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Abstract

As the amount of information available for data mining grows larger, the amount of time needed
to train models on those huge volumes of data also grows longer. Techniques such as sub-sampling
and parallel algorithms have been employed to deal with this growth. Some studies have shown
that sub-sampling can have adverse effects on the quality of models produced, and the degree to
which it affects different types of learning algorithms varies. Parallel algorithms perform well when
enough computing resources (e.g. cores, memory) are available, however for a limited sized cluster the
growth in data will still cause an unacceptable growth in model training time. In addition to the data
size mitigation problem, picking which algorithms are well suited to a particular dataset, can be a
challenge. While some studies have looked at selection criteria for picking a learning algorithm based
on the properties of the dataset, the additional complexity of parallel learners or possible run time
limitations has not been considered. This study explores run time and model quality results of various
techniques for dealing with large datasets, including using different numbers of compute cores, sub-
sampling the datasets, and exploiting the iterative anytime nature of the training algorithms. The
algorithms were studied using MapReduce implementations of four supervised learning algorithms,
logistic regression, tree induction, bagged trees, and boosted stumps for binary classification using
probabilistic models. Evaluation of these techniques was done using a modified form of learning
curves which has a temporal component. Finally, the data collected was used to train a set of
models to predict which type of parallel learner best suits a particular dataset, given run time
limitations and the number of compute cores to be used. The predictions of those models were then
compared to the actual results of running the algorithms on the datasets they were attempting to
predict.
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Chapter 1

Background

1.1 Introduction

As more and more data is being collected every day, we are experiencing what some have dubbed
the information explosion [6]. This has lead to a rise in large-scale parallel systems to help process
these mountains of data. However as the amount of data grows larger, it will likely reach a point
where even extremely large clusters will be unable to complete all of the iterations of many machine
learning (ML) algorithms in a timely manner. Thus it is important to investigate which of these
many techniques can build the best models in the least amount of time, even if the algorithm isn’t
run to completion. The purpose of this research is to develop a technique, based on learning curves
[7], that can aid in the selection of parallel ML algorithms for a given domain or problem size.

1.2 Motivation

In the field of machine learning, there are many learning algorithms to choose from, and depending
on the dataset on which a model is being trained, some algorithms will work better than others.
Unfortunately as a consequence of the no free lunch theorem (NFL) [8, 9] for optimization problems
such as machine learning, there can not be a single algorithm that works best for all problems. While
many metrics exist to compare machine learning algorithms, as discussed in Section 1.3.10, none
of them take into consideration the execution time of the algorithms. Likewise, parallel machine
learning algorithms are often shown to produce models that are comparable to their non-parallel
counterpart, but are seldom compared to other parallel algorithms in terms of model quality and
speed.

Most studies therefore focus on one of these two problems:

1. ML evaluation metrics (e.g. AUC, accuracy, etc.) but rarely account for total run-time.

2. Parallel Algorithm metrics (e.g. speed-up) do not account for differences in model quality
produced by different algorithms.

Therefore it is often difficult to pick a suitable algorithm when confronted with a large-scale machine
learning task that is well suited for a parallel algorithm. As a result, it would be nice if there were a
straightforward way to compare two parallel machine learning algorithms to easily determine if one
can both provide better models, and in a more timely manner by examining the characteristics of
the dataset.

Many comparisons of sequential machine learning algorithms have been done over the last several
decades [10, 11, 7, 12, 13] and typically compare the algorithms across a wide variety of domains
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using metrics such as AUC [14, 15, 16], accuracy, learning curves [7], recall, F-score, precision,
Youden’s index, and Discriminant Power [16].

Also, many parallel machine algorithms for classification problems have been proposed [17, 18, 19,
20, 21, 22, 23]. However parallel algorithms are usually analyzed using metrics such as speedup or
efficiency. This can show that a parallel algorithm makes good use of available parallelism, but is not
well suited for comparing quality of approximations given by algorithms for otherwise intractable
problems such as machine learning algorithms. Speedup as reported is seldom computed correctly,
in that most research compares the parallel run time to the run time of the parallel algorithm run
on one node, instead of the best sequential algorithm available [24]. It is also becoming increasingly
difficult to compute speedup as problem sizes start to exceed the limits that a single node can
reasonably handle. It may take days or even weeks to do a single node run needed to compute
speedup. Parallel performance of an algorithm is also heavily influenced by the characteristics of
the problem instance it is being run on. Larger problems often have more available parallelism, but
different algorithms may scale better with respect to certain aspects of the problem. So, a method
that takes into account both the total run time and the quality of the output is needed for comparing
parallel machine learning algorithms.

The goal of this research is to compare parallel machine learning algorithms. The primary focus
will be a modification of learning curves [7]. In traditional learning curves the horizontal axis is the
number of samples used to train the model and the vertical axis is a measure of model quality (i.e.
accuracy, AUC, etc.). The proposed temporal learning curves (TLC) use the same vertical axis to
express model quality but replace the horizontal axis with a temporal component. Specifically, the
horizontal axis will be the amount of time it took to produce a particular model.

1.3 Machine Learning

While Machine Learning (ML) can refer to many things, as used in this work it refers to a class
of algorithms that to attempt to ‘learn’ mathematical models from a set of multidimensional input
samples such that these models can then be used to make predictions about previously unseen
samples that are described as points in the same multidimensional attribute space as the training
set.

Machine learning techniques fall into two major categories, supervised and unsupervised. In super-
vised learning, each sample in the dataset the model is being learned has an associated label, and
the model that is produced will assign new samples a label. In unsupervised learning, the samples
that are used to train the model do not have assigned classes or labels, but instead are assigned to
unlabeled groups. This work focuses exclusively on the problem of supervised learning. A model for
supervised learning can then be used to assign labels or value to unlabeled samples. An example
dataset for supervised learning is given in Table 1.1. Typically within supervised learning, for clas-
sification tasks, the label is a class, while for regression tasks the label is a numeric value. However
for this work, the supervised learning problem being explored produces models that give probability
estimates that a given sample belongs to a specified class. Such models are probability estimation
models. In this case models will only produce a probability that a sample should have a particular
label. This research only examines supervised learning techniques that produce probabilistic models.

There are of course limits to the labeling power of ML algorithms. In some cases errors in the
training data make it impossible to learn a perfect model. In other cases, the ML model being used
is unable to adequately express the relationship between the attributes and the classes. The No Free
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Lunch theorem (see Section 1.3.12) also tells us that for any learner, there will be some datasets
for which a random guessing will outperform it. So, while the popularity of ML algorithms change
over time, each popular algorithm will eventually run into problems it can’t solve. Neural networks
(deep learning) are the fashionable algorithm of today, but there is growing concern that even deep
learning is approaching its limits [25].

1.3.1 Example Dataset

A dataset for machine learning, X, is composed of a set of samples (~xi, yi) ∈ X for i = 1, . . . ., n,
where n is the number of samples, ~xi is a D-tuple of attributes, and yi is a label. Each element of the
vector ~xi = 〈xi,0, xi,1, . . . , xi,D−1〉 represents one of D different measurable aspects, or attributes,
of the sample. The attributes can be of different types. These types are: nominal (or categorical)
where the value is a member of a discrete unordered set of values, binary which is a special case of
nominal where the set of values only contains two values, discrete ordered where the value is a single
item from a sequence of discrete values that have an overall total ordering, and continuous which
can be any value from a continuum of values, typically a real number.

To illustrate several important concepts in machine learning, I’ll use a synthetic dataset to build
a model that will try to decide if a student should walk or drive to campus based on weather
conditions. This dataset contains a total of 1,000 samples, each with four attributes and a label.
The four attributes are weather conditions, the label indicates if the student walked or drove in
those conditions. A model can then be trained from this dataset to predict if the student will walk
or drive given the current conditions.

The first attribute in the synthetic data is precipitation, which is binary and can have the values
yes or no. The second attribute is wind direction, which is nominal and can have the values north,
south, east, or west. The third attribute is wind speed which is denoted using the Beaufort scale
[26] that assigns a numeric value from zero to twelve to different wind speeds. This attribute is
therefore discrete ordered. The final attribute is temperature in degrees Fahrenheit, is treated as a
continuous attribute. Each sample is also assigned a label (or class) that indicates the appropriate
decision walk or drive for those conditions. A base model was created as shown in Figure 1.1. This
model was then used to assign labels to one-thousand randomly generated samples. To make the
original model harder to learn from the dataset, 5% of the samples chosen at random were changed
to the opposite class. A portion of the resulting set of samples is shown in Table 1.1.

1.3.2 Dataset Splitting

In machine learning, an input dataset is usually partitioned into two or three subsets. These subsets
are the trainining set, the test set, and a vaidation set. The training set is used during the primary
learning portions of the ML algorithm. The test set which is not used in training is used in scoring
the model produced by the algorithm. The validation set is used during training, but functions much
like a test set as it is often used to score candidate models to help make decisions during the training
process. Splitting the data in this manor is often referred to as hold out testing, since there is a test
set that is held out of the training. Assignment to these three sets is usually done randomly and the
dataset is usually split multiple ways using different random seeds. The models are then trained on
each of the resulting training subsets and the scores produced using each of the corresponding test
subsets are averaged to get a final score.
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Figure 1.1: The decision tree that was used to generate data shown in Table 1.1.

1 2 3 4 5
Beaufort Temperature

Precipitation Wind number (◦F) Class
yes north 4 62.69 walk
yes south 1 63.02 walk
yes west 1 4.72 walk
yes west 0 47.98 walk
yes south 8 17.12 drive
no east 6 6.17 drive
no east 8 -7.88 drive
yes west 2 16.31 walk
no north 1 5.07 walk

Table 1.1: Portion of an Example Dataset
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An alternative way of splitting the data, called n-fold cross validation, splits the dataset randomly
into n equally sized subsets. Then n models are trained where each of the subsets serves as a test
set, and the rest of the subsets are used as training or validation sets. When computing a model
score, the average over all n models if given.

For the purposes of this study, only hold-out testing was used with five or ten different random splits
of the datasets.

1.3.3 Dataset Conversion

Some machine learning algorithms are unable to handle certain types of attributes directly, so
transformations of the data are necessary as a pre-processing step. In logistic regression for example,
the input values must all be numeric. While any range of numeric values is allowable, typically values
are restricted to the ranges -1 to 1 or 0 to 1, or even the discrete values -1 and 1 or 0 and 1. For the
purposes of this work, logistic regression will used inputs in the range zero to one. Binary values
are typically mapped to zero and one in such a system. Other types of attributes need additional
processing. Nominal attributes may be split into multiple new binary attributes where exactly one of
the new attributes (the one corresponding to the original values) will be set to one for each sample.
Discrete ordered attributes can either be handled as unordered discrete values (just like nominal
attributes) which destroys any ordering information which might be relevant to the system being
modeled, or the discrete values may be mapped to values between zero and one maintaining their
original ordering. For continuous attributes, the range may be normalized to the range zero to one.
It may also be split into multiple bins representing non-overlapping regions with binary attributes
to indicate which of the regions the original value belongs to.

To illustrate the transformations needed, Table 1.2 was generated in the same way as the data in
Table 1.1 but was transformed to binary and normalized values (which I refer to as binorm). The
wind attribute which was nominal with values north, south, east, and west, was split into four binary
attributes, one for each possible direction. The wind speed attribute is scaled linearly such that 12
maps to 1. The temperature attribute is shifted and scaled so the range -20◦F to 75◦F maps fits in
the range zero to one.

Since the data in Table 1.1 and Table 1.2 are both generated using a tree based model, it seems
likely that a tree based learning system would likely outperform other learners. To examine this,
possibility, a second dataset based on a logistic regression model where P (Y = walk) = ev

1+ev and
v = 50 + (−20)(precip) + 2.5 ∗ (windIsNorth) + 5 ∗ (windIsSouth) + (−40) ∗ (windIsEast) + 5 ∗
(windIsWest)+2.5∗ (windSpeed)+20∗ (temp) was also constructed. The 50 term at the beginning
of the model expression is the bias factor, which is analogous to the y-intercept in a linear regression
model. This model can be expressed as a vector ~β = 〈50,−20, 2.5, 5,−40, 5, 2.5, 20〉. Full details of
how ~β represents that model are given in Section 1.3.8.

1.3.4 Tree Induction

One popular machine learning method is tree induction [27] where a decision tree (sometimes called
a classification tree, depending on the type of data used for training) is built from the training
dataset. One reason for the popularity of decision trees is their relative ease of understanding. Part
of this ease of understanding is that decision trees can be represented in an easy to use graphical
form, such as the one in Figure 1.1. A decision tree consists of a set of nodes connected by directed
edges. Each internal node in a decision tree contains a test that can be performed on a given sample
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1 2 3 4 5 6 7 8
Wind Dir. Beaufort # Temperature

Precip. N S E W (normalized) (normalized) Class
1 1 0 0 0 0.3333 0.8705 walk
1 0 1 0 0 0.0833 0.8739 walk
1 0 0 0 1 0.0833 0.2602 walk
1 0 0 0 1 0.0000 0.7155 walk
1 0 1 0 0 0.6667 0.3907 drive
0 0 0 1 0 0.5000 0.2755 drive
0 0 0 1 0 0.6667 0.1276 drive
1 0 0 0 1 0.1667 0.3822 walk
0 1 0 0 0 0.0833 0.2639 walk

Table 1.2: Example Training Dataset for use in Logistic Regression

and the edge to a child node is chosen depending on the outcome of that test. Each leaf node of
the tree gives a possible outcome from the model. Figure 1.1 shows a decision tree that can be used
to decide between walking or driving depending on current weather conditions. In this model each
internal node is labeled with a weather condition being examined and the edges are labeled with the
possible outcomes of that test. The leaf nodes are labeled with the actual decision to walk or drive.

To use a decision tree, a traversal starting from the root is performed, applying the test at each node
to the sample being evaluated, and following the appropriate edge to the next node. When a leaf
node is reached, that node gives the class that the tree assigns to the sample. A complete example
of this is given later in this section.

The tree shown in Figure 1.1 has only two possible output classes (walk and drive), however this
need not be the case. It is possible to have more than two outcomes, for instance some of the leaves
could be changed to bike and it would still be a valid decision tree. It is also possible for internal
nodes to have more than two children, for example when evaluating wind direction there could be
four possible children, one for each direction (north, south, east and west) in the dataset. This
research however focuses specifically on binary classification (i.e. exactly two output classes) using
binary trees (i.e. exactly two outcomes at each internal node).

A binary decision tree is built from the training data iteratively. Starting with an empty model,
which is a tree that contains a single node. Every attribute in the dataset is examined to pick the
best way to split the training samples on that attribute, producing a set of candidate split points.
The best candidate split point is then chosen using some goodness of split measure or selection
measure such as information gain, information gain ratio or variance minimization. The chosen split
point is assigned to the tree node and new child nodes are added for each possible outcome of the
split point criteria. In a binary tree the split point criteria will always be binary, thus every internal
node will have exactly two children. Each leaf node in the tree is assigned an output label based on
the samples that reach that leaf node. Once the children are added all of the training samples are
passed through the new model. Each leaf node is then treated as an empty model and a split point
is chosen based only on the training samples that reached it. The process of sending the training
samples through the tree and splitting the leaves repeats until some stopping criteria is met, such
as every leaf only receives samples of a single class, or a leaf gets fewer than a minimum number of
samples. When the tree growing process ceases, each leaf is assigned a label. Typically the label
will be the most common label among the training samples that reach that node.
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Algorithm 1 Tree Induction

1: procedure TreeInduction(X) . Build tree from samples in dataset X
2: V ← {vRoot}
3: E ← ∅
4: T ← (V,E)
5: repeat
6: for all xi ∈ X do . Assign each sample to a leaf node
7: k ←TreeTraverse(T, xi)
8: LeafSamplesk ← LeafSamplesk ∪ xi
9: end for

10: for all nk ∈ Leafs(T ) do
11: SplitNode(nk, LeafSamplesk) . Determine test for leaf node k
12: end for
13: until no nodes split
14: return T . The finished tree
15: end procedure

Algorithm 2 Tree Traversal

1: procedure TreeTraverse(T, xi) . Find leaf node to put sample into
2: n← vRoot
3: while ¬ Leaf(n) do
4: if PassTest(n, xi) then . PassTest is either xi,d < n.t or xi,d = n.t
5: n′ ← vk s.t. (n, vk, true) ∈ E
6: else
7: n′ ← vk s.t. (n, vk, false) ∈ E
8: end if
9: n← n′

10: end while
11: return n . A single leaf node
12: end procedure

An alternative to decision trees called Probability Estimation Trees (PETs) label the leaf nodes with
a probability that a sample should have a particular label [28]. The probability assigned is simply
the ratio of positive samples reaching the leaf to the total number of samples. The probability found
when using the tree on unseen samples is then the conditional probability P (xi has label Y |C) where
C is the conjunction of all of the tests performed on the sample along the path from the root to the
leaf. The trees in this research are PETs. Pseudo-code for tree-induction is given in Algorithm 1
through Algorithm 3.

A tree is a graph T = (V,E) where V is a set of nodes, and E is a set of directed edges. Each
node vi ∈ V in the tree consists of a tuple (d, t), where d is the attribute id, t is the value for the
split point. The node will then separate samples by applying a test to each sample. For numeric
or ordered attributes, the test be xi,d < t. For categorical attributes the test will be xi,d = t. Each
edge ei ∈ E in the tree consist of tuples (p, c, b) where p is the parent node, c is the child node, and
b is a flag to mark is the edge is to be taken on a pass or a failure of the test in the parent node.
This differs slightly from the model depicted in Figure 1.1, which shows the edges as having the split
point values. In practice, the split point values are stored in the nodes, and not the edges.
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Algorithm 3 Node Spliting

1: procedure TreeSplitNode(T, n,X) . Pick split for samples in X
2: gainbest ← −∞
3: for all attributes d in X do
4: for all values z ∈ Attributed do
5: gaind ← info_gain(d, z,X)
6: if gaind > gainbest then . Pick largest information gain
7: gainbest ← gaind
8: dbest ← d
9: zbest ← z

10: end if
11: end for
12: end for
13: vpass(n) ← (dbest, zbest) . Add new leaf nodes and attach them to the tree
14: vfail(n) ← (dbest, zbest)
15: V ← V ∪ {vpass(n), vfail(n)}
16: E ← E ∪ {(n, vpass(n), true), (n, vfail(n), false)}
17: return
18: end procedure

Once a tree is built, it can be used to process a previously unseen sample. To do this, start at the
root of the tree, examine the attribute the root node uses to split samples, then follow the edge that
matches the sample being classified. Repeat this process at each node down the tree until a leaf
node is reached. Once a leaf node is reached, look at the leaf’s label to determine the sample’s label.

Assume we have a sample <precipitation, wind direction, wind speed, temperature> = <no, north,
3, 45> and we wish to classify it using the tree in Figure 1.1. We start at the root which examines
the temperature. For this sample, the temperature is 45◦F, which is greater than 35◦F, so we follow
the right branch of the tree. The next node looks at the wind direction which is ‘north’ for this
sample, so we follows the ‘not east’ branch. This leads to a wind speed node, this sample has a
speed of 3, so we follow the less than 6 branch. This leaves us at a leaf node with a label of ‘walk’.
So we assign the sample <no,north,3,45> a label of ‘walk’.

1.3.5 Node Splitting Methods

In Algorithm 3, the splitting criteria used is information gain [29], however there are other methods
such as variance minimization [21] and minimum square expected error (MSEE) [30] for choosing
split points. Mingers [31] showed that how splitting of nodes is chosen does not affect the quality of
of the resulting model in terms of its accuracy, however it does affect the size of the resulting tree.
Since this study will be focusing not only on the quality of the resulting models but also how long it
takes to produce them, the splitting methods to be examined were chosen either for their tendency
to produce smaller trees (information gain ratio [31]), because they were specifically designed for
probability estimation trees (MSEE) or it was used in the original MapReduce algorithm for tree
induction (variance minimization) [21].

The goal of each splitting method is to quantify the purity of each portion of the split. For each of
the methods described, vi is a unique node within the tree, for a split S, vp is the parent node, and
vi ∈ VS are the children, xij is sample j that takes the path from the root to node vi, N is the total
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number of samples, Ni is the number of samples that reach node vi, Nic is the number of samples
belonging to class c that reach node vi, L is the set of class labels, C is the total number of classes,
ci is an individual class label, yi is the label assigned to sample i (if the sample is from the class
being learned, yi = 1, otherwise yi = 0).

Information Gain

The information gain splitting metric is based on the concept of entropy, and seeks to reduce the
total randomness across both new child nodes.

In general entropy for a node vi (ent(vi)) is defined as

ent(vi) = −
∑
c∈L

Nic
Ni

lg
Nic
Ni

(1.1)

for node vi, where Nic is the number of elements belonging to class c and Ni is the total number of
samples across all classes within the node.

Information gain is then the difference between the entropy within a node prior to the split (i.e.
ent(vp)) minus the entropy across all child nodes after the split weighted by the number of samples
incident upon each child node. The the information gain for a split S for a parent node vp is

gain(S) = Np · ent(vp)−
∑
vi∈VS

Ni · ent(vi) (1.2)

where VS is the set of child nodes of vp.

While Mingers [31] showed that information gain ratio produces the smallest trees. The method
Mingers used, which was proposed by Quinlan [29], requires an initial selection by information gain
and a secondary selection by information gain ratio is not well suited to the MapReduce framework
used in this study as the reduce and combine phases require applying a simple total ordering to the
splits.

Variance Minimization

With variance minimization [21], negative samples are assigned the value zero (yi = 0) and positive
samples are assigned the value one (yi = 1). The goal is to minimize the total variance across all
children. The variance for node vi is

var(vi) =

∑Ni

j=1 (cij − c̄i)2

Ni
(1.3)

where Ni is the number of samples that reach node vi, cij is a class assignment for sample j in node
i, and c̄i is

c̄i =

∑Ni

j=1 cij

Ni
(1.4)

.

So, if within a node all samples belong to the same class, the variance will be zero. Thus, minimizing
the variance within a leaf node is desirable.
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To account for uneven splits, a weighted variance is used, such that the weighted variance of split
Si for samples reaching node vi is

weighted_var(Si) =

K∑
k=1

Nk · var(vk) (1.5)

where K is the number of child nodes, Nk is the number of samples that reach child node node vk.
Since only binary trees are considered in this study, K will always be 2.

Minimum Squared Expected Error

The tree based models in this study use probability estimation trees (PETs), where the output
when applying the model to a sample is a probability that the sample belongs to the class that the
model was trained on (i.e. P (yi ∈ L)). Most node splitting methods are based on the assumption
that the output will be a discrete class that is either right or wrong for a given sample. Ferri et
al. [30] presented the minimum squared expected error (MSEE) splitting method that is based on
probabilities and expected error, which is intended for building probability estimation trees. This
splitting criteria works by trying to minimize the square of the expected error based on each split’s
predictions for each sample in the training set.

Assuming that the quantity pij is both the probability of a sample reaching node child vi from its
parent vp, and the probability of being assigned the label for class cj . The value pij is therefore the
number of samples belonging to class cj that reach vi divided by the total number of samples that
reach vp.

Consider for each class c, each child node vi of parent vp has a probability of pi. Thus the probability
of a sample being missclassified is given by

P (xi is missclassified) = pi ·
∑
i 6=j

pj = pi · (1− pi) (1.6)

. Thus the total error over all possible missclassifcations that the model can make for a single sample
is given by

Errori = pi · (1− pi) ·

(1− pi)2
∑
i 6=j

p2j

 (1.7)

. The error for each sample can then be summed over all children resulting from a possible split.
This gives an overall quality of split measure for MSEE is

MSEE(Si) =

C∑
c=1

Nc

(
K∑
i=1

Errori

)
(1.8)

.

For weighted samples the MSEE measure requires some modifications. Since the weighting is required
for boosting as described in Section 1.3.7, the weights are such that all weights zero to one and sum
to one, (i.e., wi s.t. 0 ≤ wi ≤ 1 and

∑
i wi = 1). Under this assumption, Equation 1.7 can be

rewritten as Equation 1.9, where wi is the weight for sample xi.

P (xi is missclassified) = wi · pi ·
∑
i 6=j

wj · pj = wi · pi · (1− wi · pi) (1.9)
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Equation 1.7 then is updated to be Equation 1.10.

Errori = wi · pi · (1− wi · pi) ·

(1− wi · pi)2
∑
i6=j

wi · p2j

 (1.10)

The resulting Errori given by Equation 1.10 can then be used in Equation 1.8 to get a weighted
MSEE split measure.

1.3.6 Bagging

Bagging (short for bootstrap aggregating) [32] is an ensemble technique which uses many models
each trained on a portion of the dataset which together can produce better overall results than a
single model trained on a full dataset.

To produce a bagged model with k sub-models, a series of k independent models is computed. If the
original training set has N samples, the training set passed to each of the models is a subset chosen
randomly from the overall training set such that each sub-model gets N/k samples. This sampling
is often done with replacement, but is performed without replacement in this study for reasons that
are discussed in Section 1.4.1. Each sub-model is then trained using any technique, that could be
used on the full dataset, typically tree induction.

Once all k sub-models are computed, the overall model is applied to new samples by first collecting
the output of each sub-model individually, then combining the results. If the bagged model is for a
classification problem, the most common output over all of the sub-models is reported. If the bagged
model is for a probability estimation problem, the arithmetic mean of the probabilities can be used.

1.3.7 Boosting

Boosting [33] is another ensemble method that uses many sub-models in conjunction to produce a
model than can outperform a single simple model. However unlike in bagging, the sub-models with
boosting are given different weights. The samples are also assigned new weights before the training
of each sub-model.

To produce a boosted model, all N of the samples in the training set are initially assigned a weight
of 1/N . The training samples are then used to produce a single model using any machine learning
technique, however weak learners [33] (i.e., learners that by themselves can only achieve an error
rate slightly below 50%). Very short trees, or stumps, which are height limited to only two or three
levels have been found to be good weak learners for boosting. Each of the training samples si are
then passed through the new sub-model mj . The weights of the incorrectly classified samples (i.e.,
false positives or false negatives) are then summed. This sum, εj , can then be used to update the
individual sample weights and compute a weight for sub-model mj . The weights of all samples are
updated such that the misclassified samples will have a total weight of 0.5. To accomplish this each
sample weight wi is updated to be w′i using Equation 1.11 [33].

w′i = wi ÷
{

2εj : si misclassified by mj

2(1− εj) : otherwise
(1.11)
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The reweighted samples are then used to train a new sub-model mj+1. This process of reweighting
and training continues until either εj reaches zero (i.e. the model is perfect on the training set) or
εj ≥ 0.5 (i.e the incorrectly classifies samples are at least half the weight).

To apply the model to previously unseen samples first each sub-model mj is assigned a weight αj
based on its εj value as shown in Equation 1.12.

αj =
1

2
ln

1− εj
εj

(1.12)

Unseen samples are then passed though each sub-model. The prediction for a boosted classification
model is the class for which the sum of the weights of the models predicting that class is the largest.
For probability estimation models, the weighted average of the sub-model probability estimates is
computed.

Since the sub-model weight limεj→0 αj =∞, special care must be taken in this case. To prevent the
weight from going to ∞, smoothing can be used [34]. The model weighting equation then becomes

αj =
1

2
ln

1− εj + µ

εj + µ
(1.13)

where µ is a very small positive value. For this study, µ was 10−5.

1.3.8 Logistic Regression

In a logistic regression model [20] the prediction is a real number in the range zero to one, which is
the probability that the sample is a member of the set the target class.

Starting with the probability (pi) that the label yi for a sample xi belongs to a particular class ck,
denoted by yi = ck.

p = P (yi = ck). (1.14)

The odds ratio r, which is the ratio of P (Y = 1) to P (Y 6= 1), can be expressed as

r =
P (Y = 1)

P (Y 6= 1)
=

p

1− p
. (1.15)

Log odds, which is the log of the odds ratio, is then

ln r = ln
p

1− p
. (1.16)

Solving for p in Equation 1.16 gives

p =
er

1 + er
(1.17)

which has the property that p ∈ (0, 1)∀r ∈ (−∞,∞).

To apply the model to a sample to get a prediction, each sample is expressed as a vector ~x, where
each dimension of the vector is an attribute. The vector, must then be mapped onto a real number
v ∈ (−∞,∞) such that as v approaches −∞, p approaches 0 and as v approaches ∞, p approaches
1. To do this v is computed using a linear combination of each sample’s attributes

r = β0 + x1 · β1 + x2 · β2 + · · ·+ xn · βn = ~x · ~β (1.18)
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where ~x represents the sample and ~β is the model. The vectors ~β and ~x each have a length that is
one greater than the number of attributes in the dataset being learned. The additional element x0
in ~x is always set to 1 and is needed to compute the additional element β0 in ~β which is the bias
factor, which is analogous to the y-intercept in a linear regression model. Thus Equation 1.17 can
be rewritten as

p = f(~β, ~x) =
e~x·

~β

1 + e~x·~β
, (1.19)

and the problem of learning the model is reduced to picking the values of the vector ~β based on the
values in the training set such that p is as close to the actual Y value for all samples in the training
set.

To find the value of ~β for a particular training set, an initial empty model is used as a starting point
(i.e. |~β| = 0) and attributes are added to the model one at a time in a process referred to as forward
feature selection.

Since all unused elements in ~β are zero, the equation for p can be rewritten to include the candidate
feature

p = P (Y = 1) = fd(~x, ~β, β
′
d) =

e~x·
~β+xd·β′

d

1 + e~x·
~β+xd·β′

d

(1.20)

where β′d is element of ~β being optimized.

The log likelihood for a sample i described by ~xi and has label yi, given a model vector ~β is

L(~xi, ~β, yi) =

{
ln f(~xi, ~β) : yi = 0

ln(1− f(~xi, ~β)) : yi = 1
(1.21)

The optimal value for each element of ~β depends on all samples in the training set, thus the total
log likelihood for all samples

E(X, ~β) =

n∑
i=1

L(~xi, ~β, yi) (1.22)

needs to be maximized. Since yi ∈ {0, 1}, the composite function for L(~xi, ~β) can be rewritten in
non-composite form as

L(~xi, ~β, yi) = (1− yi) · ln
(
f(~xi, ~β)

)
+ yi · ln

(
1− f(~xi, ~β)

)
(1.23)

since either yi or (1− yi) will always be zero, one term of the addition will always be zero.

The goal is then to maximize E(X, ~β) by carefully choosing values for ~β. Many methods exist for
finding the values ~β, for example iteratively reweighted least squares (IRLS) [35], gradient descent,
and single feature optimization (SFO) [20]. While in IRLS and gradient descent all of the elements
of ~β are optimized simultaneously, in SFO, only one element of ~β is optimized at a time.

To optimize a single element βd of ~β, Newton’s method is employed. In Newton’s method, an initial
guess of the solution (zero in this case) is refined through multiple iterations until it converges on
a solution. Since the optimization problem to be solved here is a maximization problem, this is the
same as finding a root of the first derivative. This will require the first and second derivatives of L.
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The updating formula used each iteration to compute the new value for dimension d of β, β′d from
βd is

β′d = βd −
δL
δβd

δ2L
δβ2

d

(1.24)

where
δL

δβd
=

n∑
i=1

xi,d ·
(
yi − fd(~xi, ~β, βd)

)
(1.25)

and
δ2L

δβ2
d

=

n∑
i=1

(xi,d)
2 · fd(~x, ~β, βd) ·

(
1− fd(~x, ~β, βd)

)
. (1.26)

The first element of β to be found is always the bias factor β0. Once an initial bias factor is found,
all other elements in the ~β vector are chosen to maximize log likelihood independently. The models
resulting from adding each newly computed element of β are evaluated using AUC as described in
Section 1.3.10. The new element with the best score is chosen and added to the model. All non-zero
coefficient in the model so far can then re-optimized repeatedly until all of them converge, in a
process referred to as full regression. This step is time consuming, but can lead to much better
models overall. Due to the time involved in full regression, it can also be done once at the very end,
instead of after each feature is added.

After full regression, the process of finding optimal values for each zero element in the ~β vector,
scoring the resulting models and doing full regression repeats until the score obtained by adding
new features to the model stops improving. Typically this will stop before all features are added to
the model.

The computation of δL
δβd

and δ2L
δβ2

d
require a summation over all samples, that can be time consuming

to compute. To greatly increase the speed of this computation, histograms can be used [20]. To do
this two histograms with B bins are built for each attribute. The bins equally subdivide the range
[0, 1]. Samples are mapped into bins based on the probability computed by the current model β
when applied to that sample. The first histogram, H, contains a count of all samples where xd = 1
that the current model predicts will be in that each bin. The second histogram, H+ counts only the
samples for which xi,d = 1 and yi = 1.

To compute these histogram, we first rewrite the equations for building the model to be built based
on the aggregate value for each bin. The log likelihood for each bin b is

ab = ln

(
pb

1− pb

)
(1.27)

and the probability of samples belonging to bin b is

p′b =
eab+βd

1 + eab+βd
. (1.28)

Once the histograms H and H+ are built, δL
δβd

and δ2L
δβ2

d
can be computed as

δL

δβd
=

B∑
b=1

(
H+
b − p

′
b ·Hb

)
(1.29)
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and
δ2L

δβ2
d

=

B∑
b=1

Hb · p′b · (1− p′b) . (1.30)

Using this heuristic, each iteration of Newton’s method will run in O(B) time, which is much less
than the original O(N) when B << N .

1.3.9 Non-binary Arttributes

The histogram technique described by Singh et al. [20] only works with binary attributes. However,
it can be adapted to work with non-binary attributes by using two dimensional histograms, Ĥb,d

and Ĥ+
b,d. Both dimensions of these histograms contain bins that evenly subdivide the range [0, 1].

The first dimension is used to map the samples based on the model’s predicted probability. The
second dimension is based on the value of xi,d.

Using these modified histograms δL
δβd

and δ2L
δβ2

d
can be computed using

δL

δβd
=

B∑
b=1

B∑
d=1

x̂b,d ·
(
Ĥ+
b − p

′
b · Ĥb

)
(1.31)

and
δ2L

δβ2
d

=

B∑
b=1

B∑
d=1

x̂2b,d · Ĥb · p′b · (1− p′b) (1.32)

where x̂b,d is the midpoint of each bin in the xi,d dimension this will of course take more time than
the binary histogram method but still runs in O(B2) time, which is much less than the original
O(N) when B <<

√
N . Pseudo-code for SFO is given in Algorithm 4.

If we again use the sample<precipitation,wind direction,wind speed,temperature>=<no,north,3,45>.
To classify this sample using a logistic regression model, it must first be converted to a form that
is compatible with logistic regression. The first attribute in the sample vector is the bias factor,
which is always 1. The precipitation attribute is binary (yes→1, no→0), so no becomes 0. The wind
direction is nominal, so it will become four binary attributes (one for each direction) where only the
attribute for north will be set to 1. For numerical values such as the Beaufort number (wind speed)
and temperature each value in a range [lower, upper] can be mapped onto the range [0,1]

valuenormalized =
value− lower
upper− lower

. (1.33)

The wind speed attribute has a lower bound of zero and an upper bound of 12. So, 3 is converted
using (3−0)/(12−0) = 0.25. The temperature attribute in this dataset has a lower bound of -20.0◦F
and an upper bound of 75◦F. So, 45◦F is converted using (45− (−20))/(75− (−20)) ≈ 0.68421. So,
the sample after conversion is the vector ~x =<precipitation, north wind, south wind, east wind,
west wind, wind speed, temperture> = <1, 1, 1, 0, 0, 0, 0.25, 0.68421>.

Once the sample has been converted, it can be used directly as ~x in the logistic regression model.
Putting this vector and the example model vector β =< 50,−20, 2.5, 5,−40, 5, 2.5, 20 > into Equa-
tion 1.19 gives a probability that the sample belongs to the walk class p ≈ 1.
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Algorithm 4 Single Feature Optimization

1: procedure LogisticRegression(X) . Build logistic regression model
2: ~β ←< β0, β1, . . . , βD >=< 0, 0, . . . , 0 > . where D is the number of attributes
3: β′0 ← OptimizeCoef(X,β, 0) . Compute bias factor
4: AUCbest ← ScoreCoef(X, ~β, ~β′, 0)
5: repeat
6: ~β′ ←< β′0, β

′
1, . . . , β

′
D >=< 0, 0, . . . , 0 >

7: for all attributes d ∈ X do
8: β′d ←OptimizeCoef(X,β, d)
9: end for

10: AUCmax ← 0
11: for all d ∈ D do
12: AUCnew ←ScoreCoef(X, ~β, ~β′, d) . Compute AUC with βd replaced by β′d
13: if AUCnew > AUCmax then
14: AUCmax ← AUCnew
15: dmax ← d
16: end if
17: end for
18: βd ← β′dmax

19: until AUCmax ≤ AUCbest
20: return β . The model vector
21: end procedure

Algorithm 5 Optimize Coeffcient

1: procedure OptimizeCoef(X,β, d) . Optimize a Single Model Coefficient
2: βd ← 0
3: while δL

δβd
> ε do

4: β′d ← βd −
(
δL
δβd

/ δ
2L
δβ2

d

)
5: βd ← β′d
6: end while
7: return βd . Single element of model vector
8: end procedure
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1.3.10 Model Evaluation

When evaluating machine learning models, a variety of quantitative metrics are commonly used, each
with their strengths and weaknesses [36, 16]. Among these are accuracy, recall, F-score, precision,
AUC [37], Youden’s index, likelihood values, and Discriminant Power.

Many evaluation metrics are based on the contents of the confusion matrix generated by running
a test set of data (of size Ntest), that was not used in training the model, through the model and
comparing each sample’s actual label to the label assigned by the model. Assuming a model produces
outcomes that are either positive (i.e. the sample belongs to the class being learned) or negative,
(i.e. does not belong to the class), each sample will fall into one of four categories. Samples that a
model assigns to the class being learned are said to be positive results, those samples that actually
belong to the class are true-positives (TP), those that do not belong to the class are false-positives
(FP). Likewise samples that a model does not assign to the class are said to be negative results,
those samples that actually belong to the class are false-negatives (FN), those that do not belong to
the class are true-negatives (TN). The number of samples in each of these categories make up the
confusion matrix are shown in Table 1.3.

actual \ model positive negative
positive TP FN
negative FP TN

Table 1.3: Confusion matrix

Using the values in the confusion matrix, common evaluation metrics can be computed as follows.
Accuracy is the ratio of correctly classified samples (TP + TN ) to the total number of test samples
(Ntest)

accuracy =
TP + TN

Ntest
. (1.34)

The error rate is the ratio of the incorrectly classified samples (FP + FN) to the total number of
samples,

error =
FP + FN

Ntest
= 1− accuracy . (1.35)

Recall (also referred to as sensitivity) is the ratio of true positives to the sum of the true positives
and the false negatives (that is the ratio of true positives to the total number of actual positives),

recall =
TP

TP + FN
. (1.36)

Specificity which gives the percent of negative samples that were correctly classified, is computed as

specificity =
TN

FP + TN
. (1.37)

Precision gives the percentage of positive results that were actually correct, is computed as

precision =
TP

TP + FP
. (1.38)

F-score (or F-measure) uses a scalar parameter β (which has nothing to do with the vector ~β in
logistic regression). The β parameter is used to tune the preference for precision (β > 1) or recall
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(β < 1). The F-score is computed using

F-score =
(β2) · precision · recall
β2 · precision+ recall

. (1.39)

A slightly more obscure metric Youden’s Index [16] focuses on a classifier’s ability to avoid failures,
and is computed as

γ = recall − (1− specificity). (1.40)

Higher γ values are better. Discriminant Power [16] is typically used only on feature selection, and
measures a model’s ability to separate positive and negative samples. It is computed using

DP =
√
3
π (logX + log Y )

X = recall/(1− recall)
Y = specificity/(1− specificity).

(1.41)

The Area Under the ROC Curve (AUC) is a measure that compensates for uneven ratios of positive
and negative samples in the test dataset. To compute AUC, the receiver operator characteristic
(ROC) curve is constructed, the AUC is then the area under that curve,

AUC =

∫ 1

0

ROC(Xtest), (1.42)

where ROC(x) represents the Receiver operating characteristics (ROC) curve [38]. To construct
an ROC curve, all of the samples in the test dataset are run through the mode to get a predicted
probability. Each of the unique probabilities are then used as thresholds for specificity for determining
the positive versus negative classification. If the prediction is greater than of equal to the threshold,
the sample is considered a positive, if it is below the threshold, it it considered to be negative. This
will lead to some negative samples being false positives at lower thresholds, and some positive samples
being false negatives at higher thresholds. The sensitivity at each threshold is then equivilant to the
recall value (Equation 1.36). The samples in Table 1.4 were assigned predicted values using a logistic
regression model β =< 1.4583,−0.2797, 0.1567, 0.0548,−0.5301, 0.3188,−4.8885, 0.4227 > computed
using Weka [39]. Using this test dataset, a receiver operator characteristic (ROC) curve can be
constructed. Using each of the unique values in the predicted probability column (P(Class=walk))
as specificity values, a set of points in ROC space (1− specificity , sensitivity) can be found, as shown
in Figure 1.2. These points approximate the ROC curve, the area under this curve can easily be
obtained using the trapezoidal method giving an AUC of 0.631.

AUC has been criticized for being overused by researchers [15], specifically that reporting only the
AUC obscures the shape of the ROC curve which is needed to pick an appropriate specificity for
using the model.

To apply many of the other common metrics, a threshold for determining a positive prediction must
be chosen. For simplicity, a threshold of 0.5 will be used. That is any sample where the model says
P (Y = walk) ≥ 0.5 will be assigned to the class ‘walk’. Using this threshold gives 7 true positives, 1
false positives, 0 false negatives, and 2 true negatives. This can be represented as a confusion matrix
as shown in Table 1.5.

Using these numbers several metrics can easily be computed.

• Accuracy is (TP + TN)/Ntest = (8 + 7)/20 = 0.750

• Error is (FP + FN)/Ntest = (3 + 2)/20 = 0.250
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1 2 3 4 5 6
Beaufort Temperature Actual Prediction

Precipitation Wind number (◦F) Class P(Class=walk)
no north 0 19.65 walk 0.857
yes south 8 19.71 drive 0.136
yes west 4 -14.65 drive 0.473
yes north 8 31.01 walk 0.155
no east 4 44.10 walk 0.397
no east 4 -16.45 drive 0.335
no west 6 1.83 drive 0.361
yes west 2 -3.18 walk 0.681
no south 0 20.32 drive 0.845
no west 1 0.45 walk 0.812
no east 2 37.99 walk 0.592
no west 6 4.24 drive 0.364
yes west 1 63.48 walk 0.812
no north 4 54.43 walk 0.579
no west 0 53.35 walk 0.891
no south 0 10.82 drive 0.839
no east 1 27.10 drive 0.675
yes south 2 39.76 walk 0.665
no north 6 49.85 drive 0.373
no south 6 -1.79 drive 0.299

Table 1.4: Example Test Dataset

actual \ model positive negative
positive 8 2
negative 3 7

Table 1.5: Confusion matrix for test data using a threshold of 0.5
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Spec. TP FN Sens.
0.000 10 0 1.000
0.136 10 0 1.000
0.155 9 1 0.900
0.299 9 1 0.900
0.335 9 1 0.900
0.361 9 1 0.900
0.364 9 1 0.900
0.373 9 1 0.900
0.397 9 1 0.900
0.473 8 2 0.800
0.579 7 3 0.700
0.592 6 4 0.600
0.665 5 5 0.500
0.675 5 5 0.500
0.681 4 6 0.400
0.812 2 8 0.200
0.812 2 8 0.200
0.839 2 8 0.200
0.845 2 8 0.200
0.857 2 8 0.200
0.891 1 9 0.100
1.000 0 10 0.000
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Figure 1.2: Specificity and sensitivity for example data (left) and a plot of the ROC curve (right).

• Recall is TP/(TP + FN) = 8/(8 + 2) = 0.800

• Precision is TP/(TP + FP ) = 8/(8 + 3) = 0.727

• Specificity is TN/(FP + TN) = 7/(3 + 7) = 0.7

• Youden’s Index is recall − (1− specificity) = 0.8− (1− 0.7) = 0.5

Computing the discriminant power is bit more complicated. First X and Y must be found, X =

0.8/(1 − 0.8) = 4 and Y = 0.7/(1 − 0.7) ≈ 2.333. The discriminant power is then
√
3
π (log 4 +

log 2.333) = 0.5348.

Due to the numeric nature of probability estimates, metrics such as root mean squared error (RMSE)
can be used to give an estimate of how far off the estimates are from actual. To compute RMSE
all of the positive samples are assigned the value one (ci = 1), and all of the negative samples are
assigned the value zero (ci = 0). RMSE can then be computed as shown in Equation 1.43, where pi
is the model’s prediction, and N is the total number of samples in the test dataset.

RMSE =

√√√√ 1

N

N∑
i=1

(pi − ci)2 (1.43)
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Since RMSE for a perfect model (i.e., one that guesses 1 for all positive samples, and 0 or all negative
samples) is zero, 1 − RMSE is used to for consistency with other metrics where higher values are
better.

In much the same way that accuracy and error measure the same quantity (error = 1− accuracy) a
similar measure can also be devised using the per sample accuracy (i.e., 1− error), in the same way
RMSE uses the per sample error. This gives a measure I refer to as root mean squared accuracy
(RMSA). At first glance this seems like it should just be 1 − RMSE, however due to the squaring
of the accuracy which is at most one accuracy2 ≤ accuracy, small decreases in accuracy for a sample
can have larger impacts on the overall RMSA. To compute RMSA all of the positive samples are
assigned the value one (ci = 1), and all of the negative samples are assigned the value zero (ci = 0),
as in RMSE. RMSA can then be computed as shown in Equation 1.44, where pi is the model’s
prediction, and N is the total number of samples in the test dataset.

RMSA =

√√√√ 1

N

N∑
i=1

(1− |pi − ci|)2 (1.44)

RMSA is also the square root of the Brier score [40].

This is by no means an exhaustive list of metrics, however this sampling of them indicates that
collecting enough data to create a confusion matrix for each model is sufficient to compute most of
them. In particular, only non-parametric model quality metrics are considered in this study. This
eliminates measures such as F-score, which is dependent on the β parameter.

1.3.11 Overfitting

A common problem in machine learning is overfitting. Overfitting occurs when the model produced
during the training phase learns the dataset itself and not the underlying relationships within the
dataset. As a result, the model does not predict unseen samples as well as it should. To deal with
this, machine learning methods employ different methods.

L2 regularization

In logistic regression, as in many other machine learning techniques, overfitting is reduced by adding
a penalty to the loss function. One such penalization mechanism is L2-regularization, which was used
in the original logistic regression algorithm [20] used in this study. In particular L2-regularization
penalizes coefficients of β with large absolute values by adding a penalty that is proportional to the
the length of the model vector ~β [41]. This is accomplished by adjusting the log-likelihood function
L(~xi, ~β, yi) to be

Lλ(~xi, ~β, yi) = L(~xi, ~β, yi)− λ||β||2 (1.45)

The first and second derivatives of the log-likelihood become,

δLλ
δβd

=

(
n∑
i=1

xi,d ·
(
yi − fd(~xi, ~β, βd)

))
− 2λβd (1.46)

and
δ2Lλ
δβ2
d

=

(
n∑
i=1

(xi,d)
2 · fd(~x, ~β, βd) ·

(
1− fd(~x, ~β, βd)

))
− 2λ (1.47)

.
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Pruning

In tree induction, pruning is employed [42, 43] to remove parts of the tree that do not classify
samples well. Pruning is done by applying the model to the validation set, then finding places where
removing leaves gives a tree that scores higher on the chosen metric on the vlaidation set than the
model did with the leaves included. Reduced error pruning [44] is employed in this study to counter
overfitting. However, as is evident from model score vs time graphs in Chapter 4, the pruning may
greatly decreases the model quality for unseen samples in certain domains.

1.3.12 No Free Lunch Theorem

A No Free Lunch Theorem (NFL) generally says that there is no universally optimal way to solve
all problems within a domain. For supervised machine learning there is an NFL that essentially
states that no single algorithm can be optimal for all datasets [8]. More specifically, the average
performance of any machines learning algorithm over all possible learning tasks is the same as any
other machine learning algorithm [45]. At first glance this would indicate that attempting a study of
this sort is doomed to fail. However, the NFL for supervised learning only applies a priori, so if the
dataset can first be evaluated, it may be possible to determine from its properties which machine
learning algorithms will work best. Several previous studies such as Michie et al. [46], Ali and Smith
[47], and to a lesser extent Perlich et al. [7] all indicate that there are learnable properties of datasets
that can inform which algorithm(s) should work well for a given dataset.

Additionally the concept of meta-learning has been proposed [48, 45] which goes beyond simply
recommending the best algorithm for a task and turns the problem into a sort of planning task for
choosing different aspects of the learning process and fine tuning of hyper-parameters. Many of the
decisions made during meta-learning are done based on the properties of the datasets themselves.
This study however will stop short of planning based meta-learning, and will instead focus on
recommending the best parallel algorithm for a dataset given a cluster and a CPU-time budget.

1.4 MapReduce

The MapReduce [49] programming model simplifies many aspects of writing programs for large
clusters by simplifying synchronization and communication, hiding most of it from from the pro-
grammer entirely To accomplish this simplification, a MapReduce program consists of multiple pieces
of sequential code that communicate by passing key/value pairs between each other. The run-time
system handles the passing of key/value pairs between the correct pieces of sequential code based on
the keys, as well as scheduling when to start each sequential chunk. MapReduce run-time systems
also typically provide a distributed filesystem or a mechanism for distributing files across the nodes
to provide the initial input for the MapReduce jobs.

A MapReduce program consists of at least three sequential pieces of code, a main driver, a mapper
and a reducer. The main driver performs basic setup of the runtime system and launches the
individual MapReduce job. A MapReduce job is launched from the main driver and consists of
a map phase and a reduce phase. The main driver typically also has a mechanism to broadcast
configuration information, before a job is initiated, to all of the mappers, reducers, or other pieces
of code. Once a MapReduce job is started, the main driver typically sits idle until the final output
is available.
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The mapper’s main task is to split the input into individual independent sub-problems. In the map
phase the input is read from disk, processed and turned into a set of key/value pairs which are sent
back to the run-time system, which in turn passes them to reducers.

The reducer’s task is to solve those sub problems and pass their results back to the main driver. In
the reduce phase a reducer is given all of the values for a given key and processes them further. Each
reduce task then emits new key/value pairs that are sent back to a central collection point where
they can be dealt with by the main driver. If there are more keys than reducers, each reducer may
have to process multiple independent keys.

1.4.1 Tree Induction via MapReduce

In the PLANET tree induction algorithms [21], there are two possible MapReduce jobs that divide
the problem into independent sub-problems in different ways.

The first MapReduce job which is used early in the execution is used for picking a splitting criteria
for a single node in the tree. In this MapReduce job, the mapper reads each individual sample,
passes it down the current tree model until it reaches a leaf node. If the sample reaches the node
that is being split, a key/value pair is created per attribute. In each pair, the key is an attribute
identifier and the value is the element of the sample for the corresponding the attribute along with
the sample’s class. In the reduce phase, each reducer searches for the best split point for the key’s
attribute and emits a key/value pair where the key is the attribute identifier and the value contains
a description of the chosen split along with a score for that split. The main driver then takes the
splits from all of the reducers and picks the best attribute split point based on the returned scores.

The second MapReduce job which is used later in the execution is capable of splitting all of the
leaves in the tree as a single job. In this MapReduce job, the mapper again reads each individual
sample and passes it down the current tree until it reaches a leaf node. However, all of the samples
are converted into key/value pairs where the key is the leaf node’s identifier and the value is the
entire sample including its class. The reducer then picks the best split point for all of the samples
that reach the given node. In this case, each reducer must examine all of the features in all of the
samples it’s given, instead of just a single feature as in the first MapReduce job. The main driver
then updates the model by converting the newly split leaves into internal nodes and adding new leaf
nodes to the tree.

The first splitting method has the most available parallelism when there is a large number of features
in the dataset, but performance degrades as the fraction of total samples that reach the node being
split decreases. The second method has the most available parallelism when there are a large number
of leaves in the tree.

The main driver program starts with an empty model, and iteratively calls one of the MapReduce
jobs until no split points are returned or all split points are rejected by the main driver. This can
occur due to height limits, insufficient samples reaching a leaf, or all of the samples belonging to the
same class. Picking which MapReduce job to use each iteration is therefore the responsibility of the
main driver program.

Bagging via MapReduce

When doing bagging, as described in Section 1.3.6, each sample is assigned to a given tree for all
rounds of training. This is a tricky thing to do in MapReduce, especially when running with variable
numbers of mappers. To accomplish this, each sample was tagged with a unique numeric identifier
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when the dataset was split across the mapper nodes. For simplicity, the identifier is based on the
order of the samples in the respective train, validation, or test input files. Since the identifiers are
based on their position in the files after being split into train, validation and test sets, the assignment
to trees is slightly more random than if the pre-split positions were used. This unique identifier is
then used to assign the sample to the correct tree in each iteration of training.

Typically when bagging is done in serial, the samples are assigned to individual trees for training
by randomly sampling the training set with replacement. Thus a sample may be used by multiple
trees for training. Due to the structure of MapReduce algorithms, sampling with replacement was
deemed too complicated for this study. Instead the samples are assigned to the trees in a round-robin
fashion. Sample j is assigned to tree i according the the formula i = j mod N , where N is the
number of trees.

Each round of training a bagged model uses the second method for splitting nodes as described in
Section 1.4.1, where every leaf is potentially split each iteration. In the first iteration, the root of
each tree (which is also that trees only leaf) is split using all of the samples assigned to that tree.
In subsequent iterations all of the samples are run through their respective trees until they reach a
leaf, at which point they are mapped using a key that includes both the tree identifier and the leaf
node identifier. As in regular tree induction, each reducer then finds the best split point for each
leaf and passes the result to the main driver. Splitting continues until no nodes are split.

Boosting via MapReduce

In boosting, the samples are assigned weights that are adjusted after each stump is trained. For a
MapReduce algorithm this presents a difficult challenge as there is no means to retain weights across
iterations without using additional hacks such as a central database or recording the weights to the
local disk. Using a central database would introduce more complexity than I was willing to consider,
and recording the weights to the local disk would be problematic if advanced features such as data
replication were enabled, as each iteration, the mapper could switch from one node to another that
has the same samples, but not the weight data.

To solve the sample reweighting problem, each iteration all of the weights are recomputed from
scratch. Everytime a mapper loads a sample from the training file, it is assigned a weight of 1/N
where N is the number of training samples. It is then passed through each stump in the current
model, after each model, the score is updated according to Equation 1.11. At first glance this seems
like it would be a prohibitively expensive operation, however the time required for each sample is
O(h ·k) where h is the maximum height of a stump, k is the number of stumps in the current model.
If one considers the latency involved in loading a weight from disk or over the network, each of which
are typically on the order of milliseconds, the current model would have to be extremely large in
either height or number of stumps to exceed 1ms (a typical network latency) to reweight a sample.

To build a boosted stump model using MapReduce, an additional step must be added. In order the
determine the initial weights of the samples (1/N), the number of samples N must be determined.
So before the first stump can be trained there is a preliminary MapReduce phase that simply counts
all of the samples. Once the number of samples is know, training of the first stump progresses using
only the first splitting method described in Section 1.4.1. Since boosted stumps typically have very
few leaf nodes and the entire training set is used each iteration, this should provide more parallelism
than the other splitting method. When the first stump is fully trained, typically by hitting its
height limit, a reweighting MapReduce job is used to compute the total error in the training set
(ε in Equation 1.11). Using the ε value, the new stump is assigned a weight and added to the
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boosted model. Additional stumps are added to the model in the same way until either a maximum
number of stumps is reached or ε reaches 0 (perfectly classifies test training dataset) or 0.5 (further
improvement is impossible).

1.4.2 Logistic Regression via MapReduce

In the Single Feature Optimization MapReduce logistic regression algorithm [20], there are again
two types of MapReduce jobs.

The first type of MapReduce job computes coefficients of ~β using Newton’s method. In this MapRe-
duce job, the mapper reads samples from the training dataset, computes the predicted value p for
the sample and produces key/value pairs where the key is a attribute identifier and the value is the
sample’s class along with information additional information that is needed in the Newton’s method
computations (either histogram info or the value of ~β ·~x). In the reducer, which gets all of the value
for a particular attribute, a new coefficient for that element in ~β is computed using Newton’s method
as described in Section 1.3.8. The reducer then emits a key/value pair where the key is again the
attribute identifier and the value is the new coefficient value.

The second type of MapReduce job scores the candidate coefficients computed in the first MapRe-
duce. In this MapReduce job, the mapper reads samples from the validation dataset and computes
the new predicted value using each of the models that would result by adding one of the candidate
coefficients computed in the first MapReduce job. The mapper then emits a set of key/value pairs
where the keys are attribute identifiers and the values are the actual class and the values predicted
by the model with the corresponding candidate coefficient added. The reducer then takes all of the
predicted values and actual values and computes the AUC for each candidate model, as described
in Section 1.3.10. The reducer then emits a key/value pair where the key is the attribute identifier
and the value is the candidate element of ~β and the AUC. The main drive then adds the coefficient
that gives the best AUC to the current model.

The main driver uses both types of MapReduce jobs in sequence to generate sets of candidate
coefficients, score those coefficients and update the model until the scores no longer improve.

1.5 Evaluated Run-time Systems

Several MapReduce run-time systems were considered. These systems were informally compared
based on their relative run times of an implementation of an iterative machine learning algorithm
(logistic regression) discussed in Section 2.2.1.

1.5.1 Hadoop

The first run-time system considered was Hadoop [50] (versions 0.20.2 and 0.21.0), which attempts
to provides similar features to the MapReduce system used by Google [49], and is very popular
due to its open source nature [51]. However, using a MapReduce job that only collected timestamp
information during the map and reduce tasks, it was determined that Hadoop required at least 28
seconds to start each MapReduce phase, meaning it was not well suited for iterative algorithms such
as the logistic regression method being considered which has two MapReduce phases per iteration
an may need to run many iterations.
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There is a machine learning library Mahout [52] which implements several machine learning al-
gorithms using the Hadoop run-time system. However an examination of the machine learning
algorithms provided indicated they are insufficient for the purposes of this study. While Mahout
does have implementations of logistic regression and tree induction, the focus of this research is a
comparison of the SFO [20] and PLANET [21] algorithms with particular emphasis on the inter-
mediate models produced during training. Additionally, a comparison of SFO and PLANET with
Mahout would be interesting, but it beyond the scope of this research.

1.5.2 HaLoop

The second run-time system investigated was HaLoop [53], which is a variant of Hadoop with
extensions to facilitate faster iterative execution speed. However in testing the speed improvements
of HaLoop over Hadoop were at best 20% for small training sets and HaLoop was far slower than
Hadoop for larger training sets and for very large inputs HaLoop failed to finish. The main issue
was related to HaLoop implementation of a local on-disk cache of key-value pairs, which for large
input sets ran the compute nodes out of disk space.

1.5.3 Twister

A third MapReduce run-time system considered was Twister [54] (version 0.9). Based on a published
report it was comparable to MPI in terms of execution speed [55] for iterative machine learning
algorithms such as k-means. Twister also seemed like a good options for iterative algorithms such as
SFO and tree induction. Testing using the logistic regression implementation showed that Twister
was in fact much faster than Hadoop and HaLoop for iterative algorithms. Twister has been criticized
for not having fault tolerance like Hadoop [51]. However, Twister can rerun an iteration if it fails.
While this is not as fine grained as Hadoop’s per task restarting, the length of a typical iteration in
tree induction and logistic regression in Twister can be less than the 28 seconds of start up time per
job (with several job per iteration) needed when using Hadoop. Thus rerunning an entire iteration
is not a huge penalty compared to the start up costs of a Hadoop job.

1.5.4 GraphLab

Another run-time system is GraphLab [56], was specifically developed for machine learning on clus-
ters. Since GraphLab uses an even more restrictive programming model than MapReduce, im-
plementing algorithms found in the literature such as SFO and PLANET, which are specifically
MapReduce, would have added a layer of complexity. It was not readily apparent if GraphLab
allows for the implementation of anytime algorithms as needed for the proposed research.

1.5.5 Final Choice

Given the speed advantages of Twister over Hadoop and HaLoop, Twister was the obvious choice.
GraphLab already has many algorithms already implemented, however it is not readily apparent
if GraphLab could be instrumented and made to report intermediate models that this research
required. Therefore, Twister was chosen as the fastest option that offered all of flexibility required.
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1.6 Literature Review

1.6.1 Empirical Studies

Many empirical studies of machine learning techniques have been done using a wide variety of data
sets over the last several decades. This section will discuss the more important ones in chronological
order.

In 1989, Mingers examined the effects of different feature selection [31] and pruning [42] methods in
tree induction. To examine the different feature selection methods four datasets were used. In that
study, a total of 11 feature selection methods were tested, ten actual methods and a random one.
All of the trees where pruned using Breiman’s error complexity method. Each datasets was split
into 70% training and 30% test nine different ways, the results over those nine unique splits where
then combined. The results reported included the size (number of leaves) and accuracy of both the
pruned and unpruned trees. One notable result is that the different selection measures didn’t have
any measurable effect on the accuracy of the trees, before or after pruning. The accuracy was also
not significantly different than selecting attributes randomly. The selection measures did have an
impact on the size of unpruned trees however.

To examine the efficacy of different pruning methods and possible interactions with goodness of split
measures, Mingers [42] examined five pruning methods with four different goodness of split measures,
for a total of 20 configurations. Each of five datasets were split nine different ways into 60% training,
20% validation (used in certain pruning algorithms), and 20% test. The results are reported as tree
size (number of leaves) and accuracy. Critical value, error-complexity, and reduced-error pruning
methods were reported to be among the best, and pruning typically improved accuracy by ≈ 25%.
One particularly interesting comment on the topic of interactions between goodness of split measures
and pruning method, “Equally noteworthy are those differences and interactions which were not
significant.” Specifically, the goodness of split measure doesn’t affect the accuracy improvements
during pruning. There was also no apparent interaction between goodness of split measure and the
datasets, with respect to model accuracy. Both of these non-results are consistent with Minger’s
other study which indicated that the goodness of split measure only significantly affects the size of
the tree.

While Mingers’s results show the importance of pruning, and insignificance of feature selection during
the training process, the small number of datasets used makes it hard to tell if these results are a
valid generalization of the methods studied. It is also uncertain if these results will hold for much
larger datasets.

Later in 1995, the StatLog project by King et al. [10] compared 17 different machine learning
algorithms using twelve datasets. While this was a very ambitious project and lead to interesting
results, those results are now quite dated and two decades of further improvements in machine
learning require such studies to periodically be carried out. Also, compared to later studies twelve
datasets is fairly small. The primary results of this study are that no one algorithm was all around
better than the rest. However, depending on the metric used and certain properties of the datasets,
some of the algorithms tended to do better than others.

Quinlan [57] primarily examined the effects of bagging and boosting as model improvement tech-
niques. As such, it only used three algorithms, C4.5, C4.5 with bagging, and C4.5 with boosting. It
did however use a larger number of datasets – 27 – in the comparison, many more than in previous
studies. The only metric used for comparison was percent error. However a win-loss ratio over a
10-fold cross validation is also reported.
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Provost and Fawcett [37] in 1997 pointed out that accuracy isn’t the best metric to use in some
cases, and proposed the use of ROC curves to express the quality of models. While ROC curves are
useful, much of the machine learning community has focused on reporting only AUC, which is not
as informative. In recent years this trend has been criticized by some researchers [58, 15].

Esposito et al. [59] examined various methods of pruning decision tree to reduce overfitting, six
methods in all. These methods are: reduced error pruning (which was used in this study), pessimistic
error pruning, minimum error pruning, critical value pruning, cost-complexity pruning, and error-
based pruning. To compare the pruning methods, 14 datasets were used. The metric used to compare
pruning methods was percent error.

Domingos and Pazzani [60] focused primarily on the circumstances in which bayesian classifiers are
optimal, but also compared bayes to four other learners, including C4.5, using 28 datasets, but only
using accuracy as a metric.

In 2000, Lim et al. [11] examined 33 algorithms using 16 different datasets. The 16 datasets were
used both as is, and with additional noise added, giving a total of 32 total datasets. This study
is notable in that it is one of the rare machine learning studies that reports both the quality of
models produced, but also the time it took to train the models, including how the training time
varies with training set size. It also presents a plot of model error rate versus model training time.
The algorithm that overall performed the best in this study was C4.5.

Perlich et al. [7], in 2003, compared C4.5 and logistic regression using learning curves with 36
different datasets. To generate learning curves they varied the number of samples used for training.
As the number of samples increased, the quality of the model typically improved. What is interesting
in their results is that for some datasets, the learning curves for logistic regression and C4.5 cross.
This indicates that for small numbers of samples, one algorithm is better, but for larger numbers of
samples, the other one is better. So, picking one algorithm based on a limited number of samples
may not be the best approach when the actual dataset is much larger. Unfortunately, this study did
not report any run time information in their comparison other than to say that logistic regression
sometimes took “an excessively long time to run even on moderately large datasets.”

Provost and Domingos [28] examined a variant of decision trees called probability estimation trees
(PETs), and found that many of the techniques used to improve accuracy in decision trees actually
harms the probability estimations made by PETs. Instead they found Laplace correction is a better
method for improving the accuracy of PETs. In their study they used 25 datasets to look at two
different tree induction methods which then had bagging or Laplace correction applied to them for
a total of five different tree building methods. The trees were then compared using AUC.

Caruana and Niculescu-Mizil [13], in 2006, performed one of the more recent comprehensive studies
of machine learning algorithms. They looked at ten algorithms: support vector machines, neural
nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged
trees, boosted trees, and boosted stumps. Many of the models were also calibrated using either Platt
Scaling or Isotonic regression to improve their predictions by mapping model output probabilities to
different values. To compare the algorithms they normalized and averaged 8 different performance
metrics over 11 different datasets. The metrics used were accuracy, f-score, lift-score, AUC, average
precision, precision/recall break-even point, root-mean squared error, and cross-entropy [61].

Ali and Smith [47], also in 2006, used eight algorithms over 100 datasets and used the results to
build a set of rules based on measured properties of the datasets that can be used to help pick
an algorithm for a given dataset. The algorithms used were all part of the [39] suite of learning
algorithms using default settings.

28



Data Unique
Author Year Model Types Sets Train/Validate/Test Splits
Mingers [31] 1989 Decision Trees (11) 4 70%/0/30% 9
Mingers [42] 1989 Decision Trees (20) 5 60%/20%/20% 9
King [10] 1995 12 algorithms 12 dataset dependent
Quinlan [57] 1996 Decision Trees (3) 27 90%/0/10% 10
Esposito [59] 1997 Decision Trees (6) 14 49%/21% (prune)/30% 25
Domingos [60] 1997 5 algorithms 28 67%/0/33% 20
Lim [11] 2000 33 algorithms 16×2 90%/0/10% 10
Perlich [7] 2003 Decision Trees (3) and

Logistic Regression (5)
36 variable/0/25%-33% 10

Provost [28] 2003 Probability Estimation
Trees (5)

25 67%/0/33% 20

Caruana [13] 2006 10 algorithms 11 5000/1000/rest 5
Ali [47] 2006 8 algorithms 100 10-fold cross validation 10

Table 1.6: Summary of empirical studies

Table 1.6 provides a summary of the various empirical studies. The first column lists the first author
of the study along with a citation. The second column gives the algorithms used, or how may if
there are too many to list. If the second column has a number in parenthesis, it indicates the total
number of variations of the algorithm used. Many other empirical studies have also been performed,
but have not been included here as they were too narrow in scope in terms of datasets used (e.g.
LeCun et al. [62] and Cooper et al [63]).

All of these studies, with the exceptions of Lim et al. [11] and StatLog [10], only looked at the
predictive abilities of models, and not how long it takes to train the models themselves. Very few
looked at properties of the datasets that may have allowed certain algorithms to outperform other. In
addition, none of them considered the quality of intermediate models produced during each iteration
of training.

1.6.2 Meta-Learning

While there have been many attempts to used meta-learning to automate, or at least assist in the
selection of machine learning algorithms based on the characteristics of datasets, most of them have
focused on development of new algorithms or only providing general guidelines. In addition to these
limitations of previous meta-learning studies, all of them focused on serial algorithms, and most did
not consider the time it takes to build models.

The StatLog [10] project in the mid-1990s was one of the first large scale comparisons of machine
learning algorithms undertaken. It compared 17 algorithms using 12 datasets. It concluded that
while no single algorithm is best on all datasets, it did provide some general guidelines for when
certain algorithms might do well. It did however stop short of attempting to build a model to do so.

MetaL [64] was a meta-learning project undertaken in Europe in the last 1990s and early 2000s.
However instead of building models to do algorithm selection, data mining on learning data with
the goal of generating better algorithms seemed to be the goal.

Kalousis [65], in 2002, attempted to use meta-learning to perform algorithm selection and provided
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much of the basis for the dataset characteristic measures used in this study.

Ali and Smith [47], in 2006, used 100 datasets and eight algorithms, along with a variety of dataset
characteristics to try to derive rules for when each algorithm might perform well.

Grąbczewski [45] provided a survey of meta-learning over the years, which mostly has focused on
the design of new algorithms that are tailored for an individual dataset than picking from a set of
existing algorithms.

1.6.3 Dealing with Large Datasets

There are a number methods that have been developed to deal with large datasets. One method is
to sub-sample the dataset (i.e. use just a portion of the total dataset) and build a model from that
sub-sample, methods based on this technique are described in Section 1.6.3. Alternatively parallel
techniques, as described in Section 1.6.3, can be employed to speed up processing of large datasets.
Additionally, a combination of sub-sampling and parallel techniques can be used, but that is outside
the scope of this research.

Subsampling

Provost and Kolluri [66], in 1999, presented a comprehensive survey of techniques being employed
at the time to deal with larger datasets for classification problems. One of their main conclusions
was that improving sampling methods was an important direction for future research. They also
concluded that there was little evidence to support the need for very large datasets for training. While
both of these conclusions may have been valid at the time, the rapid increase in data collection over
the last decade has produced huge datasets to be mined. Also, the work of Perlich et al. [7] in 2003,
showed that sub-sampling datasets can adversely affect the quality of model produced by various
algorithms. This suggests that if possible, using an entire dataset would be preferable.

Parallel Techniques

Chu et al. [18] investigated the speed of ten MapReduce machine learning algorithms on a ‘multi-
core’ machine (they actually used a symmetric multiprocessor (SMP) system) with up to 16 cores,
using ten different datasets. Since the purpose of this study was primarily to show speedup, they
do not report any model quality metrics. The speedup results reported are somewhat mixed. Most
algorithms had an average speedup around 14 on 16 nodes. However, for some dataset algorithm
combinations only showed speedups of 4 to 6 on 16 nodes. These speedup numbers may not be
indicative of performance on a distributed MapReduce environment, since and SMP machine will
have much lower latency when moving data between cores over a network. Also, due to the non-
distributed nature of this paper’s methods, it would be limited to dataset sizes that fit onto a single
compute node limiting its scale-ability.

Singh et al. [20] presented a MapReduce algorithm for logistic regression that uses forward feature
selection to build a model one attribute at a time, which the authors call Single Feature Optimization
(SFO), as described in Section 1.3.8. The SFO algorithm was compared to both IRLS and gradient
descent (GD) on relatively small datasets to validate that it chooses features in approximately the
same order as the other commonly used methods for feature selection. Strangely, model quality
metrics (e.g. accuracy, AUC, error rate) are not reported in any of the comparisons. SFO was then
run on much larger synthetic datasets to demonstrate the speedup that is achievable. However, by
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using different datasets for verifying correctness and showing speedup, the speedup numbers are
somewhat dubious. In fact the dimensions of the synthetic dataset were near optimal for showing
speedup, meaning the speedup reported should be taken as an upper limit, and not a typical ex-
pected value. The logistic regression algorithm used in this study is based on the SFO algorithm,
however the version used in this research included an extension for non-binary attributes described
in Section 1.3.9.

Panda et al. [21] presented a MapReduce for top down Tree Induction that can also train ensembles
(e.g., bagging), which the authors call PLANET. The single tree induction algorithm is described
in Section 1.3.4. Much like the SFO paper, the results presented for PLANET focuses primarily on
total execution time and does not report model quality metrics. No speedup numbers are reported
due to not running on a single node, which is a common problem with large scale datasets, as it
is sometimes impossible to fit larger datasets onto single compute node. This suggests that in the
future metrics other than classic speedup will be needed to show the scale-ability of algorithms that
can only be run in a parallel context. The execution times reported do indicate that the algorithm
should demonstrate reasonable speedup if the proper measurements are taken. However they only
used one dataset, the Ads dataset from the University of California Irvine (UCI) database, in their
testing, leaving it unclear if/how the run-time is affected by different datasets. The tree induction
algorithm used in this research is based on the PLANET algorithm, but will be used to build
probability estimation trees instead of classification trees.

Low et al. [56] present a system GraphLab which is a C++ API that uses graph based memory
model along with update functions that have limited access to data in the graph to train models
in a highly parallel fashion. The data model consists of a static graph where program state can be
stored either in nodes or on edges. However the update function will be passed a single node, and
can only access data on edges incident on that node and nodes on the other end of the edge. This
allows for the update function to be applied to any node that isn’t adjacent to another node that is
currently being updated. GraphLab was compared to Hadoop and MPI implementations for solving
three common machine learning problems: Netflix Movie Recommendation, Video Cosegmentation
(CoSeg), and Name Entity Recognition (NER). These tests showed that GraphLab’s run times are
comparable to highly optimized MPI code, and 40 to 60 times faster than Hadoop/Mahout in some
tests. The speedup numbers were mixed. Using 64 nodes, NER only achieved a speedup of 3. Netflix
recommendation was better, but only about 4.5. The CoSeg algorithm got the best speedup, but
was still only about 10. In addition to the run time and speedup results, price/performance curves
were also generated for running GraphLab on Amazon’s EC2 clusters, which show that GraphLab
is far better than Hadoop in terms of cost to run these algorithms. While this paper doesn’t
discuss logistic regression or tree induction, those algorithms have been implemented as part of the
GraphLab project as well.

1.6.4 Algorithm Selection and Hyper-parameter Optimization

The algorithm selection problem [67] has been studied for the last four decades [68]. In recent years,
there has been a lot of work in the area of algorithm selection and hyper-parameter optimization,
often referred to as meta-learning. This section provides a summary of recent work in these areas.

In the area of algorithm selection a number of approaches have been examined. In many cases the
characteristics of datasets are measured and used as features to build a meta-model. In other cases
the problem is treated as a search problem where the performance of the individual algorithms on
a dataset are compared to that of other datasets. Abdulrahman et al. [74, 75, 76] proposed an
iterative system (A3R) that selects algorithms by training models on small datasets to determine
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which algorithms might perform better than the previously selected best algorithm. Nural et al.
[77] used 114 datasets to build models to predict which regression algorithm among 15 tested would
perform well on the task given the characteristics of the datasets.

In the area of hyper-parameter optimization, much of the work has been focused on ways to find
optimal hyper-parameters more quickly, either by reducing the search space, or reducing the time
needed to sample points in the search space. Wistuba et al. [72] proposed an improvement to
sequential model-based optimization [73] for hyper-parameter optimization that prunes the search
space to avoid searching areas that likely will not yield improvements. Sanders et al. [78] examined
the problem of if hyper-parameter optimization is even necessary in some cases and found that unless
the models produced by default parameters is perfect, hyper-parameter optimization is probably
needed. Eggensperger et al. [80], created a set of benchmark datasets that can be used in place
of more computationally intensive benchmark datasets for hyper-parameter optimization. Sousa
et al. [81], similarly examined the problem of creating new datasets, however instead of speeding
up the hyper-parameter optimization process are modifications of existing datasets that give better
coverage of the dataset characteristic space to produce better algorithm selection models. Joy et
al. [82] presented an approach for hyper-parameter optimization where the data is split into small
chunks and Bayesian optimization is done on each chunk, in parallel. The results are then combined
into hyper-parameters that should work for the overall dataset. Horn et al. [83] explored a means
by which hyper-parameters can be optimized towards multiple goal simultaneously. van Rijn et al.
[84] empirically examined the effects of various hyper-parameters on the performance of algorithms.

Additionally there has been some work in the area of combining algorithm selection and hyper-
parameter optimization. Thornton et al. [69] provided an extension to the popular Weka [39]
utility that uses Bayesian optimization [70] techniques to both select an algorithm among the ones
provided by Weka and optimize the hyper-parameters. Smith et al. [71] proposed a system to
select algorithms and hyper-parameters using collaborative filtering using a landmark-like approach
to predicting similarity of algorithms instead of measured dataset characteristics.

Smith et al. [79] created the machine learning results repository (MLRR), which provides meta-
datasets for use in reproducible meta-learning research.

Brazdil et al. [48, 85] provide a more detailed overview of many of the recent developments discussed
above.

However most of this recent work in algorithm selection and hyper-parameter optimization has
focused on sequential algorithms. The hyper-parameter space for parallel algorithms can be much
larger with many more trade-offs in terms of model quality, reproducible, and speed.
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Chapter 2

Overall Experimental Design

2.1 Goal of this work

The primary goal of this research was to train a model to predict which algorithm will produce a
high quality model given a dataset’s characteristics, a number of nodes, and a time limit. To answer
this question, a variety of datasets are needed and models must be trained on a varying number of
nodes recording the time needed to train each model. The datasets chosen for a preliminary proof
of concept were chosen based on the results of Perlich et al. [7] such that some of them should favor
logistic regression and other will favor tree induction.

To examine the differences in parallel algorithms for machine learning, two MapReduce algorithms
for supervised machine learning, SFO [20] and PLANET [21], found in the literature, were imple-
mented. The MapReduce run-time systems that were considered are discussed in Section 1.5 and
the algorithms that have been implemented are discussed in Section 2.2.

2.2 Implemented Algorithms

All of the algorithms used in this study were implemented using the Twister [54] MapReduce API
and run-time system.

2.2.1 Logistic Regression

The first algorithm implemented is a MapReduce logistic regression algorithm single feature opti-
mization (SFO) [20], which uses forward feature selection. This algorithm was further enhanced to
allow non-binary attributes by using a two-dimensional set of bins, as described in Section 1.3.9.

2.2.2 Tree Induction

The tree-induction algorithm PLANET [21] was also implemented. The tree inducer also implements
Reduced Error Pruning [43, 42] to reduce overfitting. Boosting [33] and bagging [32] were also
implemented, but do not allow for pruning.
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2.3 Runtime Infrastructure

2.3.1 The mpi_wrapper

The Twister MapReduce run-time system makes several assumptions about a user’s access to the
nodes on which it will run. Among these assumption is that the user will be able to both log directly
into each compute node via secure shell (ssh) and copy files directly to each node via secure copy
(scp) [86]. One of the clusters that was used does not allow this type of direct access to the compute
nodes by regular users. As a workaround for the lack of direct access to the compute nodes, the
mpi_wrapper was created. The mpi_wrapper is a C program that uses the MPI [87] API, MPI
runtime, and a set of shell scripts, that together manage the transfer of files as well as starting and
stopping of both the Twister runtime system and individual MapReduce jobs. In addition to starting
the individual MapReduce jobs, the mpi_wrapper also monitored the progress of MapReduce jobs
via a heartbeat file that is periodically updated within each MapReduce job.

Before any jobs can be run, the mpi_wrapper needs to install and start the run-time system. The
run-time system consists of two components, ActiveMQ [88] which provides an overlay network that
is used by the other component, Twister, which provides the MapReduce environment and uses the
overlay network for communication.

Once the runtime system is started, it checks an input directory, for learning task files. So long
as task files are found in the specified directory they are executed in chronological order based on
the files’ timestamps. It is possible that a given task may produce more tasks. If any tasks fail
to produce valid output, the runtime system is restarted and the timestamp of the failed task is
updated to move it to the end of the line. A detailed description of what happens within each job
is provided in Section 2.3.5. If sufficient consecutive tasks fail, or all of the task files are exhausted,
the Twister runtime system is shut down and the mpi_wrapper exits.

2.3.2 Open Grid Scheduler

The cluster that required the creation of the mpi_wrapper used the Open Grid Scheduler (OGS) [89]
to queue, start, and stop jobs. OGS works by dividing the cluster into a set of slots (in this case a
slot was a single compute core), and assigning jobs to slots. Whenever there are sufficient free slots
for a waiting job, a job that can fit onto the system is assigned to those slots and started. If a job
completes, or is otherwise terminated, the slots it had been using are freed up for any waiting jobs
to use. It is also possible in OGS to have job dependencies where one job cannot start until another
job (or set of jobs) has finished.

2.3.3 SHIELD versus Hydra

Unfortunately, there is a bug that appears to be in an OGS component named hydra, that caused
random crashes, taking the MPI job it had launched with it. To counter this random crashing, a
system called SHIELD was developed (named for the fictional organization that fights against Hydra
in the Marvel superhero universe [90]). SHIELD is a script, that is run once when the mpi_wrapper
starts, that checks to see if there are remaining learning tasks to be completed. If there are any
remaining tasks, SHIELD makes use of the dependency system and queues a new identical MPI job
that will be allowed to start when the job that ran SHIELD terminates. That way, if the current
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Figure 2.1: Software layers involved in running a MapReduce job.

job dies for any reason, the other job will be in the queue waiting to take over. If there is no work
to be done, SHIELD does nothing, and the mpi_wrapper terminates immediately.

2.3.4 Plan N

In order to make more efficient use of a second cluster that did not have a queuing system capable
of assigning jobs to nodes, a custom job scheduler was needed. The Plan N scheduler is a very
rudimentary scheduler that subdivides the cluster into chunks of equal numbers of cores. MPI jobs
can be assigned to individual chunks, then as jobs complete, start new jobs to replace them. Between
runs, the number of cores in the chunks can be changed to meet the needs of the experiments being
run.

Figure 2.1 gives an overall picture of how mpi_wrapper fits into the software stack used. Each node
is running Linux as the operating system. The clusters used for this project either ran Open Grid
Scheduler (OGS) [89] or the custom built PlanN scheduler, which were responsible for scheduling,
starting, and stopping mpi_wrapper jobs running on the cluster. The mpi_wrapper would then
manage the Twister runtime system and work through the set of learning tasks it had been given.

2.3.5 Life-Cycle of a Model Training Job

A learning task file (or sub-job file) is a shell script file that can perform four essential tasks. Which
task is performed on a given run is determined by command line options. These four tasks are
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prelaunch, launch, score, and retire. Within each sub-job there is a unique set of variables that
specify the hyper-parameters to be used for that particular training task.

The prelaunch task prepares the input dataset by splitting it, if necessary, and copying it to the
appropriate directories on the compute node. In stock Twister, the prelaunch task would be handled
by a provided shell script that uses scp to copy the files. The launch task starts up the actual
MapReduce job with whatever hyper-parameters are needed for that sub-job. The score task then
goes through all of the models produced during training and scores them using the test portion of
the dataset. Finally, the retire task examines the output of the scoring task, and if it has finished
correctly, moves the unscored models file, the scored models file, and the sub-job file to a safe location
in a shared NFS directory.

2.4 Datasets

To train a model that will use the characteristics of datasets as attributes, a collection of datasets
is needed for training. This section describes both the datasets that were used for training the
algorithm selection model and the datasets that were used to test that model.

Table 2.1 summarizes the datasets used and gives their most basic characteristics. For each dataset
the total number of attributes, samples, and classes, as described in Section 1.3.1, are given, as well
as the target class for positive samples and the portions of this study the dataset was used. For
datasets that have non-numeric (e.g. nominal) attributes, the number of attributes shows both the
number with the non-numeric attributes and the number after conversion to all numeric (except
the class) attributes, if the number changes in the conversion. The class is counted as one of the
attributes. The “uses” column indicates which portions of this project the dataset was used in. A
full listing of measured characteristics for each dataset can be found in Appendix B.

2.5 Algorithm Selection Training Datasets

The datasets listed in this section are the datasets that were used to train the algorithm selection
model.

2.5.1 Ads

The Ads dataset is intended to train models to detect advertisements on websites. The attributes
describe the dimensions of an image, as well was words that appear in the link associated with the
image. The problem to be learned is whether or not the image is an ad. There are 3,279 samples
comprised of 1,558 attributes, three real attributes that describe the size and aspect ratio of the
image, the rest are binary and indicate if certain words or phrases appear in the link. The classes
for this dataset are “ad” and “noad”, the positive class used was “ad”. The dataset was included
primarily due to its number of attributes. This dataset is part of the UCI database [4] under the
name “Internet Advertisements”.
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Total Target
Name Attributes Samples Classes Class Uses

Abalone 9 / 11 4177 29 9 test
Ads 1559 3279 2 ad train

Adult 15 / 105 32561 2 > 50k train
Botswana 146 3248 14 9 test
Covertype 55 495141 2 1 train

Credit 16 / 44 653 2 + train
Example 5 / 8 1000 2 1 train
Example2 5 / 8 1000 2 1 train
German 21 / 62 1000 2 2 test
Heart 14 /16 270 2 1 test

IndianPines 201 10249 16 11 test
IntCensor 75 / 467 10108 4 1 train

IntShopping 104 / 258 7219 10 Never train
Intrusion 42 / 123 4898431 23 normal train

KSC 177 5211 13 13 test
Mushrooms 22 / 116 8124 2 e 2kr, train

PaviaU 104 42776 9 2 test
Pima 9 768 2 1 2kr, train

SalinasA 205 5348 6 12 test
Thrombin 139352 1909 2 A train

Table 2.1: Datasets used
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2.5.2 Adult

For the Adult dataset, the problem is to determine if a person’s income is >$50k per year. The 14
attributes are taken from census data with a total of 48,842 samples. There are two classes, “≤50k”
and “>50k”, the positive class used was “>50k”. This dataset was included due to unusual results
reported by Perlich et al. [7], where AUC and accuracy disagreed on which algorithm was better.
This dataset is part of the UCI database [4] under the name “Adult”.

2.5.3 Covertype

The Covertype dataset describes the types of trees that can be seen at the top of a forest based
on cartographic data. The 54 attributes mostly contain information about how the sun will hit each
sampled point and soil type data. There are seven classes in the original dataset, however two of
the classes make up 85% of the samples. So, just as Perlich et al. [7] did, all but those two classes
were filtered out. This reduced the number of samples from 581,012 to 495,141, and the two classes,
“Spruce-Fir” and “Lodgepole Pine”. This dataset was included due to its large number of samples
and the fact that Perlich et al. reported tree induction and logistic regression each outperforming
the other under certain circumstances. This dataset is part of the UCI database [4] under the name
“Covertype”.

2.5.4 Credit

The Credit dataset represents a problem relating to credit card applications. The 15 attributes
have had their original meanings obscured by meaningless symbols, the classes are simple “+” and
“-”. With only 690 samples, which becomes 653 after samples with missing values are removed, this
is one of the smaller datasets used. It was included due to having a variety of attribute types. This
dataset is part of the UCI database [4] under the name “Adult”.

2.5.5 Example

The Example dataset is a synthetic dataset created from the tree model shown in Figure 1.1, with
∼ 5% of the class labels randomly reversed. The learning problem in this dataset is to build a
model that can predict if a student should walk (positive) or drive (negative) to campus on a given
day based on the weather conditions that day. There are 1000 samples and four attributes that
describe the wind speed, wind direction, temperature, and precipitation. This problem was inspired
by an example problem described by Quinlan [29] and was created primarily to provide examples
for Chapter 1. It was included as part of the actual experiments to test a hypothesis that synthetic
data from a tree model will be more easily learned by a tree based learner than logistic regression.
This dataset is part of the digital appendices for this dissertation.

2.5.6 Example2

The Example2 dataset is similar to the Example dataset. The attributes are identical to Example.
The randomly assigned values for each sample are different and the labels are assigned based on the
logistic regression model given in Section 1.3.3. As in Example, ∼ 5% of the samples have had
their class labels reversed. This dataset is part of the digital appendices for this dissertation.
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2.5.7 IntCensor

The IntCensor dataset is based on a 1997 survey of internet users, conducted by Georgia Tech [5],
regarding their opinions on censorship on the internet. There are 10,108 samples, where the 75
attributes represent the answers to questions on the survey. There are four classes, which repre-
sent the options for “Opinions on Censorship”. The class chosen to be the positive class was “1”.
This dataset is available from Georgia Tech at https://www.cc.gatech.edu/gvu/user_surveys/
survey-1997-10/datasets/final_general.repl.

2.5.8 IntShopping

The IntShopping dataset is based on the same survey as IntCensor, however IntShopping
focuses on the online shopping habits of those surveyed. The 7,219 samples consist of 104 attributes
which represent the answers to the survey questions. The positive class for model training was
“Never”. This dataset is available from Georgia Tech at https://www.cc.gatech.edu/gvu/user_
surveys/survey-1997-10/datasets/final_use.repl.

2.5.9 Intrusion

The Intrusion dataset is from the 1999 KDD Cup1. Each sample represents a network connection,
where the 42 attributes describe aspects of the connection that may be useful in determining if the
connection is malicious. The class labels for the samples are either “normal”, or the name of a type
of malicious attack, for a total of 23 classes. The models trained on this dataset were attempting
to identify “normal” connections. Overall, this dataset has 4,898,431 samples. There is also an
additional test dataset with around 2 million samples that is intended to test models trained on
this dataset, however that testing data was not used. This dataset was chosen because of its larger
number of samples. This dataset is part of the UCI database [4] under the name “KDD Cup 1999”.

2.5.10 Mushrooms

The Mushrooms dataset represents the problem of determining if a mushroom is edible or poi-
sonous. The 22 attributes describe the color, smell, and structural components of the mushroom,
with a total of 8,124 samples. The classes are “e” for edible and “p” for poisonous. This dataset was
chosen for inclusion because it is well known to be an easy to learn dataset. This dataset is part of
the UCI database [4] under the name “Mushroom”.

2.5.11 Pima

The Pima dataset (sometimes referred to as the Pima Indians or Diabetes dataset) consists of 768
samples, each with eight attributes. The attributes describe medical information regarding a patient,
and the problem is to predict if that patient has diabetes or not. The classes are “1” (diabetic) and
“0” (not diabetic). Missing values in this dataset were represented with the value “0”. Rather than
remove the missing values or replace them with median or mean values, they were left as zero, a
common mistakes [91], that was discovered after all data collection was completed. This dataset was

1http://www.kdd.org/kdd-cup/view/kdd-cup-1999/
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included due to its small size, and because Perlich et al. reported that logistic regression produces
better models for it than tree induction. This dataset had previously been available from the UCI
database [4] under the name “Pima Indians Diabetes”, but has been removed.

2.5.12 Thrombin

The Thrombin dataset comes from the 2001 KDD Cup2, and consists of 1,909 samples, with 139,351
binary attributes and two classes. Each sample represents a chemical, and the attributes describe
the structure of the chemical. The two classes, “active” and “inactive”, indicate if that chemical is
able to bind to molecules involved in the clotting of blood. Of the 1,909 chemicals in the dataset,
only 42 are active. The original purpose of this dataset was not to identify which chemicals could
bind, but instead to identify which attributes (i.e., chemical structures) are important in the binding
process. This dataset was included due to its very large number of attributes.

2.6 Algorithm Selection Test Datasets

The datasets listed in this section are the datasets that were used to test the algorithm selection
model.

2.6.1 Abalone

The Abalone dataset’s goal is to simplify estimating the age of abalone. The eight attributes, for
each of the 4,177 samples, represent easily measured dimensions of an abalone. The class is the
number of rings in each abalone sampled, which can be used to calculate the age. The number of
rings chosen as the positive class was “9”, as it was the largest class. This dataset is part of the UCI
database [4] under the name “Abalone”.

2.6.2 Botswana

The Botswana dataset is based on satellite imagery taken of the Okavango Delta, in Botswana.
Each of the 3,248 samples represents a 30 meter by 30 meter pixel. Within each pixel there
are 145 attributes that represent a subset of the original 242 bands captured by the NASA EO-
1 satellite. The 14 classes are numbered 1 through 14 to indicate different types of land cover.
Class “9” was chosen among these, as it was the largest. This dataset is from the Computational
Intelligence Group at the Basque University http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes as the “Botswana” dataset.

2.6.3 German Credit

The German dataset attempts to determine if applications for credit should be approved or denied.
The 20 attributes provide financial and demographic data for 1000 people (samples), and the labels
“1” and “2”. The good class (1) was chosen as the positive class. This dataset also provides cost
matrix (an alternative scoring system for misclassifications), but that was not used. This dataset

2http://www.kdd.org/kdd-cup/view/kdd-cup-2001/
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was included due to its mix of attribute types, an alternative numeric only version was also provided
but was not used. Instead, the binorm version of the dataset was converted the same way as all
other datasets. This dataset is part of the UCI database [4] under the name “Statlog (German Credit
Data)”.

2.6.4 Heart Disease

The Heart dataset is intended to detect heart disease using basic demographic data and the results
of certain medical tests, for a total of 13 attributes. For the 270 patients sampled, the class labels
are either “1” and “2” indicating heart disease and no heart disease respectively. This dataset also
provides a cost matrix (an alternative scoring system for mistakes), but that was not used. This
dataset was included due to its mix of attribute types. This dataset is part of the UCI database [4]
under the name “Statlog (Heart)”.

2.6.5 Indian Pines

The IndianPines dataset is based on satellite imagery of a site in northwestern Indiana. Each of
the 10,249 sampled pixels contains 200 bands which are represented as numeric attributes. The
16 classes indicate if a given pixel is a type of structure, woods, or a specific type of crop. The
positive class was chosen to be class “11” (Soybean-mintill), because it has the most samples. This
dataset is from the Computational Intelligence Group at the Basque University http://www.ehu.
eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes as the “Indian Pines”
dataset.

2.6.6 Kennedy Space Center

The KSC dataset is based on aerial imagery of the Kennedy Space Center. It consists of 5,211
sampled pixels each with 224 bands, of which 176 bands were used to create attributes for each
sampled pixel. The samples are each assigned to one of 13 classes, numbered 1 through 13, in-
dicating types of land cover. The positive class chosen was class “13” because it contained the
most samples. This dataset is from the Computational Intelligence Group at the Basque Univer-
sity http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
as the “KSC” dataset.

2.6.7 Pavia University

The PaviaU dataset is based on aerial imagery of Pavia in northern Italy. The 42,776 sampled
pixels each consist of 103 bands. Each sample is assigned to one of nine classes numbered one
through nine and indicate what type of building material or vegetation is seen in that pixel. Class
“2” was chosen to be the positive class, as it was the largest. This dataset is from the Computational
Intelligence Group at the Basque University http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes as the “Pavia University” scene.
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2.6.8 Salinas-A

The SalinasA dataset is based on aerial imagery taken of the Salinas Valley in California. The
5,348 sampled pixels each consist of 205 bands. Each sample is assigned to one of six classes
indicating a type of crop in its corresponding pixel. The class that was chosen for the positive class
was class four, because it contained the most samples. This dataset is from the Computational
Intelligence Group at the Basque University http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes as the “Salinas-A” scene.

2.7 Ethical Concerns

In recent years there has been increasing concerns about the use of machine learning techniques in
ways that have started to result in serious consequences for real people [92]. To help bring attention
to ways in which machine learning can be misused, a recent controversial study attempted to train
a model to detect a person’s sexual orientation based on a photo of their face [93].

One application of machine learning that has garnered increasing attention has been the use of these
techniques in the criminal justice system [94, 95]. It is tempting to think that if human decision
makers are replaced by machines, that the implicit biases that humans hold will be eliminated
in those decisions. However, this blind faith in machines making decisions has lead to a sort of
computational bigotry, where machines are making racist or otherwise prejudiced decisions, that
humans accept as legitimate without question. Some of the systems used in the criminal justice
system have been shown to predict, incorrectly, lower recidivism rates for whites than non-whites.
These errors may not be due to flaws in the algorithms, but may instead be due to either the biases
in the training data, or the resulting models being used to answer questions that are subtly different
than what the data they were trained were meant to answer [96].

While none of the datasets used in this study tackle such controversial topics as sexual orientation
or recidivism, the Pima dataset has become somewhat controversial recently [97]. It has also been
removed from the UCI database since originally obtained for this project. The webpage that used
to contain the dataset does not offer an explanation for the removal, other than the simple message,
“Thank you for your interest in the Pima Indians Diabetes dataset. The dataset is no longer available
due to permission restrictions.”. This removal makes one wonder what lead to such a decision after
nearly three decades of availability. For these reasons, it is unfortunate, but unavoidable, that this
work is partially based on datasets (e.g, Adult, German, Pima, Heart) that are intended to
classify people.

2.8 Data Collection and Processing

The process of collecting data, building an algorithm selection model, and testing that model, was
divided into four phases. The first phase (Chapter 3) examined the hyper-parameters for each
learning algorithm to determine their relative effects on learning time and model quality with the
goal of eliminating any insignificant hyper-parameters. The second phase (Chapter 4) trained models
using a variety of hyper-parameters to find a set of hyper-parameters that produced the highest
scoring models. The third phase (Chapter 5) reran select iterations of the model training processes
on various numbers of compute cores to estimate the parallel performance of each algorithm on each
dataset. The fourth and final phase (Chapter 6) combined all of the data from phases two and
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three to build an algorithm selection model. That model’s predictions were then compared to actual
results from training models on datasets that were not used during phases two and three (i.e., the
datasets described in Section 2.6).
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Chapter 3

Phase 1: Determining Significant
Factors

The first problem to be solved in this study was to determine which hyper-parameters significantly
affected the model quality and run-time of each algorithm.

Due to the large number of factors and the resulting exponential growth of experimental complexity,
testing the effects of multiple values for all hyper-parameters for even a single dataset is intractable.
Therefore doing so for multiple datasets is out of the question. Thus a much smaller experiment was
performed, to determine which hyper-parameters warrant further study, to rule out hyper-parameters
that have statistically insignificant effects on the model quality and model training times.

In order to determine the significant hyper-parameters 2kr analysis [98] was performed using two
smaller datasets. Of the datasets that were chosen, one has a small number of features and samples,
but is notorious for being very difficult to build a model for (Pima) and another dataset that is a
bit larger but known to be fairly easy to build models for (Mushrooms).

3.1 2kr Experimental Design

In a 2k factorial experimental design the goal is to determine how much (as a percentage) of the
total variability of an output value (e.g. program run time) is caused by each of the k factors as
well as interactions between combinations of those k factors. Additionally, if the same experiments
are repeated for a total of r iterations (r ≥ 3), as in 2kr, it is possible to perform significance tests
on the variability to rule out insignificant factors.

In a 2kr design it is assumed that the response value that you are interested in is a weighted sum
of each of the factors and their interactions. For a three factor design, yij , with experimental
configuration i and repetition j is represented as

yij = q0 + q1xA + q2xB + q3xC + q4xAxB + q5xAxC + q6xBxC + q7xAxBxC + eij (3.1)

where q0 though q7 are the variability due to each subset of the three factors, and xA, xB , and
xC are -1 or 1 indicating if the high or low level is used in configuration i, and e represents the
experimental error.

A sign table as show in Table 3.1 is used to compute the variation due to each factor or combination
of factors. In the sign table, the first column, I, is all 1s. After the first column of all ones, the
pattern is identical to a little-endian k-bit counter enumerating all values from zero to 2k, where
the zero and one bits correspond to negative and positives ones respectively. The second column,
A, alternates -1 and 1 every row. The next column, B, alternates -1 and 1 at half the rate, two -1s
followed by two 1s. The third column, C, again halves the rate to four -1s followed by four 1s. This
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Sign Table (X) Measured values Error
I A B C AB AC BC ABC y ȳ e
1 -1 -1 -1 1 1 1 -1 (y11, y12, y13) ŷ1 (e11, e12, e13)
1 1 -1 -1 -1 -1 1 1 (y21, y22, y23) ŷ2 (e21, e22, e23)
1 -1 1 -1 -1 1 -1 1 (y31, y32, y33) ŷ3 (e31, e32, e33)
1 1 1 -1 1 -1 -1 -1 (y41, y42, y43) ŷ4 (e41, e42, e43)
1 -1 -1 1 1 -1 -1 1 (y51, y52, y53) ŷ5 (e51, e52, e53)
1 1 -1 1 -1 1 -1 -1 (y61, y62, y63) ŷ6 (e61, e62, e63)
1 -1 1 1 -1 -1 1 -1 (y71, y72, y73) ŷ7 (e71, e72, e73)
1 1 1 1 1 1 1 1 (y81, y82, y83) ŷ8 (e81, e82, e83)

2kq0 2kq1 2kq2 2kq3 2kq4 2kq5 2kq6 2kq7 Total
q0 q1 q2 q3 q4 q5 q6 q7 Total/2k

Table 3.1: Example sign table for 2kr

pattern continues until the final factor, which will always have the first half be -1s and the second
half will be 1s.

The columns labels with multiple letters contain the product of the values in the corresponding
columns. The column AB contains the products of the values in A and B. Column BC contains
the products of columns B and C. Column ABC contains the products of columns A, B and C.

The measured values for each experimental trial go into the y column. In 2kr the r repetitions for
the same configuration are averages to give an estimated actual values ŷ.

The variation due to each factor or combination of factors, the sum of each ŷ value multiplied by
the corresponding value in the sign table is give by

qj =
1

2k

2k∑
i=1

Xi,j · ŷi (3.2)

where Xi,j is the value at row i and column j in the sign table, and can be rewritten in matrix-vector
multiplication notation

1

2k
(
XT · ~y

)
= ~q (3.3)

.

3.1.1 Percent of Variation

For each factor, qj , the sum of square variation, SSqj , is

SSqj = 2k · r · q2j (3.4)

. The sum of squared error (SSE) is

SSE =

2k∑
i=1

r∑
j=1

e2ij (3.5)
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. The total sum of squares

SST =

 2k∑
j=1

SSqj

+ SSE (3.6)

is the sum of all the sum of square variation terms SSqj plus an error term SSE.

The percent of variation due to any individual factor or combination of factors is the ratios of the
sum of squared variation to the total sum of squares,

percentqj = 100% ·
SSqj
SST

(3.7)

.

3.1.2 Statistical Significance of Factors

The error for each experimental configuration i and repetition j is

eij = yij − ŷi (3.8)

.

To compute a confidence interval, the standard deviation of the variability due to random error is
needed for each factor. The standard deviation for the errors is

se =

√
SSE

2k(r − 1)
(3.9)

which is used to determine the standard deviation for each factor

sq0 = sq1 = qq2 = · · · = se√
2kr

(3.10)

.

In addition to the standard deviation, the t-value is needed. Given a normal distribution with a
mean of zero and standard deviation of one, such that the total area under that distribution from
−∞ to∞ is equal to one, the t-value gives the point where the fraction of area under the distribution
to the left of that point is equal to the confidence level. While t-values are typically looked up in a
t-value table, the values needed to compute a t-value, and therefore to look up the correct value in
a table are the level of confidence as a percentage (p), and the number of degrees of freedom (n).
Some t-value tables use α instead of p, in which case α = 1−p. A typical p value is 0.95, or α = 0.05.
However for a two sided confidence interval, α is divided by two. For a two sided confidence interval
with 95% confidence, p = 0.975 or α = 0.025. The degrees of freedom is 2k(r−1). For a three factor
design with three repetitions with 95% confidence, p = 0.975, and t = 23(3 − 1) = 8 · 2 = 16, the
t-value would then be 2.120.

Using the amount of variation due to a factor (qi), the standard deviation (se), and the t-value (t),
the lower and upper bounds of the confidence interval are

qi ± se · t (3.11)

. If the confidence interval for a factor includes zero within its range, that is if se · t > qi, the factor
is considered to be statistically insignificant.
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I A B C AB AC BC ABC y ȳ error
1 -1 -1 -1 1 1 1 -1 (2.18,

2.33,
2.15)

2.219 (-0.04,
0.11,
-0.07)

1 1 -1 -1 -1 -1 1 1 (2.03,
1.87,
1.91)

1.938 (0.09,
-0.06,
-0.03)

1 -1 1 -1 -1 1 -1 1 (1.79,
2.08,
1.98)

1.949 (-0.16,
0.13,
0.03)

1 1 1 -1 1 -1 -1 -1 (1.85,
2.08,
1.92)

1.951 (-0.10,
0.13,
-0.03)

1 -1 -1 1 1 -1 -1 1 (1.96,
2.17,
2.11)

2.079 (-0.12,
0.09,
0.03)

1 1 -1 1 -1 1 -1 -1 (1.96,
2.00,
2.11)

2.023 (-0.06,
-0.02,
0.08)

1 -1 1 1 -1 -1 1 -1 (1.95,
2.11,
2.17)

2.076 (-0.13,
0.03,
0.09)

1 1 1 1 1 1 1 1 (2.06,
1.89,
2.04)

2.000 (0.06,
-0.11,
0.04)

16.23 -0.41 -0.28 0.12 0.26 0.15 0.23 -0.30 Total
2.03 -0.05 -0.04 0.02 0.03 0.02 0.03 -0.04 Total/8

26721% 16.96% 8.14% 1.49% 6.94% 2.18% 5.42% 9.34% % of variation

Table 3.2: Sign table with example data.

3.1.3 2kr Example

To illustrate the 2kr experimental design, this section gives an example based on data collected in
this study.

In this example, data from learning a tree induction model for the Mushrooms dataset is used.
There are three factors, A) minimum number of samples needed to split a leaf node B) maximum
tree height C) maximum iterations, and each configuration was run for three repetitions. The
response value being examined is model training time (in seconds), the measured values are given in
Table 3.2. The measured training times for each repetition of the various configurations is given in
the y column. The ŷ column contains the mean of the y values. The error values are the difference
between ŷ and the corresponding yi,j values.
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Using the sign table, the variation for each factor is computed as

q0 = 1/23 · (ŷ0 + ŷ1 + ŷ2 + ŷ3 + ŷ4 + ŷ5 + ŷ6 + ŷ7)

= 1/8 · (2.22 + 1.94 + 1.95 + 1.95 + 2.08 + 2.02 + 2.08 + 2.00) = 2.03

q1 = 1/23 · (−ŷ0 + ŷ1 − ŷ2 + ŷ3 − ŷ4 + ŷ5 − ŷ6 + ŷ7)

= 1/8 · (−2.22 + 1.94− 1.95 + 1.95− 2.08 + 2.02− 2.08 + 2.00) = −0.05

q2 = 1/23 · (−ŷ0 − ŷ1 + ŷ2 + ŷ3 − ŷ4 − ŷ5 + ŷ6 + ŷ7)

= 1/8 · (−2.22− 1.94 + 1.95 + 1.95− 2.08− 2.02 + 2.08 + 2.00) = −0.04

q3 = 1/23 · (−ŷ0 − ŷ1 − ŷ2 − ŷ3 + ŷ4 + ŷ5 + ŷ6 + ŷ7)

= 1/8 · (−2.22− 1.94− 1.95− 1.95 + 2.08 + 2.02 + 2.08 + 2.00) = 0.02

q4 = 1/23 · (ŷ0 − ŷ1 − ŷ2 + ŷ3 + ŷ4 − ŷ5 − ŷ6 + ŷ7)

= 1/8 · (2.22− 1.94− 1.95 + 1.95 + 2.08− 2.02− 2.08 + 2.00) = 0.03

q5 = 1/23 · (ŷ0 − ŷ1 + ŷ2 − ŷ3 − ŷ4 + ŷ5 − ŷ6 + ŷ7)

= 1/8 · (2.22− 1.94 + 1.95− 1.95− 2.08 + 2.02− 2.08 + 2.00) = 0.02

q6 = 1/23 · (ŷ0 + ŷ1 − ŷ2 − ŷ3 − ŷ4 − ŷ5 + ŷ6 + ŷ7)

= 1/8 · (2.22 + 1.94− 1.95− 1.95− 2.08− 2.02 + 2.08 + 2.00) = 0.03

q7 = 1/23 · (−ŷ0 + ŷ1 + ŷ2 − ŷ3 + ŷ4 − ŷ5 − ŷ6 + ŷ7)

= 1/8 · (−2.22 + 1.94 + 1.95− 1.95 + 2.08− 2.02− 2.08 + 2.00) = −0.04

(3.12)

.

The qj values are then used to compute each of the sum of squares values

SSq0 = 2k · r ·+q20 = 23 · 3 · 2.032 = 98.833

SSq1 = 2k · r ·+q21 = 23 · 3 · −0.052 = 0.063

SSq2 = 2k · r ·+q22 = 23 · 3 · −0.042 = 0.030

SSq3 = 2k · r ·+q23 = 23 · 3 · 0.022 = 0.006

SSq4 = 2k · r ·+q24 = 23 · 3 · 0.032 = 0.026

SSq5 = 2k · r ·+q25 = 23 · 3 · 0.022 = 0.008

SSq6 = 2k · r ·+q26 = 23 · 3 · 0.032 = 0.020

SSq7 = 2k · r ·+q27 = 23 · 3 · −0.042 = 0.035

(3.13)

.
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The sum of squared error is computed as

SSE =

2k∑
i=1

r∑
j=1

e2i,j

= + (−0.04)2 + 0.112 + (−0.07)2

+ 0.092 + (−0.06)2 + (−0.03)2

+ (−0.16)2 + 0.132 + 0.032

+ (−0.10)2 + 0.132 + (−0.03)2

+ (−0.12)2 + 0.092 + 0.032

+ (−0.06)2 + (−0.02)2 + 0.082

+ (−0.13)2 + 0.032 + 0.092

+ 0.062 + (−0.11)2 + 0.042 = 0.18

(3.14)

.

Finally to compute the percent of variation due to each set of factors, SST must first be computed,
as

SST =

2k∑
j=1

SSqj + SSE = 0.06 + 0.03 + 0.01 + 0.03 + 0.01 + 0.02 + 0.03 + 0.18 = 0.37 (3.15)

, which can then be used to compute each of the individual percentages as

percentq0 = 100% · SSq0/SST = 100% · 98.83/0.37 = 26721.26%

percentq1 = 100% · SSq1/SST = 100% · 0.06/0.37 = 16.96%

percentq2 = 100% · SSq2/SST = 100% · 0.03/0.37 = 8.14%

percentq3 = 100% · SSq3/SST = 100% · 0.01/0.37 = 1.49%

percentq4 = 100% · SSq4/SST = 100% · 0.03/0.37 = 6.94%

percentq5 = 100% · SSq5/SST = 100% · 0.01/0.37 = 2.18%

percentq6 = 100% · SSq6/SST = 100% · 0.02/0.37 = 5.42%

percentq7 = 100% · SSq7/SST = 100% · 0.03/0.37 = 9.34%

percenterror = 100% · SSE/SST = 100% · 0.18/0.37 = 49.53%

(3.16)

.

Thus the percent of variation due to the primary factors A, B, and C are 16.96%, 8.14%, and 1.49%
respectively. The percent due to the combination of two factors AB, AC, and BC are 6.94%, 2.18%,
and 5.42% respectively. Leaving 9.34% to the combination of all factors and 49.53% due to error.

Continuing this example, to determine which factors are statistically significant, the standard devi-
ation of the factors is needed. The standard deviation of the error is computed as

se =

√
SSE

2k · (r − 1)
=

√
0.18

23 · (3− 1)
= 0.11 (3.17)

. The standard deviation for each factor is computed is then

sqj =
se√
2kr

=
0.11

23 · 3
= 0.004458 (3.18)
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Percent of Confidence
Factor Effect Variation Interval
I 2.029 26721.255 (1.983,2.076)
A -0.051 16.955 (-0.097,-0.005)
B -0.035 8.138 (-0.082,0.011)I
C 0.015 1.494 (-0.031,0.061)I
AB 0.033 6.944 (-0.014,0.079)I
AC 0.018 2.181 (-0.028,0.065)I
BC 0.029 5.424 (-0.017,0.075)I
ABC -0.038 9.336 (-0.084,0.008)I

Error 0.183 49.528 (0.137,0.229)

Table 3.3: Example confidence intervals, IFactor is insignificant (95% confidence).

.

Using this standard deviation, and the degrees of freedom, which would be 2k(r − 1) = 16 in this
example, the required t-value can be looked up in any statistics text book. For 95% confidence, the p
value will be 0.975, and n is the degrees of freedom, 16, this gives a t-value of 2.120. The confidence
intervals for each factor are

CIq0 = q0 ± sq0 · t = 2.029± 0.022 · 2.120 = (1.983, 2.076)

CIq1 = q1 ± sq1 · t = −0.051± 0.022 · 2.120 = (−0.097,−0.005)

CIq2 = q2 ± sq2 · t = −0.035± 0.022 · 2.120 = (−0.082, 0.011)

CIq3 = q3 ± sq3 · t = 0.015± 0.022 · 2.120 = (−0.031, 0.061)

CIq4 = q4 ± sq4 · t = 0.033± 0.022 · 2.120 = (−0.014, 0.079)

CIq5 = q5 ± sq5 · t = 0.018± 0.022 · 2.120 = (−0.028, 0.065)

CIq6 = q6 ± sq6 · t = 0.029± 0.022 · 2.120 = (−0.017, 0.075)

CIq7 = q7 ± sq7 · t = −0.038± 0.022 · 2.120 = (−0.084, 0.008)

CIerror = SSE ± se · t = 0.183± 0.107 · 2.120 = (0.137, 0.229)

(3.19)

.

3.2 Hyper-parameter 2kr Design

The number of factors being examined determines the value of k. For logistic regression, nine factors
were chosen as shown in Table 3.4. With k = 9, 512 (29 = 512) combinations of parameters are
required. For the tree induction algorithms, four factors were chosen for simple tree induction as
shown in Table 3.5 and five were used to bagging and boosting as shown in Table 3.6 and Table 3.7
respectively. With k = 4 and k = 5 only 16 and 32 combinations are required. Each of these
factors were considered for each node splitting method (information gain, variance minimization,
and MSEE). With three different splitting methods, each requiring their own 2kr runs, the total
jumps to 48 and 96. Additionally a total of 10 trials (i.e. 10 different ways of splitting the data into
training, validation and test sets) were used in the 2kr study. The number of cores used was not
considered as a factor since it is reasonable to assume that it would have a significant effect on the
run time of some datasets even if the two datasets used are too small to demonstrate such effects.

51



To account for random variations, a total of three repetitions were run for each configuration. For
2kr this means that r = 3.

Over the ten trials, each combination of factors was tested for significance. Combinations of factors
that failed to be significant could obviously be dropped form further study.

Additionally, among the factors that were significant the magnitude of their significance within an
algorithm could be estimated by looking at their significance across all trials and datasets. Since
the percent of variation due to each combination of factors varies a lot between trials, the median
variation for each combination was taken. The median error value was also taken. Next, for each
combination of factors, the variation due to that combination was distributed evenly across all factors
involved in it and added to the total variation for those factors. Finally, these summed variations for
the individual factors were averaged across multiple datasets. The error values across the datasets
were also averaged.

3.3 Choosing High and Low Levels for 2kr

Once the factors to be investigated were chosen, high and low levels for each factor needed to be
determined. Since some hyper-parameters limit certain dimensions (e.g. height of a tree), it is
important to understand what those dimensions would be if the limits were removed. It would be
pointless to set the maximum tree height levels to 50 and 100 if the largest any trees get have a
height of 30. Rather than pick values arbitrarily, a series of models were trained using extreme
values for some hyper-parameters to determine reasonable bounds for other parameters. Specifically
hyper-parameters that affect the size of the model (e.g., maximum stump height or minimum samples
needed to split a node) were given extreme values. For example, setting the maximum height of a
stump to two in boosting should cause the number of stumps produced to be a reasonable upper
bound. Using this rationale, extreme sets of hyper-parameters were used to find reasonable upper
bounds for each hyper-parameter being examined. These extreme hyper-parameters where then used
on four datasets and the resulting models were then measured to determine reasonable limits. In
some cases the upper bound for some datasets were orders of magnitude larger than the rest. Those
were considered outliers and ignored for the purposes of determining high and low values. For the
low values, 50% of the high value was chosen.

3.3.1 Logistic Regression

For determining the high and low values for logistic regression, the maximum number of iterations
was set to unlimited. The use of bins, for probabilities and attribute levels, was disabled. The L2

regularization factor was set to values of 0 (disabled), 1, and 10. The running of full regression was
set to never, once at the end, and every iteration. All combinations of the full regression and L2

regularization were done, for a total of nine runs for each dataset.

3.3.2 Tree Induction

For tree induction, the maximum number of iterations was set to unlimited. Likewise, no lower
limits were placed on the number of samples needed before splitting a leaf node. The maximum tree
height was set to either unlimited or just two. The two tree height limits were used for all three
node splitting algorithms available.
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3.3.3 Bagging

For bagging, the same values as tree induction were used. The number of stumps used was only one.

3.3.4 Boosting

For boosting, the same values as tree induction were again used, but the maximum number of stumps
was set to unlimited. The probability used to determine correctly vs incorrectly classified samples
was 0.5.

3.3.5 High and Low Levels

The resulting models, with either unconstrained or highly constrained hyper-parameters, were ex-
amined to determine common model sizes for Mushrooms and Pima. Other hyper-parameters that
do not simply limit the size of the model or number of iterations allowed were chosen somewhat
arbitrarily, but hopefully in useful range. In most cases, the low level was chosen to be 50% the high
level. The resulting high and low levels used for the 2kr study are summarized in Table 3.4 through
Table 3.7. Due to the different characteristics of the datasets, some levels have multiple values. In
those cases, the first number was used for Pima and the second number was used for Mushrooms.

ID Low High Factor
A 1 10 L2 regularization factor
B off on L2 regularization enabled
C 20 40 feature level bins
D 20 40 probability bins
E off on binning enabled/disabled
F on off full regression once vs per iteration
G on off full regression enabled/disabled
H 3 / 30 7 / 60 max iterations (Pima / Mushrooms)
I 50% 100% percent of training set used

Table 3.4: Factors for logistic regression
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ID Low High Factor
A 2 10 Minimum samples for splitting
B 12 / 14 24 / 28 Maximum tree height
C 15 / 50 30 / 100 Maximum iterations
D 50% 100% Percent of training set used

Table 3.5: Factors for tree induction

ID Low High Factor
A 4 / 16 8 / 32 number of stumps
B 2 10 minimum samples for splitting
C 12 / 14 24 / 28 maximum tree height
D 15 / 50 30 / 100 maximum iterations (Pima / Mushrooms)
E 50% 100% percent of training set used

Table 3.6: Factors for tree induction with bagging

ID Low High Factor
A 4 / 16 8 / 32 maximum number of stumps
B 2 10 minimum samples for splitting
C 12 / 14 24 / 28 maximum tree height
D 15 / 50 30 / 100 maximum iterations (Pima / Mushrooms)
E 50% 100% percent of training set used

Table 3.7: Factors for tree induction with boosting
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3.4 Runtime Environment

The hardware used for these experiments was a 24 node cluster with four 1.86Ghz Intel Xeon 5120
cores and 4GB of RAM per node. All Java code was run in a 32-bit version of Java 1.6.0 update
24. The nodes were connected via an Infiniband network, and a 1000baseT management network.
Resources were allocated as 16 nodes used for computation, using only one core per node, and one
additional node that was used both for launching jobs and running the overlay network manager.
All communication between nodes was run over the 1000baseT network, as IP over infiniband was
not enabled on the cluster. While this is a small fraction of the total computation power of the
cluster, the datasets used are not large enough to benefit from more cores.

3.5 2kr Results

Using the high and low levels a series of models were trained using a 60% / 20% / 20% split of
training / validation / test samples from each dataset. The Mushrooms and Pima datasets were
used, both in their original form and converted to attributes that are all numeric in the range zero
to one, for the logistic regression algorithm. For each of the models trained the total training time
was measured in milliseconds with a microsecond precision timer. Each model was also scored using
the test samples that were not used in training. The scoring consisted of five non-parametric metrics
that that give a score between zero and one, the arithmetic mean of those five metrics was then used
as the final score.

3.5.1 Statistical Significance Results

Due to the large nature of the 2kr tables resulting from the data collected, they are are in the
supplementary appendix. One of the smaller tables has been duplicated as Table 3.8. This table
shows the percent of variation due to each factor or combination of factors as well as the variation
due to error for each of the 10 trials. Factors for which the variation is statistically significant
(p = 0.95), are show in italics. The count column gives the number of trials for which the factor is
significant. The average and median columns gives the arithmetic mean and median of the variation
over the ten trials.

Looking at the individual factors (A, B, C, D, and E), it is clear that A, B, and E are significant in
all ten trials, while C is significant in nine. On the other hand factor D is only significant in four
of them which might make is a a good candidate to remove from consideration in later portions of
the study. However when looking at interactions with other factors such as C and E the number of
trials where it was significant goes up to six and seven respectively.

Therefore, looking simply at if the factors are significant is not a reasonable way to eliminate factors.
While this is just one measure of one algorithm being run on one dataset, the rest of the results
indicate that statistical significance alone does not justify eliminating any of the hyper-parameters
considered. Perhaps the selection of hyper-parameters could be done by examining the total variation
caused by each one relative the error in the measurements.
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Percent Variation in Trial
Factor 1 2 3 4 5 6 7 8 9 10 Count Average Median

A 13.091 1.848 6.611 15.989 15.531 9.455 27.562 36.613 16.773 25.440 10 16.89 15.76
B 4.353 10.448 10.255 6.530 9.503 12.844 16.784 15.835 8.774 5.863 10 10.12 9.88
C 4.483 2.675 0.04 3.772 2.613 2.371 2.439 1.441 3.395 2.738 9 2.60 2.64
D 0.754 0.28 0.04 0.10 0.399 0.25 0.09 0.24 0.608 1.386 4 0.41 0.27
E 37.889 61.715 56.539 42.144 47.258 47.367 24.978 28.669 31.577 26.749 10 40.49 40.02

AB 2.213 0.21 0.14 0.30 0.649 0.38 0.33 0.00 0.26 0.722 3 0.52 0.31
AC 2.554 0.00 0.16 1.233 1.270 3.270 4.428 0.379 5.728 3.575 8 2.26 1.91
AD 1.715 0.04 0.25 0.12 0.28 0.03 0.03 0.00 0.09 3.081 2 0.56 0.10
AE 0.06 1.902 4.869 7.547 0.01 2.801 1.529 1.454 0.642 1.051 8 2.19 1.49
BC 0.316 0.656 0.44 0.02 0.05 0.690 0.08 0.418 0.00 0.01 4 0.27 0.20
BD 0.02 0.17 0.26 0.09 0.05 1.299 0.03 0.06 0.10 0.11 1 0.22 0.10
BE 0.317 1.706 0.24 0.33 0.424 1.913 0.459 1.626 1.916 0.339 8 0.93 0.44
CD 2.177 0.01 0.44 1.326 3.141 0.23 0.900 0.02 0.894 0.539 6 0.97 0.72
CE 4.928 4.752 0.11 3.184 3.850 4.071 3.629 1.559 4.710 5.463 9 3.63 3.96
DE 3.318 0.810 0.43 2.259 0.826 0.01 0.931 0.26 1.684 0.552 7 1.11 0.82

ABC 0.06 0.02 0.11 0.01 0.29 0.08 0.11 0.347 0.00 0.12 1 0.11 0.09
ABD 0.17 0.848 0.25 0.26 0.519 0.02 0.33 0.393 0.01 0.00 3 0.28 0.25
ABE 0.598 0.42 0.64 0.04 0.00 0.889 0.478 0.351 0.00 0.07 4 0.35 0.39
ACD 2.408 0.01 0.00 1.363 1.062 0.34 1.203 0.12 1.463 0.997 6 0.90 1.03
ACE 9.017 2.266 2.453 1.478 1.925 0.722 2.896 3.015 9.382 8.361 10 4.15 2.67
ADE 2.088 0.09 0.35 1.897 0.790 0.30 0.614 0.04 1.419 1.062 6 0.87 0.70
BCD 0.10 0.07 0.52 0.02 0.03 0.03 0.01 0.338 0.02 0.18 1 0.13 0.05
BCE 0.09 0.12 0.00 0.14 0.18 1.233 0.04 0.06 0.08 0.02 1 0.20 0.09
BDE 0.16 0.00 0.05 0.14 0.13 0.28 0.00 0.21 0.08 0.13 0 0.12 0.13
CDE 1.602 0.16 0.30 1.348 1.569 0.02 0.06 0.00 1.034 2.663 5 0.88 0.66

ABCD 0.15 0.12 0.36 0.11 0.07 1.400 0.32 0.22 0.11 0.510 2 0.34 0.19
ABCE 0.15 0.00 0.45 0.04 0.01 0.16 0.17 0.877 0.05 0.04 1 0.20 0.10
ABDE 0.22 0.22 0.06 0.02 0.17 0.02 0.03 0.00 0.06 0.19 0 0.10 0.06
ACDE 1.025 0.21 0.45 0.13 1.785 0.01 1.803 0.14 0.546 2.229 5 0.83 0.50
BCDE 0.06 0.25 0.09 0.993 0.21 0.31 0.32 0.01 0.45 0.26 1 0.30 0.26

ABCDE 0.01 0.00 0.57 0.634 0.06 0.15 0.13 0.03 0.48 0.30 1 0.24 0.14
Error 3.907 7.963 12.541 6.430 5.355 7.053 7.283 5.253 7.650 5.248 10 6.87 6.74

Table 3.8: Time for bagged (MSEE) on Pima (binorm). Statistically significant factors in italics (p = 0.95).
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Additional Factors
Factor 0 1 2 3 4 Total

A 15.76% 1.91% 1.71% 0.21% 0.03% 19.62%
B 9.88% 0.53% 0.33% 0.15% 0.03% 10.92%
C 2.64% 3.39% 1.53% 0.26% 0.03% 7.86%
D 0.27% 0.87% 0.94% 0.25% 0.03% 2.36%
E 40.02% 3.36% 1.55% 0.23% 0.03% 45.18%

Error 6.74%

Table 3.9: Summary of variation due to factors for Time for bagged (MSEE) on Pima (binorm).
Values greater than the median error (6.742%) are show in italics.

Additional Factors
Factor 0 1 2 3 4 Total

A 18.18% 7.10% 0.73% 0.03% 0.01% 26.05%
B 13.36% 1.30% 0.72% 0.03% 0.01% 15.41%
C 0.18% 0.20% 0.11% 0.03% 0.01% 0.52%
D 0.01% 0.03% 0.04% 0.02% 0.01% 0.11%
E 15.20% 6.97% 0.73% 0.03% 0.01% 22.93%

Error 0.00%

Table 3.10: Summary of variation due to factors for Combo Score for bagged (MSEE) on Pima
(binorm). Values greater than the median error (0.000%) are show in italics.

3.5.2 Summing Interations

Since the goal of this exercise was to find individual factors that could be eliminated to reduce
the complexity of later portions of this research, it is necessary to identify which factors affect the
outcome either directly or though interactions with other factors. For each factor or combination of
factors, the median percent variation over all 10 trials was chosen. This will not always result in a
sum of 100%, but median is less affected by outliers. The median also tended to be lower than the
mean, making it a more conservative estimate of variation.

The sum of these median variations over all interactions was computed, to get a better idea of how
factors affect the overall variation. When summing interactions, the value was scaled by the inverse
of the number of factors involved, thereby spreading the variation evenly across all factors involved.
An example of such summing is given in Table 3.9. The error reported is the median error across
the ten trials as reported in Table 3.8. A table like this can be made for each each metric for
each algorithm run on each dataset. Thus further summarization is needed. Taking the average of
the total variations across datasets should give a better idea of how the factors might affect other
datasets overall.

Here it is clear that even across all interactions with other factors, D is still not as significant as
error. When we look at the same factors for their effects on model quality, as shown in Table 3.10.
Again factor D does not contribute much variation. Although higher than error, the error for model
scores is always nearly, if not actually, zero.

It appears setting a modest threshold for percent variation may be a viable means to eliminate
hyper-parameters from further study. However this is just one dataset and only one of the splitting
methods.
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3.5.3 Averages of Summed Interactions

Additional tables similar to Table 3.9 can also be made by averaging the results over multiple
datasets for each algorithm. In Table 3.11, the average variation in model scores across all datasets
for bagging with MSEE as the split measure is given for each factors, as well as the averages of the
median error over those datasets. Likewise, Table 3.12 gives the average variation of training times.

Average
Factor Variation

A 24.34%
B 15.56%
C 0.28%
D 0.04%
E 31.69%

Error 0.00%

Table 3.11: Averages of variation in Combo Scores for bagged with MSEE

Average
Factor Variation

A 14.70%
B 11.16%
C 4.83%
D 2.17%
E 52.09%

Error 7.30%

Table 3.12: Averages of variation in Times for bagged with MSEE

This example of how the factors can be combined to get an overall sense of each factor’s effect
on performance is only for one of the splitting methods. When the different splitting methods are
combined as in Table 3.13 through Table 3.18, it becomes clear that different splitting methods are
affected by the hyper-parameters very differently.

Looking at the variation over all splitting methods in Table 3.14, when using the variance mini-
mization split method, factor D does contribute more to the variation. This amount of variation is
more than C contributed with MSEE, which had been shown to produce a statistically significant
amounts in nearly all trials.

Taking the results of Table 3.13 through Table 3.20, none of the factors consistently provide a low
percentage of variation relative the error.

3.6 Conclusion

Given these results, all hyper-parameters were considered worthy of inclusion in the remainder of
this study. A full factorial approach to exploring the hyper-parameter space was unreasonable and a
different method was needed. In Chapter 4, an approach for sampling the hyper-parameter space in
a systematic fashion taking into account the relative importance of hyper-parameters is discussed.
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Average Variation
Factor Info Gain Variance MSEE

A 29.65% 25.39% 24.34%
B 20.32% 23.86% 15.56%
C 0.01% 0.00% 0.28%
D 0.00% 0.00% 0.04%
E 34.76% 32.74% 31.69%

Error 0.00% 0.00% 0.00%

Table 3.13: Super summary for bagging model score

Average Variation
Factor Info Gain Variance MSEE

A 15.40% 21.54% 14.70%
B 17.40% 25.93% 11.16%
C 1.77% 19.27% 4.83%
D 1.76% 10.69% 2.17%
E 46.56% 19.65% 52.09%

Error 8.90% 1.58% 7.30%

Table 3.14: Super summary for bagging training time

Average Variation
Factor Info Gain Variance MSEE

A 3.72% 5.00% 3.20%
B 0.54% 0.15% 0.03%
C 0.99% 1.00% 4.33%
D 14.96% 8.76% 5.77%
E 14.14% 18.95% 23.12%

Error 0.00% 0.00% 0.01%

Table 3.15: Super summary for boosting model score

Average Variation
Factor Info Gain Variance MSEE

A 18.92% 24.67% 17.89%
B 1.98% 7.49% 0.04%
C 0.31% 7.51% 1.16%
D 27.36% 31.08% 38.75%
E 44.23% 24.82% 35.34%

Error 3.08% 0.71% 1.05%

Table 3.16: Super summary for boosting training time
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Average Variation
Factor Info Gain Variance MSEE

A 0.00% 0.00% 0.00%
B 0.00% 0.00% 4.60%
C 15.63% 13.29% 23.29%
D 28.21% 33.04% 25.70%

Error 0.00% 0.00% 0.00%

Table 3.17: Super summary for tree induction model score

Average Variation
Factor Info Gain Variance MSEE

A 4.53% 16.35% 0.17%
B 1.79% 13.47% 0.23%
C 49.42% 53.15% 90.15%
D 31.55% 10.09% 6.90%

Error 8.94% 5.05% 2.18%

Table 3.18: Super summary for tree induction training time

Average
Factor Variation

A 5.85%
B 8.33%
C 0.84%
D 1.49%
E 5.09%
F 16.32%
G 19.39%
H 3.03%
I 7.33%

Error 0.42%

Table 3.19: Super summary for logistic regression model score

Average
Factor Variation

A 4.33%
B 6.23%
C 0.57%
D 0.75%
E 8.22%
F 8.15%
G 42.83%
H 3.81%
I 5.96%

Error 1.35%

Table 3.20: Super summary for logistic regression training time
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Chapter 4

Phase 2: Hyper-parameter
Optimization

Due to the large number of hyper-parameters to be examined, it is impractical to do a full factorial
study. Instead a hill-climbing [99] strategy was employed to try to find optimal hyper-parameters
for each dataset while also randomly sampling other regions of the hyper-parameter space.

In a typical hill climbing search, there is a function, fitness, that maps each point in the search space
to a unique comparable value, often a real number. The goal of the search is to maximize the value
of that function. To accomplish this, a second function, expand, that maps any point in search space
to a set of adjacent points in search space is used. Using these two functions, given an arbitrary
point in the search space, the expand function provides a set of nearby points. When passed to
the fitness function each of these points can then be tested to see which one has the highest value.
The point with the highest values from the fitness function is then chosen to be the next point to
be passed to the expand function. This process continues until none of the points produced by the
expand function have a higher score. This process of moving to adjacent points with higher scores
is said to climb the hill represented by the fitness function until it finds a local maximum. However,
since hill climbing can only find local maximums, in order to find a global maximum many initial
start points may be needed. Thus a common approach is to use random restarts, where a random
point in the search space is chosen whenever a local maximum is reached. The start point for the
first hill climb is also chosen at random from the search space. Together this approach is called hill
climbing with random restarts.

For the purposes of the hill climbing approach the point in search space is an n-tuple, where each
element is a specific level for its given hyper-parameter. Some hyper-parameters are searchable
while others are not. Combinations of non-searchable hyper-parameters are expanded externally
and are treated as distinct searches. The expand function is only allowed to modify exactly one
hyper-parameter at a time. Each point is assigned its score based on the composite score of the
model produced using the hyper-parameters it represents. That composite score is the arithmetic
mean of seven non-parametric in the range zero to one where zero is perfectly incorrect, and one is
perfect correct.

The search starts by picking five random points in search space such that each searchable hyper-
parameter is assigned a uniformly random value between 0 and 100. Each point is converted to
a set of hyper-parameters. Each of the five random configurations is used to train models on five
different splits of each dataset. The highest scoring one is chosen as the starting point for hill
climbing and the remaining four are added to a pool of future candidates. From the start point,
neighboring states are examined by first expanding the hyper-parameter that is responsible for the
most variation according to the 2kr analysis, and proceeding through each hyper-parameter until no
better neighboring states can be found. Within each hyper-parameter the value change is initially
quite large and is reduced exponentially. The initial change is 16 units, 16 units, followed by 8, then
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4, 2, and finally 1. These large steps allow for faster climbing of hills when it’s moving in the correct
direction, as well as overcoming shoulders (flat regions between regions of improvement). Whenever
a neighboring state with a higher score is found, that state becomes the new best state and all
new neighbors are chosen relative it. When no neighbors get better average composite scores, the
hill-climb is terminated and another set of five random states are chosen. The new hill-climb start
state is then chosen from the five new states as well as the pool of previously rejected start points.

This process of picking random start points then hill-climbing continued until a pre-determined
amount of time had elapsed. For most of the datasets a total time of one week was used. For three
of the larger datasets (CoverType, Intrusion, and Thrombin), a total time of four weeks was
used. The runtime system for this portion of the project, which is described more thoroughly in
Section 4.1, used a queuing system where jobs were submitted then allowed to run when there were
enough cores available. Due to issues in the runtime environment, it was known that jobs would
randomly terminate. To deal with this random termination, when each job would start, it would
check to see if it had more models to train, and if it did would submit a another copy of itself that
would only be allowed to run when the current job ended. To account for gaps in useful execution
time caused by random termination and having to wait in a queue, any gap of more than twelve
hours was not counted towards the overall time limit.

Some hyper-parameters were either held constant or had multiple fixed values, and are not reported
in the tables. For all algorithms, the data split for all searches was 60% training, 20% validation,
and 20% test, and searches were performed using both 50% and 100% of the training samples.
For boosting the threshold for positive versus negative classification for the purposes of reweighting
samples is always 0.5. For tree induction pruning was always enabled. For logistic regression,
separate searches were performed for each of the full regression modes (never, after every iteration,
and once at the end). For using bins in logistic regression, the numbers of bins were searchable, but
searches were also performed with binning completely disabled.

The hyper-parameters that were varied during the search for the tree based methods were maximum
height of any tree/stump, the maximum number of iterations, and the minimum number of samples
to split a leaf. For bagging, the number of stumps was also varied. For boosting, the maximum
number of stumps as well ad the maximum number of iterations to train an individual stump were
varied. For tree induction the point where it switched from splitting a single node to all of the leaves
simultaneously was varied. For both boosting and single tree induction the interval between writing
output values in the mapper was also varied.

For logistic regression, the maximum number of iterations and the L2 regularization factor were
varied. For searched where bins were used, the number of bins was also varied.

4.1 Runtime Environment

The hardware used for these experiments was a 92 node cluster with 16 2.60 Ghz Intel Xeon E5-2670
cores and 64GB of RAM per node. All Java code was run in a 64-bit version of Java 1.7.0 update 75.
The nodes were connected via an Infiniband network, and a 1000baseT management network. The
system also utilized the Open Grid Scheduler (OGS) [89] for allocating resources to compute jobs.
The scheduler in OGS assigned jobs to a collection of slots, which in this case map to individual
cores. Due to the nature of the scheduler, a single job could be scattered across the system with only
one core on each node, or it could have entire nodes all to itself. There was no way of predicting
how a job would be split across node ahead of time, and difficult to reconstruct after the fact.
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Additionally, ssh [86] access to compute nodes was not allowed. To get around this limitation, the
process of starting the MapReduce runtime system as well as copying data to the compute nodes
was handled by an program called mpi_wrapper that used the MPI API for communication and
synchronization operations as well as a set of shell scripts to perform various tasks.

Each job submitted to OGS consisted of 33 slots (i.e. cores). Of those, 32 slots were for actual
computation, and the remaining core was used to handle the overlay network and the launching of
MapReduce jobs. All MapReduce communication between nodes were run over the 1000baseT. The
mpi_wrapper’s MPI calls used the Infiniband network, but some additional TCP/IP communication,
due to MPI’s busy waiting, was passed over the 1000baseT network.

4.2 Primary Model Training

The purpose of this hill climbing approach was to identify hyper-parameters that produce high
quality models, and ideally with minimal training time for the quality. The incomplete models
captured after each iteration also served as a means to skip large portions of the training process in
the next phase.

The maximum model scores for each dataset are given in Table 4.1 through Table 4.3. The metrics
reported are AUC, accuracy, precision, recall, specificity, root mean squared error, root mean squared
accuracy, and a combination score which is the arithmetic mean of the seven measures. When
computing the mean, 1− RMSE is used since 1.0 is perfect and 0.0 is very bad.

4.2.1 Best Model Scores Found

In Table 4.1 though Table 4.4, the highest model scores found for each dataset are given. Each of the
individual measure (e.g., AUC, accuracy) scores were the averaged over five trials. For the combo
score, the average was computed by summing the individual scores over all trials, then dividing by
the number of trials and the number of scores. For the purposes of picking the best score, only the
mean was considered. The standard deviation and confidence intervals were not computed here, as
this table is presented primarily to give an idea of both the range of score values different metrics
provide for the same model, as well as give an idea of the relative difficulty of learning models
for each dataset. For instance, Mushrooms typically gets a combined score around 0.9 across all
algorithms, indicating that it is a more easily learned dataset. The Pima dataset on the other
hand, had combined scores in the 0.6 to 0.7 range (ignoring bagging which failed to produce a useful
model), which indicates that it is a harder dataset to learn.

The Example and Example2, being synthetic datasets generated by models similiar to the ones
being learned offer an opportunity to see if datasets generated by a particular model type are easier
to learn by that model type. Looking at the combination scores in Table 4.2 through Table 4.4,
it does appear to be the case that higher scores were achieved for Example using the tree based
methods, where logistic regression scored better on Example2.

4.2.2 Problematic Limitations

Of particular note is the precision column in Table 4.1. The -1 values are an error code that indicate
that computing the actual value would have involved a division by zero. In this case, the cause was
a bad interaction between the number of stumps in the model and the minimum number of samples
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needed to compute a split. Due to the sizes of some datasets, the number of samples available to
the root node of each stump was insufficient to perform any splits. As a result, which can be seen in
the TN and FN versus TP and FP columns, all of the samples were classified as negative by bagged
models for most datasets. This problem was not detected during the hyper-parameter search as only
AUC, accuracy and the combination score were examined during spot checks of the progress. In
hind-sight, a more extreme negative value that would be guaranteed to make the combo score would
have been preferred.

This demonstrates an important and often overlooked aspect of scoring machine learning models.
Had precision, recall and the confusion matrix values been omitted from these tables, it would be
nearly impossible to detect that such a major error had occurred.

In addition to the stumps and samples interaction for bagging, problems can occur if the prior
probability (i.e. the ratio of positive samples to the total samples) is sufficiently low. In such a
case, even when nodes chose good splits, all of the leaf nodes may still give probabilities that are
less than 0.5, and thus precision would be undefined as there would be no samples that get classified
as positive. Likewise, a similar problem can occur when the prior probability is too high and the
resulting model only produces probabilities greater than 0.5. A model that produces only positive
predictions would be harder to detect based on scores, as none of the metrics used here would be
undefined in such a case. This would suggest that the metrics used may be incomplete.

