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Abstract 
Many jobs in today’s society require sitting at a desk with little physical activity. 

Individuals who engage in ten hours of sedentary behavior per day double their 

CVD risk. Standing desks are thought to decrease sedentary time and improve 

cardiovascular health. Acute use of standing desks is shown to lower PWV. 

However, chronic effects remain unknown. Forty eight participants qualified as 

seated (19 females, 5 males: age 41 ± 2 years, BMI 25 ± 1 kg/m2) or standing (21 

females, 3 males: age 45 ± 2 years, BMI 25 ± 1 kg/m2) groups based on habitual 

workplace use. Arterial stiffness was assessed as pulse wave velocity (PWV) by 

using applanation tonometry in conjunction with electrocardiography. No 

differences were detected in carotid-femoral PWV (cfPWV) between seated and 

standing groups (p = 0.47). However, age (p < 0.01), aerobic fitness (p < 0.01), 

and fat percentage (p = 0.02) classifications revealed significant differences 

between groups. Standing for 50% of a workday does not affect cfPWV. Although, 

cardiorespiratory fitness and healthy body composition are associated with less 

arterial stiffness.
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1 Introduction 
To further explore the potential relation between workplace standing desks 

and arterial stiffness, the introduction portion of this thesis will focus on historic vs. 

current employment modalities to demonstrate how this may have contributed to 

the increase in sedentary activity in the United States. The associated negative 

health consequences of sedentary behavior along with recommendations of 

physical activity will be discussed. Arterial stiffness, an indicator of cardiovascular 

health, will be introduced along with the technique used to assess arterial health 

and factors that can influence it. Finally, alternative workstations, namely standing 

desks, will be introduced to examine their effect on workers who regularly use them 

to potentially influence overall health and arterial stiffness.  

1.1 Historic Employment vs. Today 

Since the turn of the 20th century to present, employment in the United States 

has changed drastically. Take for example the types of jobs that founded many of 

the cities and villages of the Upper Peninsula of Michigan and the Midwest region. 

Employment consisted of occupations such as farming, logging, and mining, which 

were labor intensive. In the early 1900s, 38% of the labor force consisted of 

farmers compared to less than 3% by 2000. In contrast, the service industry grew 

dramatically throughout the 20th century, indicative of the growth of healthcare, 

education, personal services, and the business community. In 1900, 31% were 

employed in service compared to 78% in 1999 (Fisk, 2001). This shift of the service 

industry becoming the largest portion of the United States economy changed the 
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way Americans work every day. Those who may have worked on the farm, in the 

forest, or in a mine, now could find themselves at a desk sitting in front of a 

computer for extended portions of the day. 

1.1.1 Shift from Active to Sedentary Work 

Since the 1960s, the American work place has undergone a massive 

transformation, to primarily benefit productivity. However, this productivity may 

come at a cost to human health. Previously, much of the American workforce 

consisted of jobs in agriculture and goods producing which required significant 

energy expenditure from the worker. Beginning in the 1960s, new jobs entering the 

workforce required more sedentary activity like desk work. Nearly 50% of all jobs 

in 1960 required moderate intensity physical activity, decreasing to 30% by 1970 

compared to a dismal 20% in today’s workplace (Church et al., 2011). Additionally, 

jobs where the worker is sedentary, or only required to perform light physical 

activity, doubled from 20% to 40% between 1970 and 2000 (Brownson, Boehmer, 

& Luke, 2005). Several physiologists noted differences in employee health 

between the 1950s and 1990s (Convertino, Bloomfield, & Greenleaf, 1997; Morris, 

Heady, Raffle, Roberts, & Parks, 1953; Norman, 1958). Much of the classic work 

done in the United Kingdom is considered the advent of sedentary behavior 

research. 
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1.2 Types of Employment & Health Consequences 

1.2.1 London Bus Drivers and Post Office Workers 

The very beginnings of modern inactivity physiology began in the 1950s when 

physiologists examined the health status of a variety of occupations in the United 

Kingdom. Specifically, a group examined the health of London bus workers and 

their occupation as either the driver or the conductor. Novel observations of the 

time was the lack of physical activity of the bus drivers as compared to the 

conductors, who move about the vehicle throughout the day (Morris et al., 1953; 

Norman, 1958). The participants were followed longitudinally for nearly ten years, 

and the risk of myocardial infarction in the bus drivers was twice that of bus 

conductors. It was noted that this risk was apparent independent of the individual’s 

physique (i.e. measurements of chest, waist, and hip circumference) (Morris, 

Kagan, Pattison, & Gardner, 1966). These findings provided some of the first 

clinical evidence of physical inactivity and the relation to human health. Similar 

associations of cardiovascular disease incidence was observed between 

sedentary government employees and postmen. The decreased level of coronary 

artery disease, when compared to seated government employees, was attributed, 

in part, to the increased physical activity of the postmen (Morris et al., 1953). These 

classic studies provide the first examples that simply moving more throughout the 

day can significantly benefit human health. 
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1.2.2 Dallas Astronaut Studies 

Other classic studies with detrimental implications for sedentary behavior 

include a variety of bed rest studies. Bed rest studies began during the World War 

II and space race eras where they sought to examine the effect of prolonged 

hospitalization and microgravity on human physiology. The consensus on a variety 

of work confirmed prolonged best rest had lasting negative effects on the 

cardiovascular and musculoskeletal systems in addition to many other body 

systems (Convertino et al., 1997). One of the most striking studies involved four 

NASA astronauts who were enrolled in a 21-day bed rest study, where their 

aerobic capacity was measured before and after the bed rest intervention. The bed 

rest significantly reduced the astronauts aerobic capacity by an average of 26%, 

providing insight of the effect of microgravity and the act of doing nothing has on 

the body (Saltin, 1968). Another group of researchers decided to follow up on the 

same group of astronauts 30 and 40 years later. The group of astronauts still had 

higher VO2max values three decades later compared to the 21-day bed rest 

intervention (McGuire et al., 2001). Forty years of aging produced similar 

decreases in VO2max as did a mere 21 days of bed rest, 27% vs. 26% respectively 

(McGavock et al., 2009). Bed rest studies continue to provide evidence of how 

acute sedentary behavior alters human physiology and has potential to reveal new 

mechanistic insight as to why “sitting is the new smoking” (Baddeley, Sornalingam, 

& Cooper, 2016).  
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1.3 Sedentary Behavior  

1.3.1 Definition and Classification of Sedentary Behavior 

Sedentary behavior is an epidemic that plagues the daily lives of American 

citizens, which is predicted to become worse with further advancements in 

technology. However, what is the actual definition of sedentary behavior from a 

physiological perspective? Given 1 metabolic equivalent of a task (MET) is 3.5 

mL/kg/min or an individual’s resting basal metabolic rate, Gibbs, et al. (2015) 

concluded any seated activity less than 1.5 MET is classified as sedentary 

behavior (American College of Sports Medicine, 2013). There remains an open 

debate as to whether standing activities are classified as sedentary behavior (B. 

B. Gibbs, Hergenroeder, Katzmarzyk, Lee, & Jakicic, 2015).  

1.3.2 Negative Health Outcomes 

A popular buzz phrase related to sedentary behavior literature is “sitting is 

the new smoking” (Baddeley et al., 2016). Some may deem this an exaggeration, 

however many studies highlight that simply doing nothing can be as detrimental to 

human health as smoking. For example, a recent study on older cigarette smokers 

reported a hazard ratio of 2.81, or 181% more likelihood to die from a 

cardiovascular disease (CVD) (Taghizadeh, Vonk, & Boezen, 2016). In 

comparison, a 2012 review found individuals who reported long bouts of sedentary 

activity are associated with a 147% increased risk of CVD or cardiovascular event. 

Engaging in sedentary behavior also increased cardiovascular mortality by 90% 

(Wilmot et al., 2012). Further examination of women with CVD like coronary artery 
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disease and cerebrovascular events revealed a 63% increased risk when average 

sitting time was 10 or more hours per day (Chomistek et al., 2013). The risk of 

CVD is further increased when obesity is factored into physical activity status 

(Warren et al., 2010). There remains a need to outline specific mechanisms 

associated with the detrimental changes of sedentary behavior (Hamilton, 

Hamilton, & Zderic, 2007).  

1.3.3 Physiologic Mechanisms of Sedentary Behavior 

Lipoprotein Lipase 

In an effort to provide mechanistic insight into the relation between 

sedentary behavior and a variety of CVDs, experts in the field of inactivity 

physiology suggested the role of lipoprotein lipase (LPL) and its regulation. In 

healthy individuals, the LPL enzyme is located within the vasculature where 

triglycerides are catabolized and shuttled into glycolytic muscle tissue for energy 

production (Miles et al., 2004). Research in animal models revealed a reduction in 

LPL activity led to an increase in the triglyceride level in circulation (Bey & 

Hamilton, 2003), which puts the individual at increased risk of metabolic syndrome 

development. This accumulation of triglycerides in the blood is also one of the 

hallmarks of atherosclerotic plaque formation in the arteries (Huang, 2009). 

Hamilton and colleagues determined that immobilization of a rat’s hind limb caused 

decreased activity of LPL as the energy demand decreased (Zderic & Hamilton, 

2006). In humans, female trained distance runners demonstrate increased LPL 

activity and improved triglycerides compared to controls (Podl et al., 1994). Taken 
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together, LPL activity is regulated by energy demand of surrounding tissue. LPL 

activity, and other regulators, can contribute to CVDs.   

