
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2018

Pseudo-Companion Matrices for Polynomial Systems Pseudo-Companion Matrices for Polynomial Systems

Melinda Kleczynski
Michigan Technological University, mkleczyn@mtu.edu

Copyright 2018 Melinda Kleczynski

Recommended Citation Recommended Citation
Kleczynski, Melinda, "Pseudo-Companion Matrices for Polynomial Systems", Open Access Master's
Thesis, Michigan Technological University, 2018.
https://doi.org/10.37099/mtu.dc.etdr/595

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Numerical Analysis and Computation Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/595
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F595&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.mtu.edu%2Fetdr%2F595&utm_medium=PDF&utm_campaign=PDFCoverPages

PSEUDO-COMPANION MATRICES FOR POLYNOMIAL SYSTEMS

By

Melinda Kleczynski

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Mathematical Sciences

MICHIGAN TECHNOLOGICAL UNIVERSITY

2018

c© 2018 Melinda Kleczynski

This thesis has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Mathematical Sciences.

Department of Mathematical Sciences

Thesis Advisor: Dr. Allan A. Struthers

Committee Member: Dr. Benjamin W. Ong

Committee Member: Dr. Cécile M. Piret

Department Chair: Dr. Mark S. Gockenbach

Contents

Abstract . xiii

1 Introduction . 1

2 Notation and Definitions . 4

3 Objective . 7

4 Matrix Construction . 8

4.1 Standard Companion Matrix . 8

4.2 Pseudo-Companion Matrix . 9

4.3 Merit Functions . 12

5 Examples . 13

5.1 Intersection of Two Curves . 13

5.2 Intersection of Two Curves (Real Solutions) 18

5.3 Multivariable Replacement Monomials 22

5.4 PHCpack Test Problem “Rediff3” . 24

5.5 PHCpack Test Problem “Mickey” . 28

5.6 PHCpack Test Problem “Wright” . 34

5.7 Use of a Perturbation . 38

5.8 Multiple Steady State Solutions for a Reaction- Diffusion Model . . . 44

v

6 Effect of Perturbation Terms . 52

6.1 PHCpack Test Problem “Noon3” . 53

6.2 PHCpack Test Problem “Chandra4” 56

6.3 General Case . 65

6.4 Convergence Order . 67

7 Linear Subsystems . 72

7.1 PHCpack Test Problem “Eco5” . 73

7.2 PHCpack Test Problem “Gaukwa2” 77

8 Conclusion and Future Work . 82

9 References . 83

Appendices . 87

A Steady State Solutions Code . 87

B Perturbation Terms Code . 96

vi

List of Figures

2.1 Example of a 2 variable basis (�) and the corresponding border set (+++). 5

5.1 The curves −1 + 2y + x2 = 0 (solid) and 4− 5x+ 6y + y2 = 0 (dashed). 14

5.2 Basis (�) and border set (+++) corresponding to the polynomial system

−1 + 2y + x2 = 0 and 4− 5x+ 6y + y2 = 0. 15

5.3 The curves 5 + x− y2 = 0 (solid) and −6− xy + x2 = 0 (dashed). . . 19

5.4 Output for varying coefficients of the multiplication matrices during

the pseudo-companion matrix build for PHCpack test problem wright. 37

5.5 The curves p1 = 0 and p2 = 0 where p1 = 1 + 2x + 3x2 + 4xy and

p2 = 5 + 6xy + 7y2. 42

5.6 The system ~q = ~0 is close to ~p = ~0 when |x| and |y| are small. 43

5.7 The curves p1 = 0 and p2 = 0 where p1 = 1 + 2x + 3x2 + 4xy and

p2 = 5 + 6xy + 7y2. 43

5.8 The system ~q = ~0 has additional solutions with large norm. 43

5.9 Eigenvalues for discretized steady states on grid points 0 through 4. . 48

5.10 Closeup of meaningful eigenvalues for discretized steady states on grid

points 0 through 4. 49

5.11 Eigenvalues for discretized steady states on grid points 0 through 5. . 49

5.12 Closeup of meaningful eigenvalues for discretized steady states on grid

points 0 through 5. 50

5.13 Eigenvalues for discretized steady states on grid points 0 through 6. . 50

vii

5.14 Closeup of meaningful eigenvalues for discretized steady states on grid

points 0 through 6. 51

6.1 All eigenvalues for PHCpack test problem noon3 with µ = 26. 54

6.2 All eigenvalues for PHCpack test problem noon3 with µ = 212. 54

6.3 Eigenvalues (black) and target solutions (magenta) for PHCpack test

problem noon3 with µ = 26. 55

6.4 Eigenvalues (black) and target solutions (magenta) for PHCpack test

problem noon3 with µ = 212. 55

6.5 All eigenvalues for PHCpack test problem chandra4 with µ = 26 (real

randomization). 57

6.6 All eigenvalues for PHCpack test problem chandra4 with µ = 212 (real

randomization). 57

6.7 All eigenvalues for PHCpack test problem chandra4 with µ = 218 (real

randomization). 58

6.8 All eigenvalues for PHCpack test problem chandra4 with µ = 224 (real

randomization). 58

6.9 Eigenvalues (black) and target solutions (purple) for PHCpack test

problem chandra4 with µ = 26 (real randomization). 59

6.10 Eigenvalues (black) and target solutions (purple) for PHCpack test

problem chandra4 with µ = 212 (real randomization). 59

6.11 Eigenvalues (black) and target solutions (purple) for PHCpack test

problem chandra4 with µ = 218 (real randomization). 60

6.12 Eigenvalues (black) and target solutions (purple) for PHCpack test

problem chandra4 with µ = 224 (real randomization). 60

viii

6.13 All eigenvalues for PHCpack test problem chandra4 with µ = 26 (com-

plex randomization). 61

6.14 All eigenvalues for PHCpack test problem chandra4 with µ = 212 (com-

plex randomization). 61

6.15 All eigenvalues for PHCpack test problem chandra4 with µ = 218 (com-

plex randomization). 62

6.16 All eigenvalues for PHCpack test problem chandra4 with µ = 224 (com-

plex randomization). 62

6.17 Eigenvalues (black) and target solutions (purple) for PHCpack test

problem chandra4 with µ = 26 (complex randomization). 63

6.18 Eigenvalues (black) and target solutions (purple) for PHCpack test

problem chandra4 with µ = 212 (complex randomization). 63

6.19 Eigenvalues (black) and target solutions (purple) for PHCpack test

problem chandra4 with µ = 218 (complex randomization). 64

6.20 Eigenvalues (black) and target solutions (purple) for PHCpack test

problem chandra4 with µ = 224 (complex randomization). 64

7.1 Eigenvalues (black) and target solutions (red) for PHCpack test prob-

lem eco5 with µ = 26 (eliminate x1). 74

7.2 Eigenvalues (black) and target solutions (blue) for PHCpack test prob-

lem eco5 with µ = 26 (no linear eliminations). 74

7.3 Eigenvalues (black) and target solutions (red) for PHCpack test prob-

lem eco5 with µ = 212 (eliminate x1). 75

7.4 Eigenvalues (black) and target solutions (blue) for PHCpack test prob-

lem eco5 with µ = 212 (no linear eliminations). 75

ix

7.5 Eigenvalues (black) and target solutions (red) for PHCpack test prob-

lem eco5 with µ = 218 (eliminate x1). 76

7.6 Eigenvalues (black) and target solutions (blue) for PHCpack test prob-

lem eco5 with µ = 218 (no linear eliminations). 76

7.7 Eigenvalues (black) and target solutions (green) for PHCpack test

problem gaukwa2 with µ = 26 (eliminate w1). 78

7.8 Eigenvalues (black) and target solutions (gold) for PHCpack test prob-

lem gaukwa2 with µ = 26 (no linear eliminations). 78

7.9 Eigenvalues (black) and target solutions (green) for PHCpack test

problem gaukwa2 with µ = 212 (eliminate w1). 79

7.10 Eigenvalues (black) and target solutions (gold) for PHCpack test prob-

lem gaukwa2 with µ = 212 (no linear eliminations). 79

7.11 Eigenvalues (black) and target solutions (green) for PHCpack test

problem gaukwa2 with µ = 218 (eliminate w1). 80

7.12 Eigenvalues (black) and target solutions (gold) for PHCpack test prob-

lem gaukwa2 with µ = 218 (no linear eliminations). 80

7.13 Eigenvalues (black) and target solutions (green) for PHCpack test

problem gaukwa2 with µ = 224 (eliminate w1). 81

7.14 Eigenvalues (black) and target solutions (gold) for PHCpack test prob-

lem gaukwa2 with µ = 224 (no linear eliminations). 81

x

List of Tables

5.1 Run times on a laptop computer (real time in seconds) for the steady

state solutions problem. 47

6.1 Numerical results of using a pseudo-companion matrix for the system

p1 = −18 + 6x + 15y − 5xy − 3y2 + xy2 and p2 = 42 − 18x − 42y +

15xy + 9y2 − 3xy2 whose only solution is x = 3, y = 4. 69

xi

Abstract

Roots of a scalar polynomial in one variable are frequently found by computing the

eigenvalues of the standard companion matrix. In this exploratory work, we introduce

the pseudo-companion matrix for finding roots of multivariable polynomial systems.

In some cases, a perturbation of the polynomial system is used for the matrix construc-

tion, yielding approximate roots of the original polynomial system. The coordinates

of the roots, or their approximations, are obtained from the eigenvectors of this ma-

trix. In this thesis, we describe the process of constructing the pseudo-companion

matrix and computing the polynomial roots using illustrative examples.

xiii

1 Introduction

Numerical algorithms have previously been developed to find polynomial roots by

determining the eigenvalues of a companion matrix. This is, for example, the strategy

employed by the MATLAB roots function [10]. Currently companion matrices are

only used for finding roots of polynomials of one variable, not for finding roots of

multivariable polynomial systems.

The problem of finding a companion matrix can be framed as an inverse problem.

The direct problem is “given a matrix, find its characteristic polynomial.” The inverse

problem is “given a polynomial, find a matrix which has that polynomial as its char-

acteristic polynomial.” The companion matrix is the solution to this inverse problem

[22]. There is more than one type of companion matrix [5]; we will not discuss all of

them.

The term companion matrix was introduced as a translation of the German term

Begleitmatrix [13, p. 20]. The following established companion matrix addresses the

case of one polynomial in one variable. Without loss of generality, we can assume the

coefficient of the highest degree term is 1. For the polynomial p : C→ C defined by

p(x) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1 + xn, an n× n companion matrix is given by

A =

0 1 0 ... 0 0

0 0 1 ... 0 0

...
...

...
. . .

...
...

0 0 0 ... 0 1

−a0 −a1 −a2 ... −an−2 −an−1

1

where for each distinct root λ of the polynomial, there is an eigenvalue λ and corre-

sponding eigenvector of the form < 1, λ, λ2, ..., λn−1 > [4].

Consider the polynomial system ~p : Cn → Cn where ~p =< p1, p2, ..., pn > and

p1, p2, ..., pn are polynomials of x1, x2, ..., xn. The goal is to construct a pseudo-

companion matrix such that the eigenvectors of the matrix will include information

about the roots of the polynomial system or approximations of the roots. If a set of

points, some of which are approximate solutions, has been found, methods exist for

identifying those which will converge via Newton’s method to the roots of the system

of polynomials [9]. Using Newton’s method to refine results has precedent in other

polynomial solvers [3].

Attention is restricted in this thesis to polynomial systems which have some so-

lution to ~p = ~0, and whose solutions are given by isolated points. The number of

such solutions may be up to the product of the degrees of the individual polynomials

making up the system [17, p. 228]. This type of solution set is referred to as zero-

dimensional (as opposed to a positive-dimensional solution set) [3]. Existing methods

utilizing matrices to solve multivariable polynomial systems include those based on

ring representations [22] and resultants [14].

A standard automated method for finding roots of a polynomial system is poly-

nomial homotopy continuation. Available implementations include Bertini [3] and

PHCpack [20]. For MATLAB users, BertiniLab is an interface for using MATLAB to

run Bertini [1]. Similarly, PHClab can be used to run PHCpack [7]. We frequently

compare the results of our algorithm to the results obtained using BertiniTM v1.5.1;

we use Bertini for comparison because it is readily available for use with multiple

operating systems [2]. The materials accompanying PHCpack include a collection

of polynomial test problems, some of which are used as examples throughout this

work [20, 21]. Mathematica added polynomial homotopy continuation capability as

2

of Mathematica 10, improving speed for certain systems. Previously Mathematica

used a Gröbner basis method [23].

The general concept of polynomial homotopy continuation is as follows. Suppose

we would like to solve the polynomial system ~f(~x) = ~0. Create a new polynomial

system ~g(~x) which is similar to ~f(~x) where you know or can readily find the solutions

of ~g(~x) = ~0. Deform ~g(~x) to ~f(~x) and track the solutions. Parallelization can be

easily utilized [3].

The paths taken by the solutions may be primarily non-real, but both endpoints

may be real [3]. This serves as a barrier to attempting to only compute the real

solutions (or some other desirable subset of the solutions).

3

2 Notation and Definitions

• Let n be the number of variables and the number of polynomials; by assumption

these are equal.

• Consider ~x =< x1, x2, ..., xn >∈ Cn. Define the monomial ~x ~α to be xα1
1 · xα2

2 ·

... · xαn
n where ~α =< α1, α2, ..., αn > and α1, α2, ..., αn are nonnegative integers

[17, p. 4].

• |~α| = α1 + α2 + ...+ αn is the degree [17, p. 4]. The degree of a polynomial is

the largest degree of any of its monomials.

• Let B be a basis of monomials. A basis B of monomials is called closed if

~x ~α ∈ B ⇒ ~x ~α
′ ∈ B for all ~α ′ such that ~x ~α

′
divides ~x ~α [17, p. 55].

• Basis elements are written using the standard mathematical font, for example

x. Coordinates of the roots are written using blackboard bold, for example x.

• The border set S corresponding to a closed basis B consists of the monomials

which are not contained in B but which can be produced as the product of an

element of B and a degree one monomial [17, p. 58].

• A replacement monomial is a univariate monomial which is a member of the

border set and which is replaced by a linear combination of basis elements using

the original or modified polynomial system.

• Multiplication by a degree one monomial xi will be denoted ~x ~α
∗xi−−→ ~x

~β where

~x ~α ∈ B and either ~x
~β ∈ B or ~x

~β ∈ S.

4

• Mxi
denotes the matrix for multiplication by xi.