A further problem illustrated by the Ads, Adult and Example2 datasets in Table 4.1 is the
conversion from categorical and integer values to real values when creating the binorm versions of
the datasets. This discrepancy in model quality is most likely due to differences in how split point
searches were done for real attributes as opposed to integer attributes. In an integer attribute, each
of the unique values is tried as a split point. For a real attribute, this is assumed to be impractical,
so instead twenty split points at 5-percentile intervals are considered. This alternate strategy will
skip potentially useful split points. In hindsight, the number of split points to consider for a real
attribute should have been a hyper-parameter to be optimized.
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Dataset TP TN FP FN AUC Acc. Prec. Recall Spec. RMSE RMSA Combo
Ads 13 575 0 77 0.777 0.884 1.000 0.145 1.000 0.281 0.862 0.770
Ads (binorm) 0 575 0 90 0.500 0.864 -1.000 0.000 1.000 0.356 0.895 0.415
Adult 825 4587 356 731 0.808 0.833 0.699 0.530 0.928 0.344 0.789 0.749
Adult (binorm) 0 4517 0 1513 0.550 0.749 -1.000 0.000 1.000 0.500 0.863 0.380
Covertype 14487 50131 6491 27824 0.498 0.653 0.819 0.343 0.885 0.453 0.594 0.620
Covertype (binorm) 18042 49987 6535 24197 0.511 0.689 0.313 0.428 0.884 0.452 0.599 0.567
Credit 0 75 0 52 0.709 0.590 -1.000 0.000 1.000 0.576 0.708 0.347
Credit (binorm) 0 75 0 52 0.665 0.589 -1.000 0.000 1.000 0.572 0.695 0.340
Example 123 0 76 0 0.500 0.619 0.619 1.000 0.000 0.489 0.556 0.544
Example (binorm) 119 0 79 0 0.500 0.599 0.599 1.000 0.000 0.492 0.548 0.536
Example2 181 0 17 0 0.516 0.912 0.912 1.000 0.000 0.271 0.865 0.705
Example2 (binorm) 0 20 0 178 0.500 0.102 -1.000 0.000 1.000 0.886 0.304 0.146
IntCensor 610 462 489 458 0.542 0.531 0.568 0.568 0.493 0.499 0.503 0.529
IntCensor (binorm) 261 722 238 798 0.499 0.487 0.605 0.251 0.757 0.507 0.503 0.514
IntShopping 0 961 0 472 0.743 0.671 -1.000 0.000 1.000 0.515 0.753 0.379
IntShopping (binorm) 0 957 0 476 0.512 0.668 -1.000 0.000 1.000 0.574 0.813 0.346
Intrusion 192888 784002 1291 1613 0.800 0.997 0.993 0.992 0.998 0.049 0.992 0.960
Intrusion (binorm) 192536 775376 9914 1968 0.582 0.988 0.951 0.990 0.987 0.190 0.906 0.888
Mushrooms 681 755 21 163 0.686 0.886 0.970 0.806 0.973 0.262 0.867 0.847
Mushrooms (binorm) 0 787 0 834 0.550 0.485 -1.000 0.000 1.000 0.710 0.690 0.288
Pima 0 97 0 55 0.648 0.637 -1.000 0.000 1.000 0.564 0.761 0.355
Pima (binorm) 0 100 0 53 0.656 0.653 -1.000 0.000 1.000 0.543 0.758 0.361
Thrombin 0 376 0 7 0.758 0.981 -1.000 0.000 1.000 0.136 0.968 0.510
Thrombin (binorm) 0 376 0 7 0.635 0.981 -1.000 0.000 1.000 0.137 0.978 0.494

Table 4.1: Top model scores for bagged models.
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Dataset TP TN FP FN AUC Acc. Prec. Recall Spec. RMSE RMSA Combo
Ads 55 536 38 34 0.769 0.889 0.590 0.614 0.933 0.322 0.790 0.752
Ads (binorm) 79 469 106 11 0.615 0.823 0.454 0.878 0.815 0.405 0.841 0.717
Adult 568 4719 224 988 0.659 0.813 0.718 0.365 0.955 0.376 0.799 0.705
Adult (binorm) 0 4517 0 1513 0.500 0.749 -1.000 0.000 1.000 0.391 0.785 0.378
Covertype 1486 56014 608 40824 0.576 0.581 0.743 0.035 0.989 0.492 0.523 0.565
Covertype (binorm) 556 56518 147 41481 0.587 0.578 0.791 0.013 0.997 0.491 0.522 0.571
Credit 46 67 8 5 0.923 0.890 0.846 0.894 0.889 0.317 0.792 0.845
Credit (binorm) 44 67 8 8 0.907 0.872 0.843 0.845 0.891 0.343 0.725 0.820
Example 114 66 10 9 0.915 0.905 0.920 0.928 0.869 0.302 0.795 0.861
Example (binorm) 111 65 14 7 0.889 0.886 0.883 0.934 0.818 0.323 0.795 0.840
Example2 168 10 7 13 0.526 0.895 0.957 0.926 0.544 0.261 0.892 0.783
Example2 (binorm) 178 0 20 0 0.500 0.898 0.898 1.000 0.000 0.313 0.927 0.701
IntCensor 828 277 673 240 0.546 0.547 0.552 0.775 0.292 0.501 0.522 0.533
IntCensor (binorm) 717 393 567 342 0.570 0.550 0.562 0.674 0.410 0.497 0.518 0.541
IntShopping 121 912 49 350 0.741 0.722 0.714 0.259 0.949 0.436 0.711 0.666
IntShopping (binorm) 201 841 116 275 0.762 0.727 0.639 0.423 0.879 0.424 0.678 0.669
Intrusion 193639 783954 1338 862 0.759 0.998 0.993 0.996 0.998 0.114 0.957 0.941
Intrusion (binorm) 191886 775343 9947 2619 0.500 0.987 0.951 0.987 0.987 0.111 0.981 0.897
Mushrooms 845 776 0 0 1.000 1.000 1.000 1.000 1.000 0.013 0.998 0.998
Mushrooms (binorm) 834 787 0 0 1.000 1.000 1.000 1.000 1.000 0.057 0.979 0.989
Pima 33 82 15 22 0.794 0.756 0.688 0.601 0.844 0.411 0.689 0.709
Pima (binorm) 34 84 15 19 0.806 0.775 0.693 0.649 0.847 0.408 0.678 0.720
Thrombin 1 338 38 6 0.556 0.882 -0.772 0.159 0.897 0.260 0.930 0.485
Thrombin (binorm) 0 376 0 7 0.533 0.981 -1.000 0.000 1.000 0.138 0.989 0.481

Table 4.2: Top model scores for boosted models.
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Dataset TP TN FP FN AUC Acc. Prec. Recall Spec. RMSE RMSA Combo
Ads 6 555 20 84 0.550 0.843 0.460 0.064 0.965 0.373 0.799 0.615
Ads (binorm) 0 575 0 89 0.650 0.865 0.200 0.007 1.000 0.342 0.820 0.600
Adult 0 4939 4 1556 0.457 0.760 0.095 0.000 0.999 0.388 0.740 0.523
Adult (binorm) 480 3915 601 1032 0.500 0.729 -0.422 0.316 0.867 0.421 0.801 0.481
Covertype 31249 38491 18131 11061 0.486 0.705 0.638 0.738 0.680 0.470 0.637 0.631
Covertype (binorm) 29723 43345 13177 12516 0.498 0.740 0.694 0.704 0.767 0.461 0.709 0.664
Credit 46 65 10 5 0.550 0.876 0.826 0.890 0.870 0.315 0.865 0.795
Credit (binorm) 49 62 13 3 0.575 0.868 0.785 0.939 0.819 0.348 0.871 0.787
Example 110 67 8 12 0.603 0.894 0.928 0.899 0.889 0.295 0.874 0.827
Example (binorm) 100 67 12 18 0.566 0.846 0.896 0.844 0.851 0.343 0.831 0.785
Example2 181 1 16 0 0.508 0.917 0.918 0.998 0.100 0.271 0.878 0.721
Example2 (binorm) 175 2 18 3 0.500 0.891 0.907 0.980 0.116 0.307 0.923 0.716
IntCensor 929 180 771 139 0.562 0.549 0.546 0.869 0.189 0.503 0.515 0.533
IntCensor (binorm) 979 90 871 80 0.515 0.529 0.530 0.926 0.095 0.591 0.620 0.518
IntShopping 29 941 20 442 0.500 0.677 0.587 0.064 0.979 0.481 0.609 0.562
IntShopping (binorm) 148 835 122 327 0.504 0.686 0.548 0.313 0.871 0.473 0.705 0.593
Intrusion 194495 775331 9961 6 0.669 0.990 0.951 1.000 0.987 0.098 0.985 0.926
Intrusion (binorm) 191525 775827 9463 2979 0.525 0.987 0.953 0.985 0.988 0.107 0.982 0.902
Mushrooms 837 772 4 7 0.803 0.993 0.995 0.991 0.995 0.085 0.988 0.954
Mushrooms (binorm) 807 787 0 27 0.892 0.983 1.000 0.968 1.000 0.126 0.974 0.956
Pima 27 84 12 27 0.563 0.735 0.730 0.509 0.870 0.425 0.726 0.673
Pima (binorm) 26 89 10 26 0.526 0.759 0.726 0.499 0.894 0.434 0.754 0.675
Thrombin 0 376 0 6 0.550 0.982 -0.267 0.095 0.999 0.132 0.976 0.600
Thrombin (binorm) 0 376 0 6 0.600 0.982 -0.200 0.073 1.000 0.132 0.976 0.614

Table 4.3: Top model scores for tree models.
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Dataset TP TN FP FN AUC Acc. Prec. Recall Spec. RMSE RMSA Combo
Ads (binorm) 7 575 0 82 0.906 0.875 0.928 0.085 0.999 0.330 0.827 0.756
Adult (binorm) 160 4507 9 1352 0.870 0.774 0.947 0.106 0.998 0.412 0.702 0.712
Covertype (binorm) 131 56520 2 42108 0.872 0.574 0.488 0.003 1.000 0.495 0.531 0.568
Credit (binorm) 48 58 14 3 0.889 0.855 0.770 0.930 0.801 0.334 0.828 0.820
Example (binorm) 115 17 60 3 0.743 0.674 0.655 0.969 0.224 0.464 0.559 0.623
Example2 (binorm) 172 7 13 6 0.683 0.902 0.929 0.965 0.316 0.293 0.885 0.770
IntCensor (binorm) 418 571 389 642 0.588 0.490 0.668 0.404 0.598 0.500 0.501 0.536
IntShopping (binorm) 3 956 1 473 0.526 0.669 0.044 0.006 0.998 0.471 0.582 0.479
Intrusion (binorm) 1190 785290 0 193314 0.964 0.803 1.000 0.006 1.000 0.398 0.747 0.732
Mushrooms (binorm) 834 759 28 0 0.998 0.983 0.968 1.000 0.964 0.200 0.841 0.936
Pima (binorm) 7 97 3 45 0.726 0.682 0.405 0.139 0.973 0.473 0.541 0.570
Thrombin (binorm) 0 375 1 6 0.599 0.979 0.433 0.095 0.996 0.144 0.936 0.699

Table 4.4: Top model scores for sfo models.
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4.2.3 Best Hyper-Parameters Found

The hyper-parameters that achieved the highest scores, as described in Section 4.2.1, for each dataset
are shown in Table 4.5 though Table 4.8.

Looking at the hyper-parameters that did well, one thing that is readily apparent is that the hyper-
parameters vary greatly between datasets. In particular no one splitting method was preferred across
all datasets, although information gain and variance minimization were more common than MSEE.

4.2.4 Temporal Learning Curves

The scores reported in Section 4.2.1 only give the final model scores. During training, each iteration
produces a model that can be scored individually. The speed of the algorithms in terms of time per
iteration time can also vary considerably. As a result, it is possible that one algorithm may produce
reasonably good models very quickly, but then, given enough time, another algorithm may take over
as the best.

To show this aspect of the learning process a type of learning curve is used. In this case the x-axis
is the run time of the algorithm, and the y-axis is the model quality. Due to the time based nature
of these curves, I shall refer to them as temporal learning curves (TLCs).

In Figure 4.1 though Figure 4.24, the TLCs for each algorithm are shown on each dataset. The
curve chosen for each dataset is one that scored very highly, but may not have used the same hyper-
parameters given in Section 4.2.3. For all datasets, except both versions of Adult and Example2,
32 compute cores were used. For Adult, Example2, and their “binorm” variants, only a single
compute core was used as these datasets needed to be rerun later to correct an error (i.e., the target
class had been specified incorrectly), but the original cluster was no longer available.

For the actual curves, the average of the most recent value from each trial is used. The error
bars are the 95% confidence interval for the five trials. For readability, points that are too close
together (>100 points total or <100ms apart) were filtered out before graphing. This allows for
visual inspection to see if the difference in model scores are statistically significant. In Chapter 6
these confidence intervals will be used in determining which algorithm is deemed best for a given
situation.

As can be seen in the TLCs, in some cases such as Adult (binorm) (Figure 4.4), sfo (i.e., logistic
regression) does very well. However in others, such as Intrusion (binorm) (Figure 4.18), bagging
and boosting both outperform sfo for model quality, with bagging being faster than boosting. In
Mushrooms (binorm) (Figure 4.20), tree induction takes an early lead, but sfo eventually matches
it, and both are eventually surpassed by boosting. These results are exactly what is expected based
on the no free lunch theorem [8].

Another thing that can be seen in TLCs is over-fitting. In the case of tree induction, for both Ads and
Ads (binorm) (Figure 4.1 and Figure 4.2), towards the end the error bars grow considerably. This is
most likely due to some of the trials over-fitting more than others, leading to greater uncertainty in
the model quality. Another symptom of over-fitting can be seen in a TLC when the average model
quality drops. This drop can be seen in Thrombin (binorm) (Figure 4.24) around 7,000 seconds.

71



Node Split Perc. Max. Max. Samples Number of
Dataset Method Used Iters Height per Leaf Stumps
Ads info gain 100 76 110 51 30
Ads (binorm) info gain 100 88 75 118 147
Adult msee 100 34 21 42 74
Adult (binorm) info gain 100 38 14 16 66
Covertype variance 100 78 12 51 30
Covertype (binorm) variance 50 78 12 51 30
Credit variance 100 110 177 1 109
Credit (binorm) info gain 100 113 94 1 130
Example variance 50 78 36 133 14
Example (binorm) msee 100 78 12 83 18
Example2 msee 100 102 28 51 6
Example2 (binorm) info gain 100 20 102 91 14
IntCensor msee 50 82 12 83 22
IntCensor (binorm) msee 50 78 20 67 30
IntShopping info gain 100 46 30 32 82
IntShopping (binorm) info gain 100 104 35 110 127
Intrusion info gain 50 28 78 67 46
Intrusion (binorm) info gain 50 12 78 51 30
Mushrooms info gain 50 12 80 59 14
Mushrooms (binorm) info gain 100 21 34 58 98
Pima info gain 100 113 94 1 115
Pima (binorm) variance 100 94 97 1 97
Thrombin info gain 50 113 110 1 97
Thrombin (binorm) info gain 50 97 94 1 97

Table 4.5: Hyper-parameters for top scoring bagged models.
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Node Split Perc. Max. Max. Samples Number of Output
Dataset Method Used Iters Height per Leaf Stumps Interval
Ads variance 50 56 30 51 35 12
Ads (binorm) info gain 100 70 53 1 97 75
Adult info gain 100 78 54 16 66 14
Adult (binorm) info gain 100 74 34 21 42 97
Covertype info gain 50 78 38 16 66 14
Covertype (binorm) variance 50 74 21 50 42 97
Credit variance 100 202 21 34 74 97
Credit (binorm) variance 50 210 21 34 42 105
Example info gain 100 68 67 30 71 12
Example (binorm) info gain 100 40 51 46 35 12
Example2 info gain 50 24 51 30 35 12
Example2 (binorm) info gain 100 24 51 30 35 12
IntCensor info gain 100 90 34 21 42 113
IntCensor (binorm) info gain 100 90 34 21 42 97
IntShopping msee 100 138 21 34 42 113
IntShopping (binorm) info gain 100 86 85 1 81 75
Intrusion info gain 100 74 34 21 42 97
Intrusion (binorm) msee 100 8 8 32 10 256
Mushrooms info gain 100 106 34 37 42 105
Mushrooms (binorm) info gain 100 102 53 1 97 91
Pima variance 100 88 30 51 35 12
Pima (binorm) variance 100 90 22 34 42 113
Thrombin info gain 50 17 95 110 113 94
Thrombin (binorm) info gain 100 1 95 94 97 94

Table 4.6: Hyper-parameters for top scoring boosted models.
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Node Split Perc. Max. Max. Samples In Mem. Output
Dataset Method Used Iters Height per Leaf Limit Interval
Ads variance 50 145 111 110 94 40
Ads (binorm) variance 50 46 28 115 94 66
Adult msee 50 97 94 95 94 40
Adult (binorm) msee 100 38 14 70 81 1
Covertype variance 50 75 49 15 55 58
Covertype (binorm) msee 50 129 94 111 94 40
Credit info gain 50 86 70 30 81 1
Credit (binorm) info gain 100 90 53 58 50 97
Example info gain 100 99 97 19 55 90
Example (binorm) info gain 100 91 49 31 56 58
Example2 info gain 50 38 70 14 81 1
Example2 (binorm) msee 100 38 67 16 78 68
IntCensor variance 100 138 53 58 50 129
IntCensor (binorm) info gain 50 38 70 22 81 1
IntShopping variance 100 91 49 63 79 58
IntShopping (binorm) variance 50 8 8 32 100 256
Intrusion msee 100 113 94 95 94 40
Intrusion (binorm) info gain 50 38 70 14 81 1
Mushrooms variance 50 90 37 42 34 97
Mushrooms (binorm) msee 100 70 51 28 78 82
Pima msee 100 90 42 21 50 97
Pima (binorm) variance 100 90 21 42 34 97
Thrombin variance 100 30 12 51 78 66
Thrombin (binorm) info gain 100 38 70 14 81 1

Table 4.7: Hyper-parameters for top scoring tree models.

Perc. Max. Full Reg. Prob. Level L2

Dataset Used Iters Mode Bins Bins Factor
Ads (binorm) 100 34 0 Disabled Disabled 21
Adult (binorm) 100 5 2 Disabled Disabled 28.4
Covertype (binorm) 50 34 0 Disabled Disabled 21
Credit (binorm) 50 8 2 20 20 0
Example (binorm) 100 34 2 Disabled Disabled 21
Example2 (binorm) 100 8 2 20 20 0
IntCensor (binorm) 100 8 0 Disabled Disabled 0
IntShopping (binorm) 100 94 0 40 35 95
Intrusion (binorm) 100 51 0 12 78 30
Mushrooms (binorm) 100 79 1 Disabled Disabled 21
Pima (binorm) 50 8 1 20 20 0
Thrombin (binorm) 100 8 0 20 20 0

Table 4.8: Hyper-parameters for top scoring sfo models.
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Figure 4.1: Learning curves for Ads on 32 cores with linear (left) and logrithmic (right) time axes.
Error bars are 95% confidence intervals.
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Figure 4.2: Learning curves for Ads (binorm) on 32 cores with linear (left) and logrithmic (right)
time axes. Error bars are 95% confidence intervals.
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Figure 4.3: Learning curves for Adult on 1 core with linear (left) and logrithmic (right) time axes.
Error bars are 95% confidence intervals.
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Figure 4.4: Learning curves for Adult (binorm) on 1 core with linear (left) and logrithmic (right)
time axes. Error bars are 95% confidence intervals.
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Figure 4.5: Learning curves for Covertype on 32 cores with linear (left) and logrithmic (right)
time axes. Error bars are 95% confidence intervals.
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Figure 4.6: Learning curves for Covertype (binorm) on 32 cores with linear (left) and logrithmic
(right) time axes. Error bars are 95% confidence intervals.
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Figure 4.7: Learning curves for Credit on 32 cores with linear (left) and logrithmic (right) time
axes. Error bars are 95% confidence intervals.
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Figure 4.8: Learning curves for Credit (binorm) on 32 cores with linear (left) and logrithmic (right)
time axes. Error bars are 95% confidence intervals.
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Figure 4.9: Learning curves for Example on 32 cores with linear (left) and logrithmic (right) time
axes. Error bars are 95% confidence intervals.
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Figure 4.10: Learning curves for Example (binorm) on 32 cores with linear (left) and logrithmic
(right) time axes. Error bars are 95% confidence intervals.
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Figure 4.11: Learning curves for Example2 on 1 core with linear (left) and logrithmic (right) time
axes. Error bars are 95% confidence intervals.
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Figure 4.12: Learning curves for Example2 (binorm) on 1 core with linear (left) and logrithmic
(right) time axes. Error bars are 95% confidence intervals.
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Figure 4.13: Learning curves for IntCensor on 32 cores with linear (left) and logrithmic (right)
time axes. Error bars are 95% confidence intervals.
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Figure 4.14: Learning curves for IntCensor (binorm) on 32 cores with linear (left) and logrithmic
(right) time axes. Error bars are 95% confidence intervals.
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Figure 4.15: Learning curves for IntShopping on 32 cores with linear (left) and logrithmic (right)
time axes. Error bars are 95% confidence intervals.
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Figure 4.16: Learning curves for IntShopping (binorm) on 32 cores with linear (left) and logrithmic
(right) time axes. Error bars are 95% confidence intervals.
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Figure 4.17: Learning curves for Intrusion on 32 cores with linear (left) and logrithmic (right) time
axes. Error bars are 95% confidence intervals.
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Figure 4.18: Learning curves for Intrusion (binorm) on 32 cores with linear (left) and logrithmic
(right) time axes. Error bars are 95% confidence intervals.
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Figure 4.19: Learning curves for Mushrooms on 32 cores with linear (left) and logrithmic (right)
time axes. Error bars are 95% confidence intervals.
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Figure 4.20: Learning curves for Mushrooms (binorm) on 32 cores with linear (left) and logrithmic
(right) time axes. Error bars are 95% confidence intervals.
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Figure 4.21: Learning curves for Pima on 32 cores with linear (left) and logrithmic (right) time axes.
Error bars are 95% confidence intervals.
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Figure 4.22: Learning curves for Pima (binorm) on 32 cores with linear (left) and logrithmic (right)
time axes. Error bars are 95% confidence intervals.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2000  4000  6000  8000  10000  12000

S
c
o
re

Time (seconds)

bagged
boosted

tree
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1  1  10  100  1000  10000

S
c
o
re

Time (seconds)

bagged
boosted

tree

Figure 4.23: Learning curves for Thrombin on 32 cores with linear (left) and logrithmic (right)
time axes. Error bars are 95% confidence intervals.
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Figure 4.24: Learning curves for Thrombin (binorm) on 32 cores with linear (left) and logrithmic
(right) time axes. Error bars are 95% confidence intervals.
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4.3 Conclusion

The temporal learning curves produced demonstrate that for different datasets not only do the
different algorithms produce vastly different model qualities, but over he course of training which
algorithm produces the best models can change. This indicates that when training time is important,
algorithm selection becomes an even more critical aspect of producing the best possible model.
Additionally the wide ranges in hyper-parameters found while searching for optimal models indicate
that fine tuning of hyper-parameters is also vital for getting the best performance, in terms of both
speed and quality, out of each algorithms.
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Chapter 5

Phase 3: Determining Parallel
Performance by Relearning from
Partial Models

When analyzing parallel algorithms, it is necessary rerun the exact same computation multiple times
on different numbers of compute cores to measure the time it takes. Since the final product of the
computation is always the same, this can be a very Sisyphean [100] task. Where Sisyphus was cursed
by Zeus to push a boulder to the top of a hill, just to have the boulder roll back down the hill again,
rerunning the same learning task over and over again also always ends with the same result. In
this section, a method of collecting the required data is given that would be equivalent to allowing
Sisyphus to start the boulder at any point on the hill he wishes.

In order to build a model to predict which algorithm would work best on a given number of compute
cores in a fixed amount of time, data on the speed of each algorithm on different numbers of compute
cores is needed. In a perfect world that would simply mean running the algorithms on a fixed number
of cores, then scaling the run times linearly based on the number of cores. Unfortunately, due to
serial portions of the algorithm, parallel overhead, and potentially unbalanced workloads, the change
in run time is rarely linear with respect to the cores. Thus, the only way to truly determine the
actual run time is to run the algorithm over and over again on different numbers of cores.

To rerun all of the experimental configurations on up to the 32 compute cores used when searching
for optimal hyper-parameters would take an unreasonable amount of CPU time. Instead only powers
of two were considered, with an upper limit of 16 compute cores.

All of the algorithms being studied are deterministic anytime algorithms, therefore it should be
possible to use intermediate results obtained on a particular number of cores and rerun them on
another number of cores and obtain similar, if not identical, results. Exploiting the anytime na-
ture of these algorithms allows sampling of performance of individual model training iterations on
varying numbers of cores without always starting from an empty model, and repeating the entire
training process. However, due to data reordering and round-off issues, parallel algorithms that
are mathematically deterministic may end up being slightly non-deterministic when implemented
[101, 102].

In preparation for this re-sampling, the first time an algorithm is run on a dataset the models are
recorded after each iteration. Then when run on a different number of cores, these models can be
used as starting points, allowing the process to jump to any point in the training process.

The goal here is not only to determine which algorithm is best when run to completion, but also
which one would have produced the best model if a training time limit were imposed. If the goal were
simply to get overall speedup, using a weighted average of the iteration times at each recomputed
point would be sufficient. However this study is interested in exploiting the anytime nature of the
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algorithms being studied. For this reason, it is necessary to estimate the total run-time needed to
get to each iteration of a run on a different number of cores.

To accomplish this, for single compute core runs, the iterations that were sampled were the first, a
middle, and the final iteration. Since the number of iterations needed for each learning task varies,
and can be quite large, if there was a sufficiently large number of iterations, every 50 iterations was
also sampled. Using the iteration times for these sampled points, the intermediate iterations were
interpolated by scaling the 32 core iteration times.

For numbers of cores other than one, repeating the process of rerunning the first, middle and last
iterations for other numbers of cores would have been preferred, but the computational resources
for that were not available. Instead, more extreme CPU time reduction was employed. When re-
sampling on multiple cores, the iterations were sampled using the same pattern as with one core,
but only every 20th iteration was actually run. Since these resampled iterations are a subset of the
resampled single core iterations, the ratio of run times can be used to scale the interpolated single
core data to the number of cores being used. The ratio used for scaling was computed by taking the
ratio at each re-sampled point, then averaging those ratios.

Once each iteration has an estimated run time, an estimate of how long it would have taken to
complete a particular iteration assuming the learning had started from an initially empty model
can be computed by summing the estimated iteration times for all of the previous iterations in that
learning task.

5.1 Validation of Technique

There are many problems that can occur when comparing algorithms across different numbers of
compute cores [102, 103]. Even on the same number of cores subtle reordering of computations can
cause variations in the result due to the breakdown of the associative law. This is especially true of
numerical methods due to loss of precision in floating point computations. Even the computationally
simple task of summing a sequence of numbers can lead to different results depending on the order
in which the additions are performed [101]. In Section 3.5, these effects can be seen in the fact that
there is non-zero error in the model quality.

Since it is possible models might differ slightly when recomputed, it is necessary to verify that the
models being produced are close enough to what would have been produced if the full algorithm had
been run.

Some machine learning models can be represented as a vector (e.g. logistic regression), and in these
cases direct comparisons of the actual models might be possible using the L2 norm of the difference
in the model vectors. However, for tree based models such simple comparisons are not so easy, as
the difference between to graphs is not an easy to define concept.

In order to compare arbitrary models it would be better to focus not only on the model itself, but
also its outputs. By taking two comparable models, the original dataset can be passed though both
models and for each sample the mean absolute difference in their respective probability predictions
can be computed as

1

T ·N

T∑
t=1

N∑
i=1

|p̂ti − pti| (5.1)

, where N is the number of samples, T is the number of unique splits of the data used, p̂ti is the
predicted value for sample xi from one model trained during trial t, and pi is the prediction from
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the other model trained during trial t. This is not to be confused with mean absolute deviation, as
described in Equation 6.4, which uses the absolute difference between samples and their mean. This
instead is computing the difference between predictions of the same value from two different models.
By aggregating these differences, an average and confidence interval can also be computed. If the
confidence interval contains zero, then the difference between the models is statistically insignificant.

For each number of cores (1, 2, 4, 8, and 16), models were trained both by starting from an empty
model, and by resampling each iteration from the models trained on 32 cores. Each of these models
were then applied to the entire original dataset and the difference measures between the two types
of models was computed. This was repeated for five datasets, using the highest scoring hyper-
parameters for each dataset over five different splits of the dataset.

5.2 Runtime System

This portion of the project had originally been planned to use the same system as described in
Section 4.1, but that system became unavailable. As a result the 24 node system described in
Section 3.4 was used. In order to achieve a higher degree of parallelism, a rudimentary job scheduler
(Plan N as described in Section 2.3.4) was implemented to allow dividing the cluster into equally sized
chunks of cores. This scheduler however only allowed jobs of equal sizes to be run simultaneously.

5.3 Model Retraining on Varying Numbers of Cores

This phase of the project was intended to collect data that would allow estimating the total run-
time of each algorithm on different numbers of cores. As such, no really meaningful conclusions were
expected from the data.

5.3.1 Model Differences

As expected there was some variation between the predictions of the models. The differences shown
in Table 5.1 through Table 5.4 show that while there is some variation in the predictions of the models
produced, the variation is mostly small. In some cases the training of certain models failed leading
to “missing” values. The “nan”s in Table 5.2 are most likely due to invalid models that produce
“NaN” (not a number) predictions for some samples. A previous, far less rigorous, evaluation of this
technique that looked only at the root mean squared error in the predictions and did not include
confidence intervals had been used to justify using this technique. Unfortunately, these re-evaluated
results indicate that the predictions made by the models when re-run on a different number of nodes
are commonly statistically significant.

Timing information collected while measuring the difference in model prediction can also be com-
pared. For the iteration time comparison, there are many more statistically significant differences.
The most likely cause of the high variability in iterations times is excessive use of paging space,
which is discussed further in Section 5.4.1.

Based on these results, rerunning only a portion of iterations based on previously trained models
can lead to models that are significantly different than if they had been trained starting from an
empty model. However, based on a preliminary evaluation it had been concluded that rerunning
select iterations starting from partially trained models was a reasonable method for collecting the
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Cores Number
Dataset 1 2 4 8 16 Significant
Credit 0.426 0.428 0.421 0.415 0.429 0
Credit (binorm) 0.00516 0.00812 0.0116 0.0299 0.066 0
IntCensor 0.224 0.225 missing missing 0.222 1
IntCensor (binorm) 0.00304 0.0265 0.0868 0.205 0.258 5
IntShopping 0.274 0.274 0.274 0.274 0.274 5
IntShopping (binorm) missing missing missing missing missing 0
Mushrooms 0.275 0.275 0.275 0.275 0.275 5
Mushrooms (binorm) 0 0 0 0 0 0
Pima 0.00313 0.00442 0.0107 0.0245 0.043 5
Pima (binorm) 0.00439 0.0054 0.00767 0.024 0.047 5

Table 5.1: Average differences in model predictions for bagged. Statistically significant differences
from zero are show in italics (95% confidence)

Cores Number
Dataset 1 2 4 8 16 Significant
Credit 0.0837 0.0953 0.12 0.112 0.116 0
Credit (binorm) 0.0241 0.0649 nan nan nan 0
IntCensor 0.0412 0.136 missing missing 0.12 1
IntCensor (binorm) 0 0 0.178 0.103 0.0956 3
IntShopping 0.0626 0.142 0.136 0.136 0.12 5
IntShopping (binorm) 0 0.000788 0.0574 0.0869 0.0612 4
Mushrooms 0.00344 0.00223 0.00751 0.0215 0.00833 5
Mushrooms (binorm) 0 0.0997 0.0709 0.0657 0.0845 4
Pima 0 0.0499 0.198 0.169 0.217 4
Pima (binorm) 0 0.0879 0.241 0.184 0.162 4

Table 5.2: Average differences in model predictions for boosted. Statistically significant differences
from zero are show in italics (95% confidence)

Cores Number
Dataset 1 2 4 8 16 Significant
Credit 0.203 0.13 0.0839 0.0781 0.094 0
Credit (binorm) 0.118 0.0795 0.0754 0.0906 0.0929 0
IntCensor 0.0241 0.0168 missing missing 0.0245 1
IntCensor (binorm) missing missing missing missing missing 0
IntShopping 0.059 0.0597 0.0611 0.06 0.0513 5
IntShopping (binorm) missing missing missing missing missing 0
Mushrooms 0.444 0.359 0.152 0.0947 0.107 5
Mushrooms (binorm) 0.175 0.188 0.183 0.126 0.139 5
Pima 0.117 0.135 0.147 0.133 0.128 5
Pima (binorm) 0.16 0.145 0.14 0.172 0.174 5

Table 5.3: Average differences in model predictions for tree. Statistically significant differences from
zero are show in italics (95% confidence)
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Cores Number
Dataset 1 2 4 8 16 Significant
Credit (binorm) missing missing missing missing missing 0
IntCensor (binorm) 0 0 0 0 0 0
IntShopping (binorm) missing missing missing missing missing 0
Mushrooms (binorm) 2.98e-09 2.94e-09 6.6e-18 2.94e-09 2.94e-09 5
Pima (binorm) 0.000678 0.000678 0.000678 0.000678 0.000678 5

Table 5.4: Average differences in model predictions for sfo. Statistically significant differences from
zero are show in italics (95% confidence)

Cores Number
Dataset 1 2 4 8 16 Significant
Credit 0.292 0.366 0.628 0.521 0.512 0
Credit (binorm) 0.154 0.855 0.893 1.03 0.861 0
IntCensor 0.829 1.45 missing missing 1.41 1
IntCensor (binorm) 0.61 0.99 0.993 1.35 1.92 5
IntShopping 0.918 0.496 0.561 0.686 0.724 4
IntShopping (binorm) missing missing missing missing missing 0
Mushrooms 0.445 0.589 0.718 0.844 1.09 4
Mushrooms (binorm) 1.3 0.275 0.342 0.629 1.21 3
Pima 0.303 0.461 0.623 0.487 0.398 4
Pima (binorm) 0.214 0.428 0.607 0.856 0.617 4

Table 5.5: Average differences in iteration times (in seconds) for bagged. Statistically significant
differences from zero are show in italics (95% confidence)

Cores Number
Dataset 1 2 4 8 16 Significant
Credit 2.06 0.96 1.81 1.77 1.98 0
Credit (binorm) 0.0731 1.3 1.02 1.65 2.44 0
IntCensor 888 827 missing missing 268 1
IntCensor (binorm) 1.22 7.19 1.05e+04 7.07e+03 265 1
IntShopping 3.86e+03 662 1.35e+03 276 192 5
IntShopping (binorm) 0.322 1.6 1.28e+03 9.97 1.08 1
Mushrooms 325 27.6 14 5.13 3.88 0
Mushrooms (binorm) 0.554 0.405 3.1 3.61 4.94 0
Pima 0.129 0.117 0.409 0.378 0.544 3
Pima (binorm) 0.104 0.149 0.319 1.13 1.32 1

Table 5.6: Average differences in iteration times (in seconds) for boosted. Statistically significant
differences from zero are show in italics (95% confidence)
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Cores Number
Dataset 1 2 4 8 16 Significant
Credit 0.309 0.339 0.399 0.399 0.607 0
Credit (binorm) 0.255 0.282 0.335 0.496 0.797 0
IntCensor 16.8 2.83 missing missing 0.607 1
IntCensor (binorm) missing missing missing missing missing 0
IntShopping 24.9 5.35 3.43 257 61.5 5
IntShopping (binorm) missing missing missing missing missing 0
Mushrooms 1.38 0.404 0.304 0.439 0.53 5
Mushrooms (binorm) 0.467 0.509 0.424 0.484 0.755 5
Pima 0.266 0.269 0.348 0.447 0.657 5
Pima (binorm) 0.232 0.272 0.396 0.497 0.613 5

Table 5.7: Average differences in iteration times (in seconds) for tree. Statistically significant differ-
ences from zero are show in italics (95% confidence)

Cores Number
Dataset 1 2 4 8 16 Significant
Credit (binorm) missing missing missing missing missing 0
IntCensor (binorm) 0.33 2.26 2.05 7.81 2.21 4
IntShopping (binorm) missing missing missing missing missing 0
Mushrooms (binorm) 0.261 0.349 0.975 3.17 0.639 5
Pima (binorm) 0.24 0.433 0.464 0.701 0.663 5

Table 5.8: Average differences in iteration times (in seconds) for sfo. Statistically significant differ-
ences from zero are show in italics (95% confidence)
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required data in a the amount of time available. Also, given time and processor time constraints
using this technique was necessary.

5.4 Speedup

To better understand how algorithms perform on differing numbers of cores, speedup curves are
used. Speedup ideally is the ratio of the run time for the best serial algorithm to the parallel run
time as given in Equation 5.2.

speedup =
timeserial
timeparallel

(5.2)

However, fast serial implementations of these algorithms were not available, so the parallel algorithm
run on a single core was used. To get a speedup curve, speedup is computed for many different
numbers of computational units (cores).

5.4.1 Speedup Results

The speedup results are show in Figure 5.1 through Figure 5.24 and are arrange alphabetically by
dataset name. For the binorm datasets, all four algorithms evaluated are shown, logistic regression
(sfo) is not shown for the non-binorm datasets, as logistic regression cannot be run directly on those
datasets. Each graph includes an “ideal” line which shows what speedup would be if it exactly
followed the increase in number of cores used (i.e., speedup = cores). For each number of cores, the
95% confidence interval is given based on the average over all comparable iterations (i.e., iterations
with the same hyper-parameters, data split, and iteration number).

Overall the speedup data shows expectable patterns. For smaller datasets, as the number of cores
increased, the run time increased as in Figure 5.21. This is common when the parallel overhead
(e.g., communication and synchronization) costs exceed the computation time. For some of the
larger datasets, the speedup does increase as the number of cores is increased, but often comes back
down as the parallel overhead starts to take over as shown in Figure 5.7 and Figure 5.19.

There are some anomalies in this data that are worth noting. For some datasets, Ads, Adult,
Adult (binorm), IntCensor, and IntShopping, some of the speedup curves go way outside the
possible range. In the case of Adult, the lower bound for the 95% confidence interval is around
17,000 for 16 cores, where the maximum possible speedup should be only 16. If these weird readings
were due simply to random variations in the runtime system, it would be expected that the error
bars would include part of the valid range as in Figure 5.2 and Figure 5.6. This is not the case, so the
problem most likely was not just random fluctuations. Since speedup is the ratio of two different run
times, the problem with these measurements could be in one or both of the run times. In all of these
anomalous cases, the speedup is way too high, which means either the single core run time is too high,
or the multiple core run is way too low. Of these options, it is more plausible that single core runs
were consistently slower than expected, than it is that multi-core runs were consistently impossibly
fast. Possible explanations for this slowness include memory usage, which could cause slowdowns due
to excessive paging or garbage collection. In order to have the best chance of learning tasks finishing
without running out of memory and minimize the need for aggressive garbage collection, the Java
Virtual Machine (JVM) was configured to have the maximum amount of heap space, 3712MB for
the 32-bit JVM used, and the nodes were configured with plenty of swap space to allow for such
large processes. This means that for memory hungry learning tasks, most of the heap space would
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Figure 5.1: Speedup curves for Ads. Error bars are 95% confidence intervals.

end up paged out. It is worth reiterating that the cluster used here only has 1GB of RAM per core.
The cluster that was used in Chapter 4, which was originally going to be used here as well, had 4GB
of RAM per core.

Another type of anomaly that occurred can be seen in Intrusion, Intrusion (binorm), Thrombin,
and Thrombin (binorm). In some cases, the anomaly is that certain algorithms are missing speedup
data (e.g Figure 5.17 is missing bagging and boosting). In other cases not all data points for some
algorithms are available, as in Figure 5.23. In all of these cases, the problem is that a single compute
node was incapable of running the required learning tasks. So, while there may be data for the
multiple core runs, there is no single core run with the same hyper-parameters to compare it to.
Counter intuitively, the one data point for Thrombin is for a single core. This is possibly because
the single core iterations were sampled more frequently, so it was more likely that there would be a
configuration that could finish on a single core.

The practical effect of these speedup anomalies is that the estimated time to reach a particular
iteration may be incorrect. This could adversely affect the predictions of the final algorithm selection
model when a time limit is applied. It should not affect the results when no time limit (i.e., an
arbitrarily high limit) is specified.
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Figure 5.2: Speedup curves for Ads (binorm). Error bars are 95% confidence intervals.
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Figure 5.3: Speedup curves for Adult. Error bars are 95% confidence intervals.
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Figure 5.4: Speedup curves for Adult (binorm). Error bars are 95% confidence intervals.
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Figure 5.5: Speedup curves for Covertype. Error bars are 95% confidence intervals.
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Figure 5.6: Speedup curves for Covertype (binorm). Error bars are 95% confidence intervals.
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Figure 5.7: Speedup curves for Credit. Error bars are 95% confidence intervals.
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Figure 5.8: Speedup curves for Credit (binorm). Error bars are 95% confidence intervals.
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Figure 5.9: Speedup curves for Example. Error bars are 95% confidence intervals.
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Figure 5.10: Speedup curves for Example2. Error bars are 95% confidence intervals.
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Figure 5.11: Speedup curves for Example2 (binorm). Error bars are 95% confidence intervals.
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Figure 5.12: Speedup curves for Example (binorm). Error bars are 95% confidence intervals.
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Figure 5.13: Speedup curves for IntCensor. Error bars are 95% confidence intervals.
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Figure 5.14: Speedup curves for IntCensor (binorm). Error bars are 95% confidence intervals.
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Figure 5.15: Speedup curves for IntShopping. Error bars are 95% confidence intervals.
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Figure 5.16: Speedup curves for IntShopping (binorm). Error bars are 95% confidence intervals.
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Figure 5.17: Speedup curves for Intrusion. Error bars are 95% confidence intervals.
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Figure 5.18: Speedup curves for Intrusion (binorm). Error bars are 95% confidence intervals.
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Figure 5.19: Speedup curves for Mushrooms. Error bars are 95% confidence intervals.
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Figure 5.20: Speedup curves for Mushrooms (binorm). Error bars are 95% confidence intervals.
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Figure 5.21: Speedup curves for Pima. Error bars are 95% confidence intervals.
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Figure 5.22: Speedup curves for Pima (binorm). Error bars are 95% confidence intervals.
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Figure 5.23: Speedup curves for Thrombin. Error bars are 95% confidence intervals.
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Figure 5.24: Speedup curves for Thrombin (binorm). Error bars are 95% confidence intervals.

5.5 Conclusion

By comparing the model outputs from models trained from initially empty models to models pro-
duced by repeating single iterations based on models recorded during previous training runs on
different numbers of cores, it was concluded that the differences in the resulting models were not
significant. This result indicated that parallel performance data can be estimated by resampling
individual iterations of each learning algorithms rather than having to start each algorithm from
an empty model, thereby greatly reducing the time needed to collect the data required to build an
algorithm selection model.

In terms of speedup, the results were a mix of mediocre results for smaller datasets and impossibly
good results for many of the larger datasets. These impossibly good results are most likely due
to extremely poor performance on a single core due to unfortunate interactions between the Java
Virtual Machine (JVM) and the host virtual memory system.
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Chapter 6

Phase 4: Training Algorithm
Selection Models

Based on the data collected, models were trained to predict which algorithm would perform best on
previously unseen datasets, given the characteristics of each dataset, a number of compute cores,
and a time limit. The work of Perlich et. al. [7] indicates that small datasets with low separability
tend to prefer logistic regression, where as large and more easily separable datasets tend to favor
tree induction. Mitchie et. al. [46], King et al. [10], Kalousis [65], and Ali and Smith [47], all
examined different measures of datasets and building models for algorithm selection based on those
measures. However all of these studies were done using serial algorithms and did not take run-time
into consideration. This chapter describes the dataset measures used to describe the datasets in this
study, then uses those measurements to construct a dataset which models were then trained on to
predict which algorithm will perform best on a dataset based on its characteristics. The dataset
prediction model were then tested against datasets that had not been used in the creation of the
models to see how well the models perform.

6.1 Dataset Properties

To build a model that can make predictions about datasets, an additional dataset that describes
which algorithms perform best on known problems is needed. The classes in the additional dataset
are the various algorithms tested, in this case, bagging, boosting, tree induction, and logistic re-
gression. The attributes of the additional dataset are made up primarily of the characteristics of
the datasets. Therefore the distinguishing characteristics of the datasets must be measured. These
measurements, along with the number of compute cores and time limits, make up the attributes for
the meta-learning problem of predicting which algorithm should work best. The measures used are
described in Section 6.1.2 through 6.1.4.

The dataset measures used in this study were mostly adapted from Kalousis [65], but many of them
have been used in additional studies as well [10, 47].

A full listing of the measures for each dataset is given in Appendix B.

6.1.1 Applying Univariate Measures to Multivariate Datasets

Many of the measures used to describe datasets are normally applied only to single set of numbers.
Since datasets have multiple attributes, this presents a problem. When applying a single-variate
measure, the samples are first divided into groups of the same class. Within each of those class
based groups, the single-variate measure is applied to each attribute individually. This produces a
single set of numbers (one for each class and attribute pair), the minimum, maximum, arithmetic
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mean, median, and standard deviation of that set are all reported as shown in Table 6.2. For some
statistics that are combined this way, a ten bin histogram is also produced, as well as a count of
non-computable values as shown in Table 6.3.

6.1.2 Simple Measures

The simple measures describe the overall size, shape and general attribute and class makeup (i.e.,
the aspects of the dataset that can be counted). Many of these simple measures are used to define
the more complex statistics and information theory based measures. The total number of samples,
also known as instances or examples, in the dataset, is referred to as N . For datasets that are
provided as a training set and a separate testing set, N is the number of samples in the training
set. The total number of attributes, also known as attributes or variables that define individual
samples, is referred to as J . The number of class labels in the dataset is referred to as C. While this
work focuses exclusively on binary probability estimation, all of the metrics that are sensitive to the
number of classes will be reported both for the original number of classes and just the two classes
considered. The number of samples belonging to the positive (or majority) class is referred to as
numpos and the negative (or minority) class is referred to as numneg. Likewise the percentage of
samples belonging to positive and negative classes are referred to as percpos and percneg, respectively.
Similarly, percentages of attributes of different types are given. The number and percentage of:
binary attributes are numbin and percbin, categorical (nominal) attributes are numcat and perccat,
discrete ordered attributes are numord and percord, continuous attributes are numcont and perccont.
The number and percentage of missing values across all samples and attributes are nummiss and
percmiss. In this study samples with missing values were either removed or the missing values were
treated as an additional level. The ratio of attributes to samples (J/N) is the dimensionality of the
dataset.

In addition to counting the samples and attributes, the unique values within each categorical at-
tribute can be counted. The minimum, maximum, mean median and standard deviation of the
unique value counts are uniquemin, uniquemax, uniquemean, uniquemedian, uniquestddev, respectively.
Since binary attributes can be thought of as categorical with only two values, some of the unique
value counts are repeated to include the binary attributes. These unique value counts with binary
attributes includes are unique2mean, unique2median, and unique2stddev.

These simple measures do not provide much information about the separability of the classes (i.e.
how learnable the dataset is), but some of them are the main factors affecting the run times of a
singe iteration of each algorithm. Some algorithms will be faster with large numbers of samples (N)
where others will benefit more from large numbers of features (J).