Nitric Oxide and Endothelin-1 

The antagonistic regulators of blood vessel diameter, nitric oxide (NO) and 

endothelin-1, undergo differing gene regulation and expression during prolonged 

sedentary behavior. During exercise, NO is released from the endothelial cells that 

line the walls of arteries due to increased shear stress. Shear stress is created 

when arterial blood flow increases. NO, a powerful vasodilator, increases vessel 

diameter to accommodate the increased blood volume to be delivered to 

exercising muscle (Zhang et al., 2006). Exercise also results in down-regulated 

expression of endothelin-1, a vasoconstrictor. Numerous studies report the ability 

of exercise to decrease expression of endothelin-1 (Maeda et al., 2001; Maeda et 

al., 2003; Van Guilder, Westby, Greiner, Stauffer, & DeSouza, 2007). However, 

after engaging in long bouts of sedentary activity, NO expression and 

bioavailability remain unchanged (Donato et al., 2009; Thosar, Johnson, Johnston, 

& Wallace, 2012). In contrast, sedentary bouts, in conjunction with aging, can 

result in overexpression of endothelin-1 (Donato et al., 2009) to suggest that 

sedentary activity problems with blood pressure may be a result of overexpression 

of endothelin-1 rather than decreased NO.  This overexpression of endothelin-1 

can contribute to hypertension and ultimately lead to structural changes to the 

vasculature, making it less elastic and accepting of increases in blood volume 

(Marti et al., 2012).    
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1.3.4 Physical Activity Recommendations 

Increased energy expenditure is associated with a variety of health 

indicators which range from reductions in blood pressure (Sriram, Hunter, Fisher, 

& Brock, 2014), weight management (Muller, Enderle, & Bosy-Westphal, 2016), 

and improvement of plasma triglycerides (Hirose et al., 2015). In principal, 

increased energy expenditure triggers increased energy production in the form of 

adenosine triphosphate (ATP). Production of ATP is primarily through glucose and 

fat oxidation (Rosen & Spiegelman, 2006). An increase in fat oxidation has the 

potential to decrease body adiposity, ultimately improving weight, body mass index 

(BMI), and waist circumference (Esposito et al., 2003; Kelley, Goodpaster, Wing, 

& Simoneau, 1999). Protein oxidation constitutes a small percentage of total 

energy production, typically reserved for extreme circumstances (Dickerson, 

Guenter, Gennarelli, Dempsey, & Mullen, 1990). Recently, the ACSM released 

new guidelines for maintaining fitness in normal, healthy adults. Included in the 

recommendation are guidelines for maintaining cardiorespiratory health by 

engagement in 150 minutes of moderate exercise per week, 75 minutes of 

vigorous exercise per week, or any combination moderate or vigorous of exercise 

that results in energy expenditure of 500-1000 MET minutes per week or greater 

(Garber et al., 2011). Moderate or vigorous physical activity will not result from 

working at a standing desk for set amount of time.  
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1.3.5 Increased Physical Activity and Positive Health Outcomes 

Engagement in physical activity and exercise as recommended by the ACSM 

can help to produce a variety of positive health outcomes. Training induced 

improvements can improve oxygen delivery to the muscular tissue via increased 

capillary density (Mandroukas et al., 1984; Warburton, Nicol, & Bredin, 2006). In 

combination with improvement in muscle oxidative capacity via proliferation of type 

I muscle fibers (Schiaffino & Reggiani, 2011), VO2max can increase (Mandroukas 

et al., 1984; Warburton, Gledhill, & Quinney, 2001). In addition, interventions 

aimed at increased physical activity, namely moderate and vigorous intensity, is 

able to reduce or prevent increased fat percentage in children (Ruiz et al., 2006), 

men (King, Haskell, Young, Oka, & Stefanick, 1995), premenopausal women 

(Trapp, Chisholm, Freund, & Boutcher, 2008) and postmenopausal women (Irwin 

et al., 2003). However, light physical activity can produce some of the same health 

benefits as moderate or vigorous activity. 

1.3.6 Light Physical Activity and Human Health 

Light physical activity is defined as any activity capable of utilizing 3.5 

kilocalories per minute or an energy expenditure of 1.5 – 3.0 METs (American 

College of Sports Medicine, 2013; Healy et al., 2007). Common examples of light 

physical activity includes easy walking or biking. This physical activity category is 

of particular importance to older individuals and is associated with physical health 

(Buman et al., 2010). When compared to sedentary behavior, light physical activity 

revealed the ability to significantly reduce both central and brachial blood 
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pressures (Gerage et al., 2015). With the health benefits of light activity, there 

remains the question of whether standing is enough to produce an energy 

expenditure equivalent to at least 1.5 METs and have an impact on blood pressure 

and arterial stiffness (i.e. ability of arteries to expand and recoil with each cardiac 

cycle). 

1.4 Arterial Stiffness 

1.4.1 Normal Arterial Function  

In young, healthy individuals, the arteries of the cardiovascular system 

possess a large amount of distensibility, or the ability to stretch. During systole, 

fresh, oxygenated blood is ejected from the left ventricle of the heart, passes 

through the aortic semilunar value, into the aorta. The addition of new blood 

volume to systemic circulation causes the aorta to stretch. The ability of the aorta 

to stretch inhibits excessive increases in blood pressure (London & Guerin, 1999). 

As the heart enters diastole, negative or decreased pressure within the ventricle 

causes the aortic values to close. The elastic recoil of the aorta allows for the 

preservation of both blood flow and diastolic pressure (Michel E Safar, 2004). In 

addition to blood ejection into systemic circulation, the heart contraction produces 

a pulse wave that travels through the vasculature. This pulse wave is also called 

the palpable pulse, which can be felt most commonly at the wrist or neck. Reflected 

pulse wave timing in reference to systole and diastole can either be beneficial or 

detrimental to the heart.  
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Pulse Wave Reflection 

With each cardiac cycle, a pulse wave is sent through the vasculature 

during systole. This wave travels forward through the aorta. As the aorta begins to 

branch into smaller arteries and arterioles, the initial pulse wave sends a forward 

wave into the smaller arteries, but also sends a reflected wave back toward the 

heart (London & Guerin, 1999). The reflected waves have the potential to cause 

additional stress on the aorta in older individuals or individuals who have 

abnormally high arterial stiffness for their age. Increased arterial stiffness has the 

potential risk of being pathological as stiffness can affect the timing of when the 

reflected waves return to the aorta (Mayet & Hughes, 2003). In a young, healthy 

individual, the reflected wave arrives during diastole, when the reflected wave can 

Figure 1.1. Wave reflection associated with low arterial stiffness (top BP waveform) and wave 
reflection associated with high arterial stiffness (bottom BP waveform). Reflected waves arise 
from artery branch points or areas of stiffness within the vasculature. Reflected waves during 
systole (e.g. bottom waveform) can place added stress on the heart. 
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help to further perfuse the coronary arteries to aid with oxygen delivery to the 

myocardium (Kelly, Daley, Avolio, & O'Rourke, 1989; London & Guerin, 1999). In 

an older or unhealthy individual, the reflective wave returns during systole and 

further increases the blood pressure in the aorta. Over a long period of time, the 

added stress can lead to further stiffening of the aorta and increases in the aortic 

systolic pressure and decreases in aortic diastolic pressure. This forces the heart 

to generate more and more force with each heart contraction and increased stress 

on the vasculature with larger changes in pulse pressure.  

1.4.2 Methodological Development 

While brachial blood pressure is still considered an excellent screening tool 

for cardiovascular diseases and serves as an accurate predictor of future 

cardiovascular events, blood pressure varies within the arterial division of the 

cardiovascular system (Carmel M. McEniery, Cockcroft, Roman, Franklin, & 

Wilkinson, 2014). A healthy individual’s aortic systolic pressure is normally lower 

than the corresponding brachial blood pressure due to artery distensibility changes 

in periphery and vessel radius (Roman et al., 2009). However, instances arise 

where brachial blood pressure values are normal, or near normal, and the aortic 

blood pressure is comparable to the brachial blood pressure (Carmel M McEniery 

et al., 2008). This discrepancy may be evident from differing levels of stiffness of 

the large arteries elevating central blood pressure (Michel E Safar, Levy, & 

Struijker-Boudier, 2003). This discovery outlines the need for direct assessment of 

aortic blood pressure as an independent risk factor for cardiovascular disease.   
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A variety of techniques exist for the assessment of arterial stiffness in 

humans. Invasive measures include implantation of aortic catheters, which are 

equipped with pressure transducers to obtain measures of blood pressure at the 

level of the heart (Chen et al., 1998; Currie et al., 1985; Kawaguchi, Hay, Fetics, 

& Kass, 2003). Early work in the animal model confirmed pressure within the aorta 

was equivocal to pressure in the left ventricle during systole as blood is ejected 

into systemic circulation (Wiggers, 1928). In an effort to determine a less invasive 

technique of determining aortic blood pressure, radial artery catheterization can be 

used to generate aortic blood pressure via a generalized transfer function to 

generate an aortic blood pressure waveform. Actual and computer modeled aortic 

wave forms prove comparable and reliable (Chen et al., 1997; Pauca, O’rourke, & 

Kon, 2001). The new technique termed applanation tonometry, which is proven to 

be reliable and repeatable, is now wildly used for cardiovascular research (Crilly, 

Coch, Bruce, Clark, & Williams, 2007; Papaioannou et al., 2004; Wilkinson et al., 

1998). 

1.4.3 Applanation Tonometry 

Arterial stiffness is measured through two main techniques associated with 

applanation tonometry. Pulse wave analysis (PWA) is a rapid recording where a 

tonometer records pressure waves of an artery of interest, most often the radial 
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artery. SphygmoCor computer software is used to analyze characteristics of the 

pulse wave. When calibrated to a brachial blood pressure, this measure can 

provide estimates of the blood pressure waveform in the aorta, via generalized 

transfer function, to generate aortic blood pressure (systolic, diastolic, mean, and 

pulse pressure), which are confirmed against aortic and radial catheterization (Adji, 

Hirata, Hoegler, & O’Rourke, 2007; Chen et al., 1997). Additionally, an aortic 

augmentation index is calculated from the characteristics of the pulse wave. This 

Figure 1.2. Applanation tonometry, the process of flattening out an artery of interest against a hard 
surface, like bone, to obtain pulse-wave recordings. A general transfer function can generate the 
estimated aortic blood pressure waveform. 
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is defined as the quotient of the aortic augmentation pressure (i.e. aortic systolic 

pressure – blood pressure at inflection point, AIx) and aortic pulse pressure. This 

index can also be normalized to 75 heart beats, however there is debate as to 

when to use the normalized value vs. the non-normalized value (Stoner et al., 

2014). However, AIx is recognized to be dependent on heart rate, body height, and 

blood ejection duration (Townsend et al., 2015).  

Another technique under the classification of applanation tonometry is pulse 

wave velocity, where pulse wave speed can be estimated. Carotid-femoral pulse 

wave velocity (cfPWV) is often considered the gold standard indicator of 

cardiovascular health assessed with applanation tonometry, where a 1.0 m/s 

increase in velocity increases the risk of a cardiovascular event by 15% 

(Vlachopoulos, Aznaouridis, & Stefanadis, 2010). This measurement is done in 

Figure 1.3. Sample pulse wave analysis (PWA) recording of the radial artery following 
calibration with brachial BP. Via generalized transfer function, pulse wave characteristics can 
estimate aortic SAP, DAP, MAP, and PP.  
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tandem with an electrocardiogram recording. Each R wave of the ECG serves as 

the creation of the pulse wave. Two pulse sites are referenced where the distance 

from the suprasternal notch (i.e. location of the aorta) to each pulse site is 

measured. The tonometer is placed over the artery to examine when the pulse 

wave arrives. The time delay is calculated from the pulse wave creation (i.e. R 

wave) and the pulse wave arrival (i.e. waveform upstroke) for each cardiac cycle. 

The data collection software uses the distance from the aorta and time delay of 

pulse wave arrival to calculate the pulse wave velocity (Doupis, Papanas, Cohen, 

McFarlan, & Horton, 2016). A cfPWV below 10 m/s is considered to normal, 

whereas upwards of 10 m/s may be indicative of arterial stiffness within the 

vasculature (Van Bortel et al., 2012).  

