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Half of the backlash gap between the input and output of transmission [o]  
Half of the backlash gap between the input and output of final drive [o]  
Half of the backlash gap between the input and output of clutch[o]  
Clutch output torsional angle [o]  
Angular displacement of the crankshaft [o] 

 

Angular displacement of the drive shaft [o] 
 

Angular displacement of the final drive [o] 
 

Final drive backlash position angle [o] 
 

Angular displacement of the propeller shaft [o] 
 

Gradient of the road [o] 
 

Output shaft angular displacement [o] 
 

Transmission backlash position angle [o] 
 

Angular displacement of the wheel [o] 
 

Time delay in torque generation due to combustion [sec]  
Density of air [kg/m3] 

 

Time lag due to air breathing dynamics [sec] 

Af Frontal area of the vehicle [m2] 

a Rolling resistance coefficient [-] 

CD Coefficient of drag [-] 

b Rolling resistance coefficient [-] 

cc Clutch torsional damping [Nm/(rad/s)] 

cds Drive shaft torsional damping [Nm/(rad/s)] 

cfd Final drive torsional damping [Nm/(rad/s)] 

cps Propeller shaft input shaft torsional damping [Nm/(rad/s)] 

cts Transmission shaft input shaft torsional damping [Nm/(rad/s)] 

cw Wheel torsional damping [Nm/(rad/s)] 

FDR Drag resistance force [N] 

FGR Gradient resistance force [N] 

Fload Load force [N] 

FIR Inertial resistance force [N] 

FRR Rolling resistance force [N] 

g Acceleration due to gravity [m/s2] 

ifd Final drive gear ratio [-] 

m

m

m
c
tc

tb

tb

ps

t

fd

fdb

fdb

w

ds

r

w
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Jds Drive shaft rotational inertia [kg.m2] 

Jfd Final drive rotational inertia [kg.m2] 

Jm Engine equivalent rotational inertia [kg.m2] 

Jps Propeller shaft rotational inertia [kg.m2] 

Jt Turbine rotational inertia [kg.m2] 

Jw Wheel rotational inertia [kg.m2] 

kc Clutch torsional stiffness [Nm/rad] 

kds Drive-shaft torsional stiffness [Nm/rad] 

kps Propeller shaft input shaft torsional stiffness [Nm/rad] 

kts Transmission shaft input shaft torsional stiffness [Nm/rad] 

kw Wheel torsional stiffness [Nm/rad] 
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mw Mass of the vehicle [kg] 
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t Time [sec] 
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Tload Load torque [Nm] 

Tt Torque delivered by the turbine [Nm] 

Ttc Torque output after the torque converter clutch dynamics [Nm] 
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TR  Torque ratio [-] 
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Abstract 

In modern-day automotive industry, automotive manufacturers pay keen attention to 

driver’s safety and comfort by ensuring good vehicle drivability, feel of acceleration, 

limiting jerk and noise. The vehicle driveline plays a critical role to meet these criteria. By 

using high-fidelity simulation tool such as AMESim®, it is now possible to accurately 

model the vehicle driveline to be tested for different scenarios. With Simulink®, one can 

develop an efficient torque-based control system to limit the driveline oscillations and the 

generated noise. So, a joint simulation is used which provides a platform to evaluate the 

estimators and control system while considering the fast dynamics of the non-linear system. 

This report presents the detailed driveline model developed to evaluate the important 

parameters which affect the driveline of a pickup truck. The model is developed 

considering the non-linear dynamics of the driveline, torque converter clutch dynamics and 

the non-linearities in the propeller shafts and the drive-shafts. It is then evaluated at 

different input conditions for two major test scenarios – tip-in and tip-out. Both scenarios 

show that the model displays the transmission and final drive backlash dynamics as 

anticipated in practical scenarios. The wheel speed shown by the results of the model 

proves that stiffness and damping coefficient of the tires play an important role in 

predicting the physical behavior of the vehicle. In addition, for the case of a tip-in from 

negative to positive torque, the effect of flexibilities of the driveshafts is shown as 

significant by this model. The oscillations caused due to these flexibilities are within 7 – 8 

Hz range for evaluation at fifth gear. This frequency of oscillations found in this model is 

comparable to the results found in the literature.  

In future, experimental validation of the current full-order model would provide better 

understanding of the assumptions considered while developing it. A reduced order model 

can be derived from the current model which can be further used to develop the estimators 

and controllers for active reduction of the driveline oscillations. Also, the overall effect of 

engine mounting system, comprehensive tire model and suspension dynamics on driveline 

oscillation can be studied.  
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1 Introduction 

Vehicle drivability, dynamic performance (acceleration feel, jerk) and driver’s comfort are 

important metrics to automotive manufacturers along with achieving stringent emission 

standards and better fuel economy. The driveline (interchangeably used as the drivetrain), 

being one of the fundamental components of a vehicle’s propulsion system, plays an 

important role to meet these goals. It transfers the torque from the torque generators (engine 

or electric motor) to the wheels. The main parts of the driveline consist of clutch (torque 

convertor), transmission, propeller shaft, final drive, drive-shafts and wheels. The 

schematic of a rear-wheel-drive vehicle is shown in Figure 1.1 where the elements in blue 

and black are the parts of the driveline. All these parts have different velocities and torques 

relative to each other. The reason for these different velocities is due to the elastic nature 

of the parts, which can cause mechanical resonances in the components affecting the 

functionality and drivability of the vehicle. Drivability refers to the driver’s perception of 

vehicle response to a specific input. It also includes factors such as vehicle handling, 

vehicle’s responsiveness and driver’s comfort which are of utmost importance. Hence, it is 

important to handle such resonances to improve its drivability as well as to reduce 

mechanical stress and noise. 

Figure 1.1. Schematic of the driveline of a rear-wheel-drive vehicle 
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Torque transmitted through these components can be considerable when evaluated in terms 

of the torsional forces and torsional energies. Especially with high-powered heavy-duty 

engines, the amount of torque transmitted in the first gear could cause failure of the drive-

shafts. If not controlled correctly, these substantially high torsional energies can cause 

multitude of problems. The three main problems experienced in every vehicle are vehicle 

shuffle or vehicle surge, clunk-and-shuffle during tip-in conditions, and, oscillations after 

tip-out conditions (i.e. equivalent to engagement of neutral gear) [1].  

1.1 Clunk-and-Shuffle 

While driving, it is common for a driver to provide a rapid input to the accelerator pedal in 

order to obtain either a quick acceleration or to provide more torque to the wheels. These 

are known as “tip-in” scenarios. The terms “vehicle shuffle” or “vehicle surge” refers to 

the longitudinal rocking of the vehicle or truck cabin due to the induced driveline 

Figure 1.2. A simulated tip-in response of a vehicle is shown. The 

upper plot shows the driver’s desired acceleration (dashed) and the 

vehicle acceleration (solid). Engine requested torque (solid) and 

delivered (dashed) torque, is shown in the center plot, while the lower 

plot shows the vehicle jerk. Adopted from [14] 
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oscillations when a tip-in occurs from a certain positive torque provided by the engine, 

shown in Figure 1.2 and Figure 1.4. For heavy-duty trucks or for trucks with towed trailers, 

this low-frequency (about 5 - 10 Hz) induced driveline oscillations can cause variations in 

the pitch of the vehicle, affecting the driver’s comfort. The “clunk-and-shuffle” or “shunt-

and-shuffle” phenomenon can occur when a tip-in occurs from a negative torque state. This 

triggers backlash traversal across various geared parts of the driveline (e.g. transmission, 

final drive, transfer case) leading further to provide positive torque to the wheels. The 

backlash traversal leads to clunk which can be observed when there is a sudden impact 

between the teeth of the gears in contact. This clunk is the source of loud noise. It also 

causes the vehicle to jerk (quantified mathematically as time derivative of vehicle 

acceleration).  

The third problem occurs in case of a tip-out scenario wherein the driver releases the 

accelerator pedal completely and/or the neutral gear is engaged in case of a manual 

transmission. The torsional energy available in the drive-shaft when driving at a constant 

speed is liberated as soon as the accelerator pedal is released. The oscillations caused due 

to the release has negligible effect on longitudinal vehicle motion, but it is quite observable 

on the transmission shafts. This can cause undesirable noise from the transmission as well 

as the gear engagement needs to be delayed until the oscillations die out sufficiently. The 

amplitude of the induced oscillations is proportional to the initial steady state angular speed 

of the drive-shafts [1]. In an ideal case, if the driveline was completely stiff and the wheel 

speed be well damped, the driveline oscillations would not exist. But in reality, the torque 

fluctuations can be felt with an elastic driveline in the vehicle. Thus, it is desired to control 

the oscillations. The amplitude of these oscillations or the clunk-and-shuffle behavior is 

used as one of the measures for driver’s comfort.  
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1.2 Effect of Backlash 

Backlash can be defined as a play between adjacent moving parts. This mechanical form 

of a deadband can be better visualized as the gap between the mating teeth of the gears 

(Figure 1.3). It is a very common problem in the automotive drivelines. This gap is 

desirable up to a certain extent to prevent jamming between the gears. But an increased 

amount of the gap (due to extended usage of the component causing erosion) will lead to 

undesirable noise and impact to the mating surfaces during torque transmission, causing 

increased wear of the components and sudden acceleration of the vehicle. Backlash also 

introduces a non-linearity in the control system loop. In [13], the authors have observed 

backlash to degrade the driveability of the vehicle and affect the performance of the control 

system. Hence, it is necessary to control or at least compensate for the ill-effects of the 

backlash with an objective of traversing backlash as soon as possible to retain the fast 

response of the vehicle. 

Figure 1.3. (a) Backlash, in the context of gears is shown (b) Vehicle body acceleration 

during a tip-in event on a vehicle, reported in [10] 

(a) (b) 
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1.3 Driveline Modeling for Clunk-and-Shuffle – Analysis and 
Control 

Out of various strategies prevalent in the industry, the torque-based control is widely used. 

The driveline oscillations that are introduced can be reduced by controlling the engine 

torque request such that the engine inertia works against them. This form of active damping 

is quite effective for controlling the vehicle shuffle [2]. Many of the available torque-based 

controllers simply smoothen any sharp changes in the engine torque request to prevent the 

clunk-and-shuffle in the drivetrain. Although, this method reduces the oscillations to 

acceptable limits, it results adversely in slower response of the vehicle. To address this 

problem, an improved torque-based control system is needed which can address the clunk-

and-shuffle phenomenon and improve the drivability of the vehicle.  

Existing control strategies are difficult and time-consuming to calibrate due to the vast 

number of parameters involved. Thus, there is a need for an advanced control system to 

reduce the calibration effort and improve its dynamic performance under several 

disturbances and environmental variations. The main objective is to characterize the clunk-

and-shuffle phenomenon and solve the problems associated with the noise, vibration and 

harshness (NVH) and the drivability of the vehicles by developing an advanced control 

strategy. The work for this Master’s degree report serves as the first step towards the 

development and implementation of the control strategy, wherein detailed models of the 

driveline are developed and evaluated. The aim of this driveline modeling is to find the 

source of the oscillations and understand the physical parameters affecting them. 

1.3.1 Literature Review 

A thorough scrutiny of published literature related to automotive driveline development 

was conducted. The literature search in this report includes sources from journal articles, 

conference publications, thesis and dissertations. Relevant work done previously for 

modeling and torque-based control system development for driveline was studied. The 

main objective of this literature search involves detailed drivetrain modeling, control-



18 

 

oriented model order reduction and development of the control system. This report will 

address only a part of that literature review related to detailed driveline modeling.  

1.3.1.1 Driveline Modeling 

In published literature, there are detailed studies related to driveline modeling. Relevant 

work includes Hayat et al. [8] (Figure 1.4). In their study, they proposed an alternative 

modeling approach for better assessment of the driveability requirements of the customer 

during the early phase of the vehicle design cycle. Three different models for capturing the 

powertrain and driveline dynamics were proposed. The applicability of each of these 

models would depend on which stage the vehicle design cycle project would be in. During 

the design and development phase, a detailed linear model, but not of a reduced order, is 

required for the design of the sub-systems. To formulate the control strategy, they suggest 

a second model of a reduced order which should be capable to capture the approximate 

vehicle behavior but with lower degree of freedom in order to reduce the computation time. 

For the validation phase of the project, according to Hayat et al. [8], a third, more detailed, 

non-linear model is required to accurately assess the physical behavior of the vehicle. It 

will also help refine the design of the sub-systems as well as the control strategies. 

A thesis study conducted by Pettersson [2] serves as a good resource for understanding the 

principles required for powertrain and driveline modeling with regards to its control 

Figure 1.4. Structure of Hayat et al. [8] modeling approach 
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applications. Many other following works including Eriksson and Farahani [3], Tunhag 

[4], Nezhadali [5] and Myklebust and Eriksson [6] were based on the research conducted 

by Pettersson. As his models were based on a rear-wheel-drive vehicle with a manual 

transmission, the components that were modeled included engine, clutch, manual gearbox, 

propeller shafts, drive-shafts and wheels. These higher degree of freedom models were 

made by considering these as an arrangement of multiple rotating inertias connected to the 

flexible shafts with inherent damping associated to them. Pettersson developed three 

models with a new complexity added to each new model over the previous one asshown in 

Figure 1.5. First model created was a linear model with viscous friction added only to the 

transmission and the final drive while the other components such as clutch, propeller shaft 

and drive-shafts were modeled stiff. The clutch flexibility was added to the first linear 

model to develop the second one. The third model was built in with a static non-linearity 

in the clutch model. He also conducted the experiments to verify the model on lower gears 

as it provides high torque transfer condition leading to high amplitude of driveline 

oscillations. Based on these experiments, he concluded that the key source of flexibility in 

the driveline is associated to the components in between the transmission output shaft and 

the wheels. Thus, he considered a stiff driveline up to the transmission output shaft and 

incorporated flexibility only in the propeller shaft and the drive-shafts. Non-linearities such 

as backlash were not considered in his research.  

Figure 1.5. Schematic of the three models developed by Pettersson [2] where  

(a) Model 1: Only drive-shaft has damped torsional flexibility (stiffness, kd and damping 

coefficient, cd), (b) Model 2: Clutch modeled as linear flexibility (stiffness, kc and damping 

coefficient, cc) along with damped torsional flexibility for the drive-shaft (c) Model 3: Non-

linear characteristics added to the clutch with and flexible drive-shafts. 
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Karlsson [10] studied a Volvo passenger car and suggested two models. The first model 

was a linear third order model that omitted the clutch dynamics and backlash. The second 

model was a more complex non-linear model in which the clutch dynamics and backlash 

were included. He assessed the performance of these models by applying different types of 

torque inputs. 

Bellomo, et al. [7] aimed at studying vehicle NVH by formulating a detailed object-

oriented model of the powertrain and the driveline. The authors identified two major types 

of noises from the vehicle, one is the noise made by the freely rotating components in idle, 

in-gear drive and in coast mode. Another source is the impact noise from the gears due to 

backlash traversal. The model developed incorporates non-linearities in the system such as 

clutch hysteresis as well as backlash in the gears, providing insight into the modeling with 

a perspective of reduction in driveline oscillations. The authors also investigated the effect 

of different model parameter such as stiffness, damping and inertia of clutch, wheels and 

drive-shafts as well as clutch hysteresis and vehicle mass. 

Evaluation of the influence of the drivetrain elements on longitudinal dynamics of the 

vehicle using mathematical models was carried out by Sorniotti [9]. This approach has 

been taken into consideration for the current work. In this research, five different non-linear 

models of the driveline were developed which studied the effect of each of the components 

viz., dynamics of the clutch torsional damper (with non-linear stiffness and hysteresis of 

varying amplitude), tire flexibility, driveshaft stiffness and damping, details of which are 

Figure 1.6. Summary of Sorniotti’s [9] five driveline models 
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shown in Figure 1.6. Also, the suspension dynamics along with powertrain mounting 

system has been modeled to capture the longitudinal and vertical dynamics of the sprung 

and unsprung mass. Furthermore, Sorniotti [9] also discusses reduced-order linearized 

models and its analysis in the frequency domain.  

1.4 Objectives and Organization of this Technical Report 

This report aims to develop a driveline model for Ford F150 pickup truck. This model is 

used as an analysis tool to understand clunk-and-shuffle, and effect of backlash status and 

position on performance of F150 driveline. The report is organized as follows:  

Chapter 2 covers the platform used for the physical and mathematical modeling of the 

vehicular driveline. The baseline vehicle used for modeling and the analytical equations 

behind the physical models of the components are also described in Chapter 2.  

Chapter 3 discusses and analyzes the simulation results for the effect of each driveline 

components and observe the full system behavior in terms of driveline oscillations, vehicle 

acceleration, etc. 

Chapter 4 provides a summary of this work and lists the conclusions along with future 

work. 
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2 Modeling 

Driveline modeling is needed to evaluate and capture the situations where the velocities 

and torques along the vehicle components are different at the inputs than the outputs. The 

type of the models (linear or non-linear) and the level of details they contain depend on the 

purpose and the applications in which it will be used. As the objective of this study is to 

simulate the driveline dynamics, the physical model made using the AMESim® software is 

explained in the subsequent sections. As the fundamentals of the component modeling 

remains the same, the underlying equations used in the modeling of each of the components 

will also be discussed in the subsequent sections. 

2.1 Software Platform 

This section briefly explains the software products used for the work done in this report. 

2.1.1 LMS AMESim® 

LMS Imagine.Lab Advanced Modeling Environment for performing Simulations, known 

as AMESim® (Siemens Product Lifecycle Management Software Inc., Version 15.2, 2017) 

is a multi-domain one-dimensional system simulation software used for modeling, analysis 

and performance prediction of engineering systems. Based on the latest version v15.2, 

AMESim® offers up to 40 libraries to model the non-linear time-dependent analytical 

equations representing the appropriate system behavior. As most of the physical domains 

are modeled using the libraries containing pre-defined set of blocks with input and output 

ports, the causality is imposed when the outputs of one component block is connected to 

the inputs of another component block.  

The modeling and simulation of the system in AMESim® is done in four steps:  

• Sketch mode: The component blocks with built-in analytical equations are pulled 

from the library and are joined together to form a system. 

• Submodel mode: Physical submodels for each component block is chosen. 
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• Parameter mode: The values of the parameters for each submodel of the system are 

set and the model compilation takes place. 

• Simulation mode: The simulation is performed, and the results can be visualized. 

2.1.2 Simulink® 

Simulink® (The MathWorks, Inc., Version 8.9, Release2017a, 2017) is similar to 

AMESim® software as it is also a graphical programming software used for modeling, 

simulation and analysis of dynamical multi-domain systems. But Simulink® is a highly 

suitable and widely used for model-based design and control systems development 

applications. Its capability for generating S-functions (system functions) for real-time 

implementation of complex systems had made it easier to use as a tool for embedded 

system work. It is also easier to use Simulink® software for data-processing. 

2.1.3 Combined simulation 

AMESim® and Simulink® can be used together to perform the simulations to maximize the 

potential advantage offered by both platforms. There are two ways to achieve this. First is 

importing the AMESim® model as S-functions into Simulink® (known as the AMESim®-

Simulink® interface). Second is by importing the Simulink® model into AMESim® (known 

as the Simulink®-AMESim® interface). These two methods, where the models are 

Figure 2.1.Details of the information exchange between the two types of the interfaces of 

AMESim® and Simulink®. Adopted from [11]. 
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uploaded without their respective solvers is termed as the Model Exchange interface, while 

the method of combining the two software with solvers is called as the Co-simulation 

interface [11] [12]. Co-simulation basically means that the solvers from two different 

software packages are imported together with the corresponding software’s model to 

another software. The information exchange that occurs between the two software for the 

two types of interface is shown in Figure 2.1.  

 Figure 2.1 shows the schematic of the interfaces. The model exchange interface shown 

Simulink® provides the inputs, equations and state variables to AMESim®, and then 

AMESim® calculates the state derivatives and the output variables. The process of this 

transfer of information from Simulink® to AMESim® is controlled by the Simulink® solver 

alone.  

As the ultimate objective of the project is to develop a model-based control strategy to 

control the vehicular jerk as well the noise and vibrations from the automotive driveline, a 

Model exchange interface of AMESim® and Simulink® was used to model the vehicle and 

its driveline as shown in Figure 2.1(a). The communication structure of the model exchange 

interface is shown in Figure 2.2. For the work done in this report, the physical modeling of 

all the driveline components was done using AMESim®, while Simulink® was used to 

Figure 2.2. Communication structure for the combined AMESim®-

Simulink® platform using the model exchange interface. Adopted from 

[11], [12]. 
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define the driver torque requests along with simplified first-order engine dynamics. To 

convert the AMESim® model to an S-function post modeling, Visual C++ (Version 2013) 

is used since it is the only compiler compatible to create S-function of the physical model 

with AMESim® ver15. Simulink® solver is used to solve the equations for both AMESim® 

and Simulink® models. Hence, to capture the fast-dynamics of the AMESim® model (stiff 

system), an ode15s (variable step) solver was used. Simulink® will also be used to develop 

the control system in future. After constructing the model in AMESim®, the values of the 

model parameters are modified if needed and then S-function is generated. The new S-

function is provided to the Simulink® model. Using Simulink’s solver, the simulation is 

run, and the results obtained are analyzed using the respective software. The procedure to 

simulate the model developed for the present work using the Model exchange interface is 

shown in Figure 2.3.  

2.2 Assumptions and Limitations in the model 

The domain of driveline dynamics is widespread. This report covers a small portion of it. 

Assumption made for the purpose of this study is that the vehicle moves in the longitudinal 

direction only. Hence, only the longitudinal dynamics of the vehicle is considered for this 

study. Also, the vehicle is subjected to tip-in and tip-out maneuvers only. The model is 

made for Ford F150 which is a rear-wheel-drive, engine-driven vehicle with a 10-speed 

automatic transmission. 

Figure 2.3. Procedure to prepare and execute the simulation on the combined AMESim®-

Simulink® platform. Adapted from [11], [12]. 
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In a real world, the powertrain mounts are flexible, allowing it to rotate a couple of degrees 

with variations in the torque. However, for this study, the powertrain mounts are assumed 

to be stiff. Also, the transmission is modeled as rigid and friction in the kinematic pairs 

(excluding the clutch) is neglected in the model. The gear-shifting strategy is not 

incorporated in to the model for simplification and all the simulations are done at a fixed 

gear. Differential is locked all the time. Wheel slip in not considered in the model since it 

dampens the jerk level felt by the driver and hence the model predictions will not be 

accurate. 

This report does not deal with suspension modeling or the effects of the suspension 

dynamics on driveline oscillations. Parameter identification and experimental validation of 

the model is proposed as future work for this study. 

2.3 Modeling Equations
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The Newton’s second law equation is the underlying principle used to model the components. The model has diverse physical effects 

from combinations of rotating inertias with damped shaft flexibilities. These combinations can create sub-models that are interfaces 

between torques and rotational velocities. The torque-based control structure model is well-suited for this. The modelling objective is 

to filter the main causes of the oscillations in the engine, transmission and wheel speeds from these diverse physical effects.  

Figure 2.4. Schematic model of Ford F150 truck made using AMESim® software 
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The inputs to the model include the driver requested torque and other loads, such as the 

driving resistance acting on the wheels. 

The non-linear driveline model of the vehicle can be simplified as a spring-mass system 

(Figure 2.4) when the vehicle is run at a fixed gear with clutch engaged. A detailed 

discussion of model features and their fundamental equations will be explained in the 

following sub-sections.  

The requested torque is provided using the signal builders in the Simulink to a simplified 

first-order engine dynamics block. The modified torque output from the Simulink® model, 

termed as ‘Torque delivered’ throughout this report, is provided to the LMS AMESim® 

model. This torque goes through the following components modeled in AMESim® - engine 

modeled as an inertia, torque converter (with a clutch), 10-speed transmission, propeller 

shaft, final drive, two drive-shafts, two tires and a longitudinal vehicle dynamics block. 

LMS AMESim® captures the physical behavior of the components in the model using 

Newton’s second law of motion along with some underlying assumptions. These 

assumptions help us find out what physical effects of the components affect the driveline 

Figure 2.6. The block-level diagram of the complete AMESim® - Simulink® model 

Figure 2.5. Schematic model of the first-order engine dynamics in Simulink® 
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oscillations. Basic force/torque-based equations are used to model each component. Then 

each component is linked to each other using the relations between the inputs and outputs 

of the equations to get a complete driveline model. 

2.3.1 Engine  

The torque generated by the engine is characterized as the reduction of the indicated torque 

by the amount of torque lost in pumping, due to friction, and in accessory drive loads. The 

detailed model of the engine and its corresponding losses are neglected in this evaluation 

as its effect on the driveline model is small or slow. So, it was simplified to a first-order 

engine-dynamics model which takes into consideration only the delay in torque generation 

caused due to combustion and lag due to air manifold filling dynamics. The delay in torque 

generation due to combustion ( m ) is engine speed dependent while the lag caused due to 

the manifold filling dynamics can be considered as a first-order lag with a time constant (

m )  [15]. In Simulink®, the driver requested torque is provided to the engine dynamics 

model using the signal builders. The first order engine dynamics block is shown in Figure 

2.5. The engine dynamics can be represented as follows: 

. 1
( ) ( ( ) ( ( ))) m m req m

m

T t T t T t t


     (1) 

where, Tm is the torque delivered by the engine, Treq is the requested torque from the 

engine. 

The torque delivered from the engine block goes to the AMESim® model in which the first 

block consists of a lumped inertia (Jm) for reciprocating and rotating engine components. 

The inertia block in AMESim® is a simple rotary load with external torque applied at the 

input and output ports. The block internally calculates the rotary velocity. Its corresponding 

rotary acceleration is computed using the formula: 

..  
 = 

m req
m

m

T T

J



 (2) 



30 

 

where, 
m  is the angular displacement of the crankshaft. 

2.3.2 Torque Converter 

Vehicles with automatic transmission have torque converter as the connecting link between 

the impeller is rigidly coupled to the crankshaft of the engine. Hence, it rotates at the same 

speed as that of the engine. The turbine is another part of the torque converter. It is locked 

with the gearbox through the transmission input shaft. Turbine and impeller are immersed 

in oil. This oil acts as a hydraulic coupling between the two components. The torque 

transfer occurs as the oil is spun by the impeller, which eventually rotates the turbine, and 

vice versa. This hydraulic coupling allows the torque to be transferred between the engine 

and the transmission mechanism. 

The torque converter model for our application considers the inertias of the impeller 

(pump), turbine, stator and fluid lumped together as one inertia. Based on the need of the 

application, a simplified model can be made for the torque converter which has its static 

representation in the form of a plot of torque ratio and input capacity factor, both versus 

speed ratio. The underlying relations for the torque converter can be written as [18] 

Figure 2.7. Schematic of a lock-up torque converter.  
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where, Nm = impeller hub speed (engine output speed), Nt = turbine hub speed, Tm = 

impeller (input) torque (engine output torque), Tt = turbine (output) torque, SR = speed 

ratio, TR = torque ratio, as a function of the speed ratio, K = capacity factor, as a function 

of the speed ratio. 

The torque converter clutch is modeled in a parallel connection to the torque converter to 

capture its appropriate physical behavior (Figure 2.8). It consists of the pressure plates, 

friction plates, and clutch disc with torsional damper and a release mechanism. Next block 

in line is the turbine inertia (Jt). Moreover, to capture different modes of clutch operation, 

the capacity factor for the clutch (Kc) is also taken into consideration while modeling. The 

three modes of clutch operation are open, slipping and closed or locked condition. 

Following fundamental equations will describe its behavior in each mode – 

Figure 2.8. The AMESim® model for engine inertia, torque-converter, 

clutch and corresponding clutch-dynamics 
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Open condition –  

  t mT T TR SR  (4) 

 
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(5) 

Slipping condition –  

  
 

2

1 m
t m

N
T T TR SR

K SR

 
     

 

 (6) 

Locked condition – 

t mT T  (7) 

2.3.3 Torque Converter Clutch Dynamics 

The dynamics of the torque converter clutch is characterized using three components in 

parallel as given below: 

1. The flexibility of the clutch can be modeled using the spring-damper block as: 

. .

( ) ( )m ctc c m c cT k c        (8) 

where, Ttc = torque transferred by torque converter clutch, kc = clutch torsional 

stiffness, cc = clutch torsional internal damping, c = the clutch output torsional 

angle. 

2. The rotary clearance block (backlash element), connected in parallel to the spring-

damper block, captures the torsional compression effects of the torque converter 

clutch springs by providing a gap or clearance corresponding to a relative angular 

displacement between the impeller shaft (input) and the turbine hub (output). It can be 

represented using the dead-zone backlash model using the equation given by Karlsson 

[10]: 
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 (9) 

where, 2 tc = total clutch backlash. 

3. To accurately characterize the friction damping of the system, the clutch hysteresis 

block is added as the third component. Hysteresis in clutch is attributed to both internal 

and external friction damping phenomenon. This hysteresis arises due to, not only the 

elastic forces within the mechanical parts, but also the non-elastic effects resisting 

generation and propagation of deformations and movements. It does not allow the 

parts to come back to their initial states. It can be perceived as an energy dissipation 

which occurs when the cyclic loading forces are applied to the clutch. The torque 

output of all three components are added to obtain the torque delivered to the 

transmission. 

2.3.4 Automatic Transmission 

The Ford 10R80 automatic transmission has four interconnected planetary gears with six 

clutches to provide ten forward speeds and one reverse speed. Different gear ratios (it) are 

Figure 2.9. Hysteresis phenomenon when the clutch is subjected dynamic 

loading and unloading forces. Adopted from [16] 



34 

 

obtained by fixing the sun, planet carrier and the ring gears of the planetary gear-set and 

corresponding clutches. The output torque is then transmitted to the propeller shaft.  

The model of the transmission consists of the gear-backlash block, torque reduction due to 

the losses in the transmission, clutch and transmission shaft inertias, gear node inertias, 

planetary gear sets (gear ratio multipliers) and associated flexibility components. The 

selection of gear is done by selecting the appropriate gearset with corresponding 

combination of clutches. 

The transmission gear backlash can be modeled with the equations given by Nordin et. al. 