6.1.3 Statistical Measures

This section provides descriptions of the various statistical measures used to describe datasets.
Additionally, all non-numeric attributes are ignored for statistical measures.

Arithmetic Mean

The arithmetic mean (x̄) of a set of numbers is the sum of the numbers divided by size of the set of
numbers. That is to say, that if you have a set of numbers xi ∈ {x1, . . . , xN}, the arithmetic mean
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is

arithMean =
1

N

N∑
i=1

xi (6.1)

.

Geometric Mean

The geometric mean of a set of numbers is the nth root of the product of n numbers. That is to
say, if you have a set of numbers xi ∈ {x1, . . . , xN}, the geometric mean is

geoMean =

{
N∏
i=1

|xi|

} 1
N

(6.2)

.

Harmonic Mean

The harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of the reciprocals
of each element in the set. That is to say, that if you have a set of numbers xi ∈ {x1, . . . , xN}, the
harmonic mean is

harmMean =

{
1

N

N∑
i=1

1

xi

}−1
(6.3)

.

Trim Mean

The trimMean of a set of numbers is the arithmetic mean of a trimmed version of the set. More
specifically, an equal number of values are removed from both the high and low ends of the dataset.
For this study the top 10% and the bottom 10% were removed. To get a trim mean for the entire
dataset, the arithmetic mean of trim means for each attribute for each class are reported.

Mean Absolute Deviation

The mean absolute deviation (mad) of a set is the arithmetic mean of the distances from the overall
mean of the set,

mad =
1

N

N∑
i=1

|xi − x̄| (6.4)

, where x̄ is the arithmetic mean, given in Equation 6.1.
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Variance

The variance of a set is similar to the mad, but uses the quadratic difference from the mean. That
is to say, the average of the square of the distances between each value and the overall mean.

variance =
1

N

N∑
i=1

(xi − x̄)
2 (6.5)

, where x̄ is the arithmetic mean, given in Equation 6.1.

Standard Deviation

The standard deviation of a set is the square root of the variance,

stdDev =

√√√√ 1

N

N∑
i=1

(xi − x̄)
2 (6.6)

, where x̄ is the arithmetic mean, given in Equation 6.1.

90th Percentile

The 90th percentile (perc90) is the smallest element of a set where 90% of the elements in the set
are smaller than it. This is equivalent to sorting the set and finding the element where the largest
10% of values are on one side and the smallest 90% values are on the other side.

Inter-Quartile Range

The inter-quartile range (IQ-range) is the difference between the first and third quartile value. The
first quartile, is similar to the 90th percentile, but is the value for which one quarter are smaller
than it, and three quarters are larger than it. Likewise, the third quartile is the value for which
three quarters are smaller than it and one quarter is larger than it. The difference between these
two numbers is the inter-quartile range.

Median

The median of a set of numbers is the value for which 50% of the values in the set are smaller than
it. The median is also the 50th percentile.

Canonical Correlation

In canonical correlation, the samples are considered to be vectors in J-dimensional space. These
vectors are then projected onto J−1 mutually orthogonal vectors. The first vector that the samples
are projected onto is chosen with the following constraints: 1) the centroids of each class (i.e. the
arithmetic mean of all samples belonging to that class) have the distance between them maximized,
and 2) the distance between samples within each class are minimized when projected onto the vector.
A second vector can then be chosen according the the same constraints that is orthogonal to the first
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vector. A total of J − 1 vectors numbered 1 to J − 1 can be chosen this way, where each subsequent
vector is mutually orthogonal to all previous vectors.

This measure was implemented using the canoncorr function in MATLAB. The first matrix con-
sisted of a row per sample, with the columns being the numeric attributes of the dataset. The second
matrix also has a row per sample, but there was a column per class where all of the values in a row
were set to zero, except the position corresponding to the sample’s class, which was set to one. The
values reported for cancorr1 through cancorr4 are elements one through four of the r vector returned
by the canoncorr function.

For datasets where r contains fewer than four elements, NaN is reported for the non-existent ele-
ments.

Fraction of Separability (due to Canonical Correlation)

The fraction of separability (frack) [46, 10, 65] gives the proportion of variation due to the first k
linear discriminants. It is computed by taking the ratio of the sum of the k largest eigenvalues to the
sum of all of the eigenvalues corresponding the the eigenvectors produced in canonical correlation.

This process involves inverting a matrix. However, if there is an attribute for which all of the values
are the same for any class, the matrix that needs to be inverted will contain columns and rows that
are all zeros. This makes it impossible to invert the matrix. To get around this limitation, any such
rows and columns are removed from the matrix prior to inversion. The effect of this modification is
that it ignores any attributes that lack sufficient variation to contribute to learning.

Inverting matrices is also a very time consuming operation, so for datasets with large (>10,000)
numbers of numeric attributes, this measure was not computed and is reported as NaN.

It may also be the case that the eigenvalues found might be complex. To ensure that all of the
dataset characteristics are real values, the absolute value of the eigenvalues was used.

As with canonical correlation, for any dataset that does not have sufficient linear discriminants, NaN
is reported for the remainder of the values.

Difference in Fraction of Separability

Since frack gives the total variation given by the first k linear discriminants, it does not directly
convey any information about how much variation is added by each individual discriminant. To
provide information regarding the individual discriminant, dfrack gives the amount of variation
added by each discriminant (i.e., the difference between frack values) and is computed as

dfrack = frack − frack−1 (6.7)

.

Mean Absolute Correlation

The mean absolute correlation [10, 65] is the arithmetic mean over all classes of the absolute values
of the correlation coefficients of all pairs of attributes within each class. That is to say, that if you
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take all pairs of numeric attributes i and j and perform linear regression between them and measure
the correlation as ρij , mean absolute correlation ρ̄ is

¯|ρ| = 2

J2 − J
∑
i<j

|ρij | (6.8)

, where J is the number of attributes.

Skew

The skew of a dataset is similar to variance and standard deviation, but uses the third power of
the differences between each value and the mean. In terms of moments of central tendency, skew is
the third moment. This is often referred to as measuring how much the set deviates from a normal
distribution or how asymmetric the distribution is [104]. Skew is computed as

skew =
1
n

∑n
i=1 (xi − x̄)

3

σ3
(6.9)

, where x̄ is the arithmetic mean of the set as shown in Equation 6.1 and σ is the standard deviation
of the set as shown in Equation 6.6.

Since skew can be negative, the absolute value of skew for each attribute was used. The absolute
values were then averaged the same way as all other univariate statistics.

Kurtosis

The kurtosis of a dataset is an extension of skew, and uses the fourth power of the differences from
the mean. In terms of moments of central tendency, kurtosis is related to the fourth moment. This
is often referred to as measuring the peakedness of the distribution, however Westfall [105] gives a
more detailed treatment of what it really means. Kurtosis instead can be thought of as the heaviness
or lightness of the tails of the distribution [104]. Kurtosis is computed as

kurtosis =
1
n

∑n
i=1 (xi − x̄)

4

σ4
(6.10)

where x̄ is the arithmetic mean of the set, given in Equation 6.1, and σ is the standard deviation of
the set, given in Equation 6.6.

Normal Cumulative Distribution Test

The normal cumulative distribution test (normP) first attempts to fit the values of a numeric
attribute to a normal distribution. The resulting distribution is then tested against the original
values. A p-value for rejecting the hypothesis that the data comes from the fit distribution is then
computed.

Chi-square Test

The chi-square test χ2 determines how closely a set of numbers fits a normal distribution. The value
computed for each class and attribute pair is the confidence level at which the hypothesis that the
values are normally distributed can be rejected.
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Standard Deviation Ratio

The sdRatio [10, 65] provides a measure of similarity between the covariance matrices of the at-
tributes across all of the classes. An implementation in MATLAB of sdRatio based on the descrip-
tions provided by Kalousis [65] and King et al. is provided in the electronic appendix. Because
computing sdRatio involves finding a determinant of a potentially very large matrix, this measure
is not reported for datasets that have over 10,000 numeric attributes.

Z-score

The z-score (zScore) of a value is the number of standard deviations above or below the mean that
a value is and is computed as

zScore =
xi − x̄
σ

(6.11)

, where x̄ is the arithmetic mean and σ is the standard deviation of a numeric attribute’s values.
For each attribute the maximum z-score is used when computing the averages over all classes and
attributes.

Concentration Coefficient

The concentration coefficient [65] gives a measure of how well nominal attributes predict the value
of other nominal attributes. Because the class attribute is also a nominal attribute, this measure is
given both with (concCoeffC ) and without (concCoeff ) the class being included.

ANOVA p-Values

The ANOVA p-values (pVal) measure performs ANOVA on all pairings of numeric to nominal
attributes for each class. The p-values for each pairing is then averaged to estimate the strength
of the relationships between the nominal and numeric attibutes. As with concentration coefficient,
because the class attribute is also a nominal attribute, this measure is given both with (pValC ) and
without (pVal) the class being included.

6.1.4 Information Theoretic Measures

Another category of measure is based on information theory. These measures focus on the entropy
of the dataset.

Entropy = −
N∑
i=1

pi lg pi (6.12)

, where pi is the probability of event pi occurring. Note that since pi is between zero and one, lg pi
is always non-positive, so the final result is always non-negative.
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Class Entropy

The class entropy of a dataset is the total entropy over all classes.

H(C) = −
K∑
i=1

P (C = Ci) lgP (C = Ci) (6.13)

, where K is the number of classes and P (C = Ci) is the probability that a sample belongs to class
Ci.

Mean Attribute Entropy

The mean attribute entropy is the arithmetic mean of the entropies of each nominal attribute.

H̄(X) = − 1

J

J∑
j=1

K∑
i=1

P (X = Xij) lgP (X = Xij) (6.14)

, where Xij is the ith sample of the jth class and K is the number of classes.

Mean Joint Entropy for Attributes and Class

The joint entropy for attributes and classes (H(Xj , C)) is similar to class entropy and attribute
entropy, but uses the joint probability of the class and attribute j having a combination of values
P (X = Xij and C = Ci). That is

H(Xj , C) = −
K∑
i=1

pij lg pij (6.15)

where pij is the joint probability P (X = Xij and C = Ci). The mean joint entropy is then the
arithmetic mean of the joint entropies for all attributes,

H̄(X,C) = − 1

J

J∑
j=1

H(Xj , C) (6.16)

.

Mean Mutual Information for Attributes and Class

The mean mutual information [46, 65] (M̄(X,C)) is

M(X,C) =

K∑
i=1

K∑
j=1

pij lg

(
pij
πiqj

)
(6.17)

, where pij is the joint probability P (X = Xij and C = Ci), πi is the marginal probability P (C =
Ci), and qj is the marginal probability P (X = Xj). The mean mutual information (M̄(X,C)) is
the arithmetic mean of mutual information over all nominal attributes.
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Equivalent Number of Attributes

Each attribute hopefully provides some information related to the class of each sample. The equivi-
lant number of variables [46] (env) is computed by taking the ratio of the total entropy of the class,
and dividing it by the average information of the attributes,

env =
H(C)

M̄(X,C)
(6.18)

, which gives an estimate of the number of attributes (variables) that should be needed to classify
the samples.

Noise to Signal Ratio

The noise to signal ratio [46] (nsr) gives a measure of how much useless information (noise) there is
in the dataset, and it computed as

nsr =
H̄X − M̄(X,C)

M̄(X,C)
(6.19)

.

6.1.5 Dataset Measurements

The characteristics, as described in Section 6.1.2 through 6.1.4, for the IntCensor dataset are given
in the Table 6.1 through Table 6.3. A full listing of all dataset measures is given in Appendix B.
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Characteristic Value
cancorr1 0.090
cancorr2 0.060
cancorr3 0.021
cancorr4 NaN
H(C) 1.726
dfrac2 0.295
dfrac3 0.037
dfrac4 0.000
dimensionality 0.007
env 116.698
frac1 0.668
frac2 0.963
frac3 1
frac4 1
nsr 70.969
J 74
N 10108
percnin 66.2%
perccont 6.8%
percord 27.0%
percmiss 0.0%
percneg 47.6%
percpos 52.4%
sdRatio 1.000
numbin 49
C 4
numcont 5
numord 20
nummiss 0
numpos 4816
numneg 5292

Table 6.1: Characteristics of the IntCensor dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.030 0.321 0.159 0.152 0.084
skew 0.056 2.049 0.472 0.875 0.707
arithMean -0.159 35.169 3.194 8.470 13.301
χ2 0 0.000 0.000 0.000 0.000
concCoeff 0 1 0.001 0.023 0.121
concCoeffC 0 0 0 0 0
H̄(X) 0.044 5.715 0.701 1.065 1.087
H̄(X,C) 1.043 6.706 1.693 2.048 1.083
geoMean 0 29.868 0 5.877 12.065
harmMean -305.540 111.486 0 -10.475 76.257
IQ-range 0.250 22 2.625 5.638 7.809
kurtosis 2.610 7.185 3.389 3.936 1.375
mad 0.354 13.036 1.533 3.498 4.385
median 0 34 3 7.950 12.668
M̄(X,C) 0.000 0.998 0.000 0.015 0.116
normP 1 1 1 1 0
pValC 0 1 0.000 0.090 0.223
pVal 0.000 0.004 0.000 0.001 0.002
perc90 0.500 56 5 14.050 20.499
stdDev 0.652 16.462 1.936 4.411 5.431
trimMean -0.039 34.982 3.034 8.305 13.165
unique 3 129 8 20.600 36.535
unique2 2 7.391 21.100
variance 0.425 271.005 3.757 47.474 90.697
zScore 1.536 3.401 2.395 2.407 0.554

Table 6.2: Summary characteristics of the IntCensor dataset.

Char. Histogram (%) NaN
|ρ| 35.00 27.50 35.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
skew 20.00 20.00 20.00 0.00 0.00 5.00 5.00 10.00 5.00 15.00 0.00
concCoeff 96.86 1.35 0.20 0.04 0.08 0.02 0.02 0.00 0.00 1.43 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 41.89 33.78 2.70 12.16 4.05 2.70 0.00 0.00 0.00 2.70 0.00
H̄(X,C) 41.89 35.14 1.35 12.16 4.05 2.70 0.00 0.00 0.00 2.70 0.00
kurtosis 30.00 30.00 10.00 0.00 10.00 0.00 5.00 5.00 5.00 5.00 0.00
M̄(X,C) 98.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.35 0.00
pValC 83.19 3.77 2.03 0.87 2.03 1.45 1.45 1.16 1.74 2.32 0.00
pVal 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 6.3: Histogram based characteristics of the IntCensor dataset.
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6.2 Algorithm Selection Dataset

Building a model to select algorithms that will perform well on a dataset requires first building
an additional dataset that can be used to train the model. The classes for this dataset are the
algorithms. Each sample is labeled with the algorithm that produced the best model quality under
certain constraints. The attributes of this dataset are the properties of the datasets as described in
Section 6.1, along with the machine configurations and a time limit.

6.2.1 Algorithm Selection Attributes

The attributes for the algorithm selection dataset are primarily made up of the measured character-
istics described in Section 6.1. Any characteristic that is not computable, or results in Not a Number
(NaN) or Infinity (Inf), are treated as missing values. In addition to the dataset characteristics, two
additional attributes are added. The first is the number of cores. The second is a time limit (in
milliseconds) that the algorithm would be allowed to run.

The levels for the time limit attribute of the dataset are constructed by sampling the range of times
at an interval of ∼10% the range being sampled. The relationship between sampling interval and
the value being sampled is given by Equation 6.20.

interval = 10blog valuec−1 (6.20)

For consistent sampling within each region, the start point is always a multiple of the interval for the
lower end of the range of times being sampled. Additionally, to represent the final model generated
if no time limit were given, a time limit of 109ms (∼11.5 days) is also included.

6.2.2 Algorithm Selection Classes

The classes for the algorithm selection dataset are, not surprisingly, the individual algorithms. In
order to label each sample, a means of determining the “best” algorithm is needed. To pick the
algorithm to label a sample with, temporal learning curves (TLCs) as described in Section 4.2.4 are
used. Since each sample represents a potential stopping time, for each time limit considered, all of
the TLCs are compared based on the confidence intervals for their combination scores. For example,
in Figure 6.1, up to about 10 seconds, tree induction would be the best algorithm. After 10 seconds,
sfo’s and boosting’s confidence intervals overlap the tree confidence intervals. Around 100 or 200
seconds boosting model scores improve to a point where the confidence intervals no longer overlap
those of any of the other algorithms, and boosting becomes the best algorithm.

For each time limit and number of cores considered, there are potentially many overlapping confi-
dence intervals as is the case between 10 seconds and 100 seconds for Figure 6.1. There are several
possible ways to handle the overlaps. The first is to create a sample for each overlapping algorithm,
and would be to create a label for each combination of algorithms, and finally a single one could be
chosen based on some reasonable criteria. In this case it was decided to use the algorithm that had
the highest lower bound. For each sampled time, all TLCs over all hyper-parameters were consid-
ered when picking the best scores. This means that from one sample to the next, even if the same
algorithm is selected, it may have been from a different set of hyper-parameters.
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Figure 6.1: Learning curves for Mushrooms (binorm) on 32 cores with linear (left) and logrithmic
(right) time axes. Error bars are 95% confidence intervals.

6.2.3 Conversion to Binary Classification

Since the algorithms being classified perform probability estimation for binary classification, the
classes in the original datasets can be simplified to a positive class and a negative class. This
simplification can affect the dataset characteristics used to build the model. To address this issue,
two datasets were created. One with the characteristics of the datasets including all of the original
classes. The other dataset uses characteristics as measured with only two classes.

6.2.4 Building a Test Dataset

To test the algorithm prediction models several additional datasets were chosen. Each of these
datasets were then put through the same hill climbing process as described in Chapter 4 using a single
compute core. To give the hill-climbing a head start, and ensure that some set of hyper-parameters
were tried on all numbers of cores, the set of random restarts was seeded with some of the hyper-
parameters that had scored highly on the datasets in Chapter 4. To avoid using hyper-parameters
that are overly similar to others, all hyper-parameters were rounded to the nearest multiple of five.
After the rounding, duplicates were removed. Initially the top five hyper-parameters from each
algorithm were going to be used, but only the very highest scoring hyper-parameters ended up being
used, due to an error when creating the initial learning task files.

After the hill climbing was completed on a single core, it was again repeated on different numbers of
cores to collect run-time data. The numbers of cores used were again 2, 4, 8, and 16 as in Chapter 5.
However, unlike in Chapter 5, all training on multiple cores was done from initially empty models.
The hill climbing on multiple cores was also seeded with the top five sets of hyper-parameters for
each algorithm.

Using the data from the hill climbing, a dataset was built just as the training set for algorithm
selection had been constructed.
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6.3 Runtime System

For measuring of dataset characteristics, Matlab R2016b (9.1.0.441655) [106] running on a 2.3GHz
Intel Core i7 with 16GB of RAM was used. For training the models for the meta-learning problem,
Weka 3.8.1 [39] running on the same Core i7 system was used.

The training of models for the test dataset for the meta-learning problem were trained using the the
same configuration as in Section 5.2.

6.4 Algorithm Selection Results

6.4.1 Additional Model Quality Metrics

The model quality metrics used by Weka are different than the ones used in Chapter 3 through
Chapter 5. As in the previous chapters, Accuracy, Error, Precision, Recall, and AUC are all reported.
However, F-measure (described as F-score in Equation 1.39), and two additional metrics, MCC and
area under the precision-recall curve, are also reported.

Matthews Correlation Coefficient

The Matthews Correlation Coefficient (MCC) [107, 108] is intended to give a quality measure that
is useful when the class sizes differ greatly. Unlike AUC which also handles class size imbalances
well, MCC is computed strictly from the confusion matrix,

MCC =
TP · TN − FN · FP√

(TP + FN) · (TP + FP ) · (TN + FP ) · (TN + FN)
(6.21)

, and does not require finding the area under a curve. The values given by MCC range from -1 to
1, where -1 is very bad, and 1 is very good.

Area Under the Precision-Recall Curve

The area under the precision-recall curve [109] (AUPRC) is similar to AUC, however instead of using
specificity and sensitivity, precision and recall are used to construct the curve.

6.4.2 Model Training Results

A series of 18 different models were trained on the algorithm selection datasets (regular and binary
class only) using Weka and default settings for most learners. For the clustering algorithms, an
additional flags to label each cluster and to use 4 clusters were given. The scores reported for those
models after training are shown in Table 6.4 and Table 6.5. The last column of the tables (Avg.)
is an average of all of the measures. For measures that do not have the range 0 to 1, or for which
lower is better, the values were mapped to the range 0 to 1, with one being the better end of the
scale. Thus, error was subtracted from zero before being averaged, and MCC was divided by two
and had 0.5 added to it.

118



Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.475 0.525 0.226 0.475 0.306 0.000 0.754 0.605 0.483
Decision Stump 0.620 0.79 0.603 0.620 0.574 0.408 0.727 0.533 0.646
EM 0.591 0.776 0.581 0.591 0.524 0.367 0.768 0.588 0.638
Farthest First 0.491 0.661 0.468 0.491 0.433 0.172 0.679 0.502 0.539
Filtered
Clusterer

0.512 0.617 0.468 0.512 0.426 0.171 0.689 0.509 0.540

Hierarchical
Clusterer

0.495 0.551 0.401 0.495 0.364 0.099 0.529 0.373 0.470

Hoeffding Tree 0.626 0.845 0.660 0.626 0.610 0.472 0.763 0.586 0.681
IBk 0.820 0.917 0.821 0.820 0.817 0.733 0.956 0.900 0.865
J48 0.936 0.97 0.936 0.936 0.936 0.906 0.978 0.947 0.949
LMT 0.833 0.927 0.842 0.833 0.835 0.752 0.914 0.845 0.863
LWL 0.625 0.825 0.629 0.625 0.591 0.448 0.829 0.676 0.691
Logistic 0.706 0.832 0.681 0.706 0.689 0.535 0.892 0.789 0.758
Make Density
Based Clusterer

0.512 0.617 0.468 0.512 0.426 0.171 0.689 0.509 0.540

REPTree 0.921 0.963 0.921 0.921 0.921 0.885 0.981 0.952 0.940
Random Forest 0.947 0.975 0.947 0.947 0.947 0.922 0.994 0.986 0.963
Random Tree 0.937 0.971 0.938 0.937 0.938 0.908 0.956 0.901 0.942
SimpleKMeans 0.571 0.733 0.543 0.571 0.512 0.314 0.766 0.596 0.619
Simple Logistic 0.696 0.83 0.672 0.696 0.679 0.521 0.887 0.783 0.750

Table 6.4: Model scores for training set.

While some of the models scored very poorly, some of the algorithms scored very high. In particular,
the tree based methods J48, REPTree, Random Forest, and Random Tree all managed to get average
scores over 0.9. This would suggest that one should expect the models produced to do well in
predicting which algorithm will perform well based on their characteristics.

On the other hand, the clustering methods tended to do very poorly, and commonly had average
scores below 0.5. One possible explanation for the bad clustering is that for all cases, only four
clusters were used. Had differing numbers of clusters been tried, it is possible clustering may have
produced better predictions.

Surprisingly, the scores in Table 6.13 are nearly identical to those in Table 6.4. This would indicate
that the models are not very sensitive to the dataset characteristics that are affected by the number
of classes.

To look more closely at the results of these models, the confusion matrices can be examined. The
confusion matrices for highest scoring (J48) and lowest scoring (EM) models are shown in Table 6.6
and Table C.3. A complete listing of confusion matrices is given in Appendix C.

In the high scoring model (Table 6.6), the largest numbers are aligned along the diagonal, as expected.
One interesting thing to note is that along the diagonal, class ‘a’, bagging, has the smallest number
of samples falling into that bin. This is most likely due to the issues regarding bagging on small
datasets and with the binorm versions of the datasets as discussed in Section 4.2.2.

In the low scoring model (Table 6.7), the model apparently always guesses ‘boosted’. If a model had
to only give one answer every time, ‘boosted’ is certainly a better option than ‘bagging’, since more
samples have that label. This does not however make for a very useful model.
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.475 0.525 0.226 0.475 0.306 0.000 0.744 0.609 0.483
Decision Stump 0.620 0.79 0.603 0.620 0.574 0.408 0.727 0.533 0.646
EM 0.610 0.774 0.578 0.610 0.551 0.385 0.781 0.604 0.650
Farthest First 0.505 0.678 0.475 0.505 0.444 0.198 0.675 0.488 0.546
Filtered
Clusterer

0.485 0.555 0.464 0.485 0.355 0.087 0.670 0.495 0.507

Hierarchical
Clusterer

0.495 0.551 0.401 0.495 0.364 0.099 0.529 0.373 0.470

Hoeffding Tree 0.631 0.864 0.693 0.631 0.624 0.500 0.773 0.612 0.697
IBk 0.815 0.915 0.816 0.815 0.811 0.726 0.954 0.896 0.861
J48 0.936 0.97 0.935 0.936 0.935 0.905 0.978 0.947 0.949
LMT 0.827 0.909 0.824 0.827 0.824 0.735 0.938 0.869 0.861
LWL 0.629 0.836 0.639 0.629 0.601 0.462 0.830 0.672 0.696
Logistic 0.706 0.832 0.681 0.706 0.689 0.535 0.892 0.789 0.758
Make Density
Based Clusterer

0.485 0.555 0.464 0.485 0.355 0.087 0.669 0.494 0.506

REPTree 0.921 0.963 0.921 0.921 0.921 0.885 0.981 0.952 0.940
Random Forest 0.948 0.975 0.948 0.948 0.947 0.922 0.994 0.986 0.963
Random Tree 0.940 0.971 0.940 0.940 0.940 0.912 0.958 0.906 0.944
SimpleKMeans 0.545 0.75 0.513 0.545 0.515 0.293 0.745 0.572 0.604
Simple Logistic 0.697 0.829 0.678 0.697 0.681 0.523 0.889 0.785 0.752

Table 6.5: Model scores for training set with binary classes.

a b c d
294 10 38 24 a = bagged
12 3785 39 109 b = boosted
26 27 1915 41 c = sfo
17 128 61 1775 d = tree

Table 6.6: Confusion matrix for the J48 model applied to the training dataset.

a b c d
0 366 0 0 a = bagged
0 3945 0 0 b = boosted
0 2009 0 0 c = sfo
0 1981 0 0 d = tree

Table 6.7: Confusion matrix for the EM model applied to the training dataset.
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6.5 Testing Dataset Results

To test the actual usefulness of the model produced, a set of 8 datasets where run through a similar
hyper-parameter tuning and parallel run time process as described in Chapters 4 and 5. In this case
the hyper-parameter finding was done using a single compute core, and the parallel runs were all
started from empty models.
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Dataset TP TN FP FN AUC Acc. Prec. Recall Spec. RMSE RMSA Combo
Abalone 0 702 0 133 0.550 0.840 -1.000 0.000 1.000 0.365 0.769 0.399
Abalone (binorm) 0 702 0 133 0.500 0.840 -1.000 0.000 1.000 0.399 0.916 0.408
Botswana 0 594 0 64 0.550 0.903 -1.000 0.000 1.000 0.309 0.947 0.442
Botswana (binorm) 0 594 0 64 0.550 0.903 -1.000 0.000 1.000 0.309 0.947 0.442
German 0 138 0 59 0.698 0.699 -0.200 0.011 0.994 0.433 0.633 0.486
German (binorm) 0 139 0 59 0.550 0.700 -1.000 0.000 1.000 0.544 0.832 0.363
Heart 14 21 2 12 0.796 0.706 0.881 0.528 0.900 0.423 0.651 0.720
Heart (binorm) 0 24 0 27 0.571 0.475 -1.000 0.000 1.000 0.717 0.681 0.287
Indian pines 0 1572 0 476 0.500 0.768 -1.000 0.000 1.000 0.473 0.867 0.380
Indian pines (binorm) 0 1572 0 476 0.500 0.768 -1.000 0.000 1.000 0.480 0.874 0.380
KSC 184 843 10 0 0.700 0.990 0.949 0.999 0.988 0.096 0.985 0.931
KSC (binorm) 184 840 13 0 0.700 0.987 0.934 0.999 0.985 0.109 0.982 0.925
PaviaU 0 4826 0 3721 0.500 0.565 -1.000 0.000 1.000 0.474 0.692 0.326
PaviaU (binorm) 0 4826 0 3721 0.500 0.565 -1.000 0.000 1.000 0.481 0.684 0.324
SalinasA 0 752 0 310 0.600 0.708 -1.000 0.000 1.000 0.523 0.841 0.375
SalinasA (binorm) 0 752 0 310 0.600 0.708 -1.000 0.000 1.000 0.523 0.841 0.375

Table 6.8: Top model scores for bagged models on test datasets.
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Dataset TP TN FP FN AUC Acc. Prec. Recall Spec. RMSE RMSA Combo
Abalone 0 704 0 132 0.500 0.841 -1.000 0.000 1.000 0.391 0.898 0.407
Abalone (binorm) 0 702 0 133 0.500 0.840 -1.000 0.000 1.000 0.392 0.898 0.407
Botswana 0 594 0 64 0.600 0.903 -1.000 0.000 1.000 0.311 0.945 0.448
Botswana (binorm) 0 594 0 64 0.600 0.903 -1.000 0.000 1.000 0.311 0.950 0.449
German 21 125 14 37 0.717 0.739 0.620 0.369 0.900 0.426 0.701 0.660
German (binorm) 0 139 0 59 0.500 0.700 -1.000 0.000 1.000 0.540 0.827 0.355
Heart 24 17 5 2 0.782 0.840 0.817 0.909 0.763 0.368 0.762 0.787
Heart (binorm) 17 18 5 10 0.500 0.695 0.752 0.628 0.768 0.488 0.730 0.655
Indian pines 0 1572 0 476 0.500 0.768 -1.000 0.000 1.000 0.481 0.875 0.380
Indian pines (binorm) 0 1572 0 476 0.500 0.768 -1.000 0.000 1.000 0.481 0.875 0.380
KSC 77 846 6 107 0.650 0.889 -0.231 0.400 0.992 0.321 0.919 0.614
KSC (binorm) 57 849 4 125 0.708 0.875 -0.359 0.333 0.995 0.340 0.915 0.590
PaviaU 0 4826 0 3721 0.500 0.565 -1.000 0.000 1.000 0.656 0.747 0.308
PaviaU (binorm) 0 4826 0 3721 0.500 0.565 -1.000 0.000 1.000 0.656 0.747 0.308
SalinasA 0 755 0 307 0.583 0.710 -1.000 0.000 1.000 0.527 0.842 0.373
SalinasA (binorm) 0 752 0 310 0.550 0.708 -1.000 0.000 1.000 0.471 0.843 0.376

Table 6.9: Top model scores for boosted models on test datasets.
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Dataset TP TN FP FN AUC Acc. Prec. Recall Spec. RMSE RMSA Combo
Abalone 0 702 0 133 0.640 0.840 -1.000 0.000 1.000 0.381 0.833 0.419
Abalone (binorm) 0 701 0 133 0.500 0.839 -0.800 0.000 0.999 0.363 0.780 0.422
Botswana 9 585 9 54 0.600 0.904 -0.696 0.166 0.985 0.233 0.914 0.520
Botswana (binorm) 9 585 9 54 0.600 0.904 -0.697 0.166 0.984 0.233 0.914 0.520
German 10 124 15 49 0.547 0.675 0.528 0.180 0.897 0.466 0.643 0.572
German (binorm) 3 137 2 56 0.667 0.704 -0.686 0.052 0.982 0.455 0.627 0.413
Heart 22 19 4 4 0.698 0.821 0.836 0.823 0.819 0.374 0.785 0.772
Heart (binorm) 19 17 6 7 0.533 0.726 0.747 0.703 0.728 0.487 0.759 0.673
Indian pines 351 1243 329 124 0.500 0.778 0.516 0.739 0.790 0.365 0.782 0.677
Indian pines (binorm) 351 1243 329 124 0.500 0.778 0.516 0.738 0.791 0.365 0.782 0.677
KSC 184 842 10 0 0.767 0.989 0.947 0.997 0.988 0.098 0.984 0.939
KSC (binorm) 184 842 10 0 0.767 0.989 0.947 0.995 0.988 0.100 0.983 0.938
PaviaU 3583 3431 1394 137 0.600 0.821 0.720 0.963 0.711 0.365 0.777 0.747
PaviaU (binorm) 3584 3426 1400 137 0.600 0.820 0.719 0.963 0.710 0.365 0.776 0.746
SalinasA 309 748 3 0 0.800 0.996 0.989 0.998 0.995 0.056 0.992 0.959
SalinasA (binorm) 309 748 4 1 0.800 0.995 0.987 0.997 0.995 0.060 0.991 0.958

Table 6.10: Top model scores for tree models on test datasets.
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Dataset TP TN FP FN AUC Acc. Prec. Recall Spec. RMSE RMSA Combo
Abalone (binorm) 0 702 0 133 0.656 0.840 -1.000 0.000 1.000 0.365 0.771 0.415
Botswana (binorm) 0 594 0 64 0.917 0.903 -1.000 0.000 1.000 0.296 0.872 0.485
German (binorm) 1 139 0 58 0.556 0.703 -0.667 0.019 0.995 0.457 0.629 0.397
Heart (binorm) 19 14 9 7 0.807 0.669 0.729 0.735 0.634 0.449 0.631 0.679
Indian pines (binorm) 0 1572 0 476 0.869 0.768 -1.000 0.000 1.000 0.396 0.706 0.421
KSC (binorm) 0 853 0 185 1.000 0.822 -1.000 0.000 1.000 0.331 0.883 0.482
PaviaU (binorm) 559 4728 97 3161 0.875 0.619 0.714 0.151 0.980 0.469 0.539 0.630
SalinasA (binorm) 0 752 0 310 0.997 0.708 -1.000 0.000 1.000 0.445 0.655 0.416

Table 6.11: Top model scores for sfo models on test datasets.
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.135 0.865 0.018 0.135 0.032 0.000 0.460 0.289 0.304
Decision Stump 0.252 0.871 0.075 0.252 0.115 0.088 0.589 0.358 0.382
EM 0.096 0.855 0.026 0.096 0.033 -0.054 0.497 0.324 0.300
Farthest First 0.396 0.756 0.294 0.396 0.319 0.133 0.569 0.353 0.456
Filtered
Clusterer

0.192 0.857 0.051 0.192 0.080 0.039 0.493 0.315 0.337

Hierarchical
Clusterer

0.135 0.865 0.018 0.135 0.032 0.000 0.500 0.317 0.313

Hoeffding Tree 0.264 0.732 0.275 0.264 0.224 -0.024 0.479 0.314 0.380
IBk 0.281 0.717 0.264 0.281 0.261 -0.003 0.473 0.351 0.391
J48 0.331 0.743 0.343 0.331 0.296 0.065 0.538 0.345 0.432
KStar 0.242 0.758 0.059 0.242 0.094 0.000 0.500 0.317 0.339
LMT 0.261 0.785 0.319 0.261 0.246 0.037 0.560 0.356 0.413
LWL 0.250 0.861 0.102 0.250 0.131 0.103 0.565 0.373 0.385
Logistic 0.159 0.841 0.025 0.159 0.044 0.000 0.500 0.317 0.318
Make Density
Based Clusterer

0.252 0.87 0.074 0.252 0.114 0.088 0.583 0.355 0.381

REPTree 0.246 0.724 0.286 0.246 0.215 -0.044 0.506 0.345 0.381
Random Forest 0.241 0.719 0.227 0.241 0.205 -0.048 0.579 0.383 0.384
Random Tree 0.242 0.814 0.377 0.242 0.221 0.060 0.528 0.337 0.411
SimpleKMeans 0.158 0.867 0.074 0.158 0.070 0.033 0.481 0.311 0.329
Simple Logistic 0.495 0.624 0.364 0.495 0.395 0.155 0.579 0.384 0.489

Table 6.12: Model scores for test set.

6.6 Model Testing Results

Based on the scores of the models in Section 6.4.2, it would be expected that the models might do
well in predicting algorithms for additional datasets. In Table 6.12 and Table 6.13 are the scores for
the 16 models when applied to the data collected using datasets not considered in the creation of
the training data.

Here the results are far less encouraging. In all cases the average model score is less than 0.5 with
most around 0.3. However, there are some glimmers of hope in this data. Specifically, looking at the
AUC column, the tree based methods that had the highest scores during training managed to get
above 0.5, which indicates they are at least better than random guessing. Thus it is possible, that
had many more datasets been used in building the training data, the models may have performed
better. It is also likely that some of the errors are due to situations where multiple algorithms may
do well, but in building the training dataset a single algorithm had to be selected to label each
sample, thus the prediction cannot indicate that the tie occurred.

Looking at the confusion matrices for the testing dataset, many of the models committed the same
blunder as EM on the training dataset. For instance, Decision Stump, as shown in Table 6.14, only
ever outputs classes ‘b’ or ‘c’, especially when ‘d’ would have been the correct value. When it comes
to deciding between tree based models of logistic regression, things look slightly more promising.
Only seven sfo samples were incorrectly assigned the boosting label.

In the case of J48, which had performed very well on the training data, it also seemed to get stuck
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.135 0.865 0.018 0.135 0.032 0.000 0.494 0.317 0.312
Decision Stump 0.252 0.871 0.075 0.252 0.115 0.088 0.589 0.358 0.382
EM 0.139 0.857 0.041 0.139 0.061 -0.003 0.480 0.306 0.315
Farthest First 0.178 0.853 0.044 0.178 0.069 0.026 0.494 0.317 0.331
Filtered
Clusterer

0.135 0.865 0.018 0.135 0.032 0.000 0.431 0.296 0.301

Hierarchical
Clusterer

0.135 0.865 0.018 0.135 0.032 0.000 0.500 0.317 0.313

Hoeffding Tree 0.133 0.79 0.086 0.133 0.060 -0.122 0.415 0.281 0.292
IBk 0.272 0.783 0.250 0.272 0.211 0.027 0.496 0.324 0.390
J48 0.324 0.759 0.357 0.324 0.291 0.064 0.535 0.342 0.433
LMT 0.269 0.72 0.322 0.269 0.269 -0.011 0.524 0.324 0.399
LWL 0.250 0.861 0.102 0.250 0.131 0.103 0.575 0.373 0.387
Logistic 0.275 0.712 0.306 0.275 0.289 0.003 0.471 0.332 0.395
Make Density
Based Clusterer

0.135 0.865 0.018 0.135 0.032 0.000 0.522 0.325 0.317

REPTree 0.235 0.808 0.292 0.235 0.189 0.017 0.499 0.358 0.391
Random Forest 0.240 0.736 0.257 0.240 0.216 -0.021 0.578 0.363 0.390
Random Tree 0.316 0.733 0.372 0.316 0.314 0.050 0.520 0.327 0.428
SimpleKMeans 0.152 0.865 0.053 0.152 0.061 0.018 0.447 0.297 0.317
Simple Logistic 0.178 0.796 0.220 0.178 0.145 -0.052 0.512 0.324 0.353

Table 6.13: Model scores for test set with binary classes.

a b c d
0 212 125 0 a = bagged
0 136 52 0 b = boosted
0 7 214 0 c = sfo
0 319 326 0 d = tree

Table 6.14: Confusion matrix for the Decision Stump model applied to the test dataset.
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outputting ‘b’ when other classes would have been more appropriate. It did however do a very good
job avoiding ‘a’ (bagging) which is known to have some implementation issues. J48 also did quite
well identifying when class ‘d’ (tree) was the correct choice with 310 correct, however somewhat to
the detriment of class ‘a’ (bagging) with 185 mistakes.

a b c d
1 113 38 185 a = bagged
4 121 5 58 b = boosted
0 144 28 49 c = sfo
0 259 76 310 d = tree

Table 6.15: Confusion matrix for the J48 model applied to the test dataset.

6.6.1 Principal Component Analysis

An examination of the separability of the datasets based on the attributes of the dataset was also
done. Specifically, principle component analysis [98] (PCA) was performed. Each of the attributes
in the algorithm selection dataset was first normalized to have a zero mean and variance of one. To
map the training and testing datasets into the same 2-dimensional space, the samples from both
datasets where combined into one dataset before computing the coefficients matrix. The resulting
coefficients matrix was then applied to both the training and testing datasets individually. Figure 6.2
shows the first two principle components of the attributes, with classes in the training and testing
datasets labeled individually. The tight clustering of most of the points into a single big group
indicates that the attributes provide insufficent detail about the datasets to easily separate them.

PCA was also performed on the dataset constructed from the characteristics measured after con-
verting each original dataset to having binary classes. Figure 6.3 shows the results of PCA on the
binary class based dataset. Again, most of the points fall into once big cluster.

These PCA results suggest that the dataset characteristics are insufficient for the learning task of
selecting among these four algorithms.

6.7 Model Per Algorithm

Since it doesn’t appear to be the case that building a model that can select an algorithm among all
four tested. Is it instead possible to make a model for each algorithm that attempts to determine of
that algorithm will work at least as well as the best algorithm tested.

To test this, a datasets for each algorithm was created similar to the one described in Section 6.2.
However, the labels will be restricted to a just the algorithm for that dataset, or “other”. The label is
set to the algorithm’s name when it is the best, or its confidence interval overlaps the best confidence
interval. If there is another algorithm for which the confidence interval’s lower bound is above the
upper bound of the algorithm being checked, the label is “other”. For each algorithm testing datasets
were similarly constructed. The scores for the training datasets are given in Table 6.16 through
Table 6.19. The scores for the test datasets are given in Table 6.20 though Table 6.23.

These results look far more promising. The original models trained on all of the datasets had average
scores that were in the 0.4 range with the highest individual metric being less than 0.6. However, the

128



-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

-10  0  10  20  30  40  50  60  70

P
C
2

PC1

Training (bagged)
Testing (bagged)
Training (boosted)
Testing (boosted)

Training (sfo)
Testing (sfo)

Training (tree)
Testing (tree)

Figure 6.2: First two principle components for algorithm selection dataset. First and second principle
components account for 35.1% and 32.0% of variation respectively.
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Figure 6.3: First two principle components for algorithm selection dataset(binary classes). First and
second principle components account for 37.4% and 26.9% of variation respectively.
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.881 0.119 0.776 0.881 0.825 0.000 0.716 0.869 0.696
Decision Stump 0.881 0.119 0.776 0.881 0.825 0.000 0.691 0.845 0.690
EM 0.881 0.119 0.776 0.881 0.825 0.000 0.700 0.852 0.692
Farthest First 0.881 0.119 0.776 0.881 0.825 0.000 0.589 0.818 0.674
Filtered
Clusterer

0.881 0.119 0.776 0.881 0.825 0.000 0.582 0.820 0.673

Hierarchical
Clusterer

0.884 0.296 0.857 0.884 0.860 0.281 0.584 0.818 0.728

Hoeffding Tree 0.880 0.121 0.810 0.880 0.825 0.015 0.578 0.817 0.677
IBk 0.915 0.58 0.908 0.915 0.910 0.558 0.924 0.952 0.860
J48 0.977 0.901 0.977 0.977 0.977 0.889 0.974 0.982 0.964
LMT 0.979 0.917 0.979 0.979 0.979 0.900 0.983 0.989 0.969
LWL 0.881 0.119 0.776 0.881 0.825 0.000 0.815 0.896 0.712
Logistic 0.883 0.291 0.856 0.883 0.859 0.273 0.854 0.907 0.771
Make Density
Based Clusterer

0.881 0.119 0.776 0.881 0.825 0.000 0.582 0.820 0.673

REPTree 0.969 0.861 0.968 0.969 0.968 0.848 0.972 0.982 0.952
Random Forest 0.980 0.899 0.980 0.980 0.980 0.905 0.993 0.996 0.970
Random Tree 0.978 0.906 0.978 0.978 0.978 0.894 0.943 0.967 0.959
SimpleKMeans 0.881 0.119 0.776 0.881 0.825 0.000 0.681 0.850 0.689
Simple Logistic 0.882 0.251 0.850 0.882 0.852 0.233 0.806 0.895 0.754

Table 6.16: Model scores for training set (bagged).

models trained to predict individual algorithm’s performance against the others did much better.
The best results were for predicting when logistic regression will do well, most models had average
scores in the 0.6 to 0.8 range. The highest AUC reported was 0.886.

In the case of bagging most of the averaged scores are in the 0.5 to 0.6 range. For boosted stumps
and regular trees, the results were comparable to the models built on all four algorithms.

When the process of building a model for each algorithm is repeated using the dataset characteristics
based on binary classes, the results are neither better not worse than the results using all classes.
These results are shown in Table 6.28 through Table 6.31.
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.558 0.442 0.312 0.558 0.400 0.000 0.733 0.726 0.529
Decision Stump 0.706 0.745 0.756 0.706 0.701 0.466 0.740 0.722 0.726
EM 0.699 0.688 0.698 0.699 0.698 0.388 0.750 0.726 0.707
Farthest First 0.594 0.521 0.595 0.594 0.548 0.147 0.589 0.594 0.576
Filtered
Clusterer

0.628 0.639 0.640 0.628 0.629 0.266 0.673 0.658 0.641

Hierarchical
Clusterer

0.575 0.47 0.618 0.575 0.460 0.106 0.520 0.526 0.537

Hoeffding Tree 0.606 0.507 0.694 0.606 0.513 0.217 0.578 0.584 0.587
IBk 0.865 0.864 0.865 0.865 0.865 0.727 0.951 0.950 0.886
J48 0.968 0.967 0.968 0.968 0.968 0.934 0.980 0.970 0.970
LMT 0.972 0.972 0.972 0.972 0.972 0.943 0.990 0.988 0.976
LWL 0.732 0.689 0.747 0.732 0.721 0.461 0.884 0.891 0.766
Logistic 0.737 0.727 0.736 0.737 0.736 0.465 0.832 0.839 0.760
Make Density
Based Clusterer

0.628 0.639 0.640 0.628 0.629 0.266 0.673 0.658 0.641

REPTree 0.958 0.957 0.958 0.958 0.958 0.915 0.983 0.977 0.963
Random Forest 0.972 0.971 0.972 0.972 0.972 0.942 0.996 0.995 0.978
Random Tree 0.968 0.967 0.968 0.968 0.968 0.935 0.969 0.956 0.966
SimpleKMeans 0.666 0.664 0.669 0.666 0.667 0.328 0.745 0.733 0.684
Simple Logistic 0.730 0.728 0.732 0.730 0.730 0.455 0.822 0.828 0.753

Table 6.17: Model scores for training set (boosted).

Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.578 0.467 0.733 0.578 0.444 0.150 0.735 0.745 0.607
Decision Stump 0.678 0.745 0.814 0.678 0.656 0.495 0.703 0.697 0.715
EM 0.672 0.66 0.671 0.672 0.672 0.333 0.739 0.715 0.683
Farthest First 0.607 0.582 0.602 0.607 0.603 0.193 0.638 0.632 0.608
Filtered
Clusterer

0.619 0.619 0.624 0.619 0.620 0.237 0.662 0.650 0.629

Hierarchical
Clusterer

0.598 0.493 0.724 0.598 0.488 0.210 0.542 0.552 0.575

Hoeffding Tree 0.656 0.629 0.653 0.656 0.651 0.293 0.735 0.721 0.668
IBk 0.860 0.86 0.861 0.860 0.860 0.718 0.946 0.944 0.881
J48 0.971 0.971 0.971 0.971 0.971 0.942 0.986 0.981 0.974
LMT 0.973 0.973 0.973 0.973 0.973 0.945 0.991 0.988 0.977
LWL 0.678 0.745 0.814 0.678 0.656 0.495 0.822 0.822 0.745
Logistic 0.754 0.761 0.761 0.754 0.755 0.511 0.854 0.854 0.781
Make Density
Based Clusterer

0.621 0.622 0.627 0.621 0.622 0.242 0.663 0.650 0.631

REPTree 0.963 0.962 0.963 0.963 0.963 0.925 0.989 0.987 0.969
Random Forest 0.974 0.972 0.974 0.974 0.974 0.948 0.997 0.997 0.980
Random Tree 0.970 0.968 0.970 0.970 0.970 0.939 0.971 0.959 0.968
SimpleKMeans 0.672 0.686 0.686 0.672 0.673 0.357 0.743 0.725 0.692
Simple Logistic 0.753 0.761 0.761 0.753 0.753 0.511 0.846 0.845 0.778

Table 6.18: Model scores for training set (tree).
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.661 0.339 0.436 0.661 0.526 0.000 0.887 0.884 0.612
Decision Stump 0.881 0.939 0.912 0.881 0.884 0.779 0.905 0.880 0.896
EM 0.817 0.826 0.832 0.817 0.820 0.619 0.872 0.852 0.831
Farthest First 0.678 0.405 0.666 0.678 0.594 0.163 0.709 0.723 0.629
Filtered
Clusterer

0.669 0.395 0.637 0.669 0.584 0.123 0.672 0.693 0.610

Hierarchical
Clusterer

0.661 0.339 0.436 0.661 0.526 0.000 0.535 0.588 0.531

Hoeffding Tree 0.661 0.339 0.436 0.661 0.526 0.000 0.811 0.797 0.591
IBk 0.947 0.951 0.949 0.947 0.947 0.885 0.986 0.985 0.957
J48 0.976 0.974 0.976 0.976 0.976 0.946 0.990 0.986 0.978
LMT 0.977 0.975 0.977 0.977 0.977 0.950 0.994 0.993 0.981
LWL 0.881 0.939 0.912 0.881 0.884 0.779 0.946 0.936 0.909
Logistic 0.895 0.922 0.908 0.895 0.897 0.786 0.960 0.956 0.916
Make Density
Based Clusterer

0.669 0.395 0.637 0.669 0.584 0.123 0.672 0.693 0.610

REPTree 0.971 0.968 0.971 0.971 0.971 0.936 0.992 0.990 0.975
Random Forest 0.980 0.974 0.980 0.980 0.980 0.955 0.997 0.996 0.983
Random Tree 0.977 0.97 0.976 0.977 0.976 0.948 0.973 0.965 0.973
SimpleKMeans 0.764 0.677 0.759 0.764 0.760 0.459 0.841 0.832 0.766
Simple Logistic 0.895 0.922 0.908 0.895 0.897 0.786 0.955 0.948 0.914

Table 6.19: Model scores for training set (sfo).
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.654 0.346 0.428 0.654 0.517 0.000 0.437 0.515 0.506
Decision Stump 0.654 0.346 0.428 0.654 0.517 0.000 0.543 0.570 0.526
EM 0.654 0.346 0.428 0.654 0.517 0.000 0.482 0.540 0.515
Farthest First 0.654 0.346 0.428 0.654 0.517 0.000 0.536 0.566 0.525
Filtered
Clusterer

0.654 0.346 0.428 0.654 0.517 0.000 0.523 0.558 0.522

Hierarchical
Clusterer

0.654 0.346 0.428 0.654 0.517 0.000 0.500 0.548 0.518

Hoeffding Tree 0.654 0.346 0.428 0.654 0.517 0.000 0.537 0.566 0.525
IBk 0.646 0.38 0.582 0.646 0.556 0.050 0.538 0.573 0.556
J48 0.554 0.412 0.531 0.554 0.540 -0.036 0.358 0.498 0.491
KStar 0.346 0.654 0.120 0.346 0.178 0.000 0.500 0.548 0.399
LMT 0.530 0.539 0.579 0.530 0.541 0.065 0.552 0.585 0.549
LWL 0.654 0.346 0.428 0.654 0.517 0.000 0.539 0.579 0.527
Logistic 0.629 0.547 0.628 0.629 0.628 0.177 0.599 0.604 0.607
Make Density
Based Clusterer

0.654 0.346 0.428 0.654 0.517 0.000 0.535 0.564 0.525

REPTree 0.656 0.351 0.706 0.656 0.524 0.057 0.477 0.547 0.556
Random Forest 0.654 0.346 0.428 0.654 0.517 0.000 0.686 0.692 0.560
Random Tree 0.671 0.383 0.731 0.671 0.561 0.169 0.527 0.566 0.587
SimpleKMeans 0.654 0.346 0.428 0.654 0.517 0.000 0.495 0.548 0.518
Simple Logistic 0.550 0.346 0.484 0.550 0.506 -0.128 0.504 0.556 0.491

Table 6.20: Model scores for test set (bagged).
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.306 0.694 0.094 0.306 0.144 0.000 0.505 0.572 0.390
Decision Stump 0.720 0.394 0.721 0.720 0.645 0.224 0.557 0.610 0.622
EM 0.291 0.573 0.383 0.291 0.207 -0.200 0.432 0.555 0.392
Farthest First 0.610 0.662 0.692 0.610 0.625 0.251 0.640 0.659 0.640
Filtered
Clusterer

0.571 0.437 0.578 0.571 0.574 0.008 0.504 0.577 0.539

Hierarchical
Clusterer

0.306 0.694 0.094 0.306 0.144 0.000 0.500 0.575 0.390

Hoeffding Tree 0.661 0.436 0.626 0.661 0.635 0.115 0.578 0.614 0.596
IBk 0.429 0.483 0.534 0.429 0.447 -0.082 0.482 0.560 0.478
J48 0.566 0.519 0.610 0.566 0.581 0.080 0.547 0.606 0.567
KStar 0.306 0.694 0.094 0.306 0.144 0.000 0.500 0.575 0.390
LMT 0.372 0.577 0.537 0.372 0.348 -0.057 0.448 0.545 0.459
LWL 0.282 0.518 0.371 0.282 0.223 -0.254 0.351 0.493 0.362
Logistic 0.306 0.694 0.094 0.306 0.144 0.000 0.509 0.575 0.391
Make Density
Based Clusterer

0.591 0.577 0.644 0.591 0.606 0.155 0.584 0.616 0.598

REPTree 0.515 0.517 0.589 0.515 0.534 0.030 0.586 0.638 0.551
Random Forest 0.530 0.545 0.607 0.530 0.548 0.069 0.564 0.622 0.560
Random Tree 0.451 0.426 0.523 0.451 0.472 -0.114 0.434 0.551 0.469
SimpleKMeans 0.346 0.673 0.611 0.346 0.251 0.032 0.478 0.568 0.474
Simple Logistic 0.492 0.524 0.582 0.492 0.511 0.015 0.575 0.629 0.539

Table 6.21: Model scores for test set (boosted).
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.369 0.631 0.136 0.369 0.199 0.000 0.446 0.514 0.396
Decision Stump 0.631 0.369 0.398 0.631 0.488 0.000 0.500 0.534 0.506
EM 0.606 0.402 0.542 0.606 0.533 0.012 0.504 0.536 0.529
Farthest First 0.575 0.441 0.543 0.575 0.551 0.019 0.507 0.541 0.530
Filtered
Clusterer

0.495 0.396 0.482 0.495 0.488 -0.111 0.446 0.512 0.470

Hierarchical
Clusterer

0.369 0.631 0.136 0.369 0.199 0.000 0.500 0.534 0.405

Hoeffding Tree 0.592 0.349 0.408 0.592 0.473 -0.140 0.515 0.544 0.488
IBk 0.524 0.326 0.419 0.524 0.455 -0.206 0.495 0.546 0.461
J48 0.564 0.438 0.535 0.564 0.543 0.002 0.537 0.560 0.530
KStar 0.369 0.631 0.136 0.369 0.199 0.000 0.500 0.534 0.405
LMT 0.436 0.581 0.547 0.436 0.403 0.020 0.545 0.575 0.504
LWL 0.631 0.369 0.398 0.631 0.488 0.000 0.452 0.498 0.496
Logistic 0.369 0.631 0.136 0.369 0.199 0.000 0.457 0.516 0.397
Make Density
Based Clusterer

0.507 0.479 0.528 0.507 0.514 -0.013 0.493 0.531 0.507

REPTree 0.510 0.407 0.494 0.510 0.501 -0.086 0.431 0.506 0.477
Random Forest 0.558 0.344 0.438 0.558 0.473 -0.155 0.321 0.439 0.444
Random Tree 0.539 0.428 0.518 0.539 0.526 -0.034 0.483 0.527 0.505
SimpleKMeans 0.520 0.416 0.503 0.520 0.510 -0.066 0.464 0.518 0.490
Simple Logistic 0.590 0.382 0.508 0.590 0.513 -0.043 0.391 0.463 0.489

Table 6.22: Model scores for test set (tree).
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.771 0.229 0.595 0.771 0.672 0.000 0.714 0.787 0.630
Decision Stump 0.678 0.905 0.866 0.678 0.702 0.492 0.791 0.793 0.770
EM 0.712 0.288 0.647 0.712 0.672 0.000 0.500 0.647 0.585
Farthest First 0.771 0.229 0.595 0.771 0.672 0.000 0.556 0.670 0.596
Filtered
Clusterer

0.554 0.868 0.849 0.554 0.574 0.378 0.711 0.747 0.693

Hierarchical
Clusterer

0.771 0.229 0.595 0.771 0.672 0.000 0.500 0.647 0.586

Hoeffding Tree 0.771 0.229 0.595 0.771 0.672 0.000 0.555 0.678 0.596
IBk 0.638 0.831 0.823 0.638 0.665 0.395 0.688 0.776 0.720
J48 0.728 0.902 0.867 0.728 0.749 0.528 0.858 0.849 0.806
KStar 0.771 0.229 0.595 0.771 0.672 0.000 0.500 0.647 0.586
LMT 0.721 0.915 0.873 0.721 0.743 0.534 0.816 0.825 0.798
LWL 0.678 0.905 0.866 0.678 0.702 0.492 0.871 0.881 0.791
Logistic 0.229 0.771 0.052 0.229 0.085 0.000 0.448 0.617 0.366
Make Density
Based Clusterer

0.678 0.905 0.866 0.678 0.702 0.492 0.791 0.793 0.770

REPTree 0.678 0.876 0.850 0.678 0.703 0.466 0.775 0.796 0.761
Random Forest 0.773 0.877 0.862 0.773 0.790 0.553 0.886 0.882 0.827
Random Tree 0.735 0.769 0.812 0.735 0.754 0.433 0.752 0.769 0.755
SimpleKMeans 0.801 0.408 0.782 0.801 0.762 0.321 0.716 0.757 0.711
Simple Logistic 0.717 0.854 0.843 0.717 0.739 0.480 0.833 0.843 0.786

Table 6.23: Model scores for test set (sfo).
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.881 0.119 0.776 0.881 0.825 0.000 0.639 0.848 0.684
Decision Stump 0.881 0.119 0.776 0.881 0.825 0.000 0.691 0.845 0.690
EM 0.881 0.119 0.776 0.881 0.825 0.000 0.694 0.851 0.691
Farthest First 0.881 0.119 0.776 0.881 0.825 0.000 0.624 0.830 0.679
Filtered
Clusterer

0.881 0.119 0.776 0.881 0.825 0.000 0.580 0.818 0.672

Hierarchical
Clusterer

0.884 0.296 0.857 0.884 0.860 0.281 0.584 0.818 0.728

Hoeffding Tree 0.879 0.129 0.814 0.879 0.827 0.041 0.577 0.820 0.681
IBk 0.912 0.562 0.905 0.912 0.907 0.539 0.920 0.949 0.855
J48 0.977 0.902 0.976 0.977 0.977 0.888 0.976 0.984 0.964
LMT 0.979 0.908 0.979 0.979 0.979 0.899 0.976 0.986 0.967
LWL 0.881 0.119 0.776 0.881 0.825 0.000 0.827 0.899 0.714
Logistic 0.883 0.291 0.856 0.883 0.859 0.273 0.854 0.907 0.771
Make Density
Based Clusterer

0.881 0.119 0.776 0.881 0.825 0.000 0.577 0.817 0.672

REPTree 0.970 0.874 0.970 0.970 0.970 0.857 0.973 0.983 0.955
Random Forest 0.980 0.895 0.979 0.980 0.979 0.900 0.993 0.996 0.969
Random Tree 0.977 0.899 0.977 0.977 0.977 0.891 0.939 0.966 0.957
SimpleKMeans 0.881 0.119 0.776 0.881 0.825 0.000 0.658 0.844 0.686
Simple Logistic 0.882 0.252 0.850 0.882 0.853 0.233 0.807 0.894 0.755

Table 6.24: Model scores for training (bagged) set with binary classes.

Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.558 0.442 0.312 0.558 0.400 0.000 0.737 0.733 0.530
Decision Stump 0.706 0.745 0.756 0.706 0.701 0.466 0.740 0.722 0.726
EM 0.698 0.704 0.705 0.698 0.699 0.399 0.753 0.728 0.711
Farthest First 0.656 0.713 0.744 0.656 0.641 0.408 0.711 0.703 0.691
Filtered
Clusterer

0.628 0.639 0.640 0.628 0.629 0.266 0.674 0.658 0.641

Hierarchical
Clusterer

0.575 0.47 0.618 0.575 0.460 0.106 0.520 0.526 0.537

Hoeffding Tree 0.569 0.46 0.614 0.569 0.440 0.085 0.717 0.685 0.575
IBk 0.861 0.861 0.862 0.861 0.861 0.719 0.948 0.947 0.883
J48 0.968 0.968 0.968 0.968 0.968 0.936 0.981 0.974 0.970
LMT 0.972 0.972 0.972 0.972 0.972 0.944 0.989 0.987 0.976
LWL 0.734 0.696 0.744 0.734 0.725 0.462 0.882 0.890 0.767
Logistic 0.737 0.727 0.736 0.737 0.736 0.465 0.832 0.839 0.760
Make Density
Based Clusterer

0.628 0.639 0.640 0.628 0.629 0.266 0.674 0.658 0.641

REPTree 0.960 0.959 0.960 0.960 0.960 0.919 0.983 0.977 0.965
Random Forest 0.971 0.971 0.971 0.971 0.971 0.942 0.996 0.995 0.977
Random Tree 0.966 0.966 0.966 0.966 0.966 0.932 0.967 0.953 0.965
SimpleKMeans 0.678 0.696 0.696 0.678 0.678 0.373 0.749 0.732 0.699
Simple Logistic 0.733 0.736 0.737 0.733 0.734 0.466 0.822 0.827 0.757

Table 6.25: Model scores for training (boosted) set with binary classes.
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.563 0.447 0.755 0.563 0.411 0.076 0.670 0.682 0.579
Decision Stump 0.678 0.745 0.814 0.678 0.656 0.495 0.703 0.697 0.715
EM 0.660 0.643 0.658 0.660 0.658 0.305 0.732 0.714 0.672
Farthest First 0.608 0.584 0.604 0.608 0.604 0.196 0.641 0.630 0.610
Filtered
Clusterer

0.610 0.611 0.616 0.610 0.612 0.220 0.649 0.637 0.619

Hierarchical
Clusterer

0.598 0.493 0.724 0.598 0.488 0.210 0.542 0.552 0.575

Hoeffding Tree 0.703 0.706 0.708 0.703 0.704 0.406 0.756 0.734 0.715
IBk 0.851 0.852 0.853 0.851 0.852 0.701 0.942 0.941 0.874
J48 0.973 0.974 0.973 0.973 0.973 0.946 0.986 0.981 0.976
LMT 0.974 0.973 0.974 0.974 0.974 0.947 0.992 0.990 0.978
LWL 0.679 0.746 0.813 0.679 0.657 0.495 0.822 0.820 0.745
Logistic 0.754 0.761 0.761 0.754 0.755 0.511 0.854 0.854 0.781
Make Density
Based Clusterer

0.612 0.614 0.618 0.612 0.613 0.224 0.651 0.638 0.621

REPTree 0.964 0.964 0.964 0.964 0.964 0.927 0.989 0.987 0.970
Random Forest 0.975 0.973 0.975 0.975 0.975 0.948 0.997 0.997 0.980
Random Tree 0.971 0.97 0.971 0.971 0.971 0.942 0.973 0.961 0.970
SimpleKMeans 0.644 0.66 0.660 0.644 0.645 0.304 0.720 0.708 0.667
Simple Logistic 0.753 0.767 0.766 0.753 0.754 0.517 0.848 0.846 0.781

Table 6.26: Model scores for training (tree) set with binary classes.

Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.661 0.339 0.436 0.661 0.526 0.000 0.886 0.884 0.612
Decision Stump 0.881 0.939 0.912 0.881 0.884 0.779 0.905 0.880 0.896
EM 0.795 0.8 0.812 0.795 0.799 0.573 0.873 0.854 0.814
Farthest First 0.680 0.548 0.664 0.680 0.667 0.246 0.753 0.754 0.671
Filtered
Clusterer

0.682 0.447 0.659 0.682 0.626 0.192 0.712 0.723 0.641

Hierarchical
Clusterer

0.661 0.339 0.436 0.661 0.526 0.000 0.535 0.588 0.531

Hoeffding Tree 0.661 0.339 0.436 0.661 0.526 0.000 0.811 0.797 0.591
IBk 0.945 0.95 0.947 0.945 0.946 0.881 0.986 0.984 0.955
J48 0.976 0.974 0.976 0.976 0.976 0.947 0.990 0.986 0.978
LMT 0.978 0.975 0.978 0.978 0.978 0.950 0.994 0.992 0.981
LWL 0.881 0.939 0.912 0.881 0.884 0.779 0.950 0.940 0.910
Logistic 0.895 0.922 0.908 0.895 0.897 0.786 0.960 0.956 0.916
Make Density
Based Clusterer

0.682 0.447 0.659 0.682 0.626 0.192 0.711 0.723 0.641

REPTree 0.973 0.969 0.973 0.973 0.973 0.940 0.992 0.990 0.977
Random Forest 0.979 0.973 0.979 0.979 0.979 0.954 0.997 0.997 0.983
Random Tree 0.975 0.968 0.975 0.975 0.975 0.944 0.972 0.963 0.972
SimpleKMeans 0.774 0.722 0.774 0.774 0.774 0.495 0.862 0.850 0.785
Simple Logistic 0.894 0.918 0.906 0.894 0.895 0.782 0.956 0.947 0.913

Table 6.27: Model scores for training (sfo) set with binary classes.
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.654 0.346 0.428 0.654 0.517 0.000 0.467 0.539 0.513
Decision Stump 0.654 0.346 0.428 0.654 0.517 0.000 0.543 0.570 0.526
EM 0.654 0.346 0.428 0.654 0.517 0.000 0.457 0.529 0.511
Farthest First 0.654 0.346 0.428 0.654 0.517 0.000 0.489 0.543 0.516
Filtered
Clusterer

0.654 0.346 0.428 0.654 0.517 0.000 0.511 0.553 0.520

Hierarchical
Clusterer

0.654 0.346 0.428 0.654 0.517 0.000 0.500 0.548 0.518

Hoeffding Tree 0.654 0.346 0.428 0.654 0.517 0.000 0.500 0.548 0.518
IBk 0.649 0.387 0.594 0.649 0.563 0.068 0.498 0.553 0.553
J48 0.666 0.461 0.637 0.666 0.621 0.171 0.483 0.545 0.583
LMT 0.630 0.333 0.422 0.630 0.506 -0.115 0.514 0.567 0.506
LWL 0.654 0.346 0.428 0.654 0.517 0.000 0.479 0.528 0.513
Logistic 0.564 0.539 0.593 0.564 0.573 0.098 0.536 0.573 0.561
Make Density
Based Clusterer

0.654 0.346 0.428 0.654 0.517 0.000 0.599 0.601 0.537

REPTree 0.630 0.462 0.599 0.630 0.603 0.107 0.572 0.598 0.581
Random Forest 0.654 0.346 0.428 0.654 0.517 0.000 0.647 0.675 0.553
Random Tree 0.523 0.393 0.508 0.523 0.514 -0.087 0.454 0.528 0.487
SimpleKMeans 0.654 0.346 0.428 0.654 0.517 0.000 0.487 0.540 0.516
Simple Logistic 0.654 0.346 0.428 0.654 0.517 0.000 0.540 0.566 0.526

Table 6.28: Model scores for test set with binary classes (bagged).

Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.306 0.694 0.094 0.306 0.144 0.000 0.521 0.585 0.394
Decision Stump 0.720 0.394 0.721 0.720 0.645 0.224 0.557 0.610 0.622
EM 0.383 0.527 0.522 0.383 0.381 -0.091 0.441 0.550 0.455
Farthest First 0.564 0.373 0.547 0.564 0.555 -0.066 0.468 0.563 0.513
Filtered
Clusterer

0.306 0.694 0.094 0.306 0.144 0.000 0.553 0.600 0.400

Hierarchical
Clusterer

0.306 0.694 0.094 0.306 0.144 0.000 0.500 0.575 0.390

Hoeffding Tree 0.661 0.584 0.676 0.661 0.667 0.237 0.618 0.646 0.641
IBk 0.661 0.513 0.651 0.661 0.655 0.179 0.509 0.570 0.601
J48 0.661 0.58 0.675 0.661 0.667 0.234 0.648 0.666 0.647
LMT 0.546 0.619 0.650 0.546 0.562 0.153 0.564 0.614 0.585
LWL 0.605 0.456 0.601 0.605 0.603 0.062 0.491 0.564 0.557
Logistic 0.490 0.48 0.562 0.490 0.510 -0.028 0.443 0.531 0.499
Make Density
Based Clusterer

0.306 0.694 0.094 0.306 0.144 0.000 0.664 0.665 0.422

REPTree 0.653 0.515 0.648 0.653 0.651 0.172 0.644 0.671 0.628
Random Forest 0.516 0.632 0.648 0.516 0.527 0.140 0.630 0.690 0.591
Random Tree 0.520 0.6 0.631 0.520 0.536 0.112 0.569 0.608 0.568
SimpleKMeans 0.368 0.676 0.638 0.368 0.293 0.065 0.489 0.574 0.492
Simple Logistic 0.299 0.603 0.406 0.299 0.203 -0.159 0.433 0.555 0.402

Table 6.29: Model scores for test set with binary classes (boosted).
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Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.369 0.631 0.136 0.369 0.199 0.000 0.470 0.530 0.401
Decision Stump 0.631 0.369 0.398 0.631 0.488 0.000 0.500 0.534 0.506
EM 0.559 0.388 0.500 0.559 0.512 -0.067 0.494 0.532 0.501
Farthest First 0.521 0.393 0.490 0.521 0.501 -0.094 0.457 0.516 0.481
Filtered
Clusterer

0.462 0.395 0.468 0.462 0.465 -0.141 0.428 0.506 0.452

Hierarchical
Clusterer

0.369 0.631 0.136 0.369 0.199 0.000 0.500 0.534 0.405

Hoeffding Tree 0.583 0.343 0.402 0.583 0.468 -0.160 0.486 0.562 0.481
IBk 0.510 0.363 0.464 0.510 0.479 -0.145 0.433 0.504 0.461
J48 0.451 0.568 0.547 0.451 0.433 0.020 0.521 0.554 0.504
LMT 0.446 0.399 0.463 0.446 0.453 -0.151 0.430 0.492 0.444
LWL 0.631 0.369 0.398 0.631 0.488 0.000 0.462 0.505 0.498
Logistic 0.516 0.431 0.510 0.516 0.513 -0.053 0.423 0.482 0.483
Make Density
Based Clusterer

0.485 0.425 0.493 0.485 0.488 -0.089 0.455 0.515 0.475

REPTree 0.460 0.397 0.469 0.460 0.464 -0.141 0.430 0.514 0.453
Random Forest 0.555 0.34 0.432 0.555 0.470 -0.165 0.346 0.443 0.445
Random Tree 0.541 0.413 0.510 0.541 0.520 -0.050 0.489 0.531 0.502
SimpleKMeans 0.446 0.399 0.463 0.446 0.453 -0.151 0.424 0.501 0.445
Simple Logistic 0.575 0.384 0.502 0.575 0.513 -0.057 0.487 0.526 0.504

Table 6.30: Model scores for test set with binary classes (tree).

Model Type Acc. Error Prec. Recall F-Meas. MCC AUC AUPRC Avg.
Canopy 0.771 0.229 0.595 0.771 0.672 0.000 0.733 0.797 0.633
Decision Stump 0.678 0.905 0.866 0.678 0.702 0.492 0.791 0.793 0.770
EM 0.617 0.402 0.653 0.617 0.633 0.017 0.533 0.658 0.578
Farthest First 0.771 0.229 0.595 0.771 0.672 0.000 0.673 0.727 0.617
Filtered
Clusterer

0.771 0.229 0.595 0.771 0.672 0.000 0.358 0.608 0.563

Hierarchical
Clusterer

0.771 0.229 0.595 0.771 0.672 0.000 0.500 0.647 0.586

Hoeffding Tree 0.771 0.229 0.595 0.771 0.672 0.000 0.555 0.678 0.596
IBk 0.472 0.813 0.810 0.472 0.482 0.272 0.725 0.790 0.650
J48 0.727 0.855 0.845 0.727 0.749 0.490 0.867 0.868 0.798
LMT 0.740 0.845 0.843 0.740 0.760 0.495 0.843 0.852 0.796
LWL 0.678 0.905 0.866 0.678 0.702 0.492 0.804 0.842 0.778
Logistic 0.602 0.179 0.559 0.602 0.580 -0.245 0.451 0.626 0.497
Make Density
Based Clusterer

0.771 0.229 0.595 0.771 0.672 0.000 0.615 0.695 0.606

REPTree 0.703 0.817 0.824 0.703 0.727 0.438 0.767 0.802 0.758
Random Forest 0.785 0.901 0.874 0.785 0.802 0.584 0.895 0.884 0.840
Random Tree 0.756 0.638 0.778 0.756 0.764 0.366 0.697 0.740 0.727
SimpleKMeans 0.740 0.341 0.689 0.740 0.704 0.108 0.712 0.752 0.654
Simple Logistic 0.624 0.889 0.858 0.624 0.648 0.440 0.746 0.809 0.740

Table 6.31: Model scores for test set with binary classes (sfo).
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6.7.1 Principal Component Analysis

Principle component analysis was also performed on the per algorithm datasets. The first two
components of for each of these datasets is given in Figure 6.4 through Figure 6.7. As with the
unified dataset with all of the algorithms, most of the datasets do not show any clear clustering of
algorithms. The one dataset that did give somewhat promising scores was sfo (Figure 6.7). Here
there does seem to be a bit more grouping among the individual symbols. However, when the sfo
and non-sfo (other) symbols are considered as groups it seems that many of the non-sfo (i.e. ‘other’)
points lie outside the main cluster.

As with the unified dataset, PCA was also performed on versions of the dataset where the charac-
teristics are based on a binary class version of the original datasets. These PCA results, shown in
Figure 6.8 through Figure 6.11, show essentially the same pattern. In most, there is one large group-
ing of all points. In the logistic regression (sfo) specific graph, the points that lay outside the main
cluster tend to be ‘other’, which could indicate that the higher model scores for logistic regression
are mostly due to it being easier to spot areas where logistic regression will perform poorly.
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Figure 6.4: First two principle components for bagged specific algorithm selection dataset. First
and second principle components account for 35.1% and 32.0% of variation respectively.
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Figure 6.5: First two principle components for boosted specific algorithm selection dataset. First
and second principle components account for 35.1% and 32.0% of variation respectively.
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Figure 6.6: First two principle components for tree specific algorithm selection dataset. First and
second principle components account for 35.1% and 32.0% of variation respectively.
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Figure 6.7: First two principle components for sfo specific algorithm selection dataset. First and
second principle components account for 35.1% and 32.0% of variation respectively.
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Figure 6.8: First two principle components for bagged specific algorithm selection dataset(binary
classes). First and second principle components account for 37.4% and 26.9% of variation respec-
tively.
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Figure 6.9: First two principle components for boosted specific algorithm selection dataset(binary
classes). First and second principle components account for 37.4% and 26.9% of variation respec-
tively.
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Figure 6.10: First two principle components for tree specific algorithm selection dataset(binary
classes). First and second principle components account for 37.4% and 26.9% of variation respec-
tively.
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Figure 6.11: First two principle components for sfo specific algorithm selection dataset(binary
classes). First and second principle components account for 37.4% and 26.9% of variation respec-
tively.
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6.8 Cross Validation

The model scores in Section 6.6 and Section 6.7 are low enough to suggest that building a model to
select algorithms is not viable. To check to see if these scores were low due to an unlucky assignment
of datasets to the training and testing sets, 5x5-fold cross validation was performed. This consisted
of splitting the datasets randomly into five equally sized groups. Each of the five groups then served
as a testing set for models trained on the samples in the other four sets. This was repeated five times
with different random assignments to the groups. The various model metrics were then averaged
over all 25 models produced, and the 95% confidence intervals are reported in Table 6.32. For the
purposes of grouping, the samples for a binorm dataset are always assigned to the same group as the
non-binorm version. The 5x5-fold cross validation was repeated for the datasets based on the binary
class versions of the original datasets. The results for those models are given in Table 6.33. Between
the binary class based datasets and regular versions of datasets there is no statistically significant
difference in the scores. For all of the model types the confidence intervals for AUC do not include
0.5, which indicates that they are doing better than random guessing. The best performing model
type, Random Forest, has a lower end of its confidence interval around 0.75, which is far better than
expected based on the initial training/testing split. These results are consistent what Nural et al.
[77] found regarding building models to predict algorithms for regression problems.

Cross validation was also performed using the samples that were labeled based on individual algo-
rithms The results of that cross validation, given in Table 6.34 through Table 6.41. With the original
splitting of the datasets, which showed only some of the sfo specific AUC results were better than
random guessing. The cross validation AUC results show that bagged, boosted, and sfo algorithm
specific models achieved scores that are above 0.6 with 95% confidence. For the binary class versions
of the datasets, the lower end of the confidence intervals were even higher for bagged, boosted and
sfo, but still crossed 0.5 for tree.
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Model Type Acc. Prec. Recall F-Meas. MCC AUC AUPRC
Canopy (0.253,0.350) (0.078,0.142) (0.253,0.350) (0.117,0.198) (0.000,0.000) (0.571,0.641) (0.415,0.479)
Decision Stump (0.339,0.422) (0.232,0.324) (0.339,0.422) (0.243,0.326) (0.115,0.199) (0.599,0.657) (0.394,0.471)
EM (0.411,0.517) (0.375,0.491) (0.411,0.517) (0.348,0.463) (0.181,0.300) (0.632,0.684) (0.421,0.493)
Farthest First (0.386,0.489) (0.276,0.380) (0.386,0.489) (0.284,0.390) (0.085,0.180) (0.550,0.598) (0.370,0.422)
Filtered Clusterer (0.315,0.419) (0.169,0.280) (0.315,0.419) (0.201,0.313) (0.033,0.129) (0.526,0.587) (0.342,0.415)
Hoeffding Tree (0.331,0.424) (0.339,0.469) (0.331,0.424) (0.260,0.368) (0.125,0.237) (0.589,0.658) (0.404,0.487)
J48 (0.346,0.416) (0.445,0.518) (0.346,0.416) (0.338,0.412) (0.131,0.220) (0.567,0.630) (0.426,0.477)
Logistic (0.201,0.334) (0.188,0.351) (0.201,0.334) (0.166,0.311) (-0.010,0.145) (0.502,0.597) (0.367,0.466)
Make Density Based
Clusterer

(0.323,0.428) (0.189,0.305) (0.323,0.428) (0.212,0.326) (0.052,0.147) (0.537,0.598) (0.351,0.421)

REPTree (0.428,0.534) (0.479,0.584) (0.428,0.534) (0.426,0.535) (0.216,0.356) (0.640,0.719) (0.480,0.577)
Random Forest (0.489,0.565) (0.556,0.611) (0.489,0.565) (0.487,0.562) (0.301,0.394) (0.758,0.801) (0.607,0.671)
Random Tree (0.426,0.519) (0.496,0.568) (0.426,0.519) (0.434,0.524) (0.222,0.334) (0.616,0.672) (0.433,0.493)
SimpleKMeans (0.338,0.433) (0.246,0.360) (0.338,0.433) (0.253,0.357) (0.067,0.183) (0.557,0.619) (0.384,0.449)
Simple Logistic (0.406,0.515) (0.443,0.545) (0.406,0.515) (0.377,0.488) (0.161,0.298) (0.655,0.738) (0.470,0.573)

Table 6.32: Cross validation scores for unified models.
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Model Type Acc. Prec. Recall F-Meas. MCC AUC AUPRC
Canopy (0.253,0.350) (0.078,0.142) (0.253,0.350) (0.117,0.198) (0.000,0.000) (0.562,0.635) (0.405,0.487)
Decision Stump (0.330,0.414) (0.220,0.316) (0.330,0.414) (0.231,0.317) (0.106,0.193) (0.592,0.653) (0.389,0.469)
EM (0.391,0.493) (0.312,0.433) (0.391,0.493) (0.314,0.432) (0.124,0.239) (0.584,0.649) (0.390,0.467)
Farthest First (0.314,0.410) (0.208,0.300) (0.314,0.410) (0.209,0.301) (0.027,0.102) (0.522,0.576) (0.347,0.406)
Filtered Clusterer (0.268,0.378) (0.135,0.253) (0.268,0.378) (0.163,0.281) (-0.007,0.098) (0.531,0.599) (0.349,0.431)
Hoeffding Tree (0.315,0.408) (0.330,0.454) (0.315,0.408) (0.254,0.349) (0.122,0.217) (0.610,0.677) (0.432,0.506)
J48 (0.345,0.409) (0.431,0.502) (0.345,0.409) (0.335,0.402) (0.123,0.206) (0.556,0.609) (0.416,0.461)
Logistic (0.174,0.309) (0.167,0.324) (0.174,0.309) (0.141,0.286) (-0.022,0.133) (0.485,0.576) (0.351,0.450)
Make Density
Based Clusterer

(0.272,0.381) (0.134,0.247) (0.272,0.381) (0.158,0.273) (0.016,0.107) (0.524,0.576) (0.348,0.411)

REPTree (0.441,0.541) (0.491,0.589) (0.441,0.541) (0.440,0.540) (0.234,0.363) (0.656,0.726) (0.494,0.584)
Random Forest (0.505,0.578) (0.572,0.631) (0.505,0.578) (0.503,0.573) (0.328,0.417) (0.766,0.809) (0.623,0.683)
Random Tree (0.403,0.496) (0.479,0.564) (0.403,0.496) (0.396,0.494) (0.202,0.317) (0.611,0.667) (0.422,0.487)
SimpleKMeans (0.329,0.422) (0.249,0.364) (0.329,0.422) (0.246,0.346) (0.080,0.183) (0.544,0.611) (0.378,0.445)
Simple Logistic (0.449,0.544) (0.480,0.583) (0.449,0.544) (0.429,0.528) (0.211,0.340) (0.668,0.736) (0.493,0.584)

Table 6.33: Cross validation scores for unified models with binary classes.
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Model Type Acc. Prec. Recall F-Meas. MCC AUC AUPRC
Canopy (0.800,0.848) (0.644,0.724) (0.800,0.848) (0.712,0.780) (0.000,0.000) (0.584,0.648) (0.748,0.808)
Decision Stump (0.781,0.833) (0.642,0.722) (0.781,0.833) (0.705,0.770) (-0.026,0.003) (0.475,0.521) (0.688,0.752)
EM (0.787,0.843) (0.643,0.723) (0.787,0.843) (0.707,0.776) (-0.022,0.006) (0.513,0.598) (0.710,0.775)
Farthest First (0.800,0.848) (0.644,0.724) (0.800,0.848) (0.712,0.780) (0.000,0.000) (0.550,0.607) (0.714,0.780)
Filtered Clusterer (0.800,0.848) (0.644,0.724) (0.800,0.848) (0.712,0.780) (0.000,0.000) (0.489,0.555) (0.697,0.763)
Hoeffding Tree (0.725,0.799) (0.681,0.765) (0.725,0.799) (0.687,0.758) (0.003,0.100) (0.450,0.538) (0.688,0.758)
J48 (0.689,0.766) (0.736,0.792) (0.689,0.766) (0.701,0.766) (0.085,0.184) (0.550,0.626) (0.735,0.791)
Logistic (0.525,0.657) (0.696,0.778) (0.525,0.657) (0.539,0.677) (0.008,0.115) (0.533,0.624) (0.702,0.781)
Make Density
Based Clusterer

(0.800,0.848) (0.644,0.724) (0.800,0.848) (0.712,0.780) (0.000,0.000) (0.509,0.557) (0.703,0.765)

REPTree (0.665,0.752) (0.736,0.789) (0.665,0.752) (0.678,0.747) (0.062,0.165) (0.556,0.626) (0.741,0.796)
Random Forest (0.781,0.825) (0.754,0.810) (0.781,0.825) (0.742,0.799) (0.121,0.213) (0.622,0.685) (0.773,0.826)
Random Tree (0.689,0.756) (0.720,0.783) (0.689,0.756) (0.696,0.758) (0.057,0.152) (0.534,0.588) (0.711,0.774)
SimpleKMeans (0.800,0.848) (0.644,0.724) (0.800,0.848) (0.712,0.780) (0.000,0.000) (0.484,0.569) (0.706,0.768)
Simple Logistic (0.757,0.814) (0.686,0.769) (0.757,0.814) (0.710,0.777) (0.042,0.116) (0.538,0.629) (0.724,0.791)

Table 6.34: Cross validation scores for bagged specific models.
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Model Type Acc. Prec. Recall F-Meas. MCC AUC AUPRC
Canopy (0.353,0.435) (0.135,0.223) (0.353,0.435) (0.194,0.283) (-0.007,0.027) (0.527,0.625) (0.596,0.661)
Decision Stump (0.556,0.656) (0.599,0.730) (0.556,0.656) (0.451,0.580) (0.140,0.247) (0.548,0.593) (0.571,0.624)
EM (0.556,0.639) (0.551,0.664) (0.556,0.639) (0.511,0.618) (0.095,0.251) (0.579,0.662) (0.604,0.664)
Farthest First (0.459,0.561) (0.473,0.631) (0.459,0.561) (0.378,0.511) (0.087,0.205) (0.524,0.597) (0.571,0.620)
Filtered Clusterer (0.506,0.592) (0.416,0.551) (0.506,0.592) (0.425,0.542) (-0.023,0.106) (0.500,0.567) (0.544,0.600)
Hoeffding Tree (0.539,0.633) (0.508,0.630) (0.539,0.633) (0.472,0.583) (0.053,0.183) (0.518,0.608) (0.575,0.644)
J48 (0.518,0.628) (0.588,0.675) (0.518,0.628) (0.476,0.609) (0.109,0.265) (0.530,0.644) (0.616,0.672)
Logistic (0.533,0.622) (0.576,0.663) (0.533,0.622) (0.509,0.612) (0.072,0.229) (0.566,0.655) (0.601,0.677)
Make Density
Based Clusterer

(0.513,0.602) (0.433,0.572) (0.513,0.602) (0.432,0.552) (-0.014,0.130) (0.510,0.581) (0.553,0.608)

REPTree (0.589,0.683) (0.639,0.718) (0.589,0.683) (0.570,0.681) (0.215,0.356) (0.626,0.719) (0.677,0.726)
Random Forest (0.618,0.693) (0.682,0.734) (0.618,0.693) (0.603,0.689) (0.255,0.378) (0.746,0.807) (0.779,0.821)
Random Tree (0.603,0.685) (0.645,0.713) (0.603,0.685) (0.597,0.683) (0.206,0.343) (0.605,0.678) (0.615,0.675)
SimpleKMeans (0.483,0.561) (0.414,0.553) (0.483,0.561) (0.397,0.512) (-0.032,0.099) (0.530,0.596) (0.569,0.625)
Simple Logistic (0.574,0.653) (0.570,0.671) (0.574,0.653) (0.535,0.628) (0.076,0.245) (0.621,0.724) (0.667,0.751)

Table 6.35: Cross validation scores for boosted specific models.
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Model Type Acc. Prec. Recall F-Meas. MCC AUC AUPRC
Canopy (0.359,0.429) (0.136,0.194) (0.359,0.429) (0.196,0.265) (0.000,0.000) (0.457,0.534) (0.530,0.576)
Decision Stump (0.527,0.612) (0.488,0.639) (0.527,0.612) (0.418,0.507) (0.068,0.176) (0.520,0.567) (0.549,0.594)
EM (0.502,0.598) (0.420,0.562) (0.502,0.598) (0.429,0.553) (0.052,0.158) (0.547,0.612) (0.574,0.622)
Farthest First (0.355,0.431) (0.317,0.454) (0.355,0.431) (0.274,0.380) (-0.127,-0.003) (0.463,0.517) (0.526,0.568)
Filtered Clusterer (0.422,0.515) (0.309,0.449) (0.422,0.515) (0.322,0.441) (-0.049,0.027) (0.462,0.516) (0.526,0.560)
Hoeffding Tree (0.423,0.518) (0.488,0.573) (0.423,0.518) (0.406,0.510) (-0.100,0.051) (0.427,0.526) (0.530,0.585)
J48 (0.561,0.675) (0.588,0.695) (0.561,0.675) (0.562,0.677) (0.119,0.328) (0.556,0.676) (0.600,0.681)
Logistic (0.517,0.604) (0.518,0.611) (0.517,0.604) (0.504,0.597) (-0.020,0.143) (0.480,0.596) (0.531,0.623)
Make Density
Based Clusterer

(0.424,0.520) (0.339,0.488) (0.424,0.520) (0.323,0.444) (-0.033,0.057) (0.484,0.538) (0.536,0.572)

REPTree (0.542,0.645) (0.581,0.669) (0.542,0.645) (0.539,0.643) (0.098,0.270) (0.565,0.667) (0.607,0.685)
Random Forest (0.486,0.602) (0.541,0.633) (0.486,0.602) (0.484,0.600) (0.007,0.204) (0.501,0.624) (0.596,0.670)
Random Tree (0.461,0.561) (0.512,0.599) (0.461,0.561) (0.463,0.562) (-0.047,0.127) (0.468,0.576) (0.544,0.600)
SimpleKMeans (0.455,0.541) (0.428,0.537) (0.455,0.541) (0.377,0.477) (-0.029,0.049) (0.488,0.557) (0.544,0.589)
Simple Logistic (0.542,0.640) (0.548,0.643) (0.542,0.640) (0.521,0.618) (0.037,0.205) (0.533,0.652) (0.586,0.684)

Table 6.36: Cross validation scores for tree specific models.
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Model Type Acc. Prec. Recall F-Meas. MCC AUC AUPRC
Canopy (0.638,0.725) (0.423,0.536) (0.638,0.725) (0.504,0.614) (0.000,0.000) (0.569,0.661) (0.645,0.719)
Decision Stump (0.570,0.667) (0.437,0.560) (0.570,0.667) (0.476,0.576) (-0.038,0.045) (0.507,0.580) (0.603,0.654)
EM (0.600,0.697) (0.533,0.662) (0.600,0.697) (0.535,0.644) (0.039,0.148) (0.488,0.567) (0.591,0.657)
Farthest First (0.674,0.741) (0.626,0.690) (0.674,0.741) (0.626,0.692) (0.114,0.208) (0.547,0.610) (0.616,0.674)
Filtered Clusterer (0.620,0.718) (0.448,0.569) (0.620,0.718) (0.497,0.616) (-0.001,0.048) (0.496,0.572) (0.588,0.655)
Hoeffding Tree (0.537,0.643) (0.588,0.674) (0.537,0.643) (0.498,0.611) (0.042,0.157) (0.497,0.581) (0.601,0.662)
J48 (0.611,0.673) (0.653,0.709) (0.611,0.673) (0.609,0.671) (0.116,0.234) (0.600,0.667) (0.673,0.719)
Logistic (0.555,0.645) (0.527,0.637) (0.555,0.645) (0.501,0.607) (0.014,0.095) (0.484,0.569) (0.601,0.664)
Make Density
Based Clusterer

(0.641,0.727) (0.449,0.571) (0.641,0.727) (0.517,0.627) (0.002,0.052) (0.491,0.562) (0.579,0.648)

REPTree (0.598,0.663) (0.639,0.699) (0.598,0.663) (0.600,0.660) (0.076,0.214) (0.573,0.658) (0.671,0.724)
Random Forest (0.681,0.726) (0.694,0.740) (0.681,0.726) (0.664,0.714) (0.196,0.311) (0.696,0.766) (0.750,0.801)
Random Tree (0.608,0.674) (0.645,0.707) (0.608,0.674) (0.611,0.675) (0.095,0.241) (0.544,0.617) (0.621,0.676)
SimpleKMeans (0.614,0.713) (0.465,0.601) (0.614,0.713) (0.508,0.631) (0.020,0.111) (0.457,0.530) (0.578,0.640)
Simple Logistic (0.586,0.673) (0.544,0.659) (0.586,0.673) (0.529,0.629) (0.041,0.154) (0.565,0.656) (0.647,0.719)

Table 6.37: Cross validation scores for sfo specific models.
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Model Type Acc. Prec. Recall F-Meas. MCC AUC AUPRC
Canopy (0.800,0.848) (0.644,0.724) (0.800,0.848) (0.712,0.780) (0.000,0.000) (0.495,0.562) (0.706,0.778)
Decision Stump (0.786,0.840) (0.643,0.723) (0.786,0.840) (0.706,0.774) (-0.023,0.005) (0.484,0.537) (0.691,0.756)
EM (0.792,0.843) (0.643,0.723) (0.792,0.843) (0.709,0.777) (-0.017,0.004) (0.520,0.593) (0.715,0.775)
Farthest First (0.800,0.848) (0.644,0.724) (0.800,0.848) (0.712,0.780) (0.000,0.000) (0.523,0.578) (0.705,0.770)
Filtered Clusterer (0.800,0.848) (0.644,0.724) (0.800,0.848) (0.712,0.780) (0.000,0.000) (0.438,0.505) (0.683,0.750)
Hoeffding Tree (0.633,0.763) (0.674,0.749) (0.633,0.763) (0.613,0.730) (-0.021,0.051) (0.481,0.570) (0.698,0.765)
J48 (0.719,0.778) (0.736,0.793) (0.719,0.778) (0.714,0.770) (0.067,0.164) (0.526,0.598) (0.718,0.782)
Logistic (0.530,0.663) (0.697,0.774) (0.530,0.663) (0.545,0.678) (0.026,0.108) (0.518,0.600) (0.703,0.778)
Make Density
Based Clusterer

(0.800,0.848) (0.644,0.724) (0.800,0.848) (0.712,0.780) (0.000,0.000) (0.505,0.563) (0.698,0.764)

