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Abstract

Roots of a scalar polynomial in one variable are frequently found by computing the

eigenvalues of the standard companion matrix. In this exploratory work, we introduce

the pseudo-companion matrix for finding roots of multivariable polynomial systems.

In some cases, a perturbation of the polynomial system is used for the matrix construc-

tion, yielding approximate roots of the original polynomial system. The coordinates

of the roots, or their approximations, are obtained from the eigenvectors of this ma-

trix. In this thesis, we describe the process of constructing the pseudo-companion

matrix and computing the polynomial roots using illustrative examples.

xiii





1 Introduction

Numerical algorithms have previously been developed to find polynomial roots by

determining the eigenvalues of a companion matrix. This is, for example, the strategy

employed by the MATLAB roots function [10]. Currently companion matrices are

only used for finding roots of polynomials of one variable, not for finding roots of

multivariable polynomial systems.

The problem of finding a companion matrix can be framed as an inverse problem.

The direct problem is “given a matrix, find its characteristic polynomial.” The inverse

problem is “given a polynomial, find a matrix which has that polynomial as its char-

acteristic polynomial.” The companion matrix is the solution to this inverse problem

[22]. There is more than one type of companion matrix [5]; we will not discuss all of

them.

The term companion matrix was introduced as a translation of the German term

Begleitmatrix [13, p. 20]. The following established companion matrix addresses the

case of one polynomial in one variable. Without loss of generality, we can assume the

coefficient of the highest degree term is 1. For the polynomial p : C→ C defined by

p(x) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1 + xn, an n× n companion matrix is given by

A =



0 1 0 ... 0 0

0 0 1 ... 0 0

...
...

...
. . .

...
...

0 0 0 ... 0 1

−a0 −a1 −a2 ... −an−2 −an−1


1



where for each distinct root λ of the polynomial, there is an eigenvalue λ and corre-

sponding eigenvector of the form < 1, λ, λ2, ..., λn−1 > [4].

Consider the polynomial system ~p : Cn → Cn where ~p =< p1, p2, ..., pn > and

p1, p2, ..., pn are polynomials of x1, x2, ..., xn. The goal is to construct a pseudo-

companion matrix such that the eigenvectors of the matrix will include information

about the roots of the polynomial system or approximations of the roots. If a set of

points, some of which are approximate solutions, has been found, methods exist for

identifying those which will converge via Newton’s method to the roots of the system

of polynomials [9]. Using Newton’s method to refine results has precedent in other

polynomial solvers [3].

Attention is restricted in this thesis to polynomial systems which have some so-

lution to ~p = ~0, and whose solutions are given by isolated points. The number of

such solutions may be up to the product of the degrees of the individual polynomials

making up the system [17, p. 228]. This type of solution set is referred to as zero-

dimensional (as opposed to a positive-dimensional solution set) [3]. Existing methods

utilizing matrices to solve multivariable polynomial systems include those based on

ring representations [22] and resultants [14].

A standard automated method for finding roots of a polynomial system is poly-

nomial homotopy continuation. Available implementations include Bertini [3] and

PHCpack [20]. For MATLAB users, BertiniLab is an interface for using MATLAB to

run Bertini [1]. Similarly, PHClab can be used to run PHCpack [7]. We frequently

compare the results of our algorithm to the results obtained using BertiniTM v1.5.1;

we use Bertini for comparison because it is readily available for use with multiple

operating systems [2]. The materials accompanying PHCpack include a collection

of polynomial test problems, some of which are used as examples throughout this

work [20, 21]. Mathematica added polynomial homotopy continuation capability as

2



of Mathematica 10, improving speed for certain systems. Previously Mathematica

used a Gröbner basis method [23].

The general concept of polynomial homotopy continuation is as follows. Suppose

we would like to solve the polynomial system ~f(~x) = ~0. Create a new polynomial

system ~g(~x) which is similar to ~f(~x) where you know or can readily find the solutions

of ~g(~x) = ~0. Deform ~g(~x) to ~f(~x) and track the solutions. Parallelization can be

easily utilized [3].

The paths taken by the solutions may be primarily non-real, but both endpoints

may be real [3]. This serves as a barrier to attempting to only compute the real

solutions (or some other desirable subset of the solutions).

3



2 Notation and Definitions

• Let n be the number of variables and the number of polynomials; by assumption

these are equal.

• Consider ~x =< x1, x2, ..., xn >∈ Cn. Define the monomial ~x ~α to be xα1
1 · xα2

2 ·

... · xαn
n where ~α =< α1, α2, ..., αn > and α1, α2, ..., αn are nonnegative integers

[17, p. 4].

• |~α| = α1 + α2 + ...+ αn is the degree [17, p. 4]. The degree of a polynomial is

the largest degree of any of its monomials.

• Let B be a basis of monomials. A basis B of monomials is called closed if

~x ~α ∈ B ⇒ ~x ~α
′ ∈ B for all ~α ′ such that ~x ~α

′
divides ~x ~α [17, p. 55].

• Basis elements are written using the standard mathematical font, for example

x. Coordinates of the roots are written using blackboard bold, for example x.

• The border set S corresponding to a closed basis B consists of the monomials

which are not contained in B but which can be produced as the product of an

element of B and a degree one monomial [17, p. 58].

• A replacement monomial is a univariate monomial which is a member of the

border set and which is replaced by a linear combination of basis elements using

the original or modified polynomial system.

• Multiplication by a degree one monomial xi will be denoted ~x ~α
∗xi−−→ ~x

~β where

~x ~α ∈ B and either ~x
~β ∈ B or ~x

~β ∈ S.

4



• Mxi
denotes the matrix for multiplication by xi.

• In the case of two variables x1 and x2, the monomials can be illustrated graph-

ically. The origin represents x01x
0
2 = 1. Moving to the right corresponds

to increasing the power of x1 and moving up corresponds to increasing the

power of x2 [17, p. 56]. Suppose, for example, that a basis B is given by

{1, x1, x2, x21, x1x2, x22, x1x22}. The border set S is {x31, x21x2, x32, x21x22, x1x32}.

These are depicted in Figure 2.1.

• A rectangular basis with bound < d1, d2, ..., dn > is {~x ~α |αi ≤ di for i =

1, 2, ..., n}.

■ ■

■

■

■

■ ■

+

+

+

+

+

x1 x1
2

x1
3

x2

x2
2

x2
3

Figure 2.1: Example of a 2 variable basis (�) and the corresponding border set (+++).

• Monomials are listed in order of ascending degree. Within monomials of equal

degree, monomials are then ordered based on variable name, for example

{..., x31, x21x2, x21x3, ...}

This is referred to as degree lexicographic order [18]. Note that this order is

only used for the purpose of consistently listing the monomials in a given basis.

No preference is given to any of the variables in the computations.

5



• If a perturbation is introduced, then the original polynomial system will be

denoted ~p =< p1, p2, ..., pn > and the new, modified polynomial system will be

denoted ~q =< q1, q2, ..., qn >.

• A term added to a polynomial is called a perturbation term and takes the

form ε xdi+1
i where ε is small and di is the degree of pi.

• The standard companion matrix refers to the one variable companion matrix

described in Section 1.

• Throughout, µ is defined as 1
ε
.

6



3 Objective

We intend to construct pseudo-companion matrices to find the roots of polynomial

systems. The Central Theorem, described by Stetter, shows that for a suitable basis

and multiplication matrices, roots of a zero-dimensional polynomial system can be

determined from the eigenvectors [17, p. 52]. We would like a simple algorithm to

construct a pseudo-companion matrix without complicated polynomial computations,

such as a Gröbner basis type computation.

The most novel aspect of our method is the modification of the polynomial system

in some cases with the inclusion of additional terms to allow for the matrix construc-

tion. These additional terms will have a coefficient of ε which is taken to be small.

Computationally, the system is not monitored as ε approaches zero. Rather, ε is set

to some small number to find approximate potential roots, which are then refined

using Newton’s method.

The matrix is constructed so that for each root ~x = (x1, x2, ..., xn) of the

polynomial system, there is an eigenvector which is equal to a scalar multiple of

< 1, x1, x2, ..., xn, ... >. The details of the eigensystem computations are not the fo-

cus of this investigation, and in the following examples are performed using standard

routines in Mathematica. After the eigenvectors have been determined, normalizing

by the first element of the eigenvector produces the desired form. The coordinates

of the root are found in elements 2 through n + 1 of the eigenvector. Subsequent

elements of the eigenvector correspond to higher order monomials in the basis.

7



4 Matrix Construction

4.1 Standard Companion Matrix

For the standard companion matrix, the ith column was associated with λi−1 where

x = λ is a root of the polynomial p(x). The standard companion matrix applies

to one polynomial in one variable, so here p and x are both scalar valued. In this

manner, associate the rows and the columns of the matrix with increasing powers of

x as shown:



1 x x2 xn−2 xn−1

1 0 1 0 ... 0 0

x 0 0 1 ... 0 0

...
...

...
. . .

...
...

xn−2 0 0 0 ... 0 1

xn−1 −a0 −a1 −a2 ... −an−2 −an−1


{1, x, ..., xn−2, xn−1} forms a basis of monomials. The basis should be closed. In

other words, every power of x, from 0 to n− 1, should be included in the basis even

if one of the corresponding coefficients in the polynomial happens to be zero. The

matrix embodies multiplication by x. For example, in the first row, the element 1 is

multiplied by x to obtain x. In the final row, xn−1 is multiplied by x to obtain xn,

which is not a basis element itself but can be expressed in terms of the other basis

elements using p(x) = a0 + a1x + a2x
2 + ... + an−1x

n−1 + xn = 0 when x is a root.

After multiplication by x, every element of the basis can still be represented using

8



elements of the basis, either directly or using xn = −a0− a1x− a2x2− ...− an−1xn−1.

4.2 Pseudo-Companion Matrix

This construction becomes more difficult in the multivariable case. There is more than

one variable by which the basis elements could be multiplied. Additionally, it can no

longer be assumed that there is a single highest degree term in each polynomial.

The first step of building the pseudo-companion matrix is to obtain polynomials of

the appropriate form. We will call such polynomials pre-companion polynomials.

Every scalar polynomial in one variable is a pre-companion polynomial, so no such

distinction is necessary for the standard companion matrix. In some polynomial

systems, some or all of the polynomials will already be pre-companion polynomials.

We begin by successively identifying these pre-companion polynomials, which must

satisfy the following:

1. The polynomial contains a univariate term whose degree is strictly greater than

the degrees of the other terms in that polynomial

and

2. The variable in the univariate highest degree term did not already appear in

the univariate highest degree term of any previously identified pre-companion

polynomial

In other words, a pre-companion polynomial has the form

pi = pi + xdi+1
i

where di + 1 is strictly greater than the degree of pi. Reordering the polynomials

and/or renaming the variables allows xi to be the variable appearing in the univariate

9



highest degree term of pi. Since our objective is only to find the roots, we can assume

without loss of generality that the coefficient of xdi+1
i is 1.

If pk is any polynomial which is not already a pre-companion polynomial, then

a perturbation term ε xdk+1
k is added to that polynomial, where ε is small and dk is

the degree of pk. With these added terms, we obtain a new polynomial system ~q in

which each polynomial is now a pre-companion polynomial. The following illustrates

the form a system of four polynomials in four variables would take if two of the

polynomials started out as pre-companion polynomials with x1 and x2 appearing in

the univariate terms:

q1 = p1 = p1 + xd1+1
1

q2 = p2 = p2 + xd2+1
2

q3 = p3 + ε xd3+1
3

q4 = p4 + ε xd4+1
4

Here degree(p1) ≤ d1, degree(p2) ≤ d2, degree(p3) = d3, and degree(p4) = d4.

Continue using the system of four polynomials as an example. We will set ~q = ~0

to build the pseudo-companion matrix. Then we have

xd1+1
1 = −p1

xd2+1
2 = −p2

xd3+1
3 = −µp3

xd4+1
4 = −µp4

where µ = 1
ε
. We will call xd1+1

1 , xd2+1
2 , xd3+1

3 , and xd4+1
4 replacement monomials

because we will replace them with −p1, −p2, −µp3, and −µp4, respectively.

10



For i from 1 to n, we will represent multiplication by xi as a matrix Mxi . The

basis B will be monomials of the form xα1
1 x

α2
2 x

α3
3 x

α4
4 . The border set S consists of the

monomials which are not contained in B but which can be produced as the product

of an element of B and one of the xi. The key is that we want a square matrix. So

once we choose a basis, every element of the border set must be expressible as a linear

combination of basis elements. This can be accomplished using our replacements as

long as we pick an appropriate basis. The basis should be closed (if a monomial is

contained in the basis, then so are all of its divisors). Elements of the border set must

have the individual degree of some xi be at least di + 1 so that a replacement can be

made. The requirements can be met by taking B = {~x ~α |αi ≤ di for i = 1, 2, ..., n},

which we will refer to as a rectangular basis with bound < d1, d2, ..., dn > (in this

example, n = 4). We call it a rectangular basis because it would look rectangular if

plotted as in Figure 2.1.

After multiplying the basis elements by a given variable xi, some of the results

will be elements of the border set. This will occur for basis elements whose degree of

xi is di; then multiplication by xi increases the degree to di + 1. Then a replacement

will be used. The replacement will decrease the degree of xi, but it could do so at the

expense of increasing the degree of some other variable xj. If the resulting degree of

xj is larger than dj, then the result can not be expressed using only basis elements,

but a second replacement could be performed. This process must terminate, since

the replacements are decreasing in degree.

Mxi is the matrix for multiplication by xi, and the equations generating the re-

placements used to construct Mxi are satisfied at the roots of the modified polyno-

mial system ~q. Randomly generate coefficients ci; these can be real or complex. The

pseudo-companion matrix is A =
∑n

i=1 ciMxi . Let ~v be a vector whose elements are

the basis monomials evaluated at the roots of ~q, and let xi be the xi coordinate of
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that root. Then

A~v =

(
n∑
i=1

ciMxi

)
~v =

n∑
i=1

ci (Mxi~v) =
n∑
i=1

ci (xi~v) =

(
n∑
i=1

cixi

)
~v

We see that ~v is an eigenvector of the pseudo-companion matrix. Since any scalar

multiple of an eigenvector is also an eigenvector, we need a way to scale ~v and obtain

the root. Using degree lexicographic order, the first basis element is 1, so we scale

the eigenvector so the first element of the eigenvector is 1. Then the values of the

degree one monomials give the coordinates of the root of ~q. If any eigenvalue has

an eigenspace with dimension greater than 1, then there is no expectation that the

eigenvectors returned by a numerical computation have the required structure. The

purpose of the randomization is to avoid repeated eigenvalues. For problems where a

coordinate of a root never takes the same value in two distinct roots, a single multipli-

cation matrix could be used. Problems of interest may have some structure such that

this is not true, so in general using a random linear combination is recommended.

4.3 Merit Functions

We have discussed replacement monomials which have degree strictly larger than the

degrees of the other terms in the respective polynomials. Then when a replacement

is made, the degree decreases. Since the degree is strictly decreasing as replacements

are made, eventually the border set elements can be expressed using only the basis

elements. This can be generalized by replacing the degree with any merit function,

as long as the merit function decreases at each iteration and a sufficiently small merit

function guarantees that you have reached the basis elements. The key is that the

replacement process must successfully terminate.
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5 Examples

5.1 Intersection of Two Curves

Determine the points of intersection of the two curves given by −1 + 2y + x2 = 0

and 4− 5x + 6y + y2 = 0, shown in Figure 5.1. The system of polynomials has four

solutions, two of which correspond to the real points of intersection of the curves.

These solutions, found using a standard solver, are

x1 = −2.52369− 1.16200i, y1 = −2.00939− 2.93254i

x2 = −2.52369 + 1.16200i, y2 = −2.00939 + 2.93254i

x3 = 0.907464, y3 = 0.0882549

x4 = 4.13992, y4 = −8.06948

We will now use a pseudo-companion matrix to solve the polynomial system.

Each individual polynomial has a highest degree term. The highest degree terms

are univariate, with a different variable in each of these terms. Using the two poly-

nomials, we can use replacements x2 → 1− 2y and y2 → −4 + 5x− 6y. Then x2 and

y2 can be part of the border set. Any monomial for which the degree of each variable

is less than 2 must be included in the basis, so the basis elements are 1, x, y, and

xy. The monomials which are not included in the basis, but which can be obtained

by multiplying a basis element by x or y, are x2, y2, x2y, and xy2. This is the border

set. The basis and border set are shown graphically in Figure 5.2.
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Figure 5.1: The curves −1 + 2y + x2 = 0 (solid) and 4− 5x+ 6y + y2 = 0 (dashed).

Multiplying all elements of the basis by x yields the following:

1
∗x−→ x

x
∗x−→ x2

y
∗x−→ xy

xy
∗x−→ x2y

Using the replacements, we have x2 = 1 − 2y and x2y = (1 − 2y)y = y − 2y2 =

y−2(−4 + 5x−6y) = y+ 8−10x+ 12y = 8−10x+ 13y. The updated multiplication

results are:

1
∗x−→ x

x
∗x−→ 1− 2y

y
∗x−→ xy

xy
∗x−→ 8− 10x+ 13y
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Figure 5.2: Basis (�) and border set (+++) corresponding to the polynomial system
−1 + 2y + x2 = 0 and 4− 5x+ 6y + y2 = 0.

Having obtained the results of multiplying all basis elements by x, we can encode

these results in a multiplication matrix for x by associating each row and column of

the matrix with a basis element. This construction relies on the fact that we were able

to use the replacements to express border set elements in terms of the basis elements.

The multiplication matrix for x is

Mx =



1 x y xy

1 0 1 0 0

x 1 0 −2 0

y 0 0 0 1

xy 8 −10 13 0



Now how can we obtain the roots of the original polynomial system? Suppose that

(x, y) is a root. Then x
2 = 1− 2y and y

2 = −4 + 5x− 6y. Let ~v =< 1,x,y,xy >.
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Then



0 1 0 0

1 0 −2 0

0 0 0 1

8 −10 13 0





1

x

y

xy


=



x

1− 2y

xy

8− 10x+ 13y


=



x

x
2

xy

x
2
y


= x



1

x

y

xy



In other words Mx~v = x~v. So x is an eigenvalue of Mx and ~v is the corresponding

eigenvector. This can be verified numerically by finding the eigenvalues and eigenvec-

tors of Mx. The eigenvalues are −2.52369−1.16200i, −2.52369+1.16200i, 0.907464,

and 4.13992. As expected, these are the x coordinates of the roots. The eigenvectors

should be scaled so the first element is 1. Then the elements of the eigenvectors will

be the basis elements evaluated at each of the roots. The scaled eigenvectors are:

< 1, −2.52369− 1.16200i, −2.00939− 2.93254i, 1.66346 + 9.73574i >

< 1, −2.52369 + 1.16200i, −2.00939 + 2.93254i, 1.66346− 9.73574i >

< 1, 0.907464, 0.0882549, 0.0800881 >

< 1, 4.13992, −8.06948, −33.4070 >

The elements are as expected. Since the eigenvalues contain only the x coordinates

of the roots, the roots will be obtained from the eigenvectors instead. Simply take

the second and third elements of each eigenvector.

