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Abstract

Extreme air pollution meteorology, such as heat waves, temperature inversions, and

atmospheric stagnation episodes, can significantly affect air quality. In this study, we

analyze their long-term trends and the potential impacts on air quality. The signifi-

cant increasing trends for the occurrences of extreme meteorological events in 1951-

2010 are identified with the reanalysis data, especially over the continental regions.

A statistical analysis combining air quality data and meteorological data indicates

strong sensitivities of air quality, including both average air pollutant concentrations

and high pollution episodes, to extreme meteorological events. Results also show sig-

nificant seasonal and spatial variations in the sensitivity of air quality to extreme air

pollution meteorology.

Based on the sensitivity studies of air quality to air pollution meteorology, statistical

models are constructed to predict the likelihood of extreme air pollution episodes

with the status of extreme air pollution meteorology in two consecutive days. Our

statistical models present reasonable estimation of air pollution days validated with

observations. Our method is more computational efficiency and user-friendly than the

complicated atmospheric chemistry models. It could be a useful tool for air quality

forecast, in particular for projecting the risk of extreme air pollution episodes.

xxv



Extreme meteorological events related to precipitation, such as drought or heavy pre-

cipitation, are also important for air quality. To get a better understanding of the

relationship between precipitation features and air quality, we examine the sensitiv-

ities of air pollutants to the changes of various precipitation characteristics in the

context of climate change. Perturbation studies are tested with GEOS-Chem model

to isolate the roles of precipitation frequency, precipitation intensity, and total pre-

cipitation amount in the lifetime of black carbon (BC). We find that the atmospheric

lifetimes of BC are more sensitive to precipitation frequency than precipitation inten-

sity. The relationship between the lifetime of aerosols and the change of precipitation

characteristics offer a simple tool to examine the effects of long-term changes of pre-

cipitation characteristics on atmospheric aerosols in various regions.
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Chapter 1

Introduction

1



It has been known that air pollution risks human health, and people have taken a lot

of efforts to understand the causes and the impacts of air pollution. Ozone and fine

particulate matters (PM2.5) are the two most general and harmful air pollutants in

the atmospheric boundary layer that threat the public health and damage the envi-

ronment [Englert , 2004; McKee, 1993]. The increasing trend of air pollution due to

human activity has been found locally and globally. Results showed that the levels

of ozone concentrations have increased by approximately two times when compared

the current levels with those were measured over a century ago [Vingarzan, 2004].

Conditions might be even worse in some local areas. For example, it was found that

surface ozone concentration increased by a factor of 2.2 during 1989-1991 at Arosa

in Switzerland [Staehelin et al., 1994]. With the efforts of controlling air pollution

by reducing anthropogenic emissions, air quality improved in most developed coun-

tries and some developing countries. Taking China as an example, the PM2.5 levels

retrieved from the satellite showed an increasing trend between 2004 and 2007 fol-

lowed by a decreasing trend between 2008 and 2013 [Ma et al., 2016]. Although the

situations are getting better, the issues of ozone and PM2.5 are still our current and

future challenges. Previous studies revealed that even low concentrations of ozone

and PM2.5 have a relationship with mortality [Brunekreef and Holgate, 2002; Council

et al., 2008; Schwartz et al., 2002]. Therefore, although current air quality standards

are helpful to reduce morbidity and mortality related to air pollution, stricter envi-

ronment management is needed to further control the air pollution with the purpose

2



of improving public health.

Meteorology is one of the most important factors that impact air quality. Several

processes related to air quality can be affected by meteorology, including emissions,

chemical reactions, dry and wet deposition, and transport [Kinney , 2008]. Some

of the meteorological events occur occasionally but have a strong influence on air

quality. These rare but important events are taken as extreme air pollution mete-

orological events in this study. It was found that climate change may increase the

occurrence of extreme meteorological events, and thus moderate our efforts in de-

creasing air pollution [Jacob and Winner , 2009]. Therefore, the effects of reducing

anthropogenic emissions with the purpose of protecting public health might be can-

celed off by climate change [Leibensperger et al., 2008]. This offset is taken as climate

change penalty, which complicates the management of environment [Wu et al., 2008].

There have been many studies about the potential effects of climate change on air

quality [Alexander and Mickley , 2015; Dawson et al., 2014; Dentener et al., 2006;

Doherty et al., 2013; Fiore et al., 2012, 2015; Gao et al., 2013; Lei et al., 2012; Pfister

et al., 2014; Pye et al., 2009; Rieder et al., 2013, 2015; Weaver et al., 2009; Wu et al.,

2008]. Most of these analyses have focused on the impacts of meteorological variables,

such as temperature, humidity, wind speed, and precipitation, on air quality under

normal meteorological conditions. It has been shown that extreme air pollution me-

teorological events have stronger correlations with high pollution episodes[Camalier

et al., 2007; Jones et al., 2010; Thompson et al., 2001]. Therefore, more attention

3



should be paid. In this dissertation, we will mainly focus on five types of extreme air

pollution meteorological events, including heat waves, temperature inversions, atmo-

spheric stagnation episodes, fires, and extreme precipitation events. In the following

paragraphs, we will give a brief introduction about each type of extreme air pollution

meteorological events and previous studies about their impacts on air quality.

Heat waves, which are the persistent high surface temperature at a local region, show

a serious threat to human health. A large number of heat-related deaths were found

in heat waves, especially in a series of record-breaking events: more than 700 heat-

related deaths were found in the Chicago heat wave event in 1995, and the number

exceeded 70,000 in the long-lasting heat wave event happened in Europe in 2003

[Robine et al., 2008; Semenza et al., 1996]. The heat-related death is related to the

respiratory and cardiovascular diseases that especially harmful to elders [Poumadere

et al., 2005]. The morbidity and mortality in 2003 Europe event draw much attention

to the study of heat waves. The previous study about the air quality during heat

waves pointed out that elevated air pollution is another factor that led to death

besides the effect of high temperature itself [Shaposhnikov et al., 2014]. The extreme

high temperature in heat waves is the direct reason for the high air pollution. Other

meteorological features associated with the accompanied high-pressure system, such

as low wind speed and clear sky, are the indirect causes of the enhanced air pollution.

Both observations and simulations have indicated that higher temperature elevates
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ozone [Cardelino and Chameides , 1990; Dawson et al., 2007b; Rasmussen et al., 2012].

Fiore et al. [2003] found that the concentrations of ozone increased with the temper-

ature non-linearly in summertime in California, although the ozone formation de-

pressed in the extreme high temperature. The strong correlation between higher

temperature and higher ozone concentrations related to multiple factors of the tro-

pospheric ozone formation. Reactions 1.1-1.3 show the typical mechanism of ozone

production in a polluted atmosphere [Jacob, 1999].

RH + OH
O2−→ RO2 + H2O (1.1)

RO2 + NO −→ RO + NO2 (1.2)

NO2 + hν
O2−→ NO +O3 (1.3)

where nitrogen oxides (NOx = NO + NO2) and hydrocarbon (RH) are two primary

precursors of ozone formation.

When surface temperature increases, the emissions of these precursors can be boosted

by the increase of 1) isoprene, monoterpenes, carbon monoxide, and other carbon-

related emissions released by vegetations; 2) the decomposition of peroxyacetylnitrate

(PAN) in higher temperature resulting an increase of both NOx and HOx; 3) evapo-

ration rate resulting in more hydrocarbons (RH) in the atmosphere; 4) the emission

from wildfire due to higher probability of wildfire; 5) anthropogenic emission due to
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the potential usage of electrical cooling system in extreme hot days. The enhance-

ment of chemical reaction rate in the higher temperature may further increase the

concentration of ozone in heat waves in a polluted atmosphere. What’s more, the

stomata of vegetations closed in extreme high temperature to protect the vegeta-

tion from temperature stress and water stress [Emberson et al., 2000]. With inactive

stomata, the dry deposition decreases that increases the lifetime of air pollutants.

Except for temperature, other meteorological factors associated with heat waves are

also important to the elevated ozone concentration. For example, heat waves are

usually accompanied by the high-pressure system and the clear sky, which would

increase the downward shortwave radiation, and therefore increase the photolysis

rate of NO2. In addition, the low surface wind speed associated with heat waves

reduce the transport, which would enhance the accumulation of air pollutants in a

local region. The low relative humidity also favors the increase of ozone, since the

reaction with water is one of the removal paths of ozone [Singla et al., 2011].

Heat waves also affect the concentrations of PM2.5. The relationship between PM2.5

and heat waves are complicated because the responses of PM2.5 to heat waves depend

on their chemical compositions. High temperature and the associated clear sky would

enhance the oxidation and photochemical process of aerosols, resulting in the increase

of components like sulfate and the decrease of components like nitrate. Higher concen-

trations of fine particulate matters were found when heat waves happened [D’Ippoliti
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et al., 2010; Theoharatos et al., 2010]. Since wet deposition is the main sink to remove

aerosols, especially fine particulate matters, less precipitation in sunny days leads to

the increases in the lifetime of aerosols. The concentrations of PM2.5 would also be

boosted by more occurrences of wildfires in the hot and dry environments [McKenzie

et al., 2004; Westerling et al., 2006].

The temperature inversion is a type of extreme air pollution meteorology with the

temperature increasing with height. Temperature usually decreases with the increase

of altitude in the troposphere. When the air above is colder than the surface, es-

pecially when the adiabatic lapse rate is smaller than environmental lapse rate, air

pollution at surface easily got transported to higher altitude through convection.

When the temperature inversions happen, vertical air motion is strongly suppressed

in the inversion layer. Because temperature inversions significantly suppress the con-

vection, it is expected that the occurrences of temperature inversions enhance the

local air pollution. The accumulation of air pollutants would become even worse if

there are some emission sources within the inversion layers.

Researches found that a large number of air quality episodes in spring and winter

were related to inversion and stable stratification [Janhäll et al., 2006; Kukkonen

et al., 2005; Schnell et al., 2009; Wallace et al., 2010]. For example, the occurrences

of temperature inversions coincided with the highest ozone and PM concentrations

in London smog event in 1952 [Laskin, 2006]. It has been found that temperature
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inversion can explain some high surface smoke concentrations, though a strong hori-

zontal wind may help to transport air pollutants and thus weaken the blocking effect

of inversion [Milionis and Davies , 1994]. In contrast, weak wind or special topogra-

phy (like valleys) will limit the horizontal transport of air mass and thus increase the

cumulative effect of temperature inversion.

Atmospheric stagnation episodes occur when air parcels stay in one region for a long

period of time. Atmospheric stagnation is defined by the low wind speed and the

lack of precipitation when local pollution tends to have less horizontal transport and

less wet deposition. In atmospheric stagnation episodes, the pollutants from local

emission accumulate over time, which cause higher risks of health problems for peo-

ple living in those areas. Situations become worse when both temperature inversion

and atmospheric stagnation happen at the same time. Although some studies have

shown a positive correlation between pollutants and atmosphere stagnation, espe-

cially in several high air pollution events, the correlations are distinct under different

conditions [Leung and Gustafson, 2005; Logan, 1989]. Similar to temperature inver-

sions, the relationship between atmospheric stagnation episodes and air pollutants

is affected by the source of emissions. When the main emission source is out of the

stagnation region, the air pollution may decrease in atmospheric stagnation episodes

by blocking the polluted air parcels out of the region.

With climate change, the occurrences of wildfires may increase due to the changes of

8



several factors, such as temperature, humidity, and lightning [Hantson et al., 2016;

Stavros et al., 2014]. The fire emissions are important for the air quality. Wildfire

emission is a large natural source of various types of aerosols that fires even have

strong impacts on the global burden of fine particulate matters [Voulgarakis et al.,

2015]. Fires also increase the production of ozone by emitting NOx, CO, and non-

methane volatile organic compounds (NMVOC) [Voulgarakis and Field , 2015].

Extreme precipitation events, such as drought and flood, also affect air quality [Rosen-

feld et al., 2008]. Drought occurs with a prolonged period of extremely low surface

precipitation, which is unfavorable for the removal of pollutants. Moreover, drought

might be exacerbated by heat waves and atmospheric stagnation episodes that de-

grade air quality. These extreme precipitation events mainly affect wet deposition,

which is a major removal process for aerosols and soluble gases in the atmosphere

[Atlas and Giam, 1988; Radke et al., 1980]. There are mainly two types of wet scaveng-

ing: rainout (in-cloud scavenging) and washout (below-cloud scavenging). Rainout is

responsible for the cloud droplet activation process in a supersaturated environment

above cloud base where aerosol particles serve as cloud condensation nuclei or ice nu-

clei, while washout is the collection of aerosol particles by hydrometeors below cloud

base.

Most previous studies focused on the correlation between air pollution and total pre-

cipitation amount or precipitation intensity [Cape et al., 2012; Pye et al., 2009; Tai
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et al., 2012]. For example, Dawson et al. [2007a] found a strong negative correla-

tion between precipitation intensity and PM2.5 concentrations over a large domain

of eastern US. Only a few previous studies considered the precipitation frequency.

Jacob and Winner [2009] claimed that the precipitation frequency dominates the wet

deposition compared with precipitation intensity because the wet scavenging due to

precipitation is very efficient. Fang et al. [2011] projected that wet deposition has a

stronger spatial correlation with precipitation frequency than intensity over US region

in January, although they concluded that frequency is a minor factor to affect the

wet deposition in the context of climate change.

A warmer climate can change the occurrence of extreme air pollution meteorologi-

cal events discussed above, and thus affect air quality [Leung and Gustafson, 2005].

Meehl and Tebaldi [2004] claimed that heat waves would become more intense, more

frequent, and longer-lasting in the second half of 21st century. This suggests that air

pollution related to heat waves might become more severe in the future. Horton et al.

[2014] also predicted that there would be more atmospheric stagnation events in the

future climate, and stagnation episodes will last longer. This will enhance the accu-

mulation of pollutants around the surface and thus increase the risk of public health.

Global climate change also implies significant perturbations of precipitation, which

can directly affect the wet scavenging process. Trenberth et al. [2007] reported that

the total precipitation amount increased over land north of 30◦N in the past century,

but decreased in the tropical region after the 1970s. Trenberth [2011] also pointed
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out that a warmer climate could lead to less frequent but more intense precipitation,

which implies the increase of both floods and droughts. The increase of precipitation

intensity and the decrease of precipitation frequency have the opposite effect on air

pollution, so the net effect is still unclear.

In Chapter 2, I examine the extreme air pollution meteorological events (heat waves,

temperature inversions, and atmospheric stagnation episodes) by studying the long-

term evolutions during 1951−2010 and their potential impacts on ozone and fine

particulate matter. In Chapter 3, I construct logistic regression models to predict

the upcoming high pollution episodes with the occurrences of extreme air pollution

meteorological events in two consecutive days. In Chapter 4, I study the extreme

precipitation events by making perturbation tests with a model to quantify the effects

of precipitation frequency, precipitation intensity, and total precipitation amount on

the lifetimes of black carbon.
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Chapter 2

Long-term Changes in Extreme

Air Pollution Meteorology and the

Implications for Air Quality

Reprinted with permission from: Hou, P., and S. Wu (2016), Long-term changes

in extreme air pollution meteorology and the implications for air quality, Scientific

Reports, 6:23792.
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2.1 Abstract

Extreme air pollution meteorological events, such as heat waves, temperature inver-

sions and atmospheric stagnation episodes, can significantly affect air quality. Based

on observational data, we have analyzed the long-term evolution of extreme air pollu-

tion meteorology on the global scale and their potential impacts on air quality, espe-

cially the high pollution episodes. We have identified significant increasing trends for

the occurrences of extreme air pollution meteorological events in the past six decades,

especially over the continental regions. The statistical analysis combining air quality

data and meteorological data further indicates strong sensitivities of air quality (in-

cluding both average concentrations of air pollutants and high pollution episodes) to

extreme meteorological events. For example, we find that in the United States the

probability of severe ozone pollution when there are heat waves could be up to seven

times of the average probability during summertime, while temperature inversions in

wintertime could enhance the probability of severe particulate matter pollution by

more than a factor of two. We have also identified significant seasonal and spatial

variations in the sensitivity of air quality to extreme air pollution meteorology.
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2.2 Introduction

Besides affecting the mean values of various meteorological variables, a critical impli-

cation of climate change is to alter the frequency and intensity of a suite of extreme

meteorological events [Alexander et al., 2006; Easterling et al., 2000; Francis and

Vavrus , 2012; Horton et al., 2014; Trenberth et al., 2007; CCSP , 2008; Murray and

Ebi , 2012]. Some of these extreme events such as heat waves, temperature inversions

and atmospheric stagnation episodes have important implications for atmospheric

chemistry and air quality [Fiala et al., 2003; Filleul et al., 2006; Leibensperger et al.,

2008; Ordóñez et al., 2010; ?; Steiner et al., 2010]. There have been many studies on

the potential impacts of climate change on air quality [Alexander and Mickley , 2015;

Bloomer et al., 2009; Dawson et al., 2014; Dentener et al., 2006; Doherty et al., 2013;

Fiore et al., 2012, 2015; Gao et al., 2013; Jacob and Winner , 2009; Lei et al., 2012;

Pfister et al., 2014; Pye et al., 2009; Rieder et al., 2013, 2015; Tai et al., 2012; Weaver

et al., 2009; Wu et al., 2008], but most of those analyses have generally focused on the

impacts associated with the changes in the average meteorological conditions (such

as temperature, humidity, precipitation, etc.). The long-term evolution of extreme

air pollution meteorology on the global scale and the potential impacts on air quality

have not been thoroughly investigated.
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2.3 Method

We examine the evolution of extreme air pollution meteorology in the past six

decades based on the National Centers for Environmental Prediction (NCEP) re-

analysis dataset [Kalnay et al., 1996]. The dataset covers the 1951-2010 period with

a horizontal resolution of 2.5◦ latitude by 2.5◦ longitude and a temporal resolution

of 6 hours (http://www.esrl.noaa.gov/psd/). To identify the long-term changes in

extreme air pollution meteorology (heat waves, temperature inversions and atmo-

spheric stagnation episodes), we compare the climatological data for extreme events

for two 30-yr periods: 1951-1980 vs. 1981-2010. We also conduct further analyses

to examine the sensitivity of our results to the metrics for definition/identifying air

pollution meteorological events and datasets used. To quantify the impacts of ex-

treme air pollution meteorology on air quality, we analyze air quality data (focusing

on ozone and PM2.5) from the U.S. Environmental Protection Agency (EPA) AQS

(http://www.epa.gov/airdata/) database for 2001-2010 together with the meteorol-

ogy data for the same period. The air quality data are processed into the same spatial

resolution as the meteorology data (2.5◦× 2.5◦) by averaging the available data from

all the sites within the same grid cell. Daily average concentrations of PM2.5 and af-

ternoon (1-4pm local time) concentrations of ozone (derived from hourly ozone data)

are used in the analysis.
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For each grid cell, we classify the air quality data into various groups based on the

meteorological conditions at the same time (e.g., heat wave group vs. no heat wave

group). If any group contains less than three valid air quality data, we exclude that

cell from the corresponding analysis. We compare the average concentrations in event

group and the no-event group by calculating the percentage changes of concentration

(PC) between them (Equation 2.1).

PC =
[Event group]− [No-event group]

[No-event group]
× 100% (2.1)

To compare the relative importance of various extreme air pollution meteorological

events in leading to high pollution episodes for various regions, we carry out further

analysis focusing on the high pollution days, which are defined as the top 10% most

polluted days for that season during the 2001-2010 period at that location. For days

with a specific meteorological event (heat waves, temperature inversions, or stagnation

episodes) occurring, we calculate the probability of those days falling in the top

10% high pollution days (i.e. having the top 10% highest concentrations for a given

pollutant ozone or PM2.5 in this case). This probability (Pevent) is then compared

with the average probability (P̄ ) for all days during the same season (whether or not

it has any extreme meteorological event) falling into the top 10% high pollution days

(P̄ should be equal to 10% following the definition). We also define an impact factor
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( I ) for a specific meteorological event as

I =
Pevent − P̄

P̄
(2.2)

where

P̄ =
# of days with high pollution

# of total days in a given period
= 10% (2.3)

Pevent =
# of days with both high pollution and extreme meteorological event

# of days with extreme meteorological event

(2.4)

We use the impact factor to quantify the impacts of extreme air pollution meteorology

on high pollution episodes. It clearly shows the changes in the probability of severe

air pollution associated with certain extreme air pollution meteorological events.

We note that the U.S. anthropogenic emissions declined during the 2001-2010 period

which has important implications for air quality. But we do not expect these emission

changes to have any significant impacts on the derived sensitivities of air quality to

extreme air pollution meteorology since a) our derived air quality sensitivities to

extreme meteorology are expressed as relative (percentage) changes; and b) the 10-

yr period is a relatively short time window in the context of global climate change

therefore we expect the climate-induced changes in extreme air pollution meteorology

should be small during this period. We have performed additional analyses to confirm

that our derived sensitivities are not affected by emission changes.
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2.4 Results and discussion

We first examine the evolution of extreme air pollution meteorology in the past six

decades. We follow the World Meteorological Organization method [Frich et al.,

2002] on the definition of heat waves with some modification - A heat wave is defined

when the daily maximum temperature at a given location exceeds the climatological”

daily maximum temperature (averaged over the reference period of 1961-1990) by

at least 5 K for more than two consecutive days. Figure 2.1a shows the average

annual occurrences of heat waves in the first 30-year (1951-1980) period as well as the

percentage changes when compared with the more recent 30-year (1981-2010) period.

Significant increases in heat waves in the more recent decades are observed over most

continental regions, especially the high latitude regions. For most regions, the trends

in the frequency of heat waves are similar to those identified in the literature [Frich

et al., 2002]. It is noticeable that the frequency of heat waves have decreased over

some areas in the United States in the past decades. The annual average frequency

of heat waves for the global non-polar continental regions is found to increase by

25.8±3.3% (Table 2.1). The largest increases (around 40%) are found during Northern

Hemisphere spring (March-May) and summer (June-August) seasons.

For temperature inversions, we examine the atmospheric temperature profile below

800 hPa which is most relevant to air quality. A temperature inversion event is defined
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Table 2.1
The percentage change ± standard error of the mean (SEM) (%) in the
average frequencies of extreme events (HW: heat waves; TI: temperature
inversions; AS: atmospheric stagnation episodes) for the global non-polar

continental regions between the two 30-yr periods: 1981-2010 vs.
1951-1980. * indicates statistically non-significant results at the 95%

confidence interval.

Event Season Global Northern Hemisphere

HW

Annual 25.8± 3.3 24.5± 3.1

March-May 45.4± 4.3 44.9± 4.1

June-August 40.3± 5.0 40.9± 5.3

September-November 9.9± 3.6 6.5± 3.7∗

December-January 17.9± 3.5 16.2± 3.3

TI

Annual 6.2± 3.2 6.7± 3.4∗

March-May 9.1± 3.9 9.0± 4.3

June-August 10.3± 5.3∗ 17.4± 7.0

September-November 8.8± 3.6 10.6± 3.9

December-January 1.8± 3.4∗ 1.6± 3.0∗

AS

Annual 4.5± 0.8 6.8± 0.9

March-May 7.2± 0.9 9.8± 1.1

June-August 6.7± 1.1 11.8± 1.3

September-November 3.6± 0.9 5.5± 1.0

December-January 0.5± 0.9∗ 1.0± 1.1∗

when the temperature at a higher level is at least 0.1 K higher than the tempera-

ture below. On a global scale, a general increase in the occurrences of temperature

inversions is found, except over the high latitudes Figure 2.1b. A warmer climate is

expected to increase the evapotranspiration, releasing more latent heat in the upper
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troposphere which could reduce the temperature lapse rate in the troposphere, espe-

cially over the tropics and mid-latitude regions. As a consequence, the atmospheric

stability is generally expected to increase with climate change leading to more tem-

perature inversions. On the other hand, the decreases in temperature inversions over

polar regions reflect the strong surface warming there in the past decades, partly

driven by the positive feedback associated with snow/ice albedo [Houghton et al.,

2001]. For non-polar continental regions in the Northern Hemisphere, the trends in

temperature inversion events show clear seasonal variations: the strongest increases

are observed in summer (by 17.4± 7.0%) while little changes are found in winter.

The definition of atmospheric stagnation used in this study follows the National Cli-

matic Data Center (NCDC) methodology [Horton et al., 2012] with a relative thresh-

old to focus on the local changes: A stagnation episode is defined when the 10 m

wind speed, 500 hPa wind speed, and precipitation at a given location are all less

than their climatological values for the reference period (1961-1990) by at least 20%.

Figure 2.1c shows that the occurrences of atmospheric stagnation episodes have in-

creased over most continental areas. Our results are consistent with Wang et al.

[Wang et al., 1999] who studied the changes in atmospheric stagnation episodes over

the U.S. region during the past decades. For non-polar continental regions, the annual

average atmospheric stagnation events have increased by 4.5 ± 0.8%. This increase

is partly due to the weakening of surface winds driven by climate change [Vautard
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Figure 2.1: Changes in the frequency of extreme air pollution meteorolog-
ical events in the past six decades (based on the NCEP reanalysis data): a.
heat waves (days/yr); b. temperature inversions (hrs/yr); c. atmospheric
stagnation episodes (hrs/yr). Left: 1951-1980 average; right: percentage
change (%) between 1951-1980 and 1981-2010.

et al., 2010]. In addition, the more intense but less frequent precipitation in a warmer

climate could also contribute to the increased frequency of atmospheric stagnation

events [Trenberth, 2011].
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It should be mentioned that we have applied various metrics for identifying each

air pollution meteorological event and find no evidence of significant impacts on our

results. For example, we use different definitions for stagnation episodes, including a)

If the 10 m wind speed, 500 hPa wind speed, and precipitation at a given location are

all less than their climatological values for the reference period (1961-1990) by at least

20% (the one currently being used in the dissertation); b) If the 10 m wind speed, 500

hPa wind speed, and precipitation at a given location all fall in the lowest 20% when

compared to the distributions of these variables for the reference period (1961-1990).

They lead to similar results on both the spatial variations and temporal trends in

stagnation events, so we finally settle on the one currently used in the dissertation

which appears most straightforward for the readers to understand. Similarly, we have

tried various definitions for heat waves such as exceeding the climatological value by

certain degrees or by a certain percentage, and there were little differences in the

identified trends.

We have also compared the NCEP reanalysis data with the MERRA data [Rienecker

et al., 2011] for cross-referencing. Due to the limit of computing resources, we have

only been able to process 10 years of MERRA data (1981-1985 and 2006-2010). We

compare results from these two datasets based on 5-year averages: 2006-2010 vs.

1981-1985. Figure 2.2 to 2.4 show the side-by-side comparison of the spatial distri-

butions of extreme air pollution meteorological events identified based on these two

datasets. The frequencies of extreme air pollution meteorological events over different
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continental regions are summarized in Table 2.2. In most cases, analyses based on

these two databases show the same direction in long-term trends. However, signifi-

cant differences between these two databases are identified for some regions (e.g., heat

waves over South America; temperature inversions over the Southern Oceans). This

reflects the uncertainties associated with these databases that we are not able to quan-

tify in this study. On the other hand, it is reassuring to see that these two datasets

are generally consistent in identifying the trends of extreme air pollution meteorology

over continental regions where we have concerns of air pollution (30◦N-60◦N).

(a) NCEP 1981-1985 (b) MERRA 1981-1985

(c) NCEP percentage change (d) MERRA percentage change

Figure 2.2: Long-term trends (2006-2010 vs. 1981-1985) in heat waves
(days/yr) based on the NCEP reanalysis compared with the MERRA data.
Top: 1981-1985 average; bottom: percentage change (%) between 1981-1985
and 2006-2010; left: NCEP data; right: MERRA data.

24



(a) NCEP 1981-1985 (b) MERRA 1981-1985

(c) NCEP percentage change (d) MERRA percentage change

Figure 2.3: Long-term trends (2006-2010 vs. 1981-1985) in temperature in-
versions (hrs/yr) based on the NCEP reanalysis compared with the MERRA
data. Top: 1981-1985 average; bottom: percentage change (%) between
1981-1985 and 2006-2010; left: NCEP data; right: MERRA data.

To examine the impacts on air quality from each specific extreme meteorological

event (heat waves, temperature inversions or atmospheric stagnation episodes), we

analyze air quality data from the U.S. EPA AQS database for 2001-2010 together

with the meteorology data for the same period. The air quality data are processed

into the same spatial resolution as the meteorology data (2.5◦×2.5◦) by averaging the

available data from all the sites within the same grid cell. Daily average concentrations

of PM2.5 and afternoon (1-4pm local time) average concentrations of ozone (derived

from hourly ozone data) are used in the analysis.
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(a) NCEP 1981-1985 (b) MERRA 1981-1985

(c) NCEP percentage change (d) MERRA percentage change

Figure 2.4: Long-term trends (2006-2010 vs. 1981-1985) in atmospheric
stagnation episodes (hrs/yr) based on the NCEP reanalysis compared with
the MERRA data. Top: 1981-1985 average; bottom: percentage change (%)
between 1981-1985 and 2006-2010; left: NCEP data; right: MERRA data.

We first compare the monthly average air quality on event days with those on non-

event days (Figure 2.5). The event groups tend to have much higher concentrations of

ozone than no-event groups in warm seasons, with enhancements up to 20%. Figure

2.5a and Figure 2.5b shows that the highest sensitivity of surface ozone to temperature

inversions and heat waves are found during summer and fall. In winter, when temper-

ature inversion or heat waves happened, the concentrations of ozone are usually lower

than days without these extreme events, which may reflect the weaker photochemical

ozone production in those seasons [Jacob et al., 1995; Carmichael et al., 1998]. The
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Table 2.2
The percentage change ± SEM (%) in the annual average frequencies of

extreme events (HW: heat waves; TI: temperature inversions; AS:
atmospheric stagnation episodes) for the long-term trends (2006-2010 vs.
1981-1985) in different continental regions based on the NCEP reanalysis

data compared with the MERRA data (∗ indicates statistically
non-significant results at the 95% confidence interval)

Regions Data HW TI AS

90◦N-60◦N
NCEP 95.9± 3.9 −6.7± 2.4 0.9± 1.7∗

MERRA 105.9± 8.4 −1.8± 2.5∗ 6.2± 2.8

60◦N-30◦N
NCEP 195.5± 6.3 0.6± 3.1∗ −10.2± 0.9

MERRA 201.9± 13.8 −1.3± 2.1∗ −1± 1.1∗

30◦N-0◦ NCEP 321± 25.7 −0.9± 6.9∗ −36.4± 1.2

MERRA 425.3± 68.4 2.5± 6.6∗ −16.1± 1.3

0◦-30◦S
NCEP 158.2± 21 −0.9± 8.1∗ −24± 1.1

MERRA 107.1± 29.2 −9.5± 6.3∗ −20.1± 1.0

30◦S-60◦S
NCEP 84.8± 18.7 3.1± 11.2∗ −25.8± 2.3

MERRA 98.9± 34.1 −7.9± 1.9 −5.1± 0.8

60◦S-90◦S
NCEP 107.2± 6.6 −5.3± 3.0∗ −32.7± 2.1

MERRA 29.5± 4.8 −0.3± 2.5∗ −4.7± 3.5∗

impacts of extreme events on PM2.5 are always positive but show less seasonal pat-

terns. Heat wave group tends to have less concentration of PM2.5 than no heat wave

group in the winter time.

We then compare the air quality for event group with those for the no-event group

in each grid box (Figure 2.6) to study the spatial distribution of sensitivities. The

statistical significance of the differences between these two groups are evaluated with
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(a) TI vs. O3 (b) HW vs. O3 (c) AS vs. O3

(d) TI vs. PM (e) HW vs. PM (f) AS vs. PM

Figure 2.5: Monthly average concentrations of air pollutants for event
group and the no-event group over the United States. Percentage changes
show the enhancements in the monthly average air pollutant concentrations
by extreme meteorological events.

t-tests with a 95% confidence interval. Figure 2.6a shows the percentage change of

seasonal average afternoon ozone concentrations on days with heat waves compared to

those on days without heat waves for each season. There are large spatial variations

in the sensitivity of ozone to heat waves. The strongest sensitivities are found in

the eastern United States and the west coast, where the mixing ratios of afternoon

ozone are enhanced by more than 40% on days with heat waves, reflecting the strong

emissions of ozone precursors [Jacob et al., 1993] and hence high ozone production

there. As discussed above, the frequency of heat waves have decreased in the past

decades over some areas in the United States (Figure 2.1a), which could have canceled
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out some of the increases in high ozone pollution risk induced by other factors over

those areas in the past decades.

We find that heat waves have much stronger impacts on air quality than single hot

days with the same temperature. Figure 2.7 shows the response of summer ozone con-

centrations to temperature, one group for all days in the season, another only for days

with heat waves. We can see that with the same temperature, ozone concentrations

on days with heat waves are significantly higher than those non-consecutive hot days,

especially over the 293-313K temperature range. Generally, the ozone concentrations

on days with heat waves are more than 4.5 ppb higher than those projected by the

average ozone-temperature correlation. This reflects the build-up effects from the ex-

tended period of high temperature during heat wave events. On the other hand, the

heat wave effects appear weaker when the temperature is above 313K (Figure 2.7).

In comparison, Steiner et al. [2010], based on observational data from California, re-

ported that the daily maximum ozone is most sensitive to temperature in the range

of 295-312K but the ozone formation is suppressed when the temperature is above

312K.

The impacts of temperature inversions on seasonal average concentrations of PM2.5

are shown in Figure 2.6b. The strongest impacts from temperature inversions are

observed in winter time with daily average PM2.5 concentrations enhanced by 40%

or more over large areas in the United States. The impacts are much weaker in
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Figure 2.6: Enhancements in the seasonal average air pollutant concentra-
tions by extreme meteorological events, shown as the percentage change (%)
of mean concentrations (for either ozone or PM2.5) on days with a specific
meteorological event (event groups) compared to those on days without that
event occurrence (no-event groups): a. ozone vs. heat waves; b. PM2.5

vs. temperature inversions; c. PM2.5 vs. atmospheric stagnation episodes.
Shadowed regions indicate that the differences between the two groups are
statistically non-significant at the 95% confidence interval. Blank regions
indicate those with less than 3 data points for either group.
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Figure 2.7: Summer ozone concentrations as a function of daily maximum
temperature based on 2001-2010 data in the United States. The blue curve
shows the average ozone concentrations for all the days with temperature
falling in specific temperature bins while the red curve only covers days with
heat waves.

summer and fall, mainly limited to the northeast and northwest states. In contrast,

significant impacts on PM2.5 concentrations associated with atmospheric stagnation

episodes are found for all seasons throughout the United States (Figure 2.6c), with

the largest increases in PM2.5 concentrations exceeding 40% over large areas.

We also carry out additional analysis by using the MERRA data instead of the NCEP

data to examine the impacts on air quality from extreme air pollution meteorology.

As we can see from Figure 2.8 and 2.9, these two datasets show essentially the same

sensitivity of air quality (for both ozone and PM) to extreme meteorological events

for 2006-2010.
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Figure 2.8: Impacts of heat waves on ozone in the United States (shown as
the ratio of ozone concentrations on days with heat waves and those without
heat waves) based on NCEP vs. MERRA data (2006-2010). Left: NCEP
data; right: MERRA data.
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Figure 2.9: Impacts of temperature inversions on PM2.5 in the United
States (shown as the ratio of PM2.5 concentrations on days with temperature
inversions and those without temperature inversions) based on NCEP vs.
MERRA data (2006-2010). Left: NCEP data; right: MERRA data.
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There have been significant changes in the anthropogenic emissions of ozone and

PM2.5 precursors during the 2001-2010 period (detailed information available from the

U.S. EPA - https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-

trends-data). These changes could affect the derived sensitivity of air quality to

extreme meteorological events if there has been any significant trends in air pollution

meteorology during the same period and these trends correlate with the emission

change. However, the 10-year period is a relatively short time frame in the context

of global climate change so we expect the climate-induced changes in extreme air

pollution meteorology are small during this period. Therefore we do not expect the

emission changes to have any significant impacts on the derived sensitivities when

the sensitivities are expressed as the relative (percentage) changes. Nevertheless, we

have carried out two additional tests to further confirm that the derived sensitivities

are not affected by emission changes.

For the first test, we separate the 10-yr data into 2 groups of 5-yr data (2001-2005

and 2006-2010 respectively). We found the sensitivities of air quality to extreme

meteorological events derived based on these two groups are very close and they do

not show any significant differences. For example, in summer, the enhancement in

the mean concentration of ozone due to heat waves is around 20% for both groups

(19.84% for the 2001-2005 group and 20.36% for the 2006-2010 group).

For the second test, we processed the air quality data into detrended data to eliminate
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the effects from emission changes. We apply a least square linear regression to the

original air quality data

y
′

i = α + βti (2.5)

where α and β are coefficients of the linear regression and y
′
i is the trend data for air

quality at time ti. The detrended air quality di is calculated as

di = yi − y
′

i + ȳ (2.6)

where yi is the original air quality data at time ti and ȳ is the average of original air

quality data. When we compare the enhancements in air pollution by extreme events

derived based on the original air quality data to those derived based on the detreneded

data, we find they are essentially the same. For example, for the enhancement in

summer ozone due to heat waves, we find that the results only differ by 0.51% and for

summer PM2.5 they only differ by 0.05%. Therefore we believe these two tests further

confirm that the emission changes during this period do not have any significant

impacts on the derived sensitivities of air quality to extreme air pollution meteorology.

We verify the capability of a chemical transport model (GEOS-Chem) in simulating

the relationship between extreme events and air quality. By calculating the ratio

between seasonal average ozone concentrations in event group and the ones in no-event

group (Figure 2.10, 2.11, and 2.12), we compare the impacts of extreme air pollution

meteorological events on ozone concentrations simulated from GEOS-Chem with the
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observation (NCEP and AQS databases). Limited by the GEOS5 meteorological

data used as meteorological input data in GEOS-Chem, the comparison focuses on

the 2004-2012 period. Temperature inversions (Figure 2.10) show weaker correlation

with ozone concentration in simulation results than observations, which could be due

to the simplified boundary layer mixing mechanism in the GEOS-Chem model. In

contrast, other extreme events are comparable with the observational analysis result.

For spring, summer, and fall, the model clearly captured the spatial distribution of the

mean concentration ratio between heat wave group and no heat wave group (Figure

2.11) that the eastern regions in the United States have a stronger response to the

occurrences of heat waves than the western regions.

We further examine the impacts of extreme air pollution meteorology on the cumu-

lative probability distributions of ozone and PM2.5 concentrations (Figure 2.13). For

each season, the cumulative probability distributions of ozone mixing ratios for days

with heat waves were compared with those without heat waves (Figure 2.13a). We

can see that extreme air pollution meteorology usually has the greatest impacts on

the high end of the distributions, which represent the high pollution episodes. For

example, during summer time, the 95th percentile ozone is increased by about 25%

while the 50th percentile ozone is only increased by about 19% due to heat waves.

Similar feature is found for the impacts on PM2.5 from temperature inversions and

atmospheric stagnation episodes. In winter time, the 95th percentile PM2.5 concentra-

tion is increased by 65% while the 50th percentile PM2.5 concentration only increases
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(a) Observations

(b) Simulations

Figure 2.10: Enhancements in the seasonal average air pollutant concen-
trations by temperature inversions during the 2004-2012 period, shown as the
ratio of mean concentrations for ozone on days with temperature inversions
compared to those on days without temperature inversions. (a) observation
results based on NCEP and AQS database; (b) simulation results based on
GEOS-Chem v9-02-01. Blank regions indicate those with less than 3 data
points for either group.
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(a) Observations

(b) Simulations

Figure 2.11: Enhancements in the seasonal average air pollutant concen-
trations by heat waves during the 2004-2012 period, shown as the ratio of
mean concentrations for ozone on days with heat waves compared to those on
days without heat waves. (a) observation results based on NCEP and AQS
database; (b) simulation results based on GEOS-Chem v9-02-01. Blank re-
gions indicate those with less than 3 data points for either group.
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(a) Observations

(b) Simulations

Figure 2.12: Enhancements in the seasonal average air pollutant concentra-
tions by atmospheric stagnation episodes during the 2004-2012 period, shown
as the ratio of mean concentrations for ozone on days with atmospheric stag-
nation episodes compared to those on days without atmospheric stagnation
episodes. (a) observation results based on NCEP and AQS database; (b)
simulation results based on GEOS-Chem v9-02-01. Blank regions indicate
those with less than 3 data points for either group.
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by 28% in response to temperature inversions (Figure 2.13b). Similarly, atmospheric

stagnation episodes are found to have little effects on the low end of PM2.5 distri-

butions (which represent the clean conditions) but significant impacts on the high

pollution episodes for each season (Figure 2.13c).
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Figure 2.13: Cumulative probability plots for concentrations of air pollu-
tants. Red triangle: event group; blue circle: no-event group. a. ozone mean
concentrations of heat wave group and no heat wave group; b. PM2.5 mean
concentrations of temperature inversion group and no temperature inversion
group; c. PM2.5 mean concentrations of atmospheric stagnation group and
no atmospheric stagnation group.
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For a specific air pollutant (i.e. ozone or PM2.5), we define the high pollution days

as the top 10% most polluted days for each season and examine their sensitivities to

various extreme air pollution meteorological events. To better quantify the impacts

from extreme events on high pollution episodes and their relative importance, we de-

fine an impact factor as the enhancement in the probability of high pollution episodes

due to extreme meteorological events (see Section 2.3 for details). The impact factors

for high ozone pollution days in summer associated with the three types of extreme

events on state level are shown in Figure 2.14a and 2.14c and similarly the impact

factors for different regions in the United States are shown in Figure 2.14b and 2.14d.

We find that heat waves are the most important meteorological event in leading to

high ozone pollution days in summer for most areas in the United States (Figure

2.14a and 2.14b). The impact factors for ozone pollution associated with heat waves

are particularly high in the eastern United States (such as Louisiana, Alabama and

Georgia), with values up to 6, which indicates the probability of severe ozone pollution

would be enhanced by a factor of 7 when there are heat waves over those areas.

The large spatial variations in the impact factors reflect the regional variations in

anthropogenic and natural emissions of air pollutants and their precursors, climate,

orography and geography (such as whether downwind or upwind of major air pollutant

source regions). The highest impact factors for temperature inversions are found over

the eastern United States and the Northwest region, while the highest impact factors

for atmospheric stagnation episodes are found over the Midwest.
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Figure 2.14: Enhancements in the probability of high pollution episodes
by extreme air pollution meteorological events for different states and re-
gions in the United States, shown as the impact factor for (a) summer ozone
by state; (b) summer ozone by region; (c) winter PM2.5 by state; and (d)
winter PM2.5 by region associated with various meteorological events (heat
waves, temperature inversions and atmospheric stagnation episodes; indi-
cated by the green, orange, and blue bars respectively). The impact factor
is defined as the enhancement in the probability of high pollution episodes
due to extreme meteorological events. Background color indicates the mean
concentration for that pollutant. Bar plots for the four smallest states (in-
cludes District of Columbia, Rhode Island, Delaware, and Connecticut) are
omitted to increase accessibility.

Figure 2.14c and 2.14d shows the impact factors for PM2.5 in winter associated with

the three types of extreme events. The highest impact factors (up to 1.6) are found for

temperature inversions over the western regions. The impact factors for atmospheric

stagnation episodes are generally higher in the eastern United States, and consistently

positive (indicating positive correlation between stagnation episodes and high PM2.5

pollution episodes) throughout the United States. In contrast, some negative impact
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factors are found for heat waves. One likely reason is the decrease of ammonium

nitrate (a major component of PM2.5 in winter time) at higher temperatures. This

hypothesis is supported by the decrease of high nitrate days when heat waves occur as

shown in Figure 2.15. In addition, during warmer days in winter, there would be less

residential biomass burning, which is a major source for aerosols in the Western United

States [Chen et al., 2012]. This could also contribute to the negative correlation

between heat waves and PM2.5 in winter.

Figure 2.15: Impact factor for nitrate in winter (2001-2010) that associated
with heat wave, based on the AQS database.

For the locations with extreme meteorological events identified, we find that on av-

erage there are about one third of the times (32% as shown in Table 2.3) with more

than one extreme events occurring simultaneously. To account for the interactions

between different types of extreme meteorological events and their synthetic effects

on air quality, we also calculate the impact factors for high pollution days associated
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with multiple events occurring simultaneously. The impact factors for U.S. high ozone

and PM2.5 days in different seasons are summarized in Table 2.4. With the increase

in the number of simultaneously occurring extreme events (from 0-3), the probability

of high pollution episodes almost always increases (with the notable exception of the

winter season). The highest impact factor (3.3) is found for summer ozone associated

with the combination of three extreme events. This implies that, on average over the

whole United States, the probability of high ozone pollution would be enhanced by

more than a factor of 4 compared to the seasonal average when the three extreme

events occur at the same time in summer.

Table 2.3
Number of extreme air pollution meteorological events identified over the
U.S. region for the 2001-2010 period (HW: heat waves; TI: temperature

inversions; AS: atmospheric stagnation episodes).

None
Single event

Only HW Only TI Only AS

number 38349 3048 14274 13753

total 38349 31075

Multiple events

HW & TI HW & AS TI & AS All

number 1902 2688 8151 1794

total 14535

45



Table 2.4
The impact factor for high pollution days (ozone and PM2.5) over the

United States associated with various extreme meteorological events (None:
no event; HW: only heat waves; TI: only temperature inversions; AS: only
atmospheric stagnation episodes; All: three kinds of events happened at

the same time). High pollution days are defined as the top 10% most
polluted days for each season during 2001-2010. The impact factor is

defined as the enhancement in the probability of high pollution episodes
due to extreme meteorological events.

Species Season None HW TI AS
HW
&
TI

HW
&
AS

TI
&
AS

All

O3

Spring -0.5 0.1 0.0 0.0 1.2 1.0 1.1 3.0

Summer-0.5 1.2 0.4 0.2 3.0 2.1 1.3 3.3

Fall -0.5 -0.1 -0.2 0.4 0.8 0.8 0.6 2.1

Winter 0.1 -0.4 -0.1 0.2 -0.1 0.1 0.1 0.0

PM2.5

Spring -0.4 0.0 0.1 0.2 0.6 0.7 0.8 1.9

Summer-0.3 0.8 0.2 0.2 1.9 1.2 0.7 2.5

Fall -0.4 0.2 -0.3 0.4 1.0 1.0 0.5 2.0

Winter -0.5 -0.7 -0.1 0.2 -0.2 0.3 1.2 0.8
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Chapter 3

Prediction of High Pollution

Episodes with the Occurrences of

Extreme Air Pollution

Meteorological Events

The material contained in this chapter will be submitted to the Geophysical Research

Letter. Hou, P., and S. Wu (2018), Prediction of high pollution episodes with the

occurrences of extreme air pollution meteorological events, to be submitted.
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3.1 Abstract

High pollution episodes, which are harmful to public health, can be affected by meteo-

rology, especially extreme air pollution meteorological events. The strong correlation

between extreme air pollution meteorological events and the high end of air pollution

distribution makes the occurrences of these meteorological events good predictors to

forecast the high pollution episodes. We develop statistical models to predict the

high air pollution episodes of ozone and fine particulate matters (PM2.5) with four

types of extreme air pollution meteorological events. We find that the occurrences of

heat waves, temperature inversions, and atmospheric stagnation episodes can explain

more than 80% of the interannual variations in high ozone pollution episodes in the

northeast US in summer. Besides, fire events affect southwest US most for both ozone

and PM2.5 in the summertime.

3.2 Introduction

Meteorology is an essential factor for air quality. Because meteorology has an impact

on several processes related to air pollution, including emissions, chemistry, transport,

and deposition [Fiala et al., 2003; Filleul et al., 2006; Kinney , 2008; Leibensperger

et al., 2008; Ordóñez et al., 2010; ?; Steiner et al., 2010]. Some extreme meteorological
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events, such as heat waves, temperature inversions, atmospheric stagnation episodes,

and wildfire, are found to have stronger impacts on air quality [Fiore et al., 2012;

?]. These extreme events are named as extreme air pollution meteorological events

in this study.

Extreme air pollution meteorological events are associated with high air pollution

episodes which threaten the public health. In 1952 London Smog event, the high par-

ticulate matter (PM) episodes were related to the persistent temperature inversions

and atmospheric stagnation episodes [Laskin, 2006]. A high ozone episode was trig-

gered by the severe European heat wave in 2003, which was one of the main causes of

more than 70,000 deaths in that event [Robine et al., 2008; Semenza et al., 1996]. Our

observational analysis (NCEP, MERRA, and AQS) and model simulations (GEOS-

Chem) in Chapter 2 showed that the occurrences of high pollution episodes increased

when extreme air pollution meteorological events occurred in a large area of US [Hou

and Wu, 2016]. These sensitivities can be applied to predict high pollution episodes

with regression models.

Most previous studies predicted the concentrations of ozone and PM2.5 using statis-

tical models under normal meteorology conditions [Abdul-Wahab et al., 2005; Gupta

and Christopher , 2009; Tai et al., 2012]. Only a few studies worked on the prediction

of air quality during extreme meteorological events, yet they usually focused on only

one type of extreme air pollution meteorology. Shen et al. [2016] predicted the ozone
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concentration with daily maximum temperature. Leibensperger et al. [2008] predicted

the high ozone episodes with the frequency of mid-latitude cyclones. Balachandran

et al. [2017] predicted PM2.5 during wildfire events. As far as we know, no one predicts

high air pollution episodes with multiple types of extreme events. However, when mul-

tiple types of the extreme air pollution meteorological events happened at the same

time, the probability of high pollution episodes would further increase in most cases

[Hou and Wu, 2016]. With the impacts of the extreme air pollution meteorological

events on high pollution episodes, we construct statistical models to predict the high

pollution episodes of ozone and PM2.5 with the occurrences of extreme air pollution

meteorological events (heat waves, temperature inversions, atmospheric stagnation

episodes, and wildfire) in two consecutive days. We use these statistical models to

predict the high pollution period around the 2000s, and apply observational data

(AQS) to evaluate the ability of our statistical models.

3.3 Methods

We construct regression models to predict the probability of high pollution episodes

with the occurrences of extreme air pollution meteorological events. Heat waves,

temperature inversions, and atmospheric stagnation episodes in two consecutive days

are considered as independent variables in the model. Two series of regression analysis

are made to predict high ozone episodes and high PM2.5 episodes, respectively. Fire
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events are also involved as independent variables in an extra test to discuss the impacts

of fire on high pollution episodes.

We apply National Centers for Environmental Prediction (NCEP) reanalysis dataset

[Kalnay et al., 1996] (http://www.esrl.noaa.gov/psd/) to investigate the occurrences

of heat waves, temperature inversions, and atmospheric stagnation episodes. The

NCEP dataset has a spatial resolution of 2.5◦ longitude × 2.5◦ latitude and a tem-

poral resolution of 6 hours. To match the temporal resolution of air pollutants, the

occurrences of extreme air pollution meteorological events are calculated daily.

The definitions of extreme air pollution meteorological events are the same with the

definitions shown in Chapter 2. A heat wave is defined when the daily maximum tem-

perature at a given location exceeds the climatological daily maximum temperature

(averaged over the reference period of 1961-1990) by at least 5 K for more than two

consecutive days. A temperature inversion event is defined when the temperature at

a higher level is at least 0.1 K higher than the temperature below for the atmospheric

temperature profile below 800 hPa. A stagnation episode is defined when the 10 m

wind speed, 500 hPa wind speed, and precipitation at a given location are all less

than their climatological values for the reference period (1961-1990) by at least 20%.

We examine the fire events based on the Global Fire Emissions Database

(GFED4) daily burned area (without small fires) database [Randerson et al., 2015]
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(http://www.globalfiredata.org), since the burned area (with small fires) only avail-

able in monthly, rather than higher temporal resolution. The database covers 2001-

2015 with a spatial resolution of 0.25◦ longitude × 0.25◦ latitude. To match the

resolution of NCEP database, the GFED4 database is regrided to 2.5◦ longitude ×

2.5◦ latitude. A fire event is defined as a day with non-zero burned area in a given

grid box.

The analysis of high pollution days is based on the U.S. Environmental Protection

Agency (EPA) Air Quality System (AQS, http://www.epa.gov/airdata/) database.

Since NCEP dataset has a horizontal resolution of 2.5◦ latitude by 2.5◦ longitude, the

AQS dataset is processed into the same spatial resolution by averaging the available

data from all the sites within the same grid cell. We focus on afternoon (1-4pm local

time) concentrations for ozone (derived from hourly ozone data) and daily average

concentrations for PM2.5. The high pollution episodes are defined as the top 10%

most polluted days for the years during the study period in each grid box. The study

period is decided by the available of data, which is 1990-2015 for ozone, 1998-2015

for PM2.5, and 2001-2015 for the analysis considered or compared with fire events.

A series of logistic regression models are built and applied to predict high pollution

episodes. The logistic method is chosen because it is designed to predict the probabil-

ity of a binary outcome, which is just the case for high pollution days (true or false).

Since we find that the occurrences of extreme air pollution meteorology in previous
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days also affect the high pollution episodes, both the extreme events in target day

and the day before target day are taken as independent variables in the models.

We define the process of this prediction as HTA method, which is the combination

of initial letters of heat waves (HW), temperature inversions (TI), and atmospheric

stagnation episodes (AS). The governing equations for the prediction are

p(high) =
1

1 + e−t
(3.1)

t = b+ ttoday + tyesterday (3.2)

ttoday = kHWtoday
HWtoday + kTItodayTItoday + kAStoday

AStoday (3.3)

where p(high) is the probability of high pollution days; HW , TI and AS are the

binary value shown the occurrences of heat waves, temperature inversions, and at-

mospheric stagnation episodes, respectively; ttoday and tyesterday contain input data

and coefficients for the target day (today) and the day before target day (yesterday),

respectively; the equation of tyesterday is similar to Equation 3.3 with all the subscripts

of today replaced by yesterday; b and k are the coefficients.

Since the emission level affects the relationship between extreme events and air qual-

ity, we detrend the concentrations of air pollutants in the study period before judge

53



the high pollution episodes, and only five previous years are used to derive the re-

gression equations. To avoid the impacts of seasonal variability, we calculate the

coefficients of regression model (b and k in Equation 3.2 and 3.3) with 91 running

days around the target day, which are 45 days before and after the target day. When

the sample size is less than 300 valid data points, the grid box is excluded.

For example, we try to predict whether 1 July 2013 is a high ozone day in a specific

grid box. Ozone data are detrended for 1990-2015 period in this grid box. Then high

ozone episodes are defined by judging top 10% most polluted days. The logistic model

is built by calculating coefficients based on meteorological data and air pollution data

from 17 May to 15 August in each year during 2008-2012. Once the coefficients (b and

k) are found, we substitute the occurrences of extreme air pollution meteorology on

1 July 2013 in the regression model to get a prediction result. In the end, the status

of high ozone day based on observational dataset is used to validate the prediction

result.

We also introduce fire events into the prediction system. We first check the occur-

rences of fire events during 2001-2015. Then we compare the concentrations of air

pollutants when fire happened (fire group) and when fire not happened (no fire group)

to examine the importance of fire events to the formation of air pollutants. At last,

we include fire as a predictor variables along with heat waves, temperature inversions,

54



and atmospheric stagnation episodes, and name it as HTA-fire method.

p(high) =
1

1 + e−f
(3.4)

f = b+ ftoday + fyesterday (3.5)

ftoday = kHWtoday
HWtoday + kTItodayTItoday + kAStoday

AStoday + kfiretodayfiretoday (3.6)

where fire is the occurrences of fire event on a given day in a given grid box. The

comparison of HTA and HTA-fire methods reflect the relative importance of fire event

in the development of high pollution episodes.

3.4 Results

We first investigate the cumulative effects of extreme air pollution meteorological

events on high pollution episodes to figure out if we need to consider the status of

extreme events in two consecutive days in regression models. If the target day is called

today, or day 0, then the day before the target day can be called yesterday, or day

-1. Similarly, two days before the target day can be called the day before yesterday,

or day -2. We test the relationship between the occurrences of extreme air pollution

meteorological events on previous days and the concentrations of air pollutants on

the target day. We divide concentrations of a specific air pollutant on the target day
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into two groups based on if a specific type of extreme air pollution methodological

events occurred on day n, as shown in Equation 3.7.

PC =
Ceventday n

− Cnoday n

Cnoday n

× 100% (3.7)

where PC represents the percentage change in %; C represents that we are testing the

concentration on the target day; day n represents that we divide all data points by

considering the occurrences of a specific extreme air pollution meteorological event

on the nth day, where n can be 0, -1, or -2; event is the group with that specific

extreme air pollution meteorological event happened; no is the group without that

specific extreme air pollution meteorological event happened. When the percentage

change is positive, the concentration of air pollutant on the target day is elevated by

the occurrences of extreme air pollution meteorological events on the nth day, and

vice versa.

The test of the cumulative effects of extreme air pollution meteorological events (Table

3.1) indicates that the events happened before the target day also affect the concen-

trations of air pollutants on the target day. Although the amount of the elevated

concentration is higher when the target day was a event day than when previous days

were event days, we usually find the concentrations of ozone and PM2.5 can also be

elevated by the event happened before the target day. Exceptions are found in cases
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of heat waves vs. PM2.5, which may reflect the different responses of different com-

ponents of PM2.5 to heat waves. Since the day before the target day also affects the

concentrations of the target day, we consider the status of extreme air pollution mete-

orological events in two consecutive days (Equation 3.1-3.3) as independent variables

to make the prediction.

Table 3.1
Percentage change (%) of the concentration on the target day between the
group with a specific extreme air pollution meteorological event on the nth

day and the group without that event happened on the same day. *
indicates statistically non-significant results at the 95% confidence interval.

Species Season Extreme events Day 0 Day -1 Day -2

O3 Summer

Heat wave 21.19 7.69 5.31

Inversion 13.49 2.10 0.46

Stagnation 12.77 4.64 3.06

PM2.5

Summer

Heat wave 16.34 -1.03* -6.67

Inversion 29.21 15.06 10.54

Stagnation 12.75 6.33 2.24

Winter

Heat wave 0.19* -14.74 -13.82

Inversion 20.25 4.10 0.17*

Stagnation 38.29 6.88 2.29

The prediction of high ozone days in 1995-2015 summer (June-August) with HTA

method (Figure 3.1) shows similar magnitude and trend with AQS data, especially

in the eastern United States. However, the interannual variation of high ozone days

predicted by HTA method is not as strong as the one from AQS, which reflects that
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although the extreme event is an important factor causing high ozone days, it is

not the only factor that affects the frequency of high ozone days. We apply the

correlation (R) between the time series of prediction results (HTA) and the time

series of observational results (AQS) to validate the accuracy of our regression model.

Overall, the correlation for the whole US domain is 0.77. For northeast region, the

correlation between AQS and HTA results is 0.90, which implies that the changes

of extreme events account for more than 80% of the interannual variations in high

ozone pollution episodes in this region. The southeast region also has relatively high

correlation between prediction result (HTA) and observational result (AQS), which

is 0.75. All the western regions, including northwest, midwest, and southwest, show

lower correlations, which are around 0.65.

The spatial distribution of correlations (Figure 3.2) reveals more detailed information.

A large area in eastern regions and a small region of west coast have high correlations

ranging from 0.6 to 0.9. However, the correlations in most western regions are much

lower than eastern regions. A reason is our logistic regression model cannot be used

in part of western regions where data are too few to reach a statistically significant

level. Another potential reason of lower correlations in western regions might be

the extreme low occurrences of temperature inversions and the stratospheric ozone

intrusion.

The high PM2.5 days are predicted for both summer (June-August) and winter
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Figure 3.1: Compare the prediction of high ozone days (HTA) with the
observed high ozone days (AQS) during summer in 1995-2015.

Figure 3.2: The correlation of the probability of high ozone days between
AQS and HTA in 1996-2015 summer.
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(December-February) during 2003-2015. Generally, the predictions of high PM2.5

days in summertime (Figure 3.3) have lower correlations with observational results

(AQS) when compared with the ozone case. The correlation is 0.69 for summer in

the whole US and it varies in different regions. For example, the correlation is 0.87

in the northeast, and 0.63 in southeast. However, the correlations of all the western

regions are only around 0.4. The reasons of relatively lower correlations in PM2.5

cases are complex. One of the main reasons is the complicated components of PM2.5.

Different components respond differently to different types of extreme air pollution

meteorological events. Another reason is that, when compare with ozone, there are

less data points available for PM2.5 in each year, and less years available. The lower

correlation also implies the possibility of missing factors that are important for the

high PM2.5 episodes.

In winter, the correlations between the predicted high PM2.5 episodes from HTA

model and the observational results from AQS are even lower (Figure 3.4). For the

whole US, the correlation is 0.43. The low accuracy of prediction in winter might

be driven by the abated PM2.5 in heat waves during winter. In a regional scale,

southwest region has the highest correlation (0.77) between HTA result and AQS

result, and northeast region has the lowest correlation (0.34). The spatial distribution

of correlations in winter is significant different from what we see in summer. It reflects

the seasonal change of main components of PM2.5 and the changes of mechanisms

about how extreme air pollution meteorological events affect air pollutants.
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Figure 3.3: Compare the prediction of high PM days (HTA) with the
observed high PM days (AQS) during summer in 2003-2015.

The correlations between the predicted high pollution episodes (HTA) and the obser-

vational high pollution episodes (AQS) give us a general idea about the performance

of the HTA prediction. However, it only reflects the performance of interannual vari-

ability based on seasonal average. Since we aim to predict the occurrence of high

pollution episode in each day, area under the receiver operating characteristic (AU-

ROC) would be a good index to summarize the prediction accuracy of daily prediction.

If the prediction is perfect, the value of AUROC would be 1; if all of the prediction

results are random, the value of AUROC would be 0.5. We follow the criterion used

by Lee et al. [2010] as shown in Table 3.2.
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Figure 3.4: Compare the prediction of high PM days (HTA) with the
observed high PM days (AQS) during winter in 2003-2015.

Table 3.2
AUROC criterion Lee et al. [2010].

AUROC range Prediction performance

AUROC < 0.6 Poor

0.6 6 AUROC < 0.7 Reasonable

0.7 6 AUROC < 0.8 Good

Table 3.3 shows that most of our tests have reasonable predictions for each day’s

occurrences of high pollution episodes. The results agree with the correlations. In

summer, our predictions perform best in the eastern US and bad in the western US.
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And in winter, the performances are good in the western US. The bad performance in

the western US in summer may reflect some missing factors that affect high pollution

episodes in this region. Considering the strong effect of wildfire emission on air

quality, we make the hypothesis that fire might be one of these dominant factors. So

we further analyze fire events and add fir as the fourth independent variable in the

regression models.

Table 3.3
AUROC of the HTA prediction validated by the AQS observational results.
The normal font shows the reasonable prediction, the italic font shows the

poor prediction, and the bold font shows the good prediction.

Ozone PM2.5

1996-2015 2003-2015

Summer Summer Winter

Northwest 0.68 0.57 0.73

Midwest 0.66 0.60 0.63

Northeast 0.79 0.72 0.63

Southwest 0.60 0.58 0.73

Southeast 0.70 0.60 0.67

US 0.68 0.61 0.68

To examine the impact of fire events on air pollution, we first check the occurrences

of fire events in 2001-2010 (Figure 3.5). The occurrences of fire events show large

seasonal and spatial variations in US. Most fire events occur in summertime and are

mainly located in the arid western US. Next, we investigate how the fire events affect

the concentrations of ozone and PM2.5 in 2001-2010 period based on the GFED4 data

63



and AQS data (Figure 3.6 and 3.7). The ratio of concentrations between fire group

and no-fire group is used to study the enhancement of air pollution when fire occurs.

Figure 3.5: The average daily burned area (without small fires) in the unit
of hectares during 2001-2010 period based on GFED4 dataset.

In general, ozone concentrations are higher in fire group (Figure 3.6). The reason

might be that more ozone precursors are emitted through biomass burning in wild-

fire. The enhancement is stronger in fall and winter than summer time. This seasonal

variation is driven by multiple potential factors. Firstly, the reduction of solar radia-

tion due to high aerosol optical depths may reduce the photolysis rate and thus slow

down the production of ozone in summer. Figure 3.7 supports this hypothesis that

fire enhances the concentration of aerosols in the western US in summer, which is

higher than the enhancement in other seasons. Secondly, ozone precursor is relatively
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sufficient in summertime, so further increase of the ozone precursor is not as pro-

ductive as the case with insufficient ozone precursors in other seasons. Thirdly, the

pollutants from fire plume might inject into free troposphere and make long-range

transportation that affects non-local regions instead. Last but not the least, even

the absolute changes are the same in all seasons, the percentage change in summer

would be lower than other seasons, because the average concentration of ozone is

much higher in summer than other seasons.

Figure 3.6: Enhancements in the seasonal average ozone concentrations
by fire events during 2001-2010 period, shown as the ratio of mean concen-
trations on days with fire compared to those on days without fire. Blank
regions indicate those with less than 3 data points for either group.

The concentrations of PM2.5 are also enhanced by fire events (Figure 3.7), especially
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in summer time. In fall and winter, the concentrations of PM2.5 are lower in the

western regions when fire events occur. This might be due to the differences in the

main components of PM2.5 in different seasons as discussed above.

Figure 3.7: Enhancements in the seasonal average PM2.5 concentrations
by fire events during 2001-2010 period, shown as the ratio of mean concen-
trations on days with fire compared to those on days without fire. Blank
regions indicate those with less than 3 data points for either group.

We include fire as the fourth variable in the logistic regression model to predict the

high pollution days, which is named as HTA-fire method hereafter. We apply our

model in the summer of 2006-2015 since fire happens mostly in summer. We calculate

the correlation between the prediction results from HTA-fire and observational results

from AQS, and check whether the value is higher than the correlation between HTA
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and AQS. The percentage change between HTA and HTA-fire (Table 3.4) reflects the

improvement of prediction when fire is considered in the method. The improvement of

correlation is mainly found in northwest, where the correlation for ozone is increased

by 27% and the correlation of PM2.5 is increased by 105%. For this region, our results

suggest that HTA-fire method is advisable to predict the probability of high pollution

days compared with HTA method, which probably due to stronger emissions from

fire. As shown in Figure 3.5, the occurrences of fire in summer in the western region

are more than those in the eastern region. However, burned area and emission factors

are also important factors associated with the concentrations of PM2.5 other than fire

count [Clark et al., 2010; Pearce et al., 2012; Robertson et al., 2014; Urbanski , 2013].

So the different enhancement of PM2.5 in northwest and southwest may be related

to the higher fuel consumption in northwest than southwest [Van der Werf et al.,

2010]. Therefore, fire is an important factor for air quality in northwest region, which

should be considered in the regression model. The limited improvement in other

regions may related to the missing of small fires in our chosen fire database. GFED4

burned area without small fires is applied in this analysis due to the lack of high

temporal resolution data in database with small fires. However, the small fires were

found to be an important factor that increase the emission [Randerson et al., 2012;

Zhang and Wang , 2016]. So further analysis based on dataset that includes small

fires is needed.

Another potential problem related to HTA-fire method is the prediction of fire events.
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To predict the high pollution episodes with HTA-fire method in a near future, the

predictions of heat waves, temperature inversions, atmospheric stagnation, and fire

are needed. We can get reasonable predictions of other extreme air pollution meteo-

rological events from weather forecast models, but it’s hard to get reliable predictions

of fire events. One main reason is lots of fires are human-ignited that are hard to be

predicted by models. Even considering only the wildfires, there are still uncertainty

related to the fire prediction models which further developments are needed [Hantson

et al., 2016]. In that case, our HTA-fire method would give out several potential

probability of high pollution episodes for different cases of fire events.

Table 3.4
Percentage changes in the correlation between HTA-fire and AQS and the

correlation between HTA and AQS during 2006-2015 summer.

Percentage Change Ozone PM2.5

northwest 27.45% 104.64%

midwest 1.09% −8.87%

northeast 0.00% 0.07%

southwest 8.31% −0.35%

southeast 2.71% −0.35%

US 5.52% −0.40%
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3.5 Conclusion

In this study, we build a series of logistic regression models to predict high pollution

episodes with the occurrences of extreme air pollution meteorology around 2000s. By

comparing the prediction results from our statistical models with the observational

results from AQS dataset, we assess the accuracy of the prediction models. The corre-

lation between the high pollution probability from statistical model and observational

dataset and AUROC are applied as indexes to estimate the performance of our pre-

diction. A high correlation suggests that 1) strong relationship between prediction

results and observational results and 2) similar trends and interannual variations in

both time series, while a high AUROC summarizes the performance of predictions in

each day.

We discover large seasonal and spatial variations in most predictions. The prediction

of high ozone episodes with heat waves, temperature inversions, and atmospheric

stagnation episodes (HTA model) performs good in 1996-2015 summer. The corre-

lation of the whole US is 0.77. Moreover, the correlation of northeast reaches 0.9,

which means that more than 80% of the interannual variation in high ozone pollution

episodes in this region is related to the occurrences of extreme air pollution mete-

orological events. The predictions of PM2.5 are not as good as the ozone case, the

correlation of the whole US are 0.69 and 0.43 for summer and winter, respectively,
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which may be related to the complicated responses of the different components of

PM2.5 to different extreme air pollution meteorological events. The tests of AUROC

generally agree with the tests of correlation.

We also analyze the relationship between fire and the concentrations of air pollutants.

When fire happens, the ozone concentrations generally increase all over the US in all

seasons. The increase is much stronger in fall and winter. For the concentrations

of PM2.5, the strongest increase by fire is in summer in western US. We introduce

the fire events as an extra independent variable in our prediction model as HTA-fire

model. The HTA-fire model increases the correlation of HTA by 27% for ozone and

105% for PM2.5 in northwest region in summer.

The regression models give us further understanding about the relationships between

high pollution episodes and multiple extreme air pollution meteorological events. In

addition, we hope these statistical models can be used as a simple tool to provide the

warnings of the high pollution episodes to the public with only simple information

of upcoming extreme air pollution meteorology. The tool is especially reliable in

northeast US for the prediction of high ozone days in summer.
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Chapter 4

Sensitivity of Atmospheric Aerosol

Scavenging to Precipitation

Intensity and Frequency in the

context of Global Climate Change

The material contained in this chapter has been submitted to Atmospheric Chemistry

and Physics and has been published in Atmospheric Chemistry and Physics Discus-

sion. Hou, P., S. Wu, and J. L. McCarty (2018), Sensitivity of atmospheric aerosol

scavenging to precipitation intensity and frequency in the context of global climate

change, Atmospheric Chemistry and Physics, in review.
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4.1 Abstract

Wet deposition driven by precipitation is an important sink for atmospheric aerosols

and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to

precipitation intensity and frequency in the context of global climate change. Our sen-

sitivity model simulations, through some simplified perturbations to precipitation in

the GEOS-Chem model, show that the removal efficiency and hence the atmospheric

lifetime of aerosols have significantly higher sensitivities to precipitation frequencies

than to precipitation intensities, indicating that the same amount of precipitation

may lead to different removal efficiencies of atmospheric aerosols. Combining the

long-term trends of precipitation patterns for various regions with the sensitivities

of atmospheric aerosol lifetimes to various precipitation characteristics allows us to

examine the potential impacts of precipitation changes on atmospheric aerosols. Anal-

yses based on an observational dataset show that precipitation frequencies in some

regions have decreased in the past 14 years, which might increase the atmospheric

aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis mete-

orological datasets indicate that the changes of precipitation intensity and frequency

over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes

by 10% or higher at the regional scale.
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4.2 Introduction

Wet scavenging is a major removal process for aerosols and soluble trace gases [At-

las and Giam, 1988; Radke et al., 1980]. Global climate change implies significant

perturbations of precipitation, which can directly affect the wet scavenging process.

Salzmann [2016] found that the global mean precipitation did not change significantly

since 1850 with climate models, while Trenberth et al. [2007] reported that the total

precipitation amount increased over land north of 30N in the past century and de-

creased in the tropical region after the 1970s based on observational data. Trenberth

[2011] also noted that theoretically a warmer climate could lead to less frequent but

more intense precipitation.

The impacts of long-term changes in precipitation characteristics on air quality have

not been well studied. Most previous studies focused on the correlation between air

pollution and the total precipitation amount or precipitation intensity [Cape et al.,

2012; Pye et al., 2009; Tai et al., 2012]. For example, Dawson et al. [2007a] found

a strong sensitivity of the PM2.5 (particulate matters with diameters less than 2.5

µm) concentrations to precipitation intensity over a large domain of the eastern US

with perturbation tests. Only a few studies focused on precipitation frequency. Jacob

and Winner [2009] noted that precipitation frequency could be more important than
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precipitation intensity for air quality because the wet scavenging process due to pre-

cipitation is very efficient [Balkanski et al., 1993]. Fang et al. [2011] projected with

the Geophysical Fluid Dynamics Laboratory chemistry-climate model (AM3) that

wet deposition has a stronger spatial correlation with precipitation frequency than

intensity over the US in January, although they concluded that frequency has a mi-

nor effect on wet deposition in the context of climate change. Mahowald et al. [2011]

also discussed the importance of precipitation frequency in wet deposition based on

simulations showing large removal rate of dust in precipitation events.

In this study, we first use GEOS-Chem, a global 3-D chemical transport model

(CTM), to examine the sensitivities of atmospheric aerosol lifetimes to various pre-

cipitation characteristics, including the precipitation intensity, frequency, and total

amount. By isolating these precipitation characteristics from other meteorological

fields through a suite of perturbation simulations, we are able to better understand

the sensitivities of atmospheric aerosols to various precipitation characteristics. We

focus on black carbon (BC) as a proxy for atmospheric aerosols to examine the im-

pacts of changes in precipitation characteristics. BC is nearly inert in the atmosphere

[Ramanathan and Carmichael , 2008], making it a good tracer for studying the trans-

port and deposition of atmospheric species. We also analyze the long-term trends

of the precipitation characteristics over various regions around the world, based on

the observational and reanalysis meteorological datasets for the past decades. We

then combine the long-term trends in the precipitation patterns for various regions
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with the sensitivities of BC to precipitation characteristics to quantify their potential

impacts on atmospheric aerosols in the context of global climate change.

4.3 Methods

We utilize a global 3-D chemical transport model (CTM), GEOS-Chem version 9-02-

01 [Bey et al., 2001] (www.geos-chem.org), to carry out a suite of perturbation tests

to examine the sensitivities of atmospheric aerosols to precipitation characteristics.

As a chemical transport model, the GEOS-Chem model does not simulate meteorol-

ogy prognostically; instead, it is driven by assimilated meteorological data from the

Goddard Earth Observing System (GEOS) of NASA GMAO. We use the GEOS-5

meteorological dataset in this study. We conduct global simulations with a horizontal

resolution of 4◦ latitude by 5◦ longitude and 47 vertical layers. All the model simu-

lations in this study run from 1 July 2005 to 1 January 2007, i.e., for one and half

years, with the first half year serving as the model spin-up.

The wet deposition scheme in GEOS-Chem includes scavenging in convective up-

drafts, in-cloud scavenging (rainout), and below-cloud scavenging (washout), which

were described in detail by Liu et al. [2001] and Wang et al. [2011]. In GEOS-Chem

simulation, the BC aerosols are classified into two types based on their hygroscopicity

(hydrophobic vs. hydrophilic), and wet scavenging is more efficient for hydrophilic
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BC. GEOS-Chem assumes the ratio between hydrophobic and hydrophilic BC to

be 4:1 in fresh emissions and hydrophobic BC converts to hydrophilic one with an

e-folding lifetime of 1.15 days.

The washout rate constant (k) is affected by the particle size and the form of precip-

itation. For washout by rain with precipitation rate P (mmh−1), k = 1.1× 10−3P 0.61

for accumulation mode (aerosols with diameters between 0.04 µm and 2.5 µm) and

k = 0.92P 0.79 for coarse mode (aerosols with diameter between 2.5 µm to 16 µm);

for washout by snow with precipitation rate P , k = 2.8 × 10−2P 0.96 for accumula-

tion mode and k = 1.57P 0.96 for coarse mode [Feng , 2007, 2009]. The coefficients

for accumulation-mode are used in calculating k for fine particles including BC in

GEOS-Chem.

Our study focuses on three precipitation characteristics: the precipitation intensity,

frequency, and total amount. We define precipitation events as the data points with

significant (we use precipitation rate more than 1 mm/day as the criterion in this

study) precipitation. Precipitation intensity is the average precipitation rate on pre-

cipitation events, with a unit of mm/day. Precipitation frequency is the fraction of

precipitation events during the study period (i.e., the probability of any given data

points with more than 1 mm/day precipitation rate), which is dimensionless. Total

precipitation amount is defined as the average amount of precipitation rate during

the study period, with a unit of mm/day. Assuming that precipitation is negligible
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on data points with no precipitation events, we would have

total precipitation amount ∼= precipitation intensity · precipitation frequency

(4.1)

For sensitivity tests focused on precipitation intensity, we scale the base GEOS-5

precipitation values from the control run by a uniform factor for each grid box. For

the sensitivity tests focused on precipitation frequency, we use a stochastic function

to turn off the precipitation at a given data point. For example, in a simulation where

we reduce the precipitation frequency by 25%, for a data point (i, j, t), we modify the

initial precipitation rate P0(i, j, t) to

P (i, j, t) =


P0(i, j, t); R(i, j, t) > 0.25

0; R(i, j, t) < 0.25

(4.2)

where R is a random function with a range of (0, 1). In this way, we decrease the

precipitation frequency of each grid box to 75% of its base value across the whole

study domain and keep the base spatiotemporal precipitation patterns over each

specific region.

For convenience in identifying and describing all the sensitivity tests, we name them

after their precipitation frequency and intensity scaling factors. For instance, the case

f0.5i2 represents the simulation with half the base precipitation frequency and twice
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the base precipitation intensity, while the case f1i1 indicates the control simulation

with a base frequency and intensity. We carry out more than 20 sensitivity model

simulations to cover various precipitation intensities and frequencies as shown in Table

4.1.

The abundance of atmospheric aerosols is determined by both the aerosol emission

rates and their atmospheric residence times, i.e., their lifetimes. The average atmo-

spheric lifetimes of aerosols are calculated as

lifetime =
burden

removal rate
(4.3)

lifetime =
burden

dry deposition rate + wet deposition rate
(4.4)

Therefore, more efficient wet scavenging would lead to shorter atmospheric aerosol

lifetimes.

We then examine the long-term changes in precipitation characteristics for var-

ious regions around the world in past decades. We first analyze changes in

the precipitation between two 7-yr periods (2008-2014 vs. 2001-2007) based

on an observational dataset, the 3-Hour Realtime Tropical Rainfall Measuring

Multi-Satellite Precipitation Analysis version 7 (TRMM3B42v7, short for TRMM,
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Table 4.1
Series of sensitivity model simulations carried out in this study.

Model simulations Objective Case names

Constant precipita-
tion frequency (Figure
4.1a)

To study the sensitivity of
BC lifetime to precipitation
intensity

f1i0.25, f1i0.5, f1i1,
f1i2, and f1i4

Constant precipita-
tion intensity (Figure
4.1b)

To study the sensitivity of
BC lifetime to precipitation
frequency

f0.1i1, f0.25i1, f0.5i1,
f0.75i1, and f1i1

Constant precipita-
tion amount (Figure
4.1c)

To compare the sensitivity
of BC lifetime to precipita-
tion intensity and precipita-
tion frequency

f0.1i10, f0.25i4, f0.5i2,
f0.75i1.33, and f1i1

Hygroscopicity of
aerosols (100% vs.
20% BC in fresh
emissions are assumed
to be hydrophilic)

To examine the impacts on
wet deposition from the pa-
rameterization on the hy-
groscopicity of aerosols

f1i1 and f0.75i1.33

Aerosol size (BC
aerosols are assumed
to be in coarse mode
vs. accumulation
mode)

To examine the impacts on
wet scavenging from the pa-
rameterization on the size of
aerosols

f1i1 and f0.75i1.33

Contour of BC life-
time (Figure 4.2, 4.4-
4.6)

To plot BC lifetime as a
function of the precipitation
intensity and frequency

f0.25i0.5, f0.25i1,
f0.25i1.33, f0.25i2,
f0.25i4, f0.5i0.5,
f0.5i1, f0.5i1.33,
f0.5i2, f0.5i4, f0.75i0.5,
f0.75i1, f0.75i1.33,
f0.75i2, f0.75i4, f1i0.5,
f1i1, f1i1.33, f1i2, and
f1i4

https://pmm.nasa.gov/TRMM). TRMM (3B42v7) performances better than the pre-

vious version of satellite products (3B42v6), though there are still problems in de-

tecting precipitation events with low precipitation rates [Maggioni et al., 2016]. We
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then examine three reanalysis datasets with longer temporal coverage (2001-2010 vs

1981-1990): the National Centers for Environmental Prediction (NCEP) reanalysis

dataset [Kalnay et al., 1996], the NCEP-DOE AMIP-II (NCEP2) reanalysis dataset

[Kanamitsu et al., 2002], and NASA’s Modern-Era Retrospective analysis for Re-

search and Applications (MERRA) dataset [Rienecker et al., 2011]. These datasets

have different resolutions and spatial coverage. TRMM only covers 60oN-60oS, while

other datasets cover the whole globe. The resolutions (◦ longitude × ◦ latitude ×

hour) for TRMM, NCEP, NCEP2, and MERRA are 0.25 × 0.25 × 3, 2.5 × 2.5 × 6,

2.5× 2.5× 6, 2.5× 2× 1, respectively. We regrid the TRMM dataset from 0.25x0.25

to 2.5x2.5 (◦lon × ◦lat) to reduce the computational cost and the relative errors at

small precipitation rates [Gehne et al., 2016; Huffman et al., 2007]. By combining the

resulting sensitivities of BC lifetimes to precipitation characteristics with the results

of the long-term trends in precipitation characteristics, we then estimate the impacts

of long-term changes in precipitation characteristics on the atmospheric lifetime of

BC.

4.4 Results

The global annual mean lifetime of BC is calculated at 5.29 days in our control

simulation (Figure 4.1). This value is similar to the results of a previous study,

which stated that the lifetime of BC would be around one week [Ramanathan and

80



Carmichael , 2008]. Our result also agrees with the lifetime of 5.8±1.8 days simulated

by the GEOS-Chem model [Park et al., 2005] and the 5.4 days result simulated by the

ECHAM5-HAM model [Stier et al., 2005]. For 13 models in AeroCom, the lifetimes

of BC from anthropogenic fossil fuel and biofuel sources are simulated to be from 3.5

to 17.1 days, with 5.9 days as the median value [Samset et al., 2014].

Figure 4.1: Impacts of the precipitation characteristics on the atmospheric
lifetime of BC under given a) constant precipitation frequency; b) constant
precipitation intensity; and c) constant precipitation amount. The top x-
axis reflects the precipitation frequency set in each perturbation test, shown
as fractions of base precipitation frequency. Base precipitation frequency
is the precipitation frequency used in the control case. Similarly, the bot-
tom x-axis reflects the settings of precipitation intensity in the perturbation
tests. The box plot shows the probability distribution of BC lifetime for each
case, where the top and bottom edges of each box show the third and first
quartiles, respectively; the green central bar shows the median; the whisker
shows the range of the non-outliers that cover 99.3% of the data, assuming
normally distributed data; and the red plus shows the outliers.

We first compare the results of the control run with other simulations with the same

precipitation frequency (f1i0.25, f1i0.5, f1i1, f1i2, and f1i4) to examine the sensitivity

of BC lifetime to precipitation intensity (Figure 4.1a). We find that an increase in

precipitation intensity leads to decreases in both the BC lifetime and the sensitivity
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of the BC lifetime to precipitation intensity. That is, the impact of precipitation in-

tensity on BC aerosols is saturated when the intensity is very high, which is consistent

with a previous study [Fang et al., 2011]. We then compare the control run with other

simulations with the same precipitation intensity (f0.1i1, f0.25i1, f0.5i1, f0.75i1, and

f1i1) to study the sensitivities of the BC lifetime to precipitation frequency (Figure

4.1b). Again, the BC lifetime responds non-linearly to the changes in precipitation

frequency, and the sensitivity decreases with increases in precipitation frequency.

When we compare the simulations with a common precipitation amount (f0.1i10,

f0.25i4, f0.5i2, f0.75i1.33, and f1i1), we find that the BC lifetime increases with in-

creasing precipitation intensity (Figure 4.1c). For example, case f0.1i10 has an annual

average BC lifetime of 7.86 days, which is much longer than the 5.29 days of the con-

trol simulation (case f1i1). This indicates that the sensitivity of the BC lifetime to

precipitation frequency is stronger than that to the precipitation intensity.

The calculated efficiency of wet scavenging can be affected by model parameteriza-

tions. We first examine the possible impacts on our results from the parameterization

on the hygroscopicity of aerosols. With the default parameterization in GEOS-Chem,

20% of the fresh BC emissions are assumed to be hydrophilic. We set up sensitiv-

ity runs with another parameterization, where all BC is assumed to be hydrophilic.

With these two different parameterization schemes, we examine the changes in the

BC lifetime between two scenarios (f1i1 vs. f0.75i1.33) respectively. We find that
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with the default setting in GEOS-Chem, the atmospheric lifetime of BC under the

f0.75i1.33 scenario is slightly higher than the f1i1 scenario by 0.4%. In comparison, if

all the BC is assumed to be hydrophilic, the BC lifetime under the f0.75i1.33 scenario

would be 3.6% higher. This implies that for hydrophilic aerosols, the sensitivity to

precipitation frequency would be even higher.

We also evaluate the impacts on wet scavenging from aerosol size with sensitivity

simulations. If we assume the aerosols to be in coarse mode, we find that it would

lead to more efficient scavenging and consequently much shorter lifetime (compared

to the default setting in GEOS-Chem that all BC aerosols are in accumulation mode).

However, there are no significant effects on the relative sensitivities to precipitation

frequency vs. intensity the percentage change in BC lifetime between the f1i1 and

f0.75i1.33 scenarios is very similar to the cases with parameterization for accumulation

mode (0.3% vs. 0.4%). This indicates that the relative sensitivity of the BC lifetime

to precipitation frequency and precipitation intensity is not significantly affected by

the parameterization of particle size in the wet scavenging scheme in GEOS-Chem.

It is worth noting that our model does not resolve the size of precipitation droplet,

which can also affect the efficiency of wet scavenging.

The stronger sensitivity of the BC lifetime to precipitation frequency than that to in-

tensity implies that an increase in the total precipitation amount does not necessarily

lead to a decrease in the BC lifetime. This is better illustrated in Figure 4.2, which

83



shows the BC lifetime as a function of the precipitation intensity and frequency based

on 20 cases (f0.25, f0.5, f0.75, f1 versus i0.5, i1, i1.33, i2, i4). Compared with the

control scenario (i.e., f1i1, the base precipitation intensity and frequency, as labeled

by the black star), any point in the area between the two solid curves (the green one

shows a constant total precipitation amount, and the red one shows a constant BC

lifetime) would have a higher total precipitation amount and a longer BC lifetime.

This indicates that, even with an increased total precipitation, the BC lifetime (and

hence the atmospheric concentrations of BC) can still increase if the precipitation

frequency decreases significantly. This feature may help explain the decrease of the

wet deposition flux found in wetter future climate simulations, despite their slightly

increased total precipitation amounts [Xu et al., 2018].

The lifetime contour plot in Figure 4.2 can be employed as a simple tool to help us

understand the impacts of long-term changes in precipitation on atmospheric aerosols,

so we also investigate the long-term trends in the precipitation characteristics over the

past decades for various regions around the world. In considering the spatial variations

of precipitation patterns and their long-term trends, we divide the global continental

regions into multiple subcontinental areas to better resolve the spatial variations

(Figure 4.3). We first carry out an analysis based on precipitation data from the

TRMM dataset. The changes in the average precipitation intensities and frequencies

between the periods of 2008-2014 and 2001-2007 for each region are shown as ratios

in Figure 4.4, with the width and height of the blocks in Figure 4.4 indicating the
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Figure 4.2: Model calculated BC atmospheric lifetime as a function of
precipitation intensity and frequency. The dashed contour lines indicate the
atmospheric lifetimes of the black carbon aerosols from the interpolation of
20 cases, which show the potential changes of BC lifetimes from the base BC
lifetime (in the control run) driven by the changes of precipitation intensity
and frequency. The green solid line represents a total precipitation equal to
that of the base simulation (control run). The red solid line indicates the
conditions leading to atmospheric black carbon aerosol lifetimes that match
the base simulation (control run).

standard errors of the calculated percentage changes in precipitation frequency and

intensity, respectively. Although these TRMM data only cover 14 years, the standard

errors as shown in Figure 4.4 indicate that the changes in precipitation intensity and

frequency over most regions are statistically significant. We find that during these
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14 years, the average precipitation intensity has increased over most regions, but

the average precipitation frequency has decreased over more than one third of the

total regions including western North America (nwNA and swNA), southern South

America (sSA), western Europe (wEU), southern Africa (sAF), and southwestern

Asia (swAS). Based on the TRMM dataset, we find that almost all (5 out of 6) of

the regions with decreasing precipitation frequency are expected to experience longer

atmospheric aerosol lifetimes.

Figure 4.3: The definitions of the continental regions in this study. The
uppercase letters in the region names represent the names of their continents:
North America (NA), South America (SA), Europe (EU), Africa (AF), Asia
(AS), and Oceania (OC). The lowercase letters in the region names represent
the subregions inside the continent: north (n), south (s), west (w), east (e),
middle (m), northwest (nw), northeast (ne), southwest (sw), and southeast
(se).

Since the TRMM data only cover a relatively short period, we make similar analyses

with three reanalysis datasets (NCEP, NCEP2, and MERRA) to cover a longer time

period (2001-2010 vs. 1981-1990) (Figure 4.5). We find that, similar to the TRMM
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Figure 4.4: The potential change of atmospheric BC aerosol lifetime driven
by the changes between the two periods (2008-2014 and 2001-2007) in precip-
itation characteristics based on meteorological datasets TRMM. The dashed
contours are the same as in Fig. 2, which indicate the atmospheric lifetimes
of the black carbon aerosols from the interpolation of 20 cases and show the
potential changes of BC lifetimes from the base BC lifetime (in the control
run) driven by the changes of precipitation intensity and frequency. Red
blocks show the changes of precipitation intensities and frequencies, with
the size of the block showing the standard error of the percentage changes.

data, all the three reanalysis datasets show increasing trends for precipitation in-

tensity over most regions but more divergent trends for precipitation frequency in

the past decades. The NCEP data show that precipitation frequency has decreased

over about two-thirds of the total regions while NCEP2 and MERRA data show
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decreasing precipitation frequency over one third and half of the total regions, re-

spectively. In addition, even when the different datasets indicate the same direction

for the precipitation change over a specific region, the magnitude of the changes may

vary significantly across datasets. For example, the derived changes in the average

precipitation intensity over neNA (northeastern North America) based on NCEP,

NCEP2, and MERRA data are +8%, +12%, and +3% respectively. These variations

across different data sources reflect the significant uncertainties associated with these

datasets, as reported earlier [e.g. Gehne et al., 2016; Trenberth and Guillemot , 1998;

Trenberth, 2011].

On the other hand, previous analysis on global land-average precipitation showed that

various reanalysis datasets have similar trends and interannual variability with other

gauge- and satellite-based datasets during 2001-2010, though the estimated trend of

precipitation varies based on temporal and spatial scales [Gehne et al., 2016]. In

addition, our study focuses on the changes over continental regions, where the pre-

cipitation data in the reanalysis datasets are found to be more reliable than over the

ocean regions [Trenberth, 2011]. Therefore despite the uncertainties associated with

each meteorological dataset, we can use Fig. 5 to estimate the expected changes in

the atmospheric BC lifetimes for certain regions, especially for those regions showing

consistent trends across different datasets. Assuming the effects of precipitation on

wet deposition is the only factor that affects the atmospheric BC aerosol lifetimes, all

three datasets indicate that atmospheric BC aerosol lifetimes could have decreased
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Figure 4.5: The potential change of atmospheric BC aerosol lifetime driven
by the changes between the two periods (2001-2010 and 1981-1990) in precip-
itation characteristics based on multiple meteorological datasets: a). NCEP;
b). NCEP2; c). MERRA. The dashed contours are the same as in Fig. 2,
which indicate the atmospheric lifetimes of the black carbon aerosols from
the interpolation of 20 cases and show the potential changes of BC lifetimes
from the base BC lifetime (in the control run) driven by the changes of
precipitation intensity and frequency. Red blocks show the changes of pre-
cipitation intensities and frequencies, with the size of the block showing the
standard error of the percentage changes.
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in the northern regions of North America (neNA and nwNA), the northwestern and

southern regions of South America (nwSA and sSA), South Africa (sAF), and North

Oceania (nOC). All three meteorological datasets show increasing trends in aerosol

lifetimes over southwestern North America (swNA), Middle Africa (mAF), and South

Oceania (sOC), which imply increasing trends for the concentrations of particulate

matter (PM2.5) over these regions, driven by changes in precipitation. At the regional

scale, precipitation changes over the past 30 years can easily lead to perturbations in

atmospheric BC lifetimes by 10% or higher.

We should note that there are some caveats for our idealized sensitivity simulations.

The way we reduce precipitation frequency in the model (based on a stochastic func-

tion as discussed in Section 4.3) can be very different from climate-driven precipitation

change in the real world. The globally uniform scaling factors applied to precipitation

intensity do not account for the spatial variations. As a consequence, the sensitivities

of BC lifetime to precipitation changes over a specific region may be different from

those shown in Figure 4.2. To partly address this issue, we have constructed some

regional contour plots similar to that in Figure 4.2 but based on sensitivities of BC

lifetime for those specific regions (Figure 4.6). Comparison of these regional contours

with the global one indicate some differences in the sensitivity of BC to precipitation

changes, but generally less than 3
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Figure 4.6: Compare the contours calculated on the global and regional
scale: a). global; b). southeast North America (seNA); c). northeast Asia
(neAS). The contours indicate the atmospheric lifetimes of the black carbon
aerosols from the interpolation of 20 cases and show the potential changes
of BC lifetimes from the base BC lifetime (in the control run) driven by the
changes of precipitation intensity and frequency. The contour calculated on
the global scale is the same with Figure 4.2. seNA and neAS are two most
extreme cases among all regions, with the smallest and largest sensitivities
between BC lifetimes and precipitation changes.

4.5 Conclusions and Discussion

The efficiency of the wet scavenging of atmospheric aerosols is affected by not only

the precipitation amount but also the precipitation patterns. Our results, based on

sensitivity simulations with the GEOS-Chem model, show that the atmospheric life-

times of BC are more sensitive to precipitation frequency than precipitation intensity,

and as a consequence, increases in the total precipitation amount do not always lead

to a more efficient wet scavenging of atmospheric aerosols. The sensitivities of the

atmospheric lifetimes of aerosols to the precipitation characteristics derived from our

model simulations offer a simple and convenient tool for us to better examine the

implications of long-term changes in precipitation (including the total amounts and
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patterns) for atmospheric aerosols in various regions.

Analysis of satellite data (TRMM) for the past 14 years (2001-2014) reveals that

precipitation intensity has increased in most regions. On the other hand, decreas-

ing precipitation frequency are found in some regions such as western North Amer-

ica, southern South America, western Europe, southern Africa, and southwestern

Asia. The decreases in precipitation frequency could lead to increases in atmospheric

aerosol lifetimes over these regions. Our further analyses based on three meteorolog-

ical datasets (NCEP, NCEP2, and MERRA) for the past decades (1981-2010) show

increases in precipitation intensities over most continental regions, but significant de-

creases in precipitation frequency are identified over some regions. These changes

in precipitation characteristics affect the wet deposition of aerosols and consequently

the total burdens of aerosols and their atmospheric lifetimes. Despite the significant

uncertainties associated with meteorological data, we find that the changes in precip-

itation intensity and frequency over the past 30 years could have led to perturbations

in the regional atmospheric aerosol lifetimes by 10% or higher. Our results are con-

sistent with Kloster et al. [2010] and Fang et al. [2011] that who reported increasing

atmospheric aerosol burden due to climate change, although their results are based

on future climate change. We also find that all three meteorological databases are

consistent to show that the changes in precipitation intensity and frequency over the

past decades have led to decreases in atmospheric aerosol lifetimes over the north-

ern regions of North America, northwestern and southern regions of South America,
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South Africa, and North Oceania. They are also consistent in indicating increasing

trends of atmospheric aerosol lifetimes in the southwestern region of North Amer-

ica, Middle Africa, and South Oceania. The increasing trends in atmospheric aerosol

lifetimes over these regions driven by the changes in precipitation intensity and fre-

quency in the context of global climate change could pose challenges for the local PM

air qualities. It should be noted that the results from this work can be affected by

the parameterization in the GEOS-Chem model and have certain limitations. Our

study does not account for the impacts of precipitation on wildfires which can emit

a massive amount of aerosols including BC [Dawson et al., 2014].
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Chapter 5

Conclusion

My analyses on multiple meteorological databases reveal that the extreme air pol-

lution meteorological events, such as heat waves, temperature inversions, and atmo-

spheric stagnation episodes, have significantly increased globally in the past decades.

To investigate the implications of these changes on air quality, I quantify the poten-

tial impacts of extreme air pollution meteorology on air quality in the 2000s based on

both the observational data and the model simulation results. I find that both the

averaged concentrations of air pollutants and the frequency of high pollution episodes

increase when the extreme air pollution meteorological events happen in most seasons

and regions over the United States.

I develop simple statistical tools, HTA and HTA-fire methods, to predict the high
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air pollution episodes based on the relationships between extreme air pollution me-

teorological events and the air quality. These simple tools are more convenient than

chemical transport model (CTM). They are useful when the CTM simulation is not

available due to the lack of time or necessary input data, though the accuracy varies

with species, seasons, and regions. More importantly, the prediction results reveal

potential impacts of climate change on air quality due to the change of extreme air

pollution meteorological events. These changes and the associated public health risk

need to be considered in the long-term planning of air pollution control strategies by

the environmental managers.

I study how the changes of precipitation patterns impact atmospheric aerosols. Re-

sults reveal that the atmospheric lifetimes of BC are more sensitive to precipitation

frequency than precipitation intensity based on the sensitivity tests with GEOS-Chem

model. In other words, when the precipitation frequency decreases, the increase of

total precipitation amount may not lead to a more efficient wet scavenging of atmo-

spheric aerosols. The relationship between the lifetimes of aerosols and the change of

precipitation characteristics provides a simple tool (aerosol contours) to examine the

impacts of long-term changes in precipitation intensity and precipitation frequency

to atmospheric aerosols in various regions.

Based on my analysis, the increases of extreme air pollution meteorological events in

96



the context of climate change may risk public health and cause social and environ-

mental issues. Although the concentrations of surface ozone decreased in a large area

by the efforts of controlling anthropogenic emissions, such as the NOx Statement Im-

plementation Plan [Frost et al., 2006], we have to prevent the climate penalty driven

by the changes of extreme air pollution meteorology through establishing stricter

environmental laws. More researches are needed to better understand the mecha-

nisms and to solve the problems. I managed to exclude the effects of emissions by

working on shorter time period and detrending. More work about how the emission

affects the relationship between air pollutants and extreme air pollution meteorology

would be necessary, which would be helpful in better quantifying the emission control

considering the changes of extreme events in the far future.
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