

electric body forces are present in the work entailed herein.  

2.2.2 Electrohydrodynamics Interface Stress Component 
 In this subsection the interfacial stress will be presented. It will be assumed that one of 

the fluids is a perfect electrical conductor. One parameter to consider is the relaxation time, 

which is an approximation of the time required for free charge to migrate towards the 

surface of the conductor. The relaxation time is a function of material conductivity and 

permittivity and represented as:51 

 0r
r K

ε ετ =   (2.5) 

where K  is the fluid conductivity. The conductivity of ionic liquids are frequently on the 

order of 1 S/m,17 while the dielectric constant of these fluids can be on the order of 10.52 
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The resulting electrical relaxation time, rτ ,  is on the order of 1×10-10 seconds, a time 

frame much faster than the fluid relaxation time for a non-emitting meniscus for which the 

subsequently presented equations are applicable.53 Therefore, it is fair to assume the fluid 

to be a perfect electrical conductor and there is no internal electric field before onset of 

emission. 

Consider the fluid interface shown in Figure 2.3, discontinuities in the electric 

components of the Maxwell stress tensor over the fluid surface, resulting from a change in 

materials, results in a stress on the fluid interface. 

 

Figure 2.3: Fluid interface of high permittivity fluid (Fluid 2) with low permittivity 
fluid (Fluid 1). 

The normal and tangential components of the electric surface stress can be determined in 

terms of the stress tensor of both medium evaluated along the interface. The stress vector 

along the fluid interface becomes: 

 ,1 ,2ˆ ˆe e et n n= ⋅ − ⋅T T


  (2.6) 

This stress tensor can be resolved into its respective normal and tangential components. 

For now, only the normal component will be investigated: 

 , ,1 ,2ˆ ˆ ˆ ˆn elec e en n n nσ = ⋅ ⋅ − ⋅ ⋅T T   (2.7) 

Substituting Eq. (2.3) into Eq. (2.7) , the electric surface stress becomes: 

Fluid 1
σ1, ɛ1

Fluid 2
σ2, ɛ2

n
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 ( ) ( )2 2 2 2
, 1 ,1 2 ,2 1 1 2 2

1
2n elec n nE E E Eσ ε ε ε ε= − − −   (2.8) 

A step-by-step approach for this derivation can be found in Appendix A. 

If medium 2 is highly conductive, the previous equation can be greatly simplified. For 

a perfect conductor, the internal electric field is zero. Additionally, applying the tangential 

constraint from the electric field boundary conditions yields: ,1 ,2 0t tE E= = . The simplified 

form for a highly conductive fluid becomes: 

 2
, 0 1

1
2

conductor
n elec Eσ ε=   (2.9) 

When a similar approach is utilized to determine the tangential stress components, it 

can be found that in the absence of surface charge, there is no tangential stress, regardless 

of the conductivity of the fluid. Consequently, electric tangential stress does not play an 

active role in the equilibrium interface of a ferrofluid. A full proof for this relation can be 

found in Appendix A. 

The equilibrium geometry of a fluid interface is dependent on the fluid surface tension, 

interface stresses, and static pressure difference over the interface. This equilibrium is 

described by the following differential equation: 

 ( )2ˆ ˆ ˆ ˆt tn n n nγ γ⋅ − ⋅ = ∇ ⋅ −∇1T T   (2.10) 

In which T  is the fluid stress tensor, γ  is surface tension between the two fluids, and t∇  

is the tangential gradient along the fluid interface. If one fluid is assumed to be a perfect 

conductor, substituting the terms in Eq. (2.3) into Eq. (2.10) yields the electrically 

augmented Young-Laplace equation when one fluid is a perfect conductor: 

 ( )2
0 1

1 ˆ
2

2

t t

mean

p E n

R

ε γ γ

γ

∆ + = − ∇ ⋅ −∇

=
  (2.11) 
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If there is no gradient in the surface tension, the capillary force can be expressed as 

2 meanRσ  where: 

 ˆ2 mean tR n= −∇ ⋅   (2.12) 

Gradients in surface tension can result from a temperature gradient along the interface or 

due to a gradient in the concentration of a dissolved species (e.g. Marangoni effect). 
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Chapter 3 Ferrofluids and Ferrohydrodynamics 

 Ferrofluids, also referred to as magnetic fluids, are superparamagnetic liquids. In the 

absence of any magnetic field, these fluids behave like any other fluid. When in presence 

of a magnetic field, they become strongly magnetized. The magnetization of these fluids is 

a consequence of nanoscale ferromagnetic particles suspended within the fluid which 

respond to an externally applied field. The resulting magnetic stress tensor adds additional 

physics to the fluid dynamics when the fluid is present within a magnetic field. The study 

of ferrohydrodynamics is dedicated to this phenomenon. 

 Within this chapter, the terms ferromagnetic and paramagnetic will be used frequently. 

Ferromagnetic materials have magnetic domains, large-scale order, and demonstrate 

permanent magnetism. However, when ferromagnetic materials are heated, the magnetic 

properties degrade with increasing temperature and subside completely at the Curie 

temperature. For all known ferromagnetic materials, the Curie temperature is less than the 

melting temperature – preventing a genuinely ferromagnetic fluid.  

A paramagnetic material does not exhibit magnetic domains or large scale order, but 

will become magnetized in the presence of a magnetic field. Weakly paramagnetic fluids 

can be found to naturally occur. Liquid oxygen, as well as certain salt solutions like 

manganese (II) nitrate, for example, exhibit a weak paramagnetic attraction to a magnet. 

This attraction requires strong magnetic field gradients. Ferrofluids exhibit a much stronger 

response, with a magnetic susceptibility, mχ  , orders of magnitude higher than natural 

paramagnetic liquids ( 1.56mχ =  for Ferrotec EFH1 at room temperature compared to 

33.44 10mχ
−= ×  for liquid oxygen at 90 Kelvin).54 
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Ferrofluids are composed of nanoscale single-domain ferromagnetic particles* coated 

with a surfactant and suspended within a carrier fluid to form a colloid. The surfactant helps 

to suspend the particles the carrier liquid, which is most often water or long-chain liquid 

hydrocarbons. The simplest surfactants are typically composed of long chain molecules. 

The head of these molecules attach to the nanoparticle surface while the tail has similar 

chemical and physical properties as the carrier fluid which enables the tail to mix with the 

carrier fluid. More advanced surfactants can be used which contain polymer chains 

containing individual structures akin to the single chain surfactant.55 Additionally, the 

surfactant separates the magnetic particles—inhibiting mutual attraction and 

agglomeration of the particles. Brownian motion prevents the particles from clumping or 

settling, even in the presence of strong magnetic and gravitational fields.  

In the absence of an external magnetic field, the particles are randomly orientated and 

their rotational motion is dominated by kinetic energy. When an external field is applied, 

particles will rotate such that their magnetization aligns with the direction of the local field. 

The collective effect of these ferromagnetic particles results in the liquid exhibiting a 

superparamagnetic behavior. This process is illustrated in Figure 3.1 and a mathematical 

relation describing the arrangement of the particles with the local field is presented in 

Section 3.1. 

The first patent for a ferrofluid was filed by Stephan Papell in 1963.56 In his patent, 

Papell created a kerosene based fluid. He envisioned the magnetic properties of this fluid 

could be harnessed to draw the ferrofluid (i.e. propellant) towards the turbo pump inlet for 

a rocket engine in a weightless environment. Papell’s vision was never developed. 

However, since their genesis, these magnetic fluids have found numerous applications 

including cooling and dampening of audio speakers,57 rotary seals,58 and self-lubricating 

bearings.59 In the bio-medical fields, ferrofluids have received considerable attention for 

applications such as targeted drug delivery,60 MRI contrast agents, and magnetic 

hyperthermia61 – a promising potential cancer treatment which involves localized heating 

of targeted tissue with the use of magnetic fluids and alternating magnetic fields. 

                                                 

* Iron, Nickel, Cobalt, and Magnetite (Fe2O3) all demonstrate ferromagnetism.  
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Figure 3.1: (Left) Magnetic nanoparticles are coated with a surfactant, which serves 
to suspend the particles in the carrier fluid. (Center & Right) Particles are randomly 
oriented in the fluid in an absence of a magnetic field. In the presence of the field, 
particles align with the local field direction. 

These fluids demonstrate several documented instabilities, e.g. normal-field instability, 

thermomagnetic convection, and the fingering instability. Possibly the most eminent of 

these instabilities is the normal-field instability. This instability results when these fluids 

are subjected to a magnetic field, a series of valleys and peaks form, which is also often 

referred to as the Rosensweig instability. The shapes of these peaks are dependent on the 

fluid properties of the ferrofluid and the nature of the applied magnetic field.  

Although ferrofluids have existed since the 1960s, vacuum-based applications have 

been hindered since typical carrier fluids will evaporate rapidly in a low-pressure 

environment. In 2011, a new class of ferrofluids was synthesized, using ionic liquids as the 

carrier fluid. These liquids are referred to as ionic liquid ferrofluids (ILFF). The first stable 

ionic liquid ferrofluid was developed by Jain, Zhan, and Hawkett.62 Since then, stable 

ferrofluids with ionic liquid carrier fluids have been synthesized by various researchers.63-

65 When magnetic nanoparticles are suspended within an ionic liquid, the colloid maintains 

the low vapor pressure, high conductivity, and a viscosity comparable to that of the parent 

ionic liquid, as well as becoming superparamagnetic. The properties of these fluids make 

them well-suited for the requirements of electrospray propulsion. The paramagnetic ionic 

liquid maintains its ability to be stressed by electric fields while gaining the ability to be 

stressed by a magnetic field. 

Surfactant

Magnetic Particle

Carrier Fluid

B = 0 B >> 0
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3.1 Magnetic Properties of Ferrofluid 

The behavior of magnetic nanoparticles in a ferrofluid are liken to molecules in a 

paramagnetic gas. If no field is present, only thermal aggregation influences particle 

alignment. Consequently, the particles are randomly oriented, and the medium exhibits no 

magnetic behavior. As a magnetic field is applied, particles are inclined to align in the 

direction of the field and contribute to the overall strength of the field. The strength of this 

inclination is dependent on the ratio between the magnetic energy and the thermal energy 

of the particle. As the magnitude of the field strength increases, the probability of the 

particles aligning with the applied field increases until a point at which saturation can be 

achieved. The mathematical relationship describing this process is adapted from 

Langevin’s classical theory of magnetism and can be modeled as follows: 

 ( ) 1coth
d

ML
M

α α
φ α

= = −   (3.1) 

Where the energy ratio α  is: 

 
3

0

6
d pM Hd mH

kT kT
µπα = =   (3.2) 

Given that ( )L α  denotes the Langevin function, M  is the magnetization of the ferrofluid, 

φ  is the volume fraction of the magnetic nanoparticles, dM  is the saturation 

magnetization of the material of which the nanoparticles are composed. The derivation of 

this relation can be found in Chapter 2 of Ferrohydrodynamics by R.E. Rosensweig.55 The 

Langevin relation for increasing particle sizes is presented in Figure 3.2: 
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Figure 3.2: Ideal magnetization curves for magnetite nanoparticles (For Md = 
4.45x105 A/m) 

From the previous figure, it can be seen that the magnetization ratio, dM Mφ , increases 

as particle size increases for the same field strength. This relationship is limited since an 

upper limit exists on particle size to prevent settling of the particles.  

 The magnetization curves presented in Figure 3.2 can be obtained for a real ferrofluid 

using a vibrating sample magnetometer (VSM). The VSM magnetizes a small sample of 

magnetic material such that it can be approximated as a magnetic dipole. The sample is 

then vibrated in a direction perpendicular to the applied field. A pair of pickup coils 

centered on an axis of vibration pick up an induced voltage from the vibrating sample. 

From the induced voltage in the coils, the dipole moment and fluid magnetization of the 

sample can be derived.66 By sweeping through a range of applied field strengths, the 

magnetization curve can be as obtained at a specified temperature.  

For real ferrofluids, the mathematical description presented in Eq. (3.1) may not 

sufficiently describe fluid magnetization through the range of zero field to fluid saturation. 

When considering paramagnetic gasses like oxygen, all the molecules are virtually 

identical, thus the Langevin relation performs extremely well describing observed 

behavior. Within real ferrofluids, the nanoparticles have a distribution of sizes and a range 

of magnetic moments.67 Therefore, it may be necessary to fit only small sections of the 
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curve with the Langevin relation or use a non-physical relation, such as a high-order 

polynomial, to obtain an adequate correlation. 

Knowledge of the ( )M H  relationship for a ferrofluid is an essential component the 

fluid magnetic stress tensor. The fluid stress tensor is presented in detail in the next section.  

3.2 Magnetic Stress Tensor 

Before proceeding further, it becomes helpful to discuss three quantities in magnetism 

that can be somewhat ambiguous. These terms are B


, M


, and H


, and are related by the 

following relation: 

 ( )0B H Mµ≡ +
  

  (3.3) 

As previously introduced, M


 is the material magnetization. However, there is a lack of 

consensus in the naming of the terms B


 and H


. The B


 term, having units of gauss, is 

often referred to as the magnetic field, magnetic flux density, or magnetic induction. 

Meanwhile, the term H


, having units of 1A m−⋅ , is called the magnetic field, magnetic 

field intensity, or the magnetizing field.68 For consistency in this dissertation, B


 will be 

referred to as the magnetic field, and H


 will be referred to simply as the H-field or the 

magnetizing field. 

 For a paramagnetic material, the magnetization vector field is collinear with the H-field 

which allows the magnet field to be expressed in terms of the H-field and the relative 

permeability of the fluid, rµ : 

 0rB Hµ µ=
 

  (3.4) 

For a non-linear magnetic material, relative permeability becomes a function of the H-field 

such that ( )r r Hµ µ= . The magnetic stress tensor for an incompressible non-linear 

magnetic fluid is:55 
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 2
0 0

0

1
2

H

m MdH H BHµ µ
 

= − + + 
 
∫T I

 

  (3.5) 

3.2.1 Magnetic Body Forces 

The magnetic body force density on an element of ferrofluid is equivalent to the 

divergence of the magnetic stress tensor: 

 { }0 00

H

m mf MdH M Hµ µ= ∇⋅ = −∇ + ∇∫T


  (3.6) 

Or more simply put: 

 0 0

H

m Hf MdHµ= − ∇∫


  (3.7) 

where H M∇  is the gradient of fluid magnetization at constant H-field strength. Recall from 

equations (3.1) and (3.2) that M  is a function of φ , T , and H . Eq. (3.7) will be non-

trivial if variations in φ  or T  occur within the fluid. For the case of the assumed 

incompressible fluid with a uniform particle concentration, as long the fluid remains 

isothermal ( )0T∇ = , then 0H M∇ =  and magnetic body forces are not present. In the 

event of a thermal gradient within the ferrofluid, sufficiently strong body forces can 

develop as to cause strong convective flows in a process known as thermomagnetic 

convection.† For the modeling research presented herein, magnetic body forces can be 

neglected since no considerable temperature gradient is present. 

                                                 

† Thermomagnetic convection can be employed to enhance heat transfer of traditional 
convective flows enable free convective heat transfer in micro-gravity environments where 
buoyancy driven (natural/free convection) flows are not possible.  
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3.2.2 Ferrofluid Interface Stress Components 

Consider the fluid interface shown in Figure 3.3, where fluid 1 and 2 have different 

magnetic permeabilies. Discontinuities in the magnetic components of the Maxwell stress 

tensor over the fluid surface results in a stress on the fluid interface. 

 

Figure 3.3: Fluid interface of ferrofluid (Fluid 2) with non-magnetic fluid (Fluid 1). 

The normal and tangential components of the magnetic surface stress can be determined 

by differencing the magnetic stress tensor over the fluid interface. 

 ,1 ,2ˆ ˆm m mt n n= ⋅ − ⋅T T


  (3.8) 

This stress tensor can be resolved into its respective normal and tangential components, for 

now, only the normal component will be investigated: 

 , ,1 ,2ˆ ˆ ˆ ˆn mag m mn n n nσ = ⋅ ⋅ − ⋅ ⋅T T   (3.9) 

Substituting Eq. (3.5) into Eq. (3.9) and constraining fluid 1 to be a non-magnetic medium 

yields, the difference in the magnetic surface stress becomes: 

 ( )2

, 0 00

1 ˆ
2

H

n mag MdH M nσ µ µ= + ⋅∫


  (3.10) 

Where M  and H  are evaluated on the side of the interface containing the magnetic 

fluid. A step-by-step approach for this derivation can be found in Appendix B. The term 

Fluid 1
μ1

Fluid 2
μ2

n
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containing the integral is the fluid magnetic pressure. The second term in the equation is 

the magnetic-normal pressure. Unlike the fluid magnetic pressure, the magnetic-normal 

pressure exhibits saturation when the fluid magnetization becomes saturated.  

When a similar approach is utilized to determine the tangential stress components, it 

can be found that the tangential component of the stress is equal on both sides of the fluid 

interface. Consequently, magnetic tangential stress do not play an active role in interface 

dynamics of a ferrofluid. A full proof for this relation can be found in Appendix B. 

The equilibrium geometry of a fluid interface can be determined by following a similar 

methodology as presented in Section 2.2.2, which will yield the magnetically augmented 

Young-Laplace equation: 

 ( ) ( )
2

0 0
0

1 ˆ ˆ
2

2

H

t t

mean

p M n MdH n

R

µ µ γ γ

γ

∆ + ⋅ + = − ∇ ⋅ −∇

=

∫


  (3.11) 

3.3 Normal-Field Instability 

The normal-field instability is perhaps the best-known instability demonstrated by 

ferrofluids. The normal-field instability forms spontaneously when a sufficiently strong 

magnetic field is applied perpendicular to a pool of magnetic fluid. The result is an ordered 

pattern of surface protuberances. This instability is a consequence of the interaction of 

magnetic, gravitation, and surface forces. Hydrodynamic forces should also be considered 

when analyzing the transition into the instability since energy alone may not capture the 

bifurcation and hysteresis frequently demonstrated by these fluids.55 The final pattern of 

the instability will be a surface topography positioned at a local minimum of the 

gravitation, magnetic, and capillary energies. 
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Figure 3.4: (Left) Single peak normal-field instability in a shallow reservoir. A single 
peak instability can be obtained for a certain ranges of field strengths and fluid 
volumes if the fluid is prevented from spreading. The fluid can be constrained by 
imposing a boundary or infusing the droplet within a uniform field. (Right) 
Multipeak instability in a shallow-long reservoir. 