REPTree (0.637,0.730) (0.744,0.788) (0.637,0.730) (0.662,0.733) (0.071,0.179) (0.515,0.610) (0.736,0.790)
Random Forest (0.785,0.826) (0.763,0.814) (0.785,0.826) (0.747,0.802) (0.139,0.231) (0.618,0.678) (0.773,0.824)
Random Tree (0.641,0.728) (0.707,0.770) (0.641,0.728) (0.658,0.734) (0.008,0.112) (0.499,0.568) (0.708,0.767)
SimpleKMeans (0.800,0.848) (0.644,0.724) (0.800,0.848) (0.712,0.780) (0.000,0.000) (0.467,0.550) (0.698,0.763)
Simple Logistic (0.707,0.804) (0.697,0.776) (0.707,0.804) (0.686,0.776) (0.048,0.123) (0.559,0.648) (0.723,0.795)

Table 6.38: Cross validation scores for bagged specific models with binary classes.
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Model Type Acc. Prec. Recall F-Meas. MCC AUC AUPRC
Canopy (0.352,0.429) (0.133,0.196) (0.352,0.429) (0.191,0.266) (0.000,0.000) (0.530,0.611) (0.590,0.647)
Decision Stump (0.556,0.656) (0.599,0.730) (0.556,0.656) (0.451,0.580) (0.140,0.247) (0.548,0.593) (0.571,0.624)
EM (0.556,0.643) (0.463,0.602) (0.556,0.643) (0.482,0.594) (0.068,0.199) (0.534,0.624) (0.572,0.640)
Farthest First (0.462,0.551) (0.468,0.620) (0.462,0.551) (0.376,0.493) (0.069,0.181) (0.530,0.586) (0.563,0.609)
Filtered Clusterer (0.465,0.560) (0.372,0.519) (0.465,0.560) (0.381,0.508) (-0.054,0.082) (0.491,0.573) (0.544,0.607)
Hoeffding Tree (0.530,0.619) (0.579,0.668) (0.530,0.619) (0.485,0.589) (0.081,0.225) (0.542,0.624) (0.586,0.649)
J48 (0.531,0.627) (0.602,0.677) (0.531,0.627) (0.497,0.614) (0.125,0.260) (0.499,0.610) (0.590,0.644)
Logistic (0.501,0.586) (0.546,0.638) (0.501,0.586) (0.473,0.575) (0.008,0.177) (0.516,0.619) (0.569,0.654)
Make Density
Based Clusterer

(0.470,0.572) (0.363,0.523) (0.470,0.572) (0.366,0.508) (-0.018,0.125) (0.487,0.561) (0.543,0.598)

REPTree (0.585,0.671) (0.633,0.703) (0.585,0.671) (0.572,0.668) (0.179,0.322) (0.623,0.716) (0.665,0.730)
Random Forest (0.634,0.693) (0.682,0.732) (0.634,0.693) (0.621,0.687) (0.258,0.369) (0.750,0.806) (0.782,0.822)
Random Tree (0.576,0.652) (0.614,0.698) (0.576,0.652) (0.562,0.649) (0.156,0.300) (0.583,0.662) (0.594,0.657)
SimpleKMeans (0.482,0.568) (0.437,0.590) (0.482,0.568) (0.407,0.534) (0.027,0.164) (0.520,0.599) (0.572,0.624)
Simple Logistic (0.599,0.668) (0.590,0.674) (0.599,0.668) (0.543,0.633) (0.093,0.243) (0.581,0.679) (0.639,0.715)

Table 6.39: Cross validation scores for boosted specific models with binary classes.
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Model Type Acc. Prec. Recall F-Meas. MCC AUC AUPRC
Canopy (0.359,0.429) (0.136,0.194) (0.359,0.429) (0.196,0.265) (0.000,0.000) (0.456,0.508) (0.525,0.560)
Decision Stump (0.527,0.612) (0.488,0.639) (0.527,0.612) (0.418,0.507) (0.068,0.176) (0.520,0.567) (0.549,0.594)
EM (0.474,0.574) (0.355,0.508) (0.474,0.574) (0.382,0.516) (0.019,0.126) (0.538,0.607) (0.565,0.623)
Farthest First (0.357,0.421) (0.258,0.386) (0.357,0.421) (0.251,0.345) (-0.106,-0.013) (0.451,0.502) (0.522,0.558)
Filtered Clusterer (0.441,0.534) (0.357,0.497) (0.441,0.534) (0.357,0.473) (-0.023,0.053) (0.473,0.530) (0.536,0.565)
Hoeffding Tree (0.466,0.547) (0.506,0.600) (0.466,0.547) (0.424,0.516) (-0.029,0.101) (0.472,0.544) (0.538,0.590)
J48 (0.525,0.635) (0.571,0.670) (0.525,0.635) (0.521,0.631) (0.073,0.261) (0.536,0.640) (0.583,0.652)
Logistic (0.500,0.580) (0.502,0.600) (0.500,0.580) (0.478,0.564) (-0.043,0.104) (0.479,0.582) (0.528,0.614)
Make Density
Based Clusterer

(0.418,0.520) (0.315,0.459) (0.418,0.520) (0.315,0.438) (-0.053,0.052) (0.469,0.540) (0.531,0.575)

REPTree (0.471,0.592) (0.513,0.622) (0.471,0.592) (0.466,0.588) (-0.033,0.175) (0.487,0.614) (0.566,0.648)
Random Forest (0.492,0.603) (0.547,0.633) (0.492,0.603) (0.488,0.601) (0.018,0.204) (0.491,0.621) (0.595,0.669)
Random Tree (0.456,0.557) (0.513,0.602) (0.456,0.557) (0.449,0.555) (-0.035,0.136) (0.487,0.569) (0.550,0.600)
SimpleKMeans (0.447,0.537) (0.387,0.523) (0.447,0.537) (0.366,0.476) (-0.027,0.057) (0.469,0.533) (0.538,0.575)
Simple Logistic (0.596,0.677) (0.621,0.697) (0.596,0.677) (0.571,0.656) (0.158,0.300) (0.569,0.680) (0.608,0.701)

Table 6.40: Cross validation scores for tree specific models with binary classes.
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Model Type Acc. Prec. Recall F-Meas. MCC AUC AUPRC
Canopy (0.634,0.725) (0.418,0.537) (0.634,0.725) (0.499,0.614) (0.000,0.000) (0.587,0.663) (0.649,0.722)
Decision Stump (0.586,0.671) (0.430,0.555) (0.586,0.671) (0.482,0.581) (-0.014,0.033) (0.522,0.578) (0.601,0.652)
EM (0.592,0.700) (0.511,0.654) (0.592,0.700) (0.517,0.646) (0.086,0.172) (0.564,0.622) (0.629,0.679)
Farthest First (0.669,0.742) (0.573,0.668) (0.669,0.742) (0.596,0.680) (0.079,0.178) (0.533,0.596) (0.612,0.669)
Filtered Clusterer (0.616,0.714) (0.434,0.558) (0.616,0.714) (0.495,0.613) (-0.009,0.051) (0.502,0.561) (0.586,0.646)
Hoeffding Tree (0.548,0.669) (0.574,0.682) (0.548,0.669) (0.511,0.633) (0.011,0.170) (0.513,0.615) (0.608,0.684)
J48 (0.684,0.750) (0.704,0.764) (0.684,0.750) (0.674,0.743) (0.240,0.380) (0.637,0.714) (0.693,0.755)
Logistic (0.577,0.678) (0.567,0.704) (0.577,0.678) (0.532,0.656) (0.108,0.239) (0.564,0.657) (0.633,0.712)
Make Density
Based Clusterer

(0.617,0.712) (0.427,0.545) (0.617,0.712) (0.499,0.611) (-0.030,0.022) (0.446,0.519) (0.568,0.628)

REPTree (0.657,0.719) (0.684,0.735) (0.657,0.719) (0.649,0.709) (0.177,0.302) (0.638,0.720) (0.710,0.765)
Random Forest (0.714,0.753) (0.729,0.762) (0.714,0.753) (0.697,0.739) (0.261,0.362) (0.731,0.792) (0.776,0.820)
Random Tree (0.625,0.696) (0.662,0.722) (0.625,0.696) (0.630,0.696) (0.132,0.280) (0.562,0.637) (0.634,0.685)
SimpleKMeans (0.597,0.701) (0.443,0.570) (0.597,0.701) (0.491,0.612) (-0.022,0.056) (0.461,0.528) (0.579,0.635)
Simple Logistic (0.608,0.683) (0.593,0.672) (0.608,0.683) (0.568,0.648) (0.037,0.141) (0.560,0.650) (0.646,0.711)

Table 6.41: Cross validation scores for sfo specific models with binary classes.
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6.9 Conclusion

Using the data collected while searching for optimal hyper-parameters and rerunning select iterations
of the training algorithms on different numbers of processors, a couple of datasets for selecting which
algorithm should perform the best on a given dataset, number of cores, within a time limit, were
constructed. A collection of models were then trained using these datasets. While the datasets
initially scored quite well when trying to make predictions about the datasets used to construct it,
when predictions about datasets that had not been used were made and compared to actual results,
the models scored very poorly. One likely cause of the bad results is that the training datasets
were too dissimilar to the test datasets. If the training set contained many more datasets with
characteristics more closely resembling those of the test datasets, it is possible the predictions would
have been more correct. However, PCA analysis of the datasets indicates that the characteristics
used to describe the datasets do not do a sufficient job to allow proper classification. Further cross
validation indicates that the initial assignment of datasets to training and testing lead to atypical
results. Overall it appears that building models for prediction when bagging, boosting, or logistic
regression may perform well is possible. It is unclear as to why tree induction is hard to predict.
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Chapter 7

Discussion

7.1 Summary of Problem

When a researcher is faced with the task of building a model using machine learning, there is a wide
variety of algorithms to choose from, making the problem of selecting an algorithm that will work
well for a particular dataset a daunting one. When tackling a problem large enough to warrant using
a cluster to solve it, the problem becomes even harder, as different algorithms may exhibit different
parallel performance characteristics that are dataset dependant. For extremely large datasets, it will
likely soon be the case that running algorithms to completion will no longer be possible, meaning
that not only will it be important to pick an algorithm that can produce a good model from the
data, but to pick one that will produce a good model in a reasonable amount of time.

While one could try all available algorithms on the task at hand and compare the results to pick
the best algorithm, that may be a very time consuming process. Adding to the difficulty is that
many algorithms have hyper-parameters that may need to be fine tuned before giving good results.
It may be tempting to try each of the algorithms on a smaller subsample of the dataset, but as
Perlich et al. [7] demonstrated, a subsamping of the dataset may favor a different algorithm than
the one that will work on the complete dataset. It would be far better if it were possible to first
examine the properties of the dataset and use a model to predict which algorithm would perform
best. Additionally, it would be great if a model could also recommend reasonable hyper-parameters
to try based on the properties of the dataset.

7.2 Summary of Results

Attempting to build a model to select among all of the algorithms available would be way beyond the
scope of this project. That would first involve implementing each of the algorithms, then collecting
data on both the model quality and run times over a large number of datasets. Instead a smaller
number of MapReduce [49] machine learning algorithms found in the literature were used. The
algorithms chosen were Logistic Regression [20] and several forms of Tree Induction [21], including
bagging [32] and boosting [33]. The overall task of building a model for algorithm selection was
divided into four phases.

In the first phase (Chapter 3), only two smaller datasets were used two perform 2kr analysis on the
hyper-parameters for each algorithm. The goal of this phase was to find hyper-parameters that had
little effect on either the run time or the quality of models produced. Unfortunately, it turns out all
of the available hyper-parameters were deemed useful enough for inclusion in the rest of the study.
The 2kr results did provide insight into the relative importance of each hyper-parameter though.

In the second phase (Chapter 4), a search for optimal hyper-parameters for each dataset using each
algorithm was performed. The search was conducted using a hill climbing algorithm with random
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restarts, using model quality, with run time as a tie breaker, as a fitness function. While the first
phase failed to rule out any hyper-parameters, it did determine which one would affect the fitness
function more. Using this information, the hill climbing performed its search one hyper-parameter
at a time, starting from the one with the largest impact and working its way to the one with the
least impact before cycling back to the largest again. During this phase, models were recorded at
the end of each iteration of each learning task for use in the next phase.

The third phase (Chapter 5), looked at how changing the number of compute cores affected the run
time of each algorithm. Rerunning each algorithm on different numbers of cores can be a very time
consuming task and may seem like a waste of resources if the solution to a problem has already been
found on one number of cores. Changing the number of compute cores, ideally, should only change
the run time for an otherwise identical training task, but still produce the same overall result. Using
this notion, a data collection plan was devised where only a portion of the training iterations would
be rerun on each number of cores, each starting from one of the models recorded during training
in the second phase. In the real world it is not the case that changing the number of cores only
affects the run time, in reality, the model produced on a different number of cores may also be
different. An experiment was performed to determine if the variation due to changing the number of
cores significantly affected the predictions made by the resulting models. In some cases, statistically
significant differences were measured in the predictions produced by models trained exclusively on a
certain number of cores and the models produced by rerunning iterations from a different number of
cores, but overall the differences were determined to be small enough to use this technique. Utilizing
these results, data for building an algorithm selection model for parallel machine learning algorithms
was performed much more quickly.

The fourth and final phase (Chapter 6), took the run time and model quality results from phases
two and three, and combined it with measurements taken of each dataset to create another machine
learning dataset. This new dataset had as attributes, the characteristics of each dataset, a number
of cores, and a run time limit. The classes in this new dataset are the individual algorithms. Each
sample was then assigned its class based on which algorithm was estimated to provide the highest
model score on that number of cores within that time limit. A collection of models were then
trained on this new dataset using Weka [39]. The model scores reported by Weka upon training
these models indicated that the models were very good. To verify the models produced, datasets
that had not been used in phases two and three were run through the same hill climbing process for
hyper-parameter optimization, on various numbers of cores. The best algorithms for each of these
datasets were then compared to predictions made by the models, but the results were abysmal.
Even the best models only performed slightly better than random. However when 5x5-fold cross
validation was performed to assign datasets randomly among the training and testing datasets, the
average scores were much higher for most of the learning problems examined. This indicates that
the original splitting between training and testing was problematic.

Overall the results of training models to select which algorithm will perform best, or at least as good
as any other algorithm are somewhat mixed. When cross validation was performed to randomly
choose which datasets the models are trained on and which are tested against, the results for three
of the four algorithms as well as all four in a single model look promising. However, for one algorithm,
tree induction, no models were able to predict when it might do well. Also, the original sets
of datasets used for training produced models that performed very poorly on the original testing
datasets. This indicates that if these models were applied to an arbitrary dataset not included in
this study, the predictions may not as trustworthy as the cross validation results may imply.
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7.3 Future Work

Given the poor performance predicting the best algorithms for the test datasets, using additional
datasets in the construction of the training dataset would be helpful. In particular devising synthetic
datasets to fill in gaps in the dataset characteristic space could prove useful.

If additional datasets were to be utilized, optimal hyper-parameters for them will also need to be
found. While the hill climbing technique used was effective, there are other search algorithms (e.g.,
Nelder-Mead [110]) that may be worth exploring, as it may converge on optimal hyper-parameters
more quickly. Also, having an additional hold-out set that is not used in either training or testing,
that can be used to score the models afterwards for labeling samples may lead to more reliable
results.

Assuming adding more datasets does provide models good enough to reliably predict the best algo-
rithm for a dataset, there is still the problem of picking hyper-parameters that are needed to produce
a good model using that algorithm.

For this study, only the hyper-parameters for the learning algorithms were examined, however there
are many other tunable settings involved in this study, in particular, the settings used for the Java
Virtual Machine (JVM) were problematic when running on smaller numbers of cores. Additional
work on estimating the optimal parameters for the JVM, as well as algorithm selection and hyper-
parameter estimation, could be very useful.
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Appendix A

Mathematical Notation

A.1 Variable Names

Below is an alphabetical listing of variables used in this dissertation along with their meaning.

Symbol Type Meaning
~β vector Logistic Regression model vector
C integer The number of individual classes
ci integer or string is an individual class label
J integer Number of attributes in a dataset
L set of integers or strings The set of class labels
N integer Total number of samples in a dataset
Ni integer Number of samples that reach node vi
Nic integer Number of samples that reach node vi, belonging to class c
pi real Probability that sample xi belongs to the target class
vi tree node Unique node in a tree induction model
X set of vectors A set of machine samples, also referred to as a dataset.
~xi vector logistic regression sample vector
xi,j scalar or string Element j in a sample vector ~xi
yi integer or string Label for sample xi ∈ X
yi,j integer or string is the label assigned to sample j that reached node i

Table A.1: List of variables
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Appendix B

Dataset Characteristics

B.1 Meta-model Training Datasets
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Characteristic Value
cancorr1 0.584
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.584
dfrac2 0.000
dfrac3 0.000
dfrac4 -1
dimensionality 0.475
env 107.862
frac1 1
frac2 1
frac3 1
frac4 0
nsr 11.073
J 1558
N 3279
percnin 99.8%
perccont 0.2%
percord 0.0%
percmiss 0.0%
percneg 86.0%
percpos 14.0%
sdRatio 1.000
numbin 1555
C 2
numcont 3
numord 0
nummiss 0
numpos 2820
numneg 459

Table B.1: Characteristics of the Ads dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.038 0.944 0.355 0.406 0.362
skew 0.110 7.471 2.165 2.685 2.770
arithMean 2.221 272.216 50.484 77.723 100.511
χ2 0.000 0.000 0.000 0.000 0.000
concCoeff 0 1 0.000 0.007 0.072
concCoeffC 0 1 0 0.000 0.001
H̄(X) 0.014 4.948 0.042 0.065 0.167
H̄(X,C) 0.584 5.260 0.623 0.644 0.159
geoMean 1.728 109.001 19.743 30.935 40.032
harmMean -6.967 6.614 -3.612 -1.905 5.401
IQ-range 3.839 371 41 98.440 141.565
kurtosis 1.328 73.030 11.223 23.083 28.116
mad 2.729 180.983 32.782 53.519 67.200
median 1.088 234 42.500 68.292 87.101
M̄(X,C) 0.000 0.584 0.001 0.005 0.020
normP 1 1 1 1 0
pValC 0 0.999 0.086 0.243 0.298
pVal 0.000 0.000 0.000 0.000 0.000
perc90 6.110 468 105 148.652 172.649
stdDev 3.714 192.154 50.113 66.199 70.522
trimMean 1.345 280.926 43.702 74.397 104.806
unique 0 0 0 0 0
unique2 2 2 0
variance 13.792 36922.960 2551.395 8526.775 14307.220
zScore 1.768 10.552 7.705 6.961 3.637

Table B.2: Summary characteristics of the Ads dataset.

Char. Histogram (%) NaN
|ρ| 33.33 16.67 0.00 0.00 0.00 16.67 16.67 0.00 0.00 16.67 0.00
skew 33.33 0.00 33.33 0.00 0.00 16.67 0.00 0.00 0.00 16.67 0.00
concCoeff 99.00 0.14 0.09 0.09 0.07 0.05 0.04 0.07 0.08 0.36 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 99.23 0.64 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.00
H̄(X,C) 99.29 0.58 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.00
kurtosis 33.33 33.33 0.00 0.00 0.00 16.67 0.00 0.00 0.00 16.67 0.00
M̄(X,C) 98.52 1.09 0.26 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0.00
pValC 51.13 9.41 6.80 6.11 5.19 4.37 4.52 3.67 5.08 3.73 0.00
pVal 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.3: Histogram based characteristics of the Ads dataset.
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Characteristic Value
cancorr1 0.941
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.584
dfrac2 NaN
dfrac3 NaN
dfrac4 NaN
dimensionality 0.475
env 107.862
frac1 NaN
frac2 NaN
frac3 NaN
frac4 NaN
nsr 11.073
J 1558
N 3279
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 86.0%
percpos 14.0%
sdRatio 1
numbin 0
C 2
numcont 1558
numord 0
nummiss 0
numpos 2820
numneg 459

Table B.4: Characteristics of the Ads (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.000 1 0.006 0.021 0.088
skew 0.110 53.104 12.770 13.184 7.469
arithMean 0 0.767 0.004 0.011 0.033
χ2 0 0.000 0.000 0.000 0.000
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0.014 4.948 0.042 0.065 0.167
H̄(X,C) 0.584 5.260 0.623 0.644 0.159
geoMean 0 0 0 0 0
harmMean 0 0 0 0 0
IQ-range 0 1 0 0.003 0.055
kurtosis 1.121 2823 164.176 230.944 343.003
mad 0 0.484 0.008 0.018 0.042
median 0 1 0 0.001 0.026
M̄(X,C) 0.000 0.584 0.001 0.005 0.020
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0.000 0.982 0.095 0.155 0.212
perc90 0 1 0 0.014 0.114
stdDev 0 0.493 0.062 0.065 0.071
trimMean 0 0.834 0 0.002 0.028
unique 0 0 0 0 0
unique2 0 0 0
variance 0 0.243 0.004 0.009 0.021
zScore 0 53.085 7.224 8.606 8.700

Table B.5: Summary characteristics of the Ads (binorm) dataset.

Characteristic Histogram (%) NaNs
|ρ| 44.60 0.46 0.16 0.09 0.06 0.06 0.05 0.04 0.05 0.22 54.20
skew 7.12 16.11 27.25 6.51 5.68 0.45 0.00 0.99 0.00 0.71 35.17
concCoeff 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 99.23 0.64 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.00
H̄(X,C) 99.29 0.58 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.06 0.00
kurtosis 55.26 7.12 0.29 0.45 0.99 0.00 0.00 0.00 0.00 0.71 35.17
M̄(X,C) 98.52 1.09 0.26 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 50.32 26.12 11.10 1.54 1.93 1.86 1.73 1.73 2.57 1.09 0.00

Table B.6: Histogram based characteristics of the Ads (binorm) dataset.
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Characteristic Value
cancorr1 0.478
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.796
dfrac2 1
dfrac3 -1
dfrac4 0
dimensionality 0.000
env 6.450
frac1 0.000
frac2 1
frac3 0
frac4 0
nsr 17.491
J 14
N 32561
percnin 7.1%
perccont 42.9%
percord 50.0%
percmiss 0.9%
percneg 75.9%
percpos 24.1%
sdRatio 1.237
numbin 1
C 2
numcont 6
numord 7
nummiss 4262
numpos 24720
numneg 7841

Table B.7: Characteristics of the Adult dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.000 0.127 0.029 0.041 0.033
skew 0.214 18.341 1.077 3.229 5.184
arithMean 9.595 190340.900 49.308 31911.290 73467.170
χ2 0 0.000 0 0.000 0.000
concCoeff 0 1 0.009 0.139 0.303
concCoeffC 0 1 0 0.015 0.112
H̄(X) 0.512 8.658 1.741 2.283 2.118
H̄(X,C) 0.796 9.432 2.448 2.956 2.170
geoMean 0 160212.800 22.810 26689.930 62292.740
harmMean 0 127415.200 21.094 21132.280 49316.710
IQ-range 0 121422 4 19445.040 45446.700
kurtosis 2.820 608.315 7.533 61.707 172.649
mad 1.724 78354.530 57.273 13386.920 29668.760
median 0 179465 23 29645.420 69198.690
M̄(X,C) 0.008 0.796 0.077 0.123 0.200
normP 1 1 1 1 0
pValC 0 0.455 0.000 0.010 0.066
pVal 0 0.088 0 0.015 0.036
perc90 0 329144 53.500 55579.920 127759.500
stdDev 2.385 106482.300 162.388 18793.040 40259.190
trimMean 0 181308.900 37.250 30131.260 70112.780
unique 5 41 8 13.857 12.668
unique2 7.500 12.375 12.455
variance 5.689 1.13385e+10 48382.860 1.83891e+09 4.24894e+09
zScore 1.840 42.737 5.370 9.473 11.121

Table B.8: Summary characteristics of the Adult dataset.

Characteristic Histogram (%) NaNs
|ρ| 93.33 6.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
skew 66.67 8.33 0.00 16.67 0.00 0.00 0.00 0.00 0.00 8.33 0.00
concCoeff 80.25 3.70 2.47 0.00 2.47 1.23 0.00 0.00 0.00 9.88 0.00
concCoeffC 97.53 1.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.23 0.00
H̄(X) 42.86 14.29 21.43 14.29 0.00 0.00 0.00 0.00 0.00 7.14 0.00
H̄(X,C) 28.57 28.57 7.14 28.57 0.00 0.00 0.00 0.00 0.00 7.14 0.00
kurtosis 91.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.33 0.00
M̄(X,C) 50.00 42.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.14 0.00
pValC 97.92 0.00 0.00 0.00 2.08 0.00 0.00 0.00 0.00 0.00 0.00
pVal 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.9: Histogram based characteristics of the Adult dataset.
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Characteristic Value
cancorr1 0.608
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.810
dfrac2 0.000
dfrac3 0.000
dfrac4 0.000
dimensionality 0.003
env 42.998
frac1 1
frac2 1
frac3 1
frac4 1
nsr 18.500
J 104
N 30162
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 75.1%
percpos 24.9%
sdRatio 1
numbin 0
C 2
numcont 104
numord 0
nummiss 0
numpos 22654
numneg 7508

Table B.10: Characteristics of the Adult (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.000 0.913 0.006 0.022 0.051
skew 0.295 150.513 10.610 17.867 20.566
arithMean 0 0.932 0.008 0.089 0.193
χ2 0 0.000 0 0.000 0.000
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0 8.549 0.105 0.367 0.948
H̄(X,C) 0.810 9.337 0.904 1.158 0.939
geoMean 0 0.687 0 0.006 0.054
harmMean 0 0.659 0 0.005 0.051
IQ-range 0 1 0 0.048 0.205
kurtosis 1.138 22657 113.618 742.825 1971.652
mad 0 0.483 0.016 0.077 0.115
median 0 1 0 0.062 0.226
M̄(X,C) 0 0.810 0.001 0.019 0.083
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0 0.880 0.000 0.090 0.193
perc90 0 1 0 0.185 0.378
stdDev 0 0.492 0.078 0.140 0.132
trimMean 0 1 0 0.071 0.208
unique 0 0 0 0 0
unique2 0 0 0
variance 0 0.242 0.006 0.037 0.058
zScore 0 150.506 10.478 17.787 20.396

Table B.11: Summary characteristics of the Adult (binorm) dataset.

Characteristic Histogram (%) NaNs
|ρ| 90.12 2.83 0.73 0.27 0.19 0.08 0.04 0.04 0.02 0.01 5.68
skew 56.25 20.19 12.02 3.37 3.37 1.44 0.00 0.00 0.00 0.48 2.88
concCoeff 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 92.31 4.81 0.00 0.96 0.96 0.00 0.00 0.00 0.00 0.96 0.00
H̄(X,C) 94.23 2.88 0.00 1.92 0.00 0.00 0.00 0.00 0.00 0.96 0.00
kurtosis 89.42 5.77 0.00 1.44 0.00 0.00 0.00 0.00 0.00 0.48 2.88
M̄(X,C) 94.23 4.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 78.85 3.85 3.85 3.85 0.96 1.92 2.88 1.92 0.96 0.00 0.96

Table B.12: Histogram based characteristics of the Adult (binorm) dataset.
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Characteristic Value
cancorr1 0.588
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.985
dfrac2 0.000
dfrac3 0.000
dfrac4 0.000
dimensionality 0.000
env 42.713
frac1 1
frac2 1
frac3 1
frac4 1
nsr 62.490
J 54
N 495141
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 57.2%
percpos 42.8%
sdRatio 1
numbin 0
C 2
numcont 54
numord 0
nummiss 0
numpos 283301
numneg 211840

Table B.13: Characteristics of the Covertype dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.000 0.918 0.016 0.046 0.083
skew 0.004 153.641 5.344 16.718 27.074
arithMean 0 3128.645 0.011 161.206 591.430
χ2 0 0 0 0 0
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0 11.816 0.126 1.464 3.031
H̄(X,C) 0.985 12.780 1.075 2.426 3.034
geoMean 0 3124.587 0 57.983 409.538
harmMean 0 3120.446 0 57.880 408.846
IQ-range 0 2270 0 86.056 364.849
kurtosis 1.000 23606.830 29.564 1006.080 3305.167
mad 0 1336.296 0.022 52.171 220.734
median 0 3146 0 149.454 556.008
M̄(X,C) 0 0.985 0.002 0.023 0.134
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0 0.029 0.000 0.001 0.004
perc90 0 5098 0 258.431 953.712
stdDev 0 1618.719 0.105 65.453 275.851
trimMean 0 3136.110 0 155.189 572.669
unique 0 0 0 0 0
unique2 0 0 0
variance 0 2620251 0.011 79673.250 406274.400
zScore 0 153.647 5.239 15.057 25.476

Table B.14: Summary characteristics of the Covertype dataset.

Characteristic Histogram (%) NaNs
|ρ| 65.13 5.77 1.71 0.77 0.21 0.24 0.17 0.07 0.03 0.03 25.86
skew 59.26 13.89 4.63 2.78 1.85 0.93 0.00 0.93 0.93 0.93 13.89
concCoeff 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 83.33 0.00 0.00 0.00 1.85 5.56 3.70 1.85 0.00 3.70 0.00
H̄(X,C) 83.33 0.00 0.00 0.00 1.85 5.56 3.70 1.85 0.00 3.70 0.00
kurtosis 78.70 1.85 2.78 0.00 0.00 0.93 0.93 0.00 0.00 0.93 13.89
M̄(X,C) 98.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.85 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 90.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.26

Table B.15: Histogram based characteristics of the Covertype dataset.
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Characteristic Value
cancorr1 0.588
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.985
dfrac2 0.000
dfrac3 0.000
dfrac4 0.000
dimensionality 0.000
env 42.713
frac1 1
frac2 1
frac3 1
frac4 1
nsr 62.490
J 54
N 495141
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 57.2%
percpos 42.8%
sdRatio 1
numbin 0
C 2
numcont 54
numord 0
nummiss 0
numpos 283301
numneg 211840

Table B.16: Characteristics of the Covertype (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.000 0.918 0.016 0.046 0.083
skew 0.004 153.641 5.344 16.718 27.074
arithMean 0 0.887 0.011 0.122 0.213
χ2 0 0 0 0 0
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0 11.816 0.126 1.464 3.031
H̄(X,C) 0.985 12.780 1.075 2.426 3.034
geoMean 0 0.877 0 0.016 0.106
harmMean 0 0.873 0 0.016 0.105
IQ-range 0 1 0 0.084 0.226
kurtosis 1.000 23606.830 29.564 1006.080 3305.167
mad 0 0.500 0.022 0.075 0.114
median 0 1 0 0.091 0.223
M̄(X,C) 0 0.985 0.002 0.023 0.134
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0 0.029 0.000 0.001 0.004
perc90 0 1 0 0.216 0.373
stdDev 0 0.500 0.077 0.126 0.126
trimMean 0 0.893 0 0.105 0.217
unique 0 0 0 0 0
unique2 0 0 0
variance 0 0.250 0.006 0.032 0.056
zScore 0 153.647 5.239 15.057 25.476

Table B.17: Summary characteristics of the Covertype (binorm) dataset.

Characteristic Histogram (%) NaNs
|ρ| 65.13 5.77 1.71 0.77 0.21 0.24 0.17 0.07 0.03 0.03 25.86
skew 59.26 13.89 4.63 2.78 1.85 0.93 0.00 0.93 0.93 0.93 13.89
concCoeff 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 83.33 0.00 0.00 0.00 1.85 5.56 3.70 1.85 0.00 3.70 0.00
H̄(X,C) 83.33 0.00 0.00 0.00 1.85 5.56 3.70 1.85 0.00 3.70 0.00
kurtosis 78.70 1.85 2.78 0.00 0.00 0.93 0.93 0.00 0.00 0.93 13.89
M̄(X,C) 98.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.85 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 90.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.26

Table B.18: Histogram based characteristics of the Covertype (binorm) dataset.
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Characteristic Value
cancorr1 0.483
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.994
dfrac2 0.000
dfrac3 0.000
dfrac4 -1
dimensionality 0.023
env 6.215
frac1 1
frac2 1
frac3 1
frac4 0
nsr 10.174
J 15
N 653
percnin 26.7%
perccont 40.0%
percord 33.3%
percmiss 0.0%
percneg 54.7%
percpos 45.3%
sdRatio 1.209
numbin 4
C 2
numcont 6
numord 5
nummiss 0
numpos 357
numneg 296

Table B.19: Characteristics of the Credit dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.000 0.463 0.103 0.132 0.122
skew 0.856 9.169 2.763 3.308 2.484
arithMean 0.667 2009.726 17.767 219.923 568.935
χ2 0.000 0.000 0.000 0.000 0.000
concCoeff 0 1 0.007 0.131 0.311
concCoeffC 0 0 0 0 0
H̄(X) 0.436 4.248 0.997 1.787 1.271
H̄(X,C) 0.994 5.173 1.988 2.620 1.338
geoMean 0 31.687 0 4.966 11.626
harmMean 0 29.768 0 4.688 10.971
IQ-range 0 1223 10.508 148.835 348.901
kurtosis 3.109 104.645 12.815 25.190 29.241
mad 1.020 2744.967 6.392 276.013 782.358
median 0 210.500 3.740 46.800 73.703
M̄(X,C) 0.002 0.994 0.069 0.160 0.257
normP 1 1 1 1 0
pValC 0.000 0.883 0.014 0.146 0.253
pVal 0.000 0.029 0.000 0.005 0.012
perc90 2 4150.200 28.502 454.618 1175.424
stdDev 1.958 7660.949 8.559 723.015 2192.424
trimMean 0.211 624.314 16.688 88.370 178.619
unique 3 14 4 6.600 4.827
unique2 3 4.556 4.187
variance 3.835 5.86901e+07 77.918 4928914 1.69308e+07
zScore 3.381 12.791 6.120 7.041 3.114

Table B.20: Summary characteristics of the Credit dataset.

Char. Histogram (%) NaN
|ρ| 46.67 30.00 13.33 6.67 3.33 0.00 0.00 0.00 0.00 0.00 0.00
skew 33.33 16.67 8.33 16.67 0.00 16.67 0.00 0.00 0.00 8.33 0.00
concCoeff 83.00 5.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 11.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 26.67 26.67 6.67 6.67 0.00 6.67 6.67 0.00 13.33 6.67 0.00
H̄(X,C) 13.33 26.67 13.33 6.67 6.67 6.67 6.67 0.00 13.33 6.67 0.00
kurtosis 50.00 8.33 0.00 33.33 0.00 0.00 0.00 0.00 0.00 8.33 0.00
M̄(X,C) 60.00 20.00 6.67 0.00 6.67 0.00 0.00 0.00 0.00 6.67 0.00
pValC 70.37 5.56 5.56 5.56 1.85 0.00 3.70 1.85 5.56 0.00 0.00
pVal 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.21: Histogram based characteristics of the Credit dataset.
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Characteristic Value
cancorr1 0.790
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.994
dfrac2 0.000
dfrac3 0.000
dfrac4 0.000
dimensionality 0.066
env 17.343
frac1 1
frac2 1
frac3 1
frac4 1
nsr 11.680
J 43
N 653
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 54.7%
percpos 45.3%
sdRatio 1
numbin 0
C 2
numcont 43
numord 0
nummiss 0
numpos 357
numneg 296

Table B.22: Characteristics of the Credit (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.000 1 0.047 0.080 0.130
skew 0.041 18.894 3.163 4.991 4.825
arithMean 0 0.946 0.077 0.183 0.257
χ2 0.000 0.000 0.000 0.000 0.000
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0 4.247 0.412 0.727 0.944
H̄(X,C) 0.994 5.172 1.393 1.663 0.924
geoMean 0 0.199 0 0.002 0.021
harmMean 0 0.151 0 0.002 0.016
IQ-range 0 1 0 0.157 0.346
kurtosis 0.988 360 11.260 50.292 86.267
mad 0 0.500 0.109 0.155 0.149
median 0 1 0 0.174 0.369
M̄(X,C) 0 0.994 0.008 0.057 0.166
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0.000 0.994 0.020 0.221 0.324
perc90 0 1 0 0.383 0.465
stdDev 0 0.501 0.216 0.229 0.148
trimMean 0 1 0 0.158 0.288
unique 0 0 0 0 0
unique2 0 0 0
variance 0 0.251 0.047 0.074 0.076
zScore 0 18.842 3.854 5.320 4.884

Table B.23: Summary characteristics of the Credit (binorm) dataset.

Characteristic Histogram (%) NaNs
|ρ| 72.59 13.01 2.05 0.89 0.33 0.28 0.22 0.50 0.06 0.94 9.14
skew 27.91 25.58 13.95 8.14 3.49 2.33 5.81 2.33 0.00 5.81 4.65
concCoeff 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 55.81 20.93 11.63 2.33 0.00 0.00 4.65 0.00 2.33 2.33 0.00
H̄(X,C) 60.47 20.93 6.98 2.33 0.00 2.33 2.33 0.00 2.33 2.33 0.00
kurtosis 66.28 10.47 4.65 0.00 8.14 0.00 0.00 0.00 2.33 3.49 4.65
M̄(X,C) 88.37 4.65 2.33 0.00 2.33 0.00 0.00 0.00 0.00 2.33 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 55.81 11.63 4.65 2.33 2.33 2.33 6.98 0.00 6.98 4.65 2.33

Table B.24: Histogram based characteristics of the Credit (binorm) dataset.

189



Characteristic Value
cancorr1 0.460
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.956
dfrac2 0.000
dfrac3 -1
dfrac4 0
dimensionality 0.004
env 3.059
frac1 1
frac2 1
frac3 0
frac4 0
nsr 7.922
J 4
N 1000
percnin 25.0%
perccont 50.0%
percord 25.0%
percmiss 0.0%
percneg 37.7%
percpos 62.3%
sdRatio 1.073
numbin 1
C 2
numcont 2
numord 1
nummiss 0
numpos 377
numneg 623

Table B.25: Characteristics of the Example dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.150 0.162 0.156 0.156 0.009
skew 0.033 1.381 0.091 0.399 0.656
arithMean 1.669 28.606 15.957 15.548 14.585
χ2 0.000 0.000 0.000 0.000 0.000
concCoeff 0 1 0 0.222 0.441
concCoeffC 0 0 0 0 0
H̄(X) 0.956 5.558 2.319 2.788 1.973
H̄(X,C) 0.956 6.421 3.175 3.432 2.259
geoMean 0 21.812 10.075 10.491 12.132
harmMean -7.714 22.066 0 3.588 12.844
IQ-range 3 50.325 24.109 25.386 23.887
kurtosis 1.557 4.804 1.859 2.520 1.539
mad 1.565 25.355 12.000 12.730 12.376
median 1 34.040 15.235 16.378 16.366
M̄(X,C) 0.009 0.956 0.143 0.312 0.435
normP 1 1 1 1 0
pValC 0.068 0.704 0.513 0.449 0.291
pVal 0.000 0.603 0.301 0.301 0.426
perc90 4 66.878 36.993 36.216 34.931
stdDev 1.961 28.291 14.440 14.783 14.243
trimMean 1.347 28.698 15.898 15.460 14.650
unique 4 4 4 4 0
unique2 3 3 1.414
variance 3.845 800.375 339.236 370.673 423.967
zScore 1.251 3.228 1.730 1.985 0.863

Table B.26: Summary characteristics of the Example dataset.

Char. Histogram (%) NaN
|ρ| 0.00 100.00 0.00 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00
skew 75.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.0 25.00 0.00
concCoeff 77.78 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.0 22.22 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00
H̄(X) 25.00 0.00 25.00 25.00 0.00 0.0 0.00 0.00 0.0 25.00 0.00
H̄(X,C) 25.00 0.00 0.00 25.00 25.00 0.0 0.00 0.00 0.0 25.00 0.00
kurtosis 50.00 25.00 0.00 0.00 0.00 0.0 0.00 0.00 0.0 25.00 0.00
M̄(X,C) 50.00 25.00 0.00 0.00 0.00 0.0 0.00 0.00 0.0 25.00 0.00
pValC 25.00 0.00 0.00 25.00 0.00 0.0 25.00 25.00 0.0 0.00 0.00
pVal 50.00 0.00 0.00 0.00 0.00 0.0 50.00 0.00 0.0 0.00 0.00

Table B.27: Histogram based characteristics of the Example dataset.
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Characteristic Value
cancorr1 0.478
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.956
dfrac2 0.000
dfrac3 0.000
dfrac4 0.000
dimensionality 0.007
env 5.340
frac1 1
frac2 1
frac3 1
frac4 1
nsr 8.893
J 7
N 1000
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 37.7%
percpos 62.3%
sdRatio 1
numbin 0
C 2
numcont 7
numord 0
nummiss 0
numpos 377
numneg 623

Table B.28: Characteristics of the Example (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.002 0.406 0.104 0.151 0.131
skew 0.033 1.557 1.116 0.811 0.568
arithMean 0.194 0.544 0.257 0.339 0.135
χ2 0.000 0.000 0.000 0.000 0.000
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0.778 5.558 0.841 1.771 1.801
H̄(X,C) 0.956 6.421 1.770 2.548 1.859
geoMean 0 0.379 0 0.027 0.101
harmMean 0 0.139 0 0.010 0.037
IQ-range 0 1 0.938 0.658 0.422
kurtosis 1.025 4.804 2.244 2.251 0.987
mad 0.196 0.496 0.368 0.357 0.089
median 0 1 0 0.192 0.318
M̄(X,C) 0.000 0.956 0.008 0.179 0.350
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0.000 1.000 0.034 0.263 0.391
perc90 0.500 1 1 0.951 0.134
stdDev 0.245 0.499 0.429 0.403 0.079
trimMean 0.116 0.555 0.196 0.301 0.167
unique 0 0 0 0 0
unique2 0 0 0
variance 0.060 0.249 0.184 0.168 0.059
zScore 0.915 3.228 1.721 1.708 0.538

Table B.29: Summary characteristics of the Example (binorm) dataset.

Char. Histogram (%) NaN
|ρ| 47.62 21.43 7.14 21.43 2.38 0.0 0.00 0.00 0.00 0.00 0.00
skew 28.57 7.14 0.00 0.00 7.14 0.0 7.14 21.43 21.43 7.14 0.00
concCoeff 100.0 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.0 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00
H̄(X) 71.43 0.00 0.00 14.29 0.00 0.0 0.00 0.00 0.00 14.29 0.00
H̄(X,C) 14.29 57.14 0.00 0.00 14.29 0.0 0.00 0.00 0.00 14.29 0.00
kurtosis 14.29 21.43 7.14 28.57 14.29 0.0 7.14 0.00 0.00 7.14 0.00
M̄(X,C) 71.43 0.00 14.29 0.00 0.00 0.0 0.00 0.00 0.00 14.29 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00
pVal 57.14 14.29 0.00 0.00 0.00 0.0 14.29 0.00 0.00 14.29 0.00

Table B.30: Histogram based characteristics of the Example (binorm) dataset.
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Characteristic Value
cancorr1 0.173
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.469
dfrac2 1
dfrac3 -1
dfrac4 0
dimensionality 0.004
env 3.181
frac1 0.000
frac2 1
frac3 0
frac4 0
nsr 17.102
J 4
N 1000
percnin 25.0%
perccont 50.0%
percord 25.0%
percmiss 0.0%
percneg 10.0%
percpos 90.0%
sdRatio 1.006
numbin 1
C 2
numcont 2
numord 1
nummiss 0
numpos 100
numneg 900

Table B.31: Characteristics of the Example2 dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.003 0.164 0.083 0.083 0.114
skew 0.147 0.739 0.526 0.484 0.264
arithMean 2.672 30.280 9.188 12.832 13.001
χ2 0.000 0.013 0.000 0.003 0.006
concCoeff 0 1 0 0.223 0.441
concCoeffC 0 0 0 0 0
H̄(X) 0.469 5.547 2.329 2.669 2.127
H̄(X,C) 0.469 5.953 2.770 2.990 2.272
geoMean 0 23.226 6.402 9.008 11.238
harmMean -4635.228 1100.438 0 -883.698 2554.253
IQ-range 4 46.550 21.173 23.224 21.467
kurtosis 1.804 2.399 2.061 2.081 0.306
mad 2.286 23.680 12.033 12.508 11.757
median 2 32.540 5.708 11.489 14.314
M̄(X,C) 0.004 0.469 0.058 0.147 0.216
normP 1 1 1 1 0
pValC 0.047 0.906 0.416 0.446 0.416
pVal 0.000 0.095 0.047 0.047 0.067
perc90 8 65.900 31.283 34.116 30.509
stdDev 2.698 27.243 14.197 14.584 13.672
trimMean 2.340 30.846 7.920 12.257 13.306
unique 4 4 4 4 0
unique2 3 3 1.414
variance 7.280 742.205 331.028 352.885 400.305
zScore 1.637 2.308 1.848 1.910 0.302

Table B.32: Summary characteristics of the Example2 dataset.

Char. Histogram (%) NaN
|ρ| 50.00 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
skew 25.00 0.00 0.00 0.00 25.00 0.00 0.00 0.00 25.00 25.00 0.00
concCoeff 77.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.22 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 25.00 0.00 0.00 25.00 25.00 0.00 0.00 0.00 0.00 25.00 0.00
H̄(X,C) 25.00 0.00 0.00 25.00 25.00 0.00 0.00 0.00 0.00 25.00 0.00
kurtosis 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.00 25.00 0.00
M̄(X,C) 25.00 50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25.00 0.00
pValC 25.00 25.00 0.00 0.00 0.00 0.00 25.00 0.00 0.00 25.00 0.00
pVal 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.33: Histogram based characteristics of the Example2 dataset.
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Characteristic Value
cancorr1 0.381
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.469
dfrac2 0.000
dfrac3 0.000
dfrac4 0.000
dimensionality 0.007
env 5.354
frac1 1
frac2 1
frac3 1
frac4 1
nsr 18.438
J 7
N 1000
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 10.0%
percpos 90.0%
sdRatio 1
numbin 0
C 2
numcont 7
numord 0
nummiss 0
numpos 100
numneg 900

Table B.34: Characteristics of the Example2 (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.001 0.548 0.115 0.178 0.162
skew 0.147 2.707 1.064 1.113 0.778
arithMean 0.100 0.630 0.266 0.318 0.164
χ2 0.000 0.013 0.000 0.001 0.003
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0.469 5.548 0.814 1.703 1.844
H̄(X,C) 0.469 5.953 1.273 2.084 1.887
geoMean 0 0.257 0 0.018 0.069
harmMean 0 0.146 0 0.010 0.039
IQ-range 0 1 0.625 0.580 0.437
kurtosis 1.059 8.439 2.216 3.038 2.158
mad 0.180 0.492 0.317 0.325 0.096
median 0 1 0 0.248 0.365
M̄(X,C) 0.004 0.469 0.011 0.088 0.170
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0.000 0.095 0.000 0.016 0.035
perc90 0.500 1 1 0.942 0.141
stdDev 0.270 0.496 0.383 0.385 0.075
trimMean 0 0.663 0.208 0.273 0.205
unique 0 0 0 0 0
unique2 0 0 0
variance 0.073 0.246 0.147 0.153 0.057
zScore 0.763 2.985 1.706 1.855 0.608

Table B.35: Summary characteristics of the Example2 (binorm) dataset.

Char. Histogram (%) NaN
|ρ| 45.24 19.05 4.76 19.05 9.52 2.38 0.00 0.00 0.00 0.00 0.00
skew 14.29 21.43 7.14 28.57 7.14 0.00 0.00 7.14 7.14 7.14 0.00
concCoeff 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 71.43 0.00 0.00 0.00 14.29 0.00 0.00 0.00 0.00 14.29 0.00
H̄(X,C) 14.29 57.14 0.00 0.00 14.29 0.00 0.00 0.00 0.00 14.29 0.00
kurtosis 14.29 57.14 7.14 0.00 0.00 7.14 0.00 7.14 0.00 7.14 0.00
M̄(X,C) 57.14 28.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.29 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.36: Histogram based characteristics of the Example2 (binorm) dataset.
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Characteristic Value
cancorr1 0.090
cancorr2 0.060
cancorr3 0.021
cancorr4 NaN
H(C) 1.726
dfrac2 0.295
dfrac3 0.037
dfrac4 0.000
dimensionality 0.007
env 116.698
frac1 0.668
frac2 0.963
frac3 1
frac4 1
nsr 70.969
J 74
N 10108
percnin 66.2%
perccont 6.8%
percord 27.0%
percmiss 0.0%
percneg 47.6%
percpos 52.4%
sdRatio 1.000
numbin 49
C 4
numcont 5
numord 20
nummiss 0
numpos 4816
numneg 5292

Table B.37: Characteristics of the IntCensor dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.030 0.321 0.159 0.152 0.084
skew 0.056 2.049 0.472 0.875 0.707
arithMean -0.159 35.169 3.194 8.470 13.301
χ2 0 0.000 0.000 0.000 0.000
concCoeff 0 1 0.001 0.023 0.121
concCoeffC 0 0 0 0 0
H̄(X) 0.044 5.715 0.701 1.065 1.087
H̄(X,C) 1.043 6.706 1.693 2.048 1.083
geoMean 0 29.868 0 5.877 12.065
harmMean -305.540 111.486 0 -10.475 76.257
IQ-range 0.250 22 2.625 5.638 7.809
kurtosis 2.610 7.185 3.389 3.936 1.375
mad 0.354 13.036 1.533 3.498 4.385
median 0 34 3 7.950 12.668
M̄(X,C) 0.000 0.998 0.000 0.015 0.116
normP 1 1 1 1 0
pValC 0 1 0.000 0.090 0.223
pVal 0.000 0.004 0.000 0.001 0.002
perc90 0.500 56 5 14.050 20.499
stdDev 0.652 16.462 1.936 4.411 5.431
trimMean -0.039 34.982 3.034 8.305 13.165
unique 3 129 8 20.600 36.535
unique2 2 7.391 21.100
variance 0.425 271.005 3.757 47.474 90.697
zScore 1.536 3.401 2.395 2.407 0.554

Table B.38: Summary characteristics of the IntCensor dataset.

Char. Histogram (%) NaN
|ρ| 35.00 27.50 35.00 2.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
skew 20.00 20.00 20.00 0.00 0.00 5.00 5.00 10.00 5.00 15.00 0.00
concCoeff 96.86 1.35 0.20 0.04 0.08 0.02 0.02 0.00 0.00 1.43 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 41.89 33.78 2.70 12.16 4.05 2.70 0.00 0.00 0.00 2.70 0.00
H̄(X,C) 41.89 35.14 1.35 12.16 4.05 2.70 0.00 0.00 0.00 2.70 0.00
kurtosis 30.00 30.00 10.00 0.00 10.00 0.00 5.00 5.00 5.00 5.00 0.00
M̄(X,C) 98.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.35 0.00
pValC 83.19 3.77 2.03 0.87 2.03 1.45 1.45 1.16 1.74 2.32 0.00
pVal 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.39: Histogram based characteristics of the IntCensor dataset.
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Characteristic Value
cancorr1 0.294
cancorr2 0.261
cancorr3 0.240
cancorr4 NaN
H(C) 1.726
dfrac2 0.008
dfrac3 0.005
dfrac4 0.004
dimensionality 0.046
env 722.759
frac1 0.983
frac2 0.991
frac3 0.996
frac4 1.000
nsr 92.348
J 466
N 10108
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 47.6%
percpos 52.4%
sdRatio 1
numbin 0
C 4
numcont 466
numord 0
nummiss 0
numpos 4816
numneg 5292

Table B.40: Characteristics of the IntCensor (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.000 1 0.010 0.021 0.040
skew 0.022 72.746 8.253 15.163 17.629
arithMean 0 0.941 0.006 0.066 0.148
χ2 0 0.000 0 0.000 0.000
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0.001 5.715 0.051 0.223 0.435
H̄(X,C) 1.000 6.706 1.050 1.219 0.430
geoMean 0 0 0 0 0
harmMean 0 0 0 0 0
IQ-range 0 1 0 0.068 0.249
kurtosis 0.998 5295 69.164 541.921 1175.697
mad 0 0.500 0.011 0.077 0.129
median 0 1 0 0.030 0.163
M̄(X,C) 0.000 0.998 0.000 0.002 0.046
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0.000 0.992 0.294 0.355 0.324
perc90 0 1 0 0.170 0.373
stdDev 0 0.500 0.075 0.131 0.144
trimMean 0 1 0 0.048 0.152
unique 0 0 0 0 0
unique2 0 0 0
variance 0 0.250 0.006 0.038 0.064
zScore 0 72.732 5.320 11.954 16.723

Table B.41: Summary characteristics of the IntCensor (binorm) dataset.

Characteristic Histogram (%) NaNs
|ρ| 59.48 1.21 0.27 0.10 0.05 0.02 0.01 0.01 0.00 0.01 38.85
skew 36.59 16.09 6.60 5.79 3.92 2.31 2.52 0.59 0.00 3.59 22.00
concCoeff 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 86.05 12.66 0.00 0.64 0.21 0.21 0.00 0.00 0.00 0.21 0.00
H̄(X,C) 86.05 12.88 0.00 0.43 0.21 0.21 0.00 0.00 0.00 0.21 0.00
kurtosis 61.05 6.92 1.02 2.31 3.11 0.00 0.00 0.00 0.00 3.59 22.00
M̄(X,C) 99.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 33.05 10.52 12.02 5.58 5.36 4.08 4.94 6.44 13.95 4.08 0.00

Table B.42: Histogram based characteristics of the IntCensor (binorm) dataset.
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Characteristic Value
cancorr1 NaN
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 2.239
dfrac2 NaN
dfrac3 NaN
dfrac4 NaN
dimensionality 0.014
env 130.961
frac1 NaN
frac2 NaN
frac3 NaN
frac4 NaN
nsr 59.110
J 103
N 7219
percnin 79.6%
perccont 0.0%
percord 20.4%
percmiss 0.0%
percneg 66.9%
percpos 33.1%
sdRatio NaN
numbin 82
C 10
numcont 0
numord 21
nummiss 0
numpos 4832
numneg 2387

Table B.43: Characteristics of the IntShopping dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| NaN NaN NaN NaN NaN
skew NaN NaN NaN NaN NaN
arithMean NaN NaN NaN NaN NaN
χ2 NaN NaN NaN NaN NaN
concCoeff 0 1 0.002 0.018 0.100
concCoeffC 0 1 0 0.000 0.010
H̄(X) 0.002 2.894 0.877 1.028 0.745
H̄(X,C) 0.917 3.787 1.772 1.926 0.728
geoMean NaN NaN NaN NaN NaN
harmMean NaN NaN NaN NaN NaN
IQ-range NaN NaN NaN NaN NaN
kurtosis NaN NaN NaN NaN NaN
mad NaN NaN NaN NaN NaN
median NaN NaN NaN NaN NaN
M̄(X,C) 0.000 0.916 0.003 0.017 0.091
normP NaN NaN NaN NaN NaN
pValC NaN NaN NaN NaN NaN
pVal NaN NaN NaN NaN NaN
perc90 NaN NaN NaN NaN NaN
stdDev NaN NaN NaN NaN NaN
trimMean NaN NaN NaN NaN NaN
unique 4 10 9 8.333 1.983
unique2 2 3.291 2.710
variance NaN NaN NaN NaN NaN
zScore NaN NaN NaN NaN NaN

Table B.44: Summary characteristics of the IntShopping dataset.

Characteristic Histogram (%) NaNs
|ρ| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
skew 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeff 97.60 1.01 0.31 0.06 0.03 0.00 0.00 0.02 0.02 0.95 0.00
concCoeffC 99.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
H̄(X) 9.71 16.50 23.30 31.07 0.00 0.97 0.97 6.80 4.85 5.83 0.00
H̄(X,C) 9.71 16.50 24.27 30.10 0.97 0.97 0.97 5.83 4.85 5.83 0.00
kurtosis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M̄(X,C) 97.09 1.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.45: Histogram based characteristics of the IntShopping dataset.
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Characteristic Value
cancorr1 1
cancorr2 0.607
cancorr3 0.390
cancorr4 0.328
H(C) 2.239
dfrac2 0.145
dfrac3 0.074
dfrac4 0.063
dimensionality 0.036
env 308.612
frac1 0.559
frac2 0.703
frac3 0.778
frac4 0.841
nsr 70.303
J 257
N 7219
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 66.9%
percpos 33.1%
sdRatio NaN
numbin 0
C 10
numcont 257
numord 0
nummiss 0
numpos 4832
numneg 2387

Table B.46: Characteristics of the IntShopping (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0 1 0.044 0.066 0.072
skew 0 36.810 2.260 3.201 3.295
arithMean 0 1 0.100 0.184 0.223
χ2 0 0.000 0.000 0.000 0.000
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0.002 2.239 0.502 0.517 0.329
H̄(X,C) 0.917 2.239 1.413 1.426 0.312
geoMean 0 1 0 0.011 0.102
harmMean 0 1 0 0.011 0.102
IQ-range 0 1 0 0.208 0.403
kurtosis 0.902 1356.997 6.113 22.253 61.013
mad 0 0.500 0.175 0.201 0.166
median 0 1 0 0.111 0.313
M̄(X,C) 0.000 0.916 0.001 0.007 0.058
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0 0.831 0.000 0.039 0.118
perc90 0 1 0.500 0.501 0.496
stdDev 0 0.506 0.296 0.272 0.165
trimMean 0 1 0 0.146 0.246
unique 0 0 0 0 0
unique2 0 0 0
variance 0 0.256 0.088 0.101 0.084
zScore 0 36.810 2.184 2.926 3.186

Table B.47: Summary characteristics of the IntShopping (binorm) dataset.

Char. Histogram (%) NaN
|ρ| 69.72 13.12 3.19 0.90 0.31 0.10 0.04 0.02 0.01 0.01 12.6
skew 61.28 15.21 4.79 1.71 0.62 0.23 0.16 0.08 0.00 0.04 15.8
concCoeff 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
concCoeffC 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
H̄(X) 22.96 22.57 20.23 17.12 16.73 0.00 0.00 0.00 0.00 0.39 0.0
H̄(X,C) 15.18 12.84 13.62 9.73 12.84 12.06 11.67 11.67 0.00 0.39 0.0
kurtosis 81.95 1.13 0.54 0.31 0.08 0.08 0.00 0.00 0.00 0.04 15.8
M̄(X,C) 99.22 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.0
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
pVal 90.27 1.95 2.72 2.33 1.17 0.00 0.78 0.39 0.39 0.00 0.0

Table B.48: Histogram based characteristics of the IntShopping (binorm) dataset.
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Characteristic Value
cancorr1 0.998
cancorr2 0.998
cancorr3 0.992
cancorr4 0.819
H(C) 1.487
dfrac2 0.192
dfrac3 0.001
dfrac4 0.000
dimensionality 0.000
env 11.348
frac1 0.806
frac2 0.998
frac3 0.999
frac4 1.000
nsr 5.364
J 41
N 4898431
percnin 9.8%
perccont 82.9%
percord 7.3%
percmiss 0.0%
percneg 80.1%
percpos 19.9%
sdRatio 1
numbin 4
C 23
numcont 34
numord 3
nummiss 0
numpos 3925650
numneg 972781

Table B.49: Characteristics of the Intrusion dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0 1 0.138 0.277 0.311
skew 0 1035.383 2.816 27.398 112.114
arithMean 0 3922088 0.011 6700.727 141859
χ2 0 0.516 0 0.007 0.061
concCoeff 0 1 0.000 0.202 0.359
concCoeffC 0 0 0 0 0
H̄(X) 0 4.649 0.477 0.834 1.071
H̄(X,C) 0.719 4.718 1.153 1.422 0.941
geoMean 0 915043.100 0 1273.709 32776.900
harmMean 0 53662.980 0 103.154 1949.763
IQ-range 0 1996785 0 3046.362 72519.840
kurtosis 0.200 1072020 11.464 14753.060 106825.700
mad 0 1844056 0.001 5255.835 77589.020
median 0 5150830 0 6718.202 184199.700
M̄(X,C) 0 0.719 0.057 0.131 0.193
normP 1 1 1 1 0
pValC 0 0.999 0.000 0.190 0.359
pVal 0 0.000 0 0.000 0.000
perc90 0 5153616 0 8192.629 187078.700
stdDev 0 2.03835e+07 0.014 49287.090 887815.100
trimMean 0 4258217 0 5702.269 152319.900
unique 3 70 11 28 36.592
unique2 2 13.143 25.288
variance 0 4.15489e+14 0.000 7.89637e+11 1.64136e+13
zScore 0 1035.382 0.304 16.971 93.392

Table B.50: Summary characteristics of the Intrusion dataset.

Characteristic Histogram (%) NaNs
|ρ| 13.74 3.84 2.64 2.27 1.78 1.37 1.25 0.95 0.90 2.46 68.79
skew 48.98 2.56 0.00 0.00 0.00 0.13 0.26 0.13 0.00 0.38 47.57
concCoeff 71.88 0.00 4.69 1.56 3.13 1.56 1.56 1.56 1.56 12.50 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 48.78 19.51 7.32 12.20 4.88 2.44 0.00 0.00 2.44 2.44 0.00
H̄(X,C) 48.78 21.95 9.76 4.88 4.88 2.44 2.44 0.00 2.44 2.44 0.00
kurtosis 50.38 0.00 0.00 0.00 0.26 0.26 0.00 0.00 0.00 0.38 48.72
M̄(X,C) 58.54 9.76 9.76 2.44 4.88 7.32 0.00 0.00 2.44 4.88 0.00
pValC 73.95 1.26 1.26 0.42 0.42 0.84 1.68 2.94 2.94 11.34 2.94
pVal 97.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.94

Table B.51: Histogram based characteristics of the Intrusion dataset.
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Characteristic Value
cancorr1 0.999
cancorr2 0.998
cancorr3 0.995
cancorr4 0.907
H(C) 1.487
dfrac2 0.431
dfrac3 0.090
dfrac4 0.006
dimensionality 0.000
env 31.477
frac1 0.463
frac2 0.893
frac3 0.983
frac4 0.989
nsr 5.433
J 122
N 4898431
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 80.1%
percpos 19.9%
sdRatio 1
numbin 0
C 23
numcont 122
numord 0
nummiss 0
numpos 3925650
numneg 972781

Table B.52: Characteristics of the Intrusion (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0 1 0.002 0.087 0.207
skew 0 1035.383 7.284 39.765 109.856
arithMean 0 1 0 0.068 0.223
χ2 0 0.516 0 0.005 0.053
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0 4.649 0.003 0.304 0.718
H̄(X,C) 0.719 4.718 0.722 0.976 0.628
geoMean 0 1 0 0.034 0.173
harmMean 0 1 0 0.031 0.167
IQ-range 0 1 0 0.028 0.147
kurtosis 0.200 1072020 82.576 14350.580 98336.380
mad 0 0.500 0 0.023 0.080
median 0 1 0 0.065 0.240
M̄(X,C) 0 0.719 0.000 0.047 0.121
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0 0.997 0 0.016 0.125
perc90 0 1 0 0.095 0.282
stdDev 0 0.707 0 0.033 0.098
trimMean 0 1 0 0.067 0.229
unique 0 0 0 0 0
unique2 0 0 0
variance 0 0.500 0 0.011 0.041
zScore 0 1035.382 0 11.932 65.401

Table B.53: Summary characteristics of the Intrusion (binorm) dataset.

Characteristic Histogram (%) NaNs
|ρ| 11.07 0.68 0.35 0.30 0.22 0.19 0.15 0.11 0.11 0.31 86.51
skew 26.48 1.10 0.04 0.14 0.04 0.11 0.14 0.04 0.00 0.18 71.74
concCoeff 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 79.51 9.84 3.28 4.10 0.82 0.82 0.00 0.00 0.82 0.82 0.00
H̄(X,C) 80.33 11.48 2.46 0.82 1.64 0.82 0.82 0.00 0.82 0.82 0.00
kurtosis 27.37 0.18 0.00 0.07 0.14 0.07 0.00 0.00 0.00 0.18 71.99
M̄(X,C) 83.61 4.92 3.28 2.46 1.64 2.46 0.00 0.00 0.00 1.64 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 97.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.64 0.82

Table B.54: Histogram based characteristics of the Intrusion (binorm) dataset.
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Characteristic Value
cancorr1 NaN
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.999
dfrac2 NaN
dfrac3 NaN
dfrac4 NaN
dimensionality 0.003
env 4.032
frac1 NaN
frac2 NaN
frac3 NaN
frac4 NaN
nsr 4.626
J 21
N 8124
percnin 19.0%
perccont 0.0%
percord 81.0%
percmiss 0.0%
percneg 48.2%
percpos 51.8%
sdRatio 1
numbin 4
C 2
numcont 0
numord 17
nummiss 0
numpos 3916
numneg 4208

Table B.55: Characteristics of the Mushrooms dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| NaN NaN NaN NaN NaN
skew NaN NaN NaN NaN NaN
arithMean NaN NaN NaN NaN NaN
χ2 NaN NaN NaN NaN NaN
concCoeff -0.000 1 0.064 0.154 0.233
concCoeffC 0 1 0 0.009 0.058
H̄(X) 0 3.030 1.399 1.394 0.850
H̄(X,C) 0.999 3.613 2.126 2.145 0.789
geoMean NaN NaN NaN NaN NaN
harmMean NaN NaN NaN NaN NaN
IQ-range NaN NaN NaN NaN NaN
kurtosis NaN NaN NaN NaN NaN
mad NaN NaN NaN NaN NaN
median NaN NaN NaN NaN NaN
M̄(X,C) 0 0.999 0.202 0.248 0.272
normP NaN NaN NaN NaN NaN
pValC NaN NaN NaN NaN NaN
pVal NaN NaN NaN NaN NaN
perc90 NaN NaN NaN NaN NaN
stdDev NaN NaN NaN NaN NaN
trimMean NaN NaN NaN NaN NaN
unique 3 12 6 6.529 2.809
unique2 4 5.667 3.104
variance NaN NaN NaN NaN NaN
zScore NaN NaN NaN NaN NaN

Table B.56: Summary characteristics of the Mushrooms dataset.

Char. Histogram (%) NaNs
|ρ| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
skew 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeff 56.82 17.98 7.02 5.17 1.86 1.24 0.83 0.41 0.00 4.75 3.93
concCoeffC 96.07 2.27 1.03 0.21 0.00 0.00 0.00 0.00 0.00 0.21 0.21
H̄(X) 14.29 4.76 9.52 14.29 9.52 9.52 14.29 14.29 4.76 4.76 0.00
H̄(X,C) 19.05 4.76 9.52 14.29 9.52 9.52 19.05 0.00 4.76 9.52 0.00
kurtosis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M̄(X,C) 33.33 14.29 28.57 4.76 9.52 0.00 0.00 0.00 0.00 9.52 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.57: Histogram based characteristics of the Mushrooms dataset.
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Characteristic Value
cancorr1 0.998
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.999
dfrac2 0.009
dfrac3 0.006
dfrac4 0.003
dimensionality 0.014
env 17.528
frac1 0.962
frac2 0.971
frac3 0.977
frac4 0.980
nsr 6.193
J 115
N 8124
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 48.2%
percpos 51.8%
sdRatio 1
numbin 0
C 2
numcont 115
numord 0
nummiss 0
numpos 3916
numneg 4208

Table B.58: Characteristics of the Mushrooms (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.000 1 0.076 0.132 0.155
skew 0.059 31.253 2.762 4.920 5.606
arithMean 0 0.998 0.046 0.161 0.240
χ2 0 0.000 0 0.000 0
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0 1.000 0.308 0.410 0.351
H̄(X,C) 0.999 1.991 1.259 1.352 0.313
geoMean 0 0 0 0 0
harmMean 0 0 0 0 0
IQ-range 0 1 0 0.187 0.391
kurtosis 1.002 978.247 8.633 56.478 134.730
mad 0 0.500 0.066 0.155 0.175
median 0 1 0 0.096 0.295
M̄(X,C) 0 0.999 0.014 0.057 0.122
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0 0.144 0.000 0.003 0.017
perc90 0 1 0 0.383 0.487
stdDev 0 0.500 0.182 0.213 0.180
trimMean 0 1 0 0.136 0.256
unique 0 0 0 0 0
unique2 0 0 0
variance 0 0.250 0.033 0.077 0.088
zScore 0 31.269 1.853 3.647 5.085

Table B.59: Summary characteristics of the Mushrooms (binorm) dataset.

Characteristic Histogram (%) NaNs
|ρ| 33.04 11.37 4.86 2.75 1.63 0.91 0.50 0.23 0.16 0.31 44.23
skew 40.00 13.48 10.87 3.48 2.17 2.17 0.00 1.74 0.00 0.87 25.22
concCoeff 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 31.30 7.83 10.43 9.57 3.48 3.48 6.09 6.96 7.83 13.04 0.00
H̄(X,C) 32.17 8.70 12.17 6.96 7.83 7.83 5.22 6.96 6.09 6.09 0.00
kurtosis 64.35 4.78 2.61 0.43 1.74 0.00 0.00 0.00 0.00 0.87 25.22
M̄(X,C) 84.35 7.83 5.22 0.87 0.00 0.87 0.00 0.00 0.00 0.87 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 93.04 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.09

Table B.60: Histogram based characteristics of the Mushrooms (binorm) dataset.
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Characteristic Value
cancorr1 0.551
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.933
dfrac2 0.000
dfrac3 0.000
dfrac4 0.000
dimensionality 0.010
env 4.579
frac1 1
frac2 1
frac3 1
frac4 1
nsr 16.077
J 8
N 768
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 65.1%
percpos 34.9%
sdRatio 1.074
numbin 0
C 2
numcont 8
numord 0
nummiss 0
numpos 500
numneg 268

Table B.61: Characteristics of the Pima dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.016 0.573 0.123 0.160 0.130
skew 0.001 2.499 0.890 1.067 0.837
arithMean 0.430 141.258 33.166 46.503 42.682
χ2 0.000 0.034 0.000 0.003 0.009
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0.933 4.427 3.916 3.480 1.124
H̄(X,C) 0.933 5.149 4.772 4.209 1.390
geoMean 0 35.516 0 4.113 11.137
harmMean 0 34.052 0 3.930 10.665
IQ-range 0.333 167.500 16 31.922 44.383
kurtosis 1.962 12.458 5.511 5.916 2.928
mad 0.221 107.043 10.526 19.523 28.737
median 0 140 28.525 38.255 40.679
M̄(X,C) 0.044 0.933 0.101 0.204 0.299
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0.000 0.072 0.000 0.014 0.027
perc90 0.803 273.100 45.940 77.871 79.054
stdDev 0.299 138.689 13.279 25.799 38.103
trimMean 0.384 141.664 32.602 43.517 40.746
unique 0 0 0 0 0
unique2 0 0 0
variance 0.089 19234.670 178.922 2026.664 5175.626
zScore 1.808 6.830 3.420 3.900 1.438

Table B.62: Summary characteristics of the Pima dataset.

Char. Histogram (%) NaN
|ρ| 46.43 25.00 14.29 5.36 7.14 1.79 0.00 0.00 0.00 0.00 0.00
skew 25.00 6.25 18.75 0.00 6.25 0.00 12.50 18.75 6.25 6.25 0.00
concCoeff 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 12.50 0.00 0.00 0.00 0.00 12.50 0.00 12.50 37.50 25.00 0.00
H̄(X,C) 12.50 0.00 0.00 0.00 0.00 0.00 12.50 0.00 12.50 62.50 0.00
kurtosis 25.00 6.25 18.75 6.25 0.00 25.00 12.50 0.00 0.00 6.25 0.00
M̄(X,C) 75.00 12.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.50 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.63: Histogram based characteristics of the Pima dataset.
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Characteristic Value
cancorr1 0.551
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.933
dfrac2 0.000
dfrac3 0.000
dfrac4 0.000
dimensionality 0.010
env 4.570
frac1 1
frac2 1
frac3 1
frac4 1
nsr 16.033
J 8
N 768
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 65.1%
percpos 34.9%
sdRatio 1
numbin 0
C 2
numcont 8
numord 0
nummiss 0
numpos 500
numneg 268

Table B.64: Characteristics of the Pima (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| 0.016 0.573 0.123 0.160 0.130
skew 0.001 2.499 0.890 1.067 0.837
arithMean 0.081 0.710 0.246 0.329 0.199
χ2 0.000 0.034 0.000 0.003 0.009
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0.933 4.427 3.916 3.478 1.123
H̄(X,C) 0.933 5.149 4.772 4.207 1.390
geoMean 0 0.148 0 0.009 0.037
harmMean 0 0.097 0 0.006 0.024
IQ-range 0.120 0.382 0.199 0.212 0.085
kurtosis 1.962 12.458 5.511 5.916 2.928
mad 0.078 0.185 0.123 0.121 0.030
median 0 0.704 0.243 0.305 0.224
M̄(X,C) 0.044 0.933 0.102 0.204 0.299
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0.000 0.072 0.000 0.014 0.027
perc90 0.219 0.923 0.494 0.527 0.188
stdDev 0.108 0.220 0.160 0.157 0.031
trimMean 0.058 0.712 0.236 0.319 0.213
unique 0 0 0 0 0
unique2 0 0 0
variance 0.012 0.048 0.026 0.026 0.010
zScore 1.808 6.830 3.420 3.900 1.438

Table B.65: Summary characteristics of the Pima (binorm) dataset.

Char. Histogram (%) NaN
|ρ| 46.43 25.00 14.29 5.36 7.14 1.79 0.00 0.00 0.00 0.00 0.00
skew 25.00 6.25 18.75 0.00 6.25 0.00 12.50 18.75 6.25 6.25 0.00
concCoeff 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 12.50 0.00 0.00 0.00 0.00 12.50 0.00 12.50 37.50 25.00 0.00
H̄(X,C) 12.50 0.00 0.00 0.00 0.00 0.00 12.50 0.00 12.50 62.50 0.00
kurtosis 25.00 6.25 18.75 6.25 0.00 25.00 12.50 0.00 0.00 6.25 0.00
M̄(X,C) 75.00 12.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 12.50 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.66: Histogram based characteristics of the Pima (binorm) dataset.
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Characteristic Value
cancorr1 NaN
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.153
dfrac2 NaN
dfrac3 NaN
dfrac4 NaN
dimensionality 72.997
env 32.782
frac1 NaN
frac2 NaN
frac3 NaN
frac4 NaN
nsr 9.949
J 139351
N 1909
percnin 100.0%
perccont 0.0%
percord 0.0%
percmiss 0.0%
percneg 97.8%
percpos 2.2%
sdRatio 1
numbin 139351
C 2
numcont 0
numord 0
nummiss 0
numpos 1867
numneg 42

Table B.67: Characteristics of the Thrombin dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| NaN NaN NaN NaN NaN
skew NaN NaN NaN NaN NaN
arithMean NaN NaN NaN NaN NaN
χ2 NaN NaN NaN NaN NaN
concCoeff NaN NaN NaN NaN NaN
concCoeffC NaN NaN NaN NaN NaN
H̄(X) 0.006 0.917 0.026 0.051 0.065
H̄(X,C) 0.153 1.070 0.175 0.199 0.064
geoMean NaN NaN NaN NaN NaN
harmMean NaN NaN NaN NaN NaN
IQ-range NaN NaN NaN NaN NaN
kurtosis NaN NaN NaN NaN NaN
mad NaN NaN NaN NaN NaN
median NaN NaN NaN NaN NaN
M̄(X,C) 0.000 0.153 0.003 0.005 0.005
normP NaN NaN NaN NaN NaN
pValC NaN NaN NaN NaN NaN
pVal NaN NaN NaN NaN NaN
perc90 NaN NaN NaN NaN NaN
stdDev NaN NaN NaN NaN NaN
trimMean NaN NaN NaN NaN NaN
unique 0 0 0 0 0
unique2 2 2 0
variance NaN NaN NaN NaN NaN
zScore NaN NaN NaN NaN NaN

Table B.68: Summary characteristics of the Thrombin dataset.

Characteristic Histogram (%) NaNs
|ρ| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
skew 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeff 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 85.74 9.95 2.75 0.99 0.37 0.13 0.03 0.02 0.01 0.00 0.00
H̄(X,C) 85.54 10.08 2.81 0.99 0.38 0.14 0.03 0.02 0.01 0.00 0.00
kurtosis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M̄(X,C) 94.99 4.66 0.33 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B.69: Histogram based characteristics of the Thrombin dataset.
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Characteristic Value
cancorr1 0.975
cancorr2 NaN
cancorr3 NaN
cancorr4 NaN
H(C) 0.153
dfrac2 NaN
dfrac3 NaN
dfrac4 NaN
dimensionality 72.997
env 32.782
frac1 NaN
frac2 NaN
frac3 NaN
frac4 NaN
nsr 9.949
J 139351
N 1909
percnin 0.0%
perccont 100.0%
percord 0.0%
percmiss 0.0%
percneg 97.8%
percpos 2.2%
sdRatio NaN
numbin 0
C 2
numcont 139351
numord 0
nummiss 0
numpos 1867
numneg 42

Table B.70: Characteristics of the Thrombin (binorm) dataset.
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Characteristic Minimum Maximum Median Mean Std. Dev.
|ρ| NaN NaN NaN NaN NaN
skew 0 43.209 6.481 11.968 11.816
arithMean 0 0.786 0.024 0.035 0.055
χ2 0 0.000 0.000 0.000 0.000
concCoeff 0 0 0 0 0
concCoeffC 0 0 0 0 0
H̄(X) 0.006 0.917 0.026 0.051 0.065
H̄(X,C) 0.153 1.070 0.175 0.199 0.064
geoMean 0 0 0 0 0
harmMean 0 0 0 0 0
IQ-range 0 1 0 0.012 0.110
kurtosis 0.897 1870 45 284.806 516.475
mad 0 0.500 0.046 0.062 0.086
median 0 1 0 0.000 0.017
M̄(X,C) 0.000 0.153 0.003 0.005 0.005
normP 1 1 1 1 0
pValC NaN NaN NaN NaN NaN
pVal 0.000 0.999 0.000 0.059 0.184
perc90 0 1 0 0.101 0.288
stdDev 0 0.506 0.154 0.137 0.114
trimMean 0 0.853 0 0.009 0.039
unique 0 0 0 0 0
unique2 0 0 0
variance 0 0.256 0.024 0.032 0.044
zScore 0 43.186 6.326 10.340 11.696

Table B.71: Summary characteristics of the Thrombin (binorm) dataset.

Characteristic Histogram (%) NaNs
|ρ| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
skew 18.58 35.90 6.46 4.68 6.18 3.25 0.00 4.38 0.00 6.72 13.84
concCoeff 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
concCoeffC 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H̄(X) 85.74 9.95 2.75 0.99 0.37 0.13 0.03 0.02 0.01 0.00 0.00
H̄(X,C) 85.54 10.08 2.81 0.99 0.38 0.14 0.03 0.02 0.01 0.00 0.00
kurtosis 61.88 7.41 2.51 3.25 4.38 0.00 0.00 0.00 0.00 6.72 13.84
M̄(X,C) 94.99 4.66 0.33 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pValC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pVal 88.94 2.09 1.67 1.02 0.84 0.88 0.83 1.18 1.96 0.59 0.00

Table B.72: Histogram based characteristics of the Thrombin (binorm) dataset.
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Appendix C

Algorithm Selection Confusion
Matrices

C.1 Confusion Matrices for Training Datasets

a b c d
0 366 0 0 a = bagged
0 3945 0 0 b = boosted
0 2009 0 0 c = sfo
0 1981 0 0 d = tree

Table C.1: Confusion matrix for the Canopy model applied to the training dataset.

a b c d
0 253 103 10 a = bagged
0 2752 931 262 b = boosted
0 26 1983 0 c = sfo
0 981 587 413 d = tree

Table C.2: Confusion matrix for the Decision Stump model applied to the training dataset.

a b c d
0 205 117 44 a = bagged
0 2969 910 66 b = boosted
0 218 1791 0 c = sfo
0 902 932 147 d = tree

Table C.3: Confusion matrix for the EM model applied to the training dataset.

a b c d
0 189 87 90 a = bagged
0 3075 797 73 b = boosted
0 1183 826 0 c = sfo
0 1132 678 171 d = tree

Table C.4: Confusion matrix for the Farthest First model applied to the training dataset.
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a b c d
0 366 0 0 a = bagged
0 3832 0 113 b = boosted
0 2009 0 0 c = sfo
0 1700 0 281 d = tree

Table C.5: Confusion matrix for the Hierarchical Clusterer model applied to the training dataset.

a b c d
76 140 103 47 a = bagged
88 2490 986 381 b = boosted
0 0 2009 0 c = sfo

164 484 708 625 d = tree

Table C.6: Confusion matrix for the Hoeffding Tree model applied to the training dataset.

a b c d
151 70 36 109 a = bagged
25 3337 284 299 b = boosted
24 83 1876 26 c = sfo
26 248 267 1440 d = tree

Table C.7: Confusion matrix for the IBk model applied to the training dataset.

a b c d
294 10 38 24 a = bagged
12 3785 39 109 b = boosted
26 27 1915 41 c = sfo
17 128 61 1775 d = tree

Table C.8: Confusion matrix for the J48 model applied to the training dataset.

a b c d
197 67 41 61 a = bagged
128 3162 59 596 b = boosted
27 27 1904 51 c = sfo
17 271 43 1650 d = tree

Table C.9: Confusion matrix for the LMT model applied to the training dataset.

a b c d
0 164 109 93 a = bagged
0 2694 987 264 b = boosted
0 11 1998 0 c = sfo
0 612 871 498 d = tree

Table C.10: Confusion matrix for the LWL model applied to the training dataset.
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a b c d
1 157 103 105 a = bagged
0 3104 401 440 b = boosted
0 282 1580 147 c = sfo
5 619 181 1176 d = tree

Table C.11: Confusion matrix for the Logistic model applied to the training dataset.

a b c d
260 14 49 43 a = bagged
13 3753 44 135 b = boosted
23 34 1901 51 c = sfo
36 153 58 1734 d = tree

Table C.12: Confusion matrix for the REPTree model applied to the training dataset.

a b c d
299 22 26 19 a = bagged
15 3795 29 106 b = boosted
16 28 1928 37 c = sfo
12 95 31 1843 d = tree

Table C.13: Confusion matrix for the Random Forest model applied to the training dataset.

a b c d
294 24 24 24 a = bagged
17 3765 36 127 b = boosted
28 37 1901 43 c = sfo
20 102 37 1822 d = tree

Table C.14: Confusion matrix for the Random Tree model applied to the training dataset.

a b c d
0 220 112 34 a = bagged
0 3103 712 130 b = boosted
0 565 1435 9 c = sfo
0 1052 728 201 d = tree

Table C.15: Confusion matrix for the SimpleKMeans model applied to the training dataset.

a b c d
1 161 103 101 a = bagged
0 3039 447 459 b = boosted
0 250 1602 157 c = sfo
5 637 200 1139 d = tree

Table C.16: Confusion matrix for the Simple Logistic model applied to the training dataset.
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C.2 Confusion Matrices for Test Datasets

a b c d
0 337 0 0 a = bagged
0 188 0 0 b = boosted
0 221 0 0 c = sfo
0 645 0 0 d = tree

Table C.17: Confusion matrix for the Canopy model applied to the test dataset.

a b c d
0 212 125 0 a = bagged
0 136 52 0 b = boosted
0 7 214 0 c = sfo
0 319 326 0 d = tree

Table C.18: Confusion matrix for the Decision Stump model applied to the test dataset.

a b c d
0 305 32 0 a = bagged
0 121 67 0 b = boosted
0 209 12 0 c = sfo
0 603 42 0 d = tree

Table C.19: Confusion matrix for the EM model applied to the test dataset.

a b c d
0 198 0 139 a = bagged
0 170 0 18 b = boosted
0 85 0 136 c = sfo
0 264 0 381 d = tree

Table C.20: Confusion matrix for the Farthest First model applied to the test dataset.

a b c d
0 337 0 0 a = bagged
0 188 0 0 b = boosted
0 221 0 0 c = sfo
0 645 0 0 d = tree

Table C.21: Confusion matrix for the Hierarchical Clusterer model applied to the test dataset.
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a b c d
205 62 25 45 a = bagged
72 72 7 37 b = boosted
77 40 39 65 c = sfo
498 54 42 51 d = tree

Table C.22: Confusion matrix for the Hoeffding Tree model applied to the test dataset.

a b c d
0 156 22 159 a = bagged
0 83 8 97 b = boosted
0 71 78 72 c = sfo
0 294 121 230 d = tree

Table C.23: Confusion matrix for the IBk model applied to the test dataset.

a b c d
1 113 38 185 a = bagged
4 121 5 58 b = boosted
0 144 28 49 c = sfo
0 259 76 310 d = tree

Table C.24: Confusion matrix for the J48 model applied to the test dataset.

a b c d
337 0 0 0 a = bagged
188 0 0 0 b = boosted
221 0 0 0 c = sfo
645 0 0 0 d = tree

Table C.25: Confusion matrix for the KStar model applied to the test dataset.

a b c d
2 134 126 75 a = bagged
4 61 63 60 b = boosted
0 57 123 41 c = sfo
10 290 168 177 d = tree

Table C.26: Confusion matrix for the LMT model applied to the test dataset.

a b c d
0 68 269 0 a = bagged
0 127 61 0 b = boosted
0 0 221 0 c = sfo
0 45 600 0 d = tree

Table C.27: Confusion matrix for the LWL model applied to the test dataset.
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a b c d
0 0 337 0 a = bagged
0 0 188 0 b = boosted
0 0 221 0 c = sfo
0 0 645 0 d = tree

Table C.28: Confusion matrix for the Logistic model applied to the test dataset.

a b c d
7 102 52 176 a = bagged
1 134 9 44 b = boosted
0 107 38 76 c = sfo
16 292 174 163 d = tree

Table C.29: Confusion matrix for the REPTree model applied to the test dataset.

a b c d
0 108 26 203 a = bagged
0 137 5 46 b = boosted
0 118 37 66 c = sfo
0 425 59 161 d = tree

Table C.30: Confusion matrix for the Random Forest model applied to the test dataset.

a b c d
110 154 0 73 a = bagged
9 147 1 31 b = boosted
0 211 6 4 c = sfo
99 458 14 74 d = tree

Table C.31: Confusion matrix for the Random Tree model applied to the test dataset.

a b c d
0 312 25 0 a = bagged
0 181 7 0 b = boosted
0 182 39 0 c = sfo
0 603 42 0 d = tree

Table C.32: Confusion matrix for the SimpleKMeans model applied to the test dataset.

a b c d
0 30 25 282 a = bagged
0 66 7 115 b = boosted
0 0 39 182 c = sfo
0 20 42 583 d = tree

Table C.33: Confusion matrix for the Simple Logistic model applied to the test dataset.
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C.3 Confusion Matrices for Binary Class Training
Datasets

a b c d
0 366 0 0 a = bagged
0 3945 0 0 b = boosted
0 2009 0 0 c = sfo
0 1981 0 0 d = tree

Table C.34: Confusion matrix for the Canopy model applied to the training (binary classes) dataset.

a b c d
0 253 103 10 a = bagged
0 2752 931 262 b = boosted
0 26 1983 0 c = sfo
0 981 587 413 d = tree

Table C.35: Confusion matrix for the Decision Stump model applied to the training (binary classes)
dataset.

a b c d
0 193 115 58 a = bagged
0 3086 709 150 b = boosted
0 263 1746 0 c = sfo
0 979 767 235 d = tree

Table C.36: Confusion matrix for the EM model applied to the training (binary classes) dataset.

a b c d
0 166 123 77 a = bagged
0 3057 817 71 b = boosted
0 1010 999 0 c = sfo
0 1143 704 134 d = tree

Table C.37: Confusion matrix for the Farthest First model applied to the training (binary classes)
dataset.
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a b c d
0 366 0 0 a = bagged
0 3832 0 113 b = boosted
0 2009 0 0 c = sfo
0 1700 0 281 d = tree

Table C.38: Confusion matrix for the Hierarchical Clusterer model applied to the training (binary
classes) dataset.

a b c d
119 122 103 22 a = bagged
190 2438 986 331 b = boosted
0 0 2009 0 c = sfo

258 343 708 672 d = tree

Table C.39: Confusion matrix for the Hoeffding Tree model applied to the training (binary classes)
dataset.

a b c d
136 70 39 121 a = bagged
28 3318 293 306 b = boosted
24 84 1876 25 c = sfo
24 246 279 1432 d = tree

Table C.40: Confusion matrix for the IBk model applied to the training (binary classes) dataset.

a b c d
294 10 38 24 a = bagged
12 3782 40 111 b = boosted
26 27 1915 41 c = sfo
17 128 61 1775 d = tree

Table C.41: Confusion matrix for the J48 model applied to the training (binary classes) dataset.

a b c d
121 113 41 91 a = bagged
43 3337 69 496 b = boosted
30 22 1895 62 c = sfo
11 410 51 1509 d = tree

Table C.42: Confusion matrix for the LMT model applied to the training (binary classes) dataset.

a b c d
0 155 108 103 a = bagged
0 2623 987 335 b = boosted
0 6 2003 0 c = sfo
0 490 899 592 d = tree

Table C.43: Confusion matrix for the LWL model applied to the training (binary classes) dataset.
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a b c d
1 157 103 105 a = bagged
0 3104 401 440 b = boosted
0 282 1580 147 c = sfo
5 619 181 1176 d = tree

Table C.44: Confusion matrix for the Logistic model applied to the training (binary classes) dataset.

a b c d
259 15 49 43 a = bagged
13 3754 44 134 b = boosted
23 35 1900 51 c = sfo
34 153 58 1736 d = tree

Table C.45: Confusion matrix for the REPTree model applied to the training (binary classes) dataset.

a b c d
298 21 28 19 a = bagged
12 3790 30 113 b = boosted
15 28 1930 36 c = sfo
13 90 30 1848 d = tree

Table C.46: Confusion matrix for the Random Forest model applied to the training (binary classes)
dataset.

a b c d
297 16 26 27 a = bagged
12 3785 35 113 b = boosted
23 39 1903 44 c = sfo
16 111 33 1821 d = tree

Table C.47: Confusion matrix for the Random Tree model applied to the training (binary classes)
dataset.

a b c d
0 194 129 43 a = bagged
0 2810 806 329 b = boosted
0 494 1310 205 c = sfo
0 804 776 401 d = tree

Table C.48: Confusion matrix for the SimpleKMeans model applied to the training (binary classes)
dataset.
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a b c d
2 161 103 100 a = bagged
0 3058 431 456 b = boosted
0 271 1579 159 c = sfo
5 631 195 1150 d = tree

Table C.49: Confusion matrix for the Simple Logistic model applied to the training (binary classes)
dataset.
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C.4 Confusion Matrices for Binary Class Test Datasest

a b c d
0 337 0 0 a = bagged
0 188 0 0 b = boosted
0 221 0 0 c = sfo
0 645 0 0 d = tree

Table C.50: Confusion matrix for the Canopy model applied to the test (binary classes) dataset.

a b c d
0 212 125 0 a = bagged
0 136 52 0 b = boosted
0 7 214 0 c = sfo
0 319 326 0 d = tree

Table C.51: Confusion matrix for the Decision Stump model applied to the test (binary classes)
dataset.

a b c d
0 218 119 0 a = bagged
0 133 55 0 b = boosted
0 161 60 0 c = sfo
0 466 179 0 d = tree

Table C.52: Confusion matrix for the EM model applied to the test (binary classes) dataset.

a b c d
0 120 217 0 a = bagged
0 26 162 0 b = boosted
0 0 221 0 c = sfo
0 225 420 0 d = tree

Table C.53: Confusion matrix for the Farthest First model applied to the test (binary classes)
dataset.

a b c d
0 337 0 0 a = bagged
0 188 0 0 b = boosted
0 221 0 0 c = sfo
0 645 0 0 d = tree

Table C.54: Confusion matrix for the Hierarchical Clusterer model applied to the test (binary classes)
dataset.
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a b c d
0 258 0 79 a = bagged
0 161 5 22 b = boosted
0 179 0 42 c = sfo
0 554 67 24 d = tree

Table C.55: Confusion matrix for the Hoeffding Tree model applied to the test (binary classes)
dataset.

a b c d
0 45 202 90 a = bagged
0 91 34 63 b = boosted
0 17 183 21 c = sfo
0 150 391 104 d = tree

Table C.56: Confusion matrix for the IBk model applied to the test (binary classes) dataset.

a b c d
7 111 71 148 a = bagged
12 104 19 53 b = boosted
0 41 132 48 c = sfo
6 238 194 207 d = tree

Table C.57: Confusion matrix for the J48 model applied to the test (binary classes) dataset.

a b c d
86 119 15 117 a = bagged
25 100 2 61 b = boosted
0 92 22 107 c = sfo

140 302 37 166 d = tree

Table C.58: Confusion matrix for the LMT model applied to the test (binary classes) dataset.

a b c d
0 68 269 0 a = bagged
0 127 61 0 b = boosted
0 0 221 0 c = sfo
0 45 600 0 d = tree

Table C.59: Confusion matrix for the LWL model applied to the test (binary classes) dataset.

a b c d
86 0 147 104 a = bagged
83 0 88 17 b = boosted
85 0 0 136 c = sfo
109 0 240 296 d = tree

Table C.60: Confusion matrix for the Logistic model applied to the test (binary classes) dataset.
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a b c d
6 97 174 60 a = bagged
2 99 58 29 b = boosted
15 49 139 18 c = sfo
28 214 320 83 d = tree

Table C.61: Confusion matrix for the REPTree model applied to the test (binary classes) dataset.

a b c d
0 129 28 180 a = bagged
0 119 4 65 b = boosted
0 156 27 38 c = sfo
0 435 22 188 d = tree

Table C.62: Confusion matrix for the Random Forest model applied to the test (binary classes)
dataset.

a b c d
57 74 38 168 a = bagged
4 116 11 57 b = boosted
0 105 51 65 c = sfo
75 273 81 216 d = tree

Table C.63: Confusion matrix for the Random Tree model applied to the test (binary classes)
dataset.

a b c d
0 316 21 0 a = bagged
0 179 9 0 b = boosted
0 189 32 0 c = sfo
0 553 92 0 d = tree

Table C.64: Confusion matrix for the SimpleKMeans model applied to the test (binary classes)
dataset.

a b c d
115 186 5 31 a = bagged
26 99 5 58 b = boosted
0 209 12 0 c = sfo

219 378 27 21 d = tree

Table C.65: Confusion matrix for the Simple Logistic model applied to the test (binary classes)
dataset.
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Appendix D

Digital Appendix Index

The digital appendix for this document contains three files:
Datasets.tar.gz: Contains dataset files that were created for this project.
ExternalAppendices.pdf: Appendices that were too long to include in the actual document.
SisyphiniML.tar.gz: Contains all of the source code developed for this project.
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