• In the case of two variables x1 and x2, the monomials can be illustrated graph-

ically. The origin represents x01x
0
2 = 1. Moving to the right corresponds

to increasing the power of x1 and moving up corresponds to increasing the

power of x2 [17, p. 56]. Suppose, for example, that a basis B is given by

{1, x1, x2, x21, x1x2, x22, x1x22}. The border set S is {x31, x21x2, x32, x21x22, x1x32}.

These are depicted in Figure 2.1.

• A rectangular basis with bound < d1, d2, ..., dn > is {~x ~α |αi ≤ di for i =

1, 2, ..., n}.

■ ■

■

■

■

■ ■

+

+

+

+

+

x1 x1
2

x1
3

x2

x2
2

x2
3

Figure 2.1: Example of a 2 variable basis (�) and the corresponding border set (+++).

• Monomials are listed in order of ascending degree. Within monomials of equal

degree, monomials are then ordered based on variable name, for example

{..., x31, x21x2, x21x3, ...}

This is referred to as degree lexicographic order [18]. Note that this order is

only used for the purpose of consistently listing the monomials in a given basis.

No preference is given to any of the variables in the computations.

5

• If a perturbation is introduced, then the original polynomial system will be

denoted ~p =< p1, p2, ..., pn > and the new, modified polynomial system will be

denoted ~q =< q1, q2, ..., qn >.

• A term added to a polynomial is called a perturbation term and takes the

form ε xdi+1
i where ε is small and di is the degree of pi.

• The standard companion matrix refers to the one variable companion matrix

described in Section 1.

• Throughout, µ is defined as 1
ε
.

6

3 Objective

We intend to construct pseudo-companion matrices to find the roots of polynomial

systems. The Central Theorem, described by Stetter, shows that for a suitable basis

and multiplication matrices, roots of a zero-dimensional polynomial system can be

determined from the eigenvectors [17, p. 52]. We would like a simple algorithm to

construct a pseudo-companion matrix without complicated polynomial computations,

such as a Gröbner basis type computation.

The most novel aspect of our method is the modification of the polynomial system

in some cases with the inclusion of additional terms to allow for the matrix construc-

tion. These additional terms will have a coefficient of ε which is taken to be small.

Computationally, the system is not monitored as ε approaches zero. Rather, ε is set

to some small number to find approximate potential roots, which are then refined

using Newton’s method.

The matrix is constructed so that for each root ~x = (x1, x2, ..., xn) of the

polynomial system, there is an eigenvector which is equal to a scalar multiple of

< 1, x1, x2, ..., xn, ... >. The details of the eigensystem computations are not the fo-

cus of this investigation, and in the following examples are performed using standard

routines in Mathematica. After the eigenvectors have been determined, normalizing

by the first element of the eigenvector produces the desired form. The coordinates

of the root are found in elements 2 through n + 1 of the eigenvector. Subsequent

elements of the eigenvector correspond to higher order monomials in the basis.

7

4 Matrix Construction

4.1 Standard Companion Matrix

For the standard companion matrix, the ith column was associated with λi−1 where

x = λ is a root of the polynomial p(x). The standard companion matrix applies

to one polynomial in one variable, so here p and x are both scalar valued. In this

manner, associate the rows and the columns of the matrix with increasing powers of

x as shown:

1 x x2 xn−2 xn−1

1 0 1 0 ... 0 0

x 0 0 1 ... 0 0

...
...

...
. . .

...
...

xn−2 0 0 0 ... 0 1

xn−1 −a0 −a1 −a2 ... −an−2 −an−1

{1, x, ..., xn−2, xn−1} forms a basis of monomials. The basis should be closed. In

other words, every power of x, from 0 to n− 1, should be included in the basis even

if one of the corresponding coefficients in the polynomial happens to be zero. The

matrix embodies multiplication by x. For example, in the first row, the element 1 is

multiplied by x to obtain x. In the final row, xn−1 is multiplied by x to obtain xn,

which is not a basis element itself but can be expressed in terms of the other basis

elements using p(x) = a0 + a1x + a2x
2 + ... + an−1x

n−1 + xn = 0 when x is a root.

After multiplication by x, every element of the basis can still be represented using

8

elements of the basis, either directly or using xn = −a0− a1x− a2x2− ...− an−1xn−1.

4.2 Pseudo-Companion Matrix

This construction becomes more difficult in the multivariable case. There is more than

one variable by which the basis elements could be multiplied. Additionally, it can no

longer be assumed that there is a single highest degree term in each polynomial.

The first step of building the pseudo-companion matrix is to obtain polynomials of

the appropriate form. We will call such polynomials pre-companion polynomials.

Every scalar polynomial in one variable is a pre-companion polynomial, so no such

distinction is necessary for the standard companion matrix. In some polynomial

systems, some or all of the polynomials will already be pre-companion polynomials.

We begin by successively identifying these pre-companion polynomials, which must

satisfy the following:

1. The polynomial contains a univariate term whose degree is strictly greater than

the degrees of the other terms in that polynomial

and

2. The variable in the univariate highest degree term did not already appear in

the univariate highest degree term of any previously identified pre-companion

polynomial

In other words, a pre-companion polynomial has the form

pi = pi + xdi+1
i

where di + 1 is strictly greater than the degree of pi. Reordering the polynomials

and/or renaming the variables allows xi to be the variable appearing in the univariate

9

highest degree term of pi. Since our objective is only to find the roots, we can assume

without loss of generality that the coefficient of xdi+1
i is 1.

If pk is any polynomial which is not already a pre-companion polynomial, then

a perturbation term ε xdk+1
k is added to that polynomial, where ε is small and dk is

the degree of pk. With these added terms, we obtain a new polynomial system ~q in

which each polynomial is now a pre-companion polynomial. The following illustrates

the form a system of four polynomials in four variables would take if two of the

polynomials started out as pre-companion polynomials with x1 and x2 appearing in

the univariate terms:

q1 = p1 = p1 + xd1+1
1

q2 = p2 = p2 + xd2+1
2

q3 = p3 + ε xd3+1
3

q4 = p4 + ε xd4+1
4

Here degree(p1) ≤ d1, degree(p2) ≤ d2, degree(p3) = d3, and degree(p4) = d4.

Continue using the system of four polynomials as an example. We will set ~q = ~0

to build the pseudo-companion matrix. Then we have

xd1+1
1 = −p1

xd2+1
2 = −p2

xd3+1
3 = −µp3

xd4+1
4 = −µp4

where µ = 1
ε
. We will call xd1+1

1 , xd2+1
2 , xd3+1

3 , and xd4+1
4 replacement monomials

because we will replace them with −p1, −p2, −µp3, and −µp4, respectively.

10

For i from 1 to n, we will represent multiplication by xi as a matrix Mxi . The

basis B will be monomials of the form xα1
1 x

α2
2 x

α3
3 x

α4
4 . The border set S consists of the

monomials which are not contained in B but which can be produced as the product

of an element of B and one of the xi. The key is that we want a square matrix. So

once we choose a basis, every element of the border set must be expressible as a linear

combination of basis elements. This can be accomplished using our replacements as

long as we pick an appropriate basis. The basis should be closed (if a monomial is

contained in the basis, then so are all of its divisors). Elements of the border set must

have the individual degree of some xi be at least di + 1 so that a replacement can be

made. The requirements can be met by taking B = {~x ~α |αi ≤ di for i = 1, 2, ..., n},

which we will refer to as a rectangular basis with bound < d1, d2, ..., dn > (in this

example, n = 4). We call it a rectangular basis because it would look rectangular if

plotted as in Figure 2.1.

After multiplying the basis elements by a given variable xi, some of the results

will be elements of the border set. This will occur for basis elements whose degree of

xi is di; then multiplication by xi increases the degree to di + 1. Then a replacement

will be used. The replacement will decrease the degree of xi, but it could do so at the

expense of increasing the degree of some other variable xj. If the resulting degree of

xj is larger than dj, then the result can not be expressed using only basis elements,

but a second replacement could be performed. This process must terminate, since

the replacements are decreasing in degree.

Mxi is the matrix for multiplication by xi, and the equations generating the re-

placements used to construct Mxi are satisfied at the roots of the modified polyno-

mial system ~q. Randomly generate coefficients ci; these can be real or complex. The

pseudo-companion matrix is A =
∑n

i=1 ciMxi . Let ~v be a vector whose elements are

the basis monomials evaluated at the roots of ~q, and let xi be the xi coordinate of

11

that root. Then

A~v =

(
n∑
i=1

ciMxi

)
~v =

n∑
i=1

ci (Mxi~v) =
n∑
i=1

ci (xi~v) =

(
n∑
i=1

cixi

)
~v

We see that ~v is an eigenvector of the pseudo-companion matrix. Since any scalar

multiple of an eigenvector is also an eigenvector, we need a way to scale ~v and obtain

the root. Using degree lexicographic order, the first basis element is 1, so we scale

the eigenvector so the first element of the eigenvector is 1. Then the values of the

degree one monomials give the coordinates of the root of ~q. If any eigenvalue has

an eigenspace with dimension greater than 1, then there is no expectation that the

eigenvectors returned by a numerical computation have the required structure. The

purpose of the randomization is to avoid repeated eigenvalues. For problems where a

coordinate of a root never takes the same value in two distinct roots, a single multipli-

cation matrix could be used. Problems of interest may have some structure such that

this is not true, so in general using a random linear combination is recommended.

4.3 Merit Functions

We have discussed replacement monomials which have degree strictly larger than the

degrees of the other terms in the respective polynomials. Then when a replacement

is made, the degree decreases. Since the degree is strictly decreasing as replacements

are made, eventually the border set elements can be expressed using only the basis

elements. This can be generalized by replacing the degree with any merit function,

as long as the merit function decreases at each iteration and a sufficiently small merit

function guarantees that you have reached the basis elements. The key is that the

replacement process must successfully terminate.

12

5 Examples

5.1 Intersection of Two Curves

Determine the points of intersection of the two curves given by −1 + 2y + x2 = 0

and 4− 5x + 6y + y2 = 0, shown in Figure 5.1. The system of polynomials has four

solutions, two of which correspond to the real points of intersection of the curves.

These solutions, found using a standard solver, are

x1 = −2.52369− 1.16200i, y1 = −2.00939− 2.93254i

x2 = −2.52369 + 1.16200i, y2 = −2.00939 + 2.93254i

x3 = 0.907464, y3 = 0.0882549

x4 = 4.13992, y4 = −8.06948

We will now use a pseudo-companion matrix to solve the polynomial system.

Each individual polynomial has a highest degree term. The highest degree terms

are univariate, with a different variable in each of these terms. Using the two poly-

nomials, we can use replacements x2 → 1− 2y and y2 → −4 + 5x− 6y. Then x2 and

y2 can be part of the border set. Any monomial for which the degree of each variable

is less than 2 must be included in the basis, so the basis elements are 1, x, y, and

xy. The monomials which are not included in the basis, but which can be obtained

by multiplying a basis element by x or y, are x2, y2, x2y, and xy2. This is the border

set. The basis and border set are shown graphically in Figure 5.2.

13

-4 -2 2 4 6 8
x

-10

-8

-6

-4

-2

2

y

Figure 5.1: The curves −1 + 2y + x2 = 0 (solid) and 4− 5x+ 6y + y2 = 0 (dashed).

Multiplying all elements of the basis by x yields the following:

1
∗x−→ x

x
∗x−→ x2

y
∗x−→ xy

xy
∗x−→ x2y

Using the replacements, we have x2 = 1 − 2y and x2y = (1 − 2y)y = y − 2y2 =

y−2(−4 + 5x−6y) = y+ 8−10x+ 12y = 8−10x+ 13y. The updated multiplication

results are:

1
∗x−→ x

x
∗x−→ 1− 2y

y
∗x−→ xy

xy
∗x−→ 8− 10x+ 13y

14

■ ■

■ ■

+

+

+

+

x x
2

y

y
2

Figure 5.2: Basis (�) and border set (+++) corresponding to the polynomial system
−1 + 2y + x2 = 0 and 4− 5x+ 6y + y2 = 0.

Having obtained the results of multiplying all basis elements by x, we can encode

these results in a multiplication matrix for x by associating each row and column of

the matrix with a basis element. This construction relies on the fact that we were able

to use the replacements to express border set elements in terms of the basis elements.

The multiplication matrix for x is

Mx =

1 x y xy

1 0 1 0 0

x 1 0 −2 0

y 0 0 0 1

xy 8 −10 13 0

Now how can we obtain the roots of the original polynomial system? Suppose that

(x, y) is a root. Then x
2 = 1− 2y and y

2 = −4 + 5x− 6y. Let ~v =< 1,x,y,xy >.

15

Then

0 1 0 0

1 0 −2 0

0 0 0 1

8 −10 13 0

1

x

y

xy

=

x

1− 2y

xy

8− 10x+ 13y

=

x

x
2

xy

x
2
y

= x

1

x

y

xy

In other words Mx~v = x~v. So x is an eigenvalue of Mx and ~v is the corresponding

eigenvector. This can be verified numerically by finding the eigenvalues and eigenvec-

tors of Mx. The eigenvalues are −2.52369−1.16200i, −2.52369+1.16200i, 0.907464,

and 4.13992. As expected, these are the x coordinates of the roots. The eigenvectors

should be scaled so the first element is 1. Then the elements of the eigenvectors will

be the basis elements evaluated at each of the roots. The scaled eigenvectors are:

< 1, −2.52369− 1.16200i, −2.00939− 2.93254i, 1.66346 + 9.73574i >

< 1, −2.52369 + 1.16200i, −2.00939 + 2.93254i, 1.66346− 9.73574i >

< 1, 0.907464, 0.0882549, 0.0800881 >

< 1, 4.13992, −8.06948, −33.4070 >

The elements are as expected. Since the eigenvalues contain only the x coordinates

of the roots, the roots will be obtained from the eigenvectors instead. Simply take

the second and third elements of each eigenvector.

This structure is not unique to the Mx matrix. My, the multiplication matrix for

y, is constructed in the same manner and has corresponding properties.

16

Multiply all elements of the basis by y:

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ y2

xy
∗ y−→ xy2

Using the same replacements as before, we have y2 = −4 + 5x − 6y and xy2 =

x(−4+5x−6y) = −4x+5x2−6xy = −4x+5(1−2y)−6xy = −4x+5−10y−6xy =

5− 4x− 10y − 6xy. The updated multiplication results are:

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ −4 + 5x− 6y

xy
∗ y−→ 5− 4x− 10y − 6xy

Writing these in matrix form, we have:

My =

1 x y xy

1 0 0 1 0

x 0 0 0 1

y −4 5 −6 0

xy 5 −4 −10 −6

The eigenvalues of this matrix are −8.06948, −2.00939 + 2.93254i, −2.00939 −

2.93254i, and 0.0882549. These are the y coordinates of the roots. The scaled eigen-

17

vectors are:

< 1, 4.13992, −8.06948, −33.4070 >

< 1, −2.52369 + 1.16200i, −2.00939 + 2.93254i, 1.66346− 9.73574i >

< 1, −2.52369− 1.16200i, −2.00939− 2.93254i, 1.66346 + 9.73574i >

< 1, 0.907464, 0.0882549, 0.0800881 >

Note that Mx and My have the same eigenvectors, so the roots could be obtained

from either. In this example, both Mx and My are pseudo-companion matrices. In

later examples we will see that it is sometimes necessary to use a randomized linear

combination of the multiplication matrices as the pseudo-companion matrix.

5.2 Intersection of Two Curves (Real Solutions)

Typically the roots will be obtained from the eigenvectors of the pseudo-companion

matrix. In limited situations, the roots can be obtained from the eigenvalues. We

will discuss an example of such a situation here, before proceeding by using the

eigenvectors in subsequent examples.

Determine the points of intersection of the two curves given by 5 +x− y2 = 0 and

−6−xy+x2 = 0, shown in Figure 5.3. The system of polynomials has four solutions,

all of which correspond to real points of intersection of the curves. These solutions

18

are

x1 = −3.20850, y1 = −1.33847

x2 = −1.70459, y2 = 1.81533

x3 = 1.48726, y3 = −2.54701

x4 = 4.42583, y4 = 3.07015

We intend to find these solutions using a pseudo-companion matrix.

-10 -5 5 10
x

-10

-5

5

10

y

Figure 5.3: The curves 5 + x− y2 = 0 (solid) and −6− xy + x2 = 0 (dashed).

There is no longer a single highest degree term in each polynomial, because the

second polynomial has two terms of degree two. A pseudo-companion matrix can still

be constructed without modifying the original polynomial system.

In the first polynomial, y2 is a natural choice for a replacement monomial. In the

second polynomial, we will take the univariate term of degree two, namely x2, to be

the replacement monomial. Then the replacements are y2 → 5 + x and x2 → 6 + xy.

19

We must include xy in the basis. To obtain a closed basis including xy, take 1, x, y,

and xy as the basis elements. This basis will be sufficient for the construction of the

multiplication matrices.

Multiplying all the basis elements by x gives the following:

1
∗x−→ x

x
∗x−→ x2

y
∗x−→ xy

xy
∗x−→ x2y

Using the replacements, x2 = 6+xy and x2y = (6+xy)y = 6y+xy2 = 6y+x(5+x) =

6y + 5x + x2 = 6y + 5x + 6 + xy = 6 + 5x + 6y + xy. After the replacements, the

multiplication results are:

1
∗x−→ x

x
∗x−→ 6 + xy

y
∗x−→ xy

xy
∗x−→ 6 + 5x+ 6y + xy

The multiplication matrix for x is

Mx =

1 x y xy

1 0 1 0 0

x 6 0 0 1

y 0 0 0 1

xy 6 5 6 1

20

Repeat this process for multiplication by y.

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ y2

xy
∗ y−→ xy2

y2 = 5 + x and xy2 = x(5 + x) = 5x+ x2 = 5x+ 6 + xy = 6 + 5x+ xy.

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ 5 + x

xy
∗ y−→ 6 + 5x+ xy

Then the multiplication matrix for y is:

My =

1 x y xy

1 0 0 1 0

x 0 0 0 1

y 5 1 0 0

xy 6 5 0 1

For a single polynomial, the roots are given by the eigenvalues of the standard

companion matrix. For most polynomial systems, the eigenvectors of the pseudo-

companion matrix must be used to find the roots. A multivariable solution simply

cannot be contained in a single eigenvalue. The current problem is an example of a

situation in which the eigenvalues of the pseudo-companion matrix are sufficient to

21

give the roots of a polynomial system. The key is that there are only two variables

and all the solutions are real. Then the pseudo-companion matrix can be constructed

so that the x and y coordinates of the roots are the real and imaginary parts of the

eigenvalues. This can be accomplished by taking the pseudo-companion matrix to be

equal to the linear combination Mx + iMy.

For example, for the current problem, the eigenvalues of Mx+ iMy are −3.20850−

1.33847i, −1.70459 + 1.81533i, 1.48726− 2.54701i, and 4.42583 + 3.07015i. The real

and imaginary parts are the coordinates of the roots, as desired.

5.3 Multivariable Replacement Monomials

Consider the construction of the multiplication matrix for the variable xi. Let r be

the maximum integer such that xri is an element of the basis. Then xr+1
i is an element

of the border set. This is expressible as a linear combination of basis elements if xr+1
i

is one of the replacement monomials. In general we construct all the multiplication

matrices and the replacement monomials are univariate.

This example illustrates that exceptions to these guidelines are possible. The fol-

lowing polynomial system was created for use in this example. In general, polynomial

systems of interest did not have this structure, so we chose to note this construction

in an example but not pursue it further.

Consider the polynomial system

x2 + y + z − 7 = 0

xy − 2z − 5 = 0

xz − x+ 2 = 0

22

which has solutions

x1 = 0.369651− 0.719866i, y1 = 7.51053 + 2.73077i, z1 = −0.128967− 2.19857i

x2 = 0.369651 + 0.719866i, y2 = 7.51053− 2.73077i, z2 = −0.128967 + 2.19857i

x3 = 2.12933, y3 = 2.40520, z3 = 0.0607387

x4 = −2.86864, y4 = −2.92627, z4 = 1.69720

Each polynomial has a highest degree term, which we will use as the replacement

monomial, yielding replacements x2 → −y − z + 7, xy → 2z + 5, and xz → x − 2.

It seems that we must include 1, x, y, and z in our basis. If these are our only

replacements, we can not construct multiplication matrices for y or z. If we consider

only multiplication by x, then the elements in the border set are x2, xy, and xz.

These are the same as the replacement monomials, so all the border set elements can

be expressed in terms of the basis elements. The multiplication matrix for x is

Mx =

1 x y z

1 0 1 0 0

x 7 0 −1 −1

y 5 0 0 2

z −2 1 0 0

23

The scaled eigenvectors of this matrix are

< 1, 0.369651− 0.719866i, 7.51053 + 2.73077i, −0.128967− 2.19857i >

< 1, 0.369651 + 0.719866i, 7.51053− 2.73077i, −0.128967 + 2.19857i >

< 1, 2.12933, 2.40520, 0.0607387 >

< 1, −2.86864, −2.92627, 1.69720 >

Elements 2 through 4 of each eigenvector give the coordinates of the roots.

5.4 PHCpack Test Problem “Rediff3”

The following polynomial system is from the set of test problems accompanying PHC-

pack [21].

− 2x1 + x2 + αx1(1− x1) = 0

x1 − 2x2 + x3 + αx2(1− x2) = 0

x2 − 2x3 + αx3(1− x3) = 0

In the test problem α = 0.835634534. In general α is a parameter which could take

some other positive value. For this problem we will build the pseudo-companion

matrix using an unassigned parameter.

Rewrite this as

− αx21 + (α− 2)x1 + x2 = 0

− αx22 + x1 + (α− 2)x2 + x3 = 0

− αx23 + x2 + (α− 2)x3 = 0

24

Then we have replacements

x21 →
(α− 2)

α
x1 +

1

α
x2

x22 →
1

α
x1 +

(α− 2)

α
x2 +

1

α
x3

x23 →
1

α
x2 +

(α− 2)

α
x3

The monomials in the border set should have the degree of one of the variables

equal to 2 so a replacement can be used. Then the basis elements consist of monomials

for which the individual degree of each variable is either zero or one. The number

of basis elements is then 23 = 8. Using this basis and these replacements we get the

following multiplication matrices Mx1 , Mx2 , and Mx3 :

Mx1 =

0 1 0 0 0 0 0 0

0 1− 2
α

1
α

0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 1
α2

1
α
− 2

α2
1
α2 1− 2

α
0 0 0

0 0 0 0 0 1− 2
α

1
α

0

0 0 0 0 0 0 0 1

0 0 1
α3

1
α2 − 2

α3 0 1
α2

1
α
− 2

α2 1− 2
α

25

Mx2 =

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1
α

1− 2
α

1
α

0 0 0 0

0 0 0 0 0 0 1 0

0 1
α
− 2

α2
1
α2 0 1− 2

α
1
α

0 0

0 0 0 0 0 0 0 1

0 0 1
α2

1
α
− 2

α2 0 1
α

1− 2
α

0

0 0 0 0 1
α2

2
α
− 4

α2
1
α2 1− 2

α

Mx3 =

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 1
α

1− 2
α

0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1
α

1− 2
α

0 0

0 1
α2

1
α
− 2

α2
1
α2 0 0 1− 2

α
0

0 1
α2 − 2

α3
1
α3 0 1

α
− 2

α2
1
α2 0 1− 2

α

The first column of each of these matrices contains all zeros because no constant

term appears in the polynomial system. This will result in a zero eigenvalue, which

corresponds to the trivial solution of the system.

We can generate randomized coefficients to make a linear combination of the

three multiplication matrices. The pseudo-companion matrix can be constructed

without assigning a specific value of α. This value should be given prior to finding

the eigenvectors. Obtaining the randomized coefficients and setting α = 0.835634534,

26

we have the pseudo-companion matrix

0 0.398795 0.123007 0.504388 0 0 0 0

0 −0.555677 0.477236 0 0.123007 0.504388 0 0

0 0.147202 −0.171396 0.147202 0.398795 0 0.504388 0

0 0 0.603599 −0.702809 0 0.398795 0.123007 0

0 0.365997 −0.488821 0.571106 −0.727073 0.147202 0 0.504388

0 0 0 0 0.603599 −1.25849 0.477236 0.123007

0 0.722324 −0.664893 0.517214 0 0.147202 −0.874206 0.398795

0 −1.00648 1.54784 −0.795774 −0.664893 0.883211 −0.488821 −1.42988

Entries 2 through 4 of the 8 scaled eigenvectors give the coordinates of the roots.

~x1 =< −1.51955− 1.43763i, −1.56689 + 1.97705i, −1.51955− 1.43763i >

~x2 =< −1.51955 + 1.43763i, −1.56689− 1.97705i, −1.51955 + 1.43763i >

~x3 =< −1.40330− 0.920669i, −0.696695 + 1.08723i, 0.00990452 + 0.920669i >

~x4 =< −1.40330 + 0.920669i, −0.696695− 1.08723i, 0.00990452− 0.920669i >

~x5 =< 0, 0, 0 >

~x6 =< 0.00990452− 0.920669i, −0.696695− 1.08723i, −1.40330 + 0.920669i >

~x7 =< 0.00990452 + 0.920669i, −0.696695 + 1.08723i, −1.40330− 0.920669i >

~x8 =< 0.252318, 0.346990, 0.252318 >

27

5.5 PHCpack Test Problem “Mickey”

The following polynomial system is from the set of test problems accompanying PHC-

pack [21].

x2 + 4y2 − 4 = 0

2y2 − x = 0

This is a simple system with which we can illustrate the use of an alternate de-

gree bound for characterizing replacements. We will also explore some requirements

for forming the linear combination of multiplication matrices to obtain the pseudo-

companion matrix.

We have been choosing replacements which cause a decrease in degree. Here we

will use a different merit function. Let dx be the highest degree of x and let dy be the

highest degree of y. Then require that the replacements decrease a modified degree

bound which is a function of dx and dy. For this problem, let the modified degree

bound be given by 3dx + 2dy. This is not the same as decreasing the degree with

every replacement, but it will result in the eventual decrease of the degree so that the

border set elements can ultimately be represented in terms of the basis elements.

Let the first replacement be x2 → −4y2 + 4. Before the replacement, 3dx + 2dy =

3 · 2 + 2 · 0 = 6. After the replacement, 3dx + 2dy = 3 · 0 + 2 · 2 = 4. Let the second

replacement be y2 → 1
2
x. Before the replacement, 3dx + 2dy = 3 · 0 + 2 · 2 = 4.

After the replacement, 3dx + 2dy = 3 · 1 + 2 · 0 = 3. Every replacement decreases the

modified degree bound, so we can construct the pseudo-companion matrix.

Elements of the border set should have a degree of x or y equal to 2 for one of the

replacements to be usable. Take the basis to be monomials in which the degree of

28

each individual element is either zero or one. Namely the basis elements are 1, x, y,

and xy. Since there are four elements in the basis, the pseudo-companion matrix

will have four rows and columns. The pseudo-companion matrix can only encode one

root per eigenvector, and this polynomial system has four roots, so this basis size is

optimal.

We start by constructing multiplication matrices for x and y. Multiplying all

elements of the basis by x yields the following:

1
∗x−→ x

x
∗x−→ x2

y
∗x−→ xy

xy
∗x−→ x2y

Using our replacements, we have that x2 = −4y2 + 4 = −4(1
2
x) + 4 = −2x + 4

and x2y = (−2x+ 4)y = −2xy + 4y. Updating our results, we have:

1
∗x−→ x

x
∗x−→ 4− 2x

y
∗x−→ xy

xy
∗x−→ 4y − 2xy

Then the multiplication matrix for x is

29

Mx =

1 x y xy

1 0 1 0 0

x 4 −2 0 0

y 0 0 0 1

xy 0 0 4 −2

Now make the multiplication matrix for y. Multiplying all elements of the basis

by y yields the following:

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ y2

xy
∗ y−→ xy2

Using our replacements again gives y2 = 1
2
x and xy2 = x(1

2
x) = 1

2
x2 = 1

2
(−2x +

4) = −x+ 2. The updated multiplication results are

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ 1

2
x

xy
∗ y−→ 2− x

Then the multiplication matrix for y is

30

My =

1 x y xy

1 0 0 1 0

x 0 0 0 1

y 0 1
2

0 0

xy 2 −1 0 0

For reference, the following are the decimal values of the roots of the polynomial

system:

x1 = −3.23607, y1 = 1.27202i

x2 = −3.23607, y2 = −1.27202i

x3 = 1.23607, y3 = 0.786151

x4 = 1.23607, y4 = −0.786151

The eigenvectors of the multiplication matrix Mx are

< −0.295242, 0.955423, 0, 0 >

< 0, 0, −0.295242, 0.955423 >

< 0.628960, 0.777438, 0, 0 >

< 0, 0, 0.628960, 0.777438 >

Our procedure includes scaling each eigenvector of the pseudo-companion matrix

so that the first element is 1. That would be impossible for the second and fourth

eigenvectors since the first element is 0. The matrix Mx on its own does not constitute

a pseudo-companion matrix. The eigenvalues ofMx are−3.23607, −3.23607, 1.23607,

and 1.23607. These are the x coordinates of the roots.

31

The scaled eigenvectors of the multiplication matrix My are

< 1, −3.23607, 1.27202i, −4.11634i >

< 1, −3.23607, −1.27202i, 4.11634i >

< 1, 1.23607, 0.786151, 0.971737 >

< 1, 1.23607, −0.786151, −0.971737 >

None of the eigenvectors of My have 0 as their first element. After scaling, the second

and third elements give the x and y coordinates of each root. Thus the multiplication

matrix My on its own is a pseudo-companion matrix. The eigenvalues of My are the

y coordinates of each root: 1.27202i, −1.27202i, 0.786151, and −0.786151.

Our general idea is to construct the pseudo-companion matrix as a linear combi-

nation of the multiplication matrices. The scaled eigenvectors of the matrix Mx+My

are

< 1, −3.23607, 1.27202i, −4.11634i >

< 1, −3.23607, −1.27202i, 4.11634i >

< 1, 1.23607, 0.786151, 0.971737 >

< 1, 1.23607, −0.786151, −0.971737 >

The matrix Mx + My also successfully provides the roots of the polynomial system.

The eigenvalues of Mx+My are the sums of the coordinates of the roots: −3.23607 +

1.27202i, −3.23607− 1.27202i, 2.02222, and 0.449917.

We have seen that My and Mx + My encode the roots, while Mx does not. We

would like to know why some linear combinations of the multiplication matrices are

successful while other linear combinations fail. Investigating the differences among

32

these matrices, we notice that My and Mx +My have four distinct eigenvalues while

Mx has only two distinct eigenvalues. Based on this, we suspect that the pseudo-

companion matrix requires distinct eigenvalues. Test this hypothesis by intentionally

constructing another linear combination of Mx and My with fewer than four distinct

eigenvalues. We are able to do this, since the eigenvalues are linear combinations of

the coordinates of the roots, with the coefficients being the same as the coefficients

in the linear combination of the multiplication matrices.

We solve for two coefficients a and b for which ax2+by2 = ax4+by4. This equality

is satisfied when a = (0.175789− 0.284432i)b. We will take a = 0.175789− 0.284432i

and b = 1. Then the eigenvalues of aMx + bMy are −0.568864 + 2.19246i, 1.00344−

0.351578i, −0.568864− 0.351578i, and −0.568864− 0.351578i. Two eigenvalues are

the same, as desired. Now find the eigenvectors. After scaling we obtain

< 1, −3.23607, 1.27202i, −4.11634i >

< 1, 1.23607, 0.786151, 0.971737 >

< 1, 0, −0.568864− 0.351578i, −0.703155 + 1.13773i >

< 1, 13.7541− 23.0345i, 3.56508 + 7.60973i, −24.8937− 6.51698i >

The first two eigenvectors have x and y coordinates of roots as their second and third

elements. The other two eigenvectors do not. This is further evidence that repeated

eigenvalues are problematic.

In general this should be avoidable by using randomized coefficients in the lin-

ear combination of the multiplication matrices. This will be explored further in the

“Wright” example. In an automated setting where any type of polynomial system

could be provided, randomization should be incorporated. Alternatively, if random-

ization is not used, it should be verified that all eigenvalues are distinct before pro-

33

ceeding.

Of course, it was also observed that in some cases the pseudo-companion matrix

can be taken to be equal to a single multiplication matrix (My in this example).

This could decrease the computation time. The actual time saved would depend on

the computing setup, since all the multiplication matrices could be built at once if

parallelization is available. If we have preexisting knowledge that some coordinate

of the root should be different for each root, then we can use a single multiplication

matrix as the pseudo-companion matrix.

5.6 PHCpack Test Problem “Wright”

The following is from the test problems accompanying PHCpack [21]. The specific

problem is from [24].

x21 − x1 + x2 + x3 + x4 + x5 − 10 = 0

x22 + x1 − x2 + x3 + x4 + x5 − 10 = 0

x23 + x1 + x2 − x3 + x4 + x5 − 10 = 0

x24 + x1 + x2 + x3 − x4 + x5 − 10 = 0

x25 + x1 + x2 + x3 + x4 − x5 − 10 = 0

34

The solutions are permutations of

(2, 2, 2, 2, 2)

(−5, −5, −5, −5, −5)

(−1, −1, 3, 3, 3)

(−2, −2, −2, 4, 4)

(−a, 2 + a, 2 + a, 2 + a, 2 + a)

(5 + a, −3− a, −3− a, −3− a, −3− a)

where a = −5+
√
33

2
.

No perturbation terms are required to construct the pseudo-companion matrix.

The highest degree term in each polynomial is univariate and has a degree strictly

larger than all other terms in the polynomial. The replacement monomials will be

x21, x
2
2, x

2
3, x

2
4 and x25. The basis will consist of all monomials for which each individual

degree is 0 or 1. The complete list is

1,

x1, x2, x3, x4, x5,

x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x3x4, x3x5, x4x5,

x1x2x3, x1x2x4, x1x2x5, x1x3x4, x1x3x5, x1x4x5, x2x3x4, x2x3x5, x2x4x5, x3x4x5,

x1x2x3x4, x1x2x3x5, x1x2x4x5, x1x3x4x5, x2x3x4x5,

x1x2x3x4x5

This basis contains 32 elements, which will result in a 32 by 32 matrix. There are

32 roots to the polynomial system, so no smaller basis can be used. Our choice of

35

construction seems optimal.

The pseudo-companion matrix is constructed as a linear combination of multi-

plication matrices (one for each variable). For this polynomial system, the success

of the pseudo-companion matrix method depends on the coefficients used. Various

sets of coefficients, the eigenvalues of the resulting pseudo-companion matrix, and

the corresponding norms of the differences between the actual roots and the roots

computed from the matrix are shown in Figure 5.4. Coefficients of (1, 0, 0, 0, 0),

(1, 1, 1, 1, 1), and (1, 2, 3, 4, 5) result in failure of the method while randomized

coefficients, either real or complex, result in success. Perturbation is not the reason for

the issue, since this polynomial system required no perturbation terms for the matrix

construction. This demonstrates that randomization of the coefficients is necessary

for some polynomial systems. This polynomial system had a special structure which

may have contributed to the problem, but the implications are important because

many polynomial systems of interest could have some special structure.

36

Coefficients: {1, 0, 0, 0, 0}

Eigenvalues: {5.37228, -5., 4., 4., 4., 4., -3.37228, -3.37228,

-3.37228, -3.37228, 3., 3., 3., 3., 3., 3., 2.37228, 2.37228, 2.37228,

2.37228, -2., -2., -2., -2., 2., -2., -2., -1., -1., -1., -1., -0.372281}

Maximum norm: 7.98717×1014

Coefficients: {1, 1, 1, 1, 1}

Eigenvalues: {-25., 10., 9.11684, 9.11684, 9.11684, 9.11684,

9.11684, -8.11684, -8.11684, -8.11684, -8.11684, -8.11684, 7., 7.,

7., 7., 7., 7., 7., 7., 7., 7., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.}

Maximum norm: 7.02554×1015

Coefficients: {1, 2, 3, 4, 5}

Eigenvalues:

-75., -41.8397, -33.0951, 33., 32.8397, 30.0951, 30., 29., 27.3505, 25., 25.,

24.606, -24.3505, 24., 21.8614, 21., 21., 18., 17., 17., -15.606, 13.,

-12., 12., 12., 9., -6.86141, -6., 6., 6., 1.91636×10-15, 1.91636×10-15

Maximum norm: 2.68179×1015

Coefficients: {-0.892495, 0.19142, 0.93218, 0.793989, 0.845965}

Eigenvalues:

{-14.1142, -9.3553, 8.41748, -7.94857, 6.92675, 6.88819, 6.61489, 6.09761,

6.0072, 5.7993, 5.45444, -4.63585, -4.33315, -4.0213, 3.91331, 3.74212,

-3.50401, 2.99948, 2.48219, 2.25953, 2.17034, 2.11687, 1.88025, 1.84176,

1.67154, -1.4994, 1.46364, -1.2915, 1.11878, 1.08786, -0.94664, 0.633351}

Maximum norm: 8.63107×10-13

Coefficients: {-0.0902376 - 0.199044 ⅈ, -0.535705 + 0.512448 ⅈ,

0.0342581 + 0.0984042 ⅈ, -0.416437 + 0.952095 ⅈ, -0.14843 - 0.0893559 ⅈ}

Eigenvalues: {5.78276 - 6.37274 ⅈ, -3.39975 + 6.23816 ⅈ,

3.11113 - 6.03868 ⅈ, 2.60226 - 5.07951 ⅈ, -2.51498 + 4.97724 ⅈ,

4.19979 - 3.43763 ⅈ, -3.24574 + 4.2262 ⅈ, -3.01297 + 3.78745 ⅈ,

0.881098 - 4.27949 ⅈ, -2.496 + 3.56987 ⅈ, 0.258658 + 4.02752 ⅈ,

-2.33629 + 3.26883 ⅈ, -2.83769 + 2.75351 ⅈ, 0.0200298 + 3.7539 ⅈ,

1.97723 - 3.15293 ⅈ, -2.3131 + 2.54909 ⅈ, 1.62807 - 2.49481 ⅈ,

-1.0761 + 2.62734 ⅈ, -0.965883 + 2.57003 ⅈ, -0.733114 + 2.13128 ⅈ,

-0.726944 + 1.96921 ⅈ, 0.338914 - 2.03453 ⅈ, -1.27339 + 1.61714 ⅈ,

-1.46387 + 1.38024 ⅈ, -1.94094 - 0.378355 ⅈ, -1.79171 - 0.0105447 ⅈ,

-1.44296 + 0.811436 ⅈ, -1.60073 + 0.4105 ⅈ, -1.44255 - 0.668671 ⅈ,

-0.695579 + 1.11602 ⅈ, -1.21019 + 0.372685 ⅈ, -0.78429 + 0.182998 ⅈ}

Maximum norm: 1.68416×10-13

Figure 5.4: Output for varying coefficients of the multiplication matrices during the
pseudo-companion matrix build for PHCpack test problem wright.

37

5.7 Use of a Perturbation

Consider the following polynomial system.

p1 = 1 + 2x+ 3x2 + 4xy

p2 = 5 + 6xy + 7y2

Both polynomials lack strictly highest degree terms. We will introduce a perturbation

to obtain this form. Define new polynomials

q1 = 1 + 2x+ 3x2 + 4xy + ε x3

q2 = 5 + 6xy + 7y2 + ε y3

The degree of the added terms, in this case 3, is one greater than the degree of the

polynomials.

The set of monomials appearing in ~p is {1, x, x2, xy, y2}; the basis will include

these. The added monomials x3 and y3 will be replaced using

x3 = −µ− 2µx− 3µx2 − 4µxy

y3 = −5µ− 6µxy − 7µy2

where µ = 1
ε
.

In order to use these substitutions for every element of the border set, every

monomial xα1yα2 in the border set should have α1 ≥ 3 or α2 ≥ 3 (both could be true).

In order to achieve this, use a rectangular basis with bound < 2, 2 >. Explicitly, the

basis elements are 1, x, y, x2, xy, y2, x2y, xy2, and x2y2.

38

Determine the effect of multiplying each basis element by x and y, using substitu-

tions if needed to express each result as a linear combination of basis elements. For

multiplication by x we have

1
∗x−→ x

x
∗x−→ x2

y
∗x−→ xy

x2
∗x−→ −µ− 2µx− 3µx2 − 4µxy

xy
∗x−→ x2y

y2
∗x−→ xy2

x2y
∗x−→ −µy − 2µxy − 3µx2y − 4µxy2

xy2
∗x−→ x2y2

x2y2
∗x−→ 20µ2x− µy2 + 24µ2x2y + (28µ2 − 2µ)xy2 − 3µx2y2

39

and for multiplication by y we have

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ y2

x2
∗ y−→ x2y

xy
∗ y−→ xy2

y2
∗ y−→ −5µ− 6µxy − 7µy2

x2y
∗ y−→ x2y2

xy2
∗ y−→ −5µx− 6µx2y − 7µxy2

x2y2
∗ y−→ 6µ2y − 5µx2 + 12µ2xy + 18µ2x2y + 24µ2xy2 − 7µx2y2

These determine the matrices Mx and My.

Mx =

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

−µ −2µ 0 −3µ −4µ 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 −µ 0 −2µ 0 −3µ −4µ 0

0 0 0 0 0 0 0 0 1

0 20µ2 0 0 0 −µ 24µ2 28µ2 − 2µ −3µ

40

My =

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

−5µ 0 0 0 −6µ −7µ 0 0 0

0 0 0 0 0 0 0 0 1

0 −5µ 0 0 0 0 −6µ −7µ 0

0 0 6µ2 −5µ 12µ2 0 18µ2 24µ2 −7µ

The pseudo-companion matrix is a linear combination of these. The coefficients

in the linear combination are randomized.

ε is taken to be a small number, in this case 10−3, and then the eigensystem is

computed. The polynomial system ~q has more roots than the polynomial system ~p.

The computation produces some eigenvalues with large magnitude; the eigenvectors

associated with these do not correspond to roots of ~p and are disregarded. The

remaining four eigenvectors are scaled so the first element is one, and the second and

third elements of these eigenvectors are approximations of the x and y coordinates of

the roots of ~p. The computed approximations are:

< −2.08430, 1.18208 >

< −0.108885− 0.217562i, 0.0415760− 0.755769i >

< −0.108885 + 0.217562i, 0.0415760 + 0.755769i >

< 6.34639, −5.30926 >

41

These are roots of ~q.

The roots of ~p as computed by NSolve in Mathematica are:

x→ −2.08494, y → 1.18361

x→ −0.108878− 0.217564i, y → 0.0415373 − 0.755775i

x→ −0.108878 + 0.217564i, y → 0.0415373 + 0.755775i

x→ 6.30270, y → −5.26669

Plots of the curves are shown in Figures 5.5 through 5.8. The real solutions can

be visualized on these plots. The system ~q = ~0 is close to the system ~p = ~0 when

|x| and |y| are relatively small. The system ~q = ~0 has additional solutions with large

norm.

-10 -5 0 5 10
-10

-5

0

5

10

x

y p 1 = 0

p 2 = 0

Figure 5.5: The curves p1 = 0 and p2 = 0 where p1 = 1 + 2x + 3x2 + 4xy and
p2 = 5 + 6xy + 7y2.

42

-10 -5 0 5 10
-10

-5

0

5

10

x

y q 1 = 0

q 2 = 0

Figure 5.6: The system ~q = ~0 is close to ~p = ~0 when |x| and |y| are small.

-10000 -5000 0 5000

-10000

-5000

0

x

y p 1 = 0

p 2 = 0

Figure 5.7: The curves p1 = 0 and p2 = 0 where p1 = 1 + 2x + 3x2 + 4xy and
p2 = 5 + 6xy + 7y2.

-10000 -5000 0 5000

-10000

-5000

0

x

y q 1 = 0

q 2 = 0

Figure 5.8: The system ~q = ~0 has additional solutions with large norm.

43

5.8 Multiple Steady State Solutions for a

Reaction- Diffusion Model

We will approximate steady state solutions of a reaction-diffusion model as a means

of constructing polynomial systems of increasing size. Each polynomial system will

be qualitatively similar, but the number of polynomials and variables will increase.

We can then examine the corresponding increase in run times.

When we construct the pseudo-companion matrix, only half of the replacements

will decrease the degree, but the structure of the problem still allows the replacement

process to terminate. Half of the polynomials can be used in their original form, while

the other half require the addition of a perturbation term.

Consider the Turing reaction-diffusion model for pattern formation [19], specifi-

cally the Gierer-Meinhardt system [6]. We will use the form of the model and param-

eters given in [16]. This system is given by

ut = r

(
1 +

u2

v

)
− µu+Du∇2u (5.1a)

vt = ru2 − νv +Dv∇2v (5.1b)

where

r = 0.03, µ = 0.25, Du = 0.000027, ν = 2.0, Dv = 0.027

with zero flux boundary conditions. u(t, x) and v(t, x) are concentrations of an acti-

vator and inhibitor. We will consider this model for one spatial dimension.

The constant steady state is u∗ = 8.12, v∗ = 0.989. Nonconstant steady state

solutions are of greater interest. One way to look for additional steady state solutions

is to vary the initial conditions and solve the partial differential equation system over

44

an extended time interval, so that a steady state solution is attained (time-marching).

This approach can produce multiple stable steady states for this system, but provides

no insight for unstable steady state solutions.

We are interested in finding multiple steady state solutions. To systematically

search for both stable and unstable steady state solutions, we will discretize the

steady state problem using finite differences, and solve the corresponding system of

polynomials. This process is utilized in [8]. Although higher order discretizations

exist, we use a second order central difference method to be consistent with [8].

In equations 5.1a and 5.1b, set ut = vt = 0. Multiply equation 5.1a by v to get

a system of polynomials. Subtract equation 5.1b from equation 5.1a to eliminate the

u2 term in equation 5.1a. Divide equation 5.1b by r. The resulting equations are

0 = (r + ν)v − µuv +Du(∇2u)v −Dv∇2v (5.2a)

0 = u2 − ν

r
v +

Dv

r
∇2v (5.2b)

We can take advantage of the u2 term in equation 5.2b, but we will need to add a term

to equation 5.2a. Although equation 5.2a contains terms of degree 2, it is sufficient to

add a term of the form εv2. Using the replacement for v2 will not decrease the degree

overall, but it will decrease the degree of v and increase the degree of u; then the

replacement for u2 can be used, which will decrease the degree. Thus the replacement

process is guaranteed to terminate.

Take equally spaced grid points xj where x0 = 0, xN = 1, and h = 1
N

. In

the Mathematica implementation, N is replaced by M since N is already used by

the Mathematica program. At xj (j = 1, ..., N − 1), ∇2u is replaced by the second

order centered approximation 1
h2

[uj−1−2uj +uj+1]. The boundary conditions become

1
h
(3
2
u0− 2u1 + 1

2
u2) = 0 and 1

h
(3
2
uN − 2uN−1 + 1

2
uN−2) = 0. The same approximations

45

are made for v. For additional information on finite difference approximations, see

[12]. Adding a −εv2 term to equation 5.2a (ε was taken to be 2−4) and using these

discretizations results in the system of polynomials

0 = −εv2j + (r + ν)vj − µujvj +Du

(
1

h2
[uj−1 − 2uj + uj+1]

)
vj

−Dv

(
1

h2
[vj−1 − 2vj + vj+1]

)
0 = u2j −

ν

r
vj +

Dv

r

(
1

h2
[vj−1 − 2vj + vj+1]

)

for j = 1, ..., N − 1. This gives replacements of

v2j =
1

ε

[
(r + ν)vj − µujvj +Du

(
1

h2
[uj−1 − 2uj + uj+1]

)
vj

−Dv

(
1

h2
[vj−1 − 2vj + vj+1]

)]
u2j =

ν

r
vj −

Dv

r

(
1

h2
[vj−1 − 2vj + vj+1]

)

for j = 1, ..., N−1. The boundary equations are used to eliminate u0, uN , v0, and vN

from the equations. This results in a system of 2N−2 polynomial equations in 2N−2

unknowns. The pseudo-companion matrix size is 22N−2 × 22N−2.

The number of grid points must be chosen prior to matrix construction, but all

parameter values and ε may be left as symbolic quantities at this stage. If needed,

the symbolic matrix could be built once and subsequent steps could be performed

using multiple sets of parameters. Note that it takes longer to build the matrix with

arbitrary parameters than with specific numerical values. Run times (real time in

seconds) are shown in Table 5.1.

Biologically meaningful solutions should be real and nonnegative. We screen for

solutions meeting these criteria. The eigenvalues are linear combinations of the co-

46

N Symbolic matrix Numerical matrix Dense eigensystem Bertini

4 5.3751 0.51758 0.0030028 1.6634
5 146.59 8.4115 0.099112 12.355
6 4492.3 163.45 2.4658 107.10

Table 5.1: Run times on a laptop computer (real time in seconds) for the steady state
solutions problem.

ordinates of the roots. We have chosen the coefficients in this linear combination to

be nonnegative and real. Then the eigenvalues corresponding to meaningful solutions

are positive and real (we are not interested in solutions which are identically equal to

zero). First we can screen solutions based on eigenvalues. Then screen the solutions

by checking each coordinate individually.

The addition of the perturbation term means that the pseudo-companion matrix

eigenvectors encode approximations of the roots. The results are run through a few

iterations of Newton’s method as a refinement step. Our code limits the number

of iterations to at most 6; some randomizations may require more iterations. Since

ours is a new method, we also found solutions using Bertini for comparison. When

running Bertini, all the default settings were used. The boundary conditions were

used to eliminate u0, uN , v0, and vN from the equations prior to running Bertini,

and the uj and vj variables comprised two variable groups. We first verified that our

matrix method and Bertini found the same number of biologically meaningful roots.

We then verified that the 2-norm of the difference between each root found by our

matrix method and the corresponding root found by Bertini was less than 10−14.

The results are shown in Figures 5.9 through 5.14. The psuedo-companion matrix

successfully finds the roots of the polynomial system. The constant steady state is

among the results.

Each additional grid point increases the number of polynomials and variables by 2.

As grid points are added, the time required to solve the polynomial system increases

47

500 1000 1500 2000
Re

-100

-50

50

100

Im

All eigenvalues

Meaningful eigenvalues

Printed by Wolfram Mathematica Student Edition

Figure 5.9: Eigenvalues for discretized steady states on grid points 0 through 4.

exponentially. Note that we could make the computations faster by building the

pseudo-companion matrix with decimal values for the parameters instead of building

it symbolically (see table 5.1). We could also search for eigenvalues in a region instead

of finding the entire eigensystem.

Our pseudo-companion matrix method successfully found roots of systems of 6,

8, and 10 quadratics. For the two smaller polynomial systems, the sum of the matrix

build time and the eigensystem computation time (performed in Mathematica) was

less than the Bertini run time (due to variations in the Bertini run times, Bertini

was run 5 times for each polynomial system and the average was reported). For

the largest polynomial system, Bertini was faster. For our psuedo-companion matrix

method, the majority of the time for the largest polynomial system was spent on

the eigensystem computation. Note that the full eigensystem was computed using

dense matrix methods. Alternative eigensolvers could be considered to utilize the

distribution of the eigenvalues for solutions of interest, but that is beyond the scope

of this work.

48

7.5 8.0 8.5 9.0
Re

-20

-10

10

20
Im

All eigenvalues

Meaningful eigenvalues

Printed by Wolfram Mathematica Student Edition

Figure 5.10: Closeup of meaningful eigenvalues for discretized steady states on grid
points 0 through 4.

500 1000 1500
Re

-400

-200

200

400

Im

All eigenvalues

Meaningful eigenvalues

Printed by Wolfram Mathematica Student Edition

Figure 5.11: Eigenvalues for discretized steady states on grid points 0 through 5.

49

22 24 26 28 30
Re

-20

-10

10

20
Im

All eigenvalues

Meaningful eigenvalues

Printed by Wolfram Mathematica Student Edition

Figure 5.12: Closeup of meaningful eigenvalues for discretized steady states on grid
points 0 through 5.

500 1000 1500 2000 2500 3000
Re

-600

-400

-200

200

400

600

Im

All eigenvalues

Meaningful eigenvalues

Printed by Wolfram Mathematica Student Edition

Figure 5.13: Eigenvalues for discretized steady states on grid points 0 through 6.

50

20 22 24 26 28 30 32
Re

-20

-10

10

20
Im

All eigenvalues

Meaningful eigenvalues

Printed by Wolfram Mathematica Student Edition

Figure 5.14: Closeup of meaningful eigenvalues for discretized steady states on grid
points 0 through 6.

51

6 Effect of Perturbation Terms

When perturbation terms are added, the modified polynomial system ~q has higher

degree than the original polynomial system ~p. Thus ~q would be expected to have

more roots than ~p. The additional “spurious” roots are those roots of ~q which do

not correspond to roots of ~p. The roots of ~q which do correspond to roots of ~p will

be used as approximations of the roots of ~p. We will examine the behavior of both

types of roots as ε approaches 0, or in other words as µ gets larger. Recall that ε = 0

produces the original polynomial system. ε must be taken to be nonzero in order to

construct the pseudo-companion matrix.

Earlier examples in this work were chosen because their structure illustrated some

aspect of constructing the pseudo-companion matrix. Now we will select some exam-

ples from the PHCpack test problems which do not seem to have any special structure

which can be exploited by our method. These polynomial systems will require the

addition of a perturbation term to each individual polynomial. The degree of each

perturbation term will be one more than the degree of the polynomial to which it is

added.

A complete assessment of our method would include all the PHCpack test prob-

lems. For this exploratory work, we will only examine a few of them. Note that with

our available computing and time resources we have selected some of the relatively

smaller problems.

For visualization purposes the eigenvalues of the pseudo-companion matrices are

plotted. The target solutions are depicted on these plots as linear combinations of

the coordinates of the roots. The coefficients in these linear combinations are the

52

same as the coefficients in the linear combinations of the multiplication matrices

used to construct the pseudo-companion matrices. The code is in Appendix B. 32

digit precision is used in the Mathematica implementations in anticipation of large

variations in the size of the entries of the matrices.

6.1 PHCpack Test Problem “Noon3”

We begin by exploring the behavior of the PHCpack test problem noon3 [21]:

x1x
2
2 + x1x

2
3 − 1.1x1 + 1

x2x
2
1 + x2x

2
3 − 1.1x2 + 1

x3x
2
1 + x3x

2
2 − 1.1x3 + 1

There are 21 roots. The size of the pseudo-companion matrix is 64× 64. Results

are shown in Figures 6.1 through 6.4. We show results for µ = 26 and µ = 212.

Increasing µ increases the magnitude of the spurious eigenvalues and improves the

estimation of the roots of the original system. By µ = 212, we have achieved good

estimations and good separation between the spurious and meaningful eigenvalues.

In practice, we may be able to use lower values of µ if we are willing to run more

iterations of Newton’s method and screen out spurious roots.

53

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

-200 -150 -100 -50 50
Re

-50

50

Im

μ = 26

Figure 6.1: All eigenvalues for PHCpack test problem noon3 with µ = 26.

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

-10000 -5000 5000
Re

-4000

-2000

2000

4000

Im

μ = 212

Figure 6.2: All eigenvalues for PHCpack test problem noon3 with µ = 212.

54

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●●● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

-1.5 -1.0 -0.5 0.5 1.0
Re

-0.5

0.5

Im

μ = 26

Figure 6.3: Eigenvalues (black) and target solutions (magenta) for PHCpack test
problem noon3 with µ = 26.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●●● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

-1.5 -1.0 -0.5 0.5 1.0
Re

-0.5

0.5

Im

μ = 212

Figure 6.4: Eigenvalues (black) and target solutions (magenta) for PHCpack test
problem noon3 with µ = 212.

55

6.2 PHCpack Test Problem “Chandra4”

Now consider the PHCpack test problem chandra4 [21]:

8H1 − 0.51234H1

(
1 +

1

2
H1 +

1

3
H2 +

1

4
H3

)
− 8

8H2 − 0.51234H2

(
1

2
+

1

3
H1 +

1

4
H2 +

1

5
H3

)
− 8

8H3 − 0.51234H3

(
1

3
+

1

4
H1 +

1

5
H2 +

1

6
H3

)
− 8

8H4 − 0.51234H4

(
1

4
+

1

5
H1 +

1

6
H2 +

1

7
H3

)
− 8

The system has 8 solutions. The size of the pseudo-companion matrix is 81× 81.

For this polynomial system, we increase µ to as high as 224 to obtain convincing

results on the plot. In the first set of computations, real coefficients are used in the

linear combination of the multiplication matrices to obtain the pseudo-companion

matrix (see results in Figures 6.5 through 6.12). In the second set of computations,

complex coefficients are used (see Figures 6.13 through 6.20). Again, we continue

until µ = 224. In Figures 6.19 and 6.20, it is apparent that the high magnitude roots

present in this system are resolved for higher values of µ.

56

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●

5 10 15 20 25
Re

-30

-20

-10

10

20

30

Im

μ = 26

Figure 6.5: All eigenvalues for PHCpack test problem chandra4 with µ = 26 (real
randomization).

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

500 1000 1500 2000 2500 3000 3500
Re

-100

-50

50

100

Im

μ = 212

Figure 6.6: All eigenvalues for PHCpack test problem chandra4 with µ = 212 (real
randomization).

57

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

50000 100000 150000 200000
Re

-300

-200

-100

100

200

300

Im

μ = 218

Figure 6.7: All eigenvalues for PHCpack test problem chandra4 with µ = 218 (real
randomization).

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

5.×106 1.×107
Re

-2000

-1000

1000

2000

Im

μ = 224

Figure 6.8: All eigenvalues for PHCpack test problem chandra4 with µ = 224 (real
randomization).