Figure 1.4. Sample pulse wave velocity (PWV) recording of cfPWV. Based on pulse wave 
distance, time delay of pulse creation to pulse arrival is recorded at carotid and femoral sites. A 
speed in meters per second is calculated. 
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1.4.4 Pathological Associations with Arterial Stiffness 

Arterial stiffness is associated with a variety of cardiovascular diseases 

including hypertension, atherosclerosis, etc. There has long been a debate on 

whether arterial stiffness is the precursor to hypertension or if the inverse is true. 

A review by Franklin addressed this concern where he suggested an interplay 

between hypertension and arterial stiffness (Franklin, 2005), now termed a “vicious 

cycle”. High arterial stiffness can induce incident hypertension (Tomiyama & 

Yamashina, 2012). Left untreated, rapid increases in arterial stiffening occur, which 

can further increase the severity of hypertension (Franklin et al., 1997). Long term 

stress on arterial walls triggers vascular remodeling, which is can be categorized 

as, hypertrophic, hypotrophic, or eutrophic, corresponding to increase, decrease, 

or unchanged amount of new tissue in the blood vessel (Mulvany et al., 1996; 

Schiffrin, 2012). Inward eutrophic and hypertrophic remodeling are common within 

smaller arteries undergoing the stress of hypertension (Schiffrin, 2012). Inward 

eutrophic remodeling leads to decreased size of the vessel ultimately leading to 

decreased lumen diameter. Inward hypertrophic remodeling also reduces the 

lumen diameter via increased lumen endothelial growth. Large artery stiffness is 

characterized by outward hypotrophic growth where the lumen diameter is 

increased (Schiffrin, 2012). Over time, the elastin within the vessels is broken down 

and replaced with less compliant, dense collagen (O'rourke, 1990).  This 

phenomenon explains, in part, why stiff arteries produce increases in pulse 

pressure and disruptions in blood flow (Renna, de Las Heras, & Miatello, 2013). In 

addition, chronic stress on arterial walls can lead to inflammation (Booth et al., 
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2004), where the inner layers of the vasculature are not replaced or undergo the 

same remodeling process as other arterial layers. Inflammation within the 

vasculature can lead to the buildup of LDL cholesterol, which can exacerbate the 

progression of atherosclerotic plaque formation (Libby, 2012).   

Another pathological aspect of arterial stiffness includes the potential of end 

organ damage. Common examples include the kidney, brain and heart (Gary F 

Mitchell, 2008). As stated, the disruptions in blood flow from vascular remodeling 

contributes to more of a pulsatile blood flow rather than a constant flow. Decreased 

myocardial perfusion is evident in individuals with high arterial stiffness, where 

reflected pulse waves arrive to the heart during systole, rather than diastole, 

increasing the risk of myocardial ischemia from increased contractility and 

decreased oxygen availability (Kelly et al., 1989; London & Guerin, 1999). 

Increased pulsatility to the brain and kidney puts added stress on the 

microvasculature. Within the kidney, the glomerulus vasculature becomes 

damaged, which can allow large molecules like proteins into the urine (M. E. Safar, 

Nilsson, Blacher, & Mimran, 2012). Within the brain, there are associations 

between high arterial stiffness and beta-amyloid plaque deposition. Because of the 

decrease in blood vessel integrity from increases in pulsatility, the vasculature acts 

comparable to the kidney, allowing larger substances move across the blood brain 

barrier, which may contribute to the progression of Alzheimer’s disease (Singer, 

Trollor, Baune, Sachdev, & Smith, 2014).  
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1.5 Factors Influencing Arterial Stiffness 

1.5.1 Non-Modifiable Risk Factors 

Numerous studies have reported the relationship between age and arterial 

stiffness (Benetos et al., 2002; Vaitkevicius et al., 1993; Wen et al., 2015). The 

Framingham Heart Study cohort data showed age was a strong predictor of both 

cfPWV and reflected wave transit time (i.e. time from reflection to arrival at the 

heart). PWV increased with age, whereas the reflected wave time decreased. This 

phenomena may contribute to arterial stiffness related SAP and pulse pressure 

(PP) increases. (G. F. Mitchell et al., 2004). In addition, there is data to further 

suggest arterial stiffness progression throughout the aging process independent 

of hypertension status (Vaitkevicius et al., 1993). However, interventions exist to 

ameliorate age related increases in arterial stiffness. Other non-modifiable risk 

factors include sex and ethnicity. African-American men appear to have increased 

central blood pressure, intima-media thickness, and carotid beta-stiffness as 

compared to age matched Caucasian men (Heffernan, Jae, Wilund, Woods, & 

Fernhall, 2008). In addition, African-American men appear to have increased 

baseline aortic stiffness as compared to Caucasian men (Heffernan, Jae, & 

Fernhall, 2007). Sex differences of arterial stiffness show women have increased 

arterial stiffness following menopause compared to men (Coutinho, Borlaug, 

Pellikka, Turner, & Kullo, 2013), consistent with increased prevalence of 

hypertension as women age (Oparil & Miller, 2005).  
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1.5.2 Modifiable Risk Factors 

Interventions to improve aerobic capacity are common within the scientific 

community and range in focus from cognition (Colcombe & Kramer, 2003) to 

cardiovascular health (Warburton et al., 2006). One cross-sectional study 

demonstrated the ability of increased aerobic capacity to significantly lower levels 

of arterial stiffness when compared to sedentary controls (Vaitkevicius et al., 

1993). Another modifiable factor is maintenance of a healthy body composition. 

Increased abdominal visceral fat in obese individuals is associated with increased 

arterial stiffness (Sutton-Tyrrell et al., 2001; Zebekakis et al., 2005), whereas 

interventions that decrease obesity also can improve arterial stiffness (Goldberg, 

Boaz, Matas, Goldberg, & Shargorodsky, 2009). Easy to implement interventions 

include increasing physical activity throughout the day, and use of an alternative 

workstation, which can increase energy expenditure and potentially to improve 

arterial stiffness (Hamasaki, Yanai, Kakei, Noda, & Ezaki, 2015).  

1.6 Alternative Workstations 

1.6.1 Examples of Alternative Workstations 

Sedentary behavior in the workplace is a problem. A variety of new, active 

workstations were created and are now widely used. These new workstations 

range from a standing desk, to a biking workstation, to a treadmill desk. The main 

goal of each alternative workstation is to breakup prolonged seated periods and 

improve energy expenditure throughout the workday (Torbeyns, Bailey, Bos, & 

Meeusen, 2014). However, the implementation of new workstations created new 
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questions to answer. Productivity was a large concern especially when alternative 

desks were bought for employees rather than in the home. Is the worker as 

productive while standing, walking, or biking as compared to remaining seated 

(Karol & Robertson, 2015)? Do the alternative workstations truly provide a 

significant benefit to health (Torbeyns et al., 2014)? Each question was warranted 

to justify investment in a new workstations to ensure there would be no harm to 

the employee or company productivity.  

1.6.2 Standing Desk 

Perhaps the easiest and simplest of all active workstations, the standing 

desk, is one of the most popular to encourage reduced sitting time while at work. 

Most who readily use a standing desk report the desire to move more throughout 

the day, which is consistent with the principal of active workstations (Levine & 

Miller, 2007). In addition, there is little evidence to suggest office programs, like 

intermittent walking, effectively promote a reduction in sedentary time due to poor 

adherence (Chau et al., 2010). By providing an option of an active workstation like 

a standing desk, workplace sedentary time and perhaps productivity and health 

could improve.  

1.6.3 Standing Desks and Productivity 

Standing workstation productivity was one of the first questions to be posed 

to the scientific community. The question was of particular interest to employers, 

whereas an investment in a standing workstation that decreased productivity would 
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be irrational from a financial perspective. The most frequent test of productivity at 

workstations are typing performance tests. Two studies report no differences in 

typing performance (Drury et al., 2008; Ebara et al., 2008). Another study provided 

evidence of increased productivity with changes in posture like standing, but longer 

standing time decreased productivity, driven by employee fatigue (Hasegawa, 

Inoue, Tsutsue, & Kumashiro, 2001). A recent study of a Texas call center, who 

implemented a standing desk intervention, saw increased productivity (up to 50%) 

in the form of successful phone calls at months one and six (Garrett et al., 2016). 

In summary, the majority of research into standing desk productivity provided 

support for their implementation into the workplace given only long bouts of 

standing decreased workplace productivity. If a standing desk can both boost 

productivity and improve employee health, the purchase can be financially justified.  

1.6.4 Standing Desks and Health 

In an effort to reduce sitting time throughout the day, researchers have 

inferred that replacement of sitting with standing for part of the workday will 

positively impact human health and decrease biomarkers for certain 

cardiovascular or metabolic disorders.  A recent study published by Winkler et al 

(2017), reported improvements in a variety of health variables. Standing was 

associated with improvements in triglycerides, HDL cholesterol, and fasting 

glucose via a 12- month program to promote more standing throughout the 

workday (Winkler et al., 2017). HDL cholesterol improvement was documented to 

increase as much as 4.68 mg/dL (Alkhajah et al., 2012). An increase of this 
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magnitude can improve HDL cholesterol from a range indicative of increased risk 

of heart disease (18.74 mg/dL) to an acceptable level (21.08 mg/dL) (Stone et al., 

2014). There is no current evidence on standing desk ability to improve resting 

blood pressure, only one study reports blood pressure is increased during standing 

rather than sitting (Cox et al., 2011). However, there is differing literature to 

suggest standing is not enough to provide positive health outcomes like 

improvements in body composition and blood pressure (Carr, Swift, Ferrer, & 

Benzo, 2016). Furthermore, moderate or vigorous physical activity will not result 

from working at a standing desk for set amount of time. Perhaps standing 

throughout in the workday is enough to achieve light physical activity.  

1.6.5 Standing Desks and Energy Expenditure  

A recent review reported that the use of standing desks produced increases 

in energy expenditure ranging from 4.1 to 20.4 kcal/hr or VO2 of 0.18 to 0.90 

mL/kg/min (MacEwen, MacDonald, & Burr, 2015). Yet, an important question 

remains. Is the increase in energy expenditure able to produce light physical 

activity compared to physical activity associated with seated desks? Given 1 MET 

is 3.5 mL/kg/min, an average 75 kg individual would produce at most an additional 

¼ of a MET by standing. However, standing at the work place puts workers at 

higher likelihood to walk more at work, which could, indirectly, increase energy 

expenditure to as much as 119 kcal/hr or 1.5 METs (Levine & Miller, 2007).  
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1.7 Standing Desks and Arterial Stiffness 

Current research into energy expenditure of workstations employed indirect 

calorimetry analyses to determine specific caloric use and substrate metabolism. 

In one study, utilization of a standing desk increased energy expenditure by 7.5 

kcal/hour when compared to a seated desk control (Roemmich, 2016). In addition, 

increased light physical activity in older individuals is correlated with improved 

carotid-femoral PWV (Yuko Gando et al., 2010), but could a standing desk be 

enough to promote physical and cardiovascular well-being if light physical activity 

is achieved?  

1.7.1 Acute Effect of Standing Desk on Arterial Stiffness 

Very few studies exist which examine the effect of standing desks on arterial 

stiffness. One study observed the effects of using a standing desk during one 

stimulated workday, but alternated between sitting and standing throughout the 

day. The study revealed acute changes in carotid-ankle PWV compared to the 

seated control group. However, no changes were seen in carotid-femoral PWV 

(Bethany Barone Gibbs et al., 2017). No current research has examined the 

chronic effects of standing desk use during a normal work day.  

Thus, the purpose of this study is to determine the chronic effect of standing 

desk use on arterial stiffness vs. seated sedentary controls. We hypothesized that 

individuals who chronically stand at work would demonstrate lower arterial stiffness 

than those that chronically sit at work. 
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2 Methods 

2.1 Participant Information 

Fifty-five participants were recruited from the Michigan Tech and Houghton, 

Michigan community. Of the 55 participants, 50 (42 females, 8 males) were 

enrolled in the study. Twenty-six participants were chronic users of a seated desk 

(21 females, 5 males: age 42 ± 11 years, BMI 25 ± 4 kg/m2) and 24 chronic 

standing desk users (21 females, 3 males: age 45 ± 12 years, BMI 25 ± 5 kg/m2) 

via self-report questionnaire. Standing desk users must have used a standing desk 

for at least 8 weeks (desk use 2 ± 1 years, 19 ± 16 months). All participants were 

free of any diagnosed cardiovascular or metabolic diseases. All women were 

screened for particular phase of 

menstrual cycle in an effort to 

have equal groups of early 

follicular, mid-luteal, and post-

menopausal women within the 

seated and stranding desk 

groups. This study was approved 

by the Michigan Technological 

University Institutional Review 

Board (M1457). All participants 

provided written informed consent 

prior to study enrollment.  

Figure 2.1. Study schematic of enrollment. 
Hypertension: ≥140/90 mmHg, Aortic Pulse 
Pressure (aPP): >50mmHg 
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2.2 Procedures 

Participants arrived to Michigan Tech’s Clinical and Applied Human 

Physiology Lab following a fast for at least three hours and abstaining from 

exercise and caffeine for at least 12 hours prior to the scheduled orientation and 

testing sessions. During the orientation session, participants completed an 

informed consent form, participant information sheet, and a Godin Leisure Time 

Questionnaire (i.e. quantify physical activity habits outside of normal workday). 

Height, body mass, and body fat percentage were recorded. Participants were 

instructed to lay supine and quiet on an exam table for five minutes. Up to three 

brachial blood pressure recordings were taken with an automated 

sphygmomanometer to screen for potential hypertension (i.e. ≥140/≥90 mmHg). 

Preliminary arterial stiffness measures were taken via a pulse wave analysis 

recording of the radial artery following calibration of the SphygmoCor system with 

the brachial blood pressure. Participants with an aortic pulse pressure of ≥50 

mmHg were excluded from the study due to a potential increased risk of 

atherosclerotic plaque (Oliver & Webb, 2003; Roman et al., 2009). Aerobic fitness 

was estimated via a Rockport Walk Test on a treadmill within the lab.  

Following the orientation session, participants reported back to the laboratory 

for their scheduled testing session. Each were instructed to lay supine and refrain 

from talking for five minutes on an exam table. Using an automated 

sphygmomanometer, three brachial blood pressures were obtained, with each 

measurement separated by one minute. Duplicate pulse wave analysis recordings 
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were collected from the radial pulse site for 10 cardiac cycles, with operator indices 

above 80. An operator index above 80 is considered satisfactory by the 

manufacturer and indicates maintenance of pulse height and limited variation of 

the systolic and diastolic portions of the waveform. Three electrodes were placed 

on the participant’s chest. Two at the shoulders near the collar bone and one on 

the bottom portion of the rib cage on the left side of the body to capture lead II of 

an ECG.  Three regional pulse wave velocity measures (carotid-radial, femoral-

dorsalis pedis, carotid-femoral) were performed to assess arterial stiffness within 

the arm, leg, and central region of the body. Measures of distance (mm) were taken 

from the suprasternal notch (aorta location) to the pulse site of interest (carotid, 

radial, femoral, or dorsalis-pedis). Recordings were executed in duplicate, where 

recordings having a standard deviation of <10% were kept for analyses.  

2.3 Measurements 

2.3.1 Body Fat Percentage  

Body Fat percentage was measured with a bioelectrical impedance scale 

(BC-418 Segmental Body Composition Analyzer; Tanita, Tokyo, Japan). 

Participants were instructed to remove shoes and socks and place their feet on the 

metal pads on the scale. Medal handles were also held at the participant’s side 

during the recording. Each were instructed to remain still as the electromagnetic 

wave passed through their body. Impedance is indicative of adipose tissue given 

the hydrophobicity of adipose cells and the lipids they possess. Other tissues like 
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muscle are water rich and result in low impedance. Whole body and regional 

assessments of fat percentage were obtained.  

2.3.2 Rockport Walk Test 

To estimate aerobic fitness, a Rockport walk test was administered to 

estimate a VO2peak score, given ease of test administration and reliability with 

actual VO2peak via graded exercise test (Kline et al., 1987). Participants completed 

a physical activity readiness questionnaire (PAR-Q; Canadian Society of Exercise 

Physiology) prior to the test and then were instructed to perform a three minute 

submaximal walking warm-up at a 1% grade on the laboratory treadmill, which 

produces similar results to track administration (Nieman, 1999). Directly following, 

participants were instructed to walk one mile as fast as possible, without running, 

at a 1% grade. A ten second heart rate, test time, and modified Borg rating of 

perceived exertion were collected at conclusion of the test. Weight (lbs), age 

(years), sex (1=men, 0=women), time (minutes), and minute heart rate were 

entered into the following regression equation: VO2peak = 132.853 – (0.00769 * 

weight) – (0.3877 * age) + (6.315 * sex) – (3.2649 * test time) – (0.1565 * heart 

rate) (American College of Sports Medicine, 2013). Participants were instructed to 

cool down ad libitum for at least two minutes.   

2.3.3 Blood Pressure 

Following five minutes of supine rest, a brachial blood pressure recording 

was taken with an automated sphygmomanometer (Omron HEM-907XL; Omron 



29 

Health Care, Kyoto, Japan). Blood pressure recordings was performed in triplicate 

during the testing session. The average blood pressure was used to calibrate 

arterial stiffness data collection software.  

2.3.4 Pulse Wave Analysis 

An average brachial blood pressure was entered in the SphygmoCor data 

collection software (SphygmoCor; AtCor Medical, Sydney, Australia) for calibration 

purposes. The tonometer probe was placed over the radial artery by flattening out 

the artery and pressing it against the carpals of the wrist. Following probe 

adjustment to find a strong reading and eliminate systolic and diastolic variation, 

the probe was kept still for approximately 10-12 seconds to capture ten radial pulse 

waves. This technique was done in duplicate to ensure consistent quality 

recordings. The software analyzed the radial pulse wave via a generalized transfer 

function to generate an aortic pulse wave, aortic blood pressure values, and aortic 

augmentation indices.  

2.3.5 Pulse Wave Velocity 

Three electrodes, two at the shoulder region and one on the bottom, left side 

of the rib cage, were placed to obtain lead II of an ECG. Measurements of straight-

line distance (mm) were recorded from the suprasternal notch to two pulse sites of 

interest to examine carotid-radial, femoral-dorsalis pedis, and carotid-femoral 

pulse wave velocities. Each pulse wave reading was gated to the R-wave of the 

ECG to calculate the time delay between pulse creation at the heart and to arrival 
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at the pulse site. The change in the distance (proximal – distal in reference to aorta) 

is divided by the change in time delay (proximal – distal time delay) to provide a 

speed in meters per second. Duplicate readings with a standard deviation ≤10% 

were kept for data analysis.  

2.4 Data and Statistical Analyses 

Data were exported from the SphygmoCor system to a Microsoft excel file 

and then to SPSS. Initially, normality tests were  conducted on the variables of 

age, VO2peak, and fat percentage. Two participant’s data were excluded from 

analysis due to non-normally distributed VO2peak scores. Forty-eight participants, 

twenty-four chronic seated desk users (19 females, 5 males: age 41 ± 10 years, 

BMI 25 ± 4 kg/m2) and 24 chronic standing desk users (21 females, 3 males: age 

45 ± 12 years, BMI 25 ± 5 kg/m2) were used for final analysis. Differences in age, 

estimated VO2peak, BMI, fat percentage, blood pressure (SAP and DAP), and heart 

rate between seated and standing groups were assessed using independent 

samples t-tests. We used a median analysis to classify participants by age, aerobic 

fitness (VO2peak), and fat percentage (i.e. young v. old, high fitness v. low fitness, 

etc.) for additional secondary analysis of cfPWV. Each pulse wave velocity was 

averaged with corresponding value in preparation for statistical analysis using 

commercial software (SPSS 25.0, SPSS, Chicago, IL). Results are expressed as 

mean ± SD (Streiner, 1996). Means were considered significantly different when 

P ≤ 0.05 (i.e. two-tailed test).  
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2.4.1 Power Analysis 

An additional analysis was performed to ensure adequately powered sample 

size to produce 1 m/s differences in cfPWV, where 1 m/s reductions of cfPWV may 

reportedly reduce CVD risk by 15% (Vlachopoulos et al., 2010). Power analysis 

software (G*Power 3.1.9.2, Kiel, Germany) was used to determine proper effect 

size for total sample power of 0.8, alpha of 0.05, and equal allocation ratio. Effect 

size was determined via group means and group standard deviations. A difference 

of 1 was selected between group means based on the findings of Vlachopoulos et 

al. (2010). A standard deviation of 1.2 was selected from The Reference Values 

for Arterial Stiffness Collaboration via cfPWV reference value of 40-49 year old 

individuals with normal blood pressure (n = 562) (Collaboration, 2010). A 

computed effect size of 0.8333 was achieved with a sample size of n = 48.  
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3 Results 

3.1 Participant Characteristics 

Participant demographic values between seated and standing groups are 

shown in Table 3.1. Age, VO2peak, Godin score, height, weight, body mass index 

(BMI), fat percentage, systolic arterial pressure (SAP), and heart rate (HR) were 

all similar between seated and standing groups. However, diastolic arterial 

pressure (DAP) was significantly higher in the standing group. 

Table 3.1. Participant Characteristics: Seated vs. Standing 

Variable 
Seated 

(n = 24, 19 female) 
Standing 

(n = 24, 21 female) P Value 

Age (years) 41 ± 10 45 ± 12 0.238 
VO2peak (mL/kg/min) 39 ± 8 34 ± 10 0.124 
Godin (score) 61 ± 63 47 ± 22 0.311 
Height (cm) 167 ± 8 167 ± 8 0.961 
Weight (kg) 70 ± 12 71 ± 13 0.704 
BMI (kg/m2) 25 ± 4 25 ± 5 0.860 
Fat Percentage 28 ± 8 30 ± 8 0.356 
SAP (mmHg) 113 ± 8 115 ± 11 0.529 
DAP (mmHg) 66 ± 5 71 ± 7* 0.008 
HR (beats/min) 59 ± 11 63 ± 9 0.208 

Values are means ± SD; n, number of participants; Godin, Physical Activity 
Questionnaire activity score; BMI, Body Mass Index; SAP, systolic arterial 
pressure; DAP, diastolic arterial pressure; HR, heart rate. *Significantly different 
from corresponding seated value, P < 0.05 
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3.2 Carotid-Femoral Pulse Wave Velocity 

Figure 3.1 compares carotid-femoral pulse wave velocity (cfPWV) or arterial 

stiffness in the central region of the body when categorized by seated and 

standing. No differences were detected between seated and standing groups (p = 

0.474). Figure 3.2 shows participants separated into categories of young v. old, 

low fitness v. high fitness, and high fat v. low fat, where a median analysis 

generated two groups for comparison in each respective category (i.e. age, fitness, 

and fat percentage). Carotid-femoral pulse wave velocity was significantly higher 

in older participants (Panel A) when compared to younger (p=0.002). High fitness 

and low fat percentage (Panel B and C, respectively) had significantly attenuated 

cfPWV when compared to low fitness and high fat percentage (p<0.001 and 

p=0.022, respectively).  

  

 

Figure 3.1 Carotid-femoral Pulse Wave Velocity (cfPWV) when classified by 
seated v. standing (p = 0.474).  Result is mean ± SD  
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Figure 3.2 Carotid-femoral Pulse Wave Velocity (cfPWV) classified using 
traditional factors such as age (Panel A; median = 42.0 years, p = 0.002), fitness 
(Panel B; median = 36.0 mL/kg/min, p < 0.001), and fat (Panel C; median = 
28.7%, p = 0.022). Results are means ± SD. *Significantly different from 
corresponding value, P < 0.05 
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3.3 Peripheral Pulse Wave Velocity  

Figure 3.3 represents carotid-radial pulse wave velocity (panel A; crPWV) and 

femoral-dorsalis-pedis pulse wave velocity (panel B; lPWV). Both recordings 

represent arterial stiffness in the arm and leg respectively. Both analyses saw no 

significant difference between seated and standing groups (p = 0.133 and 0.661, 

respectively).  

 

Figure 3.3 Carotid-radial pulse wave velocity (crPWV) and Leg Pulse Wave 
Velocity (lPWV) when classified by seated v. standing (P = 0.133 and 0.661) 
Results are means ± SD 
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4 Discussion 
To our knowledge, this is the first study to examine chronic use of a standing 

desk throughout a normal workday. cfPWV, crPWV, and lPWV were not different 

between chronic seated and standing desk workers. Secondary analysis of 

traditional factors of age, aerobic fitness, and fat did produce significant differences 

in cfPWV between groups (i.e. younger v. older, low v. high fitness, high v. low fat) 

The results of this study were not in support of our hypothesis, where cfPWV of 

individuals who used a standing desk for at least 50% of the day was not lower as 

compared to seated desk controls. However, our results do confirm the influence 

of age, aerobic fitness, and body fat on arterial stiffness. The findings of this study 

further advance the field of both inactivity physiology and alternative workstations.  

4.1 Carotid-Femoral Pulse Wave Velocity 

As stated previously, cfPWV is considered to be the gold-standard of 

assessing cardiovascular health where a 1 m/s decrease is associated with a 15% 

reduction in CVD risk (Vlachopoulos et al., 2010). The comparison between seated 

and standing groups revealed little difference between cfPWV, possibly due to lack 

of achieving light physical activity while working at a standing desk. Light physical 

activity may trigger NO release (Niebauer & Cooke, 1996) and some degree of 

endothelin-1 suppression (Nyberg, Mortensen, & Hellsten, 2013). The relationship 

between light physical activity and cfPWV has been demonstrated in older 

individuals (i.e. 65-85 years old), but not young (van de Laar et al., 2010). There 

is some evidence to suggest only vigorous activity is correlated with improved 
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arterial stiffness in young adults, rather than habitual moderate and light physical 

activity (van de Laar et al., 2010). Working to reduce other CVD factors such as 

hypertension and dyslipidemia can also work to prevent age related increase in 

arterial stiffness (Benetos et al., 2002). 

Arterial stiffness is known to increase with age (Benetos et al., 2002; 

Vaitkevicius et al., 1993; Wen et al., 2015), which is supported by our results. Over 

time, arteries undergo a process called remodeling where vessel wall elasticity 

decreases and the diameter of the vessel lumen can increase (Mulvany et al., 

1996). Increases in arterial stiffness lead to increased SAP, while increases in 

vessel lumen diameter via outward remodeling decreases DAP (Mulvany et al., 

1996; Schiffrin, 2012). The opposing changes in SAP and DAP results in increased 

pulse pressure (Schiffrin, 2012). Increased pulse pressure, especially aortic, is 

indicative of CVD like atherosclerosis and other cerebrovascular disease like an 

ischemic stroke due to interrupted blood flow (Townsend et al., 2015).  

Many studies have noted the association between increased physical activity 

and decreased arterial stiffness (Vaitkevicius et al., 1993; Zieman, Melenovsky, & 

Kass, 2005). We believe the decreased cfPWV in those with higher aerobic fitness 

in the present study to be a robust finding, as fitness was based on the Rockport 

Walk test results independent of exercise and physical activity habits. Another 

possible explanation is individuals who engage in regular physical activity expose 

vasculature to higher levels of shear stress triggering the expression and 

production of eNOS and NO, respectively. This increased vessel diameter and 
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bioavailability of NO is associated with reduced cfPWV (Gilligan et al., 1994; 

Wilkinson et al., 2002).  

Promotion of healthy body composition is another factor associated with 

arterial stiffness. Those with higher overall body fat in the present study 

demonstrated significantly higher cfPWV. Increased fat percentage is reportedly 

associated with decreased distensibility of both the aorta and femoral arteries 

(Ferreira et al., 2004). Additionally, increased percentage of fat/adipose tissue 

produces molecules like adipokines and leptin. Specifically, leptin’s effect on 

arterial stiffness seems dose dependent with percentage body fat including both 

visceral and subcutaneous fat. However, adipokine levels vary independent of 

body fat, but are still associated with increased arterial stiffness (Windham et al., 

2010). Visceral or perivascular fat’s ability to release adipokines into circulation 

can promote vascular endothelial dysfunction, leading to arterial stiffness 

(Villacorta & Chang, 2015).  While body composition and fat percentage are related 

to arterial stiffness, decreased fat percentage may not always result in improved 

arterial stiffness. Both amount and distribution of the adipose tissue within the body 

may be the larger player in arterial stiffness regulation. 

4.2 Carotid-Radial and Leg Pulse Wave Velocity  

Previous work on the acute effects of standing desk use show significant 

reductions in carotid-radial and carotid-ankle pulse wave velocities (Bethany 

Barone Gibbs et al., 2017). Inherently, the nature of pulse wave velocity recordings 
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in the periphery (i.e. arm and leg) provide an indication of the stiffness of some of 

the muscular arteries. Muscular arteries aid in filtering excess pulsatility throughout 

the cardiovascular system and various end-organs (Zarrinkoob et al., 2016). Given 

the similarity of both groups in the crPWV and lPWV reading, pulsatility should also 

be similar between groups. However, perhaps sit to stand transition, and walking 

more throughout the day may only impact the arterial stiffness of the periphery 

rather than the central region of the body. Sitting for more than three hours is 

shown to impair superficial femoral artery flow mediated dilation (Thosar, Bielko, 

Mather, Johnston, & Wallace, 2015). Chronic impairment of arterial flow can lead 

to decreased NO production via decreased shear stress leading to increased 

arterial stiffness (Wilkinson et al., 2002). Future work warrants investigation 

whether lPWV increases during prolonged sitting and the potential relationship to 

cfPWV or crPWV.  

4.3 Limitations 

One limitation in the present study in the lack of control of the menstrual 

cycle. Menstrual cycle status is reported to influence arterial stiffness. Pulse wave 

velocity measures are at the lowest during the mid-luteal phase (Madhura & 

Sandhya, 2014) following ovulation, and higher during early follicular (Ounis-Skali, 

Mitchell, Solomon, Solomon, & Seely, 2006). Additionally, the onset of menopause 

appears to accelerate the age related increases of arterial stiffness when 

compared to age-matched women who still possess their menstrual cycle (Moreau 

& Hildreth, 2014). We did record menstrual cycle status and this potential limitation 
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should be minimized by the similar distribution of women in each phase/status (i.e. 

early follicular, mid-luteal, perimenopause, and postmenopause). Distributions 

were 41%, 23%, 6%, and 29% in seated participants and 25%, 30%, 5%, and 40%, 

respectively in standing participants.  

4.4 Implications 

The present study did not detect any differences in PWV between seated and 

standing desk participants. The current study suggests standing for at least 50% 

of a normal workday may not be enough to produce an effect on arterial stiffness. 

If light physical activity is achieved while using a standing desk, this may not result 

in decreased arterial stiffness in younger populations. There is a suggestion that 

only moderate and/or vigorous physical activity can improve arterial stiffness in 

younger populations (van de Laar et al., 2010). However, older individuals can 

reduce their arterial stiffness with increased light physical activity (Y. Gando et al., 

2010). In contrast to employee health, standing is reported to increase productivity 

(Garrett et al., 2016; Hasegawa et al., 2001). By this measure, perhaps the 

purchase of a standing desk can still be justified, independent of arterial stiffness 

improvement. On the contrary, further research into the cardiovascular health 

effects of standing desk use is warranted.  

4.5 Future Directions 

Plenty of opportunities exist in the realm of arterial stiffness and standing desk, 

or alternative work stations. Cross-sectional designs have inherent draw back by 



41 

comparing data across individuals rather than to the same person. Future work 

should initiate a standing desk intervention to examine if/when arterial stiffness is 

affected from standing for most of the day after controlling for physical activity 

minutes outside of work. Additionally, longitudinal studies should be built from 

initial cross-sectional designs to determine if chronic standing desk can 

significantly attenuate arterial stiffness during the aging process compared to the 

seated desk controls.  

4.6 Summary 

Workplace standing desks and active workstations, in general, are in popular 

demand in the office, where the effects on human health are largely unknown. The 

present study comparing chronic standing desk users and chronic standing desk 

users did not find any differences in cfPWV, crPWV, or lPWV. However, secondary 

analysis of traditional factors of age, aerobic fitness, and fat revealed significant 

differences between young and old, low and high aerobic fitness, and high and low 

fat percentage. This finding further supports arterial stiffness increases with age, 

and promotion of exercise and healthy body composition can work to ameliorate 

age related increases in arterial stiffness. Standing for at least 50% of the workday 

does not appear to directly influence arterial stiffness based on our initial cross-

sectional analysis.   
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A Appendix A – Raw Data 
A.1 Participant Characteristics 

Table A.1. Subject Characteristics Raw Data 

Part. # Age Sex VO2peak  Godin Height Weight BMI Fat % SAP DAP HR 

1 25 F 45.8 52 156 83.0 34.0 36.1 108 72 64 
2 54 F 35.6 96 163 64.4 24.4 24.6 126 77 67 
3 48 F 28.4 37 173 68.5 23.0 24.3 119 77 64 
4 38 F 39.5 21 160 56.3 21.7 30.2 112 69 57 
5 34 M 50.9 44 168 73.9 26.2 39.6 122 81 62 
6 44 M 41.9 51 167 81.7 29.0 32.7 120 73 60 
7 47 F 24.5 62 172 72.6 24.1 33.6 134 81 59 
8 56 F 26.0 203 163 57.1 21.5 25.6 107 54 61 
9 50 F 37.8 26 161 58.5 22.1 33.1 107 61 54 

10 32 F 42.1 25 160 74.9 29.3 37.1 96 64 77 
11 56 F 34.9 39 180 71.4 22.0 34.7 106 62 50 
12 22 F 47.6 18 165 96.2 35.3 44.2 105 69 66 
13 25 F 57.1 21 164 56.8 20.8 18.7 107 66 51 
14 41 M 35.0 54 185 103 29.8 24.0 114 72 49 
15 46 F 33.8 91 180 80.5 24.7 14.8 122 70 40 
16 45 M 48.2 55 167 60.8 21.6 20.5 123 67 60 
17 42 F 36.3 125 167 82.4 29.3 20.7 105 71 49 
18 29 F 41.9 15 158 82.4 33.2 40.5 110 61 54 
19 37 M 51.8 26 169 74.9 26.1 34.8 113 74 49 
20 35 F 31.4 290 158 76.1 30.7 41.6 116 64 53 
21 35 F 30.9 81 179 65.7 20.5 12.3 129 78 59 
22 57 F 11.2 29 171 90.4 31.2 46.2 129 78 67 
23 57 F 31.0 49 167 78.9 28.1 39.6 115 75 67 
24 53 F 33.4 41 162 62.3 23.6 25.0 133 79 51 
25 34 F 38.5 49 162 65.5 24.8 24.8 109 68 51 
26 38 F 30.8 50 170 67.1 23.2 30.2 109 69 72 
27 50 F 32.7 52 162 59.6 22.6 25.4 125 68 60 
28 47 F 39.6 77 175 72.4 23.6 31.2 105 60 67 
29 55 F 26.3 54 154 60.3 25.5 24.8 134 65 69 
30 47 F 30.6 83 162 68.5 26.3 36.6 123 73 71 
31 51 F 29.2 36 175 64.3 20.9 24.6 115 65 49 
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32 63 F 27.2 30 178 101 32.1 29.5 112 67 64 
33 36 F 36.3 21 160 51.2 20.0 19.7 115 63 75 
34 35 F 19.8 39 185 83.6 24.6 21.0 111 64 41 
35 39 M 51.3 12 170 65.5 22.6 29.2 102 60 58 
36 63 F 40.0 42 155 47.2 19.6 24.9 103 66 59 
37 56 F 16.2 40 168 63 22.4 31.1 110 62 59 
38 31 F 35.1 55 184 79.1 23.3 15.0 117 61 53 
39 27 M 55.7 28 157 71.7 28.9 31.8 110 68 64 
40 61 F 32.1 45 166 84.6 30.6 44.4 109 69 54 
41 42 F 37.7 43 175 76.5 33.7 33.7 108 66 49 
42 62 F 28.7 25 160 70.1 21.8 28.2 120 74 66 
43 32 F 41.9 17 167 60.4 22.6 26.9 115 65 82 
44 52 F 11.3 72 160 57.8 27.4 39.9 135 86 72 
45 50 F 23.5 45 158 80.8 32.1 42.5 127 88 69 
46 61 F 14.9 56 161 69.5 26.7 37.8 102 64 64 
47 27 F 42.7 47 173 55.1 18.5 18.5 115 72 93 
48 42 F 38.2 15 162 58.5 22.1 25.9 93 60 68 
49 28 M 45.1 26 173 79.3 26.6 23.9 123 74 75 
50 37 F 46.3 54 169 62.2 21.8 24.8 103 69 56 

Part. = Participant; Age = Years; VO2peak = mL/kg/min; Godin = Physical 
Activity Questionnaire; Height = cm; Weight = kg; BMI = Body Mass Index 
(kg/m2); SAP= Systolic Arterial Pressure (mmHg); DAP = Diastolic Arterial 
Pressure (mmHg); HR = Heart Rate (beats/min) 
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A.2 Rockport Walk Test 
Table A.2. Rockport Walk Test Raw Data 

Participant Weight Age Sex Code Time Heart Rate VO2peak 
1 183 38 0 15.23 150 30.84 
2 142 50 0 15.35 126 32.71 
3 151 47 0 14.25 108 39.59 
4 124 55 0 18.00 108 26.32 
5 163 47 0 14.42 156 30.61 
6 180 51 0 14.55 144 29.21 
7 159 63 0 15.10 126 27.20 
8 126 25 0 13.53 150 45.82 
9 129 54 0 14.32 126 35.57 

10 165 48 0 15.78 138 28.41 
11 157 36 0 15.27 132 36.29 
12 212 35 0 18.30 150 19.76 
13 125 38 0 12.80 174 39.47 
14 226 39 1 11.80 108 51.26 
15 177 34 1 12.78 126 50.90 
16 134 63 0 12.05 120 40.00 
17 182 44 1 13.68 138 41.88 
18 182 56 0 18.48 132 16.18 
19 165 31 0 15.18 150 35.10 
20 168 47 0 17.03 138 24.53 
21 145 27 1 11.47 156 55.70 
22 199 57 0 27.4 132 11.2 
23 174 56 0 15.36 138 26.02 
24 137 61 0 15.20 108 32.11 
25 144 50 0 12.59 150 37.78 
26 148 32 0 14.17 132 42.14 
27 131 56 0 14.23 126 34.86 
28 160 42 0 13.49 144 37.72 
29 133 22 0 13.18 150 47.59 
30 151 62 0 14.38 138 28.66 
31 142 25 0 11.72 108 57.10 
32 223 41 1 14.87 144 35.02 
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33 113 46 0 15.60 138 33.82 
34 184 45 1 11.55 138 48.25 
35 144 42 0 14.57 138 36.31 
36 104 32 0 14.42 150 41.91 
37 139 29 0 15.10 126 41.92 
38 174 37 1 13.38 102 51.75 
39 158 35 0 17.17 126 31.37 
40 187 35 0 15.18 156 30.95 
41 169 57 0 13.25 150 31.04 
42 133 53 0 14.98 126 33.42 
43 127 34 0 14.38 156 38.50 
44 178 50 0 17.60 120 23.52 
45 155 52 0 22.5 102 11.3 
46 153 61 0 19.25 126 14.85 
47 121 27 0 13.22 174 42.67 
48 129 42 0 16.07 102 38.23 
49 175 28 1 13.62 162 45.06 
50 137 37 0 12.57 132 46.27 

Weight = lbs; Age = years; Sex Code, Female = 0, Male = 1; Time = Minutes; 
Heart Rate = beats/min; VO2peak = mL/kg/min 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



60 

A.3 Pulse Wave Velocity Raw Data 
Table A.3. Pulse Wave Velocity Raw Data 

Participant cfPWV crPWV lPWV 
1 8.05 9.1 6.0 
2 7.25 9.3 7.8 
3 6.3 7.7 8.2 
4 7 7.4 7.2 
5 6.65 10.4 9.8 
6 7 7.1 8.6 
7 9.9 8.3 10.4 
8 5.55 6.3 7.7 
9 6.8 7.0 11.6 

10 8.7 7.9 --- 
11 5.3 6.9 8.2 
12 5.75 7.2 10.0 
13 5.85 7.5 9.5 
14 7 10.5 11.3 
15 5.6 7.7 9.4 
16 7.15 6.7 10.4 
17 5.8 9.2 7.3 
18 8.6 8.6 6.3 
19 6.2 7.5 9.0 
20 7.65 7.8 11.4 
21 5.25 7.7 8.2 
22 9.9 8.8 9.1 
23 6.55 8.4 10.3 
24 6.55 8.0 9.4 
25 6.7 6.6 8.7 
26 8.4 9.5 9.9 
27 6.1 7.2 8.4 
28 4.95 6.9 10.0 
29 9.3 8.5 11.3 
30 5.95 7.8 10.0 
31 8.8 9.8 9.0 
32 6.05 8.1 8.5 
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33 6 9.0 5.6 
34 5.75 7.1 8.2 
35 4.7 7.1 9.6 
36 6.15 6.6 9.8 
37 6.95 7.0 9.2 
38 5.05 7.1 --- 
39 5.5 10.1 8.2 
40 6.25 6.8 9.1 
41 6.4 8.0 9.4 
42 6.6 7.7 7.7 
43 7.1 9.3 7.5 
44 6.8 7.4 9.3 
45 5.7 8.6 7.1 
46 6.15 8.6 8.6 
47 8.5 10.8 8.5 
48 5.8 9.5 10.1 

cfPWV = Carotid-Femoral PWV; crPWV = Carotid-Radial PWV; lPWV = Leg 
PWV; --- = Missing Data Point 

 



62 

B Appendix B - Statistical Analyses 
 

Table B.1a - Descriptive Statistics for Age      

 Condition N Mean Std. Deviation Std. Error Mean 

age 1.00 24 41.0833 10.45037 2.13317 

2.00 24 45.0000 12.18338 2.48692 

 

Table B.1b - Independent Samples T-Test for Age 

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 

Sig. 
(2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

Lower Upper 

age Equal 
variances 
assumed 

1.172 .285 -
1.195 

46 .238 -3.91667 3.27646 -
10.51184 

2.67851 

Equal 
variances not 
assumed 

  
-
1.195 

44.958 .238 -3.91667 3.27646 -
10.51597 

2.68264 

 

Table B.2a – Descriptive Statistics for VO2peak 

 Condition N Mean Std. Deviation Std. Error Mean 

VO2max 1.00 24 38.5149 8.46315 1.72753 

2.00 24 34.2419 10.34880 2.11244 
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Table B.2b – Independent Samples T-Test for VO2peak 

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 

Sig. 
(2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% 
Confidence 
Interval of the 
Difference 

Lower Upper 

VO2max Equal 
variances 
assumed 

.838 .365 1.566 46 .124 4.27301 2.72888 -
1.21993 

9.76596 

Equal 
variances not 
assumed 

  
1.566 44.257 .125 4.27301 2.72888 -

1.22578 
9.77181 

 

Table B.3a – Descriptive Statistics for Godin Leisure Time Questionnaire 

 
Condition N Mean Std. Deviation Std. Error Mean 

Godin 1.00 24 61.3333 63.44728 12.95112 

2.00 24 47.3125 21.84372 4.45883 

 

Table B.3b – Independent Sample T-Test for Godin Leisure Time Questionnaire 

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 

Sig. 
(2-
tailed) 

Mean 
Differenc
e 

Std. Error 
Differenc
e 

95% Confidence 
Interval of the 
Difference 

Lower Upper 

Godin Equal 
variances 
assumed 

4.840 .033 1.024 46 .311 14.02083 13.69718 -
13.55016 

41.59183 

Equal 
variances not 
assumed 

  
1.024 28.377 .315 14.02083 13.69718 -

14.01979 
42.06146 
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Table B.4a – Descriptive Statistics for Height 

 Condition N Mean Std. Deviation Std. Error Mean 

height 1.00 24 167.1042 8.44931 1.72471 

2.00 24 166.9875 7.95227 1.62325 

 

Table B.4b – Independent Sample T-Test for Height 

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Differenc
e 

Std. Error 
Differenc
e 

95% Confidence 
Interval of the 
Difference 

Lower Upper 

height Equal 
variances 
assumed 

.027 .871 .049 46 .961 .11667 2.36845 -
4.65078 

4.88411 

Equal 
variances not 
assumed 

  
.049 45.832 .961 .11667 2.36845 -

4.65125 
4.88458 

 

Table B.5a – Descriptive Statistics for Weight 

 Condition N Mean Std. Deviation Std. Error Mean 

weight 1.00 24 69.8821 11.98086 2.44558 

2.00 24 71.2458 12.73926 2.60039 
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Table B.5b – Independent Sample T-Test for Weight 

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Differenc
e 

Std. Error 
Differenc
e 

95% Confidence 
Interval of the 
Difference 

Lower Upper 

weight Equal 
variances 
assumed 

.041 .840 -.382 46 .704 -1.36375 3.56972 -
8.54922 

5.82172 

Equal 
variances not 
assumed 

  
-.382 45.828 .704 -1.36375 3.56972 -

8.54995 
5.82245 

 

Table B.6a – Descriptive Statistics for BMI 

 Condition N Mean Std. Deviation Std. Error Mean 

BMI 1.00 24 25.2583 3.98943 .81434 

2.00 24 25.4792 4.62892 .94488 

 

Table B.6b - Independent Samples T-Test for BMI 

 

Levene's Test for 
Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

Lower Upper 

BMI Equal 
variances 
assumed 

.264 .610 -.177 46 .860 -.22083 1.24737 -
2.73166 

2.29000 

Equal 
variances not 
assumed 

  
-.177 45.019 .860 -.22083 1.24737 -

2.73314 
2.29147 
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Table B.7a – Descriptive Statistics for VO2peak 

 Condition N Mean Std. Deviation Std. Error Mean 

Overall_Fat 1.00 24 27.9792 7.82715 1.59771 

2.00 24 30.1333 8.16635 1.66695 

 

Table B.7b – Independent Samples T-Test for VO2peak 

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 

Sig. 
(2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% 
Confidence 
Interval of the 
Difference 

Lower Upper 

Overall_Fat Equal 
variances 
assumed 

.348 .558 -
.933 

46 .356 -2.15417 2.30898 -
6.80191 

2.49357 

Equal 
variances not 
assumed 

  
-
.933 

45.917 .356 -2.15417 2.30898 -
6.80213 

2.49380 

 

Table B.8a – Descriptive Statistics for SAP 

 Condition N Mean Std. Deviation Std. Error Mean 

SAP 1.00 24 113.2500 8.43002 1.72077 

2.00 24 115.0000 10.55009 2.15353 
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Table B.8b – Independent Samples T-Test for SAP 

 

Levene's Test for 
Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

Lower Upper 

SAP Equal 
variances 
assumed 

1.964 .168 -.635 46 .529 -1.75000 2.75658 -
7.29871 

3.79871 

Equal 
variances not 
assumed 

  
-.635 43.864 .529 -1.75000 2.75658 -

7.30601 
3.80601 

 

Table B.9a – Descriptive Statistics for DAP 

 Condition N Mean Std. Deviation Std. Error Mean 

DAP 1.00 24 66.3750 5.30637 1.08316 

2.00 24 71.4583 7.30681 1.49150 

 

Table B.9b – Independent Samples T-Test for DAP 

 

Levene's Test for 
Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

Lower Upper 

DAP Equal 
variances 
assumed 

2.786 .102 -
2.758 

46 .008 -5.08333 1.84331 -
8.79373 

-
1.37294 

Equal 
variances not 
assumed 

  
-
2.758 

41.981 .009 -5.08333 1.84331 -
8.80334 

-
1.36333 
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Table B.10a – Descriptive Statistics for HR 

 Condition N Mean Std. Deviation Std. Error Mean 

HR 1.00 24 59.0833 10.99769 2.24489 

2.00 24 62.9583 9.25710 1.88960 

 

Table B.10b – Independent Samples T-Test for HR 

 

Levene's Test for 
Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% Confidence 
Interval of the 
Difference 

Lower Upper 

HR Equal 
variances 
assumed 

1.631 .208 -
1.321 

46 .193 -3.87500 2.93430 -
9.78144 

2.03144 

Equal 
variances not 
assumed 

  
-
1.321 

44.699 .193 -3.87500 2.93430 -
9.78609 

2.03609 

 

Table B.11a – Descriptive Statistics for cfPWV (Seated v. Standing) 

 Condition N Mean Std. Deviation Std. Error Mean 

aorticPWV 1.00 24 6.5896 1.25516 .25621 

2.00 24 6.8542 1.28299 .26189 
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Table B.11b – Independent Samples T-Test for cfPWV  

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% 
Confidence 
Interval of the 
Difference 

Lower Upper 

aorticPWV Equal 
variances 
assumed 

.015 .902 -
.722 

46 .474 -.26458 .36637 -
1.00205 

.47289 

Equal 
variances not 
assumed 

  
-
.722 

45.978 .474 -.26458 .36637 -
1.00206 

.47290 

 

Table B.12a – Descriptive Statistics for crPWV (Seated v. Standing) 

 Condition N Mean Std. Deviation Std. Error Mean 

armPWV 1.00 24 7.8271 1.06066 .21651 

2.00 24 8.3250 1.19209 .24334 

 

Table B.12b – Independent Samples T-Test for crPWV  

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 

Sig. 
(2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% 
Confidence 
Interval of the 
Difference 

Lower Upper 

armPWV Equal 
variances 
assumed 

.622 .434 -
1.529 

46 .133 -.49792 .32571 -
1.15354 

.15770 

Equal 
variances not 
assumed 

  
-
1.529 

45.386 .133 -.49792 .32571 -
1.15378 

.15794 
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Table B.13a – Descriptive Statistics for lPWV (Seated v. Standing) 

 Condition N Mean Std. Deviation Std. Error Mean 

legPWV 1.00 22 9.0159 1.31515 .28039 

2.00 24 8.8354 1.44902 .29578 

 

Table B.13b – Independent Samples T-Test for lPWV  

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% 
Confidence 
Interval of the 
Difference 

Lower Upper 

legPWV Equal 
variances 
assumed 

.934 .339 .441 44 .661 .18049 .40931 -.64443 1.00541 

Equal 
variances not 
assumed 

  
.443 43.997 .660 .18049 .40756 -.64089 1.00188 
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Table B.14a – Median Analysis for Age 

 Statistic Std. Error 

age Mean 43.0417 1.64569 

95% Confidence Interval for Mean Lower Bound 39.7310  

Upper Bound 46.3524  

5% Trimmed Mean 43.0139  

Median 42.0000  

Variance 129.998  

Std. Deviation 11.40168  

Minimum 22.00  

Maximum 63.00  

Range 41.00  

Interquartile Range 18.25  

Skewness .085 .343 

Kurtosis -.994 .674 

 

Table B.15a – Descriptive Statistics for cfPWV (Younger v. Older) 

 AGE_GROUP N Mean Std. Deviation Std. Error Mean 

aorticPWV 1.00 24 6.1875 1.06007 .21639 

2.00 24 7.2562 1.24029 .25317 
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Table B.15b – Independent Samples T-Test for cfPWV 

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 

Sig. 
(2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% 
Confidence 
Interval of the 
Difference 

Lower Upper 

aorticPWV Equal 
variances 
assumed 

.926 .341 -
3.209 

46 .002 -1.06875 .33305 -
1.73914 

-
.39836 

Equal 
variances not 
assumed 

  
-
3.209 

44.911 .002 -1.06875 .33305 -
1.73958 

-
.39792 

 

 

Table B.16a – Median Analysis for VO2peak 

 Statistic Std. Error 

VO2max Mean 36.3784 1.38535 

95% Confidence Interval for Mean Lower Bound 33.5914  

Upper Bound 39.1653  

5% Trimmed Mean 36.4279  

Median 35.9500  

Variance 92.122  

Std. Deviation 9.59801  

Minimum 14.85  

Maximum 57.10  

Range 42.25  

Interquartile Range 11.40  

Skewness .024 .343 

Kurtosis -.109 .674 
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Table B.17a – Descriptive Statistics for cfPWV (Low v. High Fitness) 

 FIT_GROUP N Mean Std. Deviation Std. Error Mean 

aorticPWV 1.00 24 7.3313 1.35477 .27654 

2.00 24 6.1125 .80478 .16427 

 

Table B.17b – Independent Samples T-Test for cfPWV 

 

Levene's Test 
for Equality of 
Variances t-test for Equality of Means 

F Sig. t df 

Sig. 
(2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

95% 
Confidence 
Interval of the 
Difference 

Lower Upper 

aorticPWV Equal 
variances 
assumed 

8.224 .006 3.789 46 .000 1.21875 .32165 .57130 1.86620 

Equal 
variances not 
assumed 

  
3.789 37.435 .001 1.21875 .32165 .56727 1.87023 
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Table B.18a – Median Analysis for Fat Percentage 

 Statistic Std. Error 

Overall_Fat Mean 29.0563 1.15290 

95% Confidence Interval for 
Mean 

Lower Bound 26.7369  

Upper Bound 31.3756  

5% Trimmed Mean 29.0741  

Median 28.7000  

Variance 63.800  

Std. Deviation 7.98751  

Minimum 12.30  

Maximum 44.40  

Range 32.10  

Interquartile Range 10.40  

Skewness .076 .343 

Kurtosis -.609 .674 

 

Table B.19a – Descriptive Statistics for cfPWV (Low v. High Fat Percentage) 

 FAT_GROUP N Mean Std. Deviation Std. Error Mean 

aorticPWV 1.00 24 6.3104 .92748 .18932 

2.00 24 7.1333 1.42986 .29187 
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Table B.19b – Independent Samples T-Test for cfPWV 

 

 

Levene's Test for 
Equality of 
Variances t-test for Equality of Means 

F Sig. t df 
Sig. (2-
tailed) 

Mean 
Differen
ce 

Std. 
Error 
Differen
ce 

95% Confidence 
Interval of the 
Difference 

Lower Upper 

aorticP
WV 

Equal 
variances 
assumed 

5.116 .028 -
2.365 

46 .022 -.82292 .34789 -
1.52319 

-.12264 

Equal 
variances not 
assumed 

  
-
2.365 

39.44
3 

.023 -.82292 .34789 -
1.52634 

-.11949 
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	1.6 Alternative Workstations
	1.6.1 Examples of Alternative Workstations
	Sedentary behavior in the workplace is a problem. A variety of new, active workstations were created and are now widely used. These new workstations range from a standing desk, to a biking workstation, to a treadmill desk. The main goal of each altern...

	1.6.2 Standing Desk
	Perhaps the easiest and simplest of all active workstations, the standing desk, is one of the most popular to encourage reduced sitting time while at work. Most who readily use a standing desk report the desire to move more throughout the day, which i...

	1.6.3 Standing Desks and Productivity
	Standing workstation productivity was one of the first questions to be posed to the scientific community. The question was of particular interest to employers, whereas an investment in a standing workstation that decreased productivity would be irrati...

	1.6.4 Standing Desks and Health
	In an effort to reduce sitting time throughout the day, researchers have inferred that replacement of sitting with standing for part of the workday will positively impact human health and decrease biomarkers for certain cardiovascular or metabolic dis...

	1.6.5 Standing Desks and Energy Expenditure
	A recent review reported that the use of standing desks produced increases in energy expenditure ranging from 4.1 to 20.4 kcal/hr or VO2 of 0.18 to 0.90 mL/kg/min (MacEwen, MacDonald, & Burr, 2015). Yet, an important question remains. Is the increase ...


	1.7 Standing Desks and Arterial Stiffness
	Current research into energy expenditure of workstations employed indirect calorimetry analyses to determine specific caloric use and substrate metabolism. In one study, utilization of a standing desk increased energy expenditure by 7.5 kcal/hour when...
	1.7.1 Acute Effect of Standing Desk on Arterial Stiffness
	Very few studies exist which examine the effect of standing desks on arterial stiffness. One study observed the effects of using a standing desk during one stimulated workday, but alternated between sitting and standing throughout the day. The study r...
	Thus, the purpose of this study is to determine the chronic effect of standing desk use on arterial stiffness vs. seated sedentary controls. We hypothesized that individuals who chronically stand at work would demonstrate lower arterial stiffness than...



	Figure 1.1. Wave reflection associated with low arterial stiffness (top BP waveform) and wave reflection associated with high arterial stiffness (bottom BP waveform). Reflected waves arise from artery branch points or areas of stiffness within the vas...
	Figure 1.2. Applanation tonometry, the process of flattening out an artery of interest against a hard surface, like bone, to obtain pulse-wave recordings. A general transfer function can generate the estimated aortic blood pressure waveform.
	Figure 1.3. Sample pulse wave analysis (PWA) recording of the radial artery following calibration with brachial BP. Via generalized transfer function, pulse wave characteristics can estimate aortic SAP, DAP, MAP, and PP.
	Figure 1.4. Sample pulse wave velocity (PWV) recording of cfPWV. Based on pulse wave distance, time delay of pulse creation to pulse arrival is recorded at carotid and femoral sites. A speed in meters per second is calculated.
	2 Methods
	2.1 Participant Information
	Fifty-five participants were recruited from the Michigan Tech and Houghton, Michigan community. Of the 55 participants, 50 (42 females, 8 males) were enrolled in the study. Twenty-six participants were chronic users of a seated desk (21 females, 5 mal...

	2.2 Procedures
	Participants arrived to Michigan Tech’s Clinical and Applied Human Physiology Lab following a fast for at least three hours and abstaining from exercise and caffeine for at least 12 hours prior to the scheduled orientation and testing sessions. During...
	Following the orientation session, participants reported back to the laboratory for their scheduled testing session. Each were instructed to lay supine and refrain from talking for five minutes on an exam table. Using an automated sphygmomanometer, th...

	2.3 Measurements
	2.3.1 Body Fat Percentage
	Body Fat percentage was measured with a bioelectrical impedance scale (BC-418 Segmental Body Composition Analyzer; Tanita, Tokyo, Japan). Participants were instructed to remove shoes and socks and place their feet on the metal pads on the scale. Medal...

	2.3.2 Rockport Walk Test
	To estimate aerobic fitness, a Rockport walk test was administered to estimate a VO2peak score, given ease of test administration and reliability with actual VO2peak via graded exercise test (Kline et al., 1987). Participants completed a physical acti...

	2.3.3 Blood Pressure
	Following five minutes of supine rest, a brachial blood pressure recording was taken with an automated sphygmomanometer (Omron HEM-907XL; Omron Health Care, Kyoto, Japan). Blood pressure recordings was performed in triplicate during the testing sessio...

	2.3.4 Pulse Wave Analysis
	An average brachial blood pressure was entered in the SphygmoCor data collection software (SphygmoCor; AtCor Medical, Sydney, Australia) for calibration purposes. The tonometer probe was placed over the radial artery by flattening out the artery and p...

	2.3.5 Pulse Wave Velocity
	Three electrodes, two at the shoulder region and one on the bottom, left side of the rib cage, were placed to obtain lead II of an ECG. Measurements of straight-line distance (mm) were recorded from the suprasternal notch to two pulse sites of interes...


	2.4 Data and Statistical Analyses
	Data were exported from the SphygmoCor system to a Microsoft excel file and then to SPSS. Initially, normality tests were  conducted on the variables of age, VO2peak, and fat percentage. Two participant’s data were excluded from analysis due to non-no...
	2.4.1 Power Analysis
	An additional analysis was performed to ensure adequately powered sample size to produce 1 m/s differences in cfPWV, where 1 m/s reductions of cfPWV may reportedly reduce CVD risk by 15% (Vlachopoulos et al., 2010). Power analysis software (G*Power 3....



	Figure 2.1. Study schematic of enrollment. Hypertension: ≥140/90 mmHg, Aortic Pulse Pressure (aPP): >50mmHg
	3 Results
	3.1 Participant Characteristics
	Participant demographic values between seated and standing groups are shown in Table 3.1. Age, VO2peak, Godin score, height, weight, body mass index (BMI), fat percentage, systolic arterial pressure (SAP), and heart rate (HR) were all similar between ...

	3.2 Carotid-Femoral Pulse Wave Velocity
	Figure 3.1 compares carotid-femoral pulse wave velocity (cfPWV) or arterial stiffness in the central region of the body when categorized by seated and standing. No differences were detected between seated and standing groups (p = 0.474). Figure 3.2 sh...

	3.3 Peripheral Pulse Wave Velocity
	Figure 3.3 represents carotid-radial pulse wave velocity (panel A; crPWV) and femoral-dorsalis-pedis pulse wave velocity (panel B; lPWV). Both recordings represent arterial stiffness in the arm and leg respectively. Both analyses saw no significant di...


	Table 3.1. Participant Characteristics: Seated vs. Standing
	Values are means ± SD; n, number of participants; Godin, Physical Activity Questionnaire activity score; BMI, Body Mass Index; SAP, systolic arterial pressure; DAP, diastolic arterial pressure; HR, heart rate. *Significantly different from corresponding seated value, P < 0.05
	Figure 3.1 Carotid-femoral Pulse Wave Velocity (cfPWV) when classified by seated v. standing (p = 0.474).  Result is mean ± SD
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	Figure 3.2 Carotid-femoral Pulse Wave Velocity (cfPWV) classified using traditional factors such as age (Panel A; median = 42.0 years, p = 0.002), fitness (Panel B; median = 36.0 mL/kg/min, p < 0.001), and fat (Panel C; median = 28.7%, p = 0.022). Res...
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	Figure 3.3 Carotid-radial pulse wave velocity (crPWV) and Leg Pulse Wave Velocity (lPWV) when classified by seated v. standing (P = 0.133 and 0.661) Results are means ± SD
	4 Discussion
	To our knowledge, this is the first study to examine chronic use of a standing desk throughout a normal workday. cfPWV, crPWV, and lPWV were not different between chronic seated and standing desk workers. Secondary analysis of traditional factors of a...
	4.1 Carotid-Femoral Pulse Wave Velocity
	As stated previously, cfPWV is considered to be the gold-standard of assessing cardiovascular health where a 1 m/s decrease is associated with a 15% reduction in CVD risk (Vlachopoulos et al., 2010). The comparison between seated and standing groups r...
	Arterial stiffness is known to increase with age (Benetos et al., 2002; Vaitkevicius et al., 1993; Wen et al., 2015), which is supported by our results. Over time, arteries undergo a process called remodeling where vessel wall elasticity decreases and...
	Many studies have noted the association between increased physical activity and decreased arterial stiffness (Vaitkevicius et al., 1993; Zieman, Melenovsky, & Kass, 2005). We believe the decreased cfPWV in those with higher aerobic fitness in the pres...
	Promotion of healthy body composition is another factor associated with arterial stiffness. Those with higher overall body fat in the present study demonstrated significantly higher cfPWV. Increased fat percentage is reportedly associated with decreas...

	4.2 Carotid-Radial and Leg Pulse Wave Velocity
	Previous work on the acute effects of standing desk use show significant reductions in carotid-radial and carotid-ankle pulse wave velocities (Bethany Barone Gibbs et al., 2017). Inherently, the nature of pulse wave velocity recordings in the peripher...

	4.3 Limitations
	One limitation in the present study in the lack of control of the menstrual cycle. Menstrual cycle status is reported to influence arterial stiffness. Pulse wave velocity measures are at the lowest during the mid-luteal phase (Madhura & Sandhya, 2014)...

	4.4 Implications
	The present study did not detect any differences in PWV between seated and standing desk participants. The current study suggests standing for at least 50% of a normal workday may not be enough to produce an effect on arterial stiffness. If light phys...

	4.5 Future Directions
	Plenty of opportunities exist in the realm of arterial stiffness and standing desk, or alternative work stations. Cross-sectional designs have inherent draw back by comparing data across individuals rather than to the same person. Future work should i...

	4.6 Summary
	Workplace standing desks and active workstations, in general, are in popular demand in the office, where the effects on human health are largely unknown. The present study comparing chronic standing desk users and chronic standing desk users did not f...
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