An analytical analysis for this instability was first presented by Cowley and 

Rosensweig in 1967.69 Subsequent publications have also presented analytical 

investigations on the instability; however, all have focused on the critical magnetic field 

value to initiate the instability,or attempts to predict what instability mode will dominate 

to predict the instability pattern.70-73 Because of the complexity inherent to instabilities, 

more advanced analyses of the normal-field instability require numerical means  

 
Figure 3.5: Perturbed ferrofluid interface resulting from a uniform magnetic field. 
The interface will remain flat along z0 until a critical field is applied. Diagram 
adapted from (Rosensweig 1997).55  

In the absence of any magnetic field, a pool of ferrofluid will lie completely flat.  As 

the strength of the applied field increases, the ferrofluid surface will remain relatively 

undisturbed, forming only a slight plateau, until the ferrofluid reaches a critical 
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magnetization cM . Rosensweig performed a stability analysis and found the critical 

magnetization for non-linear ferrofluids to be:55 

 
( ) ( ) ( )

2
1 22 0

0 0 0

2 1cM g
B H B H

µ ρσ
µ

 
= + ∆ 

 ∂ ∂ 
  (3.12) 

Once the critical fluid magnetization is reached, the conditions for the normal-field 

instability are met and the fluid will transform into a pattern of peaks. 

To better understand why a pool of ferrofluid forms the array of peaks and valleys in 

the presence of a magnetic field, it is advantageous to consider the phenomenon from an 

energy standpoint. The interface can again be described as a balance of energies which 

must now include the magnetic energy. The interface function, ( ),z z x y= , for the 

disturbed surface will minimize the system energy, ( )U z , which is composed of 

individual energy components:55 

 ( ) g s mU z U U U= + +   (3.13) 

Whereby the gravitational energy is: 

 ( )21 ,
2gU g z x y dxdyρ= ∫∫   (3.14) 

The surface energy is: 

 ( ) ( )
1/22 21sU z x z y dxdyγ  = + ∂ ∂ + ∂ ∂ ∫∫   (3.15) 

And the magnetic-field energy is: 

 m
dV

U HdB dV= ∫∫∫ ∫   (3.16) 
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The magnetic stress exerts an upward motion on the fluid – increasing the magnetic energy 

and further increasing the magnetic stress. However, such a trend is bounded since the 

surface deformation increases the surface energy which limits further growth. The pattern 

of peaks and valleys observed is simply a minimum energy solution for the fluid when in 

equilibrium. 

Since a large pool of ferrofluid is assumed for this analysis, contact line energy is not 

considered, which should be considered for smaller pools of ferrofluid. It is worth noting, 

a purely energy-based approach should be used with caution since that approach does not 

incorporate the fluid motion. Simply put, a purely energy approach could find a global 

minimum solution to the equilibrium balance which cannot be reached physically due to 

the fluid physics.  
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Chapter 4 Modeling Interface Deformation and 

Spray Onset of a Ferrofluid Meniscus 

 When electrospray emission is achieved from an electrically conductive ferrofluid in 

the presence of a magnetic field, the electric stresses and magnetic stresses act in tandem 

to stretch the fluid meniscus. However, the relative influence of the magnetic stresses on 

this process remains uncertain. It is hypothesized that for weak electric fields, the magnetic 

stresses dominate – controlling the meniscus geometry. As the applied voltage increases, 

the electric stresses grow off the perturbation resulting from the magnetic stresses – 

eventually growing to dominate near onset. The aim of the research presented in this 

chapter was to develop a modeling tool to predict the deformation of a fluid interface under 

simultaneous electric and magnetic stresses. Such a tool will be instrumental in analyzing 

the dynamics leading up to spray emission.  

The precise voltage needed to achieve emission is referred to as onset voltage, startV . 

Several models have been developed to predict the onset voltage of electrospray. However, 

these models do not contain magnetic stresses and impose a fluid geometry in varying 

degrees. The most eminent of these models is by Prewett & Mair.74 In this model onset 

voltage for electrospray is predicted as the condition when the apex electric stress equals 

the capillary surface stress; assuming the meniscus is a hyperboloid having tip radius cR

separated from the extractor electrode by a distance d . When cd R , the Prewett & Mair 

approximation becomes:74 
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 
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 
  (4.1) 

While this relationship is intuitively straightforward, it is only an approximation and is not 

physically rigorous. The premise of Prewett & Mair is that the fluid will emit spray when 

the electric traction on the interface exceeds the surface tension. In reality, this condition 

will never occur; the capillary stress depends upon the coefficient of surface tension and 

the interface radius of curvature. In response to increasing electric stress the pliant 

meniscus will sharpen without limit (radius of curvature r can decrease to zero) and thus 

there is no practical upper bound on the capillary stress that can be ‘exceeded’ by the 

electric stress. Despite this, for many instances the Prewett & Mair relationship agrees 

adequately with observations for traditional electrospray in select cases – typically when 

some external structure such as a hollow capillary or externally wetted needle is present to 

impose a geometric curvature length scale independent of the fluid properties. 

Magnetic stresses are not included or anticipated in the onset model of Prewett & Mair. 

The derivation of this model assumes a hyperboloid geometry. Assuming the surface of the 

fluid to be equipotential, the electric field outside can thus be found analytically. The 

formulation simply does not permit a magnetic field to be found. 

Another electric-field-only onset model was developed by Krpoun and Shea.75 This 

approach modeled the fluid deformation leading up to onset using a combined finite 

element model for the stresses and an analytical model for the geometry. Unlike the Prewett 

& Mair approach the technique of Krpoun and Shea includes a deformable meniscus, 

however the meniscus shape is constrained to be a conic section defined by a Bernstein-

Bezier curve and thus the self-consistent meniscus profile is not obtained in the process of 

solution. This model can easily to be adapted to model a magnetically responsive fluid and 

calculate interface stresses. Unfortunately, the lack of a self-consistent interface prevents 

an accurate analysis of the role of magnetic stresses in preconditioning the electrified 

meniscus. 

For an accurate analysis of the complementary role of the magnetic and electric stresses 

on the fluid meniscus, it became evident that a first principles approach is necessary which 
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permits the meniscus to arbitrarily deform. A review of the literature reveals that the 

deformation of a fluid meniscus under magnetic or electric stresses have focused primarily 

on suspended droplets in the presence of a single field (either E or H) 76-81 with much less 

attention given to the case when both fields are present.82, 83 When the fluid droplet is 

pinned to a surface, the shape of the droplet is complicated by the addition of the contact 

surface energy. Previous investigation into the deformation of sessile droplets under the 

influence of either electric or magnetic fields has been studied numerically using finite 

element methods,84-89 but little attention has been given to the meniscus behavior of a 

sessile droplet under the combined action of electric and magnetic stresses.  

4.1 Goals of Study 

The overarching goal of this research was to understand the inter-relation between 

magnetic, electric, and surface tension stresses during the run-up to spraying instability of 

an ionic liquid ferrofluid. The problem was approached by observing the onset of instability 

through laboratory testing and also analyzing the laboratory configurations using a 

dynamic fluid/electromagnetic simulation. Two configurations were analyzed: the first 

configuration was the meniscus formed at the tip of a hollow capillary needle, and the 

second configuration was a sessile droplet on a flat plate. Both configurations were 

subjected to controlled electric and magnetic fields introduced via biased electrodes and a 

Helmholtz coil. 

In the following sections, the fluid properties and constitutive equations describing 

ferrofluid magnetization are presented.  

4.2 Fluid Properties 

The ferrofluid utilized for this study was an ionic liquid based ferrofluid. The carrier 

fluid was a EMIM-NTf2 and the nanoparticles were suspended with a polymer coating. 

This ferrofluid was produced by the Key Centre for Polymers and Colloids at the 

University of Sydney. The fluid properties are presented below in Table 4-1: 
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Table 4-1: Ferrofluid fluid and magnetic properties 

  EMIM-NTf2 

ILFF34, 62, 90-92 

Carrier Fluid  EMIM-NTf2 

Density (g/cm3) 1.815 

Viscosity (mPa·s) 120 

Surface Tension  (mN/m) 32.389 

Conductivity (S/m) 0.63 

Percent Solids wt. % 17.3 - 20.6 

Particle Size (nm) ~10-15 

Langevin 

Fit 

β   (A/m) 2.335 x 104 

τ   (m/A) 2.408 x 10-4 
2R   0.959 

 

The magnetization data for the fluid was measured using a vibrating sample magnetometer 

and was provided by the University of Sydney. The Langevin expression presented in Eq. 

(3.1) was fit to the magnetization data in terms of the parameters, β  and τ : 

 ( ) 1cothM H
H

β τ
τ

 
= − 

 
  (4.2) 

where Hτ  is the ratio of the magnetic to kinetic energy of each nanoparticle and β  is a 

function of the bulk magnetization of the nanoparticle material and the volume fraction of 

the particles in the ferrofluid. The relative permeability as a function of H  thus becomes: 

 ( ) 11 cothr r
M H H

H H H
βµ µ τ

τ
 +

= ⇒ = + − 
 

  (4.3) 

A Langevin fit of the ionic liquid ferrofluid magnetization data is presented in Figure 4.1: 
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Figure 4.1: Magnetization and relative permeability of the ionic liquid ferrofluid 
(Data obtained from combining magnetization data from batches: NJ397053, 
NJ397074, and NJ397091). Magnetization data, which was provided by the University 
of Sydney, was measured using a vibrating sample magnetometer.  

4.3 Capillary Needle Electrospray Emitter 

Electrospray from a hollow capillary needle has been studied at great depth in the 

literature. To provide a baseline comparison, the first objective was to observe how the 

addition of magnetic stress changes the well documented onset of capillary electrospray. 

Ferrofluid was contained within a capillary needle biased to a high voltage with a grounded 

electrode in proximity. The needle fixed the base of the fluid meniscus, making the contact 

line independent of the strength of any applied field. This geometry enables a direct 

comparison between onset with and without a magnetic field that cannot be obtained with 

a sessile droplet. 
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4.3.1 Experimental Setup* 

 The needle emitter, shown in Figure 4.2, was positioned within a Helmholtz coil 

capable of generating a magnetic field of 200 G.  

 
Figure 4.2: Electrospray capillary needle with ILFF. Needle biased with respect to a 
grounded collector plate (not shown) separated from the needle tip by 1.32 mm. 
Dimensions: ID = 75 μm, OD = 360 μm.  

The emission source was insulated from the heat generated by the coil through the use 

of multi-layer insulation. A glass vial, containing a fluid reserve, was connected to the 

emission source via a continuous glass capillary. This vial was positioned above the needle 

tip such that hydrostatic pressure would form a meniscus at the needle exit. The fluid was 

biased with respect to a grounded extraction electrode. Emission current was measured 

using an ammeter placed between the power supply and the emitter. The needle and 

extraction electrode were separated by 1.32 mm and the needle inner diameter was 75 μm. 

A diagram of this experimental setup is presented in Figure 4.3. 

 

                                                 

* The experimental portion of the ILFF needle onset study entailed within this section was 
performed by Kurt J. Terhune.  
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Figure 4.3: (a) ILFF capillary needle emitter in Helmholtz coil setup. (b) Needle 
emitter holder: (1) extractor plate, (2) capillary needle, (3) PTFE isolation block, and 
(4) alignment set screws. (Illustration created by K. J. Terhune with modifications 
made by the author for this dissertation.) 

4.3.2 Computational Approach 

The coupled electromagnetics and fluid mechanics of the capillary needle experiment 

were modeled using COMSOL. The computational domain for this study is presented in 

Figure 4.4. The two-phase flow interface was applied to region 1, outside this region fluid 

motion will be minimal and will have negligible influence on interfacial dynamics. This 

region was therefore treated as a static medium to reduce the computational load. Inflow 

and outflow boundary conditions were included in region 1 to permit ferrofluid to enter 

and displaced air to leave the region. The electrostatics and magnetostatics interfaces were 

applied to all domains. 
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Figure 4.4: Simulation domain for a ferrofluid-filled capillary needle subject to an 
aligned magnetic field. Fluid dynamics were solved in region (1) while the fluid was 
assumed to be a static in region (2). 

The fluid deformation was modeled using the two-phase flow moving mesh physics 

module. This module is based on the Arbitrary Lagrangian-Eulerian technique – a method 

which allows interfacial nodes to move to accurately model the ferrofluid-air interface 

while the interior nodes move to optimize element quality. This physics interface modeled 

the fluid using the following incompressible laminar flow version of the Navier-Stokes 

equation: 

 ( ) ( )( ) 0
Tu u u p u u g

t
ρ ρ µ ρ∂  + ⋅∇ = ∇⋅ − + ∇ + ∇ +

 ∂
I



       (4.4) 

 0uρ∇⋅ =
   (4.5) 

The fluid-fluid interfacial stress balance presented in the following stress balance: 

 ( )2ˆ ˆ ˆ ˆt tn n n nγ γ⋅ − ⋅ = ∇ ⋅ −∇1T T   (4.6) 

was solved along the fluid interface with contributions from the following three equations: 

Stokes Tensor: ( )T
s p u uµ  = − + ∇ + ∇ T I  

  (4.7) 
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Magnetic Tensor: 2
0 0

0

1
2

H

m MdH H BHµ µ
 

= − + + 
 
∫T I

 

  (4.8) 

Electric Tensor: 21
2e E DEε = − + 

 
T I

 

  (4.9) 

The mesh velocity along the interface was subject to the following constraint: 

 ( )1 1̂meshu u n= ⋅
    (4.10) 

The magnetic field was solved using the magnetostatics module in terms of the magnetic 

potential mV . In a static domain where there is no electric current, the magnetic field is 

related to the magnetic potential as follows: 

 mH V= −∇


  (4.11) 

From Gauss’s law for magnetism, 0B∇⋅ =


, the following relation can be derived, which 

is solved within the simulation domain in conjunction with Eq. (4.11): 

 ( )0 0r Hµ µ∇⋅ =


  (4.12) 

The relative permeability, rµ , is found using the constitutive equation presented in Eq. 

(4.3). The following boundary condition is applied to the fluid-air interface to ensure 

continuity of the normal component of the magnetic field: 

 ( ) ( ) ( )0 0 1 21 2
ˆ ˆ 0r rn H H n B Bµ µ µ µ ⋅ − = ⋅ − = 

   

  (4.13) 

The electric field was solved using the electrostatics module in terms of the electric 

potential V : 

 E V= −∇


  (4.14) 
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Subject to: 

 0D∇⋅ =


  (4.15) 

where D Eε=
 

. The coupling of the electric and magnetic stress tensors with the fluid 

stress tensor was achieved with the use of a weak form contribution in the following form: 

 ( ) ( ) ( )e m test u nr test u nzσ σ+ ⋅ + ⋅     (4.16) 

Where ( )test  is the Test Function (determined by COMSOL) and eσ  and mσ  are the 

normal electric and magnetic stress components. Modeling the fluid as a perfect electrical 

conductor, the normal electric stress becomes: 

 
( ) ( )
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ˆ ˆ ˆ ˆ

1
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e e e
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n n n n
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σ

ε
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=

T T
  (4.17) 

while the normal component of the magnetic stress is: 
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= +∫

T T
  (4.18) 

Note: eT  and mT  are the electric and magnetic stress tensors and the superscripts +  and 

−  denote the fluid above and below the ferrofluid-air interface, respectively. Due to the 

high conductivity of the ionic liquid carrier fluid, the ferrofluid was modeled as a perfect 

electrical conductor with an equipotential fluid interface. For a perfect dielectric or perfect 

conductor, no tangential electric surface stress is present. Boundary conditions on nB  and 

tH  over the fluid interface preclude a tangential magnetic stress. Derivations of Eq. (4.17) 

and (4.18) as well proof of the absence of corresponding tangential stresses are presented 
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in detail in Appendices A and B. The Helmholtz field was applied as a boundary condition 

far from the fluid volume where the contribution to the field from the fluid is negligible. 

At each solver step, the instantaneous fluid geometry was used to calculate the local 

magnetic and electric fields. 

 A mesh validation study was performed with element densities of 350, 700, 1000, and 

1500 along the fluid interface for the sharpest peaks investigated. The distribution scheme 

employed concentrated elements at the apex – growing the elements gradually along the 

interface towards the base. The refinement study revealed less than a 0.1% variation in 

apex height over the meshes investigated, and thus the baseline 350 elements was selected 

to reduce the computational cost. Adaptive remeshing was integrated into the model such 

that when the minimum element quality became less than 0.1 (a minimum recommended 

by the software package), the geometry was remeshed. This enabled large deformations in 

the geometry. Droplet volume and the element count along the fluid interface were 

conserved during the remeshing process. Element quality was based on the skew factor of 

the triangular elements, and the average mesh quality in the domain was always between 

0.97 and 0.98.  

A dynamic simulation was employed that is in principle capable of providing the 

temporal response of the fluid. However, the goal was to recover the static solutions and 

so the dynamic simulation was used in the following manner. The meniscus was initially 

defined as a hemisphere and the magnetic field was set to a constant value. The dynamic 

simulation then computed the shape relaxation of the hemispherical meniscus to the final 

(non-hemispheric) static profile governed by the magnetic stress. The simulation ran for 

0.2 seconds, although the droplet profile typically did not evolve any measurable amount 

after 0.1 seconds. The interim dynamic response of the meniscus was of little relevance to 

our study and thus no information is reported here other than final static configurations. 

The effect of electric stress was then computed by starting a new simulation that used the 

previously converged meniscus profile as an initial condition. In this new simulation, the 

extraction voltage was quickly ramped up to a pre-set value and then held constant for a 

long-time period compared to the meniscus dynamic response to this changing voltage. 

Within 0.1 seconds, the meniscus converged to a new steady-state shape governed by the 
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magnetic and electric stresses. This process was repeated for a number of different voltages 

and magnetic fields in order to assemble static results as a collection of multiple dynamic 

simulations. This process is presented below in Figure 4.5 while the instantaneous mesh 

for four snapshots in time is presented in Figure 4.6. 

 
Figure 4.5: Static meniscus profiles are obtained as a collection of individual dynamic 
simulations. For each solution step, the previously solved meniscus profile was used 
as an initial condition for a new dynamic simulation. The applied voltage was ramped 
from the previous value to the new value over 0.05 seconds and the meniscus was 
allowed to dynamically respond to the new conditions. The final steady-state result is 
reported as the static solution. 
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Figure 4.6: Capillary needle simulation mesh. Electric field ramped over 0.01 seconds. 
Mesh elements will deform to track fluid movement. Element density reduced from 
level used in presented results to enhance visibility. Simulation results were taken at 
0.1 seconds, when the meniscus reached equilibrium. 

4.3.3 Simulation Results and Comparison with Experiment 

Both the applied electric field and the applied magnetic field exert stress on the 

meniscus such that the convex profile is elongated in the direction of the field while the 

base remains pinned to the capillary exit. The COMSOL model was used to calculate the 

meniscus shape and from this the “apex height,” which is the dimension from the terminal 

position of the apex to the capillary exit. Simulation results are presented in two forms. In 

Figure 4.7, the apex height of the meniscus is presented against extraction voltage. In 

Figure 4.8, the height of the meniscus is normalized by the inner capillary radius which is 

then plotted in terms of the following Bond numbers: 

Electric Bond Number 2
0 0e aB E Rε γ=   (4.19) 
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Magnetic Bond Number 2
0 0 0mB H Rµ γ=   (4.20) 

In the previous equations, aE  and 0H  are the apex electric field and free space 

(Helmholtz coil without presence of fluid) magnetizing field, respectively. 0R  is the 

interior radius of the capillary needle, and Z  is the apex height. For a given voltage the 

apex height increases with the strength of the applied magnetic field, which acts in tandem 

with the electric stress to contribute to the deformation of the meniscus. As the stress is 

increased the meniscus transitions into an instability which results in spray emission. The 

simulation is not capable of predicting the fluid behavior while spraying, however the run-

up to spray onset is evidenced by the asymptotic growth in apex height. Onset was 

approximated by the highest voltage at which a stable solution could be obtained, where 

the voltage was increased incrementally by 1 volt until solution was no longer possible.  

 
Figure 4.7: Simulated apex height vs applied potential of the capillary needle 
meniscus for five magnetic field strengths. 
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Figure 4.8: Scaled apex height using electric and magnetic Bond numbers.  

 
Figure 4.9: Experimental and simulated onset of emission potential or the capillary 
emitter. Simulated onset was approximated as the highest voltage at which a stable 
solution could be obtained when approaching from below by 1-volt increments.  

Spray onset was easily observed in the laboratory experiment by the sudden appearance 

of emission current as the bias voltage was slowly increased on the capillary. Three startup 

tests were performed for each magnetic field strength and the test-to-test variation in 

observed onset voltage was used to establish uncertainty bars. The experimentally 

measured and simulated onset voltages for the capillary needle are compared in Figure 4.9. 
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In the case of the experimental results, a 200-G magnetic field resulted in a 22% drop 

in onset potential. Overall, the model performed well at predicting the onset of emission of 

the capillary needle emitter for the range of magnetic fields studied. It is instructive to use 

the model to analyze the relative effects of electric and magnetic stress. Figure 4.10 shows 

the two components of stress for the 200-G magnetic field test case. Near the onset of spray 

the electric stress at the meniscus apex is five to ten times larger than the magnetic stress 

for the highest obtainable stable solution. The primary role of the magnetic stress is to pre-

condition the meniscus shape such that threshold to instability occurs at a significantly 

lower voltage. 

 
Figure 4.10: Magnetic and Electric pressures at the meniscus apex for increasing 
applied voltage for a magnetic field of 200 G.  

4.4 Predictive Model of Electromagnetic Sessile Droplet 

Deformation 

 The motivation for this research was to understand how electric and magnetic stress act 

together to cause spray from the fluid tips formed via the normal-field instability. The 

capillary needle experiment and simulation reported in Section V was used to develop and 

validate a predictive modeling tool. With the foundations of this tool in hand, the second 

objective was to remove the capillary structure and use the model to predict fluid motion 
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and interface dynamics for an arbitrary droplet and field configuration. The model was 

further develop and validate the model through computational and experimental studies of 

an electric and magnetically stressed sessile droplet. 

4.4.1 Computational Approach 

The dynamic simulation was designed to solve for temporal meniscus evolution and 

equilibrium steady-state geometry for arbitrary fields. The computational domain is shown 

in Figure 4.11. The meshing, adaptive remeshing, and simulation approach for this study 

was identical to the approach utilized in Section 4.3.2 for the capillary needle. To reduce 

the computational load, the physics interfaces were solved only in the necessary domains. 

The location of the pinning point (denoted by R  in Figure 4.11) was determined by 

imaging the sessile droplet in the absence of any electric field. The initial fluid geometry 

within the model was set to have an equivalent volume and contact-plane radius as the 

imaged droplet. No constrains were placed on the contact angle. A sample of the mesh 

evolution is presented in Figure 4.12. 

 
Figure 4.11: Simulation domain for single ferrofluid droplet subject to a vertical 
magnetic and electric field. 
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Figure 4.12: Sessile droplet mesh. Magnetic field ramped over 0.1 seconds. Mesh 
elements will deform to track fluid movement. Element density reduced from level 
used in presented results to enhance visibility. Simulation results were taken at 0.5 
seconds, while the mesh reached steady state around 0.3 seconds. 

4.4.2 Experimental Setup 

 An imaging apparatus was utilized to capture the shape of a sessile ferrofluid droplet 

under controllable electric and magnetic fields. This method of imaging allows for precise 

edge detection. The images setup incorporated a EO-5012M 5 MP monochromatic CMOS 

camera. The camera was mounted on a VZM 1000i 2.5X-10X variable zoom imaging lens. 

When incorporated with the 1/2.5” sensor within the camera, camera, the field of view 

ranged from 2.24x1.68 mm to 0.56x0.42 mm for the minimum and maximum zoom 

respectively. The target was silhouetted using a 470 nm Blue Metaphase technology 

collimated spotlight. This setup, shown in Figure 4.13: 
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Figure 4.13: Diagram of imaging setup. (1) Blue LED collimated backlight source, (2) 
Ferrofluid droplet on slide within Helmholtz coil (not shown), (3) Variable zoom 
imaging lens, (4) Monochromatic CMOS camera. 

 A Helmholtz coil, diagramed in Figure 4.14, generated a variable uniform magnetic 

field. The coil consisted of a pair of solenoids, each containing 100 windings. The coil and 

power supply can generate a maximum field of 310 gauss. Slots in the coil core allowed 

for light to pass through to backlight the droplet and provide imaging access. Coil current 

was measured with a Hall effect current sensor and a calibration relationship was obtained 

with the use of an Alpha Labs GM-2 Gauss Meter with a High Stability Universal Probe. 

The fluid droplet was biased by applying a voltage to the electrode (2) in Figure 4.14, using 

an UltraVolt High Voltage Amplifier (HVA) module with a range of ±5kV. The biased and 

grounded electrodes were separated by 4 mm. Images of the experimental setup are shown 

in Figures 4.15 and 4.16. 

 
Figure 4.14: Cross section of Helmholtz coil apparatus. The coil inner diameter is 3.8 
cm. (1) Coil with 100 wraps per solenoid, (2) Biased electrode supporting droplet, (3) 
Ferrofluid droplet, (4) Grounded electrode. Spacing between the two electrodes is 4 
mm. 
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Figure 4.15: Image of Helmholtz apparatus. 

 
Figure 4.16: Ferrofluid droplet within Helmholtz coil. 

 Brass was selected for the electrode material for the desirable wetting characteristics it 

demonstrated with the ionic liquid ferrofluid. The droplet volumes and contact energy were 

sufficient to constraint the droplet to a regime where only a single peak would develop. 

The fluid was placed on the electrode in the presence of a magnetic field. Images were then 

taken incrementally, increasing the electric field for each subsequent image. A sample 

image obtained from this system is shown below in  

Figure 4.17. Silhouette images were then processed to perform edge detection and volume 

integration.  
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Figure 4.17: Sample image acquired of ferrofluid peak within Helmholtz coil. Peak 
volume was 0.2688 mm3 and the applied magnetic field was 203 gauss.  

 

 Previous work by Gollwitzer has suggested the possibility of a magnetic-field-

dependent hysteresis in the height of a ferrofluid peak, which was attributed the fluid 

wetting the container.84 For the ferrofluid used in this study, hysteresis was observed prior 

to the droplet becoming pinned, as shown in Figure 4.18. It was found that hysteresis could 

be minimized by reducing the magnetic field to zero following insertion of the droplet. 

When the field was reapplied, the droplet would be pinned and would still form only a 

single peak; this pinned peak had negligible hysteresis during subsequent changes in 

magnetic field strength. 

Operating at peak current, the Helmholtz coil dissipates approximately 150 watts of 

power. Surface tension and magnetization are both a strong function of temperature. To 

minimize temperature influences, the slide holding the sessile droplet was thermally 

insulated from heat sources using Teflon and PLA. To quantify temperature effects, a 

droplet of ferrofluid was imaged under constant fields for 120 seconds and the change in 

height was measured. During the time required to obtain an image set (~60 seconds), the 

height variation was observed to be less than 2 percent of the initial apex height as can be 

observed in Figure 4.19. This change can be attributed to temperature variations and the 

low creep velocity of the contact point. In all subsequent testing data collection was 
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completed within 60 seconds of applying the magnetic field to render the temperature effect 

negligible. 

 
Figure 4.18: Tip height for a fluid droplet with a volume of 1.4135 mm3. The droplet 
was placed in a strong magnetic field using a syringe. The field strength was then 
decreased and increased again as a series of images were taken. 

 
Figure 4.19: Study of droplet height sensitivity to magnet coil heating. Tip height was 
normalized against the initial height such that droplets of different volume could be 
plotted together. If the droplet is imaged within 60 seconds of applying the Helmholtz 
field, then the temperature-induced height change is less than 2%.  
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4.4.3 Simulation Results and Comparison with Experiment 

Four sets of laboratory images will initially be discussed in this section. Elements of 

these sets are presented below in Figure 4.20. The droplet shown was exposed to four 

different magnetic field strengths; for each magnetic field the voltage between the 

electrodes was increased from 0 to 4000 volts in 100-volt increments. 

 
Figure 4.20: (a) Droplet meniscus under magnetic field only. (b) Droplet meniscus 
under magnetic and electric field held under a constant magnetic field of 282 gauss. 
Droplet volume was 0.616 mm3. Electrodes were spaced 4 mm apart. 

 
Figure 4.21: Select simulated and imaged contours. (a) 225 gauss and (b) 264 gauss. 
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Dynamic simulations were performed for each of the four sets of images. The simulated 

profiles and silhouette images from laboratory data were found to have excellent agreement 

for voltages up until approximately 85% of the onset voltage, after which the simulations 

slightly over-predict the meniscus deformation. Full meniscus profile comparisons are 

shown above in Figure 4.21.  

The apex height is presented in terms of the applied voltage in Figure 4.22 and in terms 

of Bond numbers in Figure 4.23.The electric Bond number, eB , was calculated using the 

apex electric field, aE , which is the field that exists at the tip of the meniscus and is thus 

strongly dependent upon the meniscus geometry. For the simulated results retrieval of aE  

is trivial. For the experiment aE  was extracted by importing the measured meniscus 

silhouette geometry into an electrostatic solver as a rigid (non-deformable) conductor and 

using the electrode geometry and applied potential to calculate the field at the apex. The 

magnetic Bond number, mB , was calculated using 0H  , which is the vacuum magnetizing 

field created by the Helmholtz coil without the presence of ferrofluid. The scaling 

dimension 0R  was set to be the radius of an equivalent-volume hemisphere. 

Figure 4.22: Simulated and imaged droplet height for four mag magnetic fields. 
Droplet volume of 0.616 mm3 
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Figure 4.23: Simulated and imaged droplet height scaled by R0 plotted against the 
electric Bond number for four magnetic fields. Droplet volume of 0.616 mm3. 

The electric and combined magnetic stress components, ( ) 21 2e o nP Eε=  and 

( ) 2
0 0 0

1 2
H

m nP M MdHµ µ= + ∫ , at the meniscus apex for a single simulated droplet under 

constant magnetic field are presented in Figure 4.24. It can be observed that the combined 

magnetic stresses dominate at low applied voltages but are rapidly overtaken by the electric 

stress near onset of spray. As the magnitude of the applied voltage increases the electric 

stress at the meniscus apex grows until it is the dominant perturbation to the interface. This 

is in part because the apex surface grows closer to the counter electrode, but more strongly 

because the apex radius of curvature decreases. The magnetic stresses remain relatively 

constant, compared to the electric stresses, but increase slightly as the applied voltage 

increases.  
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Figure 4.24: Apex components of electric and magnetic stresses. The electric 
component of the interface stress becomes asymptotic indicating run-away to onset. 
Simulation of a 0.616 mm3 droplet in a 225-G magnetic field.  

 
Figure 4.25: Electric and magnetic stress components along fluid interface for V = 
3783 V. Simulation of a 0.616 mm3 droplet in a 225-G magnetic field. 

The individual stress components along the entire fluid interface are presented in Figure 

4.25 for a single applied voltage. The fluid magnetic-pressure, 0 MdHµ ∫ term, has a 

significant role along the entire interface. Meanwhile, the magnetic-normal term, 
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( ) 2
01 2 nMµ , closely resembles the analogous electric-normal stress, ( ) 2

01 2 nEε , with both 

terms increasing rapidly and reaching their maximum at the fluid apex. 

4.5 Conclusions 

The computational fluid dynamics modeling technique developed and presented in this 

chapter simulated the fluid interface of both a capillary needle and a normal-field instability 

electrospray source under both electric and magnetic stresses prior to onset of emission. A 

metric was established to indicate run-away to onset of emission for a capillary needle, 

which agreed well with onset observed experimentally. For the case of the normal-field 

instability, silhouette images were taken of sessile droplets exposed to combined magnetic 

and electric fields. Modeling droplets under matching field conditions yielded excellent 

agreement with the imaged profiles. 

Analysis of the stress components along the fluid interface reveal that the magnetic 

stress is instrumental in preconditioning the fluid for the electric stresses. When onset of 

emission is approached, the electric stress rise exponentially in the apex region until they 

dwarf the magnetic stresses. This coupled behavior reduces the voltage necessary to 

achieve onset of emission.
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Chapter 5 Emission Studies of an ILFF 

Electrospray via the Normal-Field Instability 

 Work by E.J. Meyer,30, 91 and Mkrtchyan et al.29 demonstrated that electrospray 

emission can be achieved via a combined magneto-electric instability without the need of 

supporting structures. However, this work was limited to short-duration emission. To serve 

as a viable solution for nanosatellite thrusters, ionic liquid ferrofluid electrospray sources 

emitting via the normal-field instability must be capable of operating stably for extended 

periods of time. In this chapter, work performed by E.J. Meyer will be expanded upon with 

the goal of understanding of the operational behavior of a ferrofluid electrospray source 

emitting from a normal-field instability. 

 The work presented in this chapter describes the emission behavior of a single peak 

ferrofluid electrospray source. A single peak was obtained by sizing a fluid reservoir such 

that the boundaries would permit only a one instability to form. The fluid reservoir was not 

able to be replenished as the emission depleted the fluid level, thus limiting emission to 

around 16 hours. 

The single peak emitter will be referred to as a normal-field source hereafter in this 

dissertation. However, as defined by Rosensweig,55 the normal-field instability, discussed 

in Section 3.3, is a pattern of spikes which results when a critical magnetic field is applied 

to a pool of ferrofluid. When the emission reservoir for a single tip emitter, which is 

presented in Section 5.2.1, is infused in the absence of a magnetic file, a critical 

magnetization is less apparent when a field is later applied. Instead, a gradual transition 

from a flat surface to a dome is observed, which rapidly transforms into a peak at higher 

field strengths. This observation suggests that edge effects are not inconsequential and can 
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provide an initial curvature to the fluid surface which weakens the normal-field instability 

mechanism in this configuration.  

5.1 Goals of Study 

The primary goals of this study were to (1) demonstrate long-duration stable emission 

of the source, and estimate propulsion performance parameters, (2) determine the 

sensitivity with respect to changes in the extraction potential, and (3) identify factors 

impacting the operational behavior of the source. Section 5.2 describes the equipment, 

electrospray source, and testing methodology. Section 5.3 discusses the influence of peak 

sharpness on emission behavior. Finally, Sections 5.4 and 5.5 present the long duration 

emission results and the sensitivity of the emission source in response to changes in 

extraction potential. 

5.2 Equipment and Testing Methodology 

The design and operation methodology of the electrospray source play a considerable 

factor in how the source will ultimately behave while emitting. The purpose of this section 

is to describe electrospray source, current collection technique, vacuum facility in which 

the testing was performed and finally the testing methodology. 

5.2.1 Electrospray Source 

The electrospray emitter apparatus utilized for this study was designed by Terhune35 

with modifications to the manner in which the extractor and collector electrodes were 

mounted. A diagram of the emitter apparatus is presented in Figure 5.1 and an image of the 

apparatus with a filled reservoir is shown in Figure 5.2. 
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Figure 5.1: Electrospray emission apparatus. (1) current collector, (2) DB-9 surface 
mount connector, (3) extractor alignment mount, (4) electrical bias terminal, (5), N-
52 magnets (1-inch diameter), (6) Delrin isolation block, (7) Extractor electrode, (8) 
ferrofluid instability, and (9) fluid reservoir. 

 
Figure 5.2: Frontal view of the assembled ILFF electrospray emission apparatus. 

  The extractor electrode was positioned 2.85 mm downstream of the fluid reservoir. 

The current collector and the extractor were separated by 15.50 mm with an extractor 

thickness of 1.13 mm. 

A dimensioned schematic of the fluid reservoir is presented in Figure 5.3. The reservoir 

was infused with 14 µL of ferrofluid, in the presence of a magnetic field, using a 50-µL 

syringe and syringe pump. Fluid was infused into the reservoir at a flow rate of 1µL/s. A 
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linear translation stage was utilized to control the vertical spacing of the syringe relative to 

the fluid reservoir. 

 
Figure 5.3: Sectional and isometric view of fluid reservoir. All dimensions in 
millimeters. 