This structure is not unique to the Mx matrix. My, the multiplication matrix for

y, is constructed in the same manner and has corresponding properties.
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Multiply all elements of the basis by y:

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ y2

xy
∗ y−→ xy2

Using the same replacements as before, we have y2 = −4 + 5x − 6y and xy2 =

x(−4+5x−6y) = −4x+5x2−6xy = −4x+5(1−2y)−6xy = −4x+5−10y−6xy =

5− 4x− 10y − 6xy. The updated multiplication results are:

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ −4 + 5x− 6y

xy
∗ y−→ 5− 4x− 10y − 6xy

Writing these in matrix form, we have:

My =



1 x y xy

1 0 0 1 0

x 0 0 0 1

y −4 5 −6 0

xy 5 −4 −10 −6



The eigenvalues of this matrix are −8.06948, −2.00939 + 2.93254i, −2.00939 −

2.93254i, and 0.0882549. These are the y coordinates of the roots. The scaled eigen-
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vectors are:

< 1, 4.13992, −8.06948, −33.4070 >

< 1, −2.52369 + 1.16200i, −2.00939 + 2.93254i, 1.66346− 9.73574i >

< 1, −2.52369− 1.16200i, −2.00939− 2.93254i, 1.66346 + 9.73574i >

< 1, 0.907464, 0.0882549, 0.0800881 >

Note that Mx and My have the same eigenvectors, so the roots could be obtained

from either. In this example, both Mx and My are pseudo-companion matrices. In

later examples we will see that it is sometimes necessary to use a randomized linear

combination of the multiplication matrices as the pseudo-companion matrix.

5.2 Intersection of Two Curves (Real Solutions)

Typically the roots will be obtained from the eigenvectors of the pseudo-companion

matrix. In limited situations, the roots can be obtained from the eigenvalues. We

will discuss an example of such a situation here, before proceeding by using the

eigenvectors in subsequent examples.

Determine the points of intersection of the two curves given by 5 +x− y2 = 0 and

−6−xy+x2 = 0, shown in Figure 5.3. The system of polynomials has four solutions,

all of which correspond to real points of intersection of the curves. These solutions
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are

x1 = −3.20850, y1 = −1.33847

x2 = −1.70459, y2 = 1.81533

x3 = 1.48726, y3 = −2.54701

x4 = 4.42583, y4 = 3.07015

We intend to find these solutions using a pseudo-companion matrix.

-10 -5 5 10
x

-10

-5

5

10

y

Figure 5.3: The curves 5 + x− y2 = 0 (solid) and −6− xy + x2 = 0 (dashed).

There is no longer a single highest degree term in each polynomial, because the

second polynomial has two terms of degree two. A pseudo-companion matrix can still

be constructed without modifying the original polynomial system.

In the first polynomial, y2 is a natural choice for a replacement monomial. In the

second polynomial, we will take the univariate term of degree two, namely x2, to be

the replacement monomial. Then the replacements are y2 → 5 + x and x2 → 6 + xy.
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We must include xy in the basis. To obtain a closed basis including xy, take 1, x, y,

and xy as the basis elements. This basis will be sufficient for the construction of the

multiplication matrices.

Multiplying all the basis elements by x gives the following:

1
∗x−→ x

x
∗x−→ x2

y
∗x−→ xy

xy
∗x−→ x2y

Using the replacements, x2 = 6+xy and x2y = (6+xy)y = 6y+xy2 = 6y+x(5+x) =

6y + 5x + x2 = 6y + 5x + 6 + xy = 6 + 5x + 6y + xy. After the replacements, the

multiplication results are:

1
∗x−→ x

x
∗x−→ 6 + xy

y
∗x−→ xy

xy
∗x−→ 6 + 5x+ 6y + xy

The multiplication matrix for x is

Mx =



1 x y xy

1 0 1 0 0

x 6 0 0 1

y 0 0 0 1

xy 6 5 6 1


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Repeat this process for multiplication by y.

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ y2

xy
∗ y−→ xy2

y2 = 5 + x and xy2 = x(5 + x) = 5x+ x2 = 5x+ 6 + xy = 6 + 5x+ xy.

1
∗ y−→ y

x
∗ y−→ xy

y
∗ y−→ 5 + x

xy
∗ y−→ 6 + 5x+ xy

Then the multiplication matrix for y is:

My =



1 x y xy

1 0 0 1 0

x 0 0 0 1

y 5 1 0 0

xy 6 5 0 1


For a single polynomial, the roots are given by the eigenvalues of the standard

companion matrix. For most polynomial systems, the eigenvectors of the pseudo-

companion matrix must be used to find the roots. A multivariable solution simply

cannot be contained in a single eigenvalue. The current problem is an example of a

situation in which the eigenvalues of the pseudo-companion matrix are sufficient to
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give the roots of a polynomial system. The key is that there are only two variables

and all the solutions are real. Then the pseudo-companion matrix can be constructed

so that the x and y coordinates of the roots are the real and imaginary parts of the

eigenvalues. This can be accomplished by taking the pseudo-companion matrix to be

equal to the linear combination Mx + iMy.

For example, for the current problem, the eigenvalues of Mx+ iMy are −3.20850−

1.33847i, −1.70459 + 1.81533i, 1.48726− 2.54701i, and 4.42583 + 3.07015i. The real

and imaginary parts are the coordinates of the roots, as desired.

5.3 Multivariable Replacement Monomials

Consider the construction of the multiplication matrix for the variable xi. Let r be

the maximum integer such that xri is an element of the basis. Then xr+1
i is an element

of the border set. This is expressible as a linear combination of basis elements if xr+1
i

is one of the replacement monomials. In general we construct all the multiplication

matrices and the replacement monomials are univariate.

This example illustrates that exceptions to these guidelines are possible. The fol-

lowing polynomial system was created for use in this example. In general, polynomial

systems of interest did not have this structure, so we chose to note this construction

in an example but not pursue it further.

Consider the polynomial system

x2 + y + z − 7 = 0

xy − 2z − 5 = 0

xz − x+ 2 = 0
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which has solutions

x1 = 0.369651− 0.719866i, y1 = 7.51053 + 2.73077i, z1 = −0.128967− 2.19857i

x2 = 0.369651 + 0.719866i, y2 = 7.51053− 2.73077i, z2 = −0.128967 + 2.19857i

x3 = 2.12933, y3 = 2.40520, z3 = 0.0607387

x4 = −2.86864, y4 = −2.92627, z4 = 1.69720

Each polynomial has a highest degree term, which we will use as the replacement

monomial, yielding replacements x2 → −y − z + 7, xy → 2z + 5, and xz → x − 2.

It seems that we must include 1, x, y, and z in our basis. If these are our only

replacements, we can not construct multiplication matrices for y or z. If we consider

only multiplication by x, then the elements in the border set are x2, xy, and xz.

These are the same as the replacement monomials, so all the border set elements can

be expressed in terms of the basis elements. The multiplication matrix for x is

Mx =



1 x y z

1 0 1 0 0

x 7 0 −1 −1

y 5 0 0 2

z −2 1 0 0


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The scaled eigenvectors of this matrix are

< 1, 0.369651− 0.719866i, 7.51053 + 2.73077i, −0.128967− 2.19857i >

< 1, 0.369651 + 0.719866i, 7.51053− 2.73077i, −0.128967 + 2.19857i >

< 1, 2.12933, 2.40520, 0.0607387 >

< 1, −2.86864, −2.92627, 1.69720 >

Elements 2 through 4 of each eigenvector give the coordinates of the roots.

5.4 PHCpack Test Problem “Rediff3”

The following polynomial system is from the set of test problems accompanying PHC-

pack [21].

− 2x1 + x2 + αx1(1− x1) = 0

x1 − 2x2 + x3 + αx2(1− x2) = 0

x2 − 2x3 + αx3(1− x3) = 0

In the test problem α = 0.835634534. In general α is a parameter which could take

some other positive value. For this problem we will build the pseudo-companion

matrix using an unassigned parameter.

Rewrite this as

− αx21 + (α− 2)x1 + x2 = 0

− αx22 + x1 + (α− 2)x2 + x3 = 0

− αx23 + x2 + (α− 2)x3 = 0
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Input eigenvectors of pseudo-companion matrix. Extract roots, screen, and refine.

EigensystemToRoots[evals0_, evecs0_, M0_, ϵ0_, Q0_] :=

Module{evals = evals0, evecs = evecs0, M = M0, ϵ = ϵ0, Q = Q0, realEvecs,

realEvals, sensibleRoots, sensibleEvals, root, sols, solEvals, u0, uM,

v0, vM, Qvars, refinedSols, point, posRefinedSols, posRefinedEvals},

(* keep eigenvectors whose eigenvalues are real and positive *)

realEvecs = {};

realEvals = {};

Do[

If[0 < Re[evals〚i〛] && Abs[Im[evals〚i〛]] < 0.01, {realEvecs =

Join[realEvecs, {evecs〚i〛}], realEvals = Join[realEvals, {evals〚i〛}]}]

, {i, Length[evals]}];

(* scale the eigenvector and take the relevant entries *)

(* keep positive real solutions (with some tolerance) *)

sensibleRoots = {};

sensibleEvals = {};

Do

root =
realEvecs〚i〛

realEvecs〚i, 1〛
;

root = root〚2 ;; 2 M - 1〛;

If[Min[Re[root]] > -0.01,

{sensibleRoots = Join[sensibleRoots, {root}], sensibleEvals =

Join[sensibleEvals, {realEvals〚i〛}]}], {i, Length[realEvecs]};

(* add the boundary points back in;

keep solutions with positive boundary points *)

sols = {};

solEvals = {};

Do

root = sensibleRoots〚i〛;

u0 =
4

3
root〚1〛 -

1

3
root〚2〛 ;

uM =
4

3
root〚M - 1〛 -

1

3
root〚M - 2〛 ;

v0 =
4

3
root〚M〛 -

1

3
root〚M + 1〛 ;
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vM =
4

3
root〚2 M - 2〛 -

1

3
root〚2 M - 3〛 ;

If[Min[Re[{u0, uM, v0, vM}]] > -0.01,

{root = Join[{u0}, root〚1 ;; M - 1〛, {uM, v0}, root〚M ;; 2 M - 2〛, {vM}],

sols = Join[sols, {root}], solEvals = Join[solEvals, {sensibleEvals〚i〛}]}]

, {i, Length[sensibleRoots]};

(* refine the solutions *)

Qvars = Join[Table[u[i], {i, 0, M}], Table[v[i], {i, 0, M}]];

refinedSols = Table[0, {Length[sols]}];

Do[

point = Table[{Qvars〚j〛, sols〚i, j〛}, {j, 2 M + 2}];

refinedSols〚i〛 = Qvars /. FindRoot[Q  0, point, MaxIterations  6];

, {i, Length[sols]}];

refinedSols = Chop[refinedSols];

posRefinedSols = {};

posRefinedEvals = {};

Do[

If[Min[Re[refinedSols〚i〛]] ≥ 0,

{posRefinedSols = Join[posRefinedSols, {refinedSols〚i〛}],

posRefinedEvals = Join[posRefinedEvals, {sensibleEvals〚i〛}]}]

, {i, Length[refinedSols]}];

posRefinedEvals = Chop[posRefinedEvals];

{posRefinedSols, posRefinedEvals}


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Get positive real roots from Bertini output file

ReadBertini[M0_] :=

Module

{M = M0, BertiniOutput, numSolsBertini, rootBertini, posRealRootsBertini},

BertiniOutput = OpenRead[StringJoin[

"C:\\BertiniRuns\\M", ToString[M], "\\Output\\finite_solutions"]];

numSolsBertini = Read[BertiniOutput, Number];

Do[

rootBertini[j] =

Table[Read[BertiniOutput, Number] + I Read[BertiniOutput, Number], {i, 2 M + 2}]

, {j, numSolsBertini}];

Close[BertiniOutput];

posRealRootsBertini = {};

Do

IfMax[Abs[Im[rootBertini[j]]]] < 10-12 &&

Min[Re[rootBertini[j]]] > -10-12 && Norm[rootBertini[j]] > 10-12,

posRealRootsBertini = Join[posRealRootsBertini, {rootBertini[j]}]

, {j, numSolsBertini};

Chop[posRealRootsBertini]


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Run example

RunSteadyState[M0_] :=

Module[{M = M0, P, start, A, matrixBuildTime, matrixBuildTimeNumerical,

parameterNames, evaluateParameters, evals, evecs, eigensystemTime,

Q, refinedSols, refinedEvals, posRealRootsBertini, xmin, xmax},

Clear[a, b, c, d, r, ϵ];

Print["\n\nN: ", M, "\n"];

P = BuildP[M];

start = SessionTime[];

A = PseudoCompanionMatrix[M, P];

matrixBuildTime = SessionTime[] - start;

Print["Symbolic matrix build time: ", matrixBuildTime];

{a, b, c, d, r, ϵ} = Numericize[];

start = SessionTime[];

A = PseudoCompanionMatrix[M, P];

matrixBuildTimeNumerical = SessionTime[] - start;

Print["Numerical matrix build time: ", matrixBuildTimeNumerical];

A = Normal[A];

A = N[A, 16];

start = SessionTime[];

{evals, evecs} = Eigensystem[A];

eigensystemTime = SessionTime[] - start;

Print["Full eigensystem computation time: ", eigensystemTime, "\n"];

Q = BuildQ[M];

{refinedSols, refinedEvals} = EigensystemToRoots[evals, evecs, M, ϵ, Q];

xmin = 0.95 Min[refinedEvals];

xmax = 1.05 Max[refinedEvals];

Print[
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Show[ListPlot[{Table[{Re[evals〚i〛], Im[evals〚i〛]}, {i, Length[evals]}], Table[

{Re[refinedEvals〚i〛], Im[refinedEvals〚i〛]}, {i, Length[refinedEvals]}]},

PlotLegends  {Text[Style["All eigenvalues", 14]],

Text[Style["Meaningful eigenvalues", 14]]}, ImageSize  Large,

PlotRange  All, AxesLabel  {"Re", "Im"}, LabelStyle  Medium, PlotStyle 

{{PointSize[Large], Darker[Blue]}, {PointSize[Large], Orange}}], Graphics[

Line[{{xmin, -20}, {xmax, -20}, {xmax, 20}, {xmin, 20}, {xmin, -20}}]]]];

Print[ListPlot[{Table[{Re[evals〚i〛], Im[evals〚i〛]}, {i, Length[evals]}], Table[

{Re[refinedEvals〚i〛], Im[refinedEvals〚i〛]}, {i, Length[refinedEvals]}]},

PlotLegends  {Text[Style["All eigenvalues", 14]],

Text[Style["Meaningful eigenvalues", 14]]},

ImageSize  Large, PlotRange  {{xmin, xmax}, {-20, 20}},

AxesLabel  {"Re", "Im"}, LabelStyle  Medium,

PlotStyle  {{PointSize[Large], Darker[Blue]}, {PointSize[Large], Orange}}]];

posRealRootsBertini = ReadBertini[M];

Print[

"\nNorms of differences between roots found by the pseudo-companion matrix

method and roots found by Bertini:"];

If[Length[refinedSols]  Length[posRealRootsBertini],

{refinedSols = Sort[refinedSols],

posRealRootsBertini = Sort[posRealRootsBertini],

Print[Table[Norm[refinedSols〚i〛 - posRealRootsBertini〚i〛],

{i, Length[refinedSols]}]]},

Print["Error: unequal number of roots found"]];

