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Abstract 

Unique benefits can be gained by combining advantages of both micro- and 

macrocognitive methods that would otherwise be impossible to gather from either of 

these methods separately. The proposed research examines several cognitive functions 

within one systematic study that combines some empirical investigation with post-hoc 

qualitative assessment to gather knowledge of strategies and computations. Thereby, 

analyzing a larger cognitive system in a standardized way. By analyzing several cognitive 

functions the multifunction mental model hypothesis (MMM) is explored. This 

hypothesis states that performance of one sensemaking operation is predictive of 

performance of other related sensemaking operations. Three additional hypotheses were 

also explored. (2) Through brief instruction and feedback, mental models are developed 

that involve understanding the relational structure between inter-correlated and 

independent feature(s). (3) Understanding of the relational structure of the features can be 

used to make error correction decisions. (4) The strategies that utilize the inter-correlated 

nature of the features can be recognized and verbalized by users. Four Experiments used 

a multi-cue probabilistic weather forecasting task. Evidence from Experiments 1-4 

supported the MMM hypothesis. Systematic variability in probability estimation by using 

differentially weighted features and inter-correlated features were related to evacuation 

decisions, error detection, and error correction. Results also supported hypotheses 2-4. 

The present research provides evidence which supports the integration of micro- and 

macrocognitive methods for a richer understanding of cognitive function in complex 

sociotechnical systems.  
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Chapter 1: Introduction 

Research on complex cognitive function has involved a tension between 

understanding cognitive function in naturalistic contexts and using laboratory methods to 

replicate and isolate that cognitive function for careful study (Gozli, 2017; Kingstone, 

Smilek, & Eastwood, 2008; McDermott, 2011; Newell, 1973). Experimental 

psychologists often use laboratory methods to often deal with micro- aspects of cognition 

in attention, decisions, memory, problem-solving, prediction, and judgments  (Cacciabue 

& Hollnagel, 1995; Ebbinghaus, 1913; Fitts, 1946; Shipley, 1961). Analyzing micro 

aspects of cognition is valuable and necessary, but not sufficient. Frequently, methods 

used in the microcognitive paradigm analyze one or two cognitive functions often in the 

form of simple linear causal chains (Klein & Hoffman, 2008). Using this reductionist 

approach is valuable for gaining large amounts of information about micro aspects of 

cognition (Klein et al., 2003). However, while the microcognitive paradigm provides 

valuable information about isolated aspects, it may come at the cost of discovering 

emergent processes and abilities when analyzed together in context (Gozli, 2017).  

Today, this tension characterizes research on cognitive function.  At one end, 

applied researchers (including clinical psychologists, education research, 

Industrial/Organizational research, and Human Factors, and related fields) often focus on 

macro-level processes that emerge from the combination of many low-level processes. In 

particular, cognitive systems engineering uses naturalistic studies to analyze how 

subcomponents fit together in context (Crandall, Klein, & Hoffman, 2006; Klein & 

Hoffman, 2008). However, some have argued that naturalistic approaches can lose the 
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assurance of well-designed highly controlled experiments; namely, the ability to draw 

causal inferences (Kingstone et al., 2008; McDermott, 2011). They are also less equipped 

to establish the same level of fidelity achieved in laboratory settings. In this thesis, I 

argue that unique benefits can be gained by combining parts of both methods, resulting in 

advantages that would otherwise be impossible to gather from implementing either of 

these methods independently. This approach examines several cognitive functions within 

one systematic study that combines some empirical investigation with post-hoc 

qualitative assessment to gather knowledge of strategies and computations. Thereby, 

analyzing a larger cognitive system in a standardized way. 

One integrative perspective for understanding higher-level cognition in context 

has been called sensemaking. Sensemaking has been defined as internal and external 

function performed for the purpose of forming a deeper understanding, so that one can 

act effectively. The sensemaking process is accomplished, in part, through the supporting 

process that is ‘mental models’ (Kaste, 2012; Klein & Hoffman, 2008; Klein, Moon, & 

Hoffman, 2006b)1. Sensemaking is responsible for a number of operations such as how 

people comprehend, explain, make inferences, detect anomalies, diagnose errors, make 

predictions, and learn  (Klein & Hoffman, 2008; Klein, Moon, & Hoffman, 2006a; 

Starbuck & Milliken, 1988; Weick, Sutcliffe, & Obstfeld, 2005). Evaluating the role 

                                                 

1 The concept of the ‘mental model’ has been distinguished from similar concepts such as 
a ‘frame’ (Klein, Phillips, Rall, & Peluso, 2007). This will be discussed in further detail 
later on.  
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mental models play in these sensemaking operations is valuable for making inferences 

about how performance of these operations could be improved.  

This thesis focuses on evaluating several of these valuable sensemaking 

operations. I will report on the results of a series of experiments in which participants 

interacted with, and made predictions about, a simulated weather forecasting system. I 

hypothesize that a variety of different functions, supported by the process of 

sensemaking, in this task will draw on common aspects of a mental model of the 

simulated weather forecasting system. In other words, I hypothesize people have different 

mental models that range in their quality of the intelligent tool that they represent, in this 

case a simulated weather forecasting system, and that different chunks of those mental 

models might be valuable for certain relatable tasks. Consequently, I predict that, to the 

extent there are systematic individual differences in performance on some components of 

the task, those who perform better will also perform better on other operations of 

sensemaking. I term this prediction as the Multifunction Mental Model Hypothesis 

(MMM).  

This is not to say that mental models are not dynamic and cannot change, nor that 

a different mental model could not be chosen entirely. In fact evidence suggests mental 

models are elaborated and refined (Johnson-Laird, 2005; Vosniadou & Brewer, 1992). 

However, simply because a mental model of an intelligent tool changes does not mean 

that functions used to operate the intelligent tool are not supported by the same parts or 

aspects of the mental model. It only implies that a new or refined mental model replaces 

the previous mental model. 
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To explore and test this hypothesis, I will present four experiments which were 

designed to evaluate several sensemaking operations, including: learning relations 

between variables (i.e. function learning), decision making, forecasting, system error 

detection, and system error correction. In contrast to traditional experimental psychology 

experiments that have studied these operations in isolation, I will examine how these 

operations are supported by a common knowledge base and how they are related. 

Analyzing sensemaking operations in weather forecasting is an ideal space for combining 

methods of both the micro- and macrocognitive paradigms. A number of micro- and 

macrocognitive studies have been conducted in weather forecasting (Gluck & Bower, 

1988; Gluck, Shohamy, & Myers, 2002; Hoffman, LaDue, Trafton, Mogil, & Roebber, 

2017). However, consistent with the microcognitive paradigm these microcognitive 

studies have not evaluated a larger cognitive system, merely micro aspects of that system 

such as category learning (Gluck et al., 2002). A number of macrocognitive studies have 

also been conducted in more naturalistic contexts (Hoffman et al., 2017). However, these 

studies are not able to achieve the same level of fidelity as can be achieved within the lab.  

Therefore, there is an opportunity to expand upon previous work.  

           In addition to the MMM hypothesis, three other hypotheses are also proposed. The 

second hypothesis is that through brief instruction and feedback, mental models are 

developed that involve understanding the relational structure between inter-correlated and 

independent feature(s). The third hypothesis is that understanding of the relational 

structure of the features can be used to make error correction decisions. The last 
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hypothesis is that the strategies that utilize the inter-correlated nature of the features can 

be recognized and verbalized by users.  

 Exploring error detection, diagnosis, and correction by using inter-correlated 

features is valuable. Across many naturalistic contexts—including weather forecasting—

the features used for error detection, diagnosis, and correction are inter-correlated. In 

order to help explain error detection and diagnosis by using inter-correlated features I will 

provide an illustrative example. An easy way to do that is to demonstrate inter-correlation 

as a result of location. Imagine three weather sensors located at Northern Michigan 

University (NMU). Now imagine three weather sensors located 100 miles away at 

Michigan Technological University (MTU). Whether these sensors were reporting 

information on temperature, rain fall, or cloud coverage it is highly likely that the sensors 

located at the same university are reporting the same information. For example, all three 

sensors will likely all be reporting snowfall or all three sensors will be reporting rain. If 

one of the sensors reported sunshine and the other two sensors in the same location 

reported rainfall one might think there is an error in the sensor reporting the inconsistent 

information. However, if the three sensors at NMU reported sunshine and the three 

sensors at MTU reported snowfall you wouldn’t necessarily think that there was an error 

with the sensors. This is because the information reported from the sensors in the same 

location are inter-correlated while the information reported from the sensors located at 

NMU versus the information being reported from MTU are relatively independent. In 

order to accurately detect, diagnose, and correct an error by using inter-correlated 

features it requires a different kind of strategy and mental computation compared to 
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diagnosing errors by using independent features alone. Therefore, it is valuable to 

determine (1) if operates can learn the relational structure of the inter-correlated features 

(2) if that understanding can be utilized for detecting, diagnosing, and correcting errors 

and (3) if this strategy can be recognized and verbalized.  

 In this thesis I argue that studying mental models in the lab utilizes advantages of 

both micro- and macrocognitive paradigms. Studying mental models by combining these 

methods provides an opportunity to analyze how different sub components of cognition 

fit together in a larger system that is sensemaking in a systematic way. The MMM 

hypothesis is also explored; those who perform better in one sensemaking operation will 

also perform better on other operations of sensemaking. Implications of this hypothesis, 

such as training, is also explored.  
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Chapter 2: Literature Review 

The outline of this literature review is as follows. First, I briefly review the 

definitions of micro- and macrocognition and their distinguishing features. Reviewing the 

micro- and macrocognitive paradigms is valuable for demonstrating their strengths and 

weaknesses and for arguing why combining methods from each paradigm creates unique 

advantages. I then provide a review of the definition of the integrative process under 

investigation—sensemaking. This review of what sensemaking is and how the 

sensemaking process operates lays the foundation to understand the role mental models 

play during the sensemaking process. Finally, the definition of mental model and its role 

within error management is discussed. This review is valuable for providing support for 

the MMM hypothesis and demonstrating some of its potential implications in an applied 

context.  

Distinguishing Microcognition from Macrocognition 

Microcognition and macrocognition are complementary paradigms of research 

(Klein et al., 2003). However, to better understand this it is helpful to examine and define 

each perspective more clearly. Microcognition is the study of invariant processes often in 

the form of binary oppositions such as: massed vs. distributed practice, serial vs. parallel 

processing, exhaustive vs. self-terminating search, single code vs. multiple code, and so 

on (Cacciabue & Hollnagel, 1995; Klein et al., 2003; Newell, 1973). The study of 

microcognition often utilizes college students in controlled artificial laboratory settings 

(Smieszek & Rußwinkel, 2013). One of the advantages of microcognitive study is 
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internal validity, or the ability to draw causal inference (McDermott, 2011). Convenient 

and large samples are useful when analyzing the effects of several independent variables 

on a dependent variable, which requires much larger sample sizes in order to conduct 

more complex statistical analyses.  

In comparison, macrocognition is the framework for describing cognition as it 

naturally occurs (Klein et al., 2003; Schraagen, Klein, & Hoffman, 2008). The study of 

macrocognition focuses on the performance of complex human-machine systems as a 

whole (Smieszek & Rußwinkel, 2013). To accomplish this goal, researchers often 

analyze subject matter experts within naturalistic contexts using cognitive task analysis 

methods (Crandall et al., 2006; Klein & Hoffman, 2008; Klein et al., 2003). 

Macrocognitive research includes topics such as naturalistic decision making, planning, 

problem detection, coordination, adaptation, and sensemaking (Klein, Pliske, Crandall, & 

Woods, 2005; Klein et al., 2003). Although many of these topics are also studied from a 

microcognitive perspective there are two typical differences. (1) Reliance on studying the 

functions in a natural context, and (2) examining how multiple microcognitive functions 

interact to produce emergent complex behavior.  

Micro- and macrocognition are not antagonist paradigms of research (Smieszek & 

Rußwinkel, 2013). Rather, each can be used to inform and inspire the other (Klein et al., 

2003). Some have suggested a bottom up approach; start with microcognitive phenomena 

to inspire research in macrocognitive function (Klein et al., 2003). While others have 

suggested that by first observing phenomena as it naturally occurs we are more likely to 

create universally valid theories (Kingstone et al., 2008). Theories derived from 
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phenomena observed in naturalistic contexts will likely be more robust compared to 

phenomena only analyzed within the lab. Effects discovered within the lab may be so 

sensitive to other variables within more naturalistic contexts that the same effects may 

never be observed in those more naturalistic contexts (Kingstone et al., 2008).  

As mentioned above, there are two main distinctions between micro- and 

macrocognition: analyzing the system as a whole and analyzing the phenomena in 

context. The present research focuses on the integrated cognitive system, but does not 

focus on cognition in context. Creating naturalistic conditions in the lab is challenging 

(Schraagen et al., 2008). However, consistent with the recommendations provided by 

Kingstone et al., (2008) the emergent process under investigation, sensemaking, is based 

on the expansive research conducted in naturalistic settings (Hoffman et al., 2017; Kaste, 

2012). Mental models used by experts in weather forecasting have been observed in 

complex naturalistic environments (Hoffman et al., 2017). These mental models are used 

for a number of sensemaking operations. However, testing the interactions and relations 

of several related sensemaking operations has yet to be explored in the lab. I’m 

attempting to analyze a larger cognitive system within the lab. This fills a valuable gap 

because the nature of the microcognitive paradigm is fundamentally reductionist. This 

reductionist approach misses the opportunity to analyze the fluctuations and interactions 

between the primary functions/behavior and their supporting functions (Klein & 

Hoffman, 2008). Such as the use of mental models for various related sensemaking 

operations.  
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What is sensemaking? 

 From military operations, to leadership, to weather forecasting, researchers are 

studying the role of sensemaking on vital operations (Alberts & Garstka, 2004; Ancona, 

2012; Hoffman et al., 2017). Sensemaking has been studied from diverse disciplinary 

backgrounds. There is not one unified definition of sensemaking accepted across 

disciplines (Weick, 1995). It is beyond the scope of the present paper to review all 

definitions of sensemaking2. However, since the primary focus of the present paper is on 

the role sensemaking plays in complex human-machine systems, it is more valuable to 

review what some notable systems engineers’ perspective is on sensemaking.  

 In their seminal paper, Klein, Moon, and Hoffman (2006a) provide a thorough 

investigation as to what is meant when researchers say ‘sensemaking.’ The authors 

distinguish their definition from previous definitions such as “how people make sense out 

of their experience in the world,” indicating that this type of definition is too broad and 

could encompass years of previous research in concepts such as creativity, curiosity, 

comprehension, and situation awareness. Rather, the authors define sensemaking as “a 

motivated, continuous effort to understand connections (which can be among people, 

places, and events) in order to anticipate their trajectories and act effectively” (Klein et 

al., 2006a, p. 71).  

                                                 

2 See (Dervin & Naumer, 2009) for review on approaches of sensemaking. 
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 Based on previous experience, when an operator approaches a system they have a 

frame (which is related to yet distinct from the concept of mental model). Sensemaking is 

required when there is some kind of ambiguity, complexity, or anomaly (without which 

there would be nothing to make sense of). Within a socio-technical system this occurs 

when feedback from an intelligent tool is inconsistent with the operators’ current frame. 

An operator could choose to ignore the anomaly. However, if the operator does not 

ignore the anomaly then both mental mechanisms and external behavior may be required 

to increase their understanding of the anomaly which can elaborate an existing frame or 

choose a new frame entirely. Across the literature of sensemaking, many support the 

notion that sensemaking is not limited to only internal mechanisms but rather 

sensemaking also consists of behaviors (Dervin, 1983; Pirolli & Russell, 2011; Weick et 

al., 2005). This could be in the form of communication. Some have gone as far as to say 

sensemaking involves any activity performed for the purpose of “collecting and 

organizing information for deeper understanding” (Pirolli & Russell, 2011, p. 1). 

Somehow an operator needs to go through a process of reconciling what he/she already 

knows about the system (which is in the form of a frame) with the new information that 

does not currently fit within their existing understanding (or frame). This is the process of 

sensemaking. This processes is depicted in the data/frame model (Klein et al., 2006b).  
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Mental Models  

Without mental models many of the functions of sensemaking would not be 

possible (Fallon, Murphy, Zimmerman, & Mueller, 2010; Klein et al., 2006b)3. Mental 

models support vital functions such as reasoning, explaining, and predicting (Johnson-

Laird, 2001, 2006; Jones, Ross, Lynam, Perez, & Leitch, 2011; Rouse & Morris, 1986). 

Some dispute the existence of mental models (Johnson-Laird, 1983), however, the 

continually growing empirical and theoretical evidence provides strong support for their 

existence (Gentner & Stevens, 2014; Johnson-Laird, 1983, 2005; Klein & Hoffman, 

2008). Similarly to sensemaking, the definition of ‘mental model’ is controversial 

(Moray, 1999; Revell & Stanton, 2012; Richardson & Ball, 2009; Rouse & Morris, 

1986).  

Before reviewing what mental models are, it is valuable to review what they are 

not. Some scholars view mental models as only a store of knowledge. Defining mental 

models as collections of knowledge has been considered as whole a class of definitions 

for mental models (Schumacher & Czerwinski, 1992). However, I argue that mental 

models are not mere collections of knowledge. Specifically, defining mental models in 

this way neglects the relational structure of mental models (Craik, 1943). Defining mental 

models as only knowledge stores results in a loss of utility by neglecting many of their 

functions such as problem solving and prediction (Rouse & Morris, 1986). Both 

                                                 

3 See Rouse and Morris (1986) for a review of the diverse definitions of mental models.  
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empirical and theoretical research has suggested mental models are used for these and 

other vital functions (Gentner & Stevens, 2014; Johnson-Laird, 1983, 2005; Rouse & 

Morris, 1986). Mental models are also distinct from a ‘frame’ (Klein et al., 2006a). A 

frame has been defined as “a structure for accounting for the data and guiding the search 

for more data.” (Klein et al., 2007, p. 118). In other words, a mental model is similar to 

the concept of a frame but a frame has some distinct aspects to it. Such as, taking the 

form of a narrative or story (Klein et al., 2007).  

The origins of the theory of mental models could lead back all the way to the 

work of Thomas Aquinas Summa Theologica (1267) (Klein & Hoffman, 2008). However, 

according to Johnson-Laird (1983), the history of the theory of mental models really 

begins with Kenneth Craik. According to Craik all thinking is a manipulation of internal 

representations of the external world (Craik, 1943). Craik laid the groundwork for future 

theoretical and empirical research on mental models. Many of the first principles of 

mental models identified by Johnson-Laid are attributed to the work of Craik, including: 

the principle of iconicity, the principle of possibilities, and the principle of truth. Some 

have suggested that these and additional principles are what distinguish mental models 

from other types of mental representations such as linguistic structures and semantic 

networks (Johnson-Laird, 2005). In order to unpack what mental models are and how 

they operate a couple of the Johnson-Lairds’ proposed mental model principles will be 

briefly reviewed.  

The first principle is the principle of iconicity. This principle simply states that a 

“mental model has a structure that corresponds to the known structure of what it 
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represents” (Johnson-Laird, 2005, p. 187). The iconic nature of mental models can 

include mental imagery in combination with organized knowledge of concepts and 

relationships (Forrester, 1971; Klein & Hoffman, 2008). The imagistic nature of mental 

models can be used to help explain how a dynamic system operates (Klein & Hoffman, 

2008). If an operator’s mental model did not correspond to the dynamic system, the 

operator would likely not be able to infer the cause and effect relations between the 

different elements of that system. 

The second principle is the principle of strategic variation. This principle simply 

states that “given a class of problems, reasoners develop a variety of strategies from 

exploring manipulations of models” (Johnson-Laird, 2005, p. 191). If we define error 

diagnosis in terms of problem solving, then exploring manipulations to mental models is 

key to an accurate diagnosis. Variation is valuable for providing insight, learning, and 

creativity (Johnson-Laird, 2004). Strategic variation is similar to the elaboration cycle 

within the data/frame model (Kaste, 2012; Klein et al., 2006b; Klein et al., 2007). This 

principle implies that mental models can be dynamic. There is an interaction between the 

nature of the mental model and the task the mental model is supporting.  

Mental models are challenging to define (Klein & Hoffman, 2008). Indeed, it is 

unclear what the correct definition is of mental models. The concept of a ‘mental model’ 

has been defined in a plurality of ways and is similar yet distinct from a number of other 

related concepts such as a frame. However, the principles listed above help distinguish 

mental models from other types of mental representations. It is unclear whether or not the 

principles above will ever be able to be truly falsifiable. However, these principles are 
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congruent with other definitions used by cognitive engineers. Particularly, in terms of 

mental models being: imagistic, dynamic, and mapping onto something in the world 

(Klein & Hoffman, 2008). 

 The principles also illustrate the usefulness and necessity of mental models for many 

vital sensemaking functions such as error detection, diagnoses, and correction in 

intelligent tools. Mental models represent the dynamic relationships and interactions 

between different elements of an intelligent tool, and are used to understand the causal 

relations necessary for error diagnosis  (Klein et al., 2007).  

To summarize, the definition of mental models are internal representations of the 

external world. The structure of the mental model corresponds to the spatial, temporal, 

and causal relations of the elements perceived in the external world by using a 

combination of mental imagery and organized knowledge of concepts and relations. 

Finally, mental models can test hypotheses by running variations of existing mental 

models.  

Mental models play a role in all macrocognitive functions. Particularly, in the 

macrocognitive phenomena sensemaking. Many aspects of error management requires 

various sensemaking operations which rest on the use of mental models. Good error 

management is vital for the future of effective and enduring intelligent tools. Therefore, 

the role of mental models within error management is a valuable place to explore.  
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Error Management of Intelligent Tools 

The focus of the present research is on the role mental models play in complex 

human-machine systems. The modern world is becoming increasingly technologically 

advanced. Utilizing intelligent tools is frequently cheaper, more accurate, and reliable 

compared to human performance alone. However, when intelligent tools are not accurate 

and reliable it can be necessary to detect, diagnose, and correct it. This process is known 

as error management (McBride, Rogers, & Fisk, 2014). Understanding how people 

detect, diagnose, and correct errors is valuable for designers to create more optimized and 

adaptive systems. Unfortunately, despite the vital role of error management within 

complex human-machine systems, error management is still poorly understood (McBride 

et al., 2014). To the extent that operators have an accurate mental model of the intelligent 

tool they are operating they are better equipped to detect, diagnosis, and correct errors in 

the intelligent tool.  

Quality mental models can be useful for error management. However, it should be 

noted that a mental model is not the representation of the intelligent tool itself, rather the 

internal representation that the user has created of that intelligent tool (Moray, 1999; 

Norman, 1983). Therefore, mental models often do not perfectly correspond to what it is 

representing. As a result, mental models are often not complete and inaccurate (Norman, 

1983)4. However, through effective training mental models can be elaborated and 

                                                 

4 See Norman (1983) for full discussion of system mental model challenges. 



MICRO- AND MACROCOGNITION  17 
 
refined; increasing operator performance in detecting, diagnosing, and correcting errors. 

Therefore, analyzing how to effectively train operators to create more accurate mental 

models is valuable.  

Summary  

The vital role mental models play in performance in macrocognitive processes 

makes their evaluation necessary. Empirical evidence of mental models has been limited 

(Klein & Hoffman, 2008). I attempt to help fill this gap. Specifically, I attempt to gather 

evidence for four hypotheses. (1) MMM hypothesis; that performance of one 

sensemaking operation is predictive of performance of another sensemaking operation.  

(2) Through brief instruction and feedback, mental models are developed that involve 

understanding the relational structure between inter-correlated and independent 

feature(s). (3) Understanding of the relational structure of the features can be used to 

make error correction decisions. (4) The strategies that utilize the inter-correlated nature 

of the features can be recognized and verbalized by users.  
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Chapter 3: Experiment 1 

Experiment 1 was designed to gather evidence for the first and second 

hypotheses. In order to gather evidence for the second hypothesis, Experiment 1 was 

designed to test learning of using independent differentially weighted features to make 

weather predictions (in the form of probability estimates). Analyzing accuracy of 

probability estimates was used to help infer the quality of participants’ mental models of 

the simulated weather forecasting system. In order to gather evidence for the MMM 

hypothesis, Experiment 1 was also designed to test the relation between participants’ 

probability estimates and evacuation decisions.  

Methods 

Participants. Twenty-four participants were recruited from the Michigan 

Technological University student subject pool. Students participated in the study for 

course credit.  

Materials and Procedure. All experiments were programed and administered 

through the Psychology Experiment Building Language (PEBL) (Mueller & Piper, 2014).  

Similar to the method used by Casteel (2016), participants were asked to imagine 

they were a plant manager during the task. Instructions: “In this task, you are a manager 

who is making decisions about whether to evacuate your facility, which is located on the 

eastern seaboard. There is a hurricane in the Atlantic, and you will need to decide, based 

on National Weather Service (NWS) information, the probability of whether the 

hurricane will come, and whether you should evacuate the facility.” 
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 On each trial participants were given 8 features of differentially weighted 

diagnostic information for the likelihood of a hurricane: wind speed above 74mph, 

rotating winds over the surface of the sea, rising sea level, relative humidity level of 850 

hectopascals, falling pressure, temperature above 80°F, rough choppy sea, and overcast 

skies (see Table 1).5 Each feature, reported by the simulated weather forecasting system, 

either increased or decreased the likelihood of a hurricane. Whether features increased or 

decreased the probability of a hurricane was indicated with the direction of an arrow (see 

Figure 1). For example, if wind was reported, it was either reported as a positive indicator 

with an up arrow and “wind speed above 74mph” or as a negative indicator with a down 

arrow and “wind speed below 74mph”.  

Indicator strength described the influence each feature had on the probability of 

the hurricane. For example, a “very good” indicator increased or decreased the 

probability of a hurricane much more than a feature with an indicator strength reported as 

“poor.” 

 

 

                                                 

5 How these features are related to forecasting in more naturalistic settings was not 
explained. The features were chosen based only on their face validity for being indicators 
of a hurricane. They are not representative of the complex dynamic nature of how 
hurricanes form. Weather forecasting in the real world is much more complex. The 
present research is limited by not analyzing sensemaking operations in naturalistic 
contexts. 
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Table 1 Materials used for Experiments: Features and their Weights 
 

Feature 
Number 

Features of Information Indicator Strength 

F1 Wind speed above 74mph Very good 
F2 Rotating winds over the surface 

of the sea 
Very good 

F3 Rising sea level Good 
F4 Relative humidity level of 850 

Hectopascals 
Fair 

F5 Falling Pressures Fair 
F6 Temperature above 80°F Poor 
F7 Rough choppy sea Very poor 
F8 Overcast Skies Not an indicator at all 

 

 

Figure 1: Example of typical message shown to participants on each trial. 

Participants started with 10 practice trials. A 90(83) taguchi factorial design was 

used, meaning participants completed ninety trials with eight features that had three 

levels (positive, negative, absent) per feature. Using a taguchi design ensured that there 

was a unique feature set on each trial and that every possible combination of features was 

shown at least once. 

Based on information provided by the weighted features, participants rated the 

likelihood of a hurricane from 0% to 100% on a thermometer in the upper right corner of 

their screen (see Figure 2). After estimating the probability of a hurricane, participants 
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indicated whether they should evacuate or stay. They were told they should evacuate if 

there was a high probability of a hurricane, however, that if a hurricane does not hit it 

would unnecessarily cost the company money and job performance would suffer.  

 

Figure 2: Likelihood assessment scale for the probability of a hurricane. 

After participants made their two judgments (probability estimate and evacuation 

decision), both verbal and audio feedback was provided. A box was shown with a 15% 

range around the true estimate for the probability of a hurricane based on the weights of 

the features shown (see Table 2 for statistical model indicator strength)6. A beep would 

also sound if participants were within the range estimate. If correct, participants were 

                                                 

6 The statistical model used is a simple linear model and is not representative of the real-
world dynamic nature of weather. Models used in weather forecasting in more 
naturalistic settings are dynamic and therefore much more complex.  
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given a score of 100 points. After participants reviewed the feedback, they clicked either 

a “Good estimate. Click to continue” button or “Try to improve. Click to continue” 

button. The timing of each trial, which features were present, participants probability 

estimate of the likelihood of a hurricane, the model probability estimate of a hurricane 

(i.e. the true probability estimate), and participants evacuation decisions were recorded.  

Table 2: Feature weight values used for statistical model. 

Feature Number Statistical model 
Indicator Strength 

F1 .8 

F2 .8 

F3 .6 

F4 .5 

F5 .5 

F6 .2 

F7 .1 

F8 .01 

 

Results & Discussion 

In order to help ensure data quality, each participants’ accuracy was compared to 

what would be achieved only by chance. Accuracy was calculated by the number of times 

participants made probability estimates within the 15% band of the hidden statistical 

model probability estimate. No participant scored at or lower than chance. Accuracy 

ranged between 23% - 55% (M = .25, SD = .43), suggesting participants took the 

Experiment seriously and did not simply click through.  
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The features that were utilized by participants were analyzed. To reduce bias from 

non-linear data, a logodds transformation was conducted on participants’ probability 

estimates. A multiple linear regression was performed to predict participants’ probability 

estimates based on each of the features. Each feature was treated as an independent 

variable within the model. Results are shown in Table 3. Table 2 shows the weights of 

each feature for the hidden model probability estimate of a hurricane. Results suggest that 

almost all of the features significantly predict participants’ probability estimates. 

Participants are likely not, therefore, utilizing the take the best heuristic (Gigerenzer & 

Goldstein, 1996). Indeed, of the eight differentially weighted features the only feature not 

a statistically significant predictor of participants’ responses was the feature that 

participants were told was not an indicator (i.e. the only irrelevant feature). Consistent 

with hypothesis 2 this suggests participants created a mental model that contained the 

relational structure of all eight features when making probability estimates. 

Table 3. Experiment 1 multiple linear regression 

Variable B SE B t p 

F1 .70 .03 23.78 <.01 

F2 .56 .03 18.82 <.01 

F3 .33 .03 11.31 <.01 

F4 .27 .03 9.24 <.01 

F5 .21 .03 7.05 .01 

F6 .15 .03 4.99 <.01 

F7 .07 .03 2.37 .02 

F8 -.04 .03 -1.29 .20 
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In order to evaluate the relations of evacuation decision and probability estimates, 

a correlation was calculated, r =.81, N = 24, p <.01. The evacuation decision was 

aggregated according to the average evacuation decision for all participants on each trial. 

Consistent with hypothesis 1, results suggest that participants’ evacuation decisions were 

closely related to their probability estimates. In other words if participants indicated a 

high probability of a hurricane they were more likely to make the decision to evacuate.  

In summary, Experiment 1 suggested through brief instruction, visual feedback, 

and audio feedback that participants created a mental model of the system which related 

all eight differentially weighted features to the probability estimates consistent with the 

second hypothesis. This result provides some support for hypothesis 2. The strong 

correlation between participants’ probability estimates and evacuation decisions suggests 

that the same knowledge (or mental model) used to make the probability estimates was 

also used make the evacuation decisions consistent with the MMM hypothesis. The result 

suggests participants are basing their evacuation decisions on their estimations by 

weighing a number of differentially weighted features into a probability estimate which 

suggests on a linear scale whether a hurricane is coming or not. However, how would an 

inaccurate and unreliable weather forecasting system influence participants’ mental 

models? In more naturalistic settings of weather forecasting systems are not always 

entirely accurate (Berger, 2017). One notable example is when the Global Forecasting 

System (GFS) inaccurately predicted hurricane Sandys’ day of landfall. An important 

aspect of error management is determining where an error could come from. Is the error a 

human error or a technological error? Accurately answering this question likely 
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influences how a user decides when to use or not use a system. Therefore, it is valuable to 

analyze error detection and error correction sensemaking operations.  

Chapter 4: Experiment 2 

Experiment 1 suggested that through feedback, participants learned to weigh 

independent and differentially weighted features to make probability estimates consistent 

with hypothesis 2. Some evidence was also gathered for the MMM hypothesis; 

evacuation decisions were closely related to probability estimates. Experiment 2 was 

designed to extend testing for other vital sensemaking operations. There were two vital 

operations experiment 2 was designed to gather data for. (1) Experiment 2 was designed 

to test for participants’ ability to make a judgements about the source of an error (either 

themselves or the simulated forecasting system). (2) Experiment 2 was designed to test 

for participants’ ability to correct an error in the feature report of the simulated weather 

forecasting system.  

Methods 

Participants. Data from seventeen participants were collected from Michigan 

Technological University student subject pool (N = 17). Students participated in the study 

for course credit. 

Materials and Procedure. Materials and Procedures were similar to Experiment 

1. However, the evacuation decision was removed and participants were told that there 

were some malfunctions in the “weather forecasting system’s sensor report”. They were 

told that the simulated weather forecasting system may report a false feature (i.e., a 
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positively indicated feature is actually a negatively indicated feature). Each trial 

presented all eight features. There were ten practice trials and seventy non-practice trials.  

Half of the trials were error trials, meaning that inaccurate information was 

reported. If participants were accurate on a non-error trial, participants were given a 

score of 100 and moved on to the next trial. If participants were inaccurate on a non-

error trial they were shown visual feedback with the 15% red band around the true 

estimate. Participants were asked to click either the “I was wrong” or “System 

malfunction” button. Regardless of the button they clicked they were told they were in 

fact wrong, and instructed to click the “ok” button to start a new trial. 

If participants were accurate on an error trial, they were told their estimate was 

wrong and shown the visual feedback with the 15% red band around the true estimate. 

Participants were asked to click either the “I was wrong” or “System malfunction” 

button. Participants were then informed that the “weather forecasting system” had 

malfunctioned. Participants were then asked to select where the error had occurred by 

choosing which features were incorrect. Participants could choose one or all features but 

had to choose at least one feature before clicking the “ok” button, and then move on to 

the next trial. The timing of each trial, which features presented, participants probability 

estimate, the model probability estimate, blame choice, and which features selected to 

correct the system fault were all recorded.  
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Results and Discussion 

Similar to Experiment 1, accuracy of probability estimates were compared to 

accuracy that would be achieved only by chance. No participants scored at or lower than 

chance. Accuracy ranged between 19% - 66% (M = .34, SD = .47).  

The relations between average accuracy by participant in probability estimates 

and blame attribution across three different conditions (system correct human error, 

system incorrect human error, and system incorrect human correct) was analyzed. First 

the relation between average accuracy by participant and blame attribution on trials when 

the system was correct but participants made incorrect probability estimates was analyzed 

r = -.03, p > .05 (see Figure 3). This result suggests that there are no differences in blame 

attributions on the system correct human error condition based on probability estimate 

performance. This suggests that regardless of ability levels (or how good participants’ 

mental models are) participants on this condition accurately blamed themselves.  
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Figure 3: Relationship between average accuracy by participant and likelihood to blame 
themselves when the system was correct and participants made an error.  

 



MICRO- AND MACROCOGNITION  29 
 

 

Figure 4: Relationship between average accuracy by participant and likelihood to blame 
themselves when the system was incorrect and participants made an error.  

 
There was a large correlation between average accuracy by participant and blame 

attribution on trials when the system was incorrect and participants made an error r = -

.75, p < .01 (see Figure 4). This result suggests that participants who generally perform 

better are less likely to blame themselves. In this condition there is no incorrect blame 

attribution, however, the result suggests that participants who have a better mental model 

of the system (as suggested by their probability estimate performance) are likely aware 

they have a good mental model of the system, compared to participants who have a 

poorer mental model.  
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Figure 5: Relationship between average accuracy by participant and likelihood to 
blame themselves when the system was incorrect and participants made an error.  

 
There was a large correlation between average accuracy by participant and blame 

attribution on trials when the system was incorrect and participants were correct in their 

probability estimates r = -.70, p < .01 (see Figure 5). Consistent with the previous result, 

this result suggests that participants who generally perform better are less likely to blame 

themselves. If participants generally perform worse this result suggests that they are 

likely aware of it, therefore, tend to blame themselves even when they are correct.  

An overall correlation was performed between average accuracy by participant for 

detecting where the error occurred (i.e. blame attributions) and average accuracy by 
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participant for making probability estimates, which was a strong and statistically 

significant relation r = .9, p < .01. This result is consistent with the MMM hypothesis. 

 Average accuracy for correcting probability estimates by adjusting the direction 

of the sensor features ranged between 57% - 100% (M = .83, SD = .48). A correlation 

was performed between average accuracy by participant when making the initial 

probability estimates and average accuracy by participant for correcting the probability 

estimates r = -.68, p < .01. This results is not consistent with the MMM hypothesis.  

 Some of the results from Experiment 2 were consistent with the MMM 

hypothesis. Participants’ accuracy at probability estimation was strongly associated with 

participants’ ability to make accurate blame attributions. Results also suggested that 

participants who had a better mental model of the system (i.e. were more accurate in their 

probability estimates) made blame attributions that suggested they knew they had a good 

mental model of the system. While participants who had a poorer mental model of the 

system were more likely to blame themselves. However, other results did not support the 

MMM hypothesis. This suggests that the mental model created with initial learning 

through feedback while making weather predictions may not transfer to all sensemaking 

operations tested. Experiment 3 was designed to be a replication study of Experiment 2. 

Experiment 3 differed only by providing further error diagnosis feedback.  
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Chapter 5: Experiment 3 

Consistent with the first hypothesis, Experiment 2 suggested that participants’ 

accuracy at probability estimation was strongly associated with participants’ ability to 

make accurate blame attributions. The goal of Experiment 3 was to replicate results from 

Experiment 2. The only difference between Experiment 2 and Experiment 3 was 

additional feature specific error diagnosis feedback.  

Method 

Participants. Data from twenty-seven participants were collected from the 

Michigan Technological University student subject pool. Students participated in the 

study for course credit. One participant’s data were removed for not completing the 

experiment.  

Materials and Procedure. Materials and Procedures were similar to that of 

Experiment 2. However, contrary to Experiment 2 after participants chose which features 

were inaccurately reported they were provided with visual feedback if they chose the 

correct features. The timing of each trial, which features presented, participants 

probability estimate, the model probability estimate, blame choice, and which features 

selected to correct the system fault were all recorded. 

Results and Discussion 

Similar to Experiments 1-2 average accuracy by participant was analyzed. No 

participant scored at or lower than chance. Accuracy ranged between 20% - 61% (M = 

.34, SD = .48).  
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Results were very similar to Experiment 2. The relation between average accuracy 

by participant and blame attribution on trials when the system was correct but 

participants made incorrect probability estimates was analyzed r = .07, p > .05. This 

result suggests that there are no differences in blame attributions on the system correct 

human error condition. There was a medium sized correlation between average accuracy 

by participant and blame attribution on trials when the system was incorrect and 

participants made an error r = -.49, p < .01. This result suggests that participants who 

generally perform better are less likely to blame themselves. There was a medium sized 

correlation between average accuracy by participant and blame attribution on trials when 

the system was incorrect and participants were correct in their probability estimates r = -

.51, p < .01. This result also suggests that participants who generally perform better are 

less likely to blame themselves.  

A correlation was performed across trials between average accuracy by 

participant for detecting where the error occurred and average accuracy by participant for 

making probability estimates was statistically significant r = .92, p < .01. 

 Average accuracy for correcting probability estimates by adjusting the direction 

of the sensor features ranged between 48% - 93% (M = .57, SD = .49). A correlation was 

performed between average accuracy by participant when making the initial probability 

estimates and average accuracy by participant for correcting the probability estimates r = 

-.33, n = 27, p > .05. Results are not consistent with the MMM hypothesis.  

 Results from Experiment 3 largely replicated results from Experiment 2. 

Experiments 4a-4b were designed to test for further valuable sensemaking operations. 
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Particularly, Experiments 4a-4b were designed to test for learning the relations between 

inter-correlated features as depicted in the example from Chapter 1. Research has been 

conducted on the use of negatively correlated features in decision making (Fasolo, 

McClelland, & Todd, 2007). However, understanding of inter-correlated features for the 

use of accomplishing complex goals has been relatively unexplored. Using inter-

correlated features to make probability estimates are more closely related to how people 

make judgments and predictions across a variety of situations—including weather 

forecasting. Accurate use of inter-correlated features to make probability estimates, error 

detections, and error corrections requires unique mental arithmetic compared to 

independent features alone. Therefore, it is valuable to explore. 
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Chapter 6: Experiment 4a 

 Experiments 4a-4b are extensions of Experiments 1-3. Experiment 1 suggested 

that through feedback, participants learned to weigh independent and differentially 

weighted features to make weather predications. Some evidence was also gathered for the 

MMM hypothesis; evacuation decisions were closely related to probability estimates. 

Experiments 2-3 provided evidence that supports the notion that participants recognize 

how accurate their mental models are of the simulated weather forecasting system. 

Experiment 4a is designed to test whether participants can make probability estimates, 

detect errors, and correct errors by using inter-correlated features. Experiment 4a and 4b 

differ in two ways. The first difference was in how the hidden statistical model created 

the “true” probability estimates. In both Experiment 4a and 4b the first three features are 

inter-correlated with a correlation of .9. In Experiment 4a the weights of the first three 

features were added together to make the probability estimate. In Experiment 4b the 

value that appeared most often of the three inter-correlated feature was weighted and 

incorporated into the probability estimate. For example, if two of the three features were 

negative indicators and the third was a positive indicator (-1,-1, 1) the mode of the three 

features was incorporated into the model (-1). The second way the two Experiments 

differed was in Experiment 4b the shown probability estimate was removed from the 

screen when the error detection in the sensor report questions were asked. 
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Methods  

Participants. Data from twenty-six participants were collected from the Michigan 

Technological University student subject pool. See Table 4 for basic demographic 

information.  

Table 4: Demographics for Experiments 4a and 4b 

  Experiment 4a Experiment 4b 

Age  M = 19.62 SD = 1.63 

range 18-24  

M = 20.16 SD = 177 

range 18-23 

Gender  54% (N = 14) Male 52% (N = 13) Male 

Ethnicity    

 Caucasian 92% (N = 24)  80% (N = 20) 

 Asian 8% (N = 2) 12% (N = 3) 

 Black 0% (N = 0) 4%(N = 1) 

 Hispanic 0% (N = 0) 4%(N = 1) 

 

Materials and Procedure. Materials and procedure were similar to Experiments 

1-3, with a few notable differences. In this task, simulated data was reported from a 

simulated weather forecasting system. In order to gather some ecologically validity, 

features utilized in this task were based on features from the actual Global Forecasting 

System (GFS) model ((NOAA), 2018). The real GFS is a model which combines data 



MICRO- AND MACROCOGNITION  37 
 
from four separate sub-models: atmosphere, ocean, land/soil, and sea/ice. Five features 

were chosen from the GFS model: long waves, high waves, rotating winds over the 

surface of the sea, soil moisture 40-100 cm below the surface, and 50% cloud cover. 

Features were chosen based solely off of their face validity. The first three features were 

chosen from the ocean sub model, which would be the inter-correlated features. The 

independent feature (soil moisture) was chosen from the land/soil sub model. Finally, the 

last independent feature (50% cloud cover) was chosen from the atmospheric sub model. 

The first three features were inter-correlated with a correlation of .9. Meaning 

during the practice trials the features reported information consistent with each other 

approximately 90% of the time. The two independent features had a correlation of less 

than .1 with the first three inter-correlated features and with each other.  

Participants were given 40 practice trials with visual and audio feedback. Practice 

trials did not include error trials. Practice trials were designed for participants to gain a 

mental model of how the simulated weather forecasting system operated through 

instruction and feedback while making probability estimates by using inter-correlated and 

independent differentially weighted features. Participants’ accuracy in making probability 

estimates was considered to be an empirical measure of how accurate participants’ mental 

models were of the system.  

Participants also responded to 96 error detection trials. During the error detection 

trials participants did not make probability estimates. In contrast, on each trial 

participants were shown a list of both inter-correlated and independent features (see 
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Table 5). The first three feature, because they were inter-correlated, were listed as having 

very good indicator strength when reported together.  

Half of the 96 trials contained an error. An error occurred when one or more 

feature(s) were incorrectly reported, or when the simulated system calculation incorrectly 

calculated an estimate based on the features displayed, or both the features and the 

calculation was incorrect. On each trial participants were asked two questions. “Do you 

think there is an error in the sensors above?” “Suppose the sensors are correct, is there an 

error in the probability estimate?” Participants were asked to click on the ‘yes’ or ‘no’ 

buttons on each trial.  

Participants were provided with feedback from a hypothetical forecasting system 

named after the actual “European Forecasting System” (EFS). The EFS reported if the 

simulated system did make an error in the sensor report. After clicking the ‘yes’ or ‘no’ 

button(s) participants were shown a new page with the features and probability estimates. 

Similar to previous experiments, participants were asked to choose any incorrectly 

reported features.  

If the probability estimates were incorrect participants were asked to provide the 

accurate probability estimate. Similar to previous experiments visual feedback was 

displayed with a 15% red band around the true statistical model probability estimate.  
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 Table 5: Materials for the proposed Experiment. 

Cues of Information Indicator Strength 

Long waves  

High waves Very Good 

Rotating winds over 
the surface of the sea 

 

Soil moisture 40-100 
cm below surface 

Very Good 

50% cloud cover Fair 

 
 Immediately after completing the 70 error detection trials some post-hoc 

questions were asked (see Appendix A for post-hoc questions). Data from nineteen 

participants was gathered to assess their knowledge and computations for sensor error 

detection. Results were coded according to their sensitivity to the inter-correlated and 

independence of the features. After responding to the post-hoc questions, participants 

were asked to explain their thought process while responding to five different trials they 

had previously responded to. These examples consisted of both inter-correlated and 

independent features in the sensor report, in order to assess sensitivity to the independent 

and inter-correlated features. 

Results & Discussion 
 
 For the practice trials, no participants scored at or lower than chance. 

Participants accuracy in their probability estimates made during the practice trials ranged 

between 33% - 68% (M = .49, SD = .5).  

Based on data collected for empirical analyses alone, it is unclear how previous 

knowledge of a hurricane influences responses on these tasks. Therefore, the qualitative 
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data was analyzed to determine how previous knowledge of hurricanes and weather 

forecasting influenced responses on the tasks. Based on the assessment of the qualitative 

data, only three of the twenty three participants reported using their previous knowledge 

of hurricanes to make sensor error report decisions. The vast majority reported using 

feedback from the weather system to learn how to make correct error detection decisions 

and probability estimates.  

Half of the ninety-six error trials had an error in the sensor report, as produced by 

the “Global Forecasting System.” Accuracy for detecting an error in the sensor report 

ranged between 52% - 97% (M = .68, SD = .15). In order to accurately detect an error in 

the sensor report participants would need to incorporate the relational structure of the 

inter-correlated and independent features. Hypothesis 2 predicted that participants would 

incorporate the relational structure of the inter-correlated features. In order to test for 

sensitivity to feature correlations, first, a general linear model was conducted to compare 

the effect of (IV’s) condition type on (DV) sensor error detection accuracy (See Table 6 

for the different condition types). A chi-square analysis of deviance was performed on the 

model to test if the conditions explained variability in sensor error detection response 

more than chance χ2 = 369.95, df = 4, p < .01. Results suggest that condition type (as 

identified by Table 6) does influence sensor error detection responses. Based off of these 

results further analyses were conducted. A paired samples t-test was performed to test 

whether there was a statistically significant difference in error detection responses 

between independent feature inconsistent and inter-correlated feature inconsistent 

conditions. There was a significant difference in responses between when the 
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independent feature was inconsistent (M = .59, SD = .25) and when the inter-correlated 

feature was inconsistent (M = .37, SD = .21); t(25) = 3.15, p < .01. (A higher average 

indicates more “no error” responses to sensor error detection question.) Consistent with 

hypothesis 2, this result suggests that participants were sensitive to and understood the 

relational structure of the inter-correlated features.  
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Table 6: conditions to test for sensitivity to feature correlations 

Condition Example Number 
of Trials 

1 Features all the 
same 
 
 
 
 
Same plus missing 
feature  

↑Long Waves, ↑ High Waves, ↑ 
Rotating Winds, ↑ Soil Moisture 40-100 
cm below surface; ↓ Short Waves, ↓ 
Low Waves, ↓ Consistent Winds, ↓ Soil 
Moisture 10 cm below surface 

↑High Waves, ↑ Rotating Winds, ↑Soil 
Moisture 40-100 cm below surface 

24 

2 Independent feature 
is inconsistent 
 
 
 
 
Independent feature 
inconsistent plus 
correlated feature 
missing 

↑ Long Waves,  ↑ High Waves,        
↑Rotating Winds, ↓ Soil Moisture 10 cm 
below surface; ↓ Short Waves, ↓ Low 
Waves, ↓ Consistent Winds, ↑Soil 
Moisture 40-100 cm below surface 
 
↑ High Waves, ↑Rotating Winds, ↓ Soil 
Moisture 10 cm below surface; ↓ Low 
Waves, ↓ Consistent Winds, ↑Soil 
Moisture 40-100 cm below surface 

24 

3 1 inter correlated 
feature is inconsistent 
 
one correlated feature 
inconsistent plus 
independent variable 
missing 

↓ Short Waves, ↑ High Waves, ↑ 
Rotating Winds, ↑ Soil Moisture 40-100 
cm below surface 
 
↓ Short Waves, ↑ High Waves, ↑ 
Rotating Winds 

18 

4 1 independent and 1 
correlated feature the 
same but 1 correlated 
feature inconsistent  
 
Independent and 1 
correlated feature the 
same but one 
correlated feature 
missing 

↓ Short Waves, ↑ High Waves, ↑ 
Rotating Winds, ↓ Soil Moisture 10 cm 
below surface 

 
↑ High Waves, ↓ Consistent Winds, ↑ 
Soil Moisture 40-100 cm below surface 
 

30 
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To the extent that participants responded differently to the independent feature 

inconsistent condition and the inter-correlated feature inconsistent condition then they are 

correctly incorporating the inter-correlated feature into their error detection decisions. In 

order to help test hypothesis 1, the difference between responses to condition 2 and 

condition 3 for each participant and the relation on performance when making probability 

estimates during the practice trials was calculated, r = .1, p >.05. Results were 

inconsistent with MMM hypothesis.  

In condition 1 there is no error in the sensor report; all of the features are 

consistent. In condition 2 there is also no error in the sensor report; only the independent 

feature is inconsistent. Therefore, there should be no difference in error detection 

responses between conditions 1 and 2. If there is a difference in responses it suggests 

participants are incorrectly incorporating the irrelevant piece of information to make their 

error detection decisions. In order to test whether participants were incorporating the 

inconsistency of the independent feature into their error detection decision responses to 

condition 1 and condition 2 were compared. A paired sample t-test showed a statistically 

significant difference between condition 1 responses (M = .75, SD = .12) and condition 2 

responses (M = .59, SD = .25) t(25)=3.28, p < .01.  

In condition 3 there is an error in the sensor report; one of the inter-correlated 

features is inconsistent with another inter-correlated feature(s). In condition 4 there is 

also an error in the sensor report, however, in addition to one of the inter-correlated 

features being inconsistent the independent feature is also inconsistent. If participants are 

not inaccurately incorporating irrelevant information into their error detection decisions 
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then there should be little to no difference between responses to condition 3 and condition 

4. In order to test whether participants inaccurately incorporated the irrelevant piece of 

information into their error detection decisions responses to condition 3 and condition 4 

were compared. A paired sample t-test showed a statistically significant difference 

between responses to condition 3 (M = .37, SD = .21) and condition 4 (M = .28, SD = 

.16); t(25) = 3.5, p < .01. This suggests once again that participants are incorporating the 

irrelevant piece of information and that their mental models of the “GFS” system does 

not accurately represent the independence of the feature.  

The relationship between performance during the practice trials and participants’ 

ability to detect an error in the sensor report was analyzed. There was a medium sized 

correlation between the average for each participant during the practice trials and the 

average for each participant for detecting an error in the sensor report, r = .4, p <.05. 

Suggesting the knowledge of the system during the practice trials was related to the 

knowledge used to detect an error in the sensor report.  

To the extent that there is a difference in responses between conditions 1 and 2 

then participants are inaccurately incorporating the independent feature into their error 

detection decisions. A correlation was performed to determine if performance during the 

practice trials while making probability estimates predicted participants’ likelihood to not 

incorporate the irrelevant piece of information. Inconsistent with hypothesis 1, 

participants performance when making probability estimates did not predict likelihood of 

incorporating the irrelevant piece of information, r = -.1, p >.05. 
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Hypothesis 4 suggested that participants would be able to recognize their 

strategies for detecting errors. Data from nineteen participants was gathered to assess 

their strategies at detecting an error in the sensor report. Across the seven post-hoc 

interview questions approximately half of the participants did not report using the inter-

correlated nature of the features to detect an error in the sensor report (N = 10) (see 

Appendix B for example responses). In contrast, participants reported using 

inconsistencies between the feature weights and the GFS systems’ probability estimates. 

In order to test hypothesis 4 (that strategies could be recognized) a correlation was 

performed between the total score from each qualitative question and average sensor 

error detection accuracy by participant. There was a statistically significant relation 

between error detection accuracy and qualitative score r = .53, p < .05. This result may be 

from an insufficient amount of qualitative data. It could be the case that participants’ used 

two strategies to detect an error in the system report and only reported one. As will be 

described in later results participants who made incorrect error detection judgments still 

made corrections consistent with the inter-correlation. This may suggest that participants 

used different knowledge to detect an error compared to correcting the error, or that they 

may have used diverse strategies. However, the only strategies reported in the present 

qualitative assessment was using either the comparison of the feature weights to the 

probability estimates or using the feature inter-correlation. No participants reported using 

both.  

Further analyses were conducted to test for the sensitivity to feature correlation by 

analyzing which features were chosen to correct the error(s) in the sensor report. In other 
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words, which features participants chose to correct. A feature was reported incorrectly 

when it reported incongruent information with another inter-correlated feature. For 

example, when one inter-correlated feature was a positive indicator of a hurricane and 

another inter-correlated feature was a negative indicator of a hurricane.  

To help test hypothesis 2 and 3, two binomial tests were performed. The first 

compared the proportion of correct changes consistent with the feature correlation when 

there was no error in the sensor report and participants incorrectly detected an error. The 

second, tested the comparison on trials where an error was present (i.e. feature(s) were 

inconsistent). The first binomial test for the no error present trials, indicated that the 

proportion of instances where participants made changes that were consistent with the 

feature correlation of .58 was higher than the expected .5, p < .01. The second binomial 

test for the error present trials, indicated that the proportion of instances where 

participants made changes that were consistent with the feature correlation of .59 was 

higher than the expected .5, p < .01. Results suggest that participants made changes 

consistent with the feature correlation even when participants inaccurately indicated there 

was an error in the sensor report. This result is consistent with hypothesis 2 and 3.  

 Once again hypothesis 1 was tested to determine if performance when making 

probability estimates predicted performance at correcting errors in the sensor report. A 

correlation was performed between the average accuracy of sensor error correction by 

subject and performance during the practice trials r = -.12, p > .05. There was not a 

statistically significant correlation between performance for sensor error correction and 

performance during the practice trials.  
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 Half of the ninety-six error trials had an error in the shown probability estimate, 

as produced by the “Global Forecasting System.” Participants accuracy in detecting the 

error in the probability estimate ranged between 61% - 95% (M = .8, SD = .4). A Pearson 

correlation was performed between the average accuracy by participant during the 

practice trials and the average accuracy for detecting an error in the probability estimate 

during the error detection trials, r = .4, p < .05. Results suggest that participants’ 

understanding (or mental model) of the simulated weather forecasting system, gained 

during the practice trials, was associated with their ability to detect an error in the 

probability estimates during the error detection trials.  

 The accuracy for participants correcting the probability estimate ranged 

between 60% - 92% (M = .77, SD = .42). A Pearson correlation was also performed 

between the average accuracy by participant during the practice trials and the average 

accuracy for correcting the probability estimate during the error detection trials, r = .65, p 

< .01. Results are consistent with the multi-function mental model hypothesis.  

 There was a statistically significant relationship between participants ability to 

accurately detect an error in the probability estimate and their ability to correct the error 

in the probability estimate, r = .59, p < .01. Suggesting that if participants are able to 

accurately detect the error they will also be likely to correct the error. However, even 

when some participants some of the time inaccurately detect an error they still may be 

able to correct it.   

 Results from Experiment 4a supported the MMM hypothesis. Many of the error 

detection and correction decisions and judgements had a statistically significant relation 
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with participants’ performance when making probability estimates. Results also 

supported the second hypothesis; error detection decisions were consistent with 

understanding the relational structure of the inter-correlated features. Results also 

supported the third hypothesis; error correction decisions were consistent with the inter-

correlated nature of the features. Finally, results also supported the fourth hypothesis; 

reported strategies had a statistically significant relation to accurate error detection 

decisions in the sensor report. Experiment 4b was designed to replicate results from 

Experiment 4a. Experiment 4b differed in two ways. (1) The first was the way the hidden 

statistical model weighed the inter-correlated features. (2) Because a number of 

participants’ reported using the inconsistencies between feature weights and the GFS 

systems reported probability estimates as their strategy for detecting an error in the sensor 

report the reported probability estimate was not shown on the same screen when 

participants were asked sensor error detection questions.  
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Chapter 7: Experiment 4b  

  Experiment 4b was designed to replicate results from Experiment 4a. There were 

two differences between Experiment 4a and 4b. The first was in how the hidden 

statistical model weighed the inter-correlated features. In Experiment 4a the weights of 

the first three features were added together to make the probability estimate. In 

Experiment 4b the value that appeared most often of the three inter-correlated feature was 

weighted and incorporated into the probability estimate. For example, if two of the three 

features were negative indicators (-1,-1) and the third was a positive indicator (1) the 

mode of the three features was incorporated into the model (-1). Weighing the inter-

correlated features in this way is more consistent with how probability estimates work 

with inter-correlated features in more naturalistic environments. The second way 

Experiment 4b differed was in how participants’ were presented with the error detection 

question in the sensor report. In Experiment 4a participants’ were shown the probability 

estimate and the sensor error detection question on the same screen. Qualitative analyses 

suggested a number of participants’ used inconsistencies between feature weights and the 

GFS systems reported probability estimates as their strategy for detecting an error in the 

sensor report. Therefore, error detection questions were not displayed on the same screen. 

Participants would first respond to the sensor report error detection question and only 

after responding were they shown the probability estimate.  
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Methods  

Participants. Twenty-six participants were collected from the Michigan 

Technological University student subject pool. Demographics are reported in Table 4.  

Materials and Procedure. Materials and procedure were the same as those 

reported in Experiment 4a.  

Results and Discussion 
 
 For the practice trials, no participants scored at or lower than chance. Accuracy 

ranged between 22% - 67% (M = .43, SD = .49).  

 Accuracy for detecting an error in the sensor report ranged between 52% - 94% 

(M = .71, SD = .45). In order to test for sensitivity to feature correlations a general 

linear model was performed to compare the effect of (IV’s) condition type on (DV) 

sensor error detection accuracy (See Table 6 for the different condition types). A chi-

square analysis of deviance was performed on the model to test if the conditions 

explained variability in sensor error detection response more than chance χ2 = 60.60, df = 

4, p < .01. Results suggest that condition type (as identified by Table 6) does influence 

sensor error detection responses. Therefore, further analyses were conducted to test for 

sensitivity to the inter-correlated nature of the features when making error detection 

decisions. A paired samples t-test was conducted to test whether there was a statistically 

significant difference in error detection responses between independent feature 

inconsistent and inter-correlated feature inconsistent conditions. Results were similar to 

Experiment 4a, there was a significant difference in responses between when the 
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independent feature was inconsistent (M = .62, SD = .34) and when the inter-correlated 

feature was inconsistent (M = .34, SD = .33); t(24) = 2.94, p < .01. Consistent with 

Hypothesis 2, this result suggests that participants were sensitive to and understood the 

relational structure of the inter-correlated features. 

 To the extent that participants responded differently to the independent feature 

inconsistent (condition 2) and the inter-correlated feature inconsistent (condition 3) then 

they are correctly incorporating the inter-correlated feature into their error detection 

decisions. In order to help test hypothesis 1, the difference between responses to 

condition 2 and condition 3 for each participant and the relation on performance when 

making probability estimates during the practice trials was calculated, r = .44, p <.05. 

Results were inconsistent with hypothesis 1. 

In condition 1 there is no error in the sensor report; all of the features are 

consistent. In condition 2 there is also no error in the sensor report; only the independent 

feature is inconsistent. Therefore, there should be no difference in error detection 

responses between conditions 1 and 2. If there is a difference in responses it suggests 

participants are incorrectly incorporating the irrelevant piece of information to make their 

error detection decisions. In order to test whether participants were incorporating the 

inconsistency of the independent feature into their error detection decision responses to 

condition 1 and condition 2 were compared. A paired sample t-test showed a statistically 

significant difference between condition 1 responses (M = .92, SD = .11) and condition 2 

responses (M = .62, SD = .34) t(24)=4.43, p < .01.  
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In condition 3 there is an error in the sensor report; one of the inter-correlated 

features is inconsistent with another inter-correlated feature(s). In condition 4 there is 

also an error in the sensor report, however, in addition to one of the inter-correlated 

features being inconsistent the independent feature is also inconsistent. If participants are 

not inaccurately incorporating irrelevant information into their error detection decisions 

then there should be little to no difference between responses to condition 3 and condition 

4. In order to test whether participants inaccurately incorporated the irrelevant piece of 

information into their error detection decisions responses to condition 3 and condition 4 

were compared. A paired sample t-test showed a statistically significant difference 

between responses to condition 3 (M = .35, SD = .33) and condition 4 (M = .37, SD = 

.30); t(24) = -0.59, p > .01. This suggests that the independent feature does not influence 

error detection responses when an error is present.  

To the extent that there is a difference in responses between conditions 1 and 2 

then participants are inaccurately incorporating the independent feature into their error 

detection decisions. A correlation was performed to determine if performance during the 

practice trials while making probability estimates predicted participants’ likelihood to not 

incorporate the irrelevant piece of information. Inconsistent with hypothesis 1, 

participants performance when making probability estimates did not predict likelihood of 

incorporating the irrelevant piece of information, r = -.22, p >.05. 

 The relationship between performance during the practice trials and participants’ 

ability to detect an error in the sensor report was analyzed. There was a medium sized 
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correlation between the average for each participant during the practice trials and the 

average for each participant for detecting an error in the sensor report, r = .49, p <.05.  

 Results suggest participants are sensitive to the inter-correlated nature of the 

features. In order to help test hypothesis 4 which suggests participants are able to 

recognize their strategies for detecting errors qualitative data was analyzed. Seven post-

hoc interview questions were asked (see appendix A for post-hoc questions). All of the 

participants interviewed (N = 11) provided responses consistent with understanding the 

inter-correlation between the features. Since all participants reported using the inter-

correlated nature of the features to make their error detection responses the relation 

between strategies used to detect an error in the sensor report and performance when 

making probability estimates during the practice trials could not be analyzed. However, 

overall performance at detecting error in the sensor report is higher for experiment 4a 

compared to 4b which is consistent with the results reflected in the qualitative 

assessment. In contrast to Experiment 4a, more participants also reported using only the 

inconsistency between the first three inter-correlated features, which is consistent with 

the hidden statistical model. In Experiment 4a many participants reported using a 

majority rules strategy, regardless of whether the feature was independent or not. 

However, across both experiments participants reported using the independent feature as 

a tie breaker for choosing which inter-correlated feature was reported incorrectly.  

 Further analyses were conducted to test for the sensitivity to feature correlation by 

analyzing which features were chosen to correct the error(s) in the sensor report. In other 

words which features participants chose to correct. Two binomial tests were performed, 
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one for comparing the proportion of correct changes consistent with the feature 

correlation when there was no error in the sensor report and participants incorrectly 

detected an error and the second one for testing the comparison of the same proportion 

but on trials where an error was present (i.e. feature(s) were inconsistent). The first 

binomial test for the no error present trials, indicated that the proportion of instances 

where participants made changes that were consistent with the feature correlation of .81 

was higher than the expected .5, p < .01. The second binomial test for the error present 

trials, indicated that the proportion of instances where participants made changes that 

were consistent with the feature correlation of .83 was higher than the expected .5, p < 

.01. Results suggest that participants made changes consistent with the feature correlation 

even when participants inaccurately indicated there was an error in the sensor report 

when there was none.  

 A correlation was performed between the average accuracy of sensor error 

correction by subject and performance during the practice trials r =.26, p > .05. There 

was not a statistically significant correlation between performance for sensor error 

correction and performance during the practice trials.   

 Participants accuracy in detecting the error in the probability estimate ranged 

between 44% - 99% (M = .71, SD = .45). A Pearson correlation was performed between 

the average accuracy by participant during the practice trials and the average accuracy for 

detecting an error in the probability estimate during the error detection trials, r = .67, p < 

.01. Results suggest that participants’ understanding of the system, gained during the 
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practice trials, was associated with their ability to detect an error in probability estimates 

during the error detection trials.  

 The accuracy for participants correcting the probability estimate ranged between 

54% - 92% (M = .75, SD = .43). A Pearson correlation was performed between the 

average accuracy by participant during the practice trials and the average accuracy for 

correcting the probability estimate during the error detection trials, r = .3, p > .05. Results 

are not consistent with the multifunction mental model hypothesis.  

 There was a statistically significant relationship between participants ability to 

accurately detect an error in the probability estimate and their ability to correct the error 

in the probability estimate, r = .73, p < .01.  

  Based on quantitative results from novices alone it is unclear how specialized 

knowledge would influence performance on many of these sensemaking operations. 

Therefore, an attempt was made to collect data from experts in weather forecasting. Only 

one participant was recruited. The participant was a coursework completed PhD student 

in atmospheric sciences. In addition to asking this participant to run asking this 

participant the seven post-hoc interview questions and asking them to explain their 

thought processes while detecting error in the sensor report they were also asked specific 

questions about their knowledge of weather forecasting and how it related to the tasks. 

The participant indicated that their specialized knowledge did not influence how they 

responded to the task. The participant was also asked about the ecological validity of the 

features to how weather operated in the real world. They reported that at least some of the 

features and their weights was consistent with what they knew about how weather 
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operated, particularly, for the area where the task was held. Cloud cover would be a poor 

indicator because in the area where the task was given it is frequently cloudy, therefore, 

not a good indicator of a storm. 

 Results in Experiment 4b closely follow results found in Experiment 4a. Table 9, 

shows the analyses for testing for the multifunction mental model hypothesis across all 

experiment. Evidence was found across many of the sensemaking operations. However, 

not all analyses supported the MMM hypothesis. For example, average accuracy in 

probability estimates and correcting probability estimates in Experiment 4b. Explanations 

for the mixed results will be discussed in greater detail in Chapter 8. 
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Chapter 8: General Discussion 

The present research investigated combining methods from both micro- and 

macrocognitive paradigms in order to create unique advantages. The primary process 

under investigation, sensemaking, and its supporting function mental models, are not 

traditionally evaluated using empirical methods. One of the goals of this research was to 

take another step closer to complimenting existing methods used to study mental models, 

such as Cognitive Task Analysis (Klein & Hoffman, 2008). In this thesis quantitative and 

qualitative data was used to infer how people think about the system they were operating. 

The structure of participants’ mental models was inferred based on their performance 

while operating the simulated weather forecasting system and responses to qualitative 

assessment. 

There were four hypotheses of the present research. (1) MMM hypothesis; 

performance of one sensemaking operation is predictive of performance of other related 

sensemaking operations. (2) Through brief instruction and feedback, mental models are 

developed that involve understanding the relational structure between inter-correlated and 

independent feature(s). (3) Understanding of the relational structure of the features can be 

used to make error correction decisions. (4) The strategies that utilize the inter-correlated 

nature of the features can be recognized and verbalized by users. 

Experiment 1 suggested through brief instruction, visual feedback, and audio 

feedback that participants created a mental model of the system which related all eight 

differentially weighted features to the probability estimates. This evidence was consistent 

with hypothesis 2. Some evidence was also gathered for the MMM hypothesis; 
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evacuation decisions were closely related to probability estimates. This suggests that 

initial learning through feedback from making probability estimates was also used to 

make evacuation decisions. Experiment 2 was designed to extend testing for other vital 

sensemaking operations. Consistent with the MMM hypothesis Experiment 2 suggested 

that participants’ mental model of the simulated system while making probability 

estimates was strongly associated with participants’ ability to make correct blame 

attributions. Results from Experiment 3 largely replicated results from Experiment 2.  

Experiments 4a-4b were extensions of Experiments 1-3. There were two 

differences between Experiments 4a and 4b. (1) How the hidden statistical model created 

the “true” probability estimates. (2) In Experiment 4b the probability estimate was 

removed from the screen when the error detection in the sensor report questions were 

asked. Experiments 4a and 4b were designed to test whether participants can make 

probability estimates, detect, diagnose, and correct errors by using inter-correlated 

features. Making accurate error detection, diagnosis, and correction determinations 

requires a different mental strategy and computation compared to independent features 

alone, as illustrated in the example in Chapter 1. Participants’ accuracy in making their 

weather predictions (in the form of probability estimates) was used as an empirical 

measure of the quality of participants’ mental models of the simulated weather 

forecasting system in addition to responses from the qualitative assessment.  

Results from both Experiments 4a & 4b supported the second hypothesis; 

performance when making error detection decisions was consistent with understanding 

the relational structure between the inter-correlated and independent features. However, 
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surprisingly results also suggested participants incorrectly incorporated the independent 

and irrelevant piece of information when making their error detection decisions. Results 

from both Experiments also supported hypothesis 3, error correction decisions were made 

by incorporating the relational structure of the inter-correlated features. Assessment of 

qualitative data suggested that as a result of manipulations between Experiment 4a and 4b 

participants were more likely to learn the accurate relations between features (i.e. have a 

more accurate mental model of the simulated system) in Experiment 4b compared to 4a. 

However, results from Experiment 4a was still consistent with the fourth hypothesis; 

there was a statistically significant relation between verbalized strategies and 

performance when making error detection decisions. While results from both 

Experiments supported hypotheses 2-4 the results for the first hypothesis is somewhat 

mixed. 

Across experiments results generally supported the MMM hypothesis; 

performance on one task was predictive of performance on other related tasks (see Table 

9). However, this was not consistent for each related task. Each of these relations will be 

briefly reviewed. Do to the nature of how the hidden statistical model produced the “true” 

probability estimate in Experiment 4a, participants did not need to understand the inter-

correlated nature of the features to make accurate probability estimates. Therefore, a 

participant could be fairly accurate while making probability estimates and be entirely 

unaware of the inter-correlated nature of the features. This likely explains the lack of a 

statistically significant relation between performance when making probability estimates 

and sensitivity to the inter-correlated nature of the features when making error detection 
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decisions for Experiment 4a. This result is also consistent with operating an intelligent 

tool in more naturalistic settings. Operators could have aspects of their mental model of 

the intelligent tool that are entirely inaccurate and still be able to operate the tool for 

certain sensemaking operations. The second relation that did not support the MMM 

hypothesis was between performance when making probability estimates and 

performance when making sensor error corrections. The lack of a statistically significant 

relation could suggest that some functions transfer during initial learning of the task 

while others do not. Performance when making sensor error corrections could require 

further knowledge or a better mental model of the system not achieved through feedback 

while making probability estimates. Future studies could test if initial learning while 

making error corrections transfers to making probability estimates. Other possible 

explanation could be some participants misunderstood the task. However, the average at 

making accurate error corrections was higher than chance. Finally, the lack of a 

statistically significant relation between performance when making probability estimates 

and correcting probability estimates in Experiment 4b could be from an outlier, 

insufficient sample size, randomness, or once again suggest that the knowledge required 

to make the probability estimates is unique from the knowledge required to correct the 

probability estimates. Future studies should be done to help test for the relations analyzed 

in this thesis. 
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Table 9: Results across experiments testing for evidence for the MMM hypothesis. 

Function Exp1 Exp2 Exp3 Exp4a Exp4b 

Probability Estimates and 
Evacuation Decisions 

r = .81**              

Probability Estimates and 
blame attributions  

 r = .9** r = .92**   

Probability Estimates and using 
sensor feature weights to 
correct probability estimates 

 r = -.68** r = -.34   

Probability Estimates and 
sensitivity to inter-correlation 

   r = .1 r = .44* 

Probability Estimates and 
sensor error detection 

   r = .4* r = .49* 

Probability Estimates and 
sensor error correction 

   r =-.12 r =.26 

Probability Estimates and error 
detection in probability 
estimates 

   r = .4* r = .67** 

Probability Estimates and error 
correction in probability 
estimates 

   r = .65** r = .3 

Qualitative data on sensitivity 
to feature correlation and 
sensor error detection accuracy 

   r = .53* NA 

**p < .01;* p < .05. 
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 Since the 1970’s there has been a concern about all the different microcognitive 

processes fitting together (Newell, 1973). Specifically, by becoming increasingly narrow 

in investigation, there is concern that there will be little transfer or generalizability 

(Gozli, 2017). Unfortunately, not much has changed (Hommel & Colzato, 2015). 

Experimental researchers often only study microcognition outside of the larger process 

that they are supporting (Hommel & Colzato, 2015). However, the present research 

provides some evidence that suggests a larger cognitive system can be analyzed within 

the lab; combing advantages of empirical analysis, systematic analysis, and qualitative 

assessment.  

 Error detection, diagnosis, and correction are a part of good decision making 

within human-machine systems. Mental models are necessary for system error detection, 

diagnosis, correction, and many other vital functions. To the extent that we have a better 

understanding of how people form and use mental models, we can more adequately 

enable people to perform more efficiently and effectively in changing and unexpected 

environments. Across experiments results generally supported the MMM hypothesis. If 

the MMM hypothesis is true then there may be implications for training and learning 

transfer. Performance for one cognitive operation while operating an intelligent tool was 

predictive of many other cognitive processes when operating the same intelligent tool. 

This is consistent with research being conducted on Experiential User Guides (EUG); 

which suggests that training in some sensemaking operations (such as error detection and 

diagnosis) helps refine operators mental models and therefore improve performance for 

other sensemaking operations while operating the same intelligent tool (Mueller & Klein, 
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2011). Consistent with this research the present results indicate there is a certain subset of 

organized knowledge (or mental model) of the intelligent tool users are interacting with 

that can be built and refined and adapted to different related tasks when interacting with 

an intelligent tool. Therefore, training in multiple sensemaking operations may be useful 

for refining the mental model of the intelligent tool and that refinement will likely 

increase performance of other tasks when operating the intelligent tool.  

This research also expands upon previous research conducted using inter-

correlated features. Previous research has suggested people do incorporate negatively 

correlated features in their decision making as measured by an increase in deliberation 

time (Fasolo et al., 2007). However, learning and the use of inter-correlated features for 

accomplishing complex goals has been relatively unexplored. This use of inter-correlated 

features impacts all of the sensemaking operations. Results from Experiments 4a-4b 

suggest that participants can learn associations between weighted inter-correlated features 

and therefore incorporate this understanding into their mental models of the intelligent 

tool they are operating.  

In addition to learning the inter-correlated nature of the features, results also 

suggested that participants use some irrelevant information to make error detection and 

correction decisions, despite never being provided with feedback or instruction to do so. 

This could be the result of the initial mental model and frame participants come into the 

lab with before they even start the task. The mental model within the data/frame theory 

contains background knowledge which is valuable for explaining how the system 

operates. It could be the case that participants already have a frame and mental model that 
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related all of the features together and not enough feedback was provided that challenged 

their frame and mental model to be refined (Klein et al., 2006b). Many laboratory studies 

do not consider learning and prediction by using inter-correlated vs. independent features 

(e.g. Gluck et al. (2002)). Future microcognitive studies may need to control for 

interpretation of features being inter-correlated. Future research should could also test 

whether it is generally adaptive to have an initial frame or mental model that contains a 

structure of inter-correlated features.  

 Across experiments there was variability in participants’ performance when 

making probability estimates and no participant was completely accurate. In verbal 

reports some participants described having different baselines for creating there 

probability estimates. Some participants started at zero before incorporating information 

from the sensor report, some started at .5, while others started at .75. This is consistent 

with previous research on the use of improper linear models; people generally perform 

poorly when making predictions from integrating information (Dawes, 1979). Therefore, 

results help support the notion of using proper linear models. 

Limitations 

There are some notable limitations to the present research. First, the sample was 

taken from an undergraduate college population. It is unclear whether results will 

generalize to other populations. It is also unclear how results would generalize to other 

more naturalistic settings. Future research should validate these finding in more 

naturalistic settings with experts. Experts may be better equipped to ignore the irrelevant 

piece of information when making error detection and correction decisions.  
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Conclusion 

Sensemaking is a vital process for a number of diverse operations, but little 

research has been conducted on sensemaking within the lab. This thesis describes 

research on studying a macrocognition process within a microcognition world. By 

combing methods from both micro- and macrocognitive paradigms future research will 

provide useful insight into how to create trainings and interventions to make 

sociotechnical systems more efficient and enduring. Based on data across four 

experiments results generally supported the MMM hypothesis. This has implications for 

training; training in multiple sensemaking operations may be useful for refining the 

mental model of the intelligent tool and that refinement will likely increase performance 

of other tasks when operating the intelligent tool.  
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Appendix A – Post-hoc Interview Questions 
Participants were instructed to consider the task of detecting an error in the sensor report 

and shown an example. 

1. What information did you have available to you when making these decisions? 

2. What did you look for when you made this decision? 

3. How did you know that what you were paying attention to was the correct 

information? 

4. Did you do anything to confirm what you were paying attention to was correct? 

5. Have you had any previous experience with this kind of task that helped you determine 

the correct response? 

6. What specific parts of the training or experience was helpful when making these 

decisions? 

7. What short cuts or strategies did you use when solving these problems? 
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Appendix B – Interview Response Examples 
When asked “what did you look for when you made this decision” participant 9 

responded “I was just trying to see if it correlated with the graph (therm) on the side. 

Also, if they didn’t go together if high waves and soil being under 40.” 

When asked about thought process on specific examples participant 9 responded “I was 

using both report and therm (probability estimate) I would say the chance would be a 

little bit higher. Using therm to determine if there was an error in the report because I 

didn’t understand when just looking at the report. I would say therm should be lower just 

because the soil being below 40 and waves being longer.” 

When asked “what short cuts or strategies did you use when solving these problems” 

participant 11 responded “my strategy was to look at how many arrows there were to low 

compare to the temp and see if I thought they lined up.” 

When asked about thought process on specific examples participant 11 responded “This 

one I’m looking at how many low arrows there are to high and I’m looking at the bar has 

changed. I feel like in this one since there are more low arrows, then high, the prediction 

is wrong. There’s something wrong in the features because of what’s shown on the 

temp.” 

When asked “What factors need to be considered before fixing the error participant 19 

responded “whether or not all three of these were the same and then figure out if which 

one was incorrect then you look at the soil moisture to help fix the problem.” 
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When asked about thought process on specific examples participant 19 responded “the 

soil moisture is there and the wave’s length and winds are the same direction. No error.” 
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