The well volume of the fluid reservoir has a volume of 10.7 µL. A small amount of 

fluid was lost in the transfer process, predominately a result of wetting the slightly magnetic 

syringe needle. Due to the uncertainty in the amount of fluid delivered, actual volume of 

the peak was estimated by performing a volume integral on an image of the peak using the 

extractor diameter as a reference dimension. This process will be discussed in more detail 

in Section 5.2.5. The fluid was then allowed to sit at vacuum (<1 torr) for at least 2-hours 

prior to being sprayed. 

5.2.2 High Voltage Power Supply 

The high voltage necessary to achieve electrospray emission was provided by a 

UltraVolt HVA 5HVA precision high voltage amplifier. The amplifier, proving 500 V/V 

amplification, was commanded externally with a Rigol DG4162 waveform generator. The 

commanding signal was a 500 mHz (2 second period) square wave centered at 0 V – 

yielding equal magnitude extraction voltage in both polarities. The biasing configuration 

2.1

16
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of the source resulted in positive emission current in response to a positive biasing 

potential. 

Lozano and Martínez-Sánchez observed alternating extraction eliminates 

electrochemical effects which are observed with continuous DC emission.93 When 

switching to AC extraction, the bubbling phenomenon observed by Meyer30 at the base of 

the normal-field emitter was not observed. Performance parameters of the high voltage 

amplifier are presented in Table 5-1. 

Power was transferred from the supply to the vacuum facility using a RG8 coaxial 

cable. During bipolar operation, large currents were observed following the switch in 

polarity, which quickly decayed. Several examples of this waveform are shown in Figure 

5.4. This phenomenon was attributed to the capacitance and inductance of the coaxial 

cable. A similar feature was not observed on the low voltage side where the emission 

current was measured for the duration of testing. The primary purpose of the high voltage 

current measurement was to obtain a current balance to detect secondary electron. It was 

decided to simply perform the current balances after the transient had died out than to 

subtract the transient. This approach was selected since the case-to-case variations in the 

transient were comparable to the variation in the emission current. 

Table 5-1: UltraVolt HVA 5HVA Performance Values94  

Parameter  Value 

Max Current (μA) 200 

Voltage Monitor (V) 0 to ±10, ± 0.5% 

Current Monitor (V) 0 to ±10, ± 1% 

Slew Rate (V/μs) 40 

Bandwidth at 8 kV (Hz) 2500 (No load) 

500 (100 pF load) 
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Figure 5.4: Spike in measured current observed on the high voltage side of the 
electrospray apparatus during AC excitation. Phenomenon is observed with and 
without fluid in the reservoir and is attributed to the charging of the coaxial power 
cable. Waveform collected with a sample frequency of 2000 Hz. 

5.2.3 Segmented Faraday Probe and µA Current Measurement 

A segmented current collector was utilized for this study to measure the emission 

current of the electrospray source. A segmented collector provided two advantages: (1) the 

concentric circular collectors enabled angular divergence measurements of the plume to be 

obtained and (2) a lower collection area enabled a high percentage of the full-scale range 

of the current transducers to be utilized. 

The segmented Faraday probe was milled out of two-sided copper clad board. Each of 

the nine collector pads was routed to a pin on a board-mounted DB-9 receptacle. A PCB 

layout of the board is shown in Figure 5.5 and a milled board is presented in Figure 5.6. 

Prior to testing, each board was submerged in a 3% acetic acid solution for 30 seconds to 

remove any tarnish. The boards were then immediately submerged in a 95% ethyl 

alcohol/water solution and placed in an ultrasonic bath for 30 minutes. The collectors were 

then dried with a lint free cloth and placed in a vacuum to dry completely. A cleaned board 

was used for each emission test. 
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Figure 5.5: Circuit board schematic for copper clad current collector (width=2.875 
in, height=1.5 in). 

 
Figure 5.6: Current collector after approximately 15 hours of emission. Ferrofluid 
buildup can be observed on the center rings with decreasing intensity as the radial 
distance increases. Continuity between adjacent pads was measured after testing to 
detect pad-to-pad shorts. None were ever detected. 

The collected current on each of the nines segments of the probe was measured using 

an EEVblog μCurrent™ (original) precision current meters. These meters were operated 

on the 1 mV/nA scale, providing a full-scale range of ±1500 nA with a 2 kHz bandwidth.95 

Buildup of ferrofluid particles was observed on the collector during the testing. Upon 

completion of the test, the probe was checked for pad-to-pad continuity by biasing the 

center collector up to 500V and measuring the adjacent collector. The collector-to-collector 

resistance was typically on the order of 250MΩs, indicating that the conductive film 

coating the surface provided a conductive, albeit small, path between adjacent collectors. 

Relative to the collector-to-ground resistance, the collector-to-collector path is negligible. 
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Close agreement was observed between emission-side current and intercepted current. 

Collected current averaged 85% of emission current for both positive and negative 

polarities. Consequently, secondary electron emission is not believed to be a significant 

factor. A typical balance between emitted and intercepted current is presented in Figure 

5.7. Intercepted current on the extraction electrode was not measured. However, buildup 

was not observed on the face or within the opening of the extraction electrode facing the 

fluid reservoir, which would have required an emission half-angle >45 degrees, much 

greater than the emission angles observed which will be presented in Section 6.3.  

 
Figure 5.7: Typical balance between emitted and collected current. Transient spikes 
are present in the supply current resulting from the charging and discharging of the 
coaxial cable between the supply and vacuum facility. 

Deposited material was observed on the side of the extraction electrode facing the 

segmented collector. A typical level of accumulation is shown in Figure 5.8. This material 

was easily removed using acetone and wiping with a Kimwipe – restoring the electrode to 

a mirror polish similar to that prior to emission. Since no permanent damage was done to 

the electrode surface, it is unlikely the discoloration is a result of surface damage. It is 

likely that the observed material is emitted fluid which did not stick to the collector and 

instead ricocheted towards the extractor. Measuring the current intercepted likely would 

have confirmed this hypothesis – accounting for a portion of the 15% mismatch between 

emitted and collected current.  

108.2 108.22 108.24 108.26 108.28 108.3
-10

-5

0

5

10

Measured Current
Emitted Current
Difference Current



 

69 
 

 
Figure 5.8: Material build up on face of extraction electrode facing the collection 
electrode. 

5.2.4 Vacuum Facility 

Testing was performed using the Micropropulsion Facility-2, shown in Figure 5.9, 

within the Ion Space Propulsion Laboratory at Michigan Technological University. This 

facility is approximately a 60-liter cylinder and is roughed down using a 300 liter/min tri-

scroll pump and a 280 liter per second turbomolecular pump. The base pressure of this 

facility is approximately 4×10-7 torr. Testing was conducted when the tank pressure 

reached approximately 1×10-6 torr. A single emitter was found to have no measurable 

impact on tank pressure and tank pressure was observed to drop continuously during testing 

until the base pressure was obtained. 
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Figure 5.9: Micropropulsion vacuum facility in which emission testing was 
performed. A stereo microscope (not shown) enabled high magnification viewing of 
the emission source during testing. 

5.2.5 Testing Methodology and Telemetry Phases 

The fluid was biased with a 500 mHz bipolar square wave with equal positive and 

negative polarities. While emitting, the fluid was imaged using a camera integrated with 

microscope. Time-lapse images were taken of the tip using a 5.1 MP camera at intervals of 

30-seconds. Post processing of these images permitted the tip volume to be measured by 

revolving and integrating the fluid interface. By differentiating the tip volume with respect 

to time, the volumetric and mass flow rate of the source were estimated. A detailed 

description of the methodology employed to estimate mass flow rate is presented in detail 

in Appendix C. 

Three distinct phases of the emission telemetry materialized. These were (1) startup, 

(2) constant voltage mode, and (3) shutdown or terminal phase. During the start-up phase 

electrospray source, the fluid peak was very sensitive and required frequent management 

of the extraction potential to maintain emission. After a span of 20 to 180 minutes, the 

emission would stabilize and transform into a constant voltage mode where emission would 
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be sustained at a relatively constant emission current for spans in excess of 10 hours 

without requiring further increases in extraction potential. At the conclusion of the constant 

voltage emission mode, the source would self-extinguish, and the terminal phase would 

start. During this phase, the extraction potential would need to be regularly increased to 

restart the source. The source would then spray for a period of 10s of seconds to minutes 

before spray would cease again. The extraction potential was then increased again in a 

cyclical process until fluid would be depleted or the maximum range of the voltage source 

was reached. The startup and terminal phase of the electrospray telemetry are highlighted 

in Figures 5.10 and 5.11, respectively. 

 
Figure 5.10: Sample startup of electrospray source telemetry. The extraction 
potential is increased until onset of emission is achieved. The extraction potential is 
then periodically increased to maintain emission. If a temporary spike in emission 
current exceeds the range of the current transducers, the extraction voltage is reduced 
to zero and slowly increased again. The source will eventually transition into a 
constant voltage emission mode. 
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Figure 5.11: Sample shutdown (terminal phase) of electrospray source telemetry. The 
source will periodically self-extinguish, and the extraction potential is increased 
slowly in response to restart emission. This process is repeated until the extraction 
potential reaches the supply maximum of ±5kV or when the fluid is depleted. 

During the constant voltage phase of the emission telemetry, the source to maintain 

emission at a constant voltage while experiencing a relatively large increase in the apex-

to-extraction electrode spacing. Such behavior may not seem intuitive since increased 

spacing decreases the electric field. However, the Prewett and Mair74 model for apex field 

strength shows that the apex electric field is related to the applied voltage V , apex radius 

cR  , and separation distance between the apex and extractor, d  , through the following 

relation: 

 ( )
2

ln 2
c

tip
c

V RE
d R

=   (5.1) 

In Eq. (5.1), the apex field is proportional to the natural log of the separation distance: 

( )1 lnaE d∝ , therefore the apex field is only weakly dependent on d . A plot of Eq. (5.1)

is presented in Figure 5.12 where it can be observed that rather large changes in the 

extraction distance d , only a relatively small decrease arises in the electric field at the 

apex. The separation distance observed during the constant voltage portion of the telemetry 
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increased from 1.55 and 2.05 mm. In this range, the model predicts a reduction in apex 

field strength of approximately 2 percent, assuming a constant V  and cR . Therefore, a 

passively fed emitter operating at a voltage only a few percent higher than onset can 

maintain emission while changes in height resulting fluid depletion results in relatively 

large increases extraction distance. 

 
Figure 5.12: Normalized apex electric field using Prewett and Mair74 approximation 
for apex field strength and assuming constant apex radius. (D = 2.85 mm, V = 2000 
V, and Ra = 10 nm). 

5.3 Influence of Peak Sharpness on Emission Behavior 

While filling the fluid reservoir with ionic liquid ferrofluid, the positioning of the 

capillary needle relative the reservoir had a considerable impact on the final meniscus 

profile and ultimately emission behavior. The infusion methodology, presented in Figure 

5.13, controlled the contact line and contact angle of the meniscus – prompting the final 

fluid to assume one of two meniscus shapes. The first solution, (a) in Figure 5.13, yielded 

a tall peak with a small apex radius, while the second method (b) resulted in a short peak 

with a large apex radius. All observed peaks fell into either of these two categories and 

intermediate solutions were not observed. The magnetic field was not found to have a 

significant impact on sharpness in the range investigated. 
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Figure 5.13: Capillary needle position dependence on final meniscus geometry. In 
both cases, 14 µL of ferrofluid was delivered. In case (a) the needle position was raised 
while infusing the fluid. The gap between the needle and reservoir stretches the fluid, 
resulting in a concave contact angle and small apex radius. In case (b) the needle was 
placed too close to the fluid reservoir – resulting in a convex contact angle yielding a 
large apex radius. 

 The two menisci solutions demonstrated considerably different electrospray behaviors. 

The smaller apex corresponded with a low emission current, low mass flow rate, lower 

onset voltage, and prolonged periods of emission with a constant extraction voltage. The 

larger apex menisci demonstrated nearly opposite behavior, with high currents, high mass 

flow rates, and could only maintain emission for short durations without an increase in 

extraction potential. The emission behavior of the large apex radius menisci closely 

resembled the shutdown (terminal phase) of operation presented in Figure 5.11 during the 

entirety of emission. 

A large and small apex meniscus solution of the same volume were formed under the 

same magnetic field and emitted for comparison. The two menisci are shown in Figures 

5.14 and 5.15. Emission metrics are presented in Table 5-2. 
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Figure 5.14: Large apex radius solution. (Left) Apex with magnetic field only (Right) 
Apex immediately after onset. 

 
Figure 5.15: Small apex radius solution. (Left) Apex with magnetic field only (Right) 
Apex immediately after onset. 

The following metrics were utilized to compare the influence of apex radius on 

emission behavior: 

• Apex Radius: Estimated by curve fitting a circle to the apex of the normal-field 

instability with no applied electric field. 

• Average Mass Flow: Estimated by time-averaging the mass flow rate while 

emitting. 

• Average Emission Current: Estimated by time-averaging the emission current. 

• Voltage Stability: Longest duration at a constant voltage without self-

extinguishing. 
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Table 5-2: Comparison of emission behavior for small and large apex radius menisci. 
Both studies were conducted with 14µL of ILFF infused into the fluid reservoir under 
495 G magnetic field. 

  Test 

 1 2 

Apex Radius (mm) 0.61 0.15 

Average Mass Flow Rate (ng/s) 122.9 22.8 

Average Emission Current (μA) 3.46 0.75 

Voltage Stability (hr) 0.25 11.9 

Onset (kV) 3.3 2.7 

Test Duration (hr) 2.35 16.7 

 

In a process that will be discussed in more detail in Section 5.4.1, the flow rate for 

passively driven electrospray sources is determined by the excess voltage, or energy, above 

that required to maintain emission. While studying emission from pressure fed sessile 

droplets on nonwetting dielectric surface, Lozano, Martı́nez-Sánchez, and Lopez-Urdiales 

observed that once emission was achieved, the extraction potential could be decreased by 

several hundred volts before emission would terminate.96 Lozano et al. suggested that the 

energy necessary to form the structure was higher than necessary to sustain emission. 

Along similar lines, it is possible that the excess energy available during emission from the 

large apex is greater than the small apex solution. This energy difference drives the 

observed higher flow rate. 

The primary interest of this research is to analyze the electric propulsion potential of 

ionic liquid ferrofluid electrospray. The emission behavior presented above in Table 5-2 

for the small apex meniscus solution is more promising for this application as a result of 

the higher emission mass-to-current ratio. Therefore, all subsequent emission studies 

presented in this report will be limited to the small apex meniscus solution. 
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5.4 Long Duration Emission of a Single Emitter 

A total of three long duration test were conducted with a magnetic field of 321, 388, 

and 495 gauss. For each test, the source was operated in the manner described in Section 

5.2.5. Periodic profiles of the source showing the evolution of the fluid meniscus as the 

fluid volume is depleted is shown in Figure 5.16. Telemetry containing emission current, 

extraction voltage, peak height, peak volume, mass flow rate, and charge-to-mass ratios 

are presented in Figures 5.17 through 5.22 for the three magnetic field strengths 

investigated. For the emission telemetry presented in Figure 5.21, a slow rise and decay in 

the emission current can be observed between 300 and 700 minutes in the emission 

telemetry. It is believed this is a result of the extraction potential being considerably higher 

than what was necessary to maintain emission. For this test, the start-up voltage was 

estimated to be 3372 volts based on post-test analysis of the telemetry while the extraction 

potential during the voltage mode for this test was 3720 volts. 

In the same figure, it can be observed that the emission current terminated at 1000 

minutes and remained off for approximately 180 minutes. This is a consequence of the 

emitter self-extinguishing during overnight emission. 
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Figure 5.16: Fluid meniscus evolution during emission under a 495 G magnetic field. Extraction potential remained 
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Figure 5.17: (Part 1) Telemetry for an entire electrospray emission test. (30 second moving average is overlayed, B = 495 
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Figure 5.18: (Part 2) Telemetry for an entire electrospray emission test. (30 second moving average is overlayed, B = 495 
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Figure 5.19: (Part 1) Telemetry for an entire electrospray emission test. (30 second moving average is overlayed, B = 388 
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Figure 5.20: (Part 2) Telemetry for an entire electrospray emission test. (30 second moving average is overlayed, B = 388 
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Figure 5.21: (Part 1) Telemetry for an entire electrospray emission test. (30 second moving average is overlayed, B = 321 
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Figure 5.22: (Part 2) Telemetry for an entire electrospray emission test. (30 second moving average is overlayed, B = 321 
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In all cases, more current was emitted in the positive polarity relative to the negative 

polarity. A current balance previously presented in Figure 5.7 in Section 5.2.3 shows that 

the discrepancy between emitted and collected current in both the positive and negative 

polarity is less than 15 percent. Consequently, secondary electron emission is not believed 

to be the source for this imbalance. A mismatch between the emitter current for each 

polarity is not unique to this work and has been observed previously for an electrospray 

thruster operating with the ionic liquid EMI-IM by Courtney et al.25 A ratio of emission 

currents for these studies is shown in Figure 5.23 where the ratios converged to a value of 

1.6 after decaying over several hours from a peak ranging between 1.9 and 2.2. The change 

in the ratio of emitter currents is suggestive of a change in the emission dynamics of the 

source, Unfortunately, no changes could be observed in the emission parameters which 

could be attributed to this trend. 

 
Figure 5.23: Ratio of positive and negative emission currents. The ratio converges on 
an average of 1.6. A 120-second moving average was applied to both currents before 
calculating the ratios. 

5.4.1 Mass Flow Rate 

The average flow rates were calculated during the constant voltage portion of the 

emission telemetry presented in the previous section. These averages are compiled and 
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shown below in Table 5-3. The average mass and volumetric flow rates for the three tests 

is 28 ng/s and 15.5 pL/s, respectively.  

Table 5-3: Average emission flow rates calculated from the net volume change during 
the constant voltage phase of emission. (ρ=1.815 g/mL) 

Mag. Field Avg. Mass 

Flow Rate 

Avg. Volumetric 

Flow Rate 

(G) (ng/s) (pL/s) 

321 32.8 18.1 

388 26.6 14.7 

495 24.8 13.7 

Avg. 28.1 15.5 

 

For an ionic liquid ferrofluid normal-field electrospray source, a reasonable hypothesis 

could have been made that the lack of hydraulic resistance combined with the entire emitter 

structure being composed of fluid would result in the source exhibiting an uncontrollably 

high flow rate. In fact, quite the opposite was observed. By comparison, minimum flow 

rates by Terhune using a 75-µm inner diameter capillary needle emission source were on 

the order of 350 to 500 ng/s (approximately 200 to 500 pL/s).31 Madden et al. performed 

magnetoelectrospray experiments using a sulfolane-based ferrofluid with ethyl ammonium 

nitrate added to control conductivity. Using a 40 uL inner diameter capillary needle and a 

ferrofluid with a conductivity of 0.3 S/m, Madden observed flow rates in a 295 gauss 

uniform magnetic field as low as 75 pL/s.36 

Notably, both authors observed a lower minimum flow rate for a magnetized fluid 

relative to unmagnetized spray. Madden36 observed a 30 percent reduction in minimum 

flow with a 295 gauss magnetic field while Terhune31 observed up to a 40 percent reduction 

with a 200 gauss field. In his work, Terhune sprayed ferrofluids of dissimilar nanoparticle 

concentrations and positive correlation was observed between nanoparticle concentration 

and percent reduction in minimum low rate. The mechanism which reduces the minimum 

stable flow rates for magnetoelectrospray sources remains unknown. Madden et al. put 
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forward a hypothesis that the magnetic stresses may partially compensate the capillary 

stress, reducing the surface charge necessary to form an emitting tip.36 The mechanism 

which is permitting lower flow rates in capillary needles likely transfers to normal-field 

electrospray sources. However, since electrospray emission cannot be achieved from a 

normal-field instability without a magnetic field, this mechanism is best investigated in 

capillary sources where emission can be achieved in an unmagnetized fluid. 

To analyze the difference in flow rates between the normal-field and capillary sources, 

two factors are worth noting. First, the normal-field emission studies did not actively seek 

to minimize flow rate. Rather, the extraction potential was set to obtain a positive polarity 

emission current of around 0.75 µA. In all likeliness, a lower flow rate could have been 

obtained by reducing the extraction potential. Second, the emission studies by Terhune31 

and Madden et al.,36 utilized pressure fed capillary to replenish fluid to the Taylor cone. 

The normal-field electrospray source has no external mechanism to control fluid delivery 

in this manner. Instead, fluid flow to the emission site of the normal-field source are driven 

purely by internal pressure gradients within the fluid, behavior which more closely 

resembles that of passively fed electrospray sources. Courtney and Shea note that in 

passively fed electrospray sources, emission current and mass flow are controlled solely 

by the applied extraction potential.97 

In the Ph.D. dissertation of Perez-Martinez a method for determining flow impedance 

from emission parameters was proposed for a passively fed source.98 For this model, 

consider the case of a traditional passively fed electrospray source, such as a porous needle, 

where there is no magnetic stresses. The electrostatic stress at the apex, EP  , is equal to the 

stress required to overcome the capillary pressure, plus an excess amount p∆ . 

 
2

E
c

P p
R
γ

= + ∆   (5.2) 

Where the electrostatic stress at the apex is the same as that presented Eq. (2.9): 

 2
0

1
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At the startup voltage, startV , the excess stress is zero and only materializes at voltages V  

that are of magnitude V∆  above the startup voltage. The startup voltage can be estimated 

based on the Prewett & Mair model, presented in Chapter 4, and is restated here for 

convenience:74 
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where cR  is the apex radius the meniscus and d  is the distance between the apex and the 

extractor. During the derivation of this model, the electric field at the apex was derived to 

be:74 

 ( )
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V RE
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=   (5.5) 

Note: Eq. (5.5) is a reduction of a more vigorous model made under the assumption that 

cR d . From equations (5.2) through (5.5), the value of the excess pressure p∆  can be 

found in terms of the excess voltage V∆ : 
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The flow impedance impZ  is simply related to the flow rate Q  and pressure differential as 

follows: 

 
imp

pQ
Z
∆

=   (5.7) 
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The parameters p∆ , impZ , and cR  are unknown. All other parameters can be measured. 

Using average tip height from the telemetry, the extractor spacing, d , is 1.85 mm. For the 

trials presented in Table 5-3, the resulting impedances range from 1.7×1014 to 8.7×1014 

Pa∙s/m3. For comparison, the same approach to calculate impedance was implemented by 

Perez-Martinez and a flow impedance of ~4.7×1019 Pa∙s/m3 for a carbon xerogel emitter 

designed for pure ionic emission.98 As part of the Microthrust project, a pressure fed array 

of microsphere packed capillaries was fabricated with an estimated impedance on the order 

of 1.5×1017 Pa∙s/m3. The Microthrust thruster was found to operate near the pure ionic 

regime.99 It has been observed that lower flow rate emitters are more prone to emit in the 

pure ionic regime. Consequently, much of the current effort being performed on 

electrospray thrusters focuses on passively driven designs which have demonstrated the 

necessary range of impedances.14, 25, 98, 100-102 

Clearly, a considerable flow impedance is present in the normal-field electrospray 

source. However, this impedance is not sufficiently high to yield a pure ionic regime of 

emission. To further analyze what could be providing this impedance, let us digress 

temporarily to analyze the cone-jet region and jet diameter. From scaling laws presented 

by Fernández de la Mora, the radius of the electrospray jet is known to scale with respect 

to the characteristic radius r∗  defined as:38 

 
1 3

0Qr
K
ε∗  =  

 
  (1.8) 

where Q  is the flow rate and K  is the fluid conductivity. The jet diameter, jd , becomes: 

 ( )jd G rε ∗=   (1.9) 

where ( )G ε  is a proportionality constant which is a function of the fluid permittivity and 

must be determined experimentally. Fernández de la Mora notes that the value of ( )G ε is 

of order unity for all values of ε  for which data is available.42 For a flow rate of 15 pL/s 
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and assuming a ( )G ε  of 1, the approximate jet diameter is approximately 12 nm. The 

nanoscale magnetic particles which compose the ferrofluid are on the order of 10-15 nm. 

The surfactant coating the particles adds to the particle size, and the measured hydraulic 

diameter is estimated to be 20-30 nm.92 The volume fraction of the nanoparticles in the 

colloidal suspension is approximately 7 percent.  

The scale of the electrospray jet being on the same order as the particle diameters 

reveals two relevant questions: (1) does the scale of the hydraulic jet prevent particles from 

being emitted, and (2) can a bottle-necking of the particles in the cone-jet rejoin create a 

nanoparticle induced flow impedance. The answer to both of these questions are of interest 

for understanding the low flow rate. The emission of nanoparticles from the normal-field 

emission source has not been verified directly. However, buildup of black residue on the 

collector plate, is very suggestive that particles are being emitted since the carrier fluid 

EMIM-NTf2 is translucent.  

The second question considers the possibility of flow impedance resulting from bottle 

necking of nanoparticles at the apex. Such an occurrence could restrict the flow until an 

equilibrium is reached wherein the ratio of nanoparticle in the spray is representative the 

bulk ferrofluid. The presence and dynamics of this process, which is illustrated in Figure 

5.24, is something that can only be theorized with the available data. 
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Figure 5.24: (a) Ferrofluid meniscus deformation under only a magnetic field. (b) The 
addition of an electric field further stresses the fluid until emission is achieved. (c) 
The apex region of emitting normal-field instability. The hydraulic diameter of the 
nanoparticles (20-30 nm) is comparable with the jet diameter (≈10 nm) . 

5.4.2 Derived Propulsion Performance Parameters 

In this section, derived propulsion performance results are presented for the emission 

studies presented previously in Section 5.4. Propulsion metrics for three performance tests 

are presented in Table 5-4. These propulsion parameters were calculated during the 

constant voltage portion of the emission telemetry. These parameters were calculated in 

terms of average emission current I , the average mass flow rate m , and the emission 

current V . These parameters were calculated as follows. First, the average emission 

current in each polarity was determined: 
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The combined average emission current becomes: 
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The average combined mass flow rate of the emitter is: 
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Finally, the average mass-to-charge ratio can now be calculated as follows: 

 / mm q
I

=


  (5.13) 

From Equations (1.3) through (1.6), the performance parameters in Table 5-4 were 

calculated. 
 
Table 5-4: Tabulated derived propulsion metrics for long duration emission tests. 
Average values calculated during constant voltage mode of emission. 

  Test # 

 1 2 3 

Magnetic Field (G) 495 388 321 

Emission Duration (hr) 16.7 18.4 15.6 

Voltage (kV) 3.25 3.72 3.03 

A
ve

ra
ge

 

Mass Flow Rate (ng/s) 24.8 26.6 32.8 

Emission Current (µA) 0.75 0.84 0.79 

Mass-to-Charge Ratio 
(kg/C) 3.31 × 10-5 3.61 × 10-5 4.16 × 10-5 

(AMU/e) 3.19 × 103 3.48 × 103 4.01 × 103 

Exhaust Velocity (m/s) 1.39 × 104 1.43 × 104 1.25 × 104 

Specific Impulse (s) 1422 1455 1278 

Thrust (µN) 0.346 0.380 0.412 

 

Using the average mass-to-charge ratio, the average droplet diameter can be estimated from 

the Rayleigh limit. The Rayleigh limit is the maximum amount of charge that a droplet can 
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carry while remaining stable. Above this limit, the droplet will either form a local 

electrospray emission site or explosively disassociate through coulombic explosion. The 

Rayleigh limit is found by setting the electric pressure equal to the capillary pressure: 
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Where ( )2
04rQ rπε  is the electric field at the surface of a uniformly charged spherical 

droplet of radius r  carrying a net charge rQ . Solving for rQ  yields the Rayleigh limit: 

 3
08rQ rπ γε=   (5.15) 

The mass-to-charge ratio of a droplet becomes: 
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In the previous equation, the term Φ  is introduced. This term is the Rayleigh limit charge 

fraction which permits droplets to be charged to some fraction of their Rayleigh limit – a 

common observation. Solving for r  in Eq. (5.16) yields: 
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  (5.17) 

The ferrofluid density ρ  is 1.815 g/mL (Table 4-1, Pg. 36). Assuming a charge 

fraction of 0.5Φ = , which is a reasonable average based on distributions measured by 

Miller,103 the approximate droplet radius is 2.6 nm. A droplet of that size is smaller than 

the nanoscale magnetic particles present in the fluid, which are on the order of 10-15 nm. 

As with traditional electrosprays operating in a mixed droplet mode, a bulk of the current 

is carried by ions while the bulk of the volumetric flow is being carried by larger droplet 
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distribution, which carries less current due to the Rayleigh limit. Separate emission species 

is supported by the angular divergence results presented in the next chapter. 

5.5 Source Sensitivity and Emission Site Dynamics 

The sensitivity of the source to changes in the extraction potential were analyzed at two 

locations in the typical emission telemetry. The first location, referred to as ‘mode-1’ was 

taken during the constant voltage portion. The second mode, ‘mode-2’ was observed during 

the terminal phase of testing where it becomes necessary to routinely increase the 

extraction potential to maintain emission. 

To analyze the sensitivity of the source to abrupt changes in extraction potential, the 

source started in a similar manner as previously presented tests and allowed to emit for 9 

hours prior to sensitivity testing. The sensitivity was first tested by applying incremental 

increases of 50 volts, from 100 to 300 volts for 15-minute. The extraction voltage was then 

returned to the initial voltage for 15 minutes prior to the next step. The results of this study, 

presented in Figure 5.25, show that the source is sensitive to changes in extraction potential 

yet remains stable. This stability is demonstrated at the 680-minute mark in Figure 5.25 

where an 11% (300V) increased in extraction potential, resulted in an emission current 

increase 224% which remained relatively constant during the period of excited extraction 

potential. 
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Figure 5.25: Current response to step changes in extraction potential in emission 
mode-1. (30 second moving average is overlayed) 

A voltage ramp was then performed on the emitter while operating in ‘mode-1.’ To 

perform this ramp, the extraction potential was incrementally increased while operating in 

a bipolar emission mode to achieve an average rate of 0.9 V/s. Emission current and 

extraction potential with respect to time for this exercise are presented in Figure 5.26. 

Relating emission current to extraction potential yields IV traces, which are presented in 

Figure 5.27 for both polarities. A consistently higher emission current for both polarities 

during the increasing segment suggests hysteresis is present in emission dynamics of the 

emitter. When the voltage was restored to the initial extraction potential of 3000 V, a 27% 

decrease in emission current for both polarities resulted when the initial spike following 

the voltage restoration is negated. The percent increase in emission current resulting from 
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a 300 V increase in the extraction potential in Figure 5.26, yielded a 227% increase in 

emitted current – closing matching the 224% increase observed when stepping the voltage. 

 
Figure 5.26: Voltage ramp for ILFF electrospray source operating in emission ‘mode-
1.’ Extraction potential was changed at a rate of 0.9 V/s. A 10-second moving average 
is overlayed to accent trends, but all analyses were performed on the unaveraged data.  

 
Figure 5.27: IV Traces for ILFF electrospray source operating in emission ‘mode-1.’ 
Increasing and decreasing traces are presented with the negative polarity in (a) and 
positive polarity in (b). (95% CI shown). 

During ‘mode-2’, shown in Figure 5.28, change in the extraction potential resulted in 

a considerable change in the emission current, relative to ‘mode-1.’ The emission current 

would then decay over a period of 30 to 90 minutes. Twice during the presented telemetry, 

the source self-extinguished at about 170 and 230 minutes.  
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Figure 5.28: Current response to step changes in extraction potential in emission 
mode-2. Baseline currents of 0.53 and -0.37 µA. (30 second moving average is 
overlayed) 

In Figure 5.28, it can be observed that the emission current decays after an increase in 

extraction potential to a baseline emission current. This response is suggestive of two 

interesting phenomena. These are (1) a natural or preferred flow-rate may exist 

demonstrated by the emission current returning to a baseline value, and (2) the time 

constant of this process is rather slow (10s of minutes). It is unlikely that the source is 

returning to a minimum flow rate since further decrease in extraction voltage would result 

in a reduction in current – demonstrated in Figure 5.27. The fundamental mechanism 

controlling this behavior remains unknown. 

Occasionally, multiple emission sites were present at the apex of the fluid meniscus. 

This a phenomenon, first observed by Meyer,30 was not observed at any point in the results 

previously in this chapter. Multiple emissions sites were only observable at relatively large 

increases in extraction potential, typically greater than 26 % above the startup. The fluid 

apex is shown at multiple extraction potentials in Figure 5.29 with the corresponding 

telemetry in Figure 5.30. Meyer hypothesized that multiple emission sites may result from 

either a high volumetric flow rate or an instability resulting from the intense electric field.  
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Figure 5.29: Emitter apex at high electric fields. Emitter was stable in ‘mode-1’ with 
an extraction potential of 2.45 kV. The extraction potential was gradually increased 
to 3.4 kV. At extraction potentials much greater than the nominal spray voltage, 
multiple apexes were present. 

The formation of the secondary emission sites was difficult to capture with time-lapse 

imagery yet could easily be observed in real-time. The formation process was observed as 

follows. First, a very small secondary emission site materializes near the apex fluid 

interface. The secondary emission sites usually remain small and would self-extinguish 

however, would occasionally continue to grow in volume rivaling the original emission 

site in size. The perturbation present during the initialization process is highlighted in 

Figure 5.31. Finally, the multiple peaks would remain for 5 to 10 minutes before 

disappearing. At any time during this process, a reduction in extraction potential would 

result in restoration of a single emission site. 
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Figure 5.30: Telemetry for high extraction potential emission test during which 
multiple emission sites were observed. Shaded areas indicate regions where multiple 
peaks were observed. Between the shaded regions a single peak was observed which 
was very unstable and would shift frequently.  

 
Figure 5.31: Fluid apex during the creation of a secondary emission site. 

 The formation of secondary emission sites when the extraction voltage is high relative 

to the onset voltage lends credence to the second hypothesis presented by Meyer. Meyer’s 

hypothesis proposed that additional emission sites form as a result of an instability 

instigated by the higher than necessary electric field.30 

 During periods of intense electric field dendrite like structures were also observed to 

form on the fluid meniscus. These structures, shown in Figure 5.32, formed and dissipated 

very rapidly and lasted for a few seconds. The formation of these structures were only 
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observed when the extraction potential was considerably higher than necessary to achieve 

emission and were accompanied by high emission currents. Similar structures were 

observed on a much smaller scale by Lenguito et al.97 on a 10 µm ID capillary emitter post 

emission under “extreme electric fields.” While observing electrospray with the aid of an 

electron microscope, Terhune et al. observed similar dendrite like structures which were 

attributed to fluid damage from the high energy electron beam. Terhune suggested that high 

energy secondary electron emission could damage the fluid.104 These secondary electrons 

would result when high energy electrospray ion or droplets impact downstream surfaces, 

freeing electrons which would be attracted back towards the emission site. 

 
Figure 5.32: Threadlike solid structures forming on fluid meniscus during periods of 
extreme electric field. The image on the left was taken 7 seconds prior to the image 
on the right – owing to the rapid formation and destruction of the structures.  

 The structures observed by both Lenguito and Terhune remained after the electric field 

used to achieve electrospray emission was no longer present. The short-lived structures 

observed during this work is potentially due to the large scale of the threadlike structure, 

which is 2-3 orders of magnitude larger than those observed by the mentioned authors. 

5.6 Conclusions 

The work presented in this chapter analyzed the emission behavior of an ionic liquid 

ferrofluid electrospray source emitting from an electrically stressed normal-field 

instability. The most significant finding resulting from this work is that sources of this 

design can emit in a stable manner with flows of around 15 pL/s for long durations. 
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Emission tests demonstrated sustained emission spans of more than 15 hours – only being 

limited by the depletion of the emitter volume. Derived propulsion performance parameters 

yield a specific impulse of 1385 s and a thrust of 0.380 µN per emitter. The low observed 

flow rates suggest that a large unidentified hydraulic impedance resists flow to the emission 

site of the passively fed electrospray source. It was theorized that nanoparticle induced 

flow impedance caused by bottlenecking at the emission site may provide the observed 

resistance. 

Other experiments presented in this chapter found that the apex radius of the fluid under 

only magnetic stresses had a significant influence on emission dynamics. A smaller apex 

radius was shown to have lower flow rates and higher emission stability. It was found that 

the way the fluid was delivered to the fluid reservoir influenced the apex radius.
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Chapter 6 Angular Emission Profile of an ILFF 

Electrospray Operating via the Normal-Field 

Instability 

Beam spreading reduces thrust efficiency for an electrospray propulsion device since 

off-axis particles carry non-thrust-producing momentum components. Additionally, 

understanding the beam divergence is critical for proper sizing of the extraction electrode 

orifice diameter to minimize intercepted current. 

 
Figure 6.1: Diagram of divergence of an electrospray beam. 

For simplicity, consider an electrospray source, shown in Figure 6.1, where all emitted 

particles have the same mass-to-charge ratio and are emitted at the potential 0V . The 

emitted particles are non-collinear and can be described by an angular current density 

distribution ( )Iρ θ  measured at location 0R . The resulting thrust provided by such an 

electrospray source becomes: 
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If axial symmetry exists in ( )Iρ θ  and it is assumed that there is no angular dependence in 

the particle energy potential 0V , Eq. (6.1) can be expanded as follows: 
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When calculating the power utilization efficiency for an electrospray thruster in Section 

1.3, the angular power efficiency, θη , was introduced. This factor, which accounts for the 

angular current distribution in the ion beam on the power utilization efficiency is defined 

as the following ratio: 
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When it is assumed that polydispersive efficiency, Tη , and the energy efficiency, Eη , 

account for variations in m q  and V , these terms can be treated as constants when Eq. 

(6.2) is substituted in Eq. (6.3), which yields: 
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Consider the situation where current density in Eq. (6.4) is independent of θ . For this case, 

the resulting effect of beam divergence on angular utilization efficiency for both thrust and 

power is presented in Figure 6.2. Analysis of this figure shows that for a maxθ  half angle of 
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40°, there exists a 12% reduction in thrust and a 22% reduction in power efficiency. As 

maxθ  increases, the reduction in thrust and power increases at an accelerated rate. 

 
Figure 6.2: Angular and thrust utilization efficiencies assuming a constant current 
density, ρI. 

At this point, it becomes apparent that the overall thrust provided by an electrospray 

source as well as power utilization efficiency decreases with respect to a broadening of the 

angular current distribution. Thus, an understanding of the influential factors which control 

this distribution is important when developing an electrospray propulsion system. 

 

6.1 Goals of Study 

The primary goal of this study is to experimentally measure the angular divergence of 

an electrospray source and analyze factors correlated with angular divergence. The factors 

which will be investigated are: (1) beam polarity, (2) emission current, (3) mass flow rate, 

and (4) magnetic field strength. In Section 6.2 a summary of previous methods of 

measuring angular divergence is provided. In Section 6.3, the angular divergence profiles 

measured under three magnetic field conditions are presented. Finally, in Section 6.4 a 
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statistical analysis is provided of influential factors on beam divergence. For this analysis, 

beam divergence will be presented in the form of an angular power efficiency. 

6.2 Overview of Divergence Measuring Techniques  

An initial angular divergence study using ionic liquid ferrofluids was performed in the 

summer of 2014 by the author.105 In summary, this approach swept a Faraday probe in a 

circular profile over an emission source using a stepper motor. This approach was able to 

achieve excellent angular resolution. However, the method was rather slow, taking about 

25 seconds for a complete sweep and thus was unable to differentiate between temporal 

and spatial profile variations. The limitations of this previous approach motivated the work 

presented herein. 

Multiple approaches have been employed by various authors to obtained beam 

divergence measurements. Chiu et. al.105 and Courtney24 et. al. both obtained angular 

current distribution measurements by rotating an electrospray source and extractor 

electrode with respect to a measurement device. Gamero-Castaño obtained beam profile 

measurements by moving a collector plate mounted on a motion stage over an emission 

source.40, 106 Spray measurements performed by Morris were obtained by a slit-shaped 

aperture between the extraction electrode and Faraday plate collector using a motion stage. 

In this method, only the spray that passed through the aperture at a given known position 

was measured.107 In general, these methods achieve excellent spatial resolution but poor 

temporal resolution.  

In 2003, Lozano presented a study which measured the angular divergence of needle-

based traditional electrospray emitters.108 The approach employed for this study consisted 

of a stack of 11 electrically-isolated concentric ring plates. Current was measured on each 

ring along various axial distances to obtain the beam spreading as a function of downstream 

position. This approach is capable of performing simultaneous measurements, allowing for 

time resolved measurements to be made of the intercepted current on each collector at the 

cost of decreased spatial resolution. 
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6.3 In Situ Measurement of Angular Current Distribution 

Methodology and Results 

To obtain measurements of the angular divergence of the electrospray source, the 

emitter was operated in the manner described in Section 5.2.5. The segmented current 

collector, discussed in detail in Section 5.2.3 was employed. Current measurements are 

reported at the midline of the annular shaped Faraday probe, yielding angular 

measurements at the locations specific in Table 6-1. An example of the typical telemetry 

showing emission current collected on all nine Faraday probes is presented in Figure 6.3. 

Table 6-1: Faraday probe area and angular position. Angular position referenced to 
the midline of each annulus. 

Probe #: 9 8 7 6 5 4 3 2 1 

Area (mm2) 6.1 12.4 19.5 26.6 33.7 40.8 47.9 142.1 176.6 

Angle (deg) 0 8.2 12.7 17.1 21.3 25.2 28.9 34.1 40.0 

 

 
Figure 6.3: Typical Faraday trace obtained by simultaneously measuring current on 
all nine collectors. 
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Angular plume current density measurements obtained from the source are presented 

at select 20-minute intervals for three different magnetic field strengths, presented in 

Figures 6.4 through 6.6. Averages over 1-second intervals are shown in gray and the 20-

minute average is shown in black with 95% confidence intervals. A comparison of the 

results shown in Figure 6.7. 

From a purely visual observation, no discernible trend in angular divergence is 

noticeable. Each source, regardless of field strength, exhibited a similar distribution at 

comparable times within the telemetry. As emission progresses, an interesting observation 

can be made regarding the transformation of the emission current density distribution. After 

two to three hours of testing, the source was observed to have a decreasing angular density, 

with the highest current density on the pad located at 0°. As emission proceeded, a 

transition was observed where the highest current density was generally on the second 

radial Faraday plate, located at 8.16°. Beam measurements performed by Lozano108 had a 

region of increasing current density with respect to radial position. Courtney et al.25 also 

observed current distributions exhibiting off-center peaks while measuring the full beam 

profile while spraying an ionic liquid. 

Findings by Gamero-Castaño106 showed an evolution in the beam profile as a function 

of beam current – transforming from a parabolic-like shape to a broader profile with 

multiple local maximums with increasing beam current. Gamero-Castaño sprayed 

propylene carbonate doped with an ionic liquid. The observed trend was attributed to a 

superposition of two droplet populations, the center distribution consisting of main droplets 

and the outer beam consists of satellite droplets. 
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Figure 6.4: (321 G) Angular plume current distribution at select intervals. 1-minute 
intervals shown in gray, a 20-minute average is shown in black with a 95% confidence 
interval. 
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Figure 6.5: (388 G) Angular plume current distribution at select intervals. 1-minute 
intervals shown in gray, a 20-minute average is shown in black with a 95% confidence 
interval. 
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Figure 6.6: (495 G) Angular plume current distribution at select intervals. 1-minute 
intervals shown in gray, a 20-minute average is shown in black with a 95% confidence 
interval. 
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Figure 6.7: Comparison of angular plume current distribution for three magnetic 
field strengths (a) 321 G, (b) 388 G, and (c) 495 G. (95% CI shown). 
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6.4 Angular Power Efficiency Factor 

The angular power efficiency factor, θη , was calculated during the duration of the 

emission telemetry at regular intervals. The angular current distribution function ( )Iρ θ

was determined by applying a Piecewise Cubic Hermite Interpolating polynomial (PCHIP) 

function to the area weighted Faraday probe measurements. The angular current 

distribution function was then integrated using Eq. (6.4) to obtain the angular power 

efficiency factor. A more detailed discussion of the numerical methodology for calculating 

the efficiency factor is presented in Appendix E. For the analyses presented in this section, 

the angular efficiency was calculated by averaging 1-minute spans every 10 minutes during 

the telemetry. When angular efficiencies are presented in graphical form, only 1/3rd of the 

data points are shown to increase readability. 

The unstable emission behavior during the startup and terminal phase of the testing 

resulted in several angular efficiencies that can be considered outliers. These points, 

numbering 3, 6, and 1 out of a population of 86 for the 321, 388, and 495 G test respectively 

were identified and excluded from the analysis using a median absolute deviation 

technique. Sample points more than three scaled median deviations from the median were 

determined to be outliers. The omitted sample points existed in the angular efficiency 

ranging from 0.4 to 0.918.  

The evolution in time of the angular efficiency for three different magnetic fields is 

presented in Figure 6.8, with a tabulated comparison of the mean efficiency in Table 6-2. 

The mean angular efficiency for the 321 G and 495 G datasets are comparable while the 

388 G dataset is slightly lower by about 1.1 %. The 388 G dataset, which is the outlier of 

the two, experienced a rise and fall in emission current between the 300 and 700 minutes 

in the telemetry, with a peak current occurring around 550 minutes (see Figure 6.5). A 

corresponding trend appearing as a decreasing angular efficiency during this same period, 

can be observed in Figure 6.8. The higher emission current and decreased efficiency 

corresponding with this test case is suggestive of a correlation between emission current, 
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plume divergence, and net efficiency, a relation that will be investigated further in Section 

6.4.2.  

 
Figure 6.8: Angular power efficiency during emission for three magnetic field 
conditions. 

 
Table 6-2: Tabulated comparison of angular power efficiency. Only angular 
efficiencies after 200 minutes were included in the averaging since prior to that time, 
not all sample sets were in the constant voltage operation mode.  

Mag. Field Mean θη   

(G)  

321 0.9463 ± 0.0065 

388 0.9365 ± 0.0068 

495 0.9470 ± 0.0047 

 

The small population size with respect to magnetic field did not permit any statistical 

analysis to be performed regarding the influence of the magnetic field strength to emission 

behavior. 
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6.4.1 Dependence on Beam Polarity 

As noted in Section 5.3, more current was emitted in the positive polarity relative to 

the negative polarity. However, when scaled with respect to their maximum emission 

densities, the profile of the two have a similar form, as indicated by Figures 6.9 and 6.10. 

A quantitative analysis of the polarity influence on the plume divergence can be 

obtained from angular propulsion efficiency factor for positive and negative emission 

cycles. A comparison between the polarities for all three datasets is presented graphically 

Figure 6.11 where a systematically lower efficiency can be observed for the negative 

polarity for all datasets. Using a Welch’s t-test, it was confirmed positive polarity had a 

higher angular efficiency than the negative polarity with a 95% significance. Results from 

this statistical analysis are shown in Table 6-3. In table, the p-value measures the 

probability that there is no statistical difference between the populations. A p-value of less 

than 0.05 is typically used to assume statistically strong evidence for the rejection of the 

null hypothesis. 

Figure 6.9: Normalized current density for positive and negative emission modes. (B 
= 495 G Averaged between 100-120 minutes into telemetry). 
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Figure 6.10: Normalized current density for positive and negative emission modes. (B 
= 321 G Averaged between 600-620 minutes into telemetry). 

 
Figure 6.11: Angular power efficiency for positive and negative emission current 
polarity for three magnetic fields. Sparse error bars shown with 95% CI. 
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Table 6-3: Comparison in angular efficiency between positive and negative emission 
polarities. P-value calculated using a two-sample t-test.  

Mag. Field Pop. ( )n   Pct. Diff. P-Value 

(G) (+) (-) 

321 83 83 0.75 3.10 × 10-14 

388 80 82 1.02 1.59 × 10-11 

495 85 84 0.48 1.06 × 10-7 

 

A difference in beam divergence of positive and negative polarity can be reasonably 

expected under the well-accepted premise that beam composition depends on polarity and 

that the composition of the beam has a significant influence on the divergence of the beam. 

Chiu et al. performed a very comprehensive study using an externally wetted electrospray 

source emitting EMIM-NTf2, the same ionic liquid which serves as a carrier fluid for the 

ferrofluid studied herein. In this work, emission current and mass flow rate were measured 

with respect to emitter angle, which yielded distributions which are dependent on the 

current polarity. Using a quadrupole mass filter, their work also demonstrated that the beam 

composition dependent strongly on polarity as well as angle. In a comprehensive analysis 

of the 480 emitter iEPS thruster, Krejci et al. observed a much larger polarity dependence 

in angular efficiency of 0.801 and 0.828 for the positive and negative polarities, 

respectively.1 

6.4.2 Dependence on Emission Current and Mass Flow Rate 

While researching capillary needle emitters, Gamero-Castaño observed a broadening 

of the emission plume with an increase in emission current when emitting both EMIM-

NTf240 as well as with propylene carbonate doped with an ionic liquid.106 This broadening 

observed was attributed to an increase in satellite droplet formation. Gamero-Castaño also 

observed an increased production of higher mass-to-charge droplets at propellant flow 

rate.40 Since particle of different mass-to-charge ratios respond differently to acceleration 
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forces in the apex region, charge-to-mass ratios of the emitted species are accepted to be 

an influential factor in beam divergence.  

To identify the influence of emission current and mass flow rate on angular efficiency 

a correlation analysis was performed. The relationship between emission current and 

efficiency, mass flow rate and efficiency, and mass flow rate and current can be observed 

in Figures 6.12 through 6.14, respectively. The mass flow rate for the subsequent analysis 

is the net flow rate of the emitter, while the current and efficiency are reported for a single 

polarity. It is fair to assume that the flow rate in the positive polarity is linearly proportional 

to the net mass flow rate, thus the correlations coefficients are unaffected by this 

assumption. 

 
Figure 6.12: Angular efficiency and emission current correlation. 
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Figure 6.13: Angular efficiency and mass flow rate correlation. 

 
Figure 6.14: Emission current and mass flow rate correlation. 

A tabulated comparison of the correlations using the Spearman technique is presented 

in Table 6-4. Analysis using both the Pearson and Kendall method were also conducted, 

which yielded similar results. Correlation tables for these methods can be found in 

Appendix E. The p-value measures the probability that the null hypothesis is true, which 

is that there is zero correlation between the two variables of consideration. This analysis 

yields a strong positive correlation between emission current and mass flow rate, a strong 
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negative correlation between emission current and angular efficiency, and a moderately 

negative correlation between mass flow-rate and angular efficiency. These correlations are 

accompanied by a significantly small p-values, ranging from 0 to 10-4, yielding excellent 

certainty in the rejection of the null hypothesis. 

 
Table 6-4: Tabulated correlation coefficients for mass flow rate, emission current, 
and angular power efficiency. Values correlated using the Spearman correlation 
technique. 

  B Field 
(G)   θη  

 
I  
 

m  

321 R -0.557 0.507 
P 8.07 × 10-8 1.42 × 10-6 

388 R -0.383 0.893 
P 4.90 × 10-4 0 

495 R -0.355 0.774 
P 9.31 × 10-4 0 

I  

321 R -0.829 n = 83 P 0 

388 R -0.457 n = 80 P 2.47 × 10-5 

495 R -0.506 n = 85 P 1.15 × 10-6 
 

The high negative correlation between efficiency and emission current is consistent 

with the previously cited work by Gamero-Castaño while the influence of mass flow rate 

and efficiency is supported by Miller et al.109 A relationship between mass flow rate and 

emission current is well documented for capillary needle emitters. Fernández de la Mora 

and Loscertales53 presented a relation for a “highly conductive” fluids which relates mass 

flow rate and current via the following relationship: 

 SI Q   (6.5) 

where S  was found to be approximately 0.5 over a broad range of fluid conductivities. 

Recognizing that Q  and m  can be interchanged in this relation without impacting the 



 

121 
 

coefficient S , a similar relation can be established for this source. A fit of Eq. (6.5) to the 

current mass flow rate relationship is presented below in Figure 6.15 while the tabulated 

fit with a 95% confidence interval is presented in Table 6-5. 

 
Figure 6.15: Log-Log plot of emission current vs mass flow rate. S is the regression 
coefficient per Eq. (6.5). 

 

Table 6-5: Tabulated scaling of the emission current and mass flow rate regression 
coefficient. 

Mag. Field Pop. ( )n  ( )S   95% CI 

(G)  

321 83 0.795 [0.565, 1.02] 

388 80 0.640 [0.536, 0.744] 

495 85 0.556 [0.467, 0.645] 

 

The regression coefficient observed for the normal-field electrospray source, averaging 

to 0.664, differs from the 0.5 coefficient observed by Fernández de la Mora and Loscertales 

for highly-conductive liquids. However, da la Mora notes that the previously mentioned 

scaling law is applicable for fluids with conductivities between 10-4 and 1 S/m. For fluid 
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conductivities around 1 S/m, ion evaporation results at the fluid meniscus and the scaling 

law breaks down.38 The conductivity for the ferrofluid emitted in this study was measured 

to be 0.63 S/m (Table 4-1, Pg. 36), within the range at which the 0.5 model breaks down. 

The difference between 0.664 coefficient and the 0.5 coefficient presented by de la Mora 

is most accurately explained by the presence of ion evaporation from the apex of the 

ferrofluid meniscus. Ion emission would result in an increased emission current with a 

negligible mass flow rate increase – resulting in a greater regression coefficient S . Ion 

emission has been observed indirectly from the average charge-to-mass ratio, as discussed 

in detail in Section 5.4.1. Using a time-of-flight mass spectrometer, Terhune was able to 

directly observe ion emission while operating a normal-field electrospray source with the 

same ferrofluid.32 

6.5 Conclusions 

The angular current density was measured for a normal-field electrospray source 

continuously over the course of the entire emission span, permitting the angular power 

efficiency factor, θη  , to be determined. An analysis of the angular power efficiency factor 

yielded very small, but statistically significant difference between the positive and negative 

emission polarities. Further analysis demonstrated a strong correlation between increasing 

emission current and mass flow rate and decreasing angular efficiency. These correlations 

agree with observations made by previous researchers. However, the relative loss in 

efficiency is rather small – indicating that this source can be operating over a large range 

of emission currents with minimal impact on angular efficiency. This would be of interest 

when designing a propulsion system which will operate at multiple thrust and specific 

impulse setpoints. 

A final correlation analysis performed between the emission current and mass flow 

rate, yielding a higher current-flow rate correlation than that predicted by the 1 2I Q  

scaling law presented by de la Mora and Loscertales.53 However, such a relation is not 
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entirely unexpected since the high conductivity of the fluid lies in a range at which ion 

emission can result. The 1 2Q  scaling law breaks down when ion emission occurs.38 
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Chapter 7 Particle Force in the Apex Field 

In the previous chapter, an experimental study was performed with the goal of 

identifying the influence of the magnetic field, as one of many factors, on the angular 

divergence and angular power efficiency of a ferrofluid electrospray source. The small 

sample size of magnetic fields present in this study was insufficiently-small to enable a 

statistical analysis to be performed to obtain a correlation analysis of magnetic field 

influences. To further investigate the influence of magnetic field, a numerical analysis is 

presented in this chapter to approximate the magnitudes of the Kelvin and Lorentz forces 

in the apex region. This analysis will determine if these forces are sufficiently strong to 

impact particle trajectories. 

First, let us consider the case of a nanoparticle laden droplet emitted in the spray plume, 

which will be sufficiently small that it will behave akin to a magnetic dipole. The resulting 

force acting on this particle, referred to as the Kelvin force density, becomes:55 

 ( )0 0mf M Hµ= ⋅∇


  

  (6.6) 

where mf


 is the Kelvin magnetic force density, M


 is particle magnetization, and 0H


 is 

the magnetizing field strength of the free field, i.e., the H-field at the location of the droplet 

while neglecting the field contributions from the droplet. An intense gradient in the 

magnetic field near the fluid apex suggests the Kelvin force may be sufficiently strong to 

alter particle trajectories. 

When electrospray emission is achieved in the presence of a magnetic field, a qv B×




 

force emanates, which is expressed in the following Lorentz force equation: 
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 F qE qv B= + ×
  



  (6.7) 

If the charge-to-mass ratio of the ion is sufficiently large, the trajectory of the particle will 

be deflected as the qv B×




component of the force incites the particle into a circular 

trajectory spiraling around the magnetic field vector. The magnetic component of the 

Lorentz force does not depend on the fluid magnetization, and would arise in the case of 

traditional electrospray if a magnetic field is present. Little could be found in the literature 

regarding electrospray emission interacting with magnetic fields, and a majority of what 

could be found involved mass spectrometry systems and required magnetic fields on the 

order of many Tesla.110, 111 With a prior familiarity with the magnetic fields necessary to 

alter the trajectory of high charge-to-mass ratio ions, it is a reasonable hypothesis that even 

the intense magnetic fields in the apex region will be insufficient to alter the particle 

trajectory. 

7.1 Goals of Study 

The goal of this short study was to analyze the influence of the Kelvin force and Lorentz 

force on droplets resulting from electrospray emission in the proximity of the Taylor cone 

apex to determine how the field conditions impact particle trajectory. Kelvin force 

modeling will be achieved through the use of a finite element model – permitting the 

Coulomb and Kelvin forces to be calculated in the apex region. The apex field will be 

modeled with the use of an empirical relation that closely resembles the Taylor cone 

geometry. The Lorentz force will be investigated through the analysis the Larmor radius or 

various mass-to-charge ratio particles in the apex field conditions. 

7.2 Kelvin Force Modeling and Results 

Consider a nanoscale charged fluid droplet. The Rayleigh limit expresses the maximum 

charge a this droplet can contain and remain stable.112 Above this limit, the droplet becomes 

unstable and will disintegrate into smaller droplets. This limit is given as: 
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 ( )1 22 3
02 16rQ rπ π ε γ=   (6.8) 

where rQ  is the Rayleigh charge limit. Not all electrospray droplets are charged to the full 

Rayleigh limit. The parameter ( )0,1Φ∈  denotes the Rayleigh limit charge factor. A value 

of 0.5Φ =  will be assumed here to present a reasonable value of droplet charge based on 

work by Miller.103 The Coulomb force on a droplet becomes: 

 e rF Q E= Φ
 

  (6.9) 

Now let us consider a nanoscale single-domain magnetic nanoparticle of volume V . From 

the particle volume and the Kelvin force density, presented in Eq. (6.6), the net Kelvin 

force acting on the particle can be determined. When scaled in respect to the Coulomb 

force, a force ratio vector can be established: 

 
( )0 0

e r

m

F Q E
F V M H

η
µ
Φ

= =
⋅∇

 





  
  (6.10) 

To obtain a representative comparison of the ratio of Coulomb to Kelvin force in ferrofluid 

electrospray, two particles will be analyzed. Coulomb forces will be calculated for a 30 nm 

spherical fluid droplet charged to 50% of the Rayleigh limit, 0.5Φ = . Kelvin forces will 

be equivalent on an equal sized spherical single-domain iron oxide particle at the material 

saturation. The magnetic saturation for magnetite is 4.45x105 A/m.55 

7.2.1 Modeling Approach 

The geometric domain utilized for this study is based on the emitter apparatus which 

was presented previously in Section 5.2.1. The geometric model selected for the fluid 

interface as well as the FEA modeling technique are presented in the following two 

subsections. 
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7.2.1.1 Taylor Cone Model 

The fluid interface model presented in the Chapter 4 worked well to predict the fluid 

interface on a macroscopic scale. For an emitting electrospray source, the geometry in the 

region of the apex can be on the order of 10s of nanometers to micrometers. The interface 

prediction model that was present is unable to resolve both the macro- and microscopic 

scales of the fluid interface and thus is incapable of modeling the fluid interface once snap-

over occurs.  

A static model was therefore selected to model the fluid interface based on pervious 

work published by Krpoun and Shea.75 Their approach implemented a Bernstein-Bézier 

curve to model the Taylor cone. Although this model is non-physical, i.e., the interface 

stresses do not balance perfectly, it makes an accurate representation of the Taylor cone 

geometry. The authors implemented this interface model to computationally predict the 

onset voltage of a traditional electrospray source. In cartesian coordinates, the surface is 

expressed as: 

 ( ) ( )
( )( ) ( )1 2

, , cos
1 2 1 1

xt p
x t w

t t w
φ φ

−
=

− − −
  (6.11) 

 ( ) ( )
( )( ) ( )1 2

, , sin
1 2 1 1

xt p
y t w

t t w
φ φ

−
=

− − −
  (6.12) 

 ( ) ( ) ( )
( )( )

2 1 cot
, ,

1 2 1 1
xt tw p

z t w
t t w

β
φ

−
=

− − −
  (6.13) 

where the Taylor cone half angle, β , is 49.3° and xp  is the base radius of the Taylor cone. 

In the XZ plane, the angular coordinate 0φ = . The apex radius is:  

 ( )tanx
a

pr
w

β=   (6.14) 

For a 1.5-mm radius reservoir, the Bernstein-Bézier model for a Taylor cone is presented 

in Figure 7.1: 
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Figure 7.1: Bernstein-Bézier Taylor Cone model with a range of apex radii shown. 
The half-angle was set to of 49.3°. 

For the work presented in this section, the apex radius in the Taylor cone model was set to 

1-μm, yielding an apex electric field of 6x107 V/m. The apex radius is larger than what is 

to be expected at the apex of an emitting Taylor cone, however, further refinement of the 

apex radius will only reinforce the conclusions drawn in the next section. 

7.2.1.2 FEA Model 

The ferrofluid simulated in this study was treated as a rigid entity having the material 

magnetic and electrical properties of the ionic liquid ferrofluid discussed in Table 4-1 

within Section 4.2. A magnetic field was generated from the presence of two 1" dia. x 1/8" 

thick N52 disk magnets. The magnets were modeled with a residual induction, maxBr , of 

14,800 gauss* with a relative permeability, rµ , of 1.05. The resulting field at the reservoir 

interface in the absence of ferrofluid was 520 gauss at the top surface of the fluid reservoir. 

The actual field for the emitter in this configuration was measured to be 460 gauss. 

                                                 

* Provided by KJ Magnetics 
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The computational domain is presented in Figure 7.2. The fluid interface was 

partitioned into separate domains near the fluid apex. This enabled the region where the 

highest gradient exists to be meshed independently, allowing fine control over the mesh in 

this region. Quartic elements were selected to solve for the magnetic and electric scalar 

potential. A mesh refinement study was performed in which the concentration of elements 

in the apex region was increased and decreased by a factor of 2.5. No difference was 

observed in the first four significant figures of either the magnetic or electric fields. 

 
Figure 7.2: Subset of computational domain for FEA. Computational domain was 
axisymmetric around the y-axis. 

When calculating the Kelvin force, uncertainty existed as to the direction of the 

magnetization vector M


. Within the ferrofluid, it is assumed that the localized 

magnetization is colinear with H


, a result of the null torsional forces acting on the particle 

when the two vectors are aligned.† Allowing the particle orientation in this analysis to be 

that which yielded the greatest Kelvin force would require an optimization to be performed 

at each node in the FEA domain. A study at select points in the region of analysis showed 

                                                 

†  The torque per unit volume on a magnetized particle takes the following form: 

0 0torque density M Hµ= ×
 
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that when M


 is colinear with H


, the Kelvin force was at minimum 95 % of that resulting 

from the orientation which yielded the maximum force, a condition that results from the 

nearly radial H  field in the apex region. Therefore M


 was assumed to be colinear with 

0H


 . 

7.2.2 Kelvin Force Modeling Results 

The electric potential, electric field magnitude, magnetic field magnitude along with 

the corresponding forces and the force ratio comparison are presented in the following 

figures: 
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Figure 7.3: Electric potential for the entire emitter geometry. 

 
Figure 7.4: Magnetic field within the entire emitter geometry. 



 

133 
 

 
Figure 7.5: Electric potential in the proximity of the Taylor cone apex.  

 
Figure 7.6: Electric field in the proximity of the Taylor cone apex. 
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Figure 7.7: Coulomb forces on 30 nm radius droplet charged to 50% of the Rayleigh 
limit in the proximity of the Taylor cone apex. 

 
Figure 7.8: Magnetic field strength in in the proximity of the Taylor cone apex. 
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Figure 7.9: Kelvin force on 30-nm radius iron particle at saturation limit of magnetite 
in the proximity of the Taylor cone apex. 

 
Figure 7.10: Coulomb to Kelvin force ratio near the apex of a Taylor Cone.  

From Figure 7.10 it becomes apparent that the Kelvin force acting on a spherical 30-

nm radius saturated magnetite particle is considerably smaller than an equivalent sized 

spherical fluid droplet at 50% of the Rayleigh limit. The Coulomb force overpowers the 
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Kelvin force by three orders of magnitude in the region immediately above the apex, where 

the ratio is the smallest. The conclusion that can be drawn from this analysis is that the 

Kelvin force is sufficiently small such that it incapable of altering particle trajectories.  

This analysis does make a considerable number of assumptions. These assumptions 

will be addressed individually for their potential impact. 

1. The Taylor cone was set to have an apex radius of 1 μm with an applied voltage of 

2500 V. The resulting electric field yielded a maximum magnitude of 6x107 V/m 

at the Taylor cone apex. This is below the ≈1x109 V/m42 limit necessary for ion 

emission. Since ions emitted from the apex will not experience Kelvin forces, only 

the lower electric field region where droplet emission occurs was modeled. 

2. Space-charge effects are not modeled. Space charge effects result when a high 

density of charged particles or droplets are present in the immediate region of the 

apex. The combined effect of these droplets reduced the electric field and the 

resulting Coulomb force. 

3. The interface geometry was assumed to follow a Bernstein-Bézier curve. This 

description is based on cone model for traditional electrospray. This model does 

not account for magnetic forces. The interface prediction model presented in 

Sections 4.3.3 and 4.4.3, confirms that near onset, the electric stresses dominate in 

the immediate proximity to the apex while the magnetic stresses dominate 

elsewhere. Therefore, the use of the Bernstein-Bézier to approximate the fields in 

the apex region is an admissible approximation in this region where electric forces 

dominate by orders of magnitude. 

4. Droplet emission results from breakup of the fluid jet. Although the interface is 

modeled as a cone rather than a cone-jet.  

5. The droplet and particle size was assumed to have a radius of 30 nm. Expanding 

Eq. (6.10) by substituting the volume and Rayleigh limit terms of the radius yields: 

 
( )

( )

1 22 3 3 2
0

3
3

0 0

2 16
4
3

r E r
rr M H

π π ε γ
η

π µ

Φ
= ∝

⋅∇



  

  (6.15) 
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It can be observed that the Kelvin force grows with particle size at a rate of 1.5r  faster 

than the Coulomb force. However, the large particle sizes necessary such that Kelvin forces 

would become comparable are too large to be present within the ferrofluid being 

considered. 

Regardless of these assumptions, any error introduced is unlikely to significantly alter 

the conclusions drawn from this analysis. 

7.3 Lorentz Force Modeling and Results 

Now consider the case of a charged unmagnetized particle traversing through a 

magnetic field. Assuming that the electrically charged particle is accelerated up to the 

electrical potential V , the velocity of the particle becomes: 

 2 qv V
m

=   (6.16) 

Consider the scenario where v B⊥


  for which the resulting qv B×




 component would be 

the most drastic. In such a scenario, the particle would begin to rotate around the B


 vector 

in a circular trajectory (shown in Figure 7.11) which described by the Larmor radius: 

 L
mvr
q B

⊥=   (6.17) 
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Figure 7.11: In the presence of a uniform magnetic field, qvxB forces the particle will 
assume a circular trajectory about the magnetic field vector. 

In Section 7.2.2, it was shown that in the region directly above the apex of the Taylor 

cone model, the fluid magnetization approached 0.1 Tesla (1000 gauss). Using this value 

for B  and an acceleration potential of 2000 V, the Larmor radius was calculated (shown 

in Figure 7.12) with respect to the range of estimated mass-to-charge ratios for ionic liquid 

ferrofluid electrospray measured by Terhune.35  

 
Figure 7.12: Larmor radius for a particle accelerated to 2000V within a 0.1T magnetic 
field perpendicular to the initial velocity vector. 

The results show that the Larmor radius (~1-10s of meters) is considerably large for the 

emitted species relative to scale of the emission source (~ 10s of millimeters) and is thus 

too small to be significant factor on particle trajectory. In practice, v  and B


 are not 

x

yz

Magnetic 
Field

E = 0

v0

RLarmor
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perpendicular, and B  decays rapidly when traveling away from the apex. Therefore, this 

model over estimates the influence of the Lorentz force. 

7.4 Conclusions 

The numerical analysis presented in this chapter reveals the Kelvin force is on the scale 

of 3 orders of magnitude smaller than the Coulomb force in the apex region. An analysis 

of the Lorentz force in the apex region showed that the qv B×




 force is insufficient to cause 

any significant deviation in the particle trajectories of even the highest charge-to-mass ratio 

ions. These findings were not entirely unexpected. However, the elimination of the Kelvin 

and Lorentz force on particle trajectories permits future analyses of the divergence of 

magnetic and colloidal electrosprays to focus on the meniscus geometry as the influential 

factor.
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Chapter 8 Conclusions 

During this research, a relatively new form of electrospray was investigated. The 

uniqueness of this research lies in the fact that the fluid which was electrosprayed, an ionic 

liquid ferrofluid is (1) super-paramagnetic, (2) highly-conductive, (3) colloidal, and (4) 

capable of being emitted without the need of a supporting structure such as a capillary, 

externally wetted, or porous needle. A combination of any two of these properties would 

be sufficient to justifiably classify the spray as being in a subclass of electrospray for which 

there is little in the literature. Although research has previously been performed on ionic 

liquid ferrofluid electrosprays, prior work focused primarily on demonstrating that spray 

can be achieved from a combined magneto-electric instability,30, 91 or focused on the 

electrospray behavior of these fluids from a capillary emission source.31, 33-35 The 

objectives of this research were to: (1) develop a computational model to simulate interface 

deformation and determine the role magnetic stresses on onset, (2) determine the 

propulsion efficacy of an ionic liquid ferrofluid normal-field electrospray source, and 

finally (3) measure the angular divergence of the spray and determine influential factors in 

on angular efficiency. 

The work presented in this dissertation was successful in these objectives. Technical 

summaries of the individual research topics are presented in their respective chapters. 

However, during the course of this research, discoveries were made that span multiple 

chapters or have impacts on broader electrospray research. This section serves to 

summarize these discoveries. 
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8.1 Electric Propulsion Viability 

A primary objective this research was to analyze the performance capabilities and 

viability of an ionic liquid ferrofluid electrospray source as a means for electric propulsion 

for nanosatellites. In (Page 143) performance parameters of the normal-field electrospray 

source investigated in this dissertation are presented alongside two developed electrospray 

thrusters for which published data is available to obtain derived propulsion parameters. 

Several methods are available to obtain derived propulsion performance parameters. The 

first method is presented in Section 5.4.2 and uses average values of mass flow rate, 

emission current, and extraction voltage. Additional methods include time-of-flight mass 

spectrometer (ToF) or thrust stand measurements. Using a thrust stand, both thrust and 

specific impulse can be measure directly – yielding estimates that are likely more 

representative of thruster performance than those determined using less direct methods. 

Overall, the single emitter ionic liquid ferrofluid electrospray source studied in this 

work capable of achieving favorable performance. On per emitter basis, the normal-field 

source was able to achieve an order of magnitude greater thrust than the MIT iEPS thruster 

while obtaining a similar specific impulse. Compared to the UC-Irvine thruster, the normal-

field source achieved comparable thrust per emitter with a three-fold increase in specific 

impulse. However, both the MIT an UC-Irvine thrusters are cable of achieving impressive 

emitter densities, with 480 and 100 emitters/cm2, respectively. The packing density of 

normal-field emitters as well as the ability to maintain emission from multiple emitters 

simultaneously remains unknown. However, performance parameters derived from this 

work lends credence to the concept of this type of electrospray and findings presented 

herein serve to justifies further efforts to refine the technology. 
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Table 8-1: Propulsion performance parameters of the ionic liquid ferrofluid normal-field electrospray source alongside those 
of developed propulsion systems. 

  ILFF MIT iEPS1 UC-Irvine2 

Propulsive Fluid 
EMIM-NTf2 

Ferrofluid 
EMI-BF4 EMIM-NTf2 

Method , , and  , , and 
 

ToF Methods 
and Thrust 

Stand 

, , and 
 

ToF Methods 

Thrust (µN) 0.38 19.4* 11-12.5 10.2-69* 8.1-54 
  (s) 1200-1400 1150 760 123-297* 96-236 

Thrust/ 
Power (µN/W) 154 144 87 690-1650* 

541- 
1300* 

Voltage (kV) 3.33 0.90 1.76 
Current (µA) 0.75 150 8.5-23.6 
Power (mW) 2.5 135 15-41.5 

  -- 0.94 0.81 -- 
Emitters -- 1 480 64 

Thrust/Emitter (µN) 0.38 0.040* 0.023-0.026 0.16-1.1 0.13-0.84 

Power/Emitter (mW) 0.4 0.28 0.23-0.65 

* These values were derived for this purpose using measurements provided by the respective authors within their 
publication. They were not reported directly by the authors. 

 



 

144 
 

8.2 Electrically and Magnetically Stressed Fluid Surface 

Modeling Techniques 

In Chapter 4, a literary review was presented on previous work on 

electrohydrodynamic, ferrohydrodynamic, and paramagnetic modeling of freely suspended 

or pinned sessile drops. Of the work reviewed, a majority employed semi-analytical76-78, 80, 

82 or finite element methods84-86 that did not consider fluid motion. Only three sources in 

the literature were found that employed finite element methods capable of solving for 

arbitrary geometries while resolving internal fluid motion.81, 87, 89 

The modeling technique presented in this dissertation is the only work known to the 

author to exist in the literature that presents a methodology to simulate surface and fluid 

motion under combined ferrohydrodynamic and electrohydrodynamic stresses. The mesh 

tracking technique incorporated is capable of very accurately tracking the interface 

movement and stresses under the limitation that the fluid does not experience topological 

changes (i.e. breakup). The developed methodology with slight modifications can serve to 

analyze several remaining questions regarding ionic liquid ferrofluid electrospray and 

within the broader electrospray field. The presented work utilizes a commercially available 

code which permits additional physics, such as ohmic heating, bulk and surface charge 

transport, or any custom differential equation can be added to the physics with ease. 

One area of electrospray physics for which a large uncertainty remains is the cone-jet 

transition region. The physics of this region govern emission current, flow rate, and jet 

diameter. A numerical model of this region would help to (1) clarify the scaling the laws 

in electrospray and (2) reduce reliance on extrapolation of scaling laws to unexplored 

electrospray regimes. 

One pressing matter in the expansion of electrospray from a normal-field instability is 

the expansion of spray from a single to multiple emission sites. During early research into 

ionic liquid ferrofluid emitters, both Meyer91 and den Hartog113 performed experiments 

using multipeak instabilities and faced challenges getting multiple peaks to emit. Both 

authors observed a phenomenon where only one tip would begin emitting. Further 

increasing the extraction potential would permit additional peaks to emit, however, the first 
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emitter would transition into an nonideal high-flow rate jetting mode. It is the current 

hypothesis of the author that differences in the magnetic and electric stresses between peaks 

is resulting in fluid transfer between instabilities – permitting one to grow at the sacrifice 

of a neighboring peak. Implementation of the developed modeling technique would permit 

further analysis into this issue.
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 Electric Stress Component 

Derivations 

The following are the complete derivations of the components of the interface surface 

stress. The following assumptions will be made: (1) only one fluid exhibits a relative 

permittivity ( )rε  greater than one, (2) the fluids are incompressible, (3) the fluids are 

isothermal. 

 
Note: These derivations utilize the incompressible non-linear form of the fluid stress tensor. 
 

 
Figure A.1: Fluid interface of high permittivity fluid (Fluid 2) with low permittivity 
fluid (Fluid 1). 

 

For an incompressible nonlinear medium the stress tensor is:114 

Fluid 1
σ1, ɛ1

Fluid 2
σ2, ɛ2

n



 

148 
 

 
0

D

e E D E dD DE
  = − ⋅ + ⋅ + 
  

∫T I


     

  (A.1) 

Assuming the material is linear ( )D Eε=
 

, the integral term can be expressed as follows: 

 21
2e E EEε ε= − +T

 

  (A.2) 

The electric stress vector along the interface becomes: 

 21ˆ ˆ
2n e nt n E n E Eε ε= ⋅ = − +T





  (A.3) 

 

The normal component of this stress vector can be determined as follows: 

 21ˆ ˆ ˆ
2n n nt n E n n E Eε ε⋅ = − ⋅ +





  (A.4) 

The normal component of the surface traction thus becomes: 

[ ]
2

ˆ ˆ ˆ

1
2

n e

n n

t n n T n

E E Eε ε

⋅ = ⋅ ⋅

= − +
 

The difference in the normal component of the electric surface traction becomes the normal 

interfacial stress: 

 
, ,1 ,2

2 2 2 2
1 1 1 ,1 2 2 2 ,2

ˆ ˆ

1 1
2 2

n elec e e

n n

t n t n

E E E E

σ

ε ε ε ε

= ⋅ − ⋅

= − + + −
  (A.5) 

In the case where fluid 1 is an insulator and fluid 2 is a highly conductive medium, 2E  

becomes zero. The resulting stress is therefore: 
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 2
, 1 1

1
2

cond
n elec Eσ ε=   (A.6) 

Note, in the case that in the case where fluid 2 is a conductor, 2 0E =  and consequently 

,2 0tE = . Since ,1 ,2t tE E=  per boundary conditions, 2 ,2nE E= . 

 

The normal component of the surface traction thus becomes: 

 
2

ˆ ˆˆ

1 ˆˆ
2

n et t n t

E n tε

⋅ = ⋅ ⋅

= − ⋅

T


n tE Eε+
  (7.7) 

In the previous equation, the scalar component ( ) 2 ˆ1 2 E nε−  is null since ˆˆ 0n t⋅ = .  

 , ,1 ,2

1 1, 1, 2 2, 2,

ˆ ˆ
t elec e e

n t n t

t t t t
E E E E

σ

ε ε

= ⋅ − ⋅

= −

 

  (A.8) 

Recalling, in the absence of surface charge: 1, 2,T TE E=  and 1 1, 2 2,n nE Eε ε= , the resulting 

stress becomes: 

 , 0t elecσ =   (A.9) 

In the case of a perfect conductor, the internal electric field and tangential electric field is 

zero. Likewise, the surface stress becomes zero. These results are independent of the form 

of the stress tensor utilized.  
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 Magnetic Stress Component 

Derivations 

 The following are the complete derivations of the components of the interface surface 

stress. The following assumptions will be made: (1) only one fluid exhibits magnetic 

properties, (2) the fluids are incompressible, (3) the fluids are isothermal. 

 
Note: These derivations utilize the incompressible non-linear form of the fluid stress tensor. 

 
Figure B.1: Fluid interface of ferrofluid (Fluid 2) with non-magnetic fluid (Fluid 1). 

 

Consider the stress tensor for a non-linear incompressible ferrofluid (Eq. (3.5)):55 

 2
0 0

0

1
2

H

m MdH H BHµ µ
 

= − + + 
 
∫T I

 

  

The stress vector along the interface becomes: 

Fluid 1
μ1

Fluid 2
μ2

n
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 2
0 0

0

1ˆ ˆ
2

H

n m nt n MdH H n B Hµ µ
 

= ⋅ = − + + 
 
∫T



   (B.1) 

 

The normal component of this stress vector can be determined as follows: 

 2
0 0

0

1ˆ ˆ ˆ
2

H

n n nt n MdH H n n B Hµ µ
 

⋅ = − + ⋅ + 
 
∫

   (B.2) 

If fluid 1 is a non-magnetic medium, then the difference in the normal stress vector over 

the interface becomes: 

 

( ) ( )

, ,1 ,2

2 2
0 1 ,1 ,1 0 0 2 ,2 ,2

0

2 2
0 2 1 ,1 ,1 ,2 ,2 0

0

ˆ ˆ

1 1
2 2

1
2

n mag n n

H

n n n n

H

n n n n

t n t n

H B H MdH H B H

H H B H B H MdH

σ

µ µ µ

µ µ

= ⋅ − ⋅

= − + + + −

= − + − +

∫

∫

 

  (B.3) 

The following substitution can be made (since ,1 ,2t tH H=  from the interfacial boundary 

conditions): 

 
( ) ( )2 2 2 2 2 2

2 1 ,2 ,2 ,1 ,1

2 2
,2 ,1

n t n t

n n

H H H H H H

H H

− = + − +

= −
  

Finally, given that: 

 ,1 ,2
,1 ,2 ,2

0 0

,n n
n n n

B B
H H M

µ µ
= = −   

Substituting these relations into Eq.  and simplifying, yields: 
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2 2
,2 2

, 0 ,22 2
0 0 0

,2 0
0 0 0

2
0 ,2 0

0
1 2

1 2
2

1
2

n nn n
n mag n

H
n n

n n

H

n

B MB BM

B BB M MdH

M MdH

σ µ
µ µ µ

µ
µ µ

µ µ

 
= − + − 

 
 

+ − + + 
 

= +

∫

∫




  (B.4) 

As can be seen, two components arise in the normal component of the magnetic stress on 

the fluid interface. The first component is the magnetic normal pressure and the second 

turn is the fluid magnetic pressure. 

 

The tangential component of this stress can be determined as follows: 

 2
0 0

0

1ˆ ˆˆ
2

H

n n tt t MdH H n t B Hµ µ
 

⋅ = + ⋅ + 
 
∫

   (B.5) 

Recognizing that ˆˆ 0n t⋅ = , the previous equation can be simplified to: 

 
2

0 0
0

1ˆ ˆˆ
2

H

n n t

n t

t t MdH H n t B H

B H

µ µ
 

⋅ = + ⋅ + 
 

=

∫


  (B.6) 

Finally, the normal component nB  and tangential component tH  are continuous over the 

fluid interface; therefore: 

 
, ,1 ,2

,1 ,1 ,2 ,2

ˆ ˆ

0

t mag n n

n t n t

t t t t
B H B H

σ = ⋅ − ⋅

= −

=

 

  (B.7) 

This result is independent of the form of the stress tensor utilized. 
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 Methodology of Processing Time-

lapse Imagery to Estimate Mass Flow Rate 

Mass flow rates of the single tip ionic liquid ferrofluid emitter were estimated by 

analyzing time-lapse imagery. Images of the emitter were taken using an OptixCam 

Summit K2 5.1 MP USB camera integrated with a stereo microscope at 30 second intervals. 

The emitter was imaged in in grayscale and saved in a .tiff format. 

The following methodology was utilized to approximate the volume of the tip: 

1. The top of the fluid reservoir was selected via user input. (First image only) 

2. The extractor diameter was selected via user input which was used to set a global 

scale for the image. (First Image only) 

3. Each image was converted to black and white using an inputted threshold value. 

4. Black-white boundaries were detected and an algorithm was employed to determine 

which boundary was associated with the ferrofluid. 

5. The reservoir boundary was split into the left and right half and each half was 

integrated to determine the respective volume. 

Edges were detected using the bwboundaries function in MATLAB which is based on 

the Moore-Neighbor tracing algorithm. The average volume was then plotted against time 

and fit using a spline curve. The derivative of this curve was then used to estimate volume 

and mass flow rates. 
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A sample image with the detected boundaries is presented in Figure C.1. The estimated 

volume during a long duration test obtained by analyzing a time-lapse of images is 

presented in Figure C.2.  

 
Figure C.1: Typical image acquired through the imaging setup. (Right) Boundaries 
detected through the image processing algorithm. Left and Right boundaries were 
integrated to determine peak volume. The average of these volumes was utilized to 
determine the mean volume. 

 
Figure C.2: Spline fit performed on the average of the left and right half integrated 
volumes. During startup, the source would occasionally spray in a high current mode, 
which would saturate the current collector. If this occurred, the source was shut down 
and restarted, resulting in an abrupt change in volume as can be observed above. In 
this event, separate spline fits were performed before and after the event. 
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Figure C.3: Mass flow rate obtained by differentiating the volumetric fit spline. 
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 Initial Angular Divergence Studies 

via Rotating Faraday Collector 

 I performed an initial attempt to perform angular divergence measurements of an ionic 

liquid ferrofluid emission which was presented in 2014 at the 50th 

AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.105 The approach 

employed for this study rotated a Faraday probe over an emission source and collected in 

0.9° increments within the emission plume. A diagram of the experimental setup is 

presented in Figure D.1 and Figure D.2. 

 
Figure D.1: Experimental setup for initial angular divergence studies. 
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Figure D.2: Diagram of initial angular divergence measurement apparatus. Spray 
current from the emission source (1) was measured by a Faraday probe (2) mounted 
on a rotation arm controlled by a servo motor (3). Limit switches (4) were included 
to position the arm at the datum location and an angular encoder (5) was used to 
measure the position of the arm. 

The goal of this research was to test a new approach for obtaining current distribution 

measurements for an electrospray while using a normal-field source. The findings and 

limitations from this study motivated the multiple collector simultaneously reading 

approach employed within this dissertation. 

To perform a collection sequence, an initial angular alignment was obtained by driving 

the collector arm into a hard stop which was 90° off axis of the emission centerline. The 

setup would then proceed to rotate the Faraday probe over the emission site in a semicircle 

with the base of the circle align with the top of the ferrofluid reservoir. Measurements were 

taken in one-half step increments, corresponding to 0.9°. At each angular location 100 

samples were taken at 1000 Hz before proceeding to the next measurement point. A 

complete sweep of the measurement zone would take approximately 25 seconds. This 

process was repeated for 2 and 3 magnet excitations, corresponding to 115 and 230 gauss, 

respectively. A sample collected emission plume is shown in Figure D.3 and Figure D.4. 

1

3

4

5

2
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Figure D.3: Divergence map for EMIM-NTf2 ferrofluid emission with 2-magnets 
configuration (115 G). A 1-sigma standard deviation is shown with the shaded patch. 

 
Figure D.4: Divergence map for EMIM-NTf2 ferrofluid emission with 3-magnets 
configuration (230 G). 

The experimental approach employed in this study had excellent sensitivity for 

resolving the angular distribution considering a 0.9° accuracy. However, this approach had 

several limitations which were undesirable for this application. They are as follows: 
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1. The slow sweep rate was unable to attribute variations in the plume pattern to 

unsteady emission or variations in the plume. 

2. This testing required a single polarity of emission be applied for the duration of 

the sweep. E.J Meyer observed a condition in which the fluid would experience 

bubbling, which likely due to electrochemistry and decomposition of the fluid 

– an observance not unique to ionic liquid ferrofluids.30 A Using a bipolar 0.5 

Hz oscillation has been observed by researchers in the Ion Space Propulsion 

Laboratory at Michigan Technological University to resolve this for these 

fluids. The resulting sweep would need to be on the order of 90°/s to resolve 

the distribution. 
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 Angular Power Efficiency Factor and 

Correlations Calculation Methodology 

 

The angular power efficiency factor, θη , was calculated during the duration of the 

emission telemetry. The current density function, ( )Iρ θ  , was approximated by applying 

an interpolation function to the average measured emission current of a single polarity. 

Efficiencies were then averaged over a 1-minute interval to obtain a mean and standard 

deviation. Two methods of interpolating were investigated, a cubic spline and a Piecewise 

Cubic Hermite Interpolation Polynomial, or PCHIP. An example of these fits is presented 

below in Figure E.1. Overall, it was found the PCHIP method yielded more desirable 

results, owing to the lack of oscillations presented in the fit. 

 Fitting was performed using the spline and pchip functions in MATLAB which 

returned a piecewise polynomial structure, which was compatible with the pval and 

integrate functions to solve Eq. (6.4). A comparison of the efficiency obtained using the 

Spline and PCHIP integration methods is presented in Figure E.2. 
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Figure E.1: Angular current density fitting using a cubic spline and a Piecewise Cubic 
Hermite Interpolation Polynomial (PCHIP) method. (Left) Full profile fit, (Right) 
Highlight of oscillations formed by spline interpolation between data points of similar 
density. Angular density was assumed to be symmetric about 0°. 

 
Figure E.2: Comparison in the angular efficiency calculated using the spline and 
PCHIP integration techniques. 

While calculating the angular power efficiency, certain sample points within the 

telemetry had angular efficiencies which deviated significantly from the median for 

telemetry. These values were correlated with occurring during the startup and terminal 

phase of the telemetry. The angular efficiency with excluded sample points noted is 

presented in Figure E.3. 
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Figure E.3: Angular efficiency telemetry with outlying sample points noted. 

 

Correlation coefficients between mass flow rate, current, and angular efficiency were 

calculated using three correlation techniques. This analysis was performed using the corr 

function within MATLAB. Pearson, Kendall, and Spearman correlations were performed, 

where Pearson is a linear correlation and Kendall and Spearman are both rank order 

correlations. The results of these three analyses are presented in the tables below. Overall, 

the methods performed comparably well. The Spearman correlation was presented in 

Chapter 6, since the methodology does not assume a linear relation.  
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Table E-1: Correlation coefficients obtained using the Pearson correlation method. 

 B Field 
(G) 

 θη  
 

I  
 

m  
 

321 
R -0.562 0.480 
P 3.31E-08 4.50E-06 

388 
R -0.417 0.947 
P 1.18E-04 3.77E-40 

495 R -0.327 0.795 
P 2.25E-03 1.04E-19 

I  

321 R -0.806 n = 83 P 4.15E-20 

388 R -0.463 n = 80 P 1.54E-05 

495 R -0.482 n = 85 P 3.00E-06 
 

Table E-2: Correlation coefficients obtained using the Kendall correlation method. 

 B Field 
(G) 

 θη  
 

I  
 

m  
 

321 R -0.412 0.365 
P 3.68E-08 1.08E-06 

388 R -0.269 0.735 
P 4.20E-04 4.85E-22 

495 R -0.241 0.575 
P 1.08E-03 6.59E-15 

I  
 

321 R -0.646 n = 83 P 5.42E-18 

388 R -0.320 n = 80 P 2.76E-05 

495 R -0.377 n = 85 P 3.31E-07 
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Table E-3: Correlation coefficients obtained using the Spearman correlation method. 

  B Field 
(G)   θη  

 
I  
 

m  

321 R -0.557 0.507 
P 8.07 × 10-8 1.42 × 10-6 

388 R -0.383 0.893 
P 4.90 × 10-4 0 

495 R -0.355 0.774 
P 9.31 × 10-4 0 

I  

321 R -0.829 n = 83 P 0 

388 R -0.457 n = 80 P 2.47 × 10-5 

495 R -0.506 n = 85 P 1.15 × 10-6 
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