58

● ●●●● ● ●● ●

●

●

●

●

-50 50 100
Re

-1.0

-0.5

0.5

1.0

Im

μ = 26

Figure 6.9: Eigenvalues (black) and target solutions (purple) for PHCpack test prob-
lem chandra4 with µ = 26 (real randomization).

● ●●●● ● ●● ● ●● ●●●● ● ●●

-50 50 100
Re

-1.0

-0.5

0.5

1.0

Im

μ = 212

Figure 6.10: Eigenvalues (black) and target solutions (purple) for PHCpack test prob-
lem chandra4 with µ = 212 (real randomization).

59

● ●●●● ● ●● ●●●●●●

-50 50 100
Re

-1.0

-0.5

0.5

1.0

Im

μ = 218

Figure 6.11: Eigenvalues (black) and target solutions (purple) for PHCpack test prob-
lem chandra4 with µ = 218 (real randomization).

● ●●●● ● ●● ●● ●●●●●●

-50 50 100
Re

-1.0

-0.5

0.5

1.0

Im

μ = 224

Figure 6.12: Eigenvalues (black) and target solutions (purple) for PHCpack test prob-
lem chandra4 with µ = 224 (real randomization).

60

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●●

●●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●
●

●

-10 10 20 30
Re

-20

20

40

Im

μ = 26

Figure 6.13: All eigenvalues for PHCpack test problem chandra4 with µ = 26 (complex
randomization).

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●
●●●●

●

●
●
●

●●

●●

●
●

●●
●

●●
●

●●

●

●●●

●●
●
●
●●

●●
●●
●
●●●●●
●●●●●

500 1000 1500 2000 2500 3000 3500
Re

-200

200

400

600

800

1000

1200

Im

μ = 212

Figure 6.14: All eigenvalues for PHCpack test problem chandra4 with µ = 212 (com-
plex randomization).

61

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

50000 100000 150000 200000
Re

20000

40000

60000

80000

Im

μ = 218

Figure 6.15: All eigenvalues for PHCpack test problem chandra4 with µ = 218 (com-
plex randomization).

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●
●

●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

5.0 ×106 1.0 ×107 1.5 ×107
Re

1 ×106

2 ×106

3 ×106

4 ×106

5 ×106

Im

μ = 224

Figure 6.16: All eigenvalues for PHCpack test problem chandra4 with µ = 224 (com-
plex randomization).

62

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●●

●●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●
●

●●

●
●●

-400 -300 -200 -100 100
Re

-20

20

40

60

80
Im

μ = 26

Figure 6.17: Eigenvalues (black) and target solutions (purple) for PHCpack test prob-
lem chandra4 with µ = 26 (complex randomization).

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

-400 -300 -200 -100 100
Re

-20

20

40

60

80
Im

μ = 212

Figure 6.18: Eigenvalues (black) and target solutions (purple) for PHCpack test prob-
lem chandra4 with µ = 212 (complex randomization).

63

●
● ●

●
●

●

●

●

●

●
●
●

●

●

-400 -300 -200 -100 100
Re

-20

20

40

60

80
Im

μ = 218

Figure 6.19: Eigenvalues (black) and target solutions (purple) for PHCpack test prob-
lem chandra4 with µ = 218 (complex randomization).

●
● ●

●
●

●

●

●●

●

●

●
●
●

●

●

-400 -300 -200 -100 100
Re

-20

20

40

60

80
Im

μ = 224

Figure 6.20: Eigenvalues (black) and target solutions (purple) for PHCpack test prob-
lem chandra4 with µ = 224 (complex randomization).

64

6.3 General Case

The original polynomial system is ~p and the polynomial system with added pertur-

bation terms is ~q. Let ~x be a root of ~p. Let ~X (ε) be a root of ~q. Then

~q(~X (ε)) = ~0

or equivalently

~p(~X (ε)) + ε

X1(ε)
d1+1

X2(ε)
d2+1

...

Xn(ε)dn+1

= ~0

Set

~r(~X (ε)) =

X1(ε)
d1+1

X2(ε)
d2+1

...

Xn(ε)dn+1

to get

~p(~X (ε)) + ε ~r(~X (ε)) = ~0

Now take the partial derivative with respect to ε to obtain

~p ′(~X (ε)) ~X ′(ε) + ~r(~X (ε)) + ε ~r ′(~X (ε)) ~X ′(ε) = ~0

65

We also have that ~X (0) = ~x, so setting ε = 0 we have

~p ′(~x) ~X ′(0) + ~r(~x) = ~0

Assuming the relevant matrix inverse exists, then

~X ′(0) = −[~p ′(~x)]−1~r(~x)

If ~X (ε) is approximated by ~x + ε ~X ′(0), then ~X (ε)→ ~x as ε→ 0 because ~X ′(0) does

not depend on ε.

This approach could not be used for a system such as

p1 =x2 + y2 − 1

p2 =x− 1

which has a root of x = 1, y = 0. Replacing x with X (ε) and y with Y(ε), we have

X (ε)2 + Y(ε)2 − 1

X (ε)− 1

Take the partial derivative with respect to ε:

2X (ε)X ′(ε) + 2Y(ε)Y ′(ε)

X ′(ε)

66

Set ε = 0, noting that X (0) = 1 and Y(0) = 0. We are left with

2X ′(0)

X ′(0)

In matrix form,

2 0

1 0

X ′(0)

Y ′(0)

This matrix is not invertible.

Discussion of the Implicit Function Theorem can be found in [15].

6.4 Convergence Order

Consider the polynomial system

p1 = −18 + 6x+ 15y − 5xy − 3y2 + xy2

p2 = 42− 18x− 42y + 15xy + 9y2 − 3xy2

The only solution is x = 3, y = 4. Although each polynomial has a highest degree

term, neither of these terms are univariate, so a perturbation term will be added to

each polynomial. Namely, we will have

q1 = p1 + ε x4

q2 = p2 + ε y4

We will use this example to observe the convergence order of the approximations

67

of the root as ε becomes smaller. At each step, ε is multiplied by 10−1. The error

is computed as the 2-norm of the difference between the computed approximate root

and the actual root. The convergence order at each step is computed as

ln

(
previous error

new error

)/
ln(10)

When performing the computations, we used 32 digit precision.

The results are shown in Table 6.1. We observed first order convergence. We were

able to obtain close estimates of the root by taking ε sufficiently small.

We can also use this example as a specific case of the discussion in the “General

Case” section. Again, we will consider the polynomial system

p1 = −18 + 6x+ 15y − 5xy − 3y2 + xy2

p2 = 42− 18x− 42y + 15xy + 9y2 − 3xy2

with solution x = 3, y = 4. We add perturbation terms to obtain

q1 = p1 + ε x4

q2 = p2 + ε y4

Let X (ε) and Y(ε) be the coordinates of the root of ~q approximating the root of ~p.

We have, setting ~q equal to zero,

−18 + 6X (ε) + 15Y(ε)− 5X (ε)Y(ε)− 3Y(ε)2 + X (ε)Y(ε)2 + εX (ε)4 = 0

42− 18X (ε)− 42Y(ε) + 15X (ε)Y(ε) + 9Y(ε)2 − 3X (ε)Y(ε)2 + εY(ε)4 = 0

68

ε x(ε) y(ε) Error Order

10−3 2.951787172558878 3.850787372344666 1.56808434 · 10−1 —

10−4 2.995870928954492 3.983550672759212 1.69596461 · 10−2 0.96595263

10−5 2.999594208322072 3.998338521744426 1.71031485 · 10−3 0.99634072

10−6 2.999959492082346 3.999833685232742 1.71176789 · 10−4 0.99963119

10−7 2.999995949920823 3.999983366852343 1.71191338 · 10−5 0.99996309

10−8 2.999999594999208 3.999998336668523 1.71192793 · 10−6 0.99999631

10−9 2.999999959499992 3.999999833666685 1.71192939 · 10−7 0.99999963

10−10 2.999999995950000 3.999999983366667 1.71192953 · 10−8 0.99999996

10−11 2.999999999595000 3.999999998336667 1.71192955 · 10−9 1.0000000

10−12 2.999999999959500 3.999999999833667 1.71192955 · 10−10 1.0000000

10−13 2.999999999995950 3.999999999983367 1.71192955 · 10−11 1.0000000

10−14 2.999999999999595 3.999999999998337 1.71192955 · 10−12 1.0000000

10−15 2.999999999999959 3.999999999999834 1.71192955 · 10−13 1.0000000

10−16 2.999999999999996 3.999999999999983 1.71192976 · 10−14 0.99999995

10−17 3.000000000000000 3.999999999999998 1.71193700 · 10−15 0.99999816

Table 6.1: Numerical results of using a pseudo-companion matrix for the system
p1 = −18 + 6x+ 15y− 5xy− 3y2 + xy2 and p2 = 42− 18x− 42y+ 15xy+ 9y2− 3xy2

whose only solution is x = 3, y = 4.

69

Take the partial derivative with respect to ε.

6X ′(ε) + 15Y ′(ε)− 5X ′(ε)Y(ε)− 5X (ε)Y ′(ε)− 6Y(ε)Y ′(ε)

+ X ′(ε)Y(ε)2 + 2X (ε)Y(ε)Y ′(ε) + X (ε)4 + 4εX (ε)3X ′(ε) = 0

−18X ′(ε)− 42Y ′(ε) + 15X ′(ε)Y(ε) + 15X (ε)Y ′(ε) + 18Y(ε)Y ′(ε)

− 3X ′(ε)Y(ε)2 − 6X (ε)Y(ε)Y ′(ε) + Y(ε)4 + 4εY(ε)3Y ′(ε) = 0

Set ε = 0 and use the fact that X (0) = 3 and Y(0) = 4.

6X ′(0) + 15Y ′(0)− 5X ′(0)(4)− 5(3)Y ′(0)− 6(4)Y ′(0)

+ X ′(0)(4)2 + 2(3)(4)Y ′(0) + (3)4 = 0

−18X ′(0)− 42Y ′(0) + 15X ′(0)(4) + 15(3)Y ′(0) + 18(4)Y ′(0)

− 3X ′(0)(4)2 − 6(3)(4)Y ′(0) + (4)4 = 0

Simplifying, we have

6X ′(0) + 15Y ′(0)− 20X ′(0)− 15Y ′(0)− 24Y ′(0) + 16X ′(0) + 24Y ′(0) + 81 = 0

−18X ′(0)− 42Y ′(0) + 60X ′(0) + 45Y ′(0) + 72Y ′(0)− 48X ′(0)− 72Y ′(0) + 256 = 0

or

2X ′(0) + 0Y ′(0) + 81 = 0

−6X ′(0) + 3Y ′(0) + 256 = 0

70

Writing this in matrix form,

 2 0

−6 3

X ′(0)

Y ′(0)

+

 81

256

 =

0

0

Solve to get

X ′(0)

Y ′(0)

 = −

 2 0

−6 3

−1 81

256

 =

 −81/2

−499/3

We expect that

X (ε)

Y(ε)

 ≈
3

4

+ ε

 −81/2

−499/3

We can now evaluate this approximation for some specific values of ε. For example,

X (10−3)

Y(10−3)

 ≈
2.95950

3.83367

and X (10−4)

Y(10−4)

 ≈
2.99595

3.98337

These are consistent with the actual results we obtained.

71

7 Linear Subsystems

Performing linear eliminations as a preliminary step decreases the size of the matrix,

but it is not necessary. We will examine two test problems for which the polynomial

system contains a linear polynomial. We will compare the results from using the linear

equation to eliminate one of the variables from the polynomial system before building

the pseudo-companion matrix with the results from treating the linear polynomial

like any other polynomial and adding a perturbation term. We will use the same

methodology for the examples in this section that we used in Section 6.

This also helps address the larger question of how the presentation of the problem

affects the results. The method should still work even if the polynomial system

is given in an alternate but equivalent form. Of course, the size of the basis and

therefore the matrix could change. Suppose, for example, that we are constructing

a pseudo-companion matrix for a polynomial system whose first polynomial is linear

and contains x1 (any polynomial system with a linear polynomial could be made to

take this form by reordering the polynomials and renaming the variables). If we added

a perturbation term to this first polynomial, it would have degree 2. Then the basis

would be rectangular with bound < 1, d2, ..., dn >. Monomials in the basis would have

the degree of the first variable equal to 0 or 1. If instead we used the first (linear)

polynomial to eliminate x1 from the system, then the basis would be rectangular with

bound < d2, ..., dn >. Now monomials in this basis would not contain x1. We could

think of the degree of x1 as always being 0 in this basis. Eliminating x1 reduced the

choices for the exponent of x1 from 0 and 1 to only 0. This halves the size of the

basis.

72

7.1 PHCpack Test Problem “Eco5”

We will begin by examining the polynomial system eco5 as given in the PHCpack

materials [21]:

(x1 + x1x2 + x2x3 + x3x4)x5 − 1

(x2 + x1x3 + x2x4)x5 − 2

(x3 + x1x4)x5 − 3

x4x5 − 4

x1 + x2 + x3 + x4 + 1

The system has 8 solutions. We will first use the linear polynomial to eliminate

an arbitrary variable from the system. Here we eliminate x1. The pseudo-companion

matrix size is 192 × 192. The results are shown in Figures 7.1, 7.3, and 7.5. In

the second set of results, we proceed without any linear eliminations and simply

add a perturbation term to all five polynomials. The resulting pseudo-companion

matrix is a 384 × 384 matrix. The results are shown in Figures 7.2, 7.4, and 7.6.

Performing a linear elimination reduces the size of the matrix and the number of

spurious eigenvalues. Satisfactory results are attained by µ = 218 regardless of the

treatment of the linear polynomial.

73

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
-5 -4 -3 -2 -1 1

Re

-1.0

-0.5

0.5

1.0

Im

μ = 26

Figure 7.1: Eigenvalues (black) and target solutions (red) for PHCpack test problem
eco5 with µ = 26 (eliminate x1).

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

-15 -10 -5 5
Re

-1.0

-0.5

0.5

1.0

Im

μ = 26

Figure 7.2: Eigenvalues (black) and target solutions (blue) for PHCpack test problem
eco5 with µ = 26 (no linear eliminations).

74

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

-5 -4 -3 -2 -1 1
Re

-1.0

-0.5

0.5

1.0

Im

μ = 212

Figure 7.3: Eigenvalues (black) and target solutions (red) for PHCpack test problem
eco5 with µ = 212 (eliminate x1).

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

-15 -10 -5 5
Re

-1.0

-0.5

0.5

1.0

Im

μ = 212

Figure 7.4: Eigenvalues (black) and target solutions (blue) for PHCpack test problem
eco5 with µ = 212 (no linear eliminations).

75

●

●

●

●

●

● ●

●

● ● ●

●

●

●

●

●

-5 -4 -3 -2 -1 1
Re

-1.0

-0.5

0.5

1.0

Im

μ = 218

Figure 7.5: Eigenvalues (black) and target solutions (red) for PHCpack test problem
eco5 with µ = 218 (eliminate x1).

●

●

●

●

●

●●

●

● ●

●

●

● ●

●

●

-15 -10 -5 5
Re

-1.0

-0.5

0.5

1.0

Im

μ = 218

Figure 7.6: Eigenvalues (black) and target solutions (blue) for PHCpack test problem
eco5 with µ = 218 (no linear eliminations).

76

7.2 PHCpack Test Problem “Gaukwa2”

We will again use a PHCpack problem, this time the system gaukwa2 [21]:

w1 + w2 − 0.998250904334731 + 0.0591196413630250i

w1x1 + w2x2 − 0.892749639148806 + 0.450553084330444i

w1x
2
1 + w2x

2
2 + 0.160088552022675 + 0.987102657027770i

w1x
3
1 + w2x

3
2 − 0.725369971319578 + 0.688359211972815i

For the first set of results, we use the linear equation to eliminate w1 from the

polynomial system before proceeding with the pseudo-companion matrix build. The

pseudo-companion matrix size is 60 × 60. For the second set of results, we do not

alter the system. Now the pseudo-companion matrix size is 120×120. The results for

increasing values of µ are shown in Figures 7.7 through 7.14. With both approaches,

suitable results are achieved around µ = 218 to µ = 224. Using a linear polynomial to

eliminate a variable from the system decreases the size of the matrix, but otherwise

the results are comparable. Our results to date suggest that, other than matrix size,

the performance of the pseudo-companion matrix method is relatively independent

of the form in which the polynomial system is provided.

77

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●-4 -2 2 4
Re

-4

-2

2

4

Im

μ = 26

Figure 7.7: Eigenvalues (black) and target solutions (green) for PHCpack test problem
gaukwa2 with µ = 26 (eliminate w1).

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

-4 -2 2 4
Re

-4

-2

2

4

Im

μ = 26

Figure 7.8: Eigenvalues (black) and target solutions (gold) for PHCpack test problem
gaukwa2 with µ = 26 (no linear eliminations).

78

●
●

●

●

●

●

●

●
●

● ●-4 -2 2 4
Re

-4

-2

2

4

Im

μ = 212

Figure 7.9: Eigenvalues (black) and target solutions (green) for PHCpack test problem
gaukwa2 with µ = 212 (eliminate w1).

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

-4 -2 2 4
Re

-4

-2

2

4

Im

μ = 212

Figure 7.10: Eigenvalues (black) and target solutions (gold) for PHCpack test problem
gaukwa2 with µ = 212 (no linear eliminations).

79

●
●

●

●

●

●

●

●-4 -2 2 4
Re

-4

-2

2

4

Im

μ = 218

Figure 7.11: Eigenvalues (black) and target solutions (green) for PHCpack test prob-
lem gaukwa2 with µ = 218 (eliminate w1).

● ●

●

●

●
●

-4 -2 2 4
Re

-4

-2

2

4

Im

μ = 218

Figure 7.12: Eigenvalues (black) and target solutions (gold) for PHCpack test problem
gaukwa2 with µ = 218 (no linear eliminations).

80

●
●●

●-4 -2 2 4
Re

-4

-2

2

4

Im

μ = 224

Figure 7.13: Eigenvalues (black) and target solutions (green) for PHCpack test prob-
lem gaukwa2 with µ = 224 (eliminate w1).

● ●
●

●
-4 -2 2 4

Re

-4

-2

2

4

Im

μ = 224

Figure 7.14: Eigenvalues (black) and target solutions (gold) for PHCpack test problem
gaukwa2 with µ = 224 (no linear eliminations).

81

8 Conclusion and Future Work

We have introduced the pseudo-companion matrix for finding roots of polynomial

systems. In some cases, a perturbation of the polynomial system is used for the

matrix construction. We have explored the process of constructing the matrix and

the results of the computation through a series of examples.

At this stage, the code was written to be straightforward. We have not attempted

to make the pseudo-companion matrix code as fast as possible. This would be use-

ful for comparing the pseudo-companion matrix method for root finding to existing

methods.

Our interest in our new method relates to the possibility of only finding eigenvalues

in a specified region of the complex plane, for example using a non-Hermitian FEAST

method [11]. For this introductory work we have used the standard eigensolvers.

The eigenvectors for our problem have a particular structure. This is even present

in the single variable case, in that the standard companion matrix has eigenvectors

of the form < 1, λ, λ2, ..., λn−1 >. This is of less interest when finding the roots of

a single variable polynomial, since the roots are given by the eigenvalues and the

eigenvectors do not need to be computed. In the multivariable case the eigenvectors

are necessary for obtaining the coordinates of the roots. This raises the question of

whether this structure can be utilized to improve the efficiency of the eigensystem

computation. There is certainly additional information available which the current

eigensolver is not taking in to account.

82

9 References

[1] Daniel J. Bates, Andrew J. Newell, and Matthew Niemerg. “BertiniLab: A

MATLAB interface for solving systems of polynomial equations”. In: Numerical

Algorithms 71 (1 Jan. 2016), pp. 229–244. issn: 1572-9265. doi: 10.1007/

s11075-015-0014-6. url: https://doi.org/10.1007/s11075-015-0014-6.

[2] Daniel J. Bates et al. Bertini: Software for Numerical Alge-

braic Geometry. Available at bertini.nd.edu with permanent doi:

dx.doi.org/10.7274/R0H41PB5. 2013.

[3] Daniel J. Bates et al. Numerically Solving Polynomial Systems with Bertini.

Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2013.

[4] Louis Brand. “The Companion Matrix and Its Properties”. In: The American

Mathematical Monthly 71.6 (1964), pp. 629–634. url: http://www.jstor.

org/stable/2312322.

[5] Miroslav Fiedler. “A note on companion matrices”. In: Linear Algebra and its

Applications 372 (2003), pp. 325–331. doi: https://doi.org/10.1016/S0024-

3795(03)00548-2. url: http://www.sciencedirect.com/science/article/

pii/S0024379503005482.

[6] A. Gierer and H. Meinhardt. “A theory of biological pattern formation”. In:

Kybernetik 12.1 (Dec. 1972), pp. 30–39. doi: https://doi.org/10.1007/

BF00289234. url: https : / / link . springer . com / article / 10 . 1007 /

BF00289234.

83

[7] Yun Guan and Jan Verschelde. “PHClab: A MATLAB/Octave Interface to

PHCpack”. In: Software for Algebraic Geometry. Ed. by Michael Stillman, Jan

Verschelde, and Nobuki Takayama. New York, NY: Springer New York, 2008,

pp. 15–32. isbn: 978-0-387-78133-4. doi: 10.1007/978-0-387-78133-4_2.

url: https://doi.org/10.1007/978-0-387-78133-4_2.

[8] Wenrui Hao et al. “Multiple stable steady states of a reaction-diffusion model

on zebrafish dorsal-ventral patterning”. In: Discrete and Continuous Dynam-

ical Systems - Series S 4.6 (2011), pp. 1413–1428. issn: 1937-1632. doi: 10.

3934/dcdss.2011.4.1413. url: http://aimsciences.org/journals/

displayArticlesnew.jsp?paperID=5810.

[9] Jonathan D. Hauenstein and Frank Sottile. “Algorithm 921: alphaCertified: Cer-

tifying Solutions to Polynomial Systems”. In: ACM Transactions on Mathemat-

ical Software 38.4 (Aug. 2012), 28:1–28:20. doi: 10.1145/2331130.2331136.

url: http://doi.acm.org/10.1145/2331130.2331136.

[10] The MathWorks Inc. Polynomial roots - MATLAB roots. 2017. url: https://

www.mathworks.com/help/matlab/ref/roots.html (visited on 09/21/2017).

[11] James Kestyn, Eric Polizzi, and Ping Tak Peter Tang. “Feast Eigensolver for

Non-Hermitian Problems”. In: SIAM Journal on Scientific Computing 38.5

(2016), S772–S799. doi: 10.1137/15M1026572. url: https://doi.org/10.

1137/15M1026572.

[12] Randall LeVeque. Finite Difference Methods for Ordinary and Partial Dif-

ferential Equations: Steady-State and Time-Dependent Problems. Philadel-

phia, PA, USA: Society for Industrial and Applied Mathematics, 2007. isbn:

9780898716290.

84

[13] Cyrus Colton MacDuffee. The Theory of Matrices. Corrected Reprint of First

Edition. New York, NY, USA: Chelsea Publishing Company, 1946.

[14] Dinesh Manocha. “Computing Selected Solutions of Polynomial Equations”. In:

Proceedings of the International Symposium on Symbolic and Algebraic Com-

putation. ISSAC ’94. Oxford, United Kingdom: ACM, 1994, pp. 1–8. isbn: 0-

89791-638-7. doi: 10.1145/190347.190349. url: http://doi.acm.org/10.

1145/190347.190349.

[15] Jorge Nocedal and Stephen Wright. Numerical Optimization. 2nd ed. Springer

Series in Operations Research and Financial Engineering. Springer-Verlag New

York, 2006. isbn: 978-0-387-30303-1.

[16] Karen M. Page, Philip K. Maini, and Nicholas A.M. Monk. “Complex pattern

formation in reaction-diffusion systems with spatially varying parameters”. In:

Physica D 202.1 (2005), pp. 95–115. doi: https://doi.org/10.1016/j.

physd.2005.01.022. url: http://www.sciencedirect.com/science/

article/pii/S0167278905000527.

[17] Hans J. Stetter. Numerical Polynomial Algebra. Philadelphia, PA, USA: Society

for Industrial and Applied Mathematics, 2004.

[18] Bernd Sturmfels. “What is a Gröbner Basis?” In: Notices of the American Math-

ematical Society 52.10 (Nov. 2005), pp. 1199–1200. url: http://www.ams.org/

journals/notices/200510/what-is.pdf.

[19] A. M. Turing. “The Chemical Basis of Morphogenesis”. In: Philosophical

Transactions of the Royal Society B: Biological Sciences 237.641 (Aug. 1952),

pp. 37–72. doi: 10 . 1098 / rstb . 1952 . 0012. url: http : / / rstb .

royalsocietypublishing.org/content/237/641/37.

85

[20] Jan Verschelde. “Algorithm 795: PHCpack: A General-Purpose Solver for Poly-

nomial Systems by Homotopy Continuation”. In: ACM Transactions on Mathe-

matical Software 25.2 (June 1999), pp. 251–276. doi: 10.1145/317275.317286.

url: http://doi.acm.org/10.1145/317275.317286.

[21] Jan Verschelde. The Test Database of Polynomial Systems. 1999. url: http:

//homepages.math.uic.edu/~jan/PHCpack/node10.html.

[22] Michael Peretzian Williams. “Solving Polynomial Equations Using Linear Alge-

bra”. In: Johns Hopkins APL Technical Digest 28.4 (2010), pp. 354–363. url:

http://www.jhuapl.edu/techdigest/TD/td2804/Williams.pdf.

[23] Wolfram. High-Performance Numeric Solution of Polynomial Systems. url:

https://www.wolfram.com/mathematica/new-in-10/enhanced-algebraic-

computation/high-performance-numeric-solution-of-polynomial-sy.

html (visited on 09/21/2017).

[24] Alden H. Wright. “Finding all solutions to a system of polynomial equations”.

In: Mathematics of Computation 44.169 (Jan. 1985), pp. 125–133. doi: https:

//doi.org/10.1090/S0025-5718-1985-0771035-4. url: http://www.ams.

org/journals/mcom/1985-44-169/S0025-5718-1985-0771035-4/.

86

A Steady State Solutions Code

Pseudo-companion matrix subfunctions

BuildBasis[varCount0_] :=

Module[{varCount = varCount0, list},

list = Tuples[{0, 1}, varCount];

Flatten[Map[Reverse, SplitBy[SortBy[list, Total], Total]], 1]

];

(* convert from {1,2,0} to xy2 *)

MonomialView[basis0_, vars0_] :=

Module[{basis = basis0, vars = vars0, mview},

mview = Table[

FromCoefficientRules[{Rule[basis[[i]], 1]}, vars], {i, Length[basis]}];

mview

];

Replacer[element0_, vars0_, replacements0_] :=

Module[{element = element0, vars = vars0, replacements = replacements0},

While[Max[Exponent[element, vars]] > 1,

element = Expand[element /. replacements]];

element

];

SparseIndices[multiplied0_, row0_, spots0_, vars0_] :=

Module[{multiplied = multiplied0,

row = row0, vars = vars0, spots = spots0, crules, elements},

crules = CoefficientRules[multiplied, vars];

elements = crules /. spots;

Table[{row, elements〚i, 1〛} elements〚i, 2〛, {i, Length[elements]}]

]

87

BuildMatrix[variable0_, spots0_, vars0_, basis0_, replacements0_] :=

Module[{variable = variable0, spots = spots0, vars = vars0,

basis = basis0, replacements = replacements0, multiplied, matrix},

multiplied = basis*variable;

multiplied =

Table[Replacer[multiplied〚i〛, vars, replacements], {i, Length[multiplied]}];

matrix = Table[SparseIndices[multiplied〚i〛, i, spots, vars],

{i, Length[multiplied]}];

matrix = SparseArray[Flatten[matrix]];

matrix

];

Define the polynomial system Q

(used for refinement of matrix roots or verifying results using an outside polynomial solver)

BuildQ[M0_] :=

Module{M = M0, Q},

h =
1

M
;

Q = Table[0, 2 M + 2];

Do

Q〚j〛 = (r + b) v[j] - a u[j] v[j] +

c
1

h2
(u[j - 1] - 2 u[j] + u[j + 1]) v[j] -

d

h2
(v[j - 1] - 2 v[j] + v[j + 1]);

Q〚j + M - 1〛 =
1

r
b v[j] - d

1

h2
(v[j - 1] - 2 v[j] + v[j + 1]) - u[j]2

, {j, 1, M - 1};

Q〚2 M - 1〛 = 3 u[0] - 4 u[1] + u[2];

Q〚2 M〛 = 3 u[M] - 4 u[M - 1] + u[M - 2];

Q〚2 M + 1〛 = 3 v[0] - 4 v[1] + v[2];

Q〚2 M + 2〛 = 3 v[M] - 4 v[M - 1] + v[M - 2];

Q

88

Define the modified polynomial system P

(used for the pseudo-companion matrix)

BuildP[M0_] :=

Module{M = M0, P},

h =
1

M
;

P = Table[0, 2 M - 2];

Do

P〚j〛 = (r + b) v[j] - a u[j] v[j] +

c
1

h2
(u[j - 1] - 2 u[j] + u[j + 1]) v[j] -

d

h2
(v[j - 1] - 2 v[j] + v[j + 1]);

P〚j + M - 1〛 =
1

r
b v[j] - d

1

h2
(v[j - 1] - 2 v[j] + v[j + 1])

, {j, 1, M - 1};

P = P /. u[0]
4

3
u[1] -

1

3
u[2] , u[M]

4

3
u[M - 1] -

1

3
u[M - 2] ,

v[0]
4

3
v[1] -

1

3
v[2] , v[M]

4

3
v[M - 1] -

1

3
v[M - 2] ;

P

Pseudo-companion matrix build

PseudoCompanionMatrix[M0_, P0_] :=

Module{M = M0, P = P0, vars, listBasis,

basis, spots, replacements, coefficients, matrices},

vars = Join[Table[u[i], {i, M - 1}], Table[v[i], {i, M - 1}]];

listBasis = BuildBasis[2 M - 2];

basis = MonomialView[listBasis, vars];

spots = TablelistBasis〚i〛 i, i, 22 M-2;

replacements = JoinTablev[j]2 Expand
1

ϵ
P〚j〛, {j, M - 1},

Tableu[j]2 Expand[P〚j + M - 1〛], {j, M - 1};

coefficients = Table[RandomReal[], 2 M - 2];

matrices =

Table[BuildMatrix[vars〚i〛, spots, vars, basis, replacements], {i, 2 M - 2}];

Sum[coefficients〚i〛* matrices〚i〛, {i, 2 M - 2}]

89

Enter numerical values for parameters

Numericize[] :=

Module{a, b, c, d, r, ϵ},

a = 0.25;

b = 2.0;

c = 0.001*0.027;

d = 0.027;

r = 0.03;

{a, b, c, d, r} = Rationalize[{a, b, c, d, r}];

ϵ =
1

24
;

{a, b, c, d, r, ϵ}

90

Input eigenvectors of pseudo-companion matrix. Extract roots, screen, and refine.

EigensystemToRoots[evals0_, evecs0_, M0_, ϵ0_, Q0_] :=

Module{evals = evals0, evecs = evecs0, M = M0, ϵ = ϵ0, Q = Q0, realEvecs,

realEvals, sensibleRoots, sensibleEvals, root, sols, solEvals, u0, uM,

v0, vM, Qvars, refinedSols, point, posRefinedSols, posRefinedEvals},

(* keep eigenvectors whose eigenvalues are real and positive *)

realEvecs = {};

realEvals = {};

Do[

If[0 < Re[evals〚i〛] && Abs[Im[evals〚i〛]] < 0.01, {realEvecs =

Join[realEvecs, {evecs〚i〛}], realEvals = Join[realEvals, {evals〚i〛}]}]

, {i, Length[evals]}];

(* scale the eigenvector and take the relevant entries *)

(* keep positive real solutions (with some tolerance) *)

sensibleRoots = {};

sensibleEvals = {};

Do

root =
realEvecs〚i〛

realEvecs〚i, 1〛
;

root = root〚2 ;; 2 M - 1〛;

If[Min[Re[root]] > -0.01,

{sensibleRoots = Join[sensibleRoots, {root}], sensibleEvals =

Join[sensibleEvals, {realEvals〚i〛}]}], {i, Length[realEvecs]};

(* add the boundary points back in;

keep solutions with positive boundary points *)

sols = {};

solEvals = {};

Do

root = sensibleRoots〚i〛;

u0 =
4

3
root〚1〛 -

1

3
root〚2〛 ;

uM =
4

3
root〚M - 1〛 -

1

3
root〚M - 2〛 ;

v0 =
4

3
root〚M〛 -

1

3
root〚M + 1〛 ;

91

vM =
4

3
root〚2 M - 2〛 -

1

3
root〚2 M - 3〛 ;

If[Min[Re[{u0, uM, v0, vM}]] > -0.01,

{root = Join[{u0}, root〚1 ;; M - 1〛, {uM, v0}, root〚M ;; 2 M - 2〛, {vM}],

sols = Join[sols, {root}], solEvals = Join[solEvals, {sensibleEvals〚i〛}]}]

, {i, Length[sensibleRoots]};

(* refine the solutions *)

Qvars = Join[Table[u[i], {i, 0, M}], Table[v[i], {i, 0, M}]];

refinedSols = Table[0, {Length[sols]}];

Do[

point = Table[{Qvars〚j〛, sols〚i, j〛}, {j, 2 M + 2}];

refinedSols〚i〛 = Qvars /. FindRoot[Q 0, point, MaxIterations 6];

, {i, Length[sols]}];

refinedSols = Chop[refinedSols];

posRefinedSols = {};

posRefinedEvals = {};

Do[

If[Min[Re[refinedSols〚i〛]] ≥ 0,

{posRefinedSols = Join[posRefinedSols, {refinedSols〚i〛}],

posRefinedEvals = Join[posRefinedEvals, {sensibleEvals〚i〛}]}]

, {i, Length[refinedSols]}];

posRefinedEvals = Chop[posRefinedEvals];

{posRefinedSols, posRefinedEvals}

92

Get positive real roots from Bertini output file

ReadBertini[M0_] :=

Module

{M = M0, BertiniOutput, numSolsBertini, rootBertini, posRealRootsBertini},

BertiniOutput = OpenRead[StringJoin[

"C:\\BertiniRuns\\M", ToString[M], "\\Output\\finite_solutions"]];

numSolsBertini = Read[BertiniOutput, Number];

Do[

rootBertini[j] =

Table[Read[BertiniOutput, Number] + I Read[BertiniOutput, Number], {i, 2 M + 2}]

, {j, numSolsBertini}];

Close[BertiniOutput];

posRealRootsBertini = {};

Do

IfMax[Abs[Im[rootBertini[j]]]] < 10-12 &&

Min[Re[rootBertini[j]]] > -10-12 && Norm[rootBertini[j]] > 10-12,

posRealRootsBertini = Join[posRealRootsBertini, {rootBertini[j]}]

, {j, numSolsBertini};

Chop[posRealRootsBertini]

93

Run example

RunSteadyState[M0_] :=

Module[{M = M0, P, start, A, matrixBuildTime, matrixBuildTimeNumerical,

parameterNames, evaluateParameters, evals, evecs, eigensystemTime,

Q, refinedSols, refinedEvals, posRealRootsBertini, xmin, xmax},

Clear[a, b, c, d, r, ϵ];

Print["\n\nN: ", M, "\n"];

P = BuildP[M];

start = SessionTime[];

A = PseudoCompanionMatrix[M, P];

matrixBuildTime = SessionTime[] - start;

Print["Symbolic matrix build time: ", matrixBuildTime];

{a, b, c, d, r, ϵ} = Numericize[];

start = SessionTime[];

A = PseudoCompanionMatrix[M, P];

matrixBuildTimeNumerical = SessionTime[] - start;

Print["Numerical matrix build time: ", matrixBuildTimeNumerical];

A = Normal[A];

A = N[A, 16];

start = SessionTime[];

{evals, evecs} = Eigensystem[A];

eigensystemTime = SessionTime[] - start;

Print["Full eigensystem computation time: ", eigensystemTime, "\n"];

Q = BuildQ[M];

{refinedSols, refinedEvals} = EigensystemToRoots[evals, evecs, M, ϵ, Q];

xmin = 0.95 Min[refinedEvals];

xmax = 1.05 Max[refinedEvals];

Print[

94

Show[ListPlot[{Table[{Re[evals〚i〛], Im[evals〚i〛]}, {i, Length[evals]}], Table[

{Re[refinedEvals〚i〛], Im[refinedEvals〚i〛]}, {i, Length[refinedEvals]}]},

PlotLegends {Text[Style["All eigenvalues", 14]],

Text[Style["Meaningful eigenvalues", 14]]}, ImageSize Large,

PlotRange All, AxesLabel {"Re", "Im"}, LabelStyle Medium, PlotStyle

{{PointSize[Large], Darker[Blue]}, {PointSize[Large], Orange}}], Graphics[

Line[{{xmin, -20}, {xmax, -20}, {xmax, 20}, {xmin, 20}, {xmin, -20}}]]]];

Print[ListPlot[{Table[{Re[evals〚i〛], Im[evals〚i〛]}, {i, Length[evals]}], Table[

{Re[refinedEvals〚i〛], Im[refinedEvals〚i〛]}, {i, Length[refinedEvals]}]},

PlotLegends {Text[Style["All eigenvalues", 14]],

Text[Style["Meaningful eigenvalues", 14]]},

ImageSize Large, PlotRange {{xmin, xmax}, {-20, 20}},

AxesLabel {"Re", "Im"}, LabelStyle Medium,

PlotStyle {{PointSize[Large], Darker[Blue]}, {PointSize[Large], Orange}}]];

posRealRootsBertini = ReadBertini[M];

Print[

"\nNorms of differences between roots found by the pseudo-companion matrix

method and roots found by Bertini:"];

If[Length[refinedSols] Length[posRealRootsBertini],

{refinedSols = Sort[refinedSols],

posRealRootsBertini = Sort[posRealRootsBertini],

Print[Table[Norm[refinedSols〚i〛 - posRealRootsBertini〚i〛],

{i, Length[refinedSols]}]]},

Print["Error: unequal number of roots found"]];

{refinedSols, matrixBuildTime, eigensystemTime}

]

95

B Perturbation Terms Code

Pseudo-companion matrix subfunctions

DefaultReplacements[vars0_, P0_] :=

Module{vars = vars0, P = P0, n, coeffrules, totalDegrees,

highestTotalDegrees, replacementDegrees, cap, replacements},

n = Length[vars];

P = Expand[P];

coeffrules = CoefficientRules[P, vars];

coeffrules = coeffrules〚All, All, 1〛;

totalDegrees = Table[Map[Total, coeffrules[[i]]], {i, Length[coeffrules]}];

highestTotalDegrees = Map[Max, totalDegrees];

replacementDegrees = Map[# + 1 &, highestTotalDegrees];

cap = Total[replacementDegrees] - n;

replacements = {};

Do

Do

replacements =

Joinreplacements, vars〚i〛replacementDegrees〚i〛+j Expand-μ vars〚i〛j P〚i〛

, {j, 0, cap - replacementDegrees〚i〛}

, {i, n};

{replacementDegrees, replacements}

;

96

BuildBasis[replacementDegrees0_] :=

Module[{n, replacementDegrees = replacementDegrees0,

letters, letter, iterators, basis, maxTotal, sortedBasis},

n = Length[replacementDegrees];

letters = Table[letter[i], {i, n}];

iterators = Table[{letters〚i〛, replacementDegrees〚i〛 - 1, 0, -1}, {i, n}];

basis = Table[letters, ##] & @@ iterators;

basis = Flatten[basis, n - 1];

maxTotal = Max[Map[Total, basis]];

sortedBasis = {};

Do[

Do[

If[Total[basis〚j〛] i, sortedBasis = Join[sortedBasis, {basis〚j〛}]]

, {j, Length[basis]}]

, {i, 0, maxTotal}];

sortedBasis

];

(* convert from {1,2,0} to xy2 *)

MonomialView[basis0_, vars0_] :=

Module[{basis = basis0, vars = vars0, mview},

mview = Table[

FromCoefficientRules[{Rule[basis[[i]], 1]}, vars], {i, Length[basis]}];

mview

];

SparseIndices[multiplied0_, row0_, spots0_, vars0_] :=

Module[{multiplied = multiplied0,

row = row0, vars = vars0, spots = spots0, crules, elements},

crules = CoefficientRules[multiplied, vars];

elements = crules /. spots;

Table[{row, elements〚i, 1〛} elements〚i, 2〛, {i, Length[elements]}]

]

97

Replacer[element0_, vars0_, replacementDegrees0_, replacements0_] :=

Module[{element = element0, vars = vars0,

replacementDegrees = replacementDegrees0, replacements = replacements0},

While[Max[Exponent[element, vars] - replacementDegrees] ≥ 0,

element = Expand[element /. replacements]];

element

];

BuildMatrix[variable0_, spots0_, vars0_,

basis0_, replacementDegrees0_, replacements0_] :=

Module[{variable = variable0, spots = spots0, vars = vars0,

basis = basis0, replacementDegrees = replacementDegrees0,

replacements = replacements0, multiplied, matrix},

multiplied = basis*variable;

multiplied = Table[Replacer[multiplied〚i〛, vars,

replacementDegrees, replacements], {i, Length[multiplied]}];

matrix = Table[SparseIndices[multiplied〚i〛, i, spots, vars],

{i, Length[multiplied]}];

matrix = SparseArray[Flatten[matrix]];

matrix

];

Pseudo-companion matrix build

PseudoCompanionMatrix[vars0_, P0_, replacementDegrees0_, replacements0_] :=

Module[{vars = vars0, P = P0,

replacementDegrees = replacementDegrees0, replacements = replacements0,

n, listBasis, basis, spots, coefficients, matrices, A},

n = Length[vars];

listBasis = BuildBasis[replacementDegrees];

basis = MonomialView[listBasis, vars];

spots = Table[listBasis〚i〛 i, {i, Length[listBasis]}];

coefficients = Table[RandomReal[], n];

matrices = Table[BuildMatrix[vars〚i〛, spots,

vars, basis, replacementDegrees, replacements], {i, n}];

A = Sum[coefficients〚i〛* matrices〚i〛, {i, n}];

{A, coefficients}

]

98

Read roots from Bertini output file

ReadBertini[example0_, n0_] :=

Module[{example = example0, n = n0, BertiniOutput, numSolsBertini, rootsBertini},

BertiniOutput = OpenRead[StringJoin[

"C:\\BertiniRuns\\PHCpack", example, "\\Output\\finite_solutions"]];

numSolsBertini = Read[BertiniOutput, Number];

rootsBertini = Table[0, numSolsBertini];

Do[

rootsBertini〚j〛 =

Table[Read[BertiniOutput, Number] + I Read[BertiniOutput, Number], {i, n}]

, {j, numSolsBertini}];

Close[BertiniOutput];

Chop[rootsBertini]

]

99

	Pseudo-Companion Matrices for Polynomial Systems
	Recommended Citation

	tmp.1523889375.pdf.fUU0C

