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Abstract 

During plastic deformation both stacking and twin faults can be generated in face-

centered cubic materials, including iron-based metals that contain thermally stable 

austenite. These planar faults are a critical component of the austenite to martensite 

transformation, forming shear bands that can act as nucleation sites. The measurement of 

these faults via x-ray diffraction has been long established, however it has not been 

applied widely to austempered ductile irons. The ability to measure these faulting 

probabilities could give insights into the transformation as a function of deformation. In 

this work both planar fault densities were measured in austempered ductile iron to test the 

feasibility of the x-ray diffraction peak-shift (stacking) and centroid-shift (twin) 

techniques in these materials using a traditional laboratory diffractometer and 

synchrotron beamline source. Experimentation was also performed with 304L stainless 

steel as a baseline material for comparison. The errors associated with this technique are 

also discussed and highlighted. Errors in the laboratory diffractometer measurement were 

shown to be significant and therefore the experimental setup should be carefully 

considered when performing these types of analyses. 



 

1 

1 Background 

1.1 FCC to BCC/BCT Martensite Transformation 

Certain materials exhibit diffusion-less, massive transformations that are commonly 

known as a martensite transformation [1]. This type of transformation is the physical 

explanation for the shape-memory effect in alloys such as, In-Ti or Ni-Ti [2] and is 

utilized in transformation induced plasticity steels for an increased strain-hardening 

response [3,4]. In steels, the martensite start, or Ms temperature is a crucial factor to 

consider when designing heat-treatments for hardening and strengthening of steels. This 

is the temperature where the metastable austenite transforms to the stable martensite 

phase, which in steels can be either body-centered cubic (BCC) or body-centered 

tetragonal (BCT), depending on the carbon content. When the austenite is stabilized 

through alloying additions, the Ms temperature drops below room temperature, enabling 

higher amounts of retained austenite at room temperature. As is shown in Figure 1.1, with 

the increased thermal stability of austenite an additional source of energy is required to 

start the martensite transformation. This additional energy can be provided via applied 

strains. Both elastic and plastic strains have been shown to influence this transformation, 

depending on the additional energy required to start the transformation. Stress-assisted 

transformations occur with only elastic strains on the material, thus requiring less overall 

energy than strain-induced transformations, which require plastic deformations to occur. 

To help characterize these types of steels, the Md, or temperature at which deformation 

begins to cause the transformation is introduced to complement the Ms temperature. 
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Figure 1.1: G-T diagram of austenite and martensite highlighting the differences in Ms 

and Md temperatures. The additional mechanical energy required at Md is shown as Emech, 

and the total G required for martensite transformation is shown as ΔGcrit. An additional 

deformed austenite G-T curve is shown as well. 

In general, whether thermally or mechanically activated, the martensite transformation 

has been observed to be a diffusion-less shear (displacive) transformation [1]. The 

observed orientation relationship between the martensite and austenite boundaries gives 

the habit plane between the two phases, which has been described by Kurdjumov-Sachs 

and Bogers-Burgers. From these models, the vectors for the shear required for the 

transformation has been determined to be 
1

12
〈112〉 for the K-S model and 

1

18
〈112〉 B-B 

model, which are in the same direction as the Shockley partial dislocation present from a 

stacking fault as described in Section 1.2.1.[5] This relationship between the Shockley 

partial and the shear vector from the B-B model is the source of the Olson and Cohen 

nucleation theory described below. Olson and Cohen theorized that the build-up of 

stacking faults along with twin faults or ε (HCP) martensite (referred to as shear-bands) 

act as nucleation sites for the martensite within the austenite grains [6–8]. The general 

sequence of Olson-Cohen nucleation site theory, is shown in Figure 1.2.  

Martensite 

Austenite 

Md Ms 

ΔGcrit 

Emech 

 Def. Austenite 

T 
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Figure 1.2: Dislocation motion and creation sequence in the Olson-Cohen theory for 

martensite nucleation in the FCC->BCC transformation. Step a) is the initial Shockley 

edge dislocation present on a (111) plane in the FCC lattice. B) are the 3 partial 

dislocations created, where the 1 18⁄ [1̅21̅] and 1 18⁄ [2̅11] partial dislocations are equivalent 

to 1/3 of the normal partial 1 6⁄ [121] + 1 6⁄ [211] dislocations, where they are split onto 

three consecutive planes. C) is the formation of partial dislocations during the relaxation 

of the fault in B). D) is the final fault structure after additional lattice screw dislocations 

are created to relieve the stresses produced during the initial relaxation in C).1  

Initially, an 
1

2
[1̅10] screw dislocation dissociates on the (111) plane, producing  

1

18
[1̅21̅] 

and 
1

18
[2̅11] dislocations on three consecutive planes. As shown in the Bogers-Burgers 

model in this configuration, the atoms may easily move to the positions in the body 

centered structure during the transformation sequence [9]. A formalized kinetic model 

was developed for steels that leverage transformation-induced plasticity that is based on 

shear-band intersections as nucleation sites [10]. The model assumes that the 

                                                 
1 Reprinted by permission from Springer Nature: Springer Metallurgical Transactions A, A general 

mechanism of martensitic nucleation: Part II. FCC → BCC and other martensitic transformations, G. B. 

Olson, Morris Cohen 1976. See Appendix F for documentation to republish this material. 
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intersections of the shear bands (stacking faults, twin faults, ε-martensite) increase 

linearly with the strain applied and that the probability of a certain shear band intersection 

will nucleate martensite follows a Gaussian distribution. The model, Equation 1.1, 

contains three variables, α, β and n that must be fitted experimentally to a specific 

material. The model calculates the fraction of martensite (α′) present as a function of 

strain applied (ε). 

fα′ = 1 − e−β[1−exp(−αε)]n
 (1.1) 

The alpha term is dependent on the rate of shear-band formation as a function of applied 

strain and the beta term is directly related to the probability that a given shear-band 

intersection will become a martensite nucleation site. The beta term is also dependent on 

the thermodynamic driving force for transformation (ΔGα to γ). These terms along with the 

exponent, n, are determined through fitting of experimental data for a given alloy. Based 

on this theory, the planar fault defects present in materials are a critical component to 

understand for further understanding of this transformation. 

1.2 Planar defects in FCC Materials 

Stacking and twin faults can occur during plastic deformation, while twin faulting can 

also occur during recrystallization from heat treatment. FCC materials undergoing plastic 

deformation can exhibit either or both deformation modes, dislocation slip or twinning, 

with dislocation slip producing stacking faults and twinning producing twin faults on the 

close packed (111) plane [11,12]. During recrystallization, errors in the growth sequence 

can also cause twin faulting, where the crystal stacking sequence is mirrored around a 

twin fault. Understanding of the deformation behavior character, whether it is by slip or 
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by twinning, is important in material design. Examples of materials leveraging a specific 

deformation mode for enhanced properties include both twinning-induced plasticity 

(TWIP) and transformation-induced plasticity (TRIP) type high-strength steels. TWIP 

steels utilize deformation twinning to increase the work-hardening response compared to 

traditional alloy steels, while TRIP steels utilize dislocation slip (stacking fault 

generation) to transform the austenite to martensite to increase the work-hardening 

response compared to traditional alloy steels [4]. 

1.2.1 Stacking Faults in FCC Materials 

A stacking fault is a defect in the normal stacking order of planes in the crystal lattice, 

that can be created during dislocation slip. In the FCC structure, the close packed plane 

(111) follows the ABCABCABCABC sequence, each letter designating the unique layer of 

atoms in the crystal as shown in Figure 1.3.  

 

 

 

Figure 1.3: 2-dimensional projection of the (111) close packed plane showing the 

ABCABC stacking sequence in an FCC lattice. The individual layers are labeled A, B, C 

respectively.  

Dislocation slip occurs primarily on the close-packed planes in the face-centered cubic 

structure. During the dislocation slip process, the burgers vector of an edge dislocation in 

the (111) plane is 
1

2
[110], which follows the direct path to the next B site, where the 

 

A 
B 

C 
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atoms missing in the B-plane correspond to the missing plane from the edge dislocation. 

This type of motion is depicted in Figure 1.5X. This method of dislocation slip is not the 

most energetically favorable (less energy) because of the relatively large lattice strains 

required to move the B-layer atoms directly over the A-layer atoms to the next B-layer 

position, where this energy is directly proportional to the square of the burgers vector for 

the dislocation and shear modulus of the material (Gb2). A more energetically favorable 

method of this motion is when the edge dislocation is split into two partial dislocations to 

arrive at this same site on the lattice, as depicted in Figure 1.5. The dislocation 

disassociates following the relation 
1

2
[110] =

1

6
[121] +

1

6
[211], thus moving the atoms 

to the C position after the first partial and returning to the B position after the second 

partial. The b2 of the partials (0.33) combined is lower than the b2 required for the edge 

dislocation (0.5). This partial dislocation sequence is known as the Shockley partial 

dislocation sequence [1]. This dislocation disassociation sequence is depicted in further 

detail in Figure 1.4. 
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Figure 1.4: Orientation relationship of the partial dislocations 
1

6
[121],

1

6
[211] to the 

primary edge dislocation on the (111) plane in an FCC lattice. The dotted circles 

represent the base A-layer of atoms, while the smaller circles represent the B and C layers 

as noted.2  

Due to the equal lattice strains produced by each Shockley partial dislocation, each partial 

repels the other, thus creating an extended dislocation, where a discontinuity of the 

stacking order occurs. This extended discontinuity is referred to as a stacking fault, where 

the size of the stacking fault is determined by the balance of the additional surface energy 

created by the fault and the repulsive forces of the partial dislocations. During slip, the 

entire stacking fault moves as one entire defect, following the partial dislocations [1]. 

 

 

                                                 
2 Republished with permission of Cengage Learning from Physical Metallurgy Principles, Reza 

Abbaschian, Robert E Reed-Hill, 1992; permission conveyed through Copyright Clearance Center, Inc. See 

Appendix F for documentation to republish this material. 
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Figure 1.5: 2-dimensional projection of the (111) plane depicting two types of 

dislocation slip possible in the (111) plane, with the dislocations designated by arrows. 

X) Standard ½ [110] edge dislocation motion in the B layer of atoms. The empty row of 

atoms represents the missing plane from the edge dislocation. Y) The partial dislocation 

sequence 
1

6
[121] +

1

6
[211], with the C layer atoms present in the extended dislocation. 

1.2.2 Twin Faults in FCC Materials 

As an alternative to slip during plastic deformation, twin deformation can also occur in 

face-centered cubic materials. Twin deformation typically occurs in materials with a 

limited amount of slip systems present (BCC/HCP) or at lower deformation temperatures 

and generally requires higher levels of stress than slip deformation in FCC materials [1]. 

In FCC materials, plastic deformation begins with slip and does not begin to twin until 

the material has been sufficiently work hardened to where the flow stress in the material 

has reached the stress required for twin deformation. During twin deformation, sections 

of the lattice are deformed to move to mirror positions across the defined twin boundary 

or twin plane, as shown in Figure 1.6. The crystallographic orientation of the lattice 

changes during twin deformation, as compared to slip deformation where the 

 

A 
B 

C 

A 
B 

X Y 

1

6
[121] 

1

6
[211] 

1

2
[110] 
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crystallographic orientation stays the same. When compared to slip deformation, where 

single planes of atoms move, during twin deformation multiple planes of atoms move 

which involves large overall atomic movement, when compared to slip deformation on a 

single plane of atoms. Thus, the reason why twin deformation requires more energy than 

slip deformation.  

 

 

 

 

 

Figure 1.6: General diagram of twin deformation in a simple tetragonal lattice, showing 

the twin (mirror) planes and atomic movement in the twin fault. A) The un-deformed 

lattice, showing the future twin plane and applied stress. B) The twinned lattice after 

deformation, showing the twin fault and respective twin planes on either side of the fault. 

The theoretical lattice points from the just lattice rotation are shown (green circle) along 

with the deformed lattice points (blue circles) in the twin fault.3  

In FCC materials, the stacking fault energy is directly related to the stress required to 

create a twin fault, since most of the energy required for twin deformation is a result of 

twin boundary creation and therefore the twin boundary surface energy. Therefore, twin 

                                                 
3 Republished with permission of John Wiley and Sons from Fundamentals of Materials Science and 

Engineering: An Integrated Approach, 4th Edition, David G Rethwisch, William D. Callister, 2012; 

permission conveyed through Copyright Clearance Center, Inc. See Appendix F for documentation to 

republish this material. 
 

Twin 
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deformation is more prevalent in lower stacking fault energy materials, such as brasses, 

copper alloys and high alloy austenitic steels. During twin deformation, the lattice can 

become oriented in a favorable position for slip to occur under the applied stress state, 

thus creating a favorable situation for slip deformation to occur next, rather than twin 

deformation [1]. The additional twin faults that are produced during deformation can act 

as additional barriers to dislocation motion, along with stacking faults produced during 

slip deformation. Previous work has shown that this effect can increase the strain 

hardening rate in copper alloys [13].  

1.3 Austempered Ductile Iron 

Austempered ductile iron, commonly referred to as ADI, is a relatively new material that 

was developed in the 1980/90s [7]. The primary difference between Austempered ductile 

iron and ductile iron is the heat-treatment process the material undergoes to reach the 

desired mechanical properties [14,15]. Immediately after austenitization, the material is 

quenched to a temperature above the Ms temperature and held for a set time to form an 

ausferrite microstructure that resembles a bainitic structure, with acicular ferrite and 

metastable austenite. The acicular ferrite nucleates along the prior austenite grain 

boundaries and grows within the individual grains around the graphite nodules. During 

the growth, the bulk carbon present is rejected into the remaining austenite, which 

stabilizes the austenite at room temperature. If the material is held too long at the 

austempering temperature, the carbon rich austenite begins to decompose to produce 

carbides (Fe3C) and additional ferrite. The majority of the development in ADI has 

focused on optimizing the thermal processing steps to obtain various microstructures that 
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give desired mechanical properties. A few studies have shown that the thermally 

stabilized austenite undergoes a transformation to martensite under deformation, similar 

to austenitic stainless steels, which gives an increased strain-hardening response [16–18]. 

However, the understanding of the transformation is not as mature as the understanding 

in steels. The specific mechanisms of the transformation in ADI are not understood well 

and are assumed to be like the mechanisms in metastable austenitic steels, as outlined in 

Section 1.4. To the author’s knowledge, no previous work has focused on characterizing 

the stacking faults directly in the austenite in ADI as a function of deformation. One 

study has characterized stacking faults in the austenite in ADI as a function of 

austempering time, showing that stacking faults are present at low austempering times, 

suggesting an annealing-out effect during longer austempering times [19]. 

1.4 304L Stainless Steel 

Austenitic stainless steels (2xx, 3xx) are the most common types of stainless steel in use 

[12]. The additional nickel present stabilizes austenite over the ferrite present in ferritic 

stainless steel (4xx). Austenitic stainless steels can be classified in to two types, 

metastable and stable, where the stability refers to the strain hardening nature. The strain-

hardening response is significantly increased when the austenite transforms to martensite 

upon deformation, due to the additional strain energy used in the transformation, rather 

than pure slip or twinning. Metastable austenitic stainless steels exhibit the increased 

strain-hardening response from the deformation induced transformation, where stable 

austenitic stainless steels have a reduced strain hardening response. The 301 and 304 

types of stainless steel are typically considered metastable, where the 316 and 347 types 
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of stainless steels are considered stable. The L designation indicates a lower carbon 

content, where standard 304 stainless steel with about 0.02wt% C in 304L compared to 

0.08wt% C in non-L 304. The martensite transformation in these types of austenitic 

stainless steels has been extensively studied and is well understood. The general sequence 

has been shown to include an intermediate ε (hexagonal-close packed) martensite phase 

which are nucleation sites for the BCC martensite, however it is hard to detect with x-ray 

diffraction. It is believed that this phase is formed from groups of stacking faults and is 

included in the Olson-Cohen model as a form of “shear-bands” that are used to describe 

the possible nucleation sites for the BCC martensite [20–25]. The 304L type of austenitic 

stainless steel was chosen based on previous literature results indicating that the 

deformation induced transformation occurs, thus providing a good baseline material to 

compare to the austempered ductile iron. The metallurgical reasoning behind the 

deformation induced transformation in the metastable austenitic stainless steels has been 

linked to the stacking fault energy. The stacking fault energy describes the elastic energy 

created in the lattice when a stacking fault is present and can also give information about 

the creep and dislocation cross-slip behavior. As the distance between the partial 

dislocations that create the stacking fault increases the cross-slip of these dislocations 

becomes more difficult [26,27]. It has been shown using Bayesian modeling of 75 

historical experimental data sets that both Cr and C do not play a significant role in 

stacking fault energy, however Mn, Ni, N and Mo increase the stacking fault energy [27]. 

The increased Ni content in the 316 and 347 austenitic stainless steels therefore can 

explain the increased mechanical stability (resistance to martensite transformation) of the 

austenite, following the stacking fault energy increase with Ni content. 
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1.5 Measurement of Planar Fault Probabilities using X-ray Diffraction 

After the introduction of x-ray diffraction to the suite of analytical tools of material 

scientists in the 1920’s, studies on cold worked materials were conducted to understand 

the deformation structures of materials [28–32]. M.S. Paterson first introduced a theory 

on how to obtain stacking fault probabilities in crystalline materials in 1952, relating the 

probability of a fault being present to a distortion of the intensity in reciprocal space for 

hexagonal close-packed materials [33]. A diffraction phase shift due to the deviation 

from the normal stacking sequence expected in FCC materials causes this distortion in 

the reciprocal space intensity distribution. B.E. Warren expanded upon this analysis to 

include FCC, BCC and HCP materials along with extracting twin faulting probabilities in 

1969 [34]. Warren assumed that, 

1. The fault extends through the entire width (in the (111) plane) of the crystallites. 

2. The fault densities are small (≤0.05) and uniform throughout all crystallites.  

3. All the components of a reflection {hkl} have equal integrated intensities 

The first assumption does not hold true when the average crystallite size, or coherent 

diffracting domain, is small enough to produce size broadening (>1000nm), as the 

powder pattern intensity equation is assumed to be integrated through an infinitely (>>λ) 

large crystallite which causes the intensity to be distributed very near the peak position. 

The second assumption holds true for most materials, however for heavily faulted 

materials this assumption becomes less accurate as the squared probability terms that are 

present in the full probability difference equations should be included. If any of the first 

two assumptions were not correct, then the third assumption becomes false as the various 
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components that make up a certain {hkl} will have differing integrated intensities. This 

third assumption also is not valid if texture is also present in the material, as that will also 

alter the integrated intensities. The theoretical basis for measuring stacking and twin fault 

probabilities in this work follows the procedure derived by Warren [34] and is described 

in brief here.  

The derivation originates with the intensity given from a single unit cell crystal, which 

has been translated from the face-centered cubic cell a hexagonal unit cell to orient the 

crystal in such a way that the plane of interest for planar faulting (111) is in-line as a 00l 

plane for simplification. The intensity from a single crystallite is then related to the 

displacement in a single layer that occurs from a different stacking sequence, which is 

caused by the atoms being in alternative locations in the individual 00l (111) planes. The 

final reciprocal space intensity equation is given as Equation 1.2: 

I = ψ2 ∑ Nm〈𝑒𝑖𝜙𝑚〉e
2πimh3

3∞
m=−∞   (1.2) 

The ψ2 term is equal to the summation of the intensity in the A1A2 directions, which is 

calculated immediately for simplification and isolation of the intensity to be a function of 

the average reciprocal space displacement term and diffraction vector. The full derivation 

of Equation 1.2 is given in Appendix A. 

The diffraction vector from this reciprocal space intensity distribution is related to the 

probability of a planar fault being present in the structure using probability difference 

functions. These probability difference functions are derived from a probability tree of 

the m-2, m-1 and m layers which make up one unit-cell, where the m-2 layer must be 
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either in the A, B, C position of the standard ABC stacking sequence. The stacking fault 

(α) and twin fault (β) probabilities4 are combined into single probability terms that give 

the probability that any mth plane is either the same (Pm
0 ) before (Pm

−) or ahead (Pm
+) of the 

starting layer in the standard stacking sequence (ABCABCABC). Taking the assumption 

that the crystallites in the sample are randomly oriented, that the faulting is distributed 

evenly across all crystallites then it can be assumed that both the Pm
+ and Pm

− are equal. 

This also mandates that for every crystallite with an ABC sequence, there will be a 

crystallite with the sequence, CBA, shifted 180° from the ABC sequence; therefore both 

Pm
+ and Pm

− are equal to 
(1−Pm

0 )

2
. Thus, the three probability terms may be combined into 

one single probability term, Pm
0 . The singular probability term is combined with the 

reciprocal space shifts that are caused by the displacement of the atoms in a layer to 

calculate the average reciprocal space shift term, given by Equation 1.3. 

〈eiϕm〉 = Pm
0 + (1 − Pm

0 )cos
2π(h1−h2)

3
 (1.3) 

Where the Pm
0  is calculated from the difference functions to be Equation 1.4: 

Pm
0 =  

1

3
[1 + 2(−1)m[1 − 1.5α − β]m (cos m [

π

3
−

√3α

2
] + (

β

s
) sin m [

π

3
−

√3α

2
])] (1.4) 

This average reciprocal space shift term defines the criterion if an individual reflection 

that exists within a family of planes {hkl} is affected or unaffected by faulting, where an 

affected (a) plane is defined by h1 − h2 = 3b ± 1 (Pm
0  is not canceled out) and an 

unaffected (u) plane is defined by h1 − h2 = 3b (Pm
0  is canceled out). Following the first 

                                                 
4 These probabilities, α & β, are not related to the α & β values used in the shear-band martensite 

nucleation model given in Equation 1.1.  
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assumption that the crystallites are large, the intensity will only be significant as the h1 

and h2 terms approach the whole integer values of Ho and Ko which define the reflection 

in the hexagonal unit cell, therefore h1 and h2 can be replaced with Ho and Ko. This 

allows for the h1 − h2 term can be simplified to a single Lo, which is equal to H𝑜 − 𝐾𝑜, 

giving the simplified criterion in the form of Lo = 3b ± 1. The ± term is determined by 

the value of Lo (h+k+l), where either + or – is used to fulfill the criterion. For example, in 

the {111} family, a (-111) plane exists which gives an Lo value of 2, therefore for the (-

111) plane, the ± value is + to make the entire value a multiple of 3 (2+1). 

This criterion is used to define the reciprocal space intensity distribution that includes the 

affected and unaffected peaks, giving the total intensity from a single {hkl} family in 

reciprocal space, which is given in the final form of Equation 1.4. 

I = ψ2 ∑ Nm[1 − 1.5α − β]|m| [cos 2πm (
h3−Lo

3
− (±)

√3α

4π
) ±

β

√3
sin 2π |m| (

h3−Lo

3
− (±)

√3α

4π
)]m  (1.5) 

This is equivalent to the Fourier transform of the electron density, while accounting for 

possible broadening and/or shifting from stacking faults. The full derivation of Equation 

1.5 is given in Appendix B. 

In order to utilize this analysis on real-space (2θ) diffraction patterns, the reciprocal space 

intensity distribution is translated into real space through integration over all crystallites, 

following the powder pattern theorem derived by Warren [34]. Using the real-space 

power distribution, the shift and/or broadening in the pattern reflections {hkl} can be 

related back to the stacking fault probability (α) or twin fault probability (β). The 

presence of stacking faults in the structure gives a direct shift in the reciprocal lattice 
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point, thus causing a peak shift in the real space power distribution. The presence of twin 

faulting produces peak asymmetries, which is caused by the reciprocal space intensity 

distribution spreading out in one direction, while still being centered around the original 

reciprocal lattice point.  

The direct relation between stacking fault probability (α) and peak shift present in the 

(111) and (200) reflections are given as Equations 1.5 and 1.6: 

∆2θ = [
90√3α tan θ111

o

π2 ] (0.25) (1.6) 

 

∆2θ = [
90√3α tan θ200

o

π2 ] (−0.5) (1.7) 

Where the tan θhkl
o  term refers to the peak position of an un-faulted material, 

corresponding to the original reciprocal lattice position. These two equations can be 

combined to calculate the stacking fault probability from the shift in the peak difference 

between the two reflections as Equation 1.7. The full derivation of these equations 

starting from with the real-space power distribution derivation is given in Appendix C. 

∆(2θ200 − 2θ111)° =
−90√3α

π2 [
tan θ200

o

2
+

tan θ111
o

4
] (1.8) 

The twin fault probability can be related to the peak asymmetry, following a method 

developed by Cohen and Wagner that utilizes the same real-space power distribution 

function derived by Warren, which is described in Appendix D. The equations to 

calculate the twin fault probability for the (111) and (200) reflections are listed as 

Equations 1.9 and 1.10: 

∆CG111 = 11β tan θ111
o  (1.9) 

 
∆CG200 = 14.6β tan θ200

o  (1.10) 
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Where the tan θhkl
o  term refers to the peak position of the un-faulted material, like 

Equations 1.6-1.8, and the ∆CGhkl term refers to the centroid shift from peak maxima 

(un-faulted material) for a specific reflection. Combining Equations 1.9 and 1.10, gives 

the twin faulting probability as a function of both the (111) and (200) reflection centroid 

shifts as: 

β =
∆(2θ111

CG −2θ111
max)−∆(2θ200

CG −2θ200
max)

(11 tan θ111
0 +14.6 tan θ200

0 )
 (1.11) 

Equations 1.6-1.8 and 1.11 are the core equations that are used in this work. 
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2 Motivation/Hypothesis 

Most of the previous work regarding the effect of deformation in the austenite to 

martensite transformation in austempered ductile iron has focused on the analysis of 

phase volume fraction as a function of deformation. The goal of this research was to 

evaluate the feasibility of measuring stacking or twin faults in ADI and the model system 

304L stainless steel, to allow for further understanding of the deformation mechanisms 

prior to the martensite transformation. The 304L stainless steel was chosen as a baseline 

material to help give context to the ADI experiments, which was chosen based on 

previous literature as an ideal material for this analysis. A better understanding of faulting 

behavior in ADI could help further understand the kinetic models of this deformation 

induced transformation (austenite to martensite) present in ADI. Better understanding of 

this transformation could lead to tailored microstructures to give a higher strain hardening 

response for improved mechanical properties after deformation processing, or better 

material optimization for current applications. 

2.1 1st Hypothesis 

If the material containing metastable austenite (either 304L or ADI) is deformed in 

uniaxial compression or by filing, then the austenite (111) and (200) peaks on the 

diffraction will exhibit increased broadening and slight peak shifts because the stacking 

fault density increases before the martensite transformation occurs. Figure 2.1 illustrates 

the expected peak shift direction for the (111) and (200) peaks. 
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Figure 2.1: Simulated diffraction pattern of an austenitic (FCC) material, showing the 

expected peak shifts for the (111) and (200) peaks. The dotted line represented an un-

faulted material, where the solid line represents a faulted material. The peaks are labeled, 

along with an arrow indicating the shift direction. 

2.2 2nd Hypothesis 

If the material containing metastable austenite (either 304L or ADI) is deformed in 

uniaxial compression or by filing, then the austenite (111) and (200) peaks on the 

diffraction will exhibit increased broadening and centroid shifts from peak maxims 

because the twin fault density increases from the applied deformation. Figure 2.2 

illustrates the expected peak shift direction for the (111) and (200) peaks. 

 

 

 

 

Figure 2.2: Simulated diffraction pattern of an austenitic (FCC) material, showing the 

expected centroid shifts for the (111) and (200) peaks. The dotted line represented a twin-

free material, where the solid line represents a twinned material. The peaks are labeled, 

along with an arrow indicating the shift direction. 

 

2θ° 

Int. 

(arb. units) 

(111) 

(200) 

2θ° 

Int. 

(arb. units) 

(111) 

(200) 



 

21 

3 Experimental Methods 

3.1 Sample Preparation 

3.1.1 Austempered Ductile Iron 

For the ADI samples, a commercially produced ductile iron (Dura-Bar Woodstock, IL) 

was utilized for metallurgical consistency. The material composition is given in Table 

3.1. 

Table 3.1: Nominal chemical composition for commercially produced ductile iron used 

as a base material in this experiment (wt%). The carbon equivalent of the material is 4.42, 

calculated via wt%C+0.33*wt%Si. 

Fe C Si Mn Cr Sn Cu Ni V Al Ti Mo 

Bal 3.59 2.51 0.24 0.05 0.04 0.04 0.020 0.020 0.013 0.010 0.010 

One heat-treatment cycle (two total steps) was used in this experiment; an austenitization 

step of 1 hour at 896°C and an austempering step of 1 hour at 382°C, with a final water 

quench after the austempering step. The samples were placed on a bed of graphite chips 

during the austenitization step to minimize decarburization. This heat treatment process 

was chosen based on previous literature results to achieve a high austenite volume 

fraction [14] and is similar an ASTM Grade 1 heat-treat process [35]. The samples were 

machined initially to a solid 40x80x10mm bar for heat-treatment. The heat-treatment was 

completed at Michigan Tech utilizing a standard box furnace and salt bath furnace with a 

salt composition of 50vol% KNO3 and 50vol% NaNO2. To maintain the proper mass 

ratio of material to salt in the salt bath (1:20), one bar was heat-treated at a time. After the 

austenitization in the box furnace in air was completed, the bars were transferred 

manually to the salt pot with an approximate 10 second time transfer time. Each bar was 
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swirled in the salt bath for 30 seconds during the initial immersion to help ensure proper 

quench time from the austenitization temperature. After heat-treatment the bars were 

machined to a final 10 mm diameter bar that was cut into 20 mm tall compression 

samples with the recommended 2:1 height to diameter ratio. All machining was done 

with cutting fluid to minimize sample heating and therefore microstructural changes. Five 

total samples were fabricated, one as an annealed control sample (A), with the additional 

four for compression testing with progressively larger amounts of plastic deformation (7, 

10, 15 and 20%). A separate piece of heat-treated material was used for optical 

metallography.  

3.1.2 304L Stainless Steel 

A 304L stainless steel cold-rolled bar (Speedy Metals Appleton, WI) was used for 

compression sample preparation. The approximate composition of the material is listed in 

Table 3.2. 

Table 3.2: Approximate chemical composition for commercially produced 304L stainless 

steel used as a standard material in this experiment (wt%). The material conforms to 

ASTM A276. 

Fe Cr Ni Mn Si P S C 

Bal 18-20 8-12 2 1 0.045 0.030 0.030 

The as-received rod was first annealed in a high-temperature box furnace at 1037°C for 

30 minutes followed by a furnace cool to mitigate residual rolling texture present from 

the production process. The 12.7 mm diameter rod was cut into 25.4 mm sections to 

produce 2:1 length to diameter ratio compression samples. For compression testing, three 

separate samples (304L_A, 304L_B, 304L_C) were created from the annealed stock rod. 
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The target compression levels were 10%, 20% and 30% respectively. Filings were made 

with a hand smooth file (approx. 60 teeth per inch) from the annealed bulk rod to produce 

approximately 15 grams of approximately 100 mesh filings for x-ray diffraction analysis. 

An annealed sample was produced by vacuum encapsulated the filings with alumina 

batting as a plug to prevent filings being sucked into the vacuum pump. This quartz tube 

was sealed and then annealed at 1037°C for 15 minutes in a high-temperature box furnace 

followed by furnace cooling.  

3.2 Compression Testing & Optical Microscopy 

For compression testing, standard 150kN platens in an Instron 4206 load frame at a strain 

rate of 10-3 s-1 were utilized for testing. The strain was estimated using the crosshead 

measurements on the load frame used however the final strain was calculated using 

before and after measurements of the dimensions of the compression samples. 

Lubrication was used on each compression sample and little to no barreling was observed 

in each sample. After the compression was completed each ADI sample was cut 

perpendicular to the loading direction to obtain a representative surface for x-ray 

diffraction, as depicted in Figure 3.1. The second piece obtained was utilized for optical 

metallography. The 304L stainless steel compression samples were not cut to obtain a 

new x-ray diffraction surface, rather the top of each sample was used for both x-ray 

diffraction and optical metallography. Each sample was polished to a mirror finish prior 

to a final etch for structure observation; where the final step for the ADI samples was a 

0.05μm alumina polish and for the 304L samples the final step was a 0.04μm silica 

polish. For ADI, a 3% Nital etchant was used to observe the overall structure, while 
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Klemm’s I reagent (250mL sodium thiosulfate saturated solution & 5 grams potassium 

metabisulfite) was also used to tint the ferrite and better observe the retained austenite. 

For the ADI samples, the nodularity and nodule count were determined using a particle 

analysis routine in ImageJ. 

 

 

 

 

 

Figure 3.1: A) Diagram showing the orientation of the compression sample, with the 

arrows indicating the compression force direction. B) Diagram of the sample separation 

after cutting the compressed sample perpendicular to the compression direction showing 

the process for the ADI samples. The shaded section represents the x-ray diffraction 

sample, while the un-shaded section is the optical metallography sample section. The 

hatched area is the diffraction and optical metallography surface on each sample.  

For the 304L stainless steel, an electrolytic etch consisting of 10% oxalic acid in a glass 

beaker at 6VDC for 60 seconds was used to observe grain boundaries. The list of all 

samples is given in Table 3.3. 
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Table 3.3: List of all samples used in the present work. The austenitization/austempering 

step refers to the entire heat treatment step and lists the temperature and time used. The 

theoretical sample deformation is listed for all samples except for the 304L filing. 

 Austenitization Step Austempering Step 
Target 

Deformation (%) 

ADI_A 

896°C 

120 minutes 

382°C 

60 minutes 

0 

ADI_B 7 

ADI_C 10 

ADI_D 15 

ADI_E 20 

304L_A 
1037°C 

30 minutes 
None 

10 

304L_B 20 

304L_C 30 

304L Filings 
1037°C 

15 minutes 
Unknown 

3.3 X-ray Diffraction 

Prior to collecting data, each sample for X-ray diffraction was polished following the 

same steps as the optical metallography samples (0.05μm alumina for ADI, 0.04μm silica 

for 304L), however the final polish step was followed by the same etch step and this 

combination was repeated three times (polish-etch, polish-etch, polish-etch) to remove 

any deformed layer created during the initial polishing process. X-ray diffraction data 

was collected on all the samples with a Scintag θ/θ diffractometer available at Michigan 

Tech. The tube power was set at 45kV and 35mA with a line focus configuration. The 

beam path optics included 1mm divergence and 2mm scatter slit on the incident beam 

and 0.5mm scatter and 0.3mm receiving slit on the diffracted beam. Both the incident and 

diffracted beam paths had Soller slits with a length of 25mm and 0.75mm spacing. The 

scan parameters varied for each set of samples to achieve good counting statistics and 

peak descriptions. The count time and step size parameters are listed in Table 3.4 for each 

sample type, while the scan ranges are listed in Table 3.5. 
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Table 3.4: Count time and step size parameters used in the X-ray diffraction experiments 

performed at Michigan Tech on each type of sample. 

 Count Time Step Size (2θ°) 

ADI 20 0.02 

304L Solid 20 0.02 

304L Filings 20 0.01 

 

Table 3.5: 2θ° Scan ranges used in the X-ray diffraction scans for each sample type. The 

specific peaks measured in each range are listed in the first row. 

Sample 

Type 
(111)γ, 

(110/101)α’ 

(200)γ 

 (200/002)α’ 
(220)γ (211/112)α’ (311)γ 

(222)γ 

(220)α 
(400)γ 

ADI 41°-52° 63.5°-67.5° 72°-75° 81°-84° 87°-91.5° 97°-102°  

304L 41°-54° 63.0°-66.0° 73°-76° 79°-83° 87°-93° 94°-98° 115°-120° 

The step size was chosen to have ≥10 points above the FWHM to describe the top of the 

peak well for peak position determination from profile fitting. The total scan range was 

made wide enough that each peak had tails that extended four times the FWHM on each 

side of the peak position to properly describe the tails to reduce the profile fitting errors. 

To fully understand the statistical variance of each sample, five individual scans were run 

over the austenite (111) and if present ferrite (110) peaks to obtain a 95% confidence 

interval of the peak positions. This error was assumed to be the maximum gross error as 

it included all sample errors and possible mounting errors. For each scan, the sample was 

remounted, and data collected following the same procedure each time. This individual 

peak error was used for both the (111) and (200) peaks in calculating the errors in 

stacking fault probability following the single peak method. An additional stainless steel 

316L sample was measured over the (111) to (200) peak range (38.5 – 55.5° 2θ) to assess 

the error in the stacking fault probability (Eq. 1.8) with an error of the delta peak shift 
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(Δ[2θ200-2θ111]) calculated from replicate measurements of the total delta between the 

(200) and (111) peak positions. These additional measurements took place at the 

University of Virginia with a Panalytical Empyrean θ/θ diffractometer equipped with Cu 

radiation. The instrument was run at 45kV and 40mA with a 1mm divergence slit, 2mm 

scatter slit and 0.02rad Soller slit in the Bragg-BrentanoHDTM optics module on the 

incident beam path. The diffracted beam path consisted of a wide scatter slit, 0.02rad 

Soller slit and a GaliPIX3D area detector. No soller slits were utilized, however the optics 

configuration was configured to be as similar to the Scintag instrument as possible. 

In addition to the data collected at Michigan Tech, a representative piece of each ADI 

sample was sent to the Advanced Photon Source (APS) at Argonne National Laboratory 

(ANL). Jonathon Almer at ANL kindly performed the experiment through a sample mail-

in program available for the 1-ID beamline. Respective portions of the samples were 

attached to a sample “wheel” which can directly attach to the goniometer on the beamline 

for rapid analysis. The experiment was performed with x-rays at an energy of 71.67 keV 

from the APS Superconducting undulator through a high-energy monochromator with a 

bandpass5 dE/E of 10-3. The incident beam spot size was 0.01 mm2 and data was 

collected on a Dexela 2923 area detector placed approximately 900 mm behind the 

samples. Instrumental correction was performed using an available NIST SRM cerium 

oxide powder placed in the sample wheel. The exposure time for the samples was 

approximately 1 second, which gave sufficient intensity given the overall brilliance of the 

                                                 
5 The bandpass refers to the width (dE or dλ) of radiation (E or λ) the monochromator can remove, where 

the width needs to be less than the difference between the Kα1 and Kα2 energies or wavelengths. 
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source. The peak position errors for the diffraction data obtained from APS was 

calculated from the Pseudo-Voight profile fitting routine in Matlab© (Mathworks Natick, 

MA) performed at APS, which was assumed to be equivalent to calculating errors from 

replicate measurements based on previous data analysis performed by APS. 

3.4 Diffraction Spectra Analysis 

Rigorous data analysis was performed on the diffraction data obtained to achieve the best 

peak positions and profile fits possible. The raw data was first corrected for two functions 

that vary as a function of 2θ; atomic scattering factor, Lorentz-polarization factor. Then a 

cubic spline background fit was done to remove background noise from the samples, and 

a Rachinger correction was applied to remove the Cu Kα2 spectra from the pattern. From 

this point, two different programs were used to analyze the adjusted patterns: DMS-NT© 

(Scintag Inc. Cupertino, CA) for peak position, FWHM, profile shape and OriginPro© 

(OriginLab Northampton, MA) for centroid calculations. For the peak position (maxima) 

determination, the peaks were fit using a PearsonVII function and the resultant data was 

exported for easy addition to Excel. The PearsonVII function is described in Equation 

3.1, and is similar to a Lorentz function raised to a power m. The w value is related to the 

peak width. 

I(2θ) = IMax [
w2m

(w2+(2
1

m⁄ −1)(2θ−2θo)2)
m] (3.1) 

OriginPro also gave PearsonVII peak fit results and these results agreed with the results 

from DMS-NT, however only the centroid results from OriginPro were analyzed further. 

Peak positions, centroids and associated errors were utilized in the peak shift and centroid 
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analyses described earlier in Section 1.5 for the (111) and (200) peak positions. The error 

(200)-(111) delta for the 316L samples. was calculated following the same methods. 

These peaks were chosen because they had the lowest peak position errors due to their 

relatively high intensity and low broadening. The integrated intensities for the two 

majority phases, austenite and ferrite, were used to calculate relative phase fractions 

using the direct comparison method in a custom program VOLFRACT. The martensite 

peaks were not directly observed from the pattern, due to their inherent low scattering, 

therefore the martensite volume fraction was extracted assuming the ferrite volume 

fraction was for each sample.  
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4 Results 

4.1 Austempered Ductile Iron 

The standard ductile iron metrics of nodule count and nodularity were above the 

recommended requirements (nodule count >100mm-2 and 80% nodularity by area) that 

define suitable material for austempering. The nodule count and nodularity by area are 

given in Table 4.1 below.  

Table 4.1: Nodule count and nodularity by area results listed for each austempered 

ductile iron sample. Each sample had the same heat-treatment cycle. The standard errors 

(95% confidence) are listed for each value. 

Sample Nodule count (mm-2) Nodularity by area (%) 

ADI_A 105 ± 9 91 ± 2 

ADI_B 116 ± 12 93 ± 1 

ADI_C 142 ± 23 82 ± 1 

ADI_D 109 ± 4 94 ± 5 

ADI_E 111 ± 6 85 ± 0 (34) 

The actual levels of deformation obtained are listed in Table 4.2. The volume fraction of 

martensite vs deformation in general followed the expected trend, that with increasing l 

deformation the martensite volume fraction increased. As shown in Table 4.2, only 

sample D did not follow the expected trend, containing only 3% martensite. 

Table 4.2: Volume fractions of austenite, ferrite and martensite calculated for each ADI 

sample. The volume fraction of graphite nodules was ignored for this analysis, due to the 

inability to observe representative diffraction peaks. 

Sample % Deformation % Austenite % Ferrite % Martensite 

ADI_A 0 42 

58 

0 

ADI_B 5.3 39 3 

ADI_C 9.3 34 8 

ADI_D 14. (21) 39 3 

ADI_E 21. (53) 30 12 
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The error in a single peak position was determined with replicate measurements to be 

approximately 0.005° 2θ for the annealed samples and 0.01° 2θ for the deformed 

samples, where 0.005° 2θ is also the smallest resolvable increment of the goniometer on 

the Scintag instrument. For the double peak difference shift analysis, the errors calculated 

from individual peak position errors were greater than or equal to the single peak analysis 

error values. For the stacking fault probabilities calculated from the APS data, the errors 

were on average an order of magnitude less than the errors from the Michigan Tech data. 

The calculated stacking fault probabilities and respective 95% confidence errors from the 

APS data are listed in Table 4.3.  

Table 4.3: Stacking fault probabilities calculated from the data collected at the Advanced 

Photon Source at APL beamline 1-ID. The 95% error level is listed to highlight the 

significance of error propagation in this analysis. The angle listed indicates the peak shift 

source used in the calculation. The negative values are not expected and indicate that the 

shifts cannot be explained by stacking faults alone. 

 
α 

Δ2θ111 Δ2θ200 Δ(2θ200-2θ111) 

ADI_B 0.0009 ± 0.0002 -0.00361 ± 0.00007 -0.0060 ± 0.0002 

ADI_C 0.0008 ± 0.0002 -0.00705 ± 0.00007 -0.0162 ± 0.0002 

ADI_D 0.0014 ± 0.0002 -0.00618 ± 0.00007 -0.0105 ± 0.0002 

ADI_E 0.0033 ± 0.0002 -0.00997 ± 0.00007 -0.0122 ± 0.0002 

For the stacking fault peak shift analysis, the errors for the probabilities calculated from 

data collected at Michigan Tech were near or above 50% of the calculated result; 

reducing or eliminating the significance of the calculated stacking fault probabilities, as 

listed in Table 4.4. 
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While the twin fault probabilities were calculated from the Michigan Tech data, they 

were not calculated from the APS data due to the insufficient peak shape data required 

for centroid calculation. The austenite (111) peak was saturated due to over-exposure 

which unfortunately was not fixable with the beamtime allotted, thus the top part of the 

peak was unavailable for fitting and centroid calculation.  The twin fault probabilities 

calculated from the Michigan Tech data are listed in Table 4.4. The errors associated with 

the stacking fault probabilities are significantly less than those associated with the 

probabilities calculated from the Michigan Tech data.  

4.2 304L Stainless Steel 

Optical metallographic analysis from the top surface of the compression samples showed, 

as expected, equiaxed grains with a relative grain size of 75μm. Compared to the target 

compression levels of 15, 20 and 25%, the actual compression levels attained in the 

samples were 8.27% for 304L_A, 20.26% for 304L_B and 21.78% for 304L_C. During 

compression testing, the platens reached their load limit at any strains higher than 22%. 

The volume fraction analysis was calculated for each level of deformation in the 

compression samples, however the martensite volume fraction did not go above 5%, 

which is slightly above the accepted detection limit of 2 volume % for any phase. For the 

filings, the volume fraction analysis was successful, and the filings were calculated to 

have approximately 45% martensite. The level of deformation in the filings could be 

estimated to be near the max elongation of 304L stainless (approx. 40% at 2” gage 

length), however it is impossible to measure the exact level of deformation. The stacking 

fault probabilities and twin fault probabilities calculated for the compression samples are 
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listed in Table 4.4. The 95% confidence errors are seen to be of the same magnitude as 

the calculated result for some of the compression sample results, while the 95% 

confidence errors for the filing sample results are less than the calculated result, giving 

significance to the results. Again, similar to the ADI samples, the double peak difference 

shift results had similar errors (from single peak position errors) to the single peak 

methods. The stacking and twin fault probabilities are inconsistent with the expected 

trends for the compression samples, where the 304L_C sample had a negative peak shift 

(wrong direction).  

Table 4.5: Stacking and Twin faulting probabilities calculated for the ADI and 304L 

stainless steel samples from data collected at Michigan Tech. The 95% confidence errors 

are included to highlight the importance of error propagation in this analysis. The angle 

listed indicates the peak shift source used in the calculation. The errors in the twin fault 

probability and single peak were calculated from replicate measurements of the (111) 

peak. 

 α β 

Δ2θ111 Δ2θ200 Δ(2θ200-2θ111) 𝜟(𝟐𝜽𝟏𝟏𝟏
𝑪𝑮 − 𝟐𝜽𝟐𝟎𝟎

𝑪𝑮 ) 

ADI_B -0.001 ± 0.003 0.004 ± 0.002 0.007  0.0084 ± 0.005 

ADI_C -0.001 ± 0.003 0.004 ± 0.002 0.008  0.0086 ± 0.005 

ADI_D 0.001 ± 0.003 -0.004 ± 0.002 -0.007  0.0158 ± 0.005 

ADI_E 0.001 ± 0.003 -0.001 ± 0.002 0.002  0.0139 ± 0.005 

304L_A  0.0002 ± 0.0002 0.0004 ± 0.0003 0.002  0.0031 ± 0.005 

304L_B  0.0001 ± 0.0002 0.0015 ± 0.0003 0.005 0.0001 ± 0.005 

304L_C  0.0009 ± 0.0002 -0.0033 ± 0.0003 -0.005  0.0023 ± 0.005 

304L Filings 0.0019 ± 0.0006 0.0017 ± 0.0010 0.0141  -0.00005 ± 0.005 

For the 316L sample, where double peak difference result had two possible error 

calculation options, from individual peak errors or from the double peak difference error, 

the double peak difference error gave much lower stacking fault probability errors, 
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indicating that the individual peak error method may overestimate the stacking fault 

probability error. These errors (double peak difference) were still on the order of the 

316L sample stacking fault probability calculated from Equation 1.8. The comparison of 

these error methods is given in Table 4.5.  

Table 4.5: Stacking fault probabilities and errors associated with the two possible 

methods of calculating the error in the double peak difference method; from single peak 

error terms and the double peak difference error term. These errors were calculated from 

five replicate measurements of the same sample. 

 
α - Δ(2θ200-2θ111) 

α Single Peak Error Double Peak Error 

304L_A  0.002  ± 0.004 - 

304L_B  0.005 ± 0.004 - 

304L_C  -0.005  ± 0.004 - 

304L Filings 0.0141  ± 0.0167 - 

316L 0.0031 ± 0.0141 ± 0.0037 
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5 Discussion 

5.1 Planar fault measurement via X-ray diffraction 

The determination of planar faults, either stacking or twin, with x-ray diffraction can be 

difficult because of the very small peak shifts and/or centroid shifts that occur as a result 

of planar faults. Table 5.1 shows the theoretical peak shift values in the ADI samples for 

both stacking and twin faulting, along with an estimated distance between faults. The 

single peak shifts were calculated with Equations 1.6 and 1.7 by fixing a given stacking 

fault probability.  

Table 5.1: Calculated stacking and twin fault peak shifts based on given faulting 

probability. The average distance between faults was calculated using an average (111) d-

spacing of 0.209nm, which was the average for all the ADI samples. The peak shifts are 

calculated to the 5th decimal for perspective. The twin fault probabilities are based on 

centroid shifts. 

α | β 
Spacing between 

faults (nm) 
α - Δ2θ111 α - Δ2θ200 β - Δ2θ111 β - Δ2θ200 

0.0001 2090 0.00016 -0.00037 0.00043 -0.00068 

0.0005 418 0.00079 -0.00187 0.00217 -0.00341 

0.001 209 0.00158 -0.00375 0.00434 -0.00682 

0.005 41.8 0.00789 -0.01873 0.02172 -0.03412 

0.01 20.9 0.01578 -0.03746 0.04344 -0.06825 

0.05 4.18 0.07890 -0.18732 0.21719 -0.34125 

0.1 2.09 0.15780 -0.37464 0.43438 -0.68249 

As shown, until stacking fault probabilities are ≥0.001, then the peak shift or centroid 

shift is very small (≤0.00158° Δ2θ111, ≤0.00375° Δ2θ200) and would require very careful 

experimental procedures and precise equipment to measure. This is further complicated 

by the error that is present in the experiment, from peak position determination. The 

results for all but a few samples have large error values, on the same magnitude as the 
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calculated result. Error propagation for the stacking fault (Equations 1.6 and 1.7) for 

single peak analysis yields the RMS sum of partial differentials given in Equation 5.1. 

δα[single peak] = √((
∂α

∂∆2θhkl
) ∗ (δ∆2θhkl))

2

+ ((
∂α

∂θhkl
) ∗ (δ𝜃ℎ𝑘𝑙

𝑜 ))

2

 (5.1) 

It is clear from Equation 5.1 that both the errors in the Δ2θ shift and θ position, where the 

shift consists of the errors in both the annealed and deformed (faulted) peak positions and 

the θhkl
o  consists of half the error in the annealed peak position. The error propagation for 

the double peak shift stacking fault probability analysis (Equation 1.8) yields the RMS 

sum of partial differentials given in Equation 5.2. 

√((
∂α

∂∆(2θ200−2θ111)
) ∗ (δ(∆(2θ200 − 2θ111)) ))

2

+ ((
∂α

∂θ200
) ∗ (δθ200))

2

+ ((
∂α

∂θ111
) ∗ (δθ111))

2

 (5.2) 

From Equation 5.2, the total error in the stacking fault probability calculation is due to 

the error in double peak shift term and the error in the θ111 and θ200 terms. The double 

peak shift error could be derived following two methods, as outlined in Section 3.4 and 4; 

by either utilizing each individual peak position error term (from replicate measurements 

of 2θ111 & 2θ200 for both the annealed and deformed samples) or by measuring the entire 

peak range including both the 2θ111 & 2θ200 peaks and calculating an error in the entire 

difference. As the results in Table 4.4 show, the error is much larger when individual 

peak errors are used, compared to the error from the difference between two peaks. The 

double peak error allows for a reduction in the overall experimental error by significantly 

reducing the experimental errors that are caused by the instrument that can vary from 

scan to scan, because both peak positions are measured on the same scan. Although 

instrumental errors are a function of 2θ, the peak positions of the (111) and (200) are so 



 

37 

close together that these instrumental errors should be approximately equal for each peak. 

This rationale indicates that for calculating a stacking fault probability, the error should 

be calculated from replicate measurements of entire 2θ111 & 2θ200 range to accurate 

determine the error in the probability. The individual peak error terms are calculated from 

the peak error from the annealed peak position, from which the individual peak positions 

are derived from in Equation 5.2. For the twin fault probability calculation, the error 

propagation yields: 

√(𝜕𝛽1 ∗ δ (∆(2θ111
CG − 2θ111

max)))
2

+ (𝜕𝛽2 ∗ δ (∆(2θ200
CG − 2θ200

max)))
2

+ (
∂β

∂θ111
∗ δθ111)

2
+ (

∂β

∂θ200
∗ δθ200)

2
 (5.3) 

Where the 𝜕𝛽1 and 𝜕𝛽2 partial differentials are abbreviations in place of partial 

differential taken with respect to the centroid shift in the (111) and (200) peaks 

respectively. Similar to the error propagation for the stacking fault probability equations, 

the single peak maxima positions, (111) & (200), for the annealed and the errors in the 

centroid shift from maxima for each peak are factors in the total error for the twin fault 

probability. The error propagation terms are detailed further in Appendix E.  

Following the error propagation, attention must be paid to the experimental setup and 

sample preparation to minimize any errors that may occur during experimentation. There 

are a wide variety of effects that can cause changes in the diffraction pattern, mainly 

restricted to two groups; extrinsic (instrumental) or intrinsic (material defects) errors. The 

extrinsic (instrumental) errors include both sample displacement, beam misalignment 

and/or axial divergence. During the sample preparation, care was taken to ensure that 

sample displacement errors were kept to a minimum and were at the very least consistent 
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throughout every sample. The sample displacement errors are inversely proportional to 

the diffractometer radius and thus the largest diameter goniometer available should be 

used in this type of experiment. There was no apparent evidence for a misaligned beam 

and therefore errors from the beam misalignment are assumed to be minimal. The axial 

divergence was limited on this instrument due to the presence of Soller slits on both the 

diffracted and incident beam paths and the asymmetry caused by axial divergence was 

assumed to be minimal. This type of analysis produced smaller errors when compared to 

the single peak analyses that were performed, for both sample types. 

The intrinsic errors from sample defects can include sample transparency (low linear-

absorption) and sample fluorescence (sample K-edge near beam K-edge) along with 

structural defects such as stacking faults, twin faults, internal stresses, grain-boundaries, 

and chemical inhomogeneities. For the materials selected (ADI,304L and 316L steel) and 

the soft x-rays used (Cu-radiation) the linear-absorption coefficients are sufficiently high 

(304.4g/cm3) to eliminate possible transparency effects. Sample fluorescence from Fe-

based materials is not an issue with the Michigan Tech instrument because of the 

presence of the graphite monochromator which eliminates all other wavelengths outside 

of CuKα. For the structural defects, a wide variety of diffraction pattern distortions can 

occur from the intrinsic defects. Isolating the stacking or twin faults as a cause of peak 

shift is difficult given the other possible causes, such as grain boundaries, sub-

boundaries, internal stresses, coherency strains and chemical heterogeneities. [36] Both 

the stacking fault and twin fault probability analyses assume that the peak shift is solely 
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from stacking faults or twin faults respectively, however if the sample contains other 

sources for peak shifting this assumption cannot be made as confidently. 

5.1.1 Difficulties with ADI Measurement 

In the austempered ductile iron samples, the interpretation of the peak shift results 

became problematic with the use of one annealed sample as a baseline for each of the 

deformed samples. The experimental method was modified for the 304L stainless steel, 

where a measurement was made on each sample before and after the deformation, to 

eliminate the effects from chemical inhomogeneities that exist from sample to sample. 

The localized differences in alloy content, specifically manganese and tin are theorized to 

be a possible factor in the inconsistent peak shift results gathered from the ADI samples 

at Michigan Tech, where during the austempering heat-treatment the Mn and Sn wt% 

could vary across the bulk retained austenite present. Previous literature has shown that 

alloying elements can segregate during the initial production of ductile iron prior to 

austempering; where Mn and Mo segregate to the regions far from the graphite nodules 

and Ni and Si segregate to regions near the graphite nodules. [37] This effect on the 

inconsistent peak shift is believed to not be a large factor in the data measured at APS, 

due to large bulk sample measurement area achieved with the experimental setup (thru-

sample measurement). If the carbon is uniform across the bulk austenite, assumed 

because of the relatively fast diffusion of carbon in austenite, the lattice parameter of the 

FCC austenite can be determined from the atomic radii of the atoms present on the 

primary lattice sites. Manganese has an atomic radius of 0.112nm which is smaller than 

iron (0.124nm) and would result in a smaller overall lattice parameter with increasing Mn 



 

40 

content. Tin has a larger atomic radius (0.158nm) than iron and would therefore cause a 

larger lattice parameter with increasing content. With a 0.24wt% change in manganese 

content in the austenite (double the amount present in bulk), the lattice parameter will 

change by -0.00004Å, which would only shift the (111) and (200) peaks by 0.00001° and 

0.000012° 2θ, which isn’t significant enough to influence the total shift for these levels of 

faulting. The change in wt% for Mn would have to be ≥ +5.00 wt% to achieve high 

enough shifting levels to affect this type of analysis, where a +5.00 wt% change would 

shift the (111) and (200) peaks by 0.000271° and 0.000322° 2θ. For tin, a change in wt% 

of ≥ +1.00 wt% would be required to achieve a significant shift; (111) by 0.00092° and 

(200) by 0.00110° 2θ). Localized changes in the Ms due to segregation should not be a 

significant issue, as empirical formulae developed for iron-carbon alloys [38] show that 

Mn does not significantly change the Ms temperature when compared to the effect of 

carbon. A positive 0.24wt% change in Mn will decrease the Ms temperature by 

approximately 7.9°C according to the Andrews formula [39], while still being well below 

room temperature at approximately -290.71°C. 

An additional source of error that was discovered during experimentation was the effect 

of carbon wt% on the tetragonality of the martensite after the transformation. The 

martensite transformation is assumed to be diffusion-less, thus the martensite takes on the 

chemical composition of the parent austenite phase, which in the ADI sample was 

determined to be ~1.9wt%. Due to this increased carbon percentage compared to the 

304L stainless steel (≤0.04wt%), the martensite is highly tetragonal. The carbon present 

in the octahedral sites in austenite lies directly on the c-axis in the martensite after the 
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transformation. The carbon present in the martensite will therefore influence the length of 

the c-axis, which determines the tetragonality of the unit cells. The (110), (200) and (211) 

peaks are split, giving the (101)/(110) (002)/(200) and (112)/(211) separate peaks.  Table 

5.3 shows the calculated martensite peak positions, along with the austenite peak 

positions in each of the ADI samples tested. 

Table 5.2: Calculated theoretical peak positions in 2θ° for martensite, transformed from 

the parent austenite. The peak-splitting is due to the carbon present in the unit cell, which 

lies on the c-axis. The d-spacing was calculated using the CuKα1 wavelength and lattice 

parameter of the parent austenite for each sample. 

Sample (101) (110) (002) (200) (112) (211) 

B 43.22 45.07 59.83 65.65 77.95 81.89 

C 43.16 45.09 59.60 65.68 77.76 81.87 

D 43.18 45.09 59.68 65.67 77.83 81.88 

E 43.22 45.07 59.85 65.64 77.96 81.89 

At these high carbon levels, the (101) martensite reflection is very close to the (111) 

austenite reflection, within 0.2° 2θ and thus it would be difficult to deconvolve the 

austenite peak from the martensite peak for analysis, without exact knowledge of the 

martensite peak shape and intensity. Due to the low scattering factors and relatively low 

volume fractions of the martensite, the intensities for these peaks should be very low so 

an assumption can be made that it is not a significant effect on the (111) austenite peak, 

however it is unclear whether this is a valid assumption. Another assumption that was 

made during the experiment was that the uniaxial compression tests produced strains that 

were uniformly distributed between both the ferrite and austenite phases in the ADI 

samples. Previous studies have shown that the exact nature of the stress state in the 
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austenite can affect the martensite transformation in steels and this assumption was made 

for the sake of simplicity [40,41].  

5.1.2 Peak Position Determination Errors 

Additional errors can arise during the peak fitting procedures, to determine the exact peak 

positions and centroids necessary for both stacking and twin faulting density 

measurement. Traditional peak fitting routines rely on a weighted fit to the error from 

counting statistics, therefore both the step size (increase data points) and count time 

(minimize counting statistics error) are important to collect quality data an obtain 

accurate peak positions. Comparing the data collected at Michigan Tech to the data 

collected at APS, the errors are significantly reduced in the data at APS indicating that 

utilization of a synchrotron source can help eliminate experimental errors. The 

advantages to using a synchrotron source stem from the significant increase in source 

brilliance (71.67keV at APS, 8.0478keV for CuKα1 at Michigan Tech), which allows for 

a bulk sample measurement via transmission at APS, compared to standard diffraction in 

the lab instrument at Michigan Tech. The beam collimation is also significantly 

increased, giving reduced beam divergence errors when compared to the lab 

diffractometer at Michigan Tech.  

In addition, replicate measurements should be made in-order to quantify the other 

extrinsic errors in the experimentation. The errors given in Section 4 are a result of 

replicate measurements on respective samples and are assumed to be representative of the 

max errors. As discussed in Section 4.1, the error in the annealed samples for both ADI 

and 304L steel were concluded to be 0.005° 2θ, which is the same as the smallest 
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increment for the Scintag θ/θ diffractometer used in the experimentation. While this 

value seems small, considering the theoretical peak shifts calculated from Equations 1.6 

and 1.7 (Table 5.1), once it is propagated with the errors in the deformed samples (0.01° 

2θ) it becomes significant for the final probability calculation in the single peak shift 

analysis. For the double peak analysis, the error from the instrument is significantly 

reduced in the peak difference ((200)-(111)) because both peak positions are measured in 

the same scan. Overall, the error propagation indicates that very precise instrumentation 

and experimental parameters are required to measure the small faulting probabilities 

(≤0.005) that are present in these materials. 

Alternative methods for obtaining fault probabilities, such as Fourier analysis are a 

feasible option for comparison to the peak shift values, as peak broadening is also a 

function of both stacking faults and twin faults and in a broader context microstrain and 

coherent diffracting domain size. The data collected at Michigan Tech did not produce 

intensities on the higher-order peaks, (222) and (400), that are required to perform these 

types of analyses and obtain coherent results. Utilization of a high-brilliance source like a 

synchrotron or rotating-anode diffractometers can allow for suitable intensities needed for 

Fourier analysis, especially for the ADI samples that at most contain approximately 40% 

austenite.  

5.2 Interpreting Calculated Fault Probabilities 

In general, any source of change to the lattice parameter and thus d-spacing on specific 

planes will cause peak shifts as defined by the Bragg equation (λ=2dsinθ). Therefore, the 



 

44 

results must be interpreted with a perspective on all other possible effects.  For example, 

during the martensite transformation, one could postulate that new grain boundaries are 

being created in the process, thus the stacking fault probability result could be affected by 

additional peak shifting from grain-boundaries. Another theoretical source of peak 

shifting could be residual macro-stresses present in the material, which would shift all the 

peaks in a diffraction pattern. The peak shift direction will depend on the direction of the 

stress (tensile or compression) and vary as a function of cotθ (Equation 5.1), meaning 

higher angle peaks will exhibit more shift than lower angle peaks for a given stress. 

∆a

a
= − cot θ∆θ (5.1) 

 

5.2.1 Stacking Fault Probabilities 

Comparing the measured peak shift values in Tables 4.3 and 4.4 to the theoretical peak 

shift values in Table 5.1, it is apparent that there are some other factors influencing the 

peak shift in the ADI material. A peak shift caused by chemical homogeneities could best 

explain the negative probability values seen in the ADI samples. According to the theory 

outlined in Section 1.5 and in Warren [34], the peak shift direction depends on the plane; 

where (111) shifts to higher 2θ and (200) shifts to lower 2θ. Looking at the APS 

collected data for the ADI sample B, the Δ2θ111 is very small and the Δ2θ200 is a more 

negative than expected for the α level. This indicates that a possible uniform shift to 

smaller 2θ might exist. 

This uniform directional shift could possibly be caused by a higher wt% of manganese in 

the compression sample, compared to the “annealed” sample used, which is possible 
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given the experimental procedure used for the ADI. Considering the processing history of 

the austempered ductile iron samples; commercially produced ductile iron along with an 

hour austenitization step, it is unlikely that the substantial amounts of segregation 

required to shift the peaks is present in the bulk samples. As discussed in Section 5.1.1, 

with the relatively small irradiated sample area measured in the Michigan Tech data this 

could be more influential in the data result. However, with the larger irradiated area 

measured in the APS data this reasoning becomes less likely. A chemical analysis using 

X-ray dispersive spectroscopy (small lateral resolution) and X-ray fluorescence (bulk) 

would help to determine whether these possible chemical heterogeneities are a significant 

factor in this type of analysis. In addition, each sample should be measured before and 

after the deformation is applied, in order to avoid inconsistencies that arise from using 

different sections of the same material for annealed and deformed (faulted) samples. 

It is also possible that the additional coherency strains that are created during the 

martensite transformation are creating an additional peak shift in the austenite diffraction 

pattern. Previous literature has shown that the martensite transformation introduces 

internal long-range coherency strains [42], which have also been linked to increasing the 

austenite thermal stabilization [43,44]. These coherency strains are a product of the 

volume change that occurs when austenite transforms to martensite, following the 

relation given in Equation 5.2. [45] 

Vγ→α = 4.64 − 0.53 ∗ wt%C (5.2) 

Assuming a carbon wt% of 1.9%, the volumetric strain created during the transformation 

from austenite to martensite would be approximately 3.6%. With the known amount of 
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austenite transformed into martensite, the total volume change can be calculated for each 

ADI sample. The calculated total strain in the austenite resulting from the partial 

transformation to martensite is given in Table 5.3. 

Table 5.3: Total volumetric strain, Δa and peak shift values calculated for each ADI 

sample. The change in lattice parameter (Δa) was calculated following Equation 5.1. The 

ao used for the calculation was 3.63Å, which is the average measured lattice parameter 

for the ADI samples. 

 

Sample 
Martensite 

vol% 

Transformation 

Strain (1.9 wt% C) 

Total 

Strain 

Δa 

(Å) 
Δ2θ111 Δ2θ200 

ADI_B 3% 

3.63% 

0.109% 0.004 -0.000881 -0.001046 

ADI_C 8% 0.290% 0.011 -0.002422 -0.002875 

ADI_D 3% 0.109% 0.004 -0.000881 -0.001046 

ADI_E 12% 0.436% 0.016 -0.003523 -0.004182 

With the calculated Δa for each sample, the peak shifts for the (111) and (200) peaks can 

be calculated, also following Equation 5.1. Comparing these peak shift values to the 

theoretical shifts listed in Table 5.1, these values are large enough to play a significant 

factor in the overall stacking fault calculation. An additional x-ray stress/strain analysis 

could be conducted to help decide whether these long-range coherency strains are present 

in the sample.  

5.2.2 Twin Fault Probabilities 

The twin-fault probabilities calculated from the ADI samples do show a high density of 

twin faults, especially at higher deformation levels. However, it is unclear whether the 

asymmetry is solely due to the presence of twin-faults from this data alone. Asymmetry 

from intrinsic (sample) sources indicates the intensity is skewed towards one end of the 

range of d-spacings (low-side or high-side asymmetry), that define a single family of 



 

47 

planes (reflection). As discussed in Section 1.2.2, twin faults in an FCC material produce 

the same structure, with an orientation change compared to the parent lattice. Following 

the general definition of asymmetry, it can be theorized that if twinning is assumed to be 

the dominant mechanism of deformation, then the asymmetry is defined by presence of 

the smaller or larger d-spacings present at the twin-boundaries. These additional spacings 

that are consistent through the boundary in effect skew the intensity distribution towards 

the low-angle or high-angle side of the theoretical Bragg peak. In addition to twin faults, 

peak asymmetry can be caused by a multitude of material defects, including dislocation 

pile-up at grain boundaries, coherency strains and chemical heterogeneities. Following 

real-space power distribution (Equation C.18) and the sin coefficient (Equation C.20) 

given in Appendix C, stacking faults can enhance the asymmetry caused by twin faulting 

alone, by increasing the Zn/q term. Taking this into account, the assumption that the 

asymmetry is solely from asymmetry is less clear if we assume that stacking faults are 

present as indicated by the results given in Tables 4.3 and 4.4. Additional studies, such as 

scanning transmission electron microscopy or field-emission electron microscopy might 

be able to help identify whether the austenite is twinned, or if the asymmetry is caused by 

other factors such as dislocation pile-up by visually observing the structure.  
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6 Conclusions 

The measurement of planar fault densities is inherently complex, due to the nature of the 

diffraction condition where any change in the lattice structure causes deviations from the 

theoretical perfect distribution of intensity. Isolating individual perturbation sources, like 

planar faults, can be done but the results must be interpreted with the correct perspective 

on the entire material and experimental conditions. The feasibility of measuring the 

planar fault densities in austempered ductile irons is complicated by the following 

factors: 

1. Limited volume fraction of austenite (FCC) phase present, which affects the 

overall intensity that can be measured. This can be accounted for by utilization of 

high-brilliance sources like synchrotron or rotating anode x-ray sources. 

2. The loss of austenite due to the deformation-induced transformation that occurs 

after plastic deformation.  

3. Isolation of all other defects that cause peak shifts that are common when 

deforming materials, like dislocation build-up, changing crystallite sizes and 

coherency strains that may change during the austenite to martensite 

transformation. Assumptions must be made in-order to interpret the data properly. 

Additional studies to gain additional perspectives on the deformation behavior of ADI, 

such as transmission-electron microscopy could help corroborate the information 

interpreted from the diffraction data. It is feasible that the coherency strains introduced in 

the remaining austenite, because of the partial transformation to martensite, are affecting 

the measurement results, by shifting the entire diffraction patterns which alters the delta 

values used in the analysis for planar fault probabilities. The errors in the peak position 

determination were also significant, indicating that a more precise goniometer or 

alternative sample creation method should be utilized for better results. The errors in the 
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peak shifts were an order of magnitude less with the data acquired from the synchrotron 

beamline source at APS, however for both data sets the peak difference shift (Δ(2θ200-

2θ111)) analysis method gave smaller errors. The smaller errors associated with the double 

peak difference shift are due to the significant reduction in the instrumental errors 

normally associated with the peak shift analysis because both peak positions are 

measured on the same scan, therefore they apply to each position nearly equally. These 

will vary slightly between each peak position because of the dependence of the errors on 

2θ, however the 2θ111 and 2θ200 positions are close enough that these errors do not vary 

significantly. Any attempt to measure stacking fault probabilities should utilize this 

method (double peak difference) to obtain the most precise results. 

With proper measurement parameters, Fourier analysis should be performed to 

complement planar fault densities measured from peak and centroid shifts, as the 

broadening can give information about microstrain and coherent diffracting domain size 

in addition to information about the planar faulting. Both can be useful in determining if 

the assumptions (no texture, no size broadening) made for the peak shift and centroid 

shift values were correct. In addition, visually measuring stacking faults or twin faults in 

the austenite and understanding the exact orientation relationship between the austenite 

and martensite could help better understand the planar fault probabilities measured with 

the technique used in this work.  

Further development of these methods could give more clues about the specific 

transformation behavior in austempered ductile irons. The transformation does occur in 

these materials according to these results, however it is not clear whether stacking faults 
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play a clear role in the transformation from these results alone. Stacking faults can be 

measured in ADI if the considerations discussed are considered in the experimental 

design and careful experimentation is performed.
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Appendix A: Single Crystallite Intensity Distribution 

Following the original derivation from Paterson, the lattice points in an FCC lattice are 

translated to be represented in hexagonal coordinates, as shown in Figure A.1. The 

translation done to reorient the sample unit cell to be in line with the close-packed plane 

(111), so the effects from faulting can be easily elucidated. This creates the A1 and A2 

directions in the (111) plane, with the A3 perpendicular to the (111) plane. For the 

eventual translation to reciprocal space, the indices HoKoLo are used for the hexagonal 

lattice which are translated from the hkl used in the FCC lattice. These translations are 

listed in Table A.1. 

 

 

 

 

Figure A.1: Visual depiction of the relationship between the FCC lattice and hexagonal 

lattice points required for the stacking and twin fault calculation. The FCC lattice 

directions are shown as a1,a2,a3 and they are translated to hexagonal coordinates as 

A1,A2,A3. The stacking layers, ABC, are shown in the hexagonal plane as x points. The 

PQR points in the FCC unit cell correspond to PQR points in the hexagonal lattice plane 

shown on the right.6 

Using the hexagonal translation, the FCC unit cell can be represented as a unit cell 

containing 3 total atoms, with one atom per layer. The index mn is introduced to describe 

                                                 
6 Reprinted by permission from Dover Publications Inc: X-ray Diffraction, pg. 276, B.E. Warren, 1990. See 

Appendix F for documentation to republish this material.  
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the position of an atom in a plane 𝑚3, in real space. The position of a single atom in the 

(111) plane (FCC) can be described in these hexagonal coordinates as: 

Rm1m2m3
=  m1A1 + m2A2 +

m3A3

3
+ δ(m3)                                                                       (A.1) 

 

Table A.1: Translations for FCC to hexagonal lattice points that are used in the stacking 

fault and twin fault calculation derivation. The A1A2A3 and HoKoLo are the hexagonal 

coordinates and reciprocal lattice indices, while the a1,a2,a3 and hkl are the FCC 

coordinates and indices. 

A1 =
−a1

2
+

a2

2
 Ho =

−h

2
+

k

2
 

A2 =
−a2

2
+

a3

2
 KO =

−k

2
+

l

2
 

A3 = a1 + a2 + a3 Lo = h + k + l 

 

The delta term, 𝛿(𝑚3), is the displacement of the layer in the m3 direction. Using this 

atom position equation, the intensity from a single crystal is given by Equation A.2. This 

double sum includes the complex conjugate to calculate the total intensity from the 

exponential terms. This is the origin of the m’ terms (atom) in the second sum in 

Equation 1.2, and is effectively the same as m. With the (s-so)/λ representing the 

diffraction vector, Ie the incident intensity and fm being the atomic scattering factor for a 

given atom: 

I = Ie ∑ fme
2πi(s−so)Rm

λ ∑ fm′e
−2πi(s−so)Rm′

λm′m                                                                         (A.2) 

The sums over 𝑚1𝑚2 and 𝑚′1𝑚′2, (i.e. the single plane A1A2) can be calculated 

immediately to a constant to narrow down the single crystal intensity equation to being 

dependent on the m3 direction, because faulting will affect the atoms in this direction 
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only. To expand the summation past one unit-cell, the layers are assumed to be 

parallelograms of dimensions (N1N2), where the single layer dimensions are now N1A1 

and N2A2. This constant (sum over N1A1N2A2) is represented as 𝜓2 and is equal to 

Equation A.3. After this term is pulled out from the summation, Equation A.2 becomes 

Equation A.4 

𝜓2 = 𝐼𝑒𝑓2 sin2(𝜋/𝜆)(s−so)𝑁1𝐴1

sin2(𝜋/𝜆)(s−so)𝐴1

sin2(𝜋/𝜆)(s−so)𝑁2𝐴2

sin2(𝜋/𝜆)(s−so)𝐴2
   (A.3) 

 

I = ψ2 ∑ 𝑒2𝜋𝑖{
s−so

λ
}∗{

𝑚3𝐴3
3

+𝛿(𝑚3)}
m3

∑ 𝑒−2𝜋𝑖{
s−so

λ
}∗{

𝑚3′𝐴3
3

+𝛿(𝑚
3′)}

𝑚3′  (A.4) 

To further simply this intensity expression, the diffraction vector can be represented in 

the reciprocal space vector, B1B2B3, following equation A.5, where h1h2h3 are continuous 

variables. These directly relate to the whole integer HoKoLo indices, where the h1 is 

parallel to Ho, h2 is parallel to Ko, and h3 is parallel to Lo. Three additional abbreviations 

are used to simplify equation A.4 during the translation to reciprocal space and are given 

as equations A.6 through A.9. These abbreviations combine the m and m’ terms to a 

single m term, to reduce the summation to one over m. If we assume that 〈𝑒𝑖𝜙𝑚〉 can 

represent an average phase difference from layer displacement in the reciprocal lattice 

over all mth neighbor pairs and Nm represent the number of layers with an mth neighbor. 

This eliminates the dual 𝑚3 and 𝑚3′ position terms that were previously used, and 

combines them to an average, m. 

s−so

λ
= h1B1 + h2B2 + h3B3 (A.5) 

 
m = m3 − m3′  (A.6) 
 
δ(m) = δ(m3) − δ(m3′) (A.7) 
 
ϕ(m) = 2π(h1B1 + h2B2 + h3B3) ∗ δ(m) (A.8) 
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Now the intensity equation is represented as: 

I = ψ2 ∑ Nm〈𝑒𝑖𝜙𝑚〉e
2πimh3

3∞
m=−∞   (A.9) 

The first 〈eiϕ(m)〉 contains the combination δ(m), which is the displacement in the m3 

layer position, while the second 𝑒
2𝜋𝑖𝑚ℎ3

3  term contains the m layer combination term 

𝑚3 − 𝑚3′, which is determined from the vector perpendicular to the (111) plane. 
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Appendix B: Reciprocal Space Intensity Distribution 

The probability difference functions are derived separately for each specific type of fault, 

stacking or twin, using Figure B.1a and B.1b respectively. 

 

 

 

 

Figure B.1: Probability trees for the FCC stacking sequence for A) stacking faults and B) 

twin faults. The α and β terms refer to the probability of a stacking or twin fault 

respectively.7 

α is the term associated with the stacking fault probability and β is the term for twin fault 

probability. If (1-α) is the probability the sequence doesn’t indicate a stacking fault, then 

the probability that an atom is present in the A position on an mth layer is given as: 

𝑃𝑚
𝐴 = 𝑃𝑚−2

𝐴 2𝛼(1 − 𝛼) + 𝑃𝑚−2
𝐵 (1 − 𝛼)2 + 𝑃𝑚−2

𝐶 𝛼2  (B.1) 

Equation B.1 is combined with Equation B.2 to calculate the entire difference equation 

for stacking faults in FCC materials (eq. B.3), assuming that the sum of the probabilities 

of finding either an A,B,C positioned layer on the m-2 layer is equal to 1.  

Pm−1
A = Pm−2

B α + Pm−2
C (1 − α) (B.2) 

 
Pm

A + Pm−1
A + Pm−2

A = 1 − α − α2 (B.3) 

                                                 
7 Reprinted by permission from Dover Publications Inc: X-ray Diffraction, pg. 278, B.E. Warren, 1990. See 

Appendix F for documentation to republish this material. 

A B 
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Similarly, the difference equation for twin faulting can be derived. In a normal stacking 

sequence, the next layer should always be different than the preceding two layers (i.e. 

AB->C, or BC->A), however if a twin fault is present then this relationship is not valid. 

When comparing the probability tree in Figure B.1b, the probability of A on the m-2 layer 

(𝑃𝑚−2
𝐴 ) is equal to the combined probability that A is followed by B in the m-2 and A is 

followed by C in the m-1 layers. It is also follows that the combined probabilities of 

(𝑃𝑚−2
𝐵 + 𝑃𝑚−2

𝐶 − 𝑃𝑚−1
𝐴 ) are equal to the probability of B followed by C in the m-2 layer 

and C followed by B in the m-1 layer. Following the same assumption as the stacking 

fault probability, that the m-2 must be either A, B or C, the final difference equation for 

twin faulting is calculated as: 

Pm
A + Pm−1

A (1 − β) + Pm−2
A (1 − 2β) = 1 − β (B.4) 

Combining these two probabilities, assuming that they are independent of each other and 

approximating 𝛼(1 − α) by using just α, we obtain a combined difference equation: 

𝑃𝑚
𝐴 + 𝑃𝑚−1

𝐴 (1 − 𝛽) + 𝑃𝑚−2
𝐴 (1 − 3𝛼 − 2𝛽) = 1 − 𝛼 − 𝛽 (B.5) 

To solve this for the required Pm
A term that is plugged into the intensity equation, 

Equation B.5 can be solved using a power form including m (a + bxm), to obtain two 

solutions. To solve for the boundary conditions for these solution, the 𝑃𝑚
𝐴,𝐵,𝐶

 notation is 

replaced by a more general notation form,  Pm
−,0,+

 to represent the probability that an mth 

plane is the same, ahead or behind one step in the sequence when compared to the 

starting layer. The solved form, with a positive m value, of Pm
0  is given as Equation B.6. 

Pm
0 =

1

3
{1 + [1 −

𝛽

𝑖√3−12𝛼−6𝛽
] [

−(1−𝛽)+𝑖√3−12𝛼−6𝛽

2
]

𝑚

+ [1 +
𝛽

𝑖√3−12𝛼−6𝛽
] [

−(1−𝛽)−𝑖√3−12𝛼−6𝛽

2
]

𝑚

} (B.6) 
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Equation B.6 can be simplified, replacing the [
−(1−𝛽)+𝑖√3−12𝛼−6𝛽

2
] term with an exponential 

term which introduces two new variables Z and γ, and assumes the α2 and β2 are zero. 

The simplification is calculated as: 

−(1−β)+i√3−12α−6β

2
= Ze±iγ ≈ Z(cos γ ± i sin γ) (B.7) 

Where Z and γ are equal to: 

Z = 1 − 1.5α − β (B.8) 

 

γ =
π

3
−

√3α

2
 (B.9) 

Utilizing the abbreviation from Equation B.7, Equation B.6 for a positive m is now: 

Pm
0 =  

1

3
[1 + 2(−1)mZm (cos mγ + (

β

s
) sin mγ)] (B.10) 

For a negative m, it is slightly different: 

Pm
0 =  

1

3
[1 + 2(−1)mZ−m (cos mγ − (

β

s
) sin mγ)] (B.11) 

Equations B.11 and B.12 are the final difference equations that will relate the stacking or 

twin fault probability to the changes in the intensity distribution. Taking the starting layer 

to be in position A, then the displacements and phase factor for a mth layer will be as 

shown in Table B.1. 
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Table B.1: Layer displacements and corresponding reciprocal phase factor for an mth 

layer as calculated from Figure A.1. The -, 0 or + term in each displacement or shift 

corresponds to the position of each layer relative to the base layer (A) in terms of the 

stacking sequence ABC (i.e. + would mean a B layer, while – would mean a C layer) 

δm
− =

(−A1 + A2)

3
 ϕm

− =
2π(h1 − h2)

3
 

δm
0 = 0 ϕm

0 = 0 

δm
+ =

(A1 − A2)

3
 ϕm

+ =
−2π(h1 − h2)

3
 

Utilizing the reciprocal lattice phase factor given in Table B.1 in determining the average 

reciprocal space phase factor 〈𝑒𝑖𝜙𝑚〉, it is calculated as: 

〈eiϕm〉 = Pm
−〈eiϕm

−
〉 + Pm

0 〈eiϕm
0

〉 + Pm
+〈eiϕm

+
〉 (B.12) 

The average phase factor can be calculated as: 

〈eiϕm〉 = Pm
0 + (1 − Pm

0 )cos
2π(Ho−Ko)

3
 (B.13) 

Using this relationship, each unique reflection in a {hkl} family of planes can be 

determined to be affected or unaffected by faulting. The average phase shift factor of the 

affected reflections in an {hkl} family of planes can be inserted into the equation for 

intensity distribution in reciprocal space, given as 
(−1+3Pm

0 )

2
. Combining both Equations 

B.11 and B.13, we obtain a general form of the phase shift formula given as: 

〈eiϕm〉 =  (−1)mZ|m| (cos mγ + (
β

s
) sin|m|γ) (B.14) 

Inserting the average phase shift from affected reflections into Equation A.9, an updated 

reciprocal space intensity distribution function is calculated and is given as: 

I = ψ2 ∑ Nm(−1)mZ|m| (cos mγ + (
β

s
) sin|m|γ) e

2πimh3
3∞

m=−∞  (B.15) 
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The last exponential term in Equation B.15 can be expanded to the trigonometric form, 

where the i sin
2πimh3

3
 terms cancels out due to orthogonality. Using the relations of 

sin|m|A cos mB = sin mA cos mB and cos mA = cos mB Equation B.15 becomes: 

I =
ψ2

2
∑ NmZ|m| [cos 2πm (

h3−1

3
−

√3α

4π
) +

β

√3
sin 2π |m| (

h3−1

3
−

√3α

4π
) +m

cos 2πm (
h3+1

3
+

√3α

4π
) −

β

√3
sin 2π |m| (

h3+1

3
+

√3α

4π
)] (B.16) 

If we apply the criterion for affected and unaffected peaks, the cos and sin series in 

Equation B.17 can be combined to further simplify to: 

I = ψ2 ∑ NmZ|m| [cos 2πm (
h3−Lo

3
− (±)

√3α

4π
) ±

β

√3
sin 2π |m| (

h3−Lo

3
− (±)

√3α

4π
)]m  (B.18) 

Equation B.18 is the final form of the intensity distribution in reciprocal space, as a 

function of the continuous variables, h1h2h3. 
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Appendix C: Real Space Power Distribution and Stacking 

Fault Probability 

To interpret measured diffraction powder patterns, the reciprocal intensity distribution 

must be translated to real space (2θ) with an integration over all the crystallites in the 

sample. This will give the power distribution in real space. Figure C.1 illustrates the 

variation in reciprocal space that corresponds to a change in the diffraction vector, which 

can be finally translated to real space. The intensity in reciprocal space is spread around 

the point R (HoKoLo), in Figure C.1, where it is spread parallel on the B3 axis due to the 

faulting because the Fourier coefficients Z|m| increase with increased faulting levels. It 

also spreads parallel along the B1 and B2 axes dependent on the layer dimensions, N1A1 

and N2A2, however taking the assumption that the faulting is throughout the layer in the 

crystallite and that the crystallites are of sufficient size that size broadening (the spread of 

intensity parallel to the B1 and B2 axes) is not significant. Therefore, the intensity can be 

assumed to only spread parallel along the B3 axis. There is also a shift in the point R to R’ 

from the change in h3, represented by B3∆h3. This can be related to the diffraction vector 

2 sin θ

λ
, with Equation C.1. 

B3∆h3 sin ϕ = ∆ (
2 sin θ

λ
) =

cos θ

λ
∆(2θ) (C.1) 
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Figure C.1: Representation of reciprocal lattice in terms of the axes B1B2 and B3. The 

standard lattice point, HoKoLo, is represented by R and the shifted point represented by 

R’. The B2 axis is pointing into the paper.8  

The distribution of power in real space is given by the powder pattern theorem, calculated 

as Equation C.2. Using equation C.1, we can express the 𝑑ℎ3 term in terms of the 

reciprocal space shift, thus giving the adjusted power distribution in real space in 

Equation C.3. 

∫ P2θd(2θ) =
IeMR2λ3

4υa
∫ ∫ ∫

I(h1h2h3)

sin θ
dh1dh2dh3 (C.2) 

 

∫ P2θd(2θ) =
MR2λ3

4υa
∫ ∫ ∫

I(h1h2h3)

sin θ
dh1dh2

cos θd(2θ)

λB3|sin ϕ|
 (C.3) 

In a fixed diffractometer instrument, this power distribution must be represented in terms 

of the diffraction circle radius, R, where Equation C.3 must be divided by the term 

2πRsin(2θ), which transforms the power distribution into Equation C.4: 

P′2θ =
MRλ2

16π4υaB3 sin2 θ|sin ϕ|
∫ ∫

I(h1h2h3)

sin θ
dh1dh2 (C.4) 

                                                 
8 Reprinted by permission from Dover Publications Inc: X-ray Diffraction, pg. 279, B.E. Warren, 1990. See 

Appendix F for documentation to republish this material. 
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Recalling that in the reciprocal space intensity distribution, I(h1h2h3), the terms that 

depend on dh1dh2 are contained in the constant ψ2, therefore the integrals may be 

immediately performed to reduce this down to Equation C.5. 

∫ ∫ ψ2dh1dh2 = Ie f 2 ∫ ∫
sin2 N1h1

(π h1)2

sin2 N2h2

(π h2)2
dh1dh2 = Ief 2N1N2 (C.5) 

The remaining terms include the summation terms from Equation 1.27 and the constant 

term in front of the integrals in Equation 1.31. To remove the M term in the constant 

(number of crystallites), we can let the N3 term be the average number of (111) layers in a 

single crystallite and calculate the total number of atoms in the entire sample from 𝑁𝑡 =

𝑀𝑁1𝑁2𝑁3. Therefore, the unit cell volume (υa) must be converted to the volume per 

atom (layer) as υa/3. This constant now becomes: 

G =
NoRλIef2

16πvo sin2 θ
 (C.6) 

In addition to this constant, an additional translation is derived from Figure C.1 to 

combine the affected and unaffected components into one power distribution function. If 

we assume that the line RO is along the b3 axis in an orthorhombic unit cell, then the 

diffraction vector can also be represented in terms of a new continuous variable, h3
′ , 

along with a new index replacing Lo, l′. Therefore, any (hkl) peak measured from the real 

sample is related to an equivalent (00l’) reflection in an orthorhombic unit cell. Following 

the first representation in Equation C.1, it is also represented by the portion in bold: 

B3∆h3 sin ϕ = ∆ (
2 sin θ

λ
) = (𝐡𝟑

′ − 𝐥′)𝐛𝟑
′  (C.7) 
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The (h3
′ − l′) term is equivalent to the B3∆h3 term in the original representation. Using 

this new representation to replace the old representation from the reciprocal space 

distribution derivation, the term 
h3−Lo

3
− (±)

√3α

4π
 is transformed to: 

b3
′

3B3 sin ϕ
[h3

′ − l′ − (±)
√3α3B3 sin ϕ

4πb′3
] (C.8) 

Using this new term for the power distribution gives the updated power distribution 

equation: 

P′2θ =
G

3B3 sin ϕ
∑

Nm

N3
m Zm [cos 2πmq(h3 − l′ − ε) + (±)

β

√3
sin 2πmq(h3 − l′ − ε)] (C.9) 

 

𝜀 =
√3α3B3 sin ϕ

4πb′3
 (C.10) 

 

q =
b3

′

3B3 sin ϕ
 (C.11) 

If we assume that the 
NmZm

N3
 terms vary slowly with an increasing m value (layer), a 

further simplification can be made to move the q constant given in Equation C.11 out of 

the trigonometric term into the coefficient terms in Equation C.9. This allows for the 

power distribution equation to be applied to both affected and unaffected reflections by 

reducing the variable terms in the trig functions to one combined variable, n, where 

n=mq. Take a single function: 

∑
NmZm

N3
cos 2πmqxm  (C.12) 

Which is equivalent a single cos function pulled from Equation C.9, where x =

(h3 − l′ − ε). If the coefficient terms vary slowly with m, we can replace the summation 

with an integral and introduce the new quantity, n=mq (m=n/q): 

∫
NmZm

N3
cos 2πmqx  dm →

1

|q|
∫

Nn q⁄ Zn q⁄

N3
cos 2πnx  dn (C.13) 



 

68 

Now, we can convert this modified integral back to a summation over m for the power 

equation: 

∫
Nn q⁄ Zn q⁄

N3
cos 2πnx  dn →

1

|q|
∑

Nn q⁄ Zn q⁄

N3
cos 2πnxm  (C.14) 

This relation can also be used to modify the sin term, to remove the q quantity. With 

these modified summations, the final power distribution equation for one single reflection 

is: 

P′2θ =
G

b′3
∑

Nn q⁄

N3
n Zn q⁄ [cos 2πn(h3 − l′ − ε) + (±)

β

√3
sin 2π|n|(h3 − l′ − ε)] (C.15) 

Note that the total summation is now over n, which is equal to mq. To add the total 

contributions to the power distribution over an entire {hkl} family to calculate the 

P′
2θ(ho), additional summations to add the affected and unaffected components together 

must be made. Equation C.15 is the power distribution function for a peak that is affected 

by faulting. For an unaffected peak, where (Zn/q=1, 𝜀=0 and β=0) Equation C.15 

becomes: 

P′
2θ =

G

b′3
∑

Nn q⁄

N3
n [cos 2πn(h3 − l′)] (C.16) 

Combining these two equations into one total power distribution function, dependent on a 

single {hkl} family yields: 

P′
2θ{ℎ𝑘𝑙} =

G

b′3

∑ [∑
Nn q⁄

N3
Zn q⁄ cos 2πn(h3 − l′ − ε) + ∑ cos 2πn(h3 − l′)ua +  

β

√3
∑

Nn q⁄

N3
Zn q⁄ (±) sin 2π|n|(h3 −an

l′ − ε)] (C.17) 

The two cos terms can be approximated to be equal to one single cos term, producing a 

term that has an average coefficient (broadening) and displacement (shift). The 

displacement term (ε) can also be approximated to be equal for both the sin and cos terms, 

due to the sin term having a very small coefficient (
β

√3
). Using these modifications, the 
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coefficient terms can be pulled out for the sin and cos terms, along with a single 

displacement term to yield: 

P′2θ{hkl} =
G(u+a)

b′3
∑ [Ancos 2πn(h3 − l′ − δ) + Bnsin 2πn(h3 − l′ − δ)]n  (C.18)

  

An = (
1

u+a
) [∑

N𝑛 𝑞⁄

N3
Zn/q + ∑

N𝑛 𝑞⁄

N3
ua ] (C.19) 

 

Bn = (
1

u+a
) [

β

√3
∑

Nn q⁄

N3
Zn/q(±)

Lo

|Lo|a ] (C.20) 

 

δ = (
1

u+a
) [

3√3αB3

4πb′3
] ∑ (±)a sin ϕ (C.21) 

Equation C.18 represents the final power distribution function, from which stacking and 

twin fault probabilities may be derived. Broadening of the total {hkl} reflection is 

dependent on the sin term, which is proportional to the β (twin fault probability) term, but 

also depends on the Z term which is dependent on both α (stacking fault probability) and 

β. A shift in the position (∆h3) from the displacement term, δ, is directly related to α and 

is the origin of the peak shift relation used in this work. To calculate the real-space 2θ 

shift that occurs from the presence of stacking faults, the relation established with 

Equation C.1 is used to represent the change in diffraction vector in terms of the delta 

term given in Equation C.21. 

∆ (
2 sin θ

λ
) = (h3

′ − l′)b3
′ →  ∆2𝜃 =

𝜆b3
′ 𝛿

cos 𝜃
 (C.22) 

Inserting the displacement term (Equation C.21) we obtain a general form for the peak 

shift as a function of stacking fault probability 

∆2θ = [
3√3αB3λ

4π(u+a) cos θ
] ∑ (±)a sin ϕ (C.23) 
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Following Figure C.1, the reciprocal space terms can be related to the real space lattice 

dimensions and indices. The sin ϕ term can be directly related to the interplanar spacing, 

d, of the material with sin ϕ =  B3Lod. This modified equation is now equal to: 

∆2θ = [
3√3α𝐵3

2λd

4π(u+a) cos θ
] ∑ (±)a Lo (C.24) 

With the 𝐵3
2 term (reciprocal space vector) being equivalent to Equation C.25, with a 

being the cubic cell lattice parameter. By also replacing λ with 2dsinθ (Bragg law) we 

obtain Equation C.26. 

𝐵3
2 =

1

𝐴3
2 =

1

3𝑎2 (C.25) 

 

∆2θ = [
6√3α

1

3a2 sin θd2

π(u+a) cos θ
] ∑ (±)a Lo (C.26) 

The a2 term can be replaced with d2ho
2 where ho

2 = √h2 + k2 + l2 (in cubic unit cell). 

Now Equation C.26 reduces to: 

∆2θ = [
6√3α

1

3ℎ𝑜
2 sin θ

4π(u+a) cos θ
] ∑ (±)a Lo → [

√3α tan θ

2πho
2(u+a)

] ∑ (±)a Lo (C.27) 

Finally, multiplying by 180/π to convert from radians to degrees gives the final peak shift 

equation as a function of stacking fault probability. 

∆2θ = [
90√3α tan θ

π2ho
2(u+a)

] ∑ (±)a Lo (C.28) 

Equation C.28 can be applied to any {hkl} family to determine the peak shift from 

stacking faults. For each family of planes, the constant must be calculated: 

 
1

ho
2(u+a)

∑ (±)a Lo (C.29) 
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Where the Lo value must be calculated for each individual affected peak following the 

criterion, Lo = 3b ± 1. The tan θhkl
o  refers to the standard, non-broadened peak position 

as it is derived from the original, unaffected lattice. For the {111} family, the ho
2 is equal 

to 3, and the total number of reflections in the family is 8. Similarly, for the {200} family 

the  ho
2 is equal to 4, and the total number of reflections in the family is 6. The full list of 

values used in the summation term is listed in Table C.1. Therefore, the peak shift 

equations for {111} and {200} peaks are calculated from Equations C.30 and C.31 

respectively.  

∆2θ = [
90√3α tan θ111

o

π2 ] (0.25) (C.30) 

 

∆2θ = [
90√3α tan θ200

o

π2 ] (−0.5) (C.31) 

Table C.1: Calculated Lo and ± values from the criterion for determining if a peak will 

be affected or unaffected by faulting. An affected peak will follow the criterion Lo =
3b ± 1, where unaffected peaks follow Lo = 3b. The Lo term is calculated directly 𝐿𝑜 =

ℎ + 𝑘 + 𝑙 relation given in Table 1.1. 

{111} Lo (±) {200} Lo (±) 

(111) 3 0 (200) 2 - 

(11-1) 1 + (020) 2 - 

(1-11) 1 + (002) 2 - 

(-111) 1 + (-200) -2 + 

(-1-11) -1 - (0-20) -2 + 

(-11-1) -1 - (00-2) -2 + 

(1-1-1) -1 - 

(-1-1-1) -3 0 

The change in the difference between two peaks may also be used, through a combination 

of two separate single peak shifts. For the (200-111) shift, the change in peak difference 

between these two peaks can be calculated with Equation C.32. 
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∆(2𝜃200 − 2𝜃111)° =
−90√3α

π2 [
tan θ200

2
+

tan θ111

4
] (C.32) 
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Appendix D: Twin Fault Probability 

As seen in equation C.20, the sin term coefficient Bn is directly dependent on β, thus the 

peak broadening from the sin term is directly related to this probability. It was shown by 

Cohen and Wagner that the associated center of gravity (centroid) shift of a given 

reflection compared to the peak maxima can be related to the twin fault probability, β, if 

we assume that no other sources of faulting or peak asymmetry exists.[46]  

The centroid shift from the peak maxima can be calculated using the following relation: 

∆CG =
∫ h3P′2θ(h3)dh3

∫ P′
2θ(h3)dh3

 (D.1) 

Where the 𝑃2𝜃
′  is the power distribution function from Equation C.18, and h3 is equal to 

the (h3 − l′ − δ) term in Equation C.18. If we assume that no other faulting is present, 

this calculation simplifies to: 

∆CG =
−1

2π
∑ (−1)n Bn

nn  (D.2) 

Now if we substitute Equation C.20 for Bn and evaluate the sum over infinite n values we 

obtain Equation D.3, assuming infinitely large crystallites ((s-so)<<λ).  

∆CG =
βa

√3π(u+a)
(±)

Lo

|Lo|
 (D.3) 

Following the same convention that was used in the stacking fault peak shift derivation to 

convert the centroid shift to real space, we obtain the final centroid shift equation for any 

{hkl} family. The a term is the number of affected reflections and u is the number of 

unaffected reflections in any given {hkl} family, while the Lo term is calculated 

following the relation given in Table A.1 and is the same value listed in Table C.1. The 
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θhkl
0  value is the peak maxima position from an annealed sample, assumed to have zero 

twin faulting present. 

∆CG =
360 ln 2a

π2√3(u+a)
(±)

Lo

|Lo|
β tan θℎ𝑘𝑙

0  (D.4) 

For the direct calculation, Equation D.4 may be solved out to simplify for single 

reflections.  

∆CG111 =
360 ln 2∗6

π2√3(8)
∗

6

6
β tan θ = 11β tan θ111

o  (D.5) 

 

∆CG200 =
360 ln 2∗3

π2√3(6)
∗

12

6
β tan θ = 14.6β tan θ200

o  (D.6) 

Combining these two equations to analyze two peak centroid shifts in a single calculation 

yields the equation for the twin-fault probability: 

β =
∆(2θ111

CG −2θ111
max)−∆(2θ200

CG −2θ200
max)

(11 tan θ111
0 +14.6 tan θ200

0 )
 (D.7) 
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Appendix E: Error Propagation 

Standard errors calculated from replicate measurements from the (111) peak position for 

each type of sample were propagated through for each method of stacking and twin fault 

calculation. For single peak stacking fault calculation, the error was calculated following: 

δα[single peak] = √((
∂α

∂∆(2θhkl)
) ∗ (δ∆(2θhkl)))

2

+ ((
∂α

∂θhkl
) ∗ (δθhkl))

2

  (A.1) 

with the partials listed below. The summation term is considered a constant for each 

unique HKL.  

  (
∂α

∂∆(2θhkl)
) =  

π2 cot θhkl

90√3
∑ ((±)

Lo

ho
2(u+b)

)b             (A.2) 

 

(
∂α

∂θhkl
) =  

π2∆2θhkl csc2 θhkl

90√3
∑ ((±)

Lo

ho
2(u+b)

)b             (A.3) 

For the double peak analysis, in addition to the single peak errors the error in double peak 

change is also included and the total error was calculated following: 

δα[double peak] = √((
∂α

∂∆(2θ200−2θ111)
) ∗ (δ(∆(2θ200 − 2θ111)) ))

2

+ ((
∂α

∂θ200
) ∗ (δθ200))

2

+ ((
∂α

∂θ111
) ∗ (δθ111))

2

 (A.4) 

with the partials listed below. The summation term that was present in the single peak 

analysis was calculated and is included in the partials directly. 

(
∂α

∂∆(2θ200−2θ111)
) =

π2

90√3(
tan θ200

2
+

tan θ111
4

)
  (A.5) 

 

(
∂α

∂θ200
) =  

−π2∆(2θ200−2θ111) sec2 θ200

180√3(
tan θ200

2
+

tan θ111
4

)
2   (A.6) 

 

 (
∂α

∂θ111
) =  

−π2∆(2θ200−2θ111) sec2 θ111

360√3(
tan θ200

2
+

tan θ111
4

)
2             (A.7) 



 

76 

The twin fault probability error was calculated utilizing the errors included both singular 

peak maxima positions and singular peak centroid shifts from the maxima following the 

same procedure as the stacking fault probabilities. The double peak (200-111) reflection 

error was calculated as: 

δβ[double peak] = √(𝜕𝛽1 ∗ δ (∆(2θ111
CG − 2θ111

max)))
2

+ (𝜕𝛽2 ∗ δ (∆(2θ200
CG − 2θ200

max)))
2

+ (
∂β

∂θ111
∗ δθ111)

2
+ (

∂β

∂θ200
∗ δθ200)

2
 (A.8) 

With the partials being listed in equations A.9 through A.12 below: 

𝜕𝛽1 =
∂β

∂∆(2θ111
CG −2θ111

max)
=

1

(11 tan θ111+14.6 tan θ200)
            (A.9) 

 

𝜕𝛽2 =
∂β

∂∆(2θ200
CG −2θ200

max)
=

−1

(11 tan θ111+14.6 tan θ200)
          (A.10) 

 

∂β

∂θ111
=

11(∆(2θ111
CG −2θ111

max)−∆(2θ200
CG −2θ200

max)) sec2 θ111

(11 tan θ111+14.6 tan θ200)2              (A.11) 

 

∂β

∂θ200
=

−14.6(∆(2θ111
CG −2θ111

max)−∆(2θ200
CG −2θ200

max)) sec2 θ200

(11 tan θ111+14.6 tan θ200)2              (A.12) 

 



 

77 

Appendix F: Copyright Clearance Agreements 

Copyright agreement for Figure 1.2 in Section 1.1 
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Copyright agreement for Figure 1.4 in Section 1.2.1 
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Copyright agreement for Figure 1.6 in Section 1.2.2
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Copyright agreement for Figure A.1 in Appendix A (pg. 53), Figure B.1 in Appendix B 

(pg. 57) and Figure C.1 in Appendix C (pg. 63) 
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	The alpha term is dependent on the rate of shear-band formation as a function of applied strain and the beta term is directly related to the probability that a given shear-band intersection will become a martensite nucleation site. The beta term is al...

	1.2 Planar defects in FCC Materials
	Stacking and twin faults can occur during plastic deformation, while twin faulting can also occur during recrystallization from heat treatment. FCC materials undergoing plastic deformation can exhibit either or both deformation modes, dislocation slip...
	1.2.1 Stacking Faults in FCC Materials
	A stacking fault is a defect in the normal stacking order of planes in the crystal lattice, that can be created during dislocation slip. In the FCC structure, the close packed plane (111) follows the ABCABCABCABC sequence, each letter designating the ...
	Figure 1.3: 2-dimensional projection of the (111) close packed plane showing the ABCABC stacking sequence in an FCC lattice. The individual layers are labeled A, B, C respectively.
	Dislocation slip occurs primarily on the close-packed planes in the face-centered cubic structure. During the dislocation slip process, the burgers vector of an edge dislocation in the (111) plane is ,1-2.,,1.10., which follows the direct path to the ...
	Figure 1.4: Orientation relationship of the partial dislocations ,1-6.,,1.2,1..,  ,1-6.,,2.11. to the primary edge dislocation on the (111) plane in an FCC lattice. The dotted circles represent the base A-layer of atoms, while the smaller circles repr...
	Due to the equal lattice strains produced by each Shockley partial dislocation, each partial repels the other, thus creating an extended dislocation, where a discontinuity of the stacking order occurs. This extended discontinuity is referred to as a s...
	Figure 1.5: 2-dimensional projection of the (111) plane depicting two types of dislocation slip possible in the (111) plane, with the dislocations designated by arrows. X) Standard ½ ,,1.10. edge dislocation motion in the B layer of atoms. The empty r...

	1.2.2 Twin Faults in FCC Materials
	As an alternative to slip during plastic deformation, twin deformation can also occur in face-centered cubic materials. Twin deformation typically occurs in materials with a limited amount of slip systems present (BCC/HCP) or at lower deformation temp...
	Figure 1.6: General diagram of twin deformation in a simple tetragonal lattice, showing the twin (mirror) planes and atomic movement in the twin fault. A) The un-deformed lattice, showing the future twin plane and applied stress. B) The twinned lattic...
	In FCC materials, the stacking fault energy is directly related to the stress required to create a twin fault, since most of the energy required for twin deformation is a result of twin boundary creation and therefore the twin boundary surface energy....


	1.3 Austempered Ductile Iron
	Austempered ductile iron, commonly referred to as ADI, is a relatively new material that was developed in the 1980/90s [7]. The primary difference between Austempered ductile iron and ductile iron is the heat-treatment process the material undergoes t...

	1.4 304L Stainless Steel
	Austenitic stainless steels (2xx, 3xx) are the most common types of stainless steel in use [12]. The additional nickel present stabilizes austenite over the ferrite present in ferritic stainless steel (4xx). Austenitic stainless steels can be classifi...

	1.5 Measurement of Planar Fault Probabilities using X-ray Diffraction
	After the introduction of x-ray diffraction to the suite of analytical tools of material scientists in the 1920’s, studies on cold worked materials were conducted to understand the deformation structures of materials [28–32]. M.S. Paterson first intro...
	1. The fault extends through the entire width (in the (111) plane) of the crystallites.
	2. The fault densities are small (≤0.05) and uniform throughout all crystallites.
	3. All the components of a reflection {hkl} have equal integrated intensities
	The first assumption does not hold true when the average crystallite size, or coherent diffracting domain, is small enough to produce size broadening (>1000nm), as the powder pattern intensity equation is assumed to be integrated through an infinitely...
	The derivation originates with the intensity given from a single unit cell crystal, which has been translated from the face-centered cubic cell a hexagonal unit cell to orient the crystal in such a way that the plane of interest for planar faulting (1...
	The ψ2 term is equal to the summation of the intensity in the A1A2 directions, which is calculated immediately for simplification and isolation of the intensity to be a function of the average reciprocal space displacement term and diffraction vector....
	The diffraction vector from this reciprocal space intensity distribution is related to the probability of a planar fault being present in the structure using probability difference functions. These probability difference functions are derived from a p...
	Where the ,P-m-0. is calculated from the difference functions to be Equation 1.4:
	This average reciprocal space shift term defines the criterion if an individual reflection that exists within a family of planes {hkl} is affected or unaffected by faulting, where an affected (a) plane is defined by ,h-1.−,h-2.=3b±1 (,P-m-0. is not ca...
	This criterion is used to define the reciprocal space intensity distribution that includes the affected and unaffected peaks, giving the total intensity from a single {hkl} family in reciprocal space, which is given in the final form of Equation 1.4.
	This is equivalent to the Fourier transform of the electron density, while accounting for possible broadening and/or shifting from stacking faults. The full derivation of Equation 1.5 is given in Appendix B.
	In order to utilize this analysis on real-space (2θ) diffraction patterns, the reciprocal space intensity distribution is translated into real space through integration over all crystallites, following the powder pattern theorem derived by Warren [34]...
	The direct relation between stacking fault probability (α) and peak shift present in the (111) and (200) reflections are given as Equations 1.5 and 1.6:
	Where the ,tan-,θ-hkl-o.. term refers to the peak position of an un-faulted material, corresponding to the original reciprocal lattice position. These two equations can be combined to calculate the stacking fault probability from the shift in the peak...
	The twin fault probability can be related to the peak asymmetry, following a method developed by Cohen and Wagner that utilizes the same real-space power distribution function derived by Warren, which is described in Appendix D. The equations to calcu...
	Where the ,tan-,θ-hkl-o.. term refers to the peak position of the un-faulted material, like Equations 1.6-1.8, and the ,∆CG-hkl. term refers to the centroid shift from peak maxima (un-faulted material) for a specific reflection. Combining Equations 1....
	Equations 1.6-1.8 and 1.11 are the core equations that are used in this work.
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	2 Motivation/Hypothesis
	Most of the previous work regarding the effect of deformation in the austenite to martensite transformation in austempered ductile iron has focused on the analysis of phase volume fraction as a function of deformation. The goal of this research was to...
	2.1 1st Hypothesis
	If the material containing metastable austenite (either 304L or ADI) is deformed in uniaxial compression or by filing, then the austenite (111) and (200) peaks on the diffraction will exhibit increased broadening and slight peak shifts because the sta...
	Figure 2.1: Simulated diffraction pattern of an austenitic (FCC) material, showing the expected peak shifts for the (111) and (200) peaks. The dotted line represented an un-faulted material, where the solid line represents a faulted material. The peak...

	2.2 2nd Hypothesis
	If the material containing metastable austenite (either 304L or ADI) is deformed in uniