
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2018

Resource Optimization in Wireless Sensor Networks for an Resource Optimization in Wireless Sensor Networks for an

Improved Field Coverage and Cooperative Target Tracking Improved Field Coverage and Cooperative Target Tracking

Husam Sweidan
Michigan Technological University, hisweida@mtu.edu

Copyright 2018 Husam Sweidan

Recommended Citation Recommended Citation
Sweidan, Husam, "Resource Optimization in Wireless Sensor Networks for an Improved Field Coverage
and Cooperative Target Tracking", Open Access Dissertation, Michigan Technological University, 2018.
https://doi.org/10.37099/mtu.dc.etdr/628

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Artificial Intelligence and Robotics Commons, Controls and Control Theory Commons, Digital
Communications and Networking Commons, Robotics Commons, and the Theory and Algorithms Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/628
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.mtu.edu%2Fetdr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.mtu.edu%2Fetdr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.mtu.edu%2Fetdr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.mtu.edu%2Fetdr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.mtu.edu%2Fetdr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.mtu.edu%2Fetdr%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages

RESOURCE OPTIMIZATION IN WIRELESS SENSOR NETWORKS FOR AN

IMPROVED FIELD COVERAGE AND COOPERATIVE TARGET TRACKING

By

Husam I. Sweidan

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2018

© 2018 Husam I. Sweidan

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Electrical Engineering.

Department of Electrical and Computer Engineering

Dissertation Advisor: Dr. Timothy C. Havens

Committee Member: Dr. Aurenice M. Oliveira

Committee Member: Dr. Laura E. Brown

Committee Member: Dr. Zhaohui Wang

Department Chair: Dr. Daniel R. Fuhrmann

Dedication

This thesis is for Mom, Dad and Siblings

without whom I would neither be who I am nor would this work be what it is today.

Contents

List of Figures . xiii

List of Tables . xix

Preface . xxi

Acknowledgments . xxiii

List of Abbreviations . xxv

Abstract . xxvii

1 Introduction . 1

1.1 Coverage Optimization in a WSN 2

1.2 Sparse Sensing and Measurement Scheduling 6

1.3 Publications . 7

2 Coverage Optimization in a Terrain-Aware Wireless Sensor Net-

work . 9

2.1 Introduction . 9

vii

2.2 Related Work . 11

2.3 Problem Structure . 13

2.3.1 ROI Coverage . 13

2.3.2 Mobility Cost . 15

2.3.2.1 Traveling Distance 15

2.3.2.2 Terrain Severity . 16

2.3.3 Objective Function . 17

2.4 Algorithms . 17

2.4.1 Artificial Immune System Algorithm 18

2.4.1.1 Fitness Proportionate Selection 19

2.4.1.2 Replication . 19

2.4.1.3 Clonal Proliferation 20

2.4.1.4 Hypermutation . 20

2.4.1.5 Mutation . 20

2.4.2 Normalized Genetic Algorithm (NGA) 21

2.4.2.1 Minimum Distance (MINDIST) Normalization . . . 22

2.4.2.2 BLX-α Crossover 23

2.4.2.3 Gaussian Mutation 23

2.4.3 Particle Swarm Optimization 23

2.5 Simulation and Results . 24

2.5.1 Experiment 1 . 26

viii

2.5.2 Experiment 2 . 28

2.5.3 Experiment 3 . 30

2.6 Conclusion . 32

3 Sensor Relocation for Improved Target Tracking 35

3.1 Introduction . 35

3.2 Problem Statement and Assumptions 40

3.3 Tracking Algorithm . 42

3.3.1 Distributed Extended Information Filter 42

3.3.2 Active Set Selection . 46

3.4 ROI Formation . 49

3.4.1 Kernel Density Estimation 51

3.5 Senors Relocation . 52

3.5.1 Sensors Attraction . 52

3.5.2 Sensor Position Optimization 53

3.5.3 Fitness Functions . 54

3.5.3.1 geometric Dilution of Precision 54

3.5.3.2 Coverage Rate . 55

3.5.3.3 Mobility Cost . 57

3.5.4 Objective Function . 58

3.6 Simulation and Results . 58

3.7 Conclusion and Discussion . 64

ix

4 Dynamic Greedy Scheduling for Sparse Sensing in Hybrid Sensor

Networks . 67

4.1 Introduction . 67

4.2 Problem Setup . 73

4.2.1 Simulated Ground-Truth Data 75

4.3 Dynamic Measurement Scheduling 80

4.3.1 Step 1: Measurement Acquisition 80

4.3.2 Step 2: Updating Ψ(t) and x̄ 81

4.3.3 Step 3: Reconstruction . 82

4.3.4 Step 4: Update Measurement Schedule 84

4.3.4.1 Frame Potential . 84

4.3.4.2 Correlation . 86

4.4 Results and Discussion . 86

4.4.1 Experiment 1 . 88

4.4.2 Experiment 2 . 90

4.4.3 Experiment 3 . 91

4.4.4 Experiment 4 . 92

4.4.5 Experiment 5 . 93

4.5 Conclusion . 94

5 Destination Prediction of Terrain-Aware Mobile Agents Via In-

verse Reinforcement Learning . 97

x

5.1 Introduction . 97

5.2 Formalization . 100

5.2.1 Markov Decision Process . 101

5.2.2 Inverse Reinforcement Learning 103

5.2.3 Destination Inference . 105

5.3 Ground-Truth Data Generation . 107

5.4 Feature Generation . 109

5.5 Simulations and Results . 111

5.6 Conclusion and Future Work . 115

6 Conclusion an Future Work . 117

References . 121

A . 135

B . 137

C . 139

C.1 Tracking (Phase I) . 139

C.1.1 Complexity Analysis (DEIF) 140

C.1.2 Complexity Analysis (GNS) 141

C.2 KDE (Phase II) . 142

C.3 Relocation (Phase III) . 143

xi

C.4 Execution Time (Phase II and Phase III) 144

D Letters of Permission . 147

xii

List of Figures

2.1 Sensing coverage model. 14

2.2 The structure of a population member. 18

2.3 Convergence behavior of the optimization algorithms. 27

(a) Coverage rate . 27

(b) RMS distance . 27

(c) Severity . 27

2.4 Coverage rate verses the number of sensing nodes N 28

2.5 Impact of the gradient threshold Gth. 30

(a) Total severity . 30

(b) Total RMS distance . 30

(c) Coverage rate . 30

2.6 Comparison of the two-point and A-Star scenarios. For the A-star

scenario the gradient threshold was Gth = 0.4. 31

(a) Severity . 31

(b) RMS distance . 31

(c) Coverage rate . 31

xiii

2.7 Comparing the execution time for the three algorithms. Here the gra-

dient threshold was Gth > 1, meaning an obstacle free ROI. 32

2.8 Obstacles in the ROI for different gradient threshold Gth values. As

Gth increases, the number of obstacles in the ROI decreases. 33

(a) Gth = 0.2 . 33

(b) Gth = 0.4 . 33

(c) Gth = 0.6 . 33

(d) Gth = 0.8 . 33

3.1 Initial deployment of sensor nodes in the field’s largest traverse-able

region. 41

(a) Largest traverse-able region 41

(b) Sensors initial deployment . 41

3.2 System flow diagram. 41

3.3 The impact of RGNS on the MS position error. 49

(a) Tracking on a spiral path. RGNS = 12 49

(b) MS position error Vs. RGNS 49

3.4 The formation of the ROI based on a fitted model of the estimated

targets’ locations. 50

(a) Targets tracks . 50

(b) Estimated distribution (Contour) 50

(c) ROI . 50

xiv

(d) ROI centroid . 50

3.5 Impact of relocation on missing location estimates. 61

(a) Ground-truth tracks . 61

(b) Before relocation . 61

(c) After relocation . 61

3.6 The impact of optimizing the sensors locations inside the ROI as com-

pared to only attracting the sensor nodes. Comparison is performed

for Rattraction = [0.2, 0.25, 0.30]. 62

(a) RGNS = 5 . 62

(b) RGNS = 8 . 62

(c) RGNS = 11 . 62

3.7 Effect of sensor nodes relocation on field coverage rate. {FROI ←

FKcov, RGNS = 8}. 63

4.1 Sensing stations in the Melbourne, Australia area / Google Maps. . 71

4.2 Flow diagram of the FFT model for ground-truth data generation. . 76

4.3 Fitting a model for both spatial and temporal variograms. 79

(a) Spatial . 79

(b) Temporal . 79

4.4 Simulated ground-truth data for two time slices. The FFT method

was used with the exponential model for both spatial and temporal

covariance models. 79

xv

(a) . 79

(b) . 79

4.5 Comparison between the covariance model based on the measured data

and the sample-based covariance of the simulated ground-truth data. 80

(a) Spatial covariance . 80

(b) Temporal covariance . 80

4.6 Flow diagram of the dynamic measurement scheduling. 81

4.7 RMSE performance among the various scheduling methods. 90

(a) . 90

(b) . 90

4.8 Comparing the resilience of both the FP and uniform methods to LPS

node failure. The x-axis represents the percentage of failed LPS node

of the total LPS node count. SNR = 10dB. 91

4.9 Impact of HPS nodes percentage (a) and sample size M (b) on the

RMSE performance. The FP algorithm is used for scheduling. . . . 92

(a) . 92

(b) . 92

4.10 Impact of the HPS percentage on the network feasibility. HPS nodes

tend to have a higher cost and power consumption. Increasing PHPS

from 10% to 50% improves RMSE by only ∼ 11%. FP algorithm is

used, SNR = 10 dB, M = 16. 93

xvi

4.11 Studying the impact of having all the HPS nodes in the active state

over the RMSE. M ′ indicates an average value. The FP algorithm is

used for scheduling. 95

5.1 Impact of the severity control constant η on the generated trajectory.

The higher eta is, the more sensitive the algorithm is to terrain sever-

ity. 109

(a) η = 0 . 109

(b) η = 0.5 . 109

(c) η = 1 . 109

(d) Trajectory Statistics . 109

5.2 Feature set at state s . 110

5.3 Trajectory arrangement for result generation. 111

5.4 Influence of the trajectory’s observed portion (as a percentage) over

the destination prediction accuracy. Methods 1 and 2 are compared.

η = 0, β = 0.3. 113

5.5 Influence of agent’s sensitivity to terrain on the maximum change in

prediction accuracy. β = 0.3. 114

(a) Method 1 . 114

(b) Method 2 . 114

xvii

5.6 The influence the new policy model on the prediction accuracy. Y-axis

represents the average accuracy improvement based on ξobserved% =

30% → 90%. M̂1 and M̂2 represent methods 1 and 2 with the new

policy model. β = 0.3. 115

(a) . 115

(b) . 115

xviii

List of Tables

2.1 Notations . 11

2.2 Parameters Setup for the Two-Point and A-star scenarios. 25

2.3 Description of Performed Experiments 26

2.4 Algorithms Comparison. 27

2.5 Advantages and Disadvantages of the Presented Algorithms 34

3.1 Notations Used . 39

3.2 Experiments Description . 59

3.3 Values of Common Parameters Used in Simulations 60

3.4 Comparing the MS position error (meter) under different optimization

methods. RGNS = 8. 61

3.5 Impact of RGNS on the coverage rate. The case of initial deployment

is considered for illustration purpose. 63

3.6 Average cumulative distance (km) traveled by sensor nodes due to

relocation (inside ROI) and coverage rate optimization (outside ROI).

{FROI ← FKcov, RGNS = 8}. 64

4.1 Acronyms and Notation . 73

xix

4.2 List of covariance models . 78

4.3 Experiments Description . 88

4.4 Values of Common Parameters . 88

5.1 Acronyms and Notations . 101

5.2 Experiments Description . 112

C.1 Execution Time of a Single Run of the Tracking Algorithm 142

C.2 Computational Complexity of Used Fitness Functions 144

C.3 Execution Time for the Relocation Algorithm Using Different Objec-

tive Functions . 145

xx

Preface

This work presents an in-depth analysis of some of the most demanding topics in

the wireless sensor network (WSN) research domain. Chapter 1 provides an intro-

duction to the work presented in the dissertation and lists the main contributions of

the different parts seen in the chapters thereafter. The first part mainly addresses

the coverage problem for applications related to area-coverage and target tracking.

Chapter 2 has been published and presented in the 2016 IEEE Congress on Evolu-

tionary Computation (CEC) under the title Coverage optimization in a terrain-aware

wireless sensor network. Moreover, Chapter 3 is published under the title Sensor relo-

cation for improved target tracking in the IET Wireless Sensor Systems Journal, April

2018, and the work was reproduced by permission of the Institution of Engineering &

Technology.

The second part of this work investigates the potential gains of introducing a dynamic

sparse sensing algorithm into a hybrid WSN framework. The body of the topic is

found in Chapter 4, and it was submitted for publication in the IEEE Transactions

on Signal Processing on April 2018. Finally, a preliminary work is presented to address

the destination prediction problem for mobile targets and the impact a terrain has

on the prediction accuracy. This work as seen in Chapter 5 is in preparation to be

submitted for publication in a journal addressing related research topics. All the work

xxi

in this dissertation was developed under the guidance of my adviser Dr. Timothy C.

Havens.

The last chapter provides a conclusion of this work and suggests a set of possible

future extensions for the presented material.

xxii

Acknowledgments

I would like to start by thanking my advisor Dr. Timothy C. Havens for his guidance,

support and mentorship, without which this work would not be possible. It was a

true privilege to work with him on several projects, some of which is not presented in

this publication. I would also like to thank Dr. Zhaohui Wang for her support and

guidance in the early stages of my degree.

The author would like to acknowledge the support of the Electrical and Computer

Engineering Department through several research and teaching assistanships.

Finally, many thanks to my family and friends for their encouragement and advice,

without which I would not get this far.

The composition of this document and the material presented in Chapter 5 was pos-

sible through the Finishing Fellowship awarded by the Graduate School at Michigan

Technological University. Superior, a high performance computing infrastructure at

Michigan Technological University, was used in obtaining results presented in this

publication.

xxiii

List of Abbreviations

AIS Artificial Immune System

BLX Blend Crossover

CS Compressed Sensing

DEIF Distributed Extended Information Filter

DKF Distributed Kalman Filter

EM Expectation Maximization

FFT Fast Fourier Transform

FIFO First In First Out

FIM Fisher Information Matrix

FP Frame Potential

GA Genetic Algorithm

GDOP Geometric Dilution of Precision

GMM Gaussian Mixture Model

GNS Global Node Selection

GPS Global Positioning System

GT Ground-Truth

HPS High Precision Sensor

IHT Iterative Hard Thresholding

xxv

IoT Internet of Things

IPCA Iterative Principle Component Analysis

IRL Inverse Reinforcement Learning

KDE Kernel Density Estimation

LPS Low Precision Sensor

MDP Markov Decision Process

MINDIST Minimum Distant

NGA Normalized Genetic Algorithm

NP Non-deterministic Polynomial time

OLS Ordinary Least Squares

OMP Orthogonal Matching Pursuit

PCA Principle Component Analysis

PM Particulate Matter

PSD Power Spectral Density

PSO Particle Swarm Optimization

RMS Root Mean Square

RMSE Root Mean Square Error

ROI Region of Interest

SNR Signal to Noise Ratio

WSN Wireless Sensor Network

WSS Wide Sense Stationary

xxvi

Abstract

There are various challenges that face a wireless sensor network (WSN) that mainly

originate from the limited resources a sensor node usually has. A sensor node often

relies on a battery as a power supply which, due to its limited capacity, tends to

shorten the life-time of the node and the network as a whole. Other challenges

arise from the limited capabilities of the sensors/actuators a node is equipped with,

leading to complication like a poor coverage of the event, or limited mobility in the

environment. This dissertation deals with the coverage problem as well as the limited

power and capabilities of a sensor node.

In some environments, a controlled deployment of the WSN may not be attainable.

In such case, the only viable option would be a random deployment over the re-

gion of interest (ROI), leading to a great deal of uncovered areas as well as many

cutoff nodes. Three different scenarios are presented, each addressing the coverage

problem for a distinct purpose. First, a multi-objective optimization is considered

with the purpose of relocating the sensor nodes after the initial random deployment,

through maximizing the field coverage while minimizing the cost of mobility. Sim-

ulations reveal the improvements in coverage, while maintaining the mobility cost

to a minimum. In the second scenario, tracking a mobile target with a high level

of accuracy is of interest. The relocation process was based on learning the spatial

xxvii

mobility trends of the targets. Results show the improvement in tracking accuracy

in terms of mean square position error. The last scenario involves the use of inverse

reinforcement learning (IRL) to predict the destination of a given target. This lay the

ground for future exploration of the relocation problem to achieve improved predic-

tion accuracy. Experiments investigated the interaction between prediction accuracy

and terrain severity.

The other WSN limitation is dealt with by introducing the concept of sparse sensing

to schedule the measurements of sensor nodes. A hybrid WSN setup of low and high

precision nodes is examined. Simulations showed that the greedy algorithm used for

scheduling the nodes, realized a network that is more resilient to individual node

failure. Moreover, the use of more affordable nodes stroke a better trade-off between

deployment feasibility and precision.

xxviii

Chapter 1

Introduction

The advancements in electronics and communications made it possible to design and

build sensory nodes that are compact, power efficient and economically feasible. This

paves the road to the utilization of sensory networks in many applications to monitor

and record phenomena or a certain activity. To mention few, they can be used for: (1)

environmental monitoring of air or water quality, (2) measuring the soil moisture levels

in farms, (3) tracking and predicting enemy movement in a war zone. Moreover, the

current trends aim at an even more substantial use of sensory networks. The concept

of the Internet of Things (IoT) is becoming more predominant in our daily lives. As

shown by more and more devices that are equipped to collect and communicate data,

like toasters to the vehicles we drive. Sensory networks can be either wired, wireless

or a hybrid of both. Wired sensing nodes can be advantageous in terms of having

1

a more stable power source and communication medium, while wireless nodes offer

more flexibility in network’s spatial deployment. This work mainly discusses issues

and challenges related to the use of wireless sensor networks (WSN) or the use of

wireless nodes to augment a wired sensor network which forms a hybrid network.

Many challenges arise in using a WSN for a given application. Wireless sensor nodes

typically have limited resources, namely, battery life, processing power, and sen-

sors/actuators capabilities, which leads to: (1) Limited coverage of the event under

observation, and (2) a shortened life-time, leading to node failures and hence compro-

mising the overall network reliability. This dissertation tackles those challenges by

optimizing the use of the available network resources. The sections below present a

brief description on how those challenges were addressed, with a more comprehensive

discussion provided in the following chapters.

1.1 Coverage Optimization in a WSN

In many scenarios a planned deployment of a WSN can be complicated and unfeasible

due to the hostility of the environment. A couple examples of such scenarios would

be a sensory network for monitoring an active volcano, or an infiltrator detection and

tracking in a war zone. In such cases the only viable option would be an airdrop

deployment of the network in the region of interest (ROI). This creates a randomly

2

distributed network that suffers from coverage holes and connectivity break-offs. Cov-

erage holes can lead to a poor depiction of the actual event of interest, and in case of

tracking applications an imprecise estimations or utmost a lost tracking. Moreover,

having a group of the sensing nodes disconnected due to the random deployment

oversight the full potential of the network.

In chapters 2, 3 and 5, the problem of field coverage is addressed from different

angles and for different applications. A common theme among those chapters is

the study of the impact a terrain has over the proposed methods and solutions.

In chapter 2 the problem of sensor relocation after a random initial deployment is

tackled. As mentioned earlier, this is of importance due its potential of mending the

coverage holes’ problem. The proposed WSN has nodes that are capable of moving

across the ROI, but since the the nodes rely on a limited power source, the cost

of mobility is high. A multi-objective optimization problem is presented with the

purpose of maximizing the area covered by the network, while minimizing the cost

of mobility. Mobility cost was introduced to the objective function through both

the traveled distance and the severity of the terrain. Due to its relation to the set

coverage problem this optimization is considered to be NP-complete, hence the use

of evolutionary computation algorithms was considered [14]. Three algorithms were

used for this purpose: the Artificial Immune System (AIS) algorithm, the Genetic

Algorithm (GA), and the Particle Swarm Optimization (PSO) algorithm . It was

shown in the results that both the AIS and GA outperformed the PSO especially

3

for less dense networks, while the PSO offered a decent performance with a lower

execution time [1].

Chapter 3 explores the potential gain of sensor node relocation on the accuracy of

target tracking. The nodes in the proposed WSN are assumed to have the ability to

be mobile. The presented system is initialized with randomly distributed nodes with

the purpose of tracking any moving targets within the field. From this initial state, a

database of target location estimates is formed with the intention of using it to learn

the mobility trends of the targets of interest. The kernel density estimation (KDE)

algorithm is used to estimate a spatial distribution of the previously recorded location

estimates, where it is used to establish a ROI the reflects the preferences of the mobile

targets. Having established the ROI, the next phase would be relocating a set of sensor

nodes to this region, where the nodes are selected based on their distance from the

ROI centroid. Several methods are tested to optimize the positioning of the relocated

nodes inside the ROI with the intent of achieving a better target position estimates.

The first method is based on the geometric dilution of precision (GDOP) metric

adapted for our 2D scenario [44]. The GDOP is a dimensionless measure usually

used in the satellite navigation domain as an indicate of positioning precision. The

second method depends on the K-coverage measure which essentially makes sure that

a given point in the field is covered by at least K sensors. Finally, a simple relocation

to a uniformly distributed random locations inside the ROI. The K-coverage offered

the best performance prominently for sensor nodes with short to medium detection

4

range [79].

Path and destination prediction for mobile targets has a significant potential in WSNs.

For instance, instead of relocating nodes in the whole ROI, it would be more efficient

to move a smaller set to cover an area where a target is expected to be. Chapter 5

investigates the use of inverse reinforcement learning (IRL) to predict the destina-

tion of a moving target based on observing a portion of its trajectory. Targets with

different capabilities for traversing a given terrain are considered, where terrain sever-

ity is used to generate a set of features with the purpose of learning the preferences

and capabilities of the target under investigation. For a varying observed trajectory

lengths, the accuracy of prediction is used as a performance measure.

A brief description of the contributions presented in Chapters 2, 3 and 5 are:

† Chapter 2: The use of evolutionary computation to address a multi-objective

problem considering a trade-off between coverage rate and mobility cost.

† Chapter 3: Introduce an algorithm for relocating sensor nodes to a region of

interest that is deduced based on targets mobility trends, with the purpose of

improving the tracking accuracy.

† Chapter 5: Investigating the impact of field’s terrain on the accuray of destina-

tion prediction.

5

1.2 Sparse Sensing and Measurement Scheduling

Extending the life-time of a WSN requires a good management of the power resources

at the individual node level. It is often common to invest more into optimizing the

power consumed by data processing and communications, and less into sensing and

data collection. An optimized power management system requires addressing all three

areas. In chapter 4 the concept of sparse sensing is introduced to a hybrid network.

The hybrid network consists of a sparsely distributed high precision sensor (HPS)

nodes, as well as a larger group of low precision sensor (LPS) nodes that are more

economically feasible. The goal was to activate a small set of the nodes to measure the

phenomena of interest while retaining sufficient information to reconstruct the data

of the inactive nodes. Three main methods were investigated to schedule the nodes

for measurements: (1) A simple selection of uniformly spaced nodes, and two greedy

algorithms with the first based on the (2) frame potential (FP) measure [61, 71],

and the other on the (3) correlation measure [72]. The main performance figure of

merit was the accuracy of the reconstruction based on the root mean square error

(RMSE). Both the uniform and the FP methods offered a superior performance over

the correlation approach, with a small edge for the uniform method. Even though the

uniform scheduling offered the best reconstruction performance, simulations showed

that it is less resilient than the FP based greedy algorithm. More over, experiments

showed that augmenting a sparsely distributed network of HPS nodes with large

6

number of LPS nodes, offered a better balance between reconstruction performance

and network deployment feasibility, as compared with an all HPS nodes network. The

contribution of as compared to related work in the literature is as follows:

† Introducing the sparse sensing concept into the unique hybrid of LPS and HPS

nodes for measurement scheduling, revealing an improvement in reconstruction

accuracy while preserving a lower deployment cost.

† Exploring the resilience of the greedy measurement-scheduling algorithms to

sensor node failures.

1.3 Publications

The work presented in this dissertation is mainly based on the following publications:

† Chapter: 5

– H.I. Sweidan and T.C. Havens., ”Destination Prediction of Terrain-Aware

Mobile Agents Via Inverse Reinforcement Learning,” In preparation.

† Chapter 4

– H.I. Sweidan and T.C. Havens., ”Dynamic Greedy Scheduling for Sparse

Sensing in Hybrid Sensor Networks,” Submitted. IEEE Trans. Geoscience

7

and Remote Sensing.

† Chapter 3

– H.I. Sweidan and T.C. Havens., ”Sensor relocation for improved target

tracking,” IET Wireless Sensor Systems, 2018.

† Chapter 2

– H.I. Sweidan and T. C. Havens., ”Coverage optimization in a terrain-aware

wireless sensor network,” 2016 IEEE Congress on Evolutionary Computa-

tion (CEC), Vancouver, BC, pp. 3687-3694. 2016.

8

Chapter 2

Coverage Optimization in a

Terrain-Aware Wireless Sensor

Network

2.1 Introduction

Regardless of the application for which a wireless sensor network (WSN) is used,

coverage is a critical factor that directly impacts the quality of service. There are

two main types of WSN coverage addressed in the literature: i) area coverage, where

the interest is in maximizing the covered area in a given region of interest (ROI)

9

[2, 3, 4, 5, 6, 7], and ii) target coverage, where covering static or mobile targets is of

essence [8, 9, 10, 11, 12].

For large WSNs, controlled deployment of the sensing nodes not only can be complex,

but it is also not practical especially in hostile environments. In such case, random

deployment is usually the method of choice. However, random deployment can cause

coverage holes, which degrades the effectiveness of the WSN [13]. Therefore, it is

necessary to relocate the sensing nodes after the first deployment to mend the coverage

holes. In most cases power is a very limited resource in a WSN, where if mismanaged,

it would drastically shorten the lifetime of the network. Sensor relocation requires

mobility, which is an energy exhausting operation. The amount of energy spent on

mobility can be directly associated to: i) traveled distance, and ii) severity of the

terrain. Hence, a relocation algorithm is required to maximize the covered area,

while keeping the energy spent on mobility at a minimum. This problem is related

to the set coverage problems and is considered to be NP-complete [14]. Accordingly,

evolutionary computation techniques would be a reasonable choice to investigate this

problem.

Table 2.1 provide a description of the important notations used in the following

sections. The rest of the chapter is organized as follows. Section 2.2 provides a

literature survey for similar problems. The problem structure and the used methods

are presented in Section 2.3. Section 2.4 briefly describes the algorithms used in this

10

Table 2.1
Notations

Term Definition Term Definition

Nx, Ny Field dimensions N Number of sensors
Rs Sensing range Rc Communication

range
re Range error Prth Probability threshold

a, b Covarience model pa-
rameters

α optimization trade-
off parameter

Gth Gradient threshold Ps Population size
Pr Replication rate Pc Clonal percentage
Ph Hypermutation rate Pm Mutation rate

gmax Max. number of gen-
erations

wmin, wmax Inertia limits

c1, c2 PSO design parame-
ters

Itrmax Max. number of iter-
ations

work. Simulation results and discussion are found in Section 2.5. Finally, Section 2.6

concludes the work.

2.2 Related Work

Coverage optimization problems for WSNs has been tackled many times in the liter-

ature. For limited mobility nodes, an artificial immune system (AIS) algorithm was

investigated to maximize the coverage area [2], where the traveled distance was uti-

lized as a measure for mobility cost. Yoon and Kim introduced a novel normalization

method to the genetic algorithm (GA), which reduced the redundancy in the solution

space resulting in a better performance [3]. Particle swarm optimization has also

been examined to resolve the coverage problem. A combination of Voroni diagram

11

and a two-phase particle swarm optimization (PSO) were used, where the first phase

maximizes the coverage area and the second phase minimizes the traveled distance

[5]. With regard to target coverage, Zhuofan et al. investigated reducing the mobility

cost when solving for both fixed target coverage and network connectivity problems

[9]. Mobile target coverage in a vehicular ad hoc sensor network was presented in

[11]. This chapter considers the problem of coverage area optimization for sensor

relocation after initial deployment. Since energy expenditure of mobility in a WSN

is immense, it was penalized by searching for a minimum relocation distance traveled

through a terrain with modest severity, where terrain severity is represented by its

gradient. Three algorithms are used to inspect this problem, the AIS algorithm, the

PSO, and the normalized GA. Although the impact of terrain on sensor deployment

has been studied in the literature [15, 16, 17], its impact on the relocation problem

requires further investigation. The contribution of the work presented in this chapter

reside in the use/comparison of evolutionary computation algorithms to address,

† A multi-objective problem considering a trade-off between coverage rate and

mobility cost.

† Study the impact of terrain severity on the mobility of sensor nodes.

12

2.3 Problem Structure

2.3.1 ROI Coverage

A square ROI is considered in this work, where a Nx ×Ny grid is superimposed over

it. Each grid element is of 1×1 size, where a point on the grid is expressed as P (x, y).

N sensing nodes are uniformly distributed in the ROI as an initial deployment, such

that sn(xn, yn) is the nth sensor node in the grid, and for simplicity is expressed as

sn. The sensing field of each sensor is considered to be a circle with a radius R.

The probabilistic sensing model is used, where a sensor’s detection uncertainty is

accounted for by [2, 18]

Prx,y(sn) =



1 R− re ≥ d(sn, P),

exp−aλ
b

R− re < d(sn, P) < R + re,

0 R + re ≤ d(sn, P),

, (2.1)

where re is the error in the sensing range—see Fig. 2.1. The distance between

sensor sn and point P (x, y) is represented by d(sn, P). The parameters a and b

are for measuring the detection probability in the uncertainty region (i.e., R − re <

d(sn, P) < R + re), and λ = d(sn, P) − (R − re). It is clear that the detection

13

Figure 2.1: Sensing coverage model.

probability Prx,y(sn) decays exponentially with distance in the uncertainty region.

The first objective of this problem is to maximize the area covered by the N sensors.

It is first required to calculate the coverage rate,

Crate =
Carea

Atotal

, (2.2)

where Atotal = Nx ×Ny is the total area of the ROI. Also, the coverage area Carea is

given by,

Carea =
Nx∑
x=0

Ny∑
y=0

Prx,y(S), ∀Prx,y(S) ≥ Prth, (2.3)

where S = {s1, s2, ..., sN} is the set of all sensors, and Prx,y(S) = 1 −
∏N

n=1(1 −

Prx,y(sn)) is the coverage probability of point P (x, y) considering the sensors in S. If

Prx,y(S) exceeds the threshold probability Prth, then its value is carried on for the

evaluation of (2.3). Now that Crate is attained, coverage optimization can be carried

out by minimizing the rate of the uncovered area, C̄rate = 1− Crate.

14

2.3.2 Mobility Cost

2.3.2.1 Traveling Distance

This work examines two traveling methods. The first is along a two-point path where

the first point is the one of initial deployment and the second is the destination. The

other method is carried along a path computed using the A-star algorithm to avoid

severe terrains—details in Section 2.3.2.2. Obviously the A-star path is at least as

long as the two-point path. The traveling distance of relocating the sensors in S is

assessed by the root-mean-square (RMS) of their individual traveling distances,

dRMS =

√√√√ 1

N

N∑
n=1

d(sn, Pn,f)
2, (2.4)

where Pn,f is the final point of the nth sensor relocation path. The distance d(sn, Pn,f)

is expressed as,

d(sn, Pn,f) =
Mn∑
m=2

√
(xm − xm−1)2 + (ym − ym−1)2, (2.5)

where Mn is the number of points on the nth sensor relocation path, with Mn = 2

for the two-point path, and Mn ≥ 2 for the A-star path.

15

2.3.2.2 Terrain Severity

Here, the severity of the terrain is mainly quantified by its steepness. For instance,

a steep downhill or uphill terrain is considered more difficult to traverse, and hence

not preferable for sensors to pass through. Steepness is computed by evaluating the

gradient of the terrain and then taking its absolute value. Therefore, the severity of

the nth sensor relocation path is given by

Sev(sn, Pn,f) =

∑Mn

m=1 |G(Pn,m)|
Mn

, ∀Mn ≥ 2, (2.6)

where Pn,m is the mth point on the nth sensor relocation path, and G(Pn,m) is the

gradient at that point. The overall relocation severity can be measured as

SevRMS =

√√√√ 1

N

N∑
n=1

Sev(sn, Pn,f)
2, (2.7)

where SevRMS is the RMS of the relocation severity for the sensors in S. When

considering the A-star method, parts of the terrain may be perceived as an obstacle

based on the value of gradient. A point P (x, y) in the grid is considered to be an

obstacle if

|G′(P (x, y))| ≥ Gth, (2.8)

16

where G′(P (x, y)) is the normalized gradient at point P (x, y), and Gth ∈ [0, 1] is a

threshold parameter for the gradient.

2.3.3 Objective Function

For the problem at hand, maximizing the coverage while keeping the mobility cost at

a minimum is of interest. Accordingly, the objective function can be expressed as,

min

{
F = αC̄rate + (1− α)

dRMS SevRMS

Rc

}
, (2.9)

where α ∈ [0, 1] is a design parameter that allows the user to select the trade-off

between the coverage and mobility costs. The parameter Rc is the sensor’s com-

munication range, and it is used in the objective function to count for the network

connectivity.

2.4 Algorithms

The algorithms used to assess the problem at hand are either evolutionary (GA and

AIS) or related to the evolutionary techniques (PSO), where they rely on a population

of solutions in the search for optimality. The structure of a member in a population

is illustrated in Fig. 2.2.

17

Figure 2.2: The structure of a population member.

2.4.1 Artificial Immune System Algorithm

The following provides some details regarding the AIS algorithm, outlined in Algo-

rithm 1 [2, 19].

Algorithm 1 AIS Algorithm

PoP ← Initialize the population.
2: ng = 0 (generation counter).

while ng ≤ gmax do
4: F (S, PoP)← Antibody fitness evaluation.

PoPsel ← Fitness proportionate selection.
6: PoPrep ← Replicate best Pr × Ps antibodies.

PoPclo ← Apply clonal proliferation over PoPrep.
8: PoPhyp ← Hypermutation over PoPclo.

PoPtot ← [PoPrep;PoPhyp].
10: PoPchild ← Mutation over PoPtot.

PoP ← Select Best Ps antibodies out of PoPchild.
12: ng = ng + 1

end while
14: Sfinal ← Antibody with the minimum fitness.

return Sfinal

18

2.4.1.1 Fitness Proportionate Selection

The selection process is carried out by first normalizing the fitness value of each

antibody in the population,

Fnorm =
F (S, PoP)∑Ps

l=1 F (S, PoP (l))
, (2.10)

where Fnorm ∈ [0, 1] is a vector containing the normalized fitness values, and

F (S, PoP) computes the fitness of each antibody in the population. PoP (l) is the

lth antibody in the population, and Ps is the population size. The next step is to

calculate the cumulative sum of the values in Fnorm, and then select the first antibody

with a cumulative fitness that exceeds a random number r ∼ U [0, 1]. The selection

based on the random number r is repeated Ps times and the resulting antibodies are

stored in PoPsel.

2.4.1.2 Replication

The Ps antibodies chosen by the fitness proportionate selection are sorted in ascending

order according to their fitness values, and the first Pr × Ps antibodies are kept in

PoPrep, where Pr ∈ [0, 1] is the replication rate.

19

2.4.1.3 Clonal Proliferation

A random number r ∼ U [0, 1] is assigned to each antibody in PoPrep. For the case

where the clonal percentage Pc is greater than r, that antibody is placed in PoPclo.

2.4.1.4 Hypermutation

Every antibody that joined the clonal proliferation goes under the hypermutaion

process. For an antibody A = {J1J2...Jk...J2N}, any given gene could be chosen

for hypermutation depending on the rate Ph. Assume that gene Jk was chosen for

hypermutation, another gene Ji is then randomly selected to join the operation. The

new gene J ′k = (1− Γ)Jk + ΓJi, for Γ ∼ U [0, 1], and is stored in PoPhyp.

2.4.1.5 Mutation

Similar to the hypermutation process, mutation promotes exploration through diver-

sifying the antibodies. With a rate Pm much lower than Ph, mutation is applied over

the antibodies in PoPrep and PoPhyp. For an antibody A = {J1J2...Jk...J2N}, let Jk

be a gene selected with a rate Pm to undergo mutation. A pairing gene Ji is randomly

20

selected from A to join the process. The new mutated genes are expressed as

J ′k = (1− Γ)Jk + ΓJi, (2.11)

J ′i = (1− Γ)Ji + ΓJk, (2.12)

where Γ ∼ U [0, 1].

2.4.2 Normalized Genetic Algorithm (NGA)

In this type of problem, redundancy imposes itself in the solution (phenotype) space.

For instance, let us express a solution (chromosome) Ai in the phenotype space as

a set of 2D location pairs for the sensors in S; Ai = {(x1, y1)(x2, y2)...(xN , yN)}.

Another solution Aj might exist with a set of pairs that are only a rearrangement of

the ones in Ai. This will cause similar results in terms of coverage, but not necessarily

in traveling distance or path severity. The normalized GA introduced by Yoon and

Kim, outlined in Algorithm 2, addresses this issue [3]. The following provides some

details regarding the normalization, crossover, and mutation operations used in this

algorithm.

21

Algorithm 2 Normalized Genetic Algorithm (NGA)

PoP ← Initialize the population.
2: ng = 0 (generation counter).

while ng ≤ gmax do
4: {Parents1,Parents2} ← Random pairing.

Parents′2 ← MINDIST normalization on Parents2.
6: OffSpring← BLX-0.5 crossover.

OffSpring′ ← Gaussian mutation over OffSpring.
8: PoPtot ← [PoP ; OffSpring′]

F (PoPtot,S)← Chromosome fitness evaluation.
10: PoP ← Select best Ps chromosome out of PoPtot.

ng = ng + 1
12: end while
Sfinal ← Chromosome with the minimum fitness.

14: return Sfinal

2.4.2.1 Minimum Distance (MINDIST) Normalization

Before starting the MINDIST normalization, it is necessary to randomly pair the Ps

chromosomes into Ps/2 parent pairs. For illustration, let the chromosomes be repre-

sented as a set of 2D location pairs, with Al,1 = {(x1,1, y1,1)(x1,2, y1,2) . . . (x1,N , y1,N)}

and Al,2 = {(x2,1, y2,1)(x2,2, y2,2), . . . (x2,N , y2,N)} be the first and second parents in

the lth pair. The MINDIST normalization is carried out by rearranging the pairs in

the second parent such that the sum distance between Al,1 and Al,2 is at minimum.

The Euclidean sum distance has the following expression,

N∑
n=1

√
(x2,n − x1,n)2 + (y2,n − y1,n)2. (2.13)

22

2.4.2.2 BLX-α Crossover

For the parent pair A1 = {J1J2...J2N} and A2 = {L1L2...L2N}, the blend crossover

(BLX) produces the offspring A′ = {M1M2...M2N} by uniformly selecting the gene

Mn from the range [min(Jn, Ln)− αI,max(Jn, Ln) + αI], where I = |Jn − Ln| and α

is a design variable [3, 20]. A common value for α is 0.5.

2.4.2.3 Gaussian Mutation

The Gaussian mutation is performed on a gene Ji with a mutation rate Pm by

J ′i = min(max(β, Ji,min), Ji,max), (2.14)

where Ji,max and Ji,min are the upper and lower bound on the gene Ji. Also, β ∼

N(µ, σ) is a normally distributed random number with mean µ and standard deviation

σ. In this work µ = 0 and σ = (Ji,max − Ji,min)/10.

2.4.3 Particle Swarm Optimization

Here we consider a simple form of PSO based on the work initially presented by

Kennedy and Eberhart [21]. Each sensor in S represents a particle in the swarm.

23

Updating the velocity and position vectors for the nth particle is carried out as

V i+1
n = wV i

n + r1c1(P best
n − P i

n) + r2c2(PG − P i
n), (2.15)

P i+1
n = P i

n + V i+1
n , (2.16)

where i ∈ [0, imax] is the iteration counter and w is the inertia; its value changes with

each iteration as w = wmax − (wmax − wmin) i
imax

. The values of wmin and wmax are

set to 0.4 and 0.9, respectively [22]. P best
n is the point with the best fitness for the

nth sensor, and PG is the point with the best fitness among all sensors (particles).

Velocity limits of Vmin = −0.5(Pmax − Pmin) and Vmax = 0.5(Pmax − Pmin) were used

to initiate particles’ velocities, where Pmin and Pmax are the ROI limits.

2.5 Simulation and Results

For our simulations, two different sets of parameters are used for the problem setup

and the used algorithms—see Table 2.2. The first set is for generating results to

compare the algorithms in the two-point path case, where no part of the terrain is

conceived as an obstacle. The second set of parameters is mainly for investigating

the A-star path case, where the presence of obstacles is possible. All terrains used

throughout the simulations are synthetically generated. Several PCs were used to

generate the simulations, with 8-16 GB RAM, CPU (i7-6700HQ 2.6 GHz, i7-4770 3.4

24

Table 2.2
Parameters Setup for the Two-Point and A-star scenarios.

Two-Point A-Star

Problem setup

Nx ×Ny 51× 51 21× 21
N 10→ 70 10
Rs 5 3
Rc 10 6
re 0.6Rs 0.6Rs

Prth 0.85 0.85
a 0.5 0.5
b 0.5 0.5
α 0.9 0.9
Gth – [0.2, 0.4, 0.6, 0.8, > 1]

AIS

Ps 50 15
Pr 0.9 0.9
Pc 0.1 0.1
Ph 0.7 0.5
Pm 0.01 0.05
gmax 100 30

PSO

Ps 50 15
wmin 0.4 0.4
wmax 0.9 0.9
c1 4 4
c2 2 2

Itrmax 100 30
Ps 50 15

NGA Pm 0.001 0.001
gmax 100 30

GHZ, i7-4770S 3.1 GHZ).

In the following we perform three sets of experiments to compare the presented algo-

rithms. Table 2.3 outlines the scenarios for each of the experiments.

25

Table 2.3
Description of Performed Experiments

Description Parameters

Experiment 1 Obstacle-free ROI, where sen-
sors follow a two-point path.

Table 1 (Two-Point)

Experiment 2 The ROI can contain obstacles,
and sensors follow a path gen-
erated by the A-Star algorithm.

Table 1 (A-Star)

Experiment 3 Comparing the scenarios in ex-
periments 1 and 2.

Table 1 (A-Star)

2.5.1 Experiment 1

In this experiment a comparison is held among the presented algorithms for the case

where no part of the terrain is perceived as an obstacle; hence, sensors are able to

follow a two-point path. The parameters used from Table 2.2 are the ones of the

two-point case. The results shown in Table 2.4 are generated by averaging 50 runs of

each algorithm, with N = 70. It can be seen from Table 2.4 that the AIS algorithm

outperforms the other two in terms of traveled distance. Both the AIS and PSO

algorithms seem to have better performance in terms of coverage rate than that of

the NGA algorithm. With regards to the convergence rate, Fig. 2.3 reveals that for

path severity the three algorithms are close to each other and decay at almost the

same rate. The AIS algorithm has an obviously better performance in terms of the

RMS distance, but slightly falls behind the PSO for the coverage rate especially after

the 95th generation. It is worthwhile noticing that maximizing the coverage rate has

its consequences over minimizing both the rms distance and the path severity, which

26

Table 2.4
Algorithms Comparison.

Min. RMS Max.

Crate% d Sev% d Sev% d Sev%
AIS 89.2 3.4 8.5 28.9 25.5 54.4 51
NGA 87.5 3.5 8.4 29.3 25.2 55.7 50.9
PSO 89.7 3.6 8.7 30.2 25.2 57.4 51.3

Generation

0 20 40 60 80 100

C
o
v
e
r
a
g
e
 R

a
te

 %

80

82

84

86

88

90
AIS

NGA

PSO

(a) Coverage rate

Generation

0 20 40 60 80 100

R
M

S
 D

is
ta

n
c
e
 (

m
)

28.8

29

29.2

29.4

29.6

29.8

30

30.2
AIS

NGA

PSO

(b) RMS distance

Generation

0 20 40 60 80 100

S
e
v
e
r
it

y
 %

25

25.2

25.4

25.6

25.8

26

AIS

NGA

PSO

(c) Severity

Figure 2.3: Convergence behavior of the optimization algorithms.

can be seen clearly from the divergence of the PSO for the rms distance, and the slow

convergence of all three algorithms especially for path severity.

Figure 2.4 examines the impact of increasing the number of sensing nodes N on the

coverage rate. The initial coverage rate is that of the first random deployment, and

the optimal coverage rate is the one achieved by placing the sensing nodes with an

27

N

10 20 30 40 50

C
o

v
e
r
a
g
e
 R

a
te

 %

0

20

40

60

80

100
Initial

AIS

NGA

PSO

Optimal

Figure 2.4: Coverage rate verses the number of sensing nodes N .

equal threshold distance dth from each other within an obstacle-free ROI of a regular

shape [2]. Furthermore, in the optimal case the nodes need to have similar sensing

radius Rs, and dth =
√

3Rs. All algorithms seem to achieve better coverage rate as N

increases. Even though the PSO algorithm does not perform as well for N < 30, it

soon recovers for higher number of sensing nodes. It is clear that the AIS algorithms

achieves better coverage than the NGA and PSO algorithms, particularly for N > 10.

From the previous, the AIS algorithms seems to offer the best compromise; good

coverage rate, low rms traveling distance and a comparable path severity.

2.5.2 Experiment 2

Here we address the scenario where parts of the terrain can be considered as obstacles.

The A-star algorithm is used to generate a relocation path capable of navigating

28

around obstacles. At any generation/iteration, if the solution produces a destination

point that is surrounded by obstacles, over an obstacle or on the initial location, no

relocation occurs. The parameters used to generate the results for this experiment

are found under the “A-star” column in Table 2.2. Figure 2.5 illustrates the impact

of varying Gth on the total severity, total RMS distance, and coverage rate. The

total severity is evaluated by summing SevRMS over all generations and the total

distance is evaluated likewise. As observed in Fig.2.5, the three algorithms acquire

similar performances in terms of severity and RMS distance. Both the AIS and NGA

algorithms outperform the PSO algorithm in terms of coverage rate, especially for

Gth > 0.2, Fig.2.5(c). The closeness in performance between the AIS and NGA

can be referred to the somewhat similar evolutionary framework, as opposed to the

swarm evolutionary approach the PSO algorithm is based upon. Moreover, even

though the error bars of the PSO coverage curve seem substantial, performing a z-

test confirms that it belongs to different distribution . As Gth increases the number of

obstacles decrease, which in effect gives more freedom for the nodes to move around,

generating a longer relocation paths. A longer path means larger RMS distance and

higher probability of traversing more severe terrains. It is observed from Fig.2.5(b)

that the RMS distance peak at Gth = 0.4, this is due to obstacles that force the nodes

to travel longer relocation paths, see Fig.2.8(b).

29

0 0.2 0.4 0.6 0.8 1 1.2

G
th

20

40

60

80

100

120

140

S
e
v

e
r
it

y

AIS

NGA

PSO

(a) Total severity

0 0.2 0.4 0.6 0.8 1 1.2

G
th

0

100

200

300

400

500

600

700

R
M

S
 D

is
ta

n
c
e
 (

m
)

AIS

NGA

PSO

(b) Total RMS distance

0 0.2 0.4 0.6 0.8 1 1.2

G
th

24

26

28

30

32

34

36

38

C
o

v
e
r
a

g
e
 %

AIS

NGA

PSO

(c) Coverage rate

Figure 2.5: Impact of the gradient threshold Gth.

2.5.3 Experiment 3

For this experiment, a comparison is made between the two scenarios presented in

the first two experiments, but with the parameters of the second experiment applied

to both. In Fig. 2.6 a comparison between the utilized algorithms is held for total

severity, total RMS distance, and coverage rate with Gth = 0.4 for the A-star scenario.

Due to the presence of obstacles in the A-Star scenario, the movement of nodes is

limited and hence shorter relocation paths are generated, Fig.2.6(b). A shorter path

means less terrain to be traversed, resulting in a lower path severity, Fig.2.6(a). The

30

AIS NGA PSO
0

10

20

30

40

S
e
v

e
r
it

y
 %

A-Star

Two-Point

(a) Severity

AIS NGA PSO
0

5

10

15

20

25

30

R
M

S
 D

is
ta

n
c
e
 (

m
)

A-Star

Two-Point

(b) RMS distance

AIS NGA PSO
0

10

20

30

40
C

o
v

e
r
a

g
e
 R

a
te

 %
A-Star

Two-Point

(c) Coverage rate

Figure 2.6: Comparison of the two-point and A-Star scenarios. For the
A-star scenario the gradient threshold was Gth = 0.4.

lower path severity and RMS distance for the A-Star scenario comes at the expense

of reduced coverage rate, Fig. 2.6(c). For both scenarios the AIS algorithm seems to

outperform the other two in every aspect under consideration.

The execution time of the three algorithms is compared for Gth > 1 reflecting the case

of an obstacle free ROI, Fig. 2.7. .From the figure, the AIS algorithm possesses the

highest execution time while the PSO has the lowest. Taking the two-point scenario

into consideration and with same parameters as in experiment 2, all three algorithms

execute in a time under 0.9 seconds—for Gth > 1—which is around 95% less. For

31

AIS NGA PSO

T
im

e
 (

m
in

)

0

0.1

0.2

0.3

0.4

0.5

Figure 2.7: Comparing the execution time for the three algorithms. Here
the gradient threshold was Gth > 1, meaning an obstacle free ROI.

no obstacles present in the ROI, and in the case where the execution time is not of

essence, the AIS algorithm would be more preferable, for it has a good coverage rate

with reasonable RMS distance and severity, especially in the two-point case.

2.6 Conclusion

For a WSN where the sensor nodes are initially deployed randomly in a ROI of a

regular shape, this work addressed the problem of sensor relocation to maximizing the

sensing coverage, while maintaining a minimal mobility cost. The cost of mobility was

directly associated to the traveling distance and the severity of the relocation path.

The terrain severity was characterized based on its gradient. Two main scenarios

were investigated: the first assumed that the sensor nodes are capable of traversing

32

X

5 10 15 20

Y
5

10

15

20

(a) Gth = 0.2

X

5 10 15 20

Y

5

10

15

20

(b) Gth = 0.4

X

5 10 15 20

Y

5

10

15

20

(c) Gth = 0.6

X

5 10 15 20
Y

5

10

15

20

(d) Gth = 0.8

Figure 2.8: Obstacles in the ROI for different gradient thresholdGth values.
As Gth increases, the number of obstacles in the ROI decreases.

any terrain along their path, and the second considered the case where nodes might

not be able to pass through certain terrains, which gives rise to obstacles. In the

first scenario the relocation path was considered as a straight line defined by two

points, and in the second the A-star algorithm was used to generate a path capable of

maneuvering obstacles. Results show that there is no single algorithm that surpasses

the others in all cases and scenarios. Having said that, the AIS algorithm seems to

offer the best compromise between coverage rate and cost of mobility. Even though

the AIS algorithm has the longest execution time, for the relocation problem this

might not be a crucial factor. Table 2.5 provides the advantages and disadvantages

33

Table 2.5
Advantages and Disadvantages of the Presented Algorithms

Advantages Disadvantages

AIS Best coverage rate for most values of
N .
Low traveling distance.

Slightly higher path severity than
NGA and PSO.
High execution time.

NGA Good coverage rate especially for
low N .

High execution time, but lower than
AIS.

PSO Low execution time. In general has lower coverage rate.

of the presented algorithms in the context of our problem.

34

Chapter 3

Sensor Relocation for Improved

Target Tracking

3.1 Introduction

Due to its importance and influence on the dependability of a wireless sensor net-

work (WSN), the coverage problem has attracted much attention in the literature.

Depending on the application, sensor deployment can be oriented toward improving

area coverage [2, 23, 24, 25, 26, 27], or target/event coverage [18, 28, 29, 30]. In harsh

or hostile environments a controlled deployment can be arduous and in some scenarios

35

not possible. In such a case, the only alternative would be a WSN with randomly dis-

tributed sensing nodes, resulting in coverage holes and connectivity problems among

the nodes [31]. Hence, a relocation of the sensing nodes might be necessary after the

initial deployment to improve the performance of the network. In this note, target

tracking is of interest and the quality of tracking is a main objective. Targets usually

tend to follow patterns while traveling in a given region; animals travel in routes

for food, mating or shelter; troops and artillery in a war zone travel in secure but

traverse-able paths. Therefore, it is of interest to learn target trends and relocate the

appropriate sensor nodes accordingly. Furthermore, it might be desirable to enhance

the tracking quality in a given region of interest (ROI) due to the region’s strategic

importance. However, sensor relocation to cover a certain ROI creates coverage holes

in other parts of the field, preventing the detection of possible future targets. Hence,

it is also important to keep the field coverage rate into consideration. The mobility of

sensors is usually expensive in terms of power consumption, therefore it is desirable

to keep this cost to a minimum while relocating the nodes. The problem at hand

can be related to set-coverage problems which are considered NP-complete [14]. As

a result, the use of an evolutionary computation algorithm would be reasonable. For

this work, the genetic algorithm (GA) is considered.

The coverage and monitoring of events and targets have received considerable at-

tention in the literature. A decentralized event-based self deployment algorithm was

presented in [28]. The authors used a virtual force algorithm for relocating sensing

36

nodes around the event location with a sensor density that depends on the event

intensity. The coverage and monitoring of a large population of objects—mass ob-

jects—was investigated from a probabilistic perspective [30]. The authors introduced

an online distributed recursive expectation maximization (EM) algorithm for dynamic

deployment of sensors with the purpose of improving the detection and boundary es-

timation of mass objects.

Olfati introduced the flocking concept to the distributed tracking of a target [32].

Even though the flocking behaviour of the mobile sensor network was a byproduct

of minimizing the estimation error for each of the nodes, it resulted in a connected

network with topologies that improved the performance of the distributed Kalman

filter (DKF).

Learning contextual information from an image sequence for improving object-

tracking has also been addressed [33, 34]. Gaussian mixture models (GMMs) were

used to learn the distributions of the object-birth and clutter events [34]. The learned

models were used to adapt the object-tracking filter for an improved performance.

In this work, for a WSN with an initial deployment following a uniform distribution,

a distributed extended information filter (DEIF) is used to perform target tracking.

The EIF is a variant of the Kalman filter that has been used in the literature in

its distributed form for target tracking [35, 36, 37]. Also, the global node selection

(GNS) algorithm is used at each dynamic step to select a set of active sensors for target

37

localization at the next dynamic step [35]. For the problem at hand, the geometric

dilution of precision (GDOP) is used as a basis in the sensor selection algorithm and

as an one of the objective functions considered for the sensor relocation process. The

GDOP is a dimensionless measure originally used in global positioning system (GPS)

to select satellites with geometrical positions that offer a more accurate localization

[38]. Most related work in the literature only considers optimizing the deployment

of the WSN for achieving a better tracking [39, 40, 41]. This has the problem of not

being able to adapt to the changes in targets’ characteristics and mobility trends. This

work addresses this issue by introducing a relocation algorithm that moves the sensor

nodes to a ROI that corresponds to the mobility patterns of the target. Moreover, the

impact of the terrain was reflected on the generated ROI. In general, the contribution

of this work is summarized by,

† Presenting a relocation algorithm for improving the target tracking accuracy.

† Relocating the sensor nodes to a region of interest that was deduced based on

targets mobility trends.

† The presented algorithm is dynamic in the sense that it is capable of relocating

the nodes as the targets’ mobility trends changes.

† The use and comparison of multiple relocation criteria that showed improvement

in the root mean square positioning error.

38

Table 3.1
Notations Used

Notation Definition Notation Definition

s State vector (Px, Py) Target coordinates
(vx, vy) Velocity vector u Excitation noise

z Measurements vector h(.) Nonlinear measure-
ment model

{R, β} Range and bearing
measurements

ϕ Measurement noise

C Measurement noise
covariance

Ω Information matrix

η Information vector P Covariance matrix
H Gradient of h(.) {Jf ,Jp,J} Posterior, prior and

measurement FIMs
Sa Set of active sensors ρ(Sa) MS position error
G Set of all grid points Rcov Coverage rate
pc Probability of

crossover
pm Probability of muta-

tion
Npop Population size gmax Max. number of gen-

erations

Table 3.1 lists the main notations used throughout this work. The remainder of this

chapter is organized as follows. Section 3.2 describes the problem structure as well

as the adopted assumptions. The tracking algorithm is presented in Section 3.3.

Section 3.4 discusses the formation of the ROI using the kernel density estimator

(KDE) method. The process of sensor relocation and the objective functions used

for location optimization are presented in Section 3.5. Section 3.6 describes the

experiments performed and offers a discussion for the presented results. Finally, the

work is concluded in Section 3.7.

39

3.2 Problem Statement and Assumptions

In an Nx × Ny field, a WSN of N sensors (nodes) is deployed where the locations

of the nodes first follow a uniform distribution. Sensors are assumed to be mainly

distributed in the largest traverse-able region in the field, avoiding obstacles and

locked regions, e.g., see Fig. 3.1. This is a fairly realistic assumption for large fields,

as sensors tend to be deployed in regions that are predominantly traverse-able by

targets as well as mobile sensor platforms. The set S includes all sensors in the WSN.

Sensors are assumed to be time synchronised and each sensor knows the location

of all other nodes. The connectivity among the nodes is assumed to be maintained

through a multi-hop routing model [42], the details of which are beyond the scope

of this chapter. For the purpose of investigating the problem of node relocation, a

simple model of a single target with a nearly constant velocity is adopted. Moreover,

the measurement model assumes a stationary target. A probabilistic detection model

is used, with a probability of one within a predetermined range from the sensor,

that afterwards drops exponentially until it reaches zero. The flow diagram for the

problem structure is illustrated in Fig. 3.2. Initially, the randomly distributed WSN

performs tracking over a given period of time that depends on the activity and nature

of targets moving in the field. The purpose of this phase is to collect a database of

location estimates for all the tracked targets—see Section 3.3. The gathered data

are used in the second phase to fit a model using the KDE algorithm. This model

40

is used to specify a ROI of high probability target locations; more details are found

in Section 3.4. Finally, the relocation algorithm moves the sensor nodes in a manner

that would improve the tracking performance in the constructed ROI; see Section 3.5.

Appendix A provides the derivation of the mean square position error, while Appendix

B presents a brief discussion of the error propagation throughout the proposed system.

The time complexity analysis can be found in Appendix C.

0 20 40 60 80 100

X

0

20

40

60

80

100

Y

Grid points

Obstacles

(a) Largest traverse-able region

0 20 40 60 80 100

X

0

20

40

60

80

100

Y

Sensor

Obstacles

(b) Sensors initial deployment

Figure 3.1: Initial deployment of sensor nodes in the field’s largest traverse-
able region.

Figure 3.2: System flow diagram.

41

3.3 Tracking Algorithm

For collective tracking of a given target, two main procedures are essential for the

tracking algorithm. The first selects a set of sensor nodes used for estimating the

target state, while the other carries out the estimation. Next is a brief description

of the DEIF algorithm used for target state estimation, and the GNS algorithm used

for sensor node selection.

3.3.1 Distributed Extended Information Filter

In this section, a set of equations used for the estimation of a target location using

a set of active senors Sa is presented. The target non-linear dynamic system model,

composed of a state equation and measurement equation, is now described. The state

equation is

sk = Gsk−1 + Buk, (3.1)

where the state vector s is

s =



Px

Py

vx

vy


,

42

(Px, Py) are the target coordinates and (vx, vy) are the velocity vector components.

Also, u ∼ N(0, σ2
uI) is a representation of the target acceleration. Matrices G and B

are

G =



1 0 ∆ 0

0 1 0 ∆

0 0 1 0

0 0 0 1


, B =



0.5∆2 0

0 0.5∆2

∆ 0

0 ∆


,

where ∆ is the step size between two time snapshots. The measurement equation is

z
(j)
k = h(j)(sk) +ϕk, (3.2)

where the (j) superscript indicates the jth sensor in the set Sa.The function h(.) is

h(s) =


√

(Px − x)2 + (Py − y)2

arctanPy−y
Px−x

 =

R
β

 ,

which represents the nonlinear measurement model, such that R and β are the range

and bearing from a sensor at (x, y) to the target at an estimated position of (Px, Py),

respectively. Also, ϕk ∼ N(0,C) is the measurements noise, where

C =

σ2
R 0

0 σ2
β

 .

43

Here, σ2
R and σ2

β are fixed among the sensors at all times. Even though the measure-

ment model h(.) does not take into consideration the target mobility, the simulated

bearing measurements did incorporate the target non-stationarity, see equation (3)

in [35]. For the case where range measurements are acquired via a Lidar or a Radar,

the impact of mobility is minimal, hence the simulated range measurements assumed

a stationary target.

Next, a set of equations for the prediction and correction stages are presented. In

the first stage a prediction for the covariance matrix P and the state vector s is

evaluated. The second stage provides the estimation by correcting the predictions

using the current measurement. The prediction is

s̄k = Gŝk−1, (3.3)

P̄k = GPk−1G
T + σ2

uBBT . (3.4)

And the correction is

ŝk = Pk

(
P̄−1
k s̄k +

∑
j∈Sa

η
(j)
k

)
, (3.5)

P−1
k = P̄−1

k +
∑
j∈Sa

Ω
(j)
k , (3.6)

where η and Ω are the information vector and information matrix, respectively. These

44

are expressed as

η
(j)
k = H(j)TC−1

(
e

(j)
k + H(j)s̄k

)
, (3.7)

Ω
(j)
k = H(j)TC−1H(j), (3.8)

such that e
(j)
k = z

(j)
k − h(s̄

(j)
k) is the measurement residual. H is the gradient of the

nonlinear measurement model h(.) at s̄k, and it can be easily verified that it has the

following expression,

H =

 Px−x
R

Py−y
R

0 0

−(Py−y)

R2
Px−x
R2 0 0

 =

cos β sin β 0 0

− sinβ
R

cosβ
R

0 0

 .

Since the DEIF algorithm is recursive, the complexity of a single run represents the

algorithm complexity. Following a fairly simple analysis of the algorithm, a complex-

ity of O(n3
s + Mn2

s + nmn
2
s) is achieved, where ns = |s|, nm = |h(s)| and M = |Sa|.

In our work nm < ns, hence the complexity further simplifies to O(n3
s +Mn2

s). Refer

to Appendix C for details.

45

3.3.2 Active Set Selection

We now present the GNS algorithm, modified to use both the bearing and range

measurements to provide Sa. At each time step the GNS algorithm selects the set

of nodes Sa which is used to localize the target at the upcoming time-step. Also,

the algorithm considers only sensors within a sensor’s detection range from the last

estimate of the target location. This range is referred to as RGNS. From one aspect

this leads to lower computational complexity, but from another it can result in an

empty set for Sa, forcing missing estimates for parts of the target trajectory. It will be

shown that target relocation generally minimizes the occurrence of this problem. The

objective of the GNS algorithm is to select a set that will minimise the expected mean-

squared (MS) position error of the target. In the following we derive an expression

for the MS position error. Equation (3.6) can be rewritten as

Jf = Jp +
∑
j∈Sa

HT (j)

C−1(j)H(j), (3.9)

HT (j)

C−1(j)H(j) =


cos2 β(j)

σ2
R

+ sin2 β(j)

R2(j)σ2
β

cosβ(j) sinβ(j)

σ2
R

− sinβ(j) cosβ(j)

R2(j)σ2
β

0 0

cosβ(j) sinβ(j)

σ2
R

− sinβ(j) cosβ(j)

R2(j)σ2
β

sin2 β(j)

σ2
R

+ cos2 β(j)

R2(j)σ2
β

0 0

0 0 0 0
0 0 0 0


(3.10)

46

where Jf = P−1
k is the posterior (filtered) Fisher information matrix (FIM), and

Jp = P̄−1
k is the prior FIM. The [HT (j)

C−1(j)H(j)] expression in (3.9) can be easily

expanded to the form presented in (3.10). This results in

Jf = Jp +


∑

j∈Sa J(j) 0

0 0

⇔ Jf = Jp +

J 0

0 0

 , (3.11)

where J represent the measurements FIM, and its expression is a result of the both,

the form of the observation/measurement model h(s), and the process of evaluating

the measurement FIM as seen from equation (3.10). Now, the expected MS position

error can be expressed as,

ρ (Sa) = [J−1
f]1,1 + [J−1

f]2,2, (3.12)

which can be further simplified to [35]

ρ(Sa) =
tr{J}+ tr{J̃p}

det{J}+ det{J̃p}+ Λ
, (3.13)

where J̃p = [Jp]1:2,1:2− [Jp]1:2,3:4[Jp]
−1
3:4,3:4[Jp]

T
1:2,3:4, and Λ = [J]1,1[J̃p]2,2 + [J]2,2[J̃p]1,1−

2[J]1,2[J̃p]2,1. The details to reach the expression at (3.13) can be found in Appendix

47

A. In case the prior FIM Jp was ignored, the expression in (3.13) will reduce to

ρ(Sa) =
tr{J}

det{J}
. (3.14)

This form of the MS position error reflects the GDOP measure [43]. In relocating

the sensors we will be looking at minimizing the GDOP measure as presented in [44]

with an effort to reduce the MS position error; see Section 3.5.

The GNS algorithm has two phases, the first is referred to as Add one sensor at a time,

and the second is the Simplex. In the first phase, a greedy algorithm that minimizes

the MS position error adds one sensor at a time to the active set. Prior to applying

the greedy algorithm, the active set is initialized by performing an exhaustive search

to find the two sensors that minimize (3.13). The greedy algorithm performs the

following [35],

j = arg min
j∈S\Sa

ρ({j ∪ Sa}). (3.15)

Equation (3.15) is performed iteratively until |Sa| = M . The Simplex algorithm goes

over each sensor in the active set evaluated in the first phase and tries to find a

replacement inactive sensor that would result in a smaller ρ(Sa). Next, the impact

of the range RGNS on the MS position error is explored for a simple case of tracking

a target on a spiral path; see Fig. 3.3. It is clear that increasing the range decreases

48

0 20 40 60 80 100

X

0

20

40

60

80

100

Y
GT Path

Sensor

Estimate Path

(a) Tracking on a spiral path. RGNS = 12

10 15 20 25 30

R
GNS

0

50

100

150

200

250

M
S

 P
o
si

ti
o
n

 E
r
r
o

r
 (

m
e
te

r
)

(b) MS position error Vs. RGNS

Figure 3.3: The impact of RGNS on the MS position error.

the MS position error. Since the original GNS algorithm tends to select the nodes

that are close to the last target estimate, our modified GNS algorithm performance

reaches that of the original at RGNS > 12.

3.4 ROI Formation

Before starting the relocation process, the ROI needs to be established. In this

work, the ROI is formed based on an estimated probability density model for the

tracked targets’ positions. Initially, the randomly distributed WSN tracks the targets

traversing the field, providing a database of target location estimates. In this work

targets are tracked individually. For the case where a target enters a coverage hole,

the location estimate is considered missing for that time step; see Fig. 3.4(a). Even

49

with the effect of coverage holes, the database reflects the trends of tracks preferable

by the targets. The collected training data is fed to the KDE algorithm resulting in

a probability density function estimate, the boundaries of which form the ROI; see

Fig. 3.4. Also, see phases I and II in Fig. 3.2. The KDE algorithm can be either

performed in a centralized fashion at a node equipped with higher computational

resources, or in a decentralized manner [45].

0 20 40 60 80 100

X

0

20

40

60

80

100

Y

Location estimates

Obstacles

(a) Targets tracks

0 20 40 60 80 100

X

0

20

40

60

80

100

Y

KDE

Obstacles

(b) Estimated distribution (Contour)

0 20 40 60 80 100

X

0

20

40

60

80

100

Y

ROI

(c) ROI

0 20 40 60 80 100

X

0

20

40

60

80

100

Y

ROI

Centroid

(d) ROI centroid

Figure 3.4: The formation of the ROI based on a fitted model of the
estimated targets’ locations.

50

3.4.1 Kernel Density Estimation

The KDE is a non-parametric method used for the estimation of an unknown proba-

bility density function. For the problem at hand, the estimation of a density function

based on the location estimates is of interest. Let
{

X1,X2, ...,Xn ↔ Xi = [P
(i)
x , P

(i)
y]
}

represent the estimated target locations from phase I, where they are assumed to be

independent and identically distributed. The density estimator is expressed as

p(X, ν) =
1

nν

n∑
i=1

K

(
X−Xi

ν

)
, (3.16)

where ν is a smoothing parameter, also referred as the bandwidth. K(.) is a kernel

function that i) is symmetric around zero, ii) integrates to one, and iii) is non-negative.

For simplicity, the Gaussian radial basis function is chosen as the kernel. Also, the

bandwidth ν is selected based on the rule-of-thumb approach [46],

ν =

(
4σ5

X

3n

)1/5

≈ 1.06σXn
−1/5, (3.17)

where σX is the standard deviation of the locations data. Now that we have a way of

learning a probabilistic model for target locations, we can dynamically relocate the

sensors to maximize their ability to detect and track these targets.

51

3.5 Senors Relocation

3.5.1 Sensors Attraction

Sensor attraction refers to the process of increasing the density of sensors in the

ROI. Sensors that are outside the ROI and nearest to its centroid are considered for

attraction; see Fig. 3.4(d). Assuming the ROI to be always a non-intersecting polygon

with m vertices, the centroid of the ROI is computed as [47],

Cx =
1

6AROI

m−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi)

Cy =
1

6AROI

m−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi)

such that,

AROI = 0.5
m−1∑
i=0

(xiyi+1 − xi+1yi)

is the area of the ROI.

52

3.5.2 Sensor Position Optimization

The next step is to optimize the location of the sensors within the ROI to minimize

an objective function. Mainly, two fitness functions are considered in this work,

GDOP and K-coverage. The GDOP measures the goodness of the sensors’ geolocation

around a target to achieve accurate localization, and K-coverage makes sure that each

coordinate point is covered by at least K sensors. Hence, a set of virtual target points

(VTPs) need to be placed inside the ROI around which the optimization is performed.

For this effort, a grid of equally spaced points is laid inside the ROI. The density of

this grid is a design parameter. The number of nodes attracted to the ROI depends

on the following ratio,

Rattraction =
|Sfinal|
NVTP

, (3.18)

where |Sfinal| is the final count of sensors in the ROI after attraction and NVTP is the

number of VTPs in the ROI. Therefore, for a given attraction ratio the number of

sensors to be attracted is

Nattract = |Sfinal| − |Sinitial|,

where |Sinitial| is the number of sensors inside the ROI before attraction.

53

3.5.3 Fitness Functions

In this section, three fitness functions are presented. The first is the GDOP measure

used to optimize the location of the sensors inside the ROIs. The second is the

coverage rate, and is used to relocate sensors outside the ROIs to mend/reduce the

coverage holes produced from both the initial random deployment and the sensor

attraction procedure. The third is the mobility cost, represented by the root mean

square (RMS) distance of the mobilized nodes. In this work, a GA is used to optimize

the objective function.

3.5.3.1 geometric Dilution of Precision

As a dimensionless quantity, the GDOP represents the relationship between the range

measurement error and the target location error. The smaller the GDOP value, the

better the positioning. For 2D scenarios, the GDOP can be expressed as [44]

GDOP =
√

[Q]1,1 + [Q]2,2, (3.19)

such that

Q = (ATA)−1,

54

where A is the Jacobian matrix of the noise-free range measurements,

A =



Px−x1
R1

Py−y1
R1

Px−x2
R2

Py−y2
R2

.

.

Px−xM
RM

Py−yM
RM


,

and Rm is the range from the m’th sensor to target. M = |Sa| is the number of

sensors in the active set. The GDOP fitness function is represented as the average of

all the GDOP values evaluated around the VTPs in the ROI,

FGDOP =
1

NVTP

NVTP∑
i=1

GDOPi (3.20)

where GDOPi is the GDOP value around the ith VTP.

3.5.3.2 Coverage Rate

As previously mentioned, coverage holes outside the ROI need to be addressed. This

can be done by relocating the senors that were not involved in the processes of at-

traction and location optimization inside the ROI. The objective of this relocation

is to maximize the coverage rate. For this we follow a probabilistic sensing model,

55

where each sensor has a circular sensing/detection area with a radius of Rs [2],

p(i)(X) =



1 Rs − re ≥ d{(xi, yi), X},

exp−αγ
ξ

Rs − re < d{(xi, yi), X} < Rs + re,

0 Rs + re ≤ d{(xi, yi), X},

(3.21)

where p(i)(X) is the probability that the grid point X is covered by the ith sensor.

Also, re is the uncertainty (error) in the sensing range Rs. d{(xi, yi), X} represents the

distance between the ith sensor and the grid point X. In the uncertainty region—

i.e., Rs − re < d{(xi, yi), X} < Rs + re—the coverage probability is exponentially

decaying, where γ = d{(xi, yi), X} − (Rs − re) and {α, ξ} are control parameters.

Now the coverage rate of the whole field can be expressed as

Rcov =
Acov

Atotal

, (3.22)

where the total area of the field is Atotal = Nx × Ny, and the area covered by the

sensors is

Acov =
∑
X∈G

p(S)(X), ∀p(S)(X) ≥ pth,

such that G is the set of all grid points in the field. p(S)(X) = 1−
∏|S|

i=1(1− p(i)(X))

is the coverage of grid point X considering all sensors in S. pth is a probability

56

threshold that governs the impact of p(S)(X) on the computation of Acov, which is a

design parameter. Hence, the fitness would be the rate of uncovered area,

Funcov = 1−Rcov. (3.23)

3.5.3.3 Mobility Cost

The mobility cost is utilized to penalize the movement of the sensors, with an effort

to minimize the average distance traveled due to the sensor position optimization.

This function is introduced in both the processes of relocating sensors for detection

and also coverage rate optimization. The Root Mean Square (RMS) distance is used

to express the mobility cost,

dRMS =

√
1

|Smob|
∑

j∈Smob

d(j)2
,

where Smob is the set of sensors being mobilized, and d(j) is the Euclidean distance

traveled by the jth sensor in Smob. By normalizing the RMS distance the fitness

function can be expressed as

Fdist =
dRMS

Nx ×Ny

. (3.24)

57

3.5.4 Objective Function

To optimize the sensor locations inside the ROI after attraction, either the GDOP or

K-coverage fitness functions can be used,

X∗SROI
= min

X∈(GROI\XVTP)
(ω ∗ FROI + (1− ω) ∗ Fdist) , (3.25)

where X∗SROI
is optimized sensor coordinates in the ROI. GROI is the set of grid points

in the ROI. Here FROI = {FGDOP, FKcov}. Also, ω ∈ [0, 1] is a chosen weight used

to combine the fitness functions. The objective function to optimize sensor location

outside the ROI can be similarly expressed,

X∗Sout = min
X∈Gout

(ω ∗ Funcov + (1− ω) ∗ Fdist) , (3.26)

where X∗Sout is the optimized locations of the sensors outside the ROIs. Also, Gout is

the set of grid points outside the ROI and within the largest traverse-able region.

3.6 Simulation and Results

The performance of the presented system and algorithms are assessed through a set

of experiments. Each experiment examines the problem from a different aspect, with

58

Table 3.2
Experiments Description

Description

Experiment 1 Explore which fitness function of-
fers best optimization to minimize
the MS position error.
Investigate the impact of the node
selection algorithm on the MS posi-
tion error.

Experiment 2 Examine the impact of relocation
on the field coverage.

Experiment 3 Investigate the relocation efficiency
in terms of mobility cost.

the purpose of achieving a clear picture on the overall behaviour; see Table 3.2. The

values of common parameters used throughout the simulations are listed in Table 3.3.

All the simulations and results presented in this work are generated using Superior, a

high performance computing cluster at Michigan Technological University. No parallel

computing has been used in running the simulations. The CPU used in the Superior

cluster is the Intel Sandy Bridge E5-2670 2.60 GHz.

Experiment 1

The purpose of this experiment is to investigate the different fitness functions pro-

posed to optimize sensor locations and their impact on the MS position error. The

comparison is done at different attraction ratios Rattraction. Table 3.4 shows the MS

position error for this experiment; it is clear that the process of sensor node reloca-

tion always offers an improvement over the the initial sensor deployment. This is also

59

Table 3.3
Values of Common Parameters Used in Simulations

Parameter Value(s)

Problem Setup

Nx ×Ny 100× 100 km
M 3
N 100
Rattraction {0.20, 0.25, 0.30}
Rs {5, 8, 11}
re 0.6
pth 0.85
α 0.5
ξ 0.5
ω 0.8

GA

pc 0.75
pm 0.001
Npop 30
gmax 100

observed in terms of missing estimates due to coverage holes, where Fig. 3.5 shows

how this problem is remedied. Going back to Table 3.4, the K-Coverage measure

as a fitness function seems to offer a better performance. To make sure that the

improvement is due to optimizing sensor locations and not only to increasing their

density within the ROI, Fig. 3.6 compares three cases. The first is the optimization

of sensor locations via the GDOP fitness, the second case uses the K-coverage fit-

ness, and the last case represents the attraction of sensor nodes into the ROI with

locations following a uniform random distribution. The comparison is performed at

incrementing values of Rattraction and for RGNS = [5, 8, 11]. It is observed that the

global node selection algorithm does not take advantage of the GDOP optimization

especially at lower RGNS values; where the K-coverage and uniform distribution show

a better performance. As RGNS increases, GDOP shows an improved performance

60

Table 3.4
Comparing the MS position error (meter) under different optimization

methods. RGNS = 8.

Rattraction%
20 25 30

Initial 14.7 14.7 14.7
GDOP 13.9 12.8 12.6
K-Coverage 12.4 11.7 11.5

that is comparable with the uniform distribution case, but they both lag behind that

of the K-coverage. The improvement in the GDOP method is due to a higher |Sa|

—on average— at larger RGNS, see equation (3.19). It would be interesting in future

work to investigate the performance of the GDOP method for higher values of M in a

dense network. The results in this experiment are interesting in the sense that a sim-

ple uniform distribution of sensor locations leads to a performance that is comparable

—if not better— than a more complex methods; namely, the GDOP and K-coverage.

So the simpler and computationally more affordable methods seem to offer a better

performance.

0 20 40 60 80 100

X

0

20

40

60

80

100

Y

(a) Ground-truth tracks

0 20 40 60 80 100

X

0

20

40

60

80

100

Y

(b) Before relocation

0 20 40 60 80 100

X

0

20

40

60

80

100

Y

(c) After relocation

Figure 3.5: Impact of relocation on missing location estimates.

61

0.20 0.25 0.30

R
attraction

0

5

10

15

20

M
S

 P
o

si
ti

o
n

 E
r
r
o

r
 (

m
e
te

r
) GDOP

Uniform Dist.

K-Coverage

(a) RGNS = 5

0.20 0.25 0.30

R
attraction

0

5

10

15

20

M
S

 P
o

si
ti

o
n

 E
r
r
o

r
 (

m
e
te

r
) GDOP

Uniform Dist.

K-Coverage

(b) RGNS = 8

0.20 0.25 0.30

R
attraction

0

5

10

15

20

M
S

 P
o

si
ti

o
n

 E
r
r
o

r
 (

m
e
te

r
) GDOP

Uniform Dist.

K-Coverage

(c) RGNS = 11

Figure 3.6: The impact of optimizing the sensors locations inside the ROI
as compared to only attracting the sensor nodes. Comparison is performed
for Rattraction = [0.2, 0.25, 0.30].

Experiment 2

It is expected that after relocating the nodes to the ROI, coverage holes will form in

the rest of the field. This can result in missed detections of targets that appear in a

different part of the field. To reduce the impact of this problem, sensors that remained

outside the ROI are relocated to mend the coverage holes. This is performed using

a GA with the objective function presented in Section 3.5.4. Figure 3.7 shows the

field coverage rate for three cases: i) initial sensor deployment, ii) after relocation to

the ROI (with no coverage optimization outside the ROI), and iii) after relocation

to the ROI and with coverage optimization. It is clear that relocating nodes to the

ROI decreases the coverage rate. It is also observed that optimizing the coverage rate

outside the ROI reduces the coverage holes problem. From Fig. 3.7, it seems that

small to no improvement is achieved at Rattraction = [0.25, 0.30]. This is only due to

the fact that at those attraction rates, most—if not all—of the sensors in the field

62

0.2 0.25 0.3

R
attraction

30

35

40

45

50

55

60

C
o
v
e
r
a
g
e
 R

a
te

 %

80

90

100

110

120

130

N
R

O
I

Initial

No Cov. Opt.

Cov. Opt.

Sensor Count (ROI)

Figure 3.7: Effect of sensor nodes relocation on field coverage rate.
{FROI ← FKcov, RGNS = 8}.

Table 3.5
Impact of RGNS on the coverage rate. The case of initial deployment

is considered for illustration purpose.

RGNS

5 8 11

RCOV% 25 50.8 69

have been relocated to the ROI; see NROI in Fig. 3.7. From experiment 1 and the

results seen here, using either the K-Coverage or the uniform distribution with a low

attraction rate offers a reasonable balance between coverage and positioning accuracy.

Clearly, the higher the value of RGNS the higher the coverage rate is, Table 3.5.

Experiment 3

This experiment explores the mobility cost in terms of the average traveled distance

by all the nodes included in the relocation process. As illustrated in Table 3.6, the

traveled distance increases as the number of sensors in the ROI increases. Moreover,

63

Table 3.6
Average cumulative distance (km) traveled by sensor nodes due to

relocation
(inside ROI) and coverage rate optimization (outside ROI).

{FROI ← FKcov, RGNS = 8}.

Rattraction%
20 25 30

Inside ROI
dRMS opt. 2577.7 3150.2 3233.7
No dRMS opt. 2792.8 3511.6 3464

Outside ROI
dRMS opt. 585.1 89.4 35.9
No dRMS opt. 900.3 186.2 55.8

Table 3.6 shows the gain due to including distance traveled, dRMS, in the objective

function. For both the inside and outside the ROI relocation, considering dRMS in

the optimization process offers a reduction in the traveled distance of about 7% −

52%. Again, at Rattraction = [0.25, 0.30] minimal or no relocation happens outside the

ROI for coverage rate optimization; hence, the sensors experience a relatively smaller

traveling distance.

3.7 Conclusion and Discussion

This work investigated the problem of relocating sensor nodes in a WSN for improved

target localization and tracking. A system of three phases was introduced to address

the questions of where and how to relocate, and how to optimize the location of

the sensor nodes with respect to target detection and tracking. Using the initial

deployment of the WSN, a set of target locations was established. This set was used

64

to generate a ROI based on a distribution function estimated by a kernel density

estimator. The proposed system increased the sensor density inside the ROI and

explored the possibility of optimizing their locations for improved target tracking.

Two fitness functions were used to optimize the sensor locations inside the ROI:

GDOP and K-coverage. For any nodes that remained outside the ROI, a relocation

process was proposed to mend the coverage holes. Results show how the relocation of

nodes to the ROI always offers an improvement in terms of reducing the mean-square

position error. A comparison between the case of optimizing sensor locations in the

ROI and that of just relocating nodes to random locations, was held. The K-coverage

showed better performance at all sensor detection range RGNS values, while the GDOP

fell behind especially at lower RGNS. Moreover, the uniform random relocation offered

a good performance falling shortly behind the K-coverage. In general, increasing the

value of RGNS improves the performance in terms of mean-square position error and

coverage rate, but has the effect of increasing the search space of the GNS algorithm.

If the complexity added by the GNS algorithm at higher RGNS values is not an issue,

then either the K-Coverage or the uniform random relocation can be chosen.

65

Chapter 4

Dynamic Greedy Scheduling for

Sparse Sensing in Hybrid Sensor

Networks

4.1 Introduction

In many real world scenarios there exist various natural or man-made events that

require monitoring with a high level of precision and accuracy [49, 50, 51]. This can

range from wild fires and air pollution to contamination of water with nuclear deposits.

Achieving high precision requires the use of a network of high precision sensor (HPS)

67

nodes to acquire measurements that allow one to accurately infer the phenomenon

of interest. HPS nodes tend to be both expensive and power demanding, which

could render such a network to be economically unfeasible [52]. Hence, in practice

lower number of nodes are used, forming a sparsely distributed network. Introducing

wireless low precision sensor (LPS) nodes can help mitigate this problem by filling

the gaps in a sparse HPS network, thus rendering the network as a hybrid between

two types of sensor nodes. An LPS nodes are likely to be cheaper, easy to deploy, and

also consume less power. On the other hand, LPS nodes are typically more prone to

failure, mainly due to their dependency on a battery for power. To extend the life-

time of the whole network, it would be crucial to optimize its power consumption,

especially for wireless nodes in the hybrid network. Three main areas are addressed

in the literature to optimize the power consumption in a wireless sensor network

(WSN): (1) data processing, (2) communication, and (3) sensing. For WSNs, it is

more common to tackle the first two areas [53, 54], but for optimal power consumption

the sensing part should also be taken into consideration. While compressing data after

sampling is a common practice in a WSN, compressed sensing (CS) alters the process

by integrating compression into the sensing step, i.e., the field is sensed less frequently.

Sampling means fewer nodes are actively sensing the region of interest (ROI), which

means lower power consumption and a longer life span for the WSN. Let x ∈ RN

be a discrete form of the data to be measured, and y ∈ RM be a vector of the data

68

sensed by the WSN, where M � N , then

y = Φx + w, (4.1)

where w is a noise vector. CS tries to find a measurement matrix Φ ∈ RM×N such that

y attains sufficient information from the field to achieve an acceptable reconstruction

of x. This only work reliably when x is sparse in a given dictionary Γ,

x = Γa, (4.2)

where a ∈ RN is a sparse representation of x, such that ‖a‖0 � N [55]. There are

several approaches to solve the minimization x; `1, greedy algorithms, and combina-

torial algorithms. The `1 based minimization is an approximation for that with `0;

the `0 minimization is non-convex and can be shown to be NP-hard to solve [56]. The

`1 minimization in the presence of noise has the following expression [57],

min
a∈RN

‖a‖1, s.t. ‖y−ΦΓa‖2 ≤ ξw, (4.3)

where ξw is the noise energy. The problem presented at (4.3) is convex and can

be solved by many optimization methods [58]. Two of the greedy algorithms are

orthogonal matching pursuit (OMP) [59] and iterative hard thresholding (IHT) [60].

OMP and IHT can achieve similar guarantees as the `1 minimization for recovering x.

69

Now, due to the non-adaptive nature of the sensing schedule captured in Φ, which is

usually either random or fixed, the use of CS for sparse sensing in a WSN might not

be the best practice [61]. Also, the sparsity of the dictionary Γ changes as x varies

with time, which in effect can fail to fulfill the CS requirements [61, 62]. Zichong

Chen et al. [61] presented a distributed algorithm to provide a near-optimal spatio-

temporal measurement schedule for a group of stationary sensing nodes in a WSN.

There, the authors considered a decomposition of x at time t,

x = Ψ(t)ν, (4.4)

where Ψ(t) ∈ RN×K is the signal approximation model at time t, and ν ∈ RK is a low

dimensional representation of x, such that K � N . The reconstruction of x requires

the knowledge of Ψ(t), which can be learned over time from previous measurements.

Through this process, the measurements schedule Φ(t) can also be learned.

Our work is an extension of the adaptive scheduling algorithm presented by Chen [61].

For a hybrid WSN that is composed of both HPS and LPS nodes, our contribution

aims at investigating the use of sparse sensing algorithms to provide measurement

scheduling that is both dynamic and accurate, i.e., achieves a low reconstruction

error. The process of scheduling is considered dynamic and adaptive in the sense that

it adapts to the ever changing attributes of the physical field. As a case study, the

concentration of particulate matter with an aerodynamic diameter of less than 10µm

70

Figure 4.1: Sensing stations in the Melbourne, Australia area / Google
Maps.

(PM10) is used as the dataset of interest to assess the performance of the presented

system. This dataset was provided by the Environment Protection Authority Victoria

(EPA) [63]. It offers hourly PM10 measurements by eleven stations distributed in

the Melbourne area, see Fig. 4.1. These stations are considered HPS nodes; their

measurements are used to develop a model for generating simulated ground-truth

PM10 data. This will help in two ways: (1) in filling the gap in measurements due to

the sparsely located HPS nodes, and (2) in studying the impact of using LPS nodes

to achieve a better estimation of the PM10 concentrations in the region.

In contrast to what is usually seen in the CS literature, this work adopts a sparse sens-

ing approach that is dynamic and provides a frame work of scheduling sensor nodes

71

for measurement based on their information content at a given point in time. This

work address problems related WSN deployment feasibility and network resilience to

node failures that were not dealt with in [61, 64], and in that context here are the

main contribution seen in this chapter,

† The unique hybrid structure of the network, where the impact of utilizing LPSs

is examined;

† Investigating the trade-off between network deployment feasibility and measure-

ment reconstruction accuracy;

† Exploring the resilience of the greedy measurement-scheduling algorithms to

sensor node failures.

† A comprehensive discussion on the generation of simulated ground-truth data,

over which the system is applied.

Table 4.1 provides a summery of the important notations used here. The rest of this

chapter is arranged as follows. In Section 4.2, we present a more detailed description

of the problem at hand, with a preview on the synthetic ground-truth data genera-

tion. Section 4.3 introduces the four steps that comprise the dynamic measurement

scheduling and presents two greedy algorithms as a solution. Results and discussion

are presented in Section 4.4. Finally, the conclusion and future work are found in

Section 4.5.

72

Table 4.1
Acronyms and Notation

Term Definition Term Definition

x ground-truth data of N sen-
sors

Φ Measurement Matrix

w Noise vector y Measurements vector
a Sparse form of x ξw Noise energy

Ψ Signal approximation model ν Low dimensional form of x
τ Measurement pattern N Number of sensors
M Number of samples (measure-

ments)
Cs(d) Spatial lag covariance model

Ct(∆t) Time lag covariance model εa Approximation error
Cx Covariance of x x̄ Mean of x

x̂ Approximation of x x̃ Reconstruction of x
ε Reconstruction error FP(.) Frame potential measure

WSN Wireless sensor network HPS High precision sensor
LPS Low precision sensor ROI Region of interest

CS Compressed sensing PM Particulate matter
OMP Orthogonal matching pursuit IHT Iterative hard thresholding
FFT Fast Fourier transform WSS Wide-sense stationary

4.2 Problem Setup

In a WSN with N sensing nodes, a given node has its spatio-temporal coordinates

expressed as P = {s, t}, where s ∈ R2 is the spatial coordinate and t is time. Let

Z(t) = {Z(t)
1 , Z

(t)
2 , ..., Z

(t)
N } be the set of their measurements at time t. Also, let NH

and NL be the number of HPS nodes and LPS nodes, respectively. An HPS is a

sensing node that acquires measurements from the field with a high signal-to-noise

ratio (SNR); these sensors are considered to be expensive, hence their count is usually

lower than the relatively inexpensive, but less accurate, LPSs. Any given sensor is

assumed to be in an either an active or sleep state. Nodes that are in the sleep mode

73

are not capable of acquiring measurements. Hence, let N
(a)
H and N

(a)
L be the number

of active sensors for HPS and LPS nodes, respectively. Also, N
(s)
H and N

(s)
L is the

number of sleeping sensors for HPS and LPS nodes, respectively.

Even though the data to be measured is continuous in space and time, we assume

that we are dealing with data sampled at minimum of the Nyquist rate. In this work,

data is processed in frames of length N = NL + NH, representing the measurements

from all sensing nodes. Based on previous measured data from the physical field,

the proposed algorithm will select M = N
(a)
H + N

(a)
L sensors, from the N possible

nodes, to be sampled at t + 1. More details on this process are provided in Section

4.3. Indices of the selected M nodes are stored in τ (t+1), which is referred to as the

measurement (or sampling) pattern. The measurement schedule Φ(t+1) ∈ {0, 1}M×N

can be completely determined from τ (t+1) as follows,

φ
(t+1)
i,j =


1, j = τ

(t+1)
i

0, else

, (4.5)

where φ
(t+1)
i,j is the element in the ith row (ith index in τ) and jth column (jth of

N sensors) of Φ(t+1). From (4.5) it is observed that Φ(t+1) has a maximum of one

non-zero in each column, and exactly a single non-zero element in each row.

74

4.2.1 Simulated Ground-Truth Data

Rajasegarar et al. [64] used two methods for noise generation based on fitted covari-

ance modules. The first relies on the fast fourier transform (FFT) and the other on

Cholesky factorization. For generating the synthetic PM10 ground-truth data, we

will follow an adaptation of the FFT method, assuming that sensors are located on

a grid in the field of interest. The covariance model is assumed to be wide-sense

stationary (WSS) and isotropic. There are many models that can be used for this

purpose. For illustration purposes, let us consider the exponential model,

C(d) = αe−d/σ,

where α and σ are the model parameters and d is the spatial lag. As mentioned

previously, the FFT method considers the sensor nodes to be positioned on a grid.

Let a sensor be positioned at si,j = (xi, yj). The spatial covariance matrix is expressed

as C = [C(di,j)]m×n, where di,j =‖ si,j − s̄ ‖2, and s̄ is the grid center. The FFT

model generates the synthetic data as shown in Fig. 4.2, where W ∼ U [0, 1] is an

m×n uniform noise matrix,
⊙

is the Hadamard product, and Z is the ground-truth

data matrix. By taking the Fourier transform of the covariance matrix C, the power

spectral density (PSD) is evaluated. To apply the statistics of the of the measured

dataset to the noise (i.e., synthetic data), we modify the magnitude of the complex

75

Figure 4.2: Flow diagram of the FFT model for ground-truth data gener-
ation.

numbers in ej2πW by multiplying with
√
ζC. The use of the square-root is to preserve

the covariance of Z to the PSD ζC. The final step brings V back from the frequency

domain. The multiplication with
√

2NV counteracts the implicit multiplication by

1/2 due to the Re{.} operation, and by 1/NV due to the inverse FFT definition,

where NV is the number of coefficients in C.

Since we are modeling data for sensors located in a spatio-temporal space, the model

should capture both spatial and temporal statistics. Therefore, the spatio-temporal

covariance model is expressed as,

C(d,∆t) = Cs(d)× Ct(∆t),

76

where Cs(d) and Ct(∆t) are the isotropic WSS covariance models for the spatial lag

d and time lag ∆t, respectively. It is important to note that the spatio-temporal

covariance should have the same α parameter as in Cs(d) and Ct(∆t), see Table 4.2.

Hence, C(d = 0,∆t = 0) = Cs(d = 0) = Ct(∆t = 0). This preserves energy.

For the synthetic data to reflect the measured dataset, it is important to estimate the

models Cs(d) and Ct(∆t) that best fit their spatial and time lag covariances of the

measured data. This can be achieved by first computing the spatial and temporal

variograms from the measured dataset [64, 65, 66]. The spatial variogram is expressed

as

Ĉs(d) =
T∑
t=1

∑
∀i,j

(Z
(t)
i − µZ)(Z

(t)
j − µZ)

Tnd
, (4.6)

where nd is the number of covariance terms for each spatial lag d, and µZ is the mean

of the measurements. The temporal variogram is

Ĉt(∆t) =
Ns∑
m=1

∑
∀i,j

(Z
(ti)
m − µZ)(Z

(tj)
m − µZ)

Nsn∆t

, (4.7)

where n∆t is the number of terms in the second summation corresponding to the

temporal lag ∆t, and Ns is the number of sensors. From a set of possible covariance

models, a best fit is chosen based on minimizing the squared error,

εu(M) =
∑
g

n2
g

(
Ĉ(g)− Cu(g,M)

)2

, (4.8)

77

Table 4.2
List of covariance models

Name Model Parameters (M) Formula

Exponential {α, σ} C1(q,M) = αe−q/σ

Gaussian {α, σ} C2(q,M) = αe−q
2/σ2

Cosine Hole {α, σ} C3(q,M) = α cos(πq/σ)
Sinc {α, σ} C4(q,M) = α sin(πq/σ)/(πq/σ)
Nugget α C5(q,M) = α,C5(q,M) = 0, q > 0
Spherical {α, σ} C6(q,M) = α(1− [3q/2σ − 1/2(q/σ)3])

Mexican Hat {α, σ} C7(q,M) = α(1− σq2)eq
2/σ2

whereM is the set of model parameters and g represents all possible time or spatial

lags. Cu(g,M) is one of a set of possible covariance models, shown in Table 4.2.

Due to the fact that the sensors are sparsely located in the field, there will be gaps

present in the spatial variogram. Therefore, it would be possible to interpolate Ĉs(d)

before fitting model, keeping in mind that a result of this would be using nd = 1

at (4.6) due to the fitting over a uniform grid. However, for ∆t = ti − tj we have

n∆t = {T, T − 1, ...}.

Figure 4.3 shows the fit of the best model, exponential, to both temporal and spa-

tial variograms. The parameters for the spatial models are Ms = {584, 37.5}, and

for the temporal model Mt = {270, 44}. Since both the spatial and temporal vari-

ograms start at the same point (around 600), both models get the same α parameter.

Observing that Ms has an α value that is more true to the spatial and temporal

variograms, both models get an α parameter of α = 584. Using the fitted models,

the FFT method is used to generate the ground-truth synthetic data, as shown in

Fig. 4.4. From Fig. 4.5, it is clear that the sample-based covariance (either spatial

78

0 10 20 30 40 50 60 70

Spatial Lag (d)

100

200

300

400

500

600

N
o
r
m

a
li

z
e
d

 S
p

a
ti

a
l

C
o
v
.

(a) Spatial

0 500 1000 1500

Temporal Lag (t)

-100

0

100

200

300

400

500

600

N
o

r
m

a
li

z
e
d

 T
e
m

p
o

r
a

l
C

o
v

.

(b) Temporal

Figure 4.3: Fitting a model for both spatial and temporal variograms.

20 40 60 80 100

X

20

40

60

80

100

Y

-50

0

50

100

(a)

20 40 60 80 100

X

20

40

60

80

100

Y

-20

0

20

40

60

80

100

(b)

Figure 4.4: Simulated ground-truth data for two time slices. The FFT
method was used with the exponential model for both spatial and temporal
covariance models.

or temporal) of the simulated data follows the trend of the covariance models that

are based on the measured dataset. As the number of simulated data grows, the co-

variance models, as estimated from the simulated data, match the measured dataset

even closer.

79

0 20 40 60 80 100

 d

-100

0

100

200

300

400

500

600
C

o
v

a
r
ia

n
c
e

Simulation

Model

(a) Spatial covariance

0 100 200 300 400

 t

0

100

200

300

400

500

C
o

v
a

r
ia

n
c
e

Simulation

Model

(b) Temporal covariance

Figure 4.5: Comparison between the covariance model based on the mea-
sured data and the sample-based covariance of the simulated ground-truth
data.

4.3 Dynamic Measurement Scheduling

We now provide details regarding the procedure of dynamically assigning a measure-

ment schedule to the sensing nodes, both HPSs and LPSs. The four steps of this

procedure are illustrated in Fig. 4.6.

4.3.1 Step 1: Measurement Acquisition

In this step, the sensors get the measurements according to the schedule Φ(t). This

means that there will be N
(a)
H +N

(a)
L active HPS and LPS nodes out of N nodes taking

measurements.

80

Figure 4.6: Flow diagram of the dynamic measurement scheduling.

4.3.2 Step 2: Updating Ψ(t) and x̄

The optimal model Ψ(t) is that which minimizes the approximation error εa,

εa =
1√
N
E[‖ x− x̂ ‖2], (4.9)

where x̂ = Ψ(t)ν + x̄ is the approximation of the field data x, and x̄ is its mean.

Estimating Ψ(t) can be achieved by analyzing previous field measurements. Since

Ψ(t) ∈ RN×K is a K-dimensional subspace, where K � N , this can be viewed

as a dimensionality reduction problem; this is addressed using principle component

analysis (PCA).

81

To proceed with PCA, the covariance matrix Cx is required. This can be challenging

for two main reasons: (1) we only have M out of N measurements, and (2) Cx is

changing with time. Exploiting the fact that measurements are potentially sampled

from different locations at different time instances, enough information can be ac-

quired for estimating Cx and hence updating Ψ(t) and x̄. To that end, two methods

were introduced in [61]. The first is based on a first-in first-out (FIFO) buffer for

storing and analyzing L previous measurement frames, while the second is based on

incremental PCA (IPCA). Here, the later method is adopted due to its memory ef-

ficiency and better performance in terms of reconstructing x. The FIFO method is

only used to initialize the IPCA algorithm. Both methods rely on an interpolated

version of the measurements y; due to the spatial nature of the measurements, a cubic

spatial interpolation is used where Matlab’s ’griddata’ was employed for this purpose.

4.3.3 Step 3: Reconstruction

The field reconstruction is based on the measurement approximation model x̂

x̃ = Ψ(t)ν + x̄, (4.10)

where x̃ is the reconstruction of the field x and ν is the projection coefficient vector

reflecting a low dimensional representation of x. Having Ψ(t) and x̄ estimated, we

82

need ν for evaluating x̃. From (4.1) and using x̂,

ŷ = Φ(t)x̂ + w

= Φ(t)(Ψ(t)ν + x̄) + w. (4.11)

For an i.i.d. Gaussian noise w, ν can be estimated by solving the ordinary least

squares (OLS) problem [61, 67],

ν∗ = arg min
ν
‖ y− ŷ ‖2

2. (4.12)

The analytic solution for this problem is

ν∗ = (Φ(t)Ψ(t))†(y−Φ(t)x̄), (4.13)

where (.)† represents the Moore-Penrose pseudoinverse. At this point a reconstruction

of the field is achieved by substituting (4.13) into (4.10) giving

x̃ = Ψ(t)(Φ(t)Ψ(t))†(y −Φ(t)x̄) + x̄. (4.14)

Again assuming an i.i.d. Gaussian noise, the reconstruction error is upper bounded

by [61],

83

ε2 =
1

N
‖ x− x̃ ‖2

2≤
1

λK
ε2a + σ2

K∑
k=1

1

λk
, (4.15)

where ε is the reconstruction error, λi for 1 ≤ i ≤ K are the eigenvalues of Υ =

Ψ̃(t)T Ψ̃(t) sorted in a descending order, and Ψ̃(t) = Φ(t)Ψ(t). λK is the minimum

eigenvalue of Υ for the range 1 ≤ i ≤ K. σ is the noise variance.

4.3.4 Step 4: Update Measurement Schedule

Here we describe two greedy algorithms for updating Φ(t) to provide the scheduling

update at time t+ 1.

4.3.4.1 Frame Potential

To optimize the measurement schedule the following minimization problem is solved

[61],

τ (t)∗ = arg
τ (t)

min
λk

K∑
k=1

1

λk
, (4.16)

where λk are the eigenvalues of Υ. However, this problem is considered to be NP-hard

[68, 69]. As a proxy for the cost function at (4.16), the frame potential (FP) [71] can

be used [61, 70]:

FP(Ψ(t),A) =
∑
i,j∈A

|〈ψi,ψj〉|2, (4.17)

84

where A is the set of sensors indices that are candidates for activation. Also, ψi is

the ith row of Ψ(t). Minimizing the frame potential in effect addresses the problem

at (4.16), and since it is convex, it has a lower computational complexity. Under

some conditions over the spectrum of Ψ(t), using the FP as a proxy can achieve a

near-optimal solution in terms of the root-mean-square error (RMSE) [70]. Since the

FP is a measure of the orthogonality between the rows of Ψ(t), the greedy algorithm

selects the rows (sensors locations) that are close to being orthogonal, potentially

increasing the information content of the data to be measured [61].

For the evaluation of the measurement schedule for the next time frame, Algorithm

3 is based on a worst-out greedy algorithm. In each iteration, the index of the Ψ(t)

row that maximizes the frame potential is removed from the set A. This process is

repeated until |A| = M .

Algorithm 3 Frame Potential

procedure Initialization
2: Set R = ∅; R ↔ removed indices set

Set A = {1, 2, ..., N}
4: end procedure

First row to remove R = arg max
i∈A

∑
i,j∈A |〈ψi,ψj〉|2

6: Update A = A \R
repeat

8: i∗ = arg max
i∈A

∑
i,j∈A |〈ψi,ψj〉|2

R = R∪ i∗
10: A = A \ i∗

until |A| = M
12: τ (t+1) ← A

85

4.3.4.2 Correlation

As seen in [72], the second greedy algorithm is also related to the idea of selecting the

nodes that are less related to each other, hence possibly providing more information.

Here, the correlation between the Ψ(t) rows are evaluated, and a greedy worst-out

method is used to remove the nodes that are highly correlated; see Algorithm 4.

Algorithm 4 Correlation

procedure Initialization
2: Set R = ∅; R ↔ removed indices set

Set A = {1, 2, ..., N}
4: end procedure

repeat
6: i∗ = arg max

i∈A
〈ψi,ψj〉

R = R∪ i∗
8: A = A \ i∗

construct Ψ̃(t) from A
10: if rank(Ψ̃(t)) < K then

Restore previous Ψ̃(t)

12: Break
end if

14: until |A| = M
τ (t+1) ← A

4.4 Results and Discussion

Table 4.3 offer a brief description of each of the experiments. Some of the codes used

in generating the simulations are based on the repository in [73]. Before proceeding

86

into the experiments, two main parameters need to be defined. The first is RMSE,

RMSE =
1√
N
‖ x− x̃ ‖2 . (4.18)

Throughout the experiments a normalized version of the RMSE is used,

RMSEN =
RMSE

‖ x ‖2

. (4.19)

The other parameter is SNR, defined as

SNRdB = 10 log10

‖ x ‖2
2

‖ w ‖2
2

. (4.20)

It is worthwhile mentioning that the HPS nodes are assumed to introduce zero (neg-

ligible) noise to the measurements, while the LPS nodes are noisy. Hence, varying

the SNR value in the simulations reflects the level of noise in the LPS nodes. Unless

otherwise mentioned, the common parameters’ values used for result generation are

those listed in Table 4.4.

87

Table 4.3
Experiments Description

Description
Experiment 1 Compares the performance of the various scheduling al-

gorithms in terms of RMSE.
Experiment 2 Investigate the resilience of the scheduling algorithm to

node failure.
Experiment 3 Explore the possible gain of increasing the percentage of

HPS nodes.
Experiment 4 Investigate the trade-off between increasing the percent-

age of HPS nodes and the improvement in the RMSE
performance.

Experiment 5 Study the impact of having all the HPS nodes in the
active state.

Table 4.4
Values of Common Parameters

Parameter Value
N 169
M 16
K/M 0.9
PHPS 10%

4.4.1 Experiment 1

This experiment compares a set of scheduling algorithms. Two of which provide

dynamic scheduling and were presented in Section 4.3. The other two are uniform

scheduling and random scheduling. The uniform scheduling selects nodes that are

equally spaced from a grid of nodes overlaid over the FOI. The further the nodes are

spaced the smaller the sample M . Random scheduling picks nodes based on a uniform

random distribution. Figure 4.7(a) shows the normalized RMSEN performance of the

88

uniform, correlation, and the FP scheduling algorithms. Both the uniform and the FP

methods outperform the correlation method, with a slight edge of uniform scheduling

over that of FP. One possible reason for the favorable performance of the uniform

scheduling lies in the consistent spatial spacing between the nodes, which in turns

results in uncorrelated measurements, especially at higher node spacing. One might

argue for the superiority of the uniform scheduling, but it must be remembered that

it is a static scheduling scheme. With uniform scheduling two main problems arise:

† The same nodes are active all the time, shortening the lifetime of the LPS nodes

and hence the network integrity.

† In case of malfunction in a node or set of nodes, the uniform spacing is broken,

and as demonstrated in Experiment 2 the advantage in RMSE performance no

longer holds.

Based on its RMSE performance and dynamic nature, the FP method is adopted. Fig-

ure 4.7(b) compares the random scheduling performance against that of FP. Clearly,

random scheduling is the worst performing method.

89

10 15 20 25 30 35 40

SNR (dB), LPS

0.7

0.8

0.9

1

1.1

1.2

1.3
R

M
S

E
N

Uniform

Corr

FP

(a)

10 15 20 25 30 35 40

SNR (dB), LPS

0.5

1

1.5

2

2.5

3

R
M

S
E

N

Random

FP

(b)

Figure 4.7: RMSE performance among the various scheduling methods.

4.4.2 Experiment 2

Here, a scenario where a random set of the LPS nodes malfunctions is considered. This

is a reasonable proposition, mainly due to the reliance of the LPS nodes on a battery

as a power source. Both the uniform and the FP methods are considered here. To

maintain a fixed sample size M , the uniform scheduling algorithm substitutes failed

nodes by the nearest inactive (sleeping) nodes in the grid, while the FP artificially

creates a high spatial correlation among failed nodes, encouraging the greedy aspect

of the algorithm to discard those nodes from the sample. Figure 4.8 shows that the

FP algorithm offers more resilience against node failure. One might wonder about

the slight improvement in RMSE performance as the number of failing LPS nodes

increases. This is due to the increased chance that the scheduling algorithm will

substitute a malfunctioned LPS node with an HPS node.

90

15 20 25 30 35 40

N
L

(f)
/N

L
 %

0.91

0.92

0.93

0.94

0.95

0.96

0.97

R
M

S
E

N

FP

Uniform

Figure 4.8: Comparing the resilience of both the FP and uniform methods
to LPS node failure. The x-axis represents the percentage of failed LPS node
of the total LPS node count. SNR = 10dB.

4.4.3 Experiment 3

This experiment explores the possible performance gain due to increasing increasing

the ratio of HPS to LPS nodes. The HPS nodes are advantageous for their high pre-

cision measurements, while the LPS nodes are considered noisy. Figure 4.9(a) reveals

how increasing the percentage of HPS nodes, PHPS, yields an improved performance

mainly lower SNR regimes—i.e., in regions where the LPSs are very noisy. The in-

crease in SNR reflects the use of a higher quality LPS nodes. Hence, as SNR increases,

the quality margin between the LPS and HPS nodes shrinks. At SNR > 20dB the

LPS nodes virtually turn into HPS nodes, and as a result no performance gain is

91

5 10 15 20 25 30

SNR (dB), LPS

0.6

0.8

1

1.2

1.4

1.6
R

M
S

E
N

P
HPS

=10%

P
HPS

=30%

P
HPS

=50%

(a)

10 20 30 40 50 60

M/N %

0.6

0.65

0.7

0.75

0.8

0.85

0.9

R
M

S
E

N

(b)

Figure 4.9: Impact of HPS nodes percentage (a) and sample size M (b)
on the RMSE performance. The FP algorithm is used for scheduling.

seen from increasing PHPS. It is also observed that after a certain SNR the RMSE

performance reaches a plateau. This is a result of the sample size M , and can be

mitigated by increasing the value of M at the cost of activating a larger number of

nodes; see Fig. 4.9(b).

4.4.4 Experiment 4

This experiment is an extension of Experiment 3, where it was shown how increasing

the HPS percentage improved the RMSE performance at a lower SNR regime. But

now the question that arises is whether this improvement is worth investing in more

HPS nodes. As expected, Fig. 4.10 reveals that the presence of the HPS nodes

among the sampled nodes increases with PHPS. A larger N
(a)
H value has two major

consequences: (1) a more expensive network to deploy and (2) an energy inefficient

92

10% 30% 50%

P
HPS

0

5

10

15

N
o
d

e
 C

o
u

n
t

N
H

(a)

N
L

(a)

Figure 4.10: Impact of the HPS percentage on the network feasibility. HPS
nodes tend to have a higher cost and power consumption. Increasing PHPS

from 10% to 50% improves RMSE by only ∼ 11%. FP algorithm is used,
SNR = 10 dB, M = 16.

network due to the relatively higher power consumption of HPS nodes. Moving from

PHPS = 10% to PHPS = 50% increases N
(a)
H by over 4-fold compared to an RMSE

improvement of only ∼ 11%. Hence, it would be a good trade-off to use a sample

with a dominance of LPS measurements.

4.4.5 Experiment 5

In practice the HPS nodes tend to be well maintained and have a stable power source.

Hence, it would be reasonable to consider the case where the HPS nodes are always

93

active while the dynamic scheduling is performed strictly over the LPS nodes. Fig-

ure 4.11 compares this scenario with the regular case where the HPS nodes are not

necessarily active. Notice that in the case where the HPS nodes are always active -

HPSactive- the sample size is an average. This is a result of activating the sleeping

HPS nodes after the scheduling is performed. Notice that at low SNR values the

HPSactive case outperforms the dynamic algorithm. This is a result of introducing

a set of HPS nodes to a majority of low-quality, noisy LPS nodes. At higher SNR

values the dynamic scheduling has a better performance due to the availability of

higher-quality, less noisy LPS nodes at better locations. It is also observed that at a

higher PHPS value, the differences between the active and dynamic cases are larger.

This is a result of introducing a larger number of HPS nodes to the optimized sample.

This introduction of nodes after scheduling results in disturbance to the orthogonality

between the samples, hence inducing a larger difference gap. For a fair comparison,

the sample size M as well as K are matched to a good degree between the two cases.

4.5 Conclusion

This work has investigated the introduction of sparse sensing into a hybrid network

consisting of LPS and HPS nodes. The LPS nodes are considered to be wireless and

inexpensive, but noisy. The HPS nodes introduce minimal noise, but are expensive

and have a relatively higher power consumption. As a case study, the PM10 dataset

94

5 10 15 20 25 30

SNR (dB), LPS

0.4

0.6

0.8

1

1.2

1.4

R
M

S
E

N

HPS
active

: M' 32,P
HPS

 =10%

HPS
active

: M' 64,P
HPS

 =30%

HPS
dynamic

: M=32,P
HPS

 =10%

HPS
dynamic

: M=64,P
HPS

 =30%

Figure 4.11: Studying the impact of having all the HPS nodes in the active
state over the RMSE. M ′ indicates an average value. The FP algorithm is
used for scheduling.

was used as a ground-truth to measure the performance of the presented system.

Two major aspects were explored: (1) the impact of using a hybrid network, and

(2) the introduction of dynamic scheduling via a greedy algorithm. The use of LPS

nodes to augment a sparsely distributed HPS network has proven to reduce the RMS

reconstruction error while maintaining a low deployment cost. Moreover, the use of

a greedy algorithm to learn from past measurements to adapt the node scheduling

has offered a comparable RMSE performance and offered a sampling method that is

more resilient to node failure.

95

Chapter 5

Destination Prediction of

Terrain-Aware Mobile Agents Via

Inverse Reinforcement Learning

5.1 Introduction

The ability to predict future target’s destination and trajectory has numerous prac-

tical applications. As we get closer to an era where cars are capable of autonomous

driving, and robots are more present in both industrial and domestic settings, the

need for surrounding awareness becomes more crucial. For instance, an autonomous

97

car is expected to avoid any collisions or hindrance of pedestrians or other vehicles on

the road [74, 75, 76]. Moreover, a robot is expected to predict the future trajectory of

a moving person, and update its own path to avoid any hindrance [77]. In a different

sitting, path prediction could be used in defense applications such as missile tracking

and interception [78], or for improving target tracking in wireless sensor networks[79].

In a scenario of two players, an agent and a learner, the agent is behaving as a planner

trying to solve a decision making problem by searching for the best available action

at a given state, while the learner observes the agent with an attempt to learn the

factors and preferences impacting the agent’s plan. A well known method to model

the planning process of an agent is the Markov decision process (MDP) [80, 81]. The

MDP provides a stochastic framework to optimize for the actions to take at each

state in the planning domain. Hence, the agent is trying to solve an MDP problem

with an unknown action at a given state. On the other hand, the observer is solving

an MDP problem with unknown set of reward effecting the actions taken by the

agent—this problem is referred to as inverse reinforcement learning (IRL) [82, 83].

If the agent fully knows all the factors that affects its planning, then it is assumed

to be perfect planner producing optimized policies —actions taken at a given state—

that maximize the cumulative reward values in an MDP problem. Since in real-life

scenarios this is usually not the case, the uncertainty in an agent plan need to be

accounted for. The concept of maximum entropy applied to the IRL offers a solution

to resolve the ambiguities in the actions demonstrated by the agent [77, 84, 85].

98

Many works in the literature addressed the problem of imitating an agent’s behaviour

for purposes related to path and destination prediction. Based on the concept of IRL

various approaches were presented to imitate an agent’s behaviour [77, 85, 86]. relying

on a real dataset of taxi-cab trips, the authors in [85] developed a method to learn

driver’s route preferences and predict their future path and destination. Similarly, the

IRL was used to predict the future path of a human actor where in this case a robot

was the observer [77]. The robot purpose was to plan a path of its own that would

avoid colliding with the predicted human path. In an attempt optimize the reward

values from observing a vehicle driving on a highway the IRL algorithm was used [86].

The authors did not employ the maximum entropy in the learning process, resulting

in rewards that did not necessarily comply with the agent’s. Other works employed

different strategies other the IRL framework. A probabilistic approach for pedestrian

path prediction is presented in [74]. Rather than using IRL to learn pedestrian

preferences, the authors used a form of supervised learning relying on a ground-truth

trajectory data set. similar to [74], the authors in [75] used the destination as a

hidden variable with a distribution updated using a particle filter, where the intent

of the agent at given time was predicted by solving an MDP problem.

Based on a partially observed trajectory this work considers the problem of destina-

tion prediction for an agent moving in an open terrain. To the best knowledge of the

author, this work is unique form what is seen in related literature in terms of:

99

† The impact of terrain severity is reflected on the agent trajectory, Section 5.3.

† Agents with different capabilities for terrain traversing are considered.

† The severity of the terrain is utilized as features to learn an agent’s behaviour

and preferences.

Table 5.1 provides a list of important notations and acronyms used in this work. The

rest of this chapter is organized as follows. Section 5.2 presents a concise mathematical

background for the IRL problem. A description of the method used to generate the

ground-truth data is found in Section 5.3. The set of experiments and their results

are discussed in Section 5.5. Finally, conclusion and future work are seen in Section

5.6.

5.2 Formalization

Since the agent is assumed to be solving an MDP problem, the following presents

the MDP framework succeeded by that of the IRL to for the purpose of imitation

learning.

100

Table 5.1
Acronyms and Notations

Term Definition Term Definition

s State S Set of all states
R(.) Reward function w Feature weights
a Action A Set of all actions
T Transition function π Policy of an agent
γ discount factor U(s) Utility of being at a state

s
Q(s,a) Utility of action a being

at a state s
ξ Agent trajectory

Ξ Set of all trajectories Ds Expected state visitation
frequency

d Agent’s destination D Set of all destinations
β Control parameter η Terrain influence param-

eter
MDP Markov decision process IRL Inverse reinforcement

learning
ξobserved% Observed percentage of

trajectory
∇Accuracy Maximum change in pre-

diction accuracy

5.2.1 Markov Decision Process

In an MDP problem there are various parameters that govern the plan of an agent.

A given planning space is composed of a set of states describing condition of an agent

(e.g. position, orientation, velocity). For the work presented in this chapter, a state

represent the position of an agent, s = [x, y]. The set of all states are expressed as S.

At each state, there are a set of features describing that state and have the possibility

to influence the agent. For instance, a pedestrian would prefer moving on sidewalks

and avoiding obstacles like vehicles and other pedestrians. Here, the severity of a

terrain is mainly influencing the features in each state fs —details seen in Section

101

5.4. Another parameter is the reward function which describes the utility of being at

a given state. The reward function is expressed as a weighted sum of the features at

a given state [77, 85].

R(s) = wTfs, (5.1)

where w are the wights that expresses the influence of each feature on the value of

R(s). The reward function can take a negative value, thus inflecting a cost on the

agent, or a positive value thereby encouraging being at that state. An agent can

transition from on state to the other by taking an action a, with A representing the

set of all allowable actions. The action considered in this work is the agent’s velocity,

a = [vx, vy]. The transition of an agent from one state s to the next s′ given an

action a is described by the state transition function T . The transition function can

be either deterministic T (s,a) → s′ or stochastic T (s,a, s′) → P (s′|s,a). Mapping

states to actions is referred to as a policy, π. Since we are considering a stochastic

transition function, the policy is also stochastic and gives a distribution over the

actions at a given state. The MDP problem is solved by finding the optimum policy

π∗ which maximizes the agents expected reward as it transitions from one state to

the other. The optimal policy can be found by iterating through Bellman’s equations.

In this work we employ a softened version of the MDP problem to account for the

102

uncertainty and suboptimality of the agent as a planner [77],

π∗ = arg softmax
a

Q∗(s,a), (5.2)

Q∗(s,a) = R(s,a) + γ
∑
s′∈S

T (s,a, s′)U∗(s′), (5.3)

such that U(s) is the utility of being at a given state, and where the reward shows

the immediate value of being at a state, the utility reflects the long term value of

being at that state. Q(s,a) is the utility of taking action a after being at state s.

γ ∈ (0, 1) is the discount factor.

5.2.2 Inverse Reinforcement Learning

In IRL the purpose is to solve an MDP problem where the rewards are unknown

based on a set of observation an agent is demonstrating. For this case, the demon-

strations are in the form of trajectories ξ̃i = [s1, s2, ..., sMi
], ξ̃i ∈ Ξ, where Ξ is the

set of all demonstrated trajectories. The method adopted here is based on maximum

entropy IRL where the entropy of the distribution over the demonstrated trajectories

is maximized [85],

w∗ = arg max
w
L(w) =

∑
ξ̃i∈Ξ

logP (ξ̃i|w, T), (5.4)

≡ w∗ = arg min
w

∆L(w) (5.5)

103

where ∆L(w) is the gradient of the log-likelihood function L(w), and can be expressed

as [85, 87],

∆L(w) = f̃ − f̂w, (5.6)

where f̃ = 1
K

∑
i fξ̃i is the empirical average of the feature counts fξ̃i ,

fξ̃i =
∑
sj∈ξ̃i

fsj .

Moreover, f̂w is the expected average of feature counts [85],

f̂w =
∑
ξ

P (ξ|w, T)fξ ≡
∑
sm∈S

Dsmfsm , (5.7)

where Ds is the expected state visitation frequency. Substituting (5.7) back into

(5.6),

∆L(w) = f̃ −
∑
sm∈S

Dsmfsm (5.8)

The minimization in equation (5.5) was carried using the limited-memory BFGS

(LBFGS) quasi-newton method.

104

5.2.3 Destination Inference

Method 1

The distention inference is based on the maximum entropy approach presented in [77].

Given an observed segment of the agent’s trajectory ξ1:T , the posterior distribution

over the possible destinations can be computed as,

P (d|ξ1:T ,w) =
P (ξ1:T |d,w)P (d|w)

P (ξ1:T |w)
=

eR(ξ1:T)+UT+1:d

eU1:d
P (d|w)∑

d′∈D
d′ 6=d

e
R(ξ1:T)+UT+1:d′

eU1:d′
P (d′|w)

(5.9)

where d ∈ D is the agent’s destination, and D is the set of all possible destina-

tions. The reward of the observed trajectory is basically the sum of its state rewards,

R(ξ1:T) =
∑
s∈ξ1:T R(s). Using the backward pass algorithm, Algorithm 5, the values

of U1:d and UT +1:d can be computed by solving an MDP problem with,

† The weights w learned from solving the IRL problem.

† A destination state utility value of zero, while the other states have a large

negative utility.

105

Algorithm 5 Backward Pass

U ′(s)← −∞
2: U ′(d) = 0

repeat
4: U(d) = U ′

U ′ = softmaxa Q∗(s,a)
6: until max |U − U ′| ≥ ε

return P (at|st, d,w)← eQ
∗(s,a)−U∗(s) (Method 1)

8: P (at|st, d,w)← eβQ
∗(s,a) (Method 2)

Method 2

This method for destination inference is similar to that seen in [88]. The presented

algorithm, Algorithm 6, is based on the simple model where an agent has only

one destination of interest d ∈ D. One main difference from method 1 is the use

of Boltzmann policy to model the distribution of the action taken by the agent,

P (a|s, d,w) ≡ eβQ
∗(s,a). Tweaking the parameter β affects the accuracy of destina-

tion prediction. Given an observed portion of its trajectory, the posterior distribution

of the agent’s destination is expressed as,

P (d|ξ1:T ,w) ∝ P (ξ1:T |d,w)P (d|w), (5.10)

where P (d|w) is the prior distribution of the destination, and P (ξ1:T |d,w) is the

probability of the observed trajectory given the destination d,

P (ξ1:T |d,w) =
T −1∏
t=1

P (st+1|st, d,w). (5.11)

106

The transition probability given a destination d is obtained by marginalizing over the

action taken at state st,

P (st+1|st, d,w) =
∑
at∈A

T (st,at, st+1)P (at|st, d,w). (5.12)

Again, using Algorithm 5 the value of P (at|st, d,w) can be obtained.

Algorithm 6 Destination Prediction

j = 1
2: for each d ∈ D do

P (at|st, d,w)← Backward Pass
4: P (st+1|st, d,w) (Equation (5.12))

P (ξ1:T |d,w) (Equation (5.11))
6: Pd(j) = P (d|ξ1:T ,w) (Equation (5.10))

j = j + 1
8: end for

return d̃ = arg maxdPd

5.3 Ground-Truth Data Generation

In this work, the scenario of interest is that of an agent moving in an Nx × Ny

open field and its trajectory is impacted by the severity of the terrain. The terrain

severity is represented by the steepness of a given point in the field, which can be

computed by evaluating the gradient magnitude at that point. The method presented

in this section is based on a relaxed A-star algorithm, where the terrain severity is

incorporated along side distance in the cost function f(s) = h(s)+g(s). The proposed

107

heuristic function is expressed as follows,

h(s) = D(s) + η G(s), (5.13)

where D(s) is the euclidean distance from state s to the destination, and G(s) is

the average severity value on a line connecting point s to the destination. η ∈

[0, 1] is control parameter managing the influence of terrain severity on the generated

trajectory. The other part of the cost function f(s) is the g-score g(s) and it measures

the actual cost from the start point to the current point s.

g(st) = g(st−1) +Dst−1→st + η G(st), (5.14)

where Dst−1→st is the distance between st−1 and st. G(s) is the gradient magnitude at

point n. An optimal trajectory in this scenario would be the shortest with the lowest

terrain severity. It is clear that relaxing the admissibility condition —by introducing

the severity factor to h(s)— does not grantee an optimal trajectory. Having said

that, the acquired trajectories offered a satisfactory compromise between distance and

terrain severity, which was sufficient for the intended purposes in this work, Fig. 5.1.

It is also seen how the average severity changes between trajectories generated with

different η values, Fig. 5.1(d). Through varying the value of η the generated ground-

truth trajectories represent agents with various abilities for traversing the terrain;

η = 0 is the most capable agent, and η = 1 is the least.

108

0 10 20 30
0

5

10

15

20

25

30
Root

Distenation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
e
v
e
r
it

y

(a) η = 0

0 10 20 30
0

5

10

15

20

25

30
Root

Distenation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
e
v
e
r
it

y

(b) η = 0.5

0 10 20 30
0

5

10

15

20

25

30
Root

Distenation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
e
v
e
r
it

y

(c) η = 1

 = 0 = 0.5 = 1

0.15

0.2

0.25

0.3

0.35

S
e
v
e
r
it

y
 (

A
v
g
.)

(d) Trajectory Statistics

Figure 5.1: Impact of the severity control constant η on the generated
trajectory. The higher eta is, the more sensitive the algorithm is to terrain
severity.

5.4 Feature Generation

The features are based on the minimum distance from a set of per-defined objects in

the terrain. Objects are characterized by their normalized severity valueG′(s) ∈ [0, 1].

From the trajectory statistics, Fig. 5.1(d), it is seen that on average a trajectory

109

Figure 5.2: Feature set at state s

severity value G′(ξ) lies between 0.15 and 0.35. Hence, the objects are categorized

into five types as follows,

† Type 1: 0 ≤ G′(ξ) < 0.10

† Type 2: 0.10 ≤ G′(ξ) < 0.20

† Type 3: 0.20 ≤ G′(ξ) < 0.30

† Type 4: 0.30 ≤ G′(ξ) < 0.40

† Type 5: G′(ξ) ≥ 0.40

This work considers a discretized version of the minimum distance to each object

type, with L levels for each type and a total of 5L features per state. Figure 5.2

describes the structure of the feature set for a given state s, where f
(l,i)
s is expressed

as,

f (l,i)
s =


1, D

(i)
min(s) < l

0, otherwise,

(5.15)

where D
(i)
min(s) is the minimum distance between state s and an object of type i.

110

0 5 10 15 20 25 30
0

5

10

15

20

25

30
Distenation

Root

Figure 5.3: Trajectory arrangement for result generation.

5.5 Simulations and Results

Simulations are based on a single randomly generated terrain, hence the results are

preliminary and require further iteration are needed. Agents’ trajectories are gener-

ated such that the starting point is close to the center of the terrain and the destination

is one of four goals placed near the corners of the field Fig. 5.3. The trajectory dataset

was divided into 70% for training (solving the IRL problem), and the rest are used for

testing the prediction accuracy. The accuracy of destination prediction is evaluated

as the percentage of correct predictions to the total number of test samples. Table

5.2 gives a short description of the experiments held in this section.

111

Table 5.2
Experiments Description

Description
Experiment 1 Study the relationship between the length of the observed

portion of the trajectory on the accuracy of prediction.
Compare between methods 1 and 2.

Experiment 2 Investigate the terrain impact on the prediction perfor-
mance.

Experiment 3 Explore the possible gain due to the use of a policy model
that is a hybrid between methods 1 and 2.

Experiment 1

In this experiment the performance of both methods 1 and 2 are compared in terms

of prediction accuracy. The comparison is held for varying length of the observed

portion of the trajectory, Fig. 5.4. According to expectations, as the trajectory ob-

served percentage ξobserved% increases, the prediction accuracy improves. The result

presented here are for the case where η = 0, meaning that the agent is very capable

of traversing the terrain without hindrance. In the next experiment, we extend the

results to include less capable agents.

Experiment 2

The relationship between an agent’s capability of traversing a terrain and the accuracy

of prediction is investigated. preliminary simulation did not reveal a direct trend

112

30 40 50 60 70 80 90

observed
 %

20

40

60

80

100

A
c
c
u

r
a

c
y

 %

Method 1

Method 2

Figure 5.4: Influence of the trajectory’s observed portion (as a percentage)
over the destination prediction accuracy. Methods 1 and 2 are compared.
η = 0, β = 0.3.

between η and the prediction accuracy, however it was observed that as the value

of η increases, the change in accuracy becomes smaller, Fig. 5.5. The change of

accuracy ∇Accuracy% is evaluated as the maximum change of accuracy between any

two consecutive values of ξobserved%. A higher value of η represents a less capable

agent, where its trajectory would have more maneuvers around severe terrain parts.

One possible explanation is that at higher values of η more parts of the terrain

are conceived as an obstacle for the agent, and hence the possible variation in its

future trajectory is limited. Therefore, the low value of ∇Accuracy% shows that

early predictions of an agent’s destination are very close to those at higher values of

ξobserved%.

113

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70
A

c
c
u

r
a
c
y

Fitted curve

Accuracy

(a) Method 1

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

A
c
c
u

r
a
c
y

Fitted curve

Accuracy

(b) Method 2

Figure 5.5: Influence of agent’s sensitivity to terrain on the maximum
change in prediction accuracy. β = 0.3.

Experiment 3

This experiment introduces a modified model for the learned policy P (at|st, d,w)

that was mentioned in Algorithm 5. The new policy model for both methods now

takes the following format,

P (at|st, d,w) = eβ(Q∗(s,a)−U∗(s)) (5.16)

This policy model is related to the energy-based policy model that optimally solves a

maximum entropy reinforcement learning problem, [89]. This policy model was only

utilized in the prediction phase and not the IRL. Figure 5.6 reveals the impact the

use of the new model has on the prediction accuracy. Except for the case of the new

114

Im
p

r
o
v
e
m

e
n

t
%

(a)

Im
p

r
o
v
e
m

e
n

t
%

(b)

Figure 5.6: The influence the new policy model on the prediction accuracy.
Y-axis represents the average accuracy improvement based on ξobserved% =
30% → 90%. M̂1 and M̂2 represent methods 1 and 2 with the new policy
model. β = 0.3.

method 1 (as compared to the original), the new policy model offered an improvement

on the prediction accuracy. Note that, opposite to what was seen in experiment 1,

the second method outperforms first method.

5.6 Conclusion and Future Work

This work discussed the subject of destination predication for an agent moving in a

field with varying terrain harshness. The main question under investigation was the

impact a terrain has over the prediction accuracy. Two methods were presented and

compared in terms of the achieved prediction accuracy. Initial simulations showed the

preferable performance of the first method, but that rapidly changed as a new policy

115

model was introduced to the second method. Simulations also showed that, for both

methods, the prediction accuracy does not improve as much with ξobserved for agents

with less capability of traversing harsh terrains. Future work would investigate the

use of path and destination prediction to improve target and field coverage in wireless

sensor networks.

116

Chapter 6

Conclusion an Future Work

This work has addressed two of the major challenges encountered in wireless sensor

networks, namely, the coverage problem, and the limited power and sensing resources.

The coverage problem arises from a poor spatial allocation of the sensor nodes. This

is an effect caused by the random deployment of the network forced by the hostility

of the environment of interest. On the other hand, a poor resource management

system can cause a depletion of power resources and an imprecise monitoring of the

phenomena of interest.

The coverage problem was mainly dealt with by relocating the sensor nodes with

the goal of achieving a more accurate depiction of the surrounding environment and

the event under scrutiny. In Chapter 2, the main interest was the maximization of

117

the coverage percentage in the field which the network is deployed. Other objectives

were also incorporated into the optimization problem to reduce the mobility cost

and maintain the connectivity of the network. Due to the NP-completeness of the

multi-objective relocation problem, a set evolutionary computation algorithms were

considered. While the particle swarm optimization offered a decent coverage per-

centage at a low computation cost, the artificial immune system algorithm generally

offered the best coverage rate. Another form of relocation was considered in Chapter

3 with the purpose of achieving a better tracking accuracy of mobile targets. The

relocation was based on analyzing the spatial mobility trend of the targets of interest,

and utilizing that to establish a region of interest to carryout the relocation. Multiple

criteria were used to optimize the relocation positions inside the ROI. Simulations

revealed that the K-coverage criterion offered the best overall performance. However,

the simple method of relocating to a uniformly distributed random locations, offered

a good compromise between tracking accuracy and computational complexity. In

Chapter 5, the accuracy of destination prediction was investigated for targets mov-

ing in a terrain with varying levels of severity. targets with different capabilities for

traversing a terrain were considered, with the intention of studying the terrain impact

on destination prediction. Two methods were presented to infer a target’s destination

based on an observed portion of the trajectory. As anticipated, simulations showed an

improvement in prediction accuracy as more portions of the trajectory are observed.

118

This improvement was not as obvious in targets with a lower terrain traversing ca-

pability. Also, the introduction of an energy-based policy model displayed a clear

improvement on the prediction accuracy.

The utilization of sparse sensing for sensor measurement scheduling was presented in

Chapter 4. Sparse sensing gives the ability to activate a small set of the available nodes

while maintaining enough information to reconstruct the data of the other inactive

sensors. This provides the possibility of extending the life-time of the network. Two

greedy algorithms along side a simple spatial uniform method were explored to provide

the measurement schedule. The frame potential greedy algorithm offered the best

balance between reconstruction accuracy and resilience against node failure.

As an extension to the work presented in this dissertation, the following challenges

are of interest:

† The use of inverse reinforcement learning for target path prediction with the

following goals.

– Improve the field coverage where targets are expected to be in the future.

– Enhanced target pursuit and interception capabilities.

– Study the atmospheric effects on path prediction for airborne targets.

† Incorporating the node residual power along side the information content, to

optimize the measurement scheduling. This has the potential of avoiding the

119

depletion of power resources of nodes that tend to attain higher information

content– especially for events of a stationary nature.

120

References

[1] H. I. Sweidan and T. C. Havens, Coverage optimization in a terrain-aware wire-

less sensor network, 2016 IEEE Congress on Evolutionary Computation (CEC),

Vancouver, BC, 2016, pp. 3687-3694.

[2] Abo-Zahhad M., Ahmed S.M., Sabor N., and Sasaki, S., Utilization of multi-

objective immune deployment algorithm for coverage area maximization with limit

mobility in wireless sensors networks, in Wireless Sensor Systems, IET, vol.5,

no.5, pp.250-261, Oct. 2015.

[3] Yourim Yoon, and Yong-Hyuk Kim, An Efficient Genetic Algorithm for Maxi-

mum Coverage Deployment in Wireless Sensor Networks, in Cybernetics, IEEE

Transactions on , vol.43, no.5, pp.1473-1483, Oct. 2013.

[4] Aziz N.A.B.A., Mohemmed A.W., and Alias M.Y., A wireless sensor network

coverage optimization algorithm based on particle swarm optimization and Voronoi

121

diagram, in Networking, Sensing and Control, 2009. ICNSC ’09. International

Conference on , pp.602-607, 26-29 March 2009.

[5] Aziz N.A.A., Mohemmed A.W., Alias M.Y., Aziz, K.A., and Syahali S., Coverage

Maximization and Energy Conservation for Mobile Wireless Sensor Networks: A

Two Phase Particle Swarm Optimization Algorithm, in Bio-Inspired Computing:

Theories and Applications (BIC-TA), 2011 Sixth International Conference on ,

pp.64-69, 27-29 Sept. 2011.

[6] Pradhan P.M., Baghel V., Panda G., and Bernard M., Energy Efficient Layout for

a Wireless Sensor Network using Multi-Objective Particle Swarm Optimization, in

Advance Computing Conference, 2009. IACC 2009. IEEE International , pp.65-70,

6-7 March 2009.

[7] Cheng T.M., and Savkin A.V., A distributed self-deployment algorithm for the

coverage of mobile wireless sensor networks, in Communications Letters, IEEE ,

vol.13, no.11, pp.877-879, Nov. 2009.

[8] O. Banimelhem, M. Mowafi and W. Aljoby, ”Genetic Algorithm Based Node

Deployment in Hybrid Wireless Sensor Networks,” Communications and Network,

pp. 273-279, vol. 5, no. 4, Nov. 2013.

[9] Zhuofan Liao, Jianxin Wang, Shigeng Zhang, Jiannong Cao, and Geyong Min,

Minimizing Movement for Target Coverage and Network Connectivity in Mobile

122

Sensor Networks, in Parallel and Distributed Systems, IEEE Transactions on ,

vol.26, no.7, pp.1971-1983, July 2015.

[10] Qun Zhao, and Gurusamy M., Lifetime Maximization for Connected Target Cov-

erage in Wireless Sensor Networks, in Networking, IEEE/ACM Transactions on

, vol.16, no.6, pp.1378-1391, Dec. 2008.

[11] Ramos H.S., Boukerche A., Pazzi R.W., Frery A.C., and Loureiro A.A.F., Coop-

erative target tracking in vehicular sensor networks, in Wireless Communications,

IEEE , vol.19, no.5, pp.66-73, Oct. 2012.

[12] Baumgartner K., and Ferrari S., A Geometric Transversal Approach to Analyzing

Track Coverage in Sensor Networks, in Computers, IEEE Transactions on , vol.57,

no.8, pp.1113-1128, Aug. 2008.

[13] B. Wang, Coverage Problems in Sensor Networks: A Survey, ACM Computing

Surveys, vol. 43, no. 32, Oct 2011.

[14] M. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, San Francisco, CA, USA: Freeman, 1979.

[15] Topcuoglu H.R., Ermis M., Sifyan M., Positioning and Utilizing Sensors on a

3-D Terrain Part ITheory and Modeling, in Systems, Man, and Cybernetics, Part

C: Applications and Reviews, IEEE Transactions on , vol.41, no.3, pp.376-382,

May 2011.

123

[16] Topcuoglu H.R., Ermis M., Sifyan M., Positioning and Utilizing Sensors on a

3-D Terrain Part IISolving With a Hybrid Evolutionary Algorithm, in Systems,

Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on

, vol.41, no.4, pp.470-480, July 2011.

[17] Temel S., Unaldi N., Kaynak O., On Deployment of Wireless Sensors on 3-

D Terrains to Maximize Sensing Coverage by Utilizing Cat Swarm Optimization

With Wavelet Transform, in Systems, Man, and Cybernetics: Systems, IEEE

Transactions on , vol.44, no.1, pp.111-120, Jan. 2014.

[18] Zou Y., Krishnendu Chakrabarty, Sensor deployment and target localization

based on virtual forces, in INFOCOM 2003. Twenty-Second Annual Joint Confer-

ence of the IEEE Computer and Communications. IEEE Societies , vol.2, pp.1293-

1303, March 30 2003-April 3 2003.

[19] Abo-Zahhad M., Ahmed S., Sabor N., et al., The convergence speed of single-and

multi-objective immune algorithm based optimization problems, Signal Process.,

Int. J., vol.4, no.5, pp.247266, 2010.

[20] L. J. Eshelman and J. D. Schaffer, Real-coded genetic algorithms and interval-

schemata, in Proc. 2nd Workshop Found. Genet. Algorithms, pp. 187202, 1993.

[21] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proc. IEEE Int.

Conf. Neural Netw., Apr. 1995, pp. 19421948.

124

[22] Yuhui Shi and Eberhart, R.C., Empirical study of particle swarm optimization,

in Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress

on , vol.3, pp.1950, 1999.

[23] Tan, R., Xing, G., Liu, B., Wang, J. and Jia, X., Exploiting Data Fusion to

Improve the Coverage of Wireless Sensor Networks, in IEEE/ACM Transactions

on Networking, vol.20, no.2, pp. 450-462, April 2012.

[24] Wang, G., Cao, G., Berman, P. and La Porta, T. F., Bidding Protocols for

Deploying Mobile Sensors, in IEEE Transactions on Mobile Computing, vol.6,

no.5, pp. 563-576, May 2007.

[25] Kong, L. et al., Surface Coverage in Sensor Networks, in IEEE Transactions on

Parallel and Distributed Systems, vol.25, no.1, pp. 234-243, Jan. 2014.

[26] Li, J. S. and Kao, H. C., Distributed K-coverage self-location estimation scheme

based on Voronoi diagram, in IET Communications, vol.4, no.2, pp. 167-177,

January 22 2010.

[27] A. N. Njoya et al., Efficient scalable sensor node placement algorithm for fixed

target coverage applications of wireless sensor networks, in IET Wireless Sensor

Systems, vol.7, no.2, pp. 44-54, April 2017.

[28] Garetto M., Gribaudo M., Chiasserini CF. et al., Sensor deployment and relo-

cation: A unified scheme, JOURNAL OF COMPUTER SCIENCE AND TECH-

NOLOGY, vol.23, no.3, pp. 400412, May 2008.

125

[29] Liao Z., Wang, J., Zhang, S., Cao, J. and Min, G., Minimizing Movement for

Target Coverage and Network Connectivity in Mobile Sensor Networks, in IEEE

Transactions on Parallel and Distributed Systems, vol.26, no.7, pp. 1971-1983,

July 1 2015.

[30] Guo, Z., Zhou, M. and Jiang, G., Adaptive Sensor Placement and Boundary

Estimation for Monitoring Mass Objects, in IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol.38, no.1, pp. 222-232, Feb. 2008.

[31] Nojeong Heo and P. K. Varshney, Energy-efficient deployment of Intelligent Mo-

bile sensor networks, in IEEE Transactions on Systems, Man, and Cybernetics -

Part A: Systems and Humans, vol.35, no.1, pp. 78-92, Jan. 2005.

[32] Olfati-Saber, R. Distributed Tracking for Mobile Sensor Networks with

Information-Driven Mobility, 2007 American Control Conference, New York, NY,

2007, pp. 4606-4612.

[33] Nguyen, H. T., Ji, Q. and Smeulders, A. W. M., Spatio-Temporal Context for Ro-

bust Multitarget Tracking, in IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol.29, no.1, pp. 52-64, Jan. 2007.

[34] Maggio, E. and Cavallaro, A., Learning Scene Context for Multiple Object Track-

ing, in IEEE Transactions on Image Processing, vol.18, no.8, pp. 1873-1884, Aug.

2009.

126

[35] Kaplan, L. M., Global node selection for localization in a distributed sensor net-

work, in IEEE Transactions on Aerospace and Electronic Systems, vol.42, no.1,

pp. 113-135, Jan. 2006.

[36] Zoghi, M. and Kahaei, M. H., Adaptive sensor selection in wireless sensor net-

works for target tracking, in IET Signal Processing, vol.4, no.5, pp. 530-536, Oct.

2010.

[37] MUTAMBARA, A.G.O., Decentralized estimation and control for multisensor

systems, CRC, Boca Raton, FL, 1998.

[38] Yarlagadda, R., Ali, I., Al-Dhahir, N. and Hershey, J., GPS GDOP Metric, IEE

Proc.-Radar, Sonar Navig., vol.147, no.5, Oct. 2000.

[39] Mao, Yingchi and Yin, Ting, Sensor Deployment for Mobile Object Tracking

in Wireless Sensor Networks, Advances in Computer Science, Engineering and

Applications. Springer Berlin Heidelberg. pp. 637-646. 2012.

[40] Shin S, Park S, Kim Y, Matson ET, Design and Analysis of Cost-Efficient Sensor

Deployment for Tracking Small UAS with Agent-Based Modeling, Sensors (Basel).

vol.16, no.4. April 2016.

[41] Domingo-Perez F., Lazaro-Galilea J. L., Bravo I., Martin-Gorostiza E., Salido-

Monzu D., Sensor deployment for motion trajectory tracking with a genetic al-

gorithm, Industrial Technology (ICIT), 2015 IEEE International Conference on.

March 2015.

127

[42] Rani, S., Ahmed, S. H. Multi-hop Routing in Wireless Sensor Networks, An

Overview, Taxonomy, and Research Challenges, (SpringerBriefs in Electrical and

Computer Engineering, Springer Singapore, 2016).

[43] Kadar, I., Optimum geometry selection for sensor fusion, In Proceedings of SPIE,

3374, pp. 96107. Apr. 1998.

[44] Levanon, N., Lowest GDOP in 2-D Scenarios, lEE Proc. Radar, Sonar Navig.

vol.147, no.3, pp. 149-155, June 2000.

[45] Foderaro, G., Ferrari, S., and Zavlanos, M., A Decentralized Kernel Density

Estimation Approach to Distributed Robot Path Planning, 2012.

[46] Sheather, S. J., Density Estimation, Statist. Sci. vol.19, no.4, 2004, pp. 588-597.

http://projecteuclid.org/euclid.ss/1113832723

[47] Paul Bourke, Calculating The Area And Centroid Of A Polygon, July 1988.

[48] Vikas C. Raykar, Ramani Duraiswami and Linda H. Zhao, Fast Computation

of Kernel Estimators, Journal of Computational and Graphical Statistics, vol.19,

no.1, pp. 205-220, March 2010.

[49] A. B. Noel, A. Abdaoui, T. Elfouly, M. H. Ahmed, A. Badawy and M. S. Shehata,

Structural Health Monitoring Using Wireless Sensor Networks: A Comprehensive

Survey, in IEEE Communications Surveys and Tutorials, vol. 19, no. 3, pp. 1403-

1423, third quarter 2017.

128

[50] M. A. Nasirudin, U. N. Za’bah and O. Sidek, Fresh water real-time monitoring

system based on Wireless Sensor Network and GSM, 2011 IEEE Conference on

Open Systems, Langkawi, 2011, pp. 354-357.

[51] S. Bhattacharjee, P. Roy, S. Ghosh, S. Misra, M. S. Obaidat, Wireless sen-

sor network-based fire detection, alarming, monitoring and prevention system for

Bord-and-Pillar coal mines, Journal of Systems and Software, vol. 85, issue 3,

2012, pp. 571-581.

[52] Jennifer Yick, Biswanath Mukherjee and Dipak Ghosal, Wireless sensor network

survey, Computer Networks, vol. 52, Issue 12, pp. 2292-2330, 2008.

[53] N. A. Pantazis, S. A. Nikolidakis and D. D. Vergados, Energy-Efficient Rout-

ing Protocols in Wireless Sensor Networks: A Survey, in IEEE Communications

Surveys and Tutorials, vol. 15, no. 2, pp. 551-591, Second Quarter 2013.

[54] A. Wang and A. Chandrakasan, Energy-efficient DSPs for wireless sensor net-

works, in IEEE Signal Processing Magazine, vol. 19, no. 4, pp. 68-78, Jul 2002.

[55] Candes E., Compressive sampling, in Proc. Int. Congr. Math., Invited Lectures,

pp. 1433-1452, 2006.

[56] Candes E. J., Eldar Y., Needell D. and Randall P., Compressed sensing with co-

herent and redundant dictionaries, Applied and Computational Harmonic Analy-

sis, vol. 31, no. 1, pp. 59-73, May 2010.

129

[57] Candes E., Romberg J., and Tao T., Stable signal recovery from incomplete and

inaccurate measurements, Commun. Pure Appl. Math., vol. 59, no. 8, pp. 1207-

1223, Aug. 2006.

[58] Nocedal J. and Wright S., Numerical Optimization, Springer-Verlag, 1999.

[59] Mallat S. and Zhang Z., Matching pursuits with time-frequency dictionaries,

IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3397-3415, Dec. 1993.

[60] Blumensath T. and Davies M., Iterative hard thresholding for compressive sens-

ing, Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 265-274, 2009.

[61] Zichong Chen, Ranieri J., Runwei Zhang and Vetterli M., DASS: Distributed

Adaptive Sparse Sensing, Wireless Communications, IEEE Transactions on, vol.

14, no. 5, pp. 2571-2583, May 2015.

[62] Candes E. J. and Wakin M. B., An introduction to compressive sampling, IEEE

Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008.

[63] EPA Victoria, Hourly PM10 air monitoring data for 2014. [Online]. Available:

http://www.epa.vic.gov.au/. Retrieved 24 February 2015.

[64] S. Rajasegarar, T. C. Havens, S. Karunasekera, C. Leckie, J. Bezdek, M. Jam-

riska, A. Gunatilaka, A. Skvortsov and M. Palaniswami, High-Resolution Moni-

toring of Atmospheric Pollutants Using a System of Low-Cost Sensors, Geoscience

130

and Remote Sensing, IEEE Transactions on, vol. 52, no. 7, pp. 3823-3832, July

2014.

[65] Matheron, Georges, Principles of geostatistics, Economic Geology. vol. 58, no. 8,

pp 12461266, 1963.

[66] Ford, David, The Empirical Variogram. [Online]. Available: fac-

ulty.washington.edu/edford. Retrieved 8 March 2018.

[67] G. Quer, R. Masiero, G. Pillonetto, M. Rossi, and M. Zorzi, Sensing, compres-

sion, and recovery for wsns: Sparse signal modeling and monitoring framework,

IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 34473461, Oct. 2012

[68] Das A. and Kempe D., Algorithms for subset selection in linear regression, in

Proc. ACM STOC, pp. 45-54, Jul. 2009.

[69] Davis G., Mallat S., and Avellaneda M., Adaptive greedy approximations, Con-

structive Approx., vol. 13, no. 1, pp. 57-98, 1997.

[70] Ranieri J., Chebira A., and Vetterli M., Near-optimal sensor placement for linear

inverse problems, IEEE Trans. Signal Process., vol. 62, no. 5, pp. 1135-1146, Mar.

2014.

[71] Casazza P. G., Fickus M., Kovacevic J., Leon M., and Tremain J., A physical

interpretation of tight frames, in Harmonic Analysis and Applications. New York,

NY, USA: Springer-Verlag, pp. 51-76, 2006.

131

[72] J. Ranieri, A. Vincenzi, A. Chebira, et al., EigenMaps: Algorithms for opti-

mal thermal maps extraction and sensor placement on multicore processors, DAC

Design Automation Conference 2012, San Francisco, CA, 2012, pp. 636-641.

[73] The Audiovisual Communications Laboratory.[Online]. Available:

http://rr.epfl.ch/paper/CRZ2015.

[74] E. Rehder and H. Kloeden, Goal-Directed Pedestrian Prediction, 2015 IEEE In-

ternational Conference on Computer Vision Workshop (ICCVW), Santiago, 2015,

pp. 139-147.

[75] V. Karasev, A. Ayvaci, B. Heisele and S. Soatto, Intent-aware long-term predic-

tion of pedestrian motion, 2016 IEEE International Conference on Robotics and

Automation (ICRA), Stockholm, 2016, pp. 2543-2549.

[76] J. Ji, A. Khajepour, W. W. Melek and Y. Huang, Path Planning and Tracking

for Vehicle Collision Avoidance Based on Model Predictive Control With Multi-

constraints, in IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp.

952-964, Feb. 2017.

[77] Brian D. Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, Kevin

Peterson, J. Andrew Bagnell, Martial Hebert, Anind K. Dey, and Siddhartha

Srinivasa. Planning-based prediction for pedestrians, In Proceedings of the 2009

IEEE/RSJ international conference on Intelligent robots and systems (IROS’09).

pp. 3931-3936. 2009.

132

[78] P. V. Hahn, R. A. Frederick and N. Slegers, Predictive Guidance of a Projectile

for Hit-to-Kill Interception, in IEEE Transactions on Control Systems Technology,

vol. 17, no. 4, pp. 745-755, July 2009.

[79] H. I. Sweidan and T. C. Havens, Sensor relocation for improved target tracking,

IET Wireless Sensor Systems, 2018.

[80] Richard Bellman, A Markovian Decision Process, Indiana Univ. Math. J., vol. 6

no. 4, pp. 679684. 1957.

[81] Howard, Ronald A., Dynamic Programming and Markov Processes, The M.I.T.

Press. 1960.

[82] Russell, S., Learning agents for uncertain environments (extended abstract), Pro-

ceedings of the Eleventh Annual Conference on Computational Learning Theory.

ACM press. 1998.

[83] Ng, A. Y., and Russell, S. J., Algorithms for inverse reinforcement learning, In

Proceedings of the Seventeenth International Conference on Machine Learning.

pp. 663-670. June 2000.

[84] B. D. Ziebart, Modeling purposeful adaptive behavior with the principle of maxi-

mum causal entropy, PhD thesis, 2010.

[85] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey, Maxi-

mum entropy inverse reinforcement learning, In Proceedings of the 23rd national

133

conference on Artificial intelligence (AAAI’08), Anthony Cohn (Ed.), vol. 3. pp.

1433-1438. 2008.

[86] Pieter Abbeel and Andrew Y. Ng., Apprenticeship learning via inverse rein-

forcement learning, In Proceedings of the twenty-first international conference on

Machine learning (ICML ’04). ACM, New York, NY, USA.

[87] Kris. M. Kitani, Brian. D. Ziebart, James A. Bagnell, and Martial Hebert, Ac-

tivity Forecasting, Computer Vision, ECCV 2012. Springer Berlin Heidelberg. pp.

201-214. 2012.

[88] CL Baker, JB Tenenbaum, RR Saxe, Goal inference as inverse planning, Pro-

ceedings of the Annual Meeting of the Cognitive Science Society (29). 2007.

[89] T. Haarnoja, H. Tang, P. Abbeel, S. Levine, Reinforcement Learning with Deep

Energy-Based Policies, ICML 2017.

134

Appendix A

Let us rewrite Jf at (3.11) as

Jf = J

 V U

UT D

 ,

such that V = [Jp]1:2,1:2 + J, U = [Jp]1:2,3:4 and D = [Jp]3:4,3:4. Taking the inverse of

Jf ,

J−1
f =


(
V −UD−1UT

)−1 −UV−1
(
D−UV−1UT

)−1

−D−1UT
(
V −UD−1UT

)−1 (
D−UV−1UT

)−1

 . (A.1)

Thus, the MS position error at (3.12) can be expressed as

ρ(Sa) = tr{
(
V −UD−1UT

)−1},

135

which can be expanded as

ρ(Sa) =
tr{V −UD−1UT}

det{V −UD−1UT}
. (A.2)

Now, let us reformulate V −UD−1UT ,

V −UD−1UT =J + [Jp]1:2,1:2−

− [Jp]1:2,3:4[Jp]
−1
3:4,3:4[Jp]

T
1:2,3:4

=J + J̃p. (A.3)

Applying (A.3) to (A.2) results in

tr{J + J̃p} = tr{J}+ tr{J̃p}

det{J + J̃p} = det{J}+ det{Jp}

+ [J]1,1[J̃p]2,2 + [J]2,2[J̃p]1,1 − 2[J]1,2[J̃p]2,1,

which gives the expression at (3.13).

136

Appendix B

The uncertainty in the first phase comes from two sources: 1) state estimation error,

and 2) measurement error, refer to equations (3.6) and (3.8). The KDE in the second

phase is affected by position estimation uncertainty found in the state covarience

matrix P . The KDE is expressed as,

p(X, ν) =
1

nν

n∑
i=1

K

(
X−Xi

ν

)
, (B.1)

In our work the Gaussian radial basis function is chosen as the kernel K(.). Hence,

equation (B.1) is a sum of non-linear functions Ki(X) = K
(

X−Xi

ν

)
, the resulting

uncertainty can be represented as,

Σp = JΣXJT , (B.2)

137

where J is the Jacobian matrix of p(X, ν). Also, X = [X1,X2, ...,Xn]. The uncer-

tainty matrix ΣX is expressed as,

ΣX =



ΣX1 ΣX1X2 ... ΣX1Xn

ΣX2X1 ΣX2 ... ΣX2Xn

...
...

. . .
...

ΣXnX1 ΣXnX2 ... ΣXn


(B.3)

where ΣXi = [P (i)]1:2,1:2 is the variance in the i’th estimated location, and ΣXiXj =

cov(Xi,Xj). In the case of Xi’s are independent from each other, ΣX reduces to a

diagonal matrix. The third phase is affected by the uncertainty from the previous

phases through the evaluation of the region of interest, which is the contour/boundary

of p(X, ν). Hence, the uncertainty is directly related to the one seen in equation (B.2).

138

Appendix C

This appendix presents a time complexity analysis of the proposed algorithm. It

is important to notice that the second and third phases of the proposed system are

mainly concerned about the relocation of the nodes. The relocation processes is based

on a well established mobility trend, which is the result of tracking targets for a span

of time using the initial deployment. Since this process does not occur frequently, its

computational complexity is not critical for an online system operation. Hence, the

dominant operation would lie in the target tracking (phase I). Having said that, the

following presents in some detail the time complexity analysis for the three phases.

C.1 Tracking (Phase I)

The tracking algorithm has two procedures, one is for selecting the nodes responsi-

ble for estimating the target state (GNS algorithm), while the other performs the

139

estimation (DEIF algorithm). Let’s start with later.

C.1.1 Complexity Analysis (DEIF)

The following is an evaluation of algorithm 7 time complexity at a given sensing node,

Algorithm 7 DEIF

procedure Prediction
2: s̄k = Gŝk−1

P̄k = GPk−1G
T + σ2

uBBT

4: end procedure
procedure Correction

6: ŝk = Pk

(
P̄−1
k s̄k +

∑
j∈Sa η

(j)
k

)
Pk = inv

(
P̄−1
k +

∑
j∈Sa Ω

(j)
k

)
8: end procedure

return ŝk,Pk

† Line 2: G is a n× n matrix and ŝk−1 is a n× 1 vector. For one multiplication

operation the time complexity is O(n2). Here n is the length of the state vector.

† Line 3: Pk−1 is a n×nmatrix, andB is a n×mmatrix, such thatm is the number

of measurements. For the first term in the summation there is one transpose

operation with O(n2), and two matrix multiplications each with O(n3), hence

O(n2 +2n3). The second term has two multiplications and one transpose, hence

O(n2 + mn2 + mn). The summation accounts for O(n2). Therefore the total

complexity is O(2n3 + 3n2 +mn2 +mn).

† Line 6: The first term in the parentheses gives O(n3 +n2). The second term has

140

a complexity of O(ln), where l = |Sa| is the number of active nodes. Adding

the two terms requires O(n). For the outer multiplication O(n2). Hence the

complexity here is O(n3 + 2n2 + ln+ n).

† Line 7: The inverse of P̄k has been already computed in line 6. The complexity

of the operation inside the parentheses is O(ln2 + n2), where Ω
(j)
k is a n × n

matrix. The outer inverse operation requires O(n3). The complexity in this line

is O(n3 + ln2 + n2).

Since the DEIF algorithm is recursive, the complexity of a single run represents the

algorithm complexity. From the previous analysis the total complexity is O(4n3 +

7n2 +mn2 + ln2 + ln+mn+ n) which simplifies to O(n3 + ln2 +mn2). In our work

m < n, hence the complexity further simplifies to O(n3 + ln2).

C.1.2 Complexity Analysis (GNS)

The algorithm for node selection is based on the work presented in [35], where similar

to our work the GNS algorithm was paired with a DEIF for target tracking. Even

though that work has not provided a time complexity analysis of the GNS algorithm,

it did perform an experiment using a real dataset for a targets moving at an average

speed of 20 m/s. Based on our work, Table C.1 shows the time taken for a single

run of the tracking algorithm, which includes performing node selection via the GNS

141

Table C.1
Execution Time of a Single Run of the Tracking Algorithm

RGNS Avg. |Sa| Avg. Execution Time (sec.)

10 0.7 0.001
15 1.3 0.0013
20 1.9 0.0017
25 2.4 0.0023
30 2.8 0.0032

algorithm and target location estimation via the DEIF algorithm. For RGNS = 30,

around 3ms is required, so for a target moving at a 20 m/s it would only have moved

6cm, which would be fairly reasonable for online tracking.

C.2 KDE (Phase II)

In this phase, a density function is fitted to a data-set of estimated target locations

using the KDE with the purpose of establishing the region of interest. Depending

on the algorithm used for computing the KDE, its complexity can range from a

quadratic O(`κ) evaluations of the kernel function K(.), to a linear O(`+κ) number of

evaluations, where ` is the number of sample points and κ is the number of evaluation

points [48]. In our work we used the ”ksdensity” Matlab function, for which there is

no indication of using an algorithm that would enhance its computational complexity.

Hence, we assume the worst case scenario of a direct implementation of the KDE with

O(`κ) evaluations.

142

C.3 Relocation (Phase III)

Here, the relocation is done by finding a set of new sensor locations that would opti-

mize a given objective function. The Genetic Algorithm is utilized for this purpose.

The GA is a probabilistic optimization technique, which means that it is not trivial

to evaluate a theoretical expression that describes its time complexity for different

problems. Having said that, one might roughly express this complexity based on the

number of evaluations of the fitness/objective function. Hence, for a fixed number of

generations and population size, the time complexity is in the order of O(Npopgmax)

evaluations. Table C.2 provides the time complexity for each of the fitness functions

used in this work. The following gives some details on what is presented in Table C.2.

† The GDOP fitness function as seen in equation (3.20) requires NVTP evaluations

of (3.19). The time complexity of (3.19) is O(d3 + ld2), where d is the dimen-

sionality of a grid point and l is the number of active nodes. Hence, equation

(3.20) requires O(d3NVTP + ld2NVTP). In this work l ≤ 3, d = 2 and NVTP > l,

therefore the time complexity can reduce to ≈ O(NVTP).

† To compute the K-Coverage of a single VTP, we need to find the number of

sensors within a distance Rs from that VTP, which requires O(|Sfinal|). The

K-Coverage fitness is the average over NVTP points, hence O(NVTP|Sfinal|).

143

Table C.2
Computational Complexity of Used Fitness Functions

Complexity

GDOP ≈ O(NVTP)
K-Coverage O(NVTP|Sfinal|)
Coverage O(|G||S|)
Distance O(|Smob|2)

† The coverage fitness in equation (3.22) has a computational complexity that is

governed by Acov, which in turn requires O(|G||S|).

† The mobility cost depends on computing (3.24), which can be easily shown to

have a complexity of O(|Smob|2).

One final note to mention is that for the evaluation of both the GDOP and K-Coverage

fitness functions, it is necessary to have the distance between each VTP and the sensor

nodes. This distance is used to select the closest M sensors for evaluating the fitness.

This can produce an overhead of O(NVTP|Sfinal|) if computed along side the fitness

function. While this can be alleviated by computing these distances a head of time,

in this work the distances where computed as a part of the fitness evaluation.

C.4 Execution Time (Phase II and Phase III)

Here we present the execution times for both phase II and phase III. The average ex-

ecution time for phase II (KDE algorithm) is 2 seconds. As for phase III (relocation),

144

Table C.3
Execution Time for the Relocation Algorithm Using Different Objective

Functions

Avg. Execution Time (sec.)
GDOP 135.6
K-Coverage 5.8
Coverage† 60.7

† Coverage optimization outside the ROI (if used its exc. time
is added to that of GDOP and K-Coverage).

the execution time for the different objective functions is presented in Table C.3. It

is clear that the optimization for the relocation process requires more time than that

of tracking. For our intended purpose, this would be reasonable since the relocation

processes is not an online operation.

145

Appendix D

Letters of Permission

147

148

149

150

	Resource Optimization in Wireless Sensor Networks for an Improved Field Coverage and Cooperative Target Tracking
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	List of Abbreviations
	Abstract
	Introduction
	Coverage Optimization in a WSN
	Sparse Sensing and Measurement Scheduling
	Publications

	Coverage Optimization in a Terrain-Aware Wireless Sensor Network
	Introduction
	Related Work
	Problem Structure
	ROI Coverage
	Mobility Cost
	Traveling Distance
	Terrain Severity

	Objective Function

	Algorithms
	Artificial Immune System Algorithm
	Fitness Proportionate Selection
	Replication
	Clonal Proliferation
	Hypermutation
	Mutation

	Normalized Genetic Algorithm (NGA)
	Minimum Distance (MINDIST) Normalization
	BLX- Crossover
	Gaussian Mutation

	Particle Swarm Optimization

	Simulation and Results
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion

	Sensor Relocation for Improved Target Tracking
	Introduction
	Problem Statement and Assumptions
	Tracking Algorithm
	Distributed Extended Information Filter
	Active Set Selection

	ROI Formation
	Kernel Density Estimation

	Senors Relocation
	Sensors Attraction
	Sensor Position Optimization
	Fitness Functions
	geometric Dilution of Precision
	Coverage Rate
	Mobility Cost

	Objective Function

	Simulation and Results
	Conclusion and Discussion

	Dynamic Greedy Scheduling for Sparse Sensing in Hybrid Sensor Networks
	Introduction
	Problem Setup
	Simulated Ground-Truth Data

	Dynamic Measurement Scheduling
	Step 1: Measurement Acquisition
	Step 2: Updating (t) and
	Step 3: Reconstruction
	Step 4: Update Measurement Schedule
	Frame Potential
	Correlation

	Results and Discussion
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Conclusion

	Destination Prediction of Terrain-Aware Mobile Agents Via Inverse Reinforcement Learning
	Introduction
	Formalization
	Markov Decision Process
	Inverse Reinforcement Learning
	Destination Inference

	Ground-Truth Data Generation
	Feature Generation
	Simulations and Results
	Conclusion and Future Work

	Conclusion an Future Work
	References
	
	
	
	Tracking (Phase I)
	Complexity Analysis (DEIF)
	Complexity Analysis (GNS)

	KDE (Phase II)
	Relocation (Phase III)
	Execution Time (Phase II and Phase III)

	Letters of Permission