[17] – 

. .

( ) ( ) (Contact Mode)

0                                       (Backlash Mode)

c tts tb ts
ts

k cT    
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 (11) 

where, Tts = is the torque transmitted by the transmission output shaft, tb is the half of the 

backlash gap between the input and the output transmission shaft, tb  = transmission 

Figure 2.10 The AMESim® model for the automatic transmission 
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backlash position angle, 
c t      is the difference between the transmission input 

angular displacement 
c and output shaft angular displacement 

t . 

The torque lost inside the transmission, measured in Nm, can be reduced from the input 

torque and then multiplied by the corresponding gear ratio. The node inertias and rotational 

inertias for the shaft and planetary gearset components were included to accurately evaluate 

the total inertia for the corresponding gear. 

2.3.5 Propeller shaft 

The propeller shaft is modeled as damped torsional flexibility with rotational inertia Jps, 

stiffness kps, and damping coefficient cps using the equations -  

. .

( ) ( )t psps ps t ps psT k c        (12) 

where, 
ps is the propeller shaft output angular displacement. 

2.3.6 Final drive: 

Final drive can be modeled as a rotating inertia Jfd, and a friction torque that could be 

assumed to be described as a viscous damping coefficient, cfd. For simplification purpose, 

the inertia and the damping coefficient can be neglected for this evaluation. The complete 

final drive model also contains a gear speed/torque conversion ratio ifd, a backlash element 

and a differential element. The differential element provides the driven wheels to be rotated 

Figure 2.11. The AMESim® model for propeller shaft, final drive (gear multiplication, 

backlash and differential), drive-shafts, tires and vehicle dynamics 
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at different speeds. The model of the final drive can be represented using the following 

equations – 

ps fd

fd

fd fd

T

T
i




  (13) 

. .
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 (15) 

where, Tfd is the torque transmitted by the final drive output shaft, 
fdb is the half of the 

backlash gap between the input and the output final drive shaft, 
fdb  = final drive backlash 

position angle, 
fd ps fd      is the difference between the transmission input and output 

shaft angular displacement 
fd . 

2.3.7 Drive-shafts 

The drive-shafts can be represented as a component with damped torsional flexibility with 

inertia Jds, with internal damping cds, and stiffness kds. 

. .

( ) ( )fd dsds ds fd ds dsT k c        (16) 

where, ds is the drive shaft output angular displacement. 
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2.3.8 Wheels and Vehicle Dynamics 

The wheels can be modeled as a rotating inertia with inertia Jw, with internal damping cw, 

and stiffness kw. 

. .

( ) ( )ds ww w ds w wT k c        (17) 

where, w is the wheel hub angular displacement. 

The vehicle dynamics block consists of modeling the load torque, resulting from the 

driving resistances of the vehicle. These resistances can be calculated as follows: 

• Rolling Resistance,   

2( )RR wgF am bv  (18) 

• Drag Resistance,   

2(
2

)
1

 DR w f D windA C VF V   (19) 

• Gradient Resistance,   

si ( ) n rGR wgF m   (20) 

• Inertia Resistance,   

 IR wwF m a  (21) 

where, mw = mass of the vehicle, a & b = rolling resistance coefficients, w = density of 

air, Af = frontal area of the vehicle, CD = coefficient of drag, V = vehicle velocity, Vwind = 

wind velocity, r = gradient of the road, aw = acceleration of the vehicle. 

As rotational dynamics of the vehicle is the focus area, the load torque, which is needed 

for evaluation, can be obtained as – 

.load load effT F r  (22) 

where, Fload = FRR + FDR + FGR + FIR is the total load force, reff = effective radius of the tire. 
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3 Results and Discussion 

The driveline model is simulated using the Simulink® solver using the Model-exchange 

interface. The post-processing of the simulation results is done using the respective 

software interface, i.e. the Simulink® model results are evaluated using Simulink® while 

the AMESim® results in AMESim®. 

The model consists of two main inputs affecting the system behavior, viz. the requested 

torque and the load torque. The driver requested torque is generated using the Simulink®
 

signal generator block based on the test requirements while the load torque depends on the 

rolling resistance, drag resistance and the gradient of the road. While the backlash is in the 

contact mode, the driver requested torque directly affects the powertrain inertia, eventually 

affecting the rest of the model. But, when backlash traversal occurs, the model is decoupled 

for that instant. The characteristics of the corresponding backlash block in this mode 

depends on the state of the components connected to either side of the block. 

The model is analyzed for different tip-in and tip-out scenarios. These open-loop control 

method, where the requested torque is the controlling element, is used to understand the 

effect of torque variations on the driveline model when it is subjected to tip-in and tip-out 

conditions. The results of the qualitative evaluation of the complete driveline model are 

discussed in the subsequent section. 

3.1 Driveline Model Evaluation 

To evaluate the functionality of the model, two major scenarios were tested to verify the 

complete model behavior. Tip-in condition is when the vehicle is rapidly accelerated, while 

in the tip-out condition, the vehicle is allowed to coast down. The initial tests for tip-in and 

tip-out scenarios were set up to prevent any backlash traversal and so both the backlash 

elements, the transmission and the final drive backlash remain in positive contact mode. It 

was then followed by tests in which the backlash position changes from one side to the 
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other. Most of the tests were evaluated at fifth gear as higher degree of oscillations were 

observed for that gear. The test results are shown below. 

3.1.1 Tip-out and Tip-in conditions – Positive Contact mode  

3.1.1.1 Tip out at the rate of 150 Nm/s in positive contact mode 

For Tip-out case as shown in Figure 3.1, the model was tested at the following conditions–  

• Engine torque request – Ramp down at the rate of 150 Nm/s from 200 Nm to 50 

Nm at 9 seconds 

• Torque converter clutch (TCC) capacity – Constant at 700 Nm (No-slip condition) 

In Figure 3.1(a), as soon as the requested torque (red line) is ramp down at the rate of 150 

Nm/s at t = 9s to 50 Nm, the torque delivered by the engine follows the requested torque. 

Figure 3.1. Tip-out case for positive contact mode with torque converter clutch 

locked and requested torque ramp down at the rate of 150 Nm/s at t = 9s 
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The engine speed gets stabilized to 2090 rpm at 10.5 seconds (Figure 3.1(b)). Also, the 

transmission speed and the reflected wheel speed at the transmission input shaft are same 

as the engine speed. Both, the transmission backlash and the final drive backlash stays in 

the positive contact mode i.e. +5° for transmission backlash and +2° for final drive 

throughout the evaluation period, as shown in Figure 3.1(c). 

3.1.1.2 Tip in at the rate of 500 Nm/s in positive contact mode 

For Tip-in case as shown in Figure 3.2 from 11 to 11.5 seconds, the model was tested at 

the following conditions –  

• Engine torque request – Ramp up at the rate of 500 Nm/s from 50 Nm to 300 Nm 

at 11 second 

• Torque converter clutch (TCC) capacity – Constant at 700 Nm (No-slip condition) 

Figure 3.2. Tip-in case for positive contact mode with torque converter clutch 

locked and requested torque ramp up at the rate of 500 Nm/s at t = 11s 
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In Figure 3.2(a), as soon as the requested torque (red line) is excited by a ramp increase at 

t = 11s to 300 Nm in 0.5 seconds, the torque delivered by the engine starts to increase but 

after a delay of 50 milli-seconds, which is equivalent to the engine time delay. The torque 

increase conforms to the condition of positive contact mode of the backlash and hence, 

power transfer to the wheel through the driveshaft. The engine speed increases slightly 

from 2090 rpm to 2110 rpm from 11 to 11.5 seconds (Figure 3.2(b)). Also, the transmission 

speed and the reflected wheel speed at the transmission input shaft are nearly same as the 

engine speed. Both, the transmission backlash located at the input of the transmission shaft, 

and the final drive backlash placed at the output of the final drive, stays in the positive 

contact mode i.e. +5° for transmission backlash and +2° for final drive throughout the 

evaluation period, as shown in Figure 3.2(c). 

3.1.2 Tip-out and Tip-in conditions – Backlash Traversal mode 

3.1.2.1 Tip out at the rate of 150 Nm/s in backlash traversal mode 

The model is evaluated for a tip-out scenario, using the following conditions – 

• Engine torque request – Ramp down at the rate of 150 Nm/s from -30 Nm to 200 

Nm at 9 seconds 

• Torque converter clutch (TCC) capacity – Constant at 700 Nm (No-slip condition) 
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Figure 3.3(a) shows the requested torque (red line) is ramped down from a positive value 

to a negative torque to induce deceleration in the driveline model. This negative value leads 

to engine motoring at -10 Nm. The reduction in the torque delivered by the engine to 0 Nm 

(at t = 9.9 sec) triggers the final drive backlash to shift from the positive contact mode to 

the negative contact mode. Post final drive backlash traversal, the transmission backlash 

begins to move towards the negative contact mode (at t = 10.14s). The backlash position 

change leads to propagation of oscillations in the driveline due to the in-built rotary 

elasticities and damping. These oscillations also cause the backlash gap to open again and 

come back to negative contact mode, as it can be seen in Figure 3.3(c) at t = 10.33s. 

Figure 3.3. Tip-out case for backlash traversal mode with torque converter 

clutch locked and requested torque ramp down at the rate of 150 Nm/s at t = 9s 
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3.1.2.2 Tip in at the rate of 500 Nm/s in backlash traversal mode 

The tip-in case from a negative requested torque to a positive value triggers backlash 

traversal across the transmission and final drive element (Figure 3.4). This will lead us to 

verify the backlash dynamics present in the model. The conditions at which the model was 

evaluated are as follows –  

• Engine torque request – Ramp up at the rate of 500 Nm/s from -30 Nm to 220 Nm 

at 11 second 

• Torque converter clutch (TCC) capacity – Constant at 700 Nm (No-slip condition) 

Figure 3.4. Tip-in case for backlash traversal mode with torque converter clutch 

locked and requested torque ramp up at the rate of 500 Nm/s at t = 11s 
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In Figure 3.4(a), the requested torque (red line) is initially provided a negative value (-30 

Nm) such that the engine is in constant deceleration mode. The value of the torque 

delivered by the engine is around -10 Nm and the engine speed is reducing, which shows 

that the engine is driven by the load torque provided by the wheels and eventually by the 

transmission. From Figure 3.4(c), it is observed that the backlash position of both the 

backlash elements is on the negative side, i.e. -5° for transmission backlash and -2° for 

final drive. The engine is then provided with a ramp increase in requested torque at t = 11s 

from -30 Nm to 220 Nm in 0.5 seconds. As soon as the torque delivered by the engine 

becomes positive at t = 11.07s, the engine and the transmission speed increases. Moreover, 

the transmission backlash starts to traverse from negative contact mode to positive contact 

mode. The wheel speed reflected at the transmission input shaft remains constant at 2026 

rpm. Right after the transmission backlash reaches positive contact mode at t = 11.14s, the 

final drive gets the driving torque leading the backlash position at the final drive to change 

to positive contact mode (at t = 11.19s). This change introduces oscillations in the driveline 

at frequency of 7-8 Hz, as observed in the engine speed (thick yellow line) and the 

transmission input speed (dotted blue line) in Figure 3.4(b). The transmission speed 

reduces at the instant where the transmission backlash connects to the positive contact side 

and then increases again. The reflected wheel speed slowly increases after the final drive 

backlash has been traversed.  
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3.1.3 Effect of rate of change of requested torque 

3.1.3.1 Tip in at the rate of 1000 Nm/s in backlash traversal mode 

The tip-in case from a negative requested torque of -30 Nm to a positive value of 520 Nm 

at the rate of 1000 Nm/s (Figure 3.5) can be compared with the tip-in case shown in Figure 

3.4 with the rate of change of requested torque is 500 Nm/s. This will lead us to understand 

the non-linear dynamics of the driveline model. The conditions at which the model was 

evaluated in Figure 3.5 are as follows –  

• Engine torque request – Ramp up at the rate of 1000 Nm/s from -30 Nm to 520 Nm 

at 11 second 

Figure 3.5. Tip-in case for backlash traversal mode with torque converter clutch 

locked and requested torque ramp up at the rate of 1000 Nm/s at t = 11s 
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• Torque converter clutch (TCC) capacity – Constant at 700 Nm (No-slip condition) 

In Figure 3.5(a), the rate of change of requested torque from 500 Nm/s to 1000 Nm/s 

seconds makes the oscillation more prominent in the driveline. The frequency of the 

oscillations remains unchanged (7-8 Hz) but the amplitude of those oscillations increases 

as observed from transmission input speed from Figure 3.5(b).  

Figure 3.6. Tip-in case for backlash traversal mode with torque converter clutch 
locked and requested torque ramp up at the rate of 500 Nm/s at t = 11s with 

additional dip in the requested torque during traversal 
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3.1.4 Effect of torque shaping during backlash traversal mode 

3.1.4.1 Tip in at the rate of 500 Nm/s in backlash traversal mode with reduction in 

torque during traversal 

In the backlash traversal mode, some degree of open loop control can be achieved by 

modulating the requested torque signal such that the oscillations prevalent in the driveline 

model are reduced. The conditions at which the torque modulation was evaluated are as 

follows – 

• Engine torque request – Ramp up at the rate of 500 Nm/s from -30 Nm to 520 Nm 

at 11 second 

• Torque converter clutch (TCC) capacity – Constant at 700 Nm (No-slip condition)  

• Torque dip at t = 11.1s 

Figure 3.6(a) shows reduction in the requested torque to –20 Nm at t = 11.1s when the final 

drive backlash is open and traversing to the positive contact side. This reduction can also 

occur at the time of transmission backlash traversal, but this evaluation explains its effect 

on torque transfer during final drive backlash position change only. As seen in Figure 

3.6(b), the engine speed and the transmission speed are observed to fluctuate quite less 

when compared to the case without torque reduction in Figure 3.4(b). This shows that the 

driveline oscillations can be controlled using this technique. 
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3.1.4.2 Tip in at the rate of 1000 Nm/s in backlash traversal mode with reduction 
in torque during traversal 

With an increased rate of change of requested torque (1000 Nm/s), the torque reduction is 

made at t = 11.07s to observe its effect on both the transmission and the final drive 

backlash. As seen in Figure 3.7(a), the requested torque is reduced to -20 Nm for 0.1s 

during which both the backlashes change from negative to positive contact mode one after 

the other. At t = 11.1s, the transmission backlash rebound is seen to be suppressed when 

compared to Figure 3.5. This dip in the requested torque assists in slow backlash traversal 

and hence, reduced impact torque when it reaches the positive contact mode. It provides 

reduction in driveline oscillations besides reduced wear of the components. 

Figure 3.7. Tip-in case for backlash traversal mode with torque converter clutch 

locked and requested torque ramp up at the rate of 1000 Nm/s at t = 11s with 

additional dip in the requested torque during traversal 
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4 Conclusions and Future Work 

This report broadens our understanding of the efforts put to develop the Ford F150 vehicle 

driveline model and captures its dynamics while evaluating it to understand clunk-and-

shuffle, and effect of backlash status and position on performance of the driveline. This 

report also summarizes the qualitative evaluation of the complete driveline model 

simulated using a Model-exchange interface with Simulink® and AMESim® along with 

their respective post processing capabilities. Different scenarios for tip-in and tip-out along 

with commonly encountered combinations were run using the simulations. The key 

inferences from the simulations are as follows:  

The joint simulation of the high-fidelity driveline model in AMESim® and control-

oriented model in Simulink® will provide a platform to evaluate the estimators and control 

system while considering the fast dynamics of the non-linear system in future. The initial 

evaluation of the model with backlash in positive contact mode for tip-in and tip-out case 

confirms that the model exhibits the expected dynamics of the components such as the 

transmission and final drive backlash, the flexibilities of the propeller shafts, drive-shafts 

and tires. Also, based on the wheel speed reflected at the transmission input shaft for tip-

in and tip-out scenarios, it can be inferred that the stiffness and damping coefficient of the 

tires are essential to capture the right damping characteristics of the vehicle. 

Moreover, when the model is evaluated for a tip-in case from a negative torque to a positive 

torque, the effect of these flexibilities is quite noticeable. The oscillations induced in the 

driveline post tip-in are at 7-8 Hz frequency, which die out eventually due to damping 

present in the torque converter damper, transmission input shaft, propeller shafts, two 

drive-shafts and both the tires. This frequency of oscillations is similar to the results found 

in the literature [9]. Also, with higher rate of change of torque input (1000 Nm/s), the 

driveline experiences increased amplitude of the shuffle as observed in the engine speed. 

Preliminary evaluation using the torque shaping during the backlash traversal shows 
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reduction in the amplitude of the oscillations for different rate of change in requested 

torque. 

4.1 Future Work 

As proposed future work, the following areas can be considered for improvement –  

• The results obtained in the report can be validated using different means – both 

analytical and experimental. A thorough analysis of the effect of individual parameters 

of the components on complete driveline performance can be studied next. 

• The driveline component models downstream to the transmission can be developed and 

validated to capture their natural frequency by performing a jounce test on the vehicle 

• A preliminary torque shaping showed improvement in controlling the torque transfer 

during the backlash traversal mode, reducing the driveline oscillations slightly. Hence, 

a closed loop torque-based control system needs to be developed to actively control the 

torque to mitigate the low frequency oscillations and also to compensate for the effects 

of the backlash, clutch and tire slip, and drive shaft flexibility. 

• A reduced order model can be further derived from the currently developed full-order 

model to develop the estimators and controllers for actively reducing the oscillations. 

• Estimators can be developed for calculating the parameters required to identify and 

quantify backlash state in the driveline. 

• Additional components in a vehicle with four-wheel drive such as transfer case, 

additional propeller shafts and drive-shafts will change the flexibility of the system. 

This will also affect the control system to be developed for improved drivability. 

Hence, an additional model will be needed to evaluate the additional degrees of 

freedom of the system. 

• Also, the effect of addition of the vertical dynamics of the unsprung masses, the vertical 

and longitudinal dynamics of the sprung mass, flexibilities associated with the engine 

mounting system and more comprehensive tire model could be evaluated for different 

scenarios to evaluate its effect on the driveline dynamics. 
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• A clutch slip control method can be developed and utilized to reduce the driveline 

oscillations. 
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