{refinedSols, matrixBuildTime, eigensystemTime}

]
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B Perturbation Terms Code

Pseudo-companion matrix subfunctions

DefaultReplacements[vars0_, P0_] :=

Module{vars = vars0, P = P0, n, coeffrules, totalDegrees,

highestTotalDegrees, replacementDegrees, cap, replacements},

n = Length[vars];

P = Expand[P];

coeffrules = CoefficientRules[P, vars];

coeffrules = coeffrules〚All, All, 1〛;

totalDegrees = Table[Map[Total, coeffrules[[i]]], {i, Length[coeffrules]}];

highestTotalDegrees = Map[Max, totalDegrees];

replacementDegrees = Map[# + 1 &, highestTotalDegrees];

cap = Total[replacementDegrees] - n;

replacements = {};

Do

Do

replacements =

Joinreplacements, vars〚i〛replacementDegrees〚i〛+j  Expand-μ vars〚i〛j P〚i〛

, {j, 0, cap - replacementDegrees〚i〛}

, {i, n};

{replacementDegrees, replacements}

;
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BuildBasis[replacementDegrees0_] :=

Module[{n, replacementDegrees = replacementDegrees0,

letters, letter, iterators, basis, maxTotal, sortedBasis},

n = Length[replacementDegrees];

letters = Table[letter[i], {i, n}];

iterators = Table[{letters〚i〛, replacementDegrees〚i〛 - 1, 0, -1}, {i, n}];

basis = Table[letters, ##] & @@ iterators;

basis = Flatten[basis, n - 1];

maxTotal = Max[Map[Total, basis]];

sortedBasis = {};

Do[

Do[

If[Total[basis〚j〛]  i, sortedBasis = Join[sortedBasis, {basis〚j〛}]]

, {j, Length[basis]}]

, {i, 0, maxTotal}];

sortedBasis

];

(* convert from {1,2,0} to xy2 *)

MonomialView[basis0_, vars0_] :=

Module[{basis = basis0, vars = vars0, mview},

mview = Table[

FromCoefficientRules[{Rule[basis[[i]], 1]}, vars], {i, Length[basis]}];

mview

];

SparseIndices[multiplied0_, row0_, spots0_, vars0_] :=

Module[{multiplied = multiplied0,

row = row0, vars = vars0, spots = spots0, crules, elements},

crules = CoefficientRules[multiplied, vars];

elements = crules /. spots;

Table[{row, elements〚i, 1〛}  elements〚i, 2〛, {i, Length[elements]}]

]
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Replacer[element0_, vars0_, replacementDegrees0_, replacements0_] :=

Module[{element = element0, vars = vars0,

replacementDegrees = replacementDegrees0, replacements = replacements0},

While[Max[Exponent[element, vars] - replacementDegrees] ≥ 0,

element = Expand[element /. replacements]];

element

];

BuildMatrix[variable0_, spots0_, vars0_,

basis0_, replacementDegrees0_, replacements0_] :=

Module[{variable = variable0, spots = spots0, vars = vars0,

basis = basis0, replacementDegrees = replacementDegrees0,

replacements = replacements0, multiplied, matrix},

multiplied = basis*variable;

multiplied = Table[Replacer[multiplied〚i〛, vars,

replacementDegrees, replacements], {i, Length[multiplied]}];

matrix = Table[SparseIndices[multiplied〚i〛, i, spots, vars],

{i, Length[multiplied]}];

matrix = SparseArray[Flatten[matrix]];

matrix

];

Pseudo-companion matrix build

PseudoCompanionMatrix[vars0_, P0_, replacementDegrees0_, replacements0_] :=

Module[{vars = vars0, P = P0,

replacementDegrees = replacementDegrees0, replacements = replacements0,

n, listBasis, basis, spots, coefficients, matrices, A},

n = Length[vars];

listBasis = BuildBasis[replacementDegrees];

basis = MonomialView[listBasis, vars];

spots = Table[listBasis〚i〛  i, {i, Length[listBasis]}];

coefficients = Table[RandomReal[], n];

matrices = Table[BuildMatrix[vars〚i〛, spots,

vars, basis, replacementDegrees, replacements], {i, n}];

A = Sum[coefficients〚i〛* matrices〚i〛, {i, n}];

{A, coefficients}

]

98



Read roots from Bertini output file

ReadBertini[example0_, n0_] :=

Module[{example = example0, n = n0, BertiniOutput, numSolsBertini, rootsBertini},

BertiniOutput = OpenRead[StringJoin[

"C:\\BertiniRuns\\PHCpack", example, "\\Output\\finite_solutions"]];

numSolsBertini = Read[BertiniOutput, Number];

rootsBertini = Table[0, numSolsBertini];

Do[

rootsBertini〚j〛 =

Table[Read[BertiniOutput, Number] + I Read[BertiniOutput, Number], {i, n}]

, {j, numSolsBertini}];

Close[BertiniOutput];

Chop[rootsBertini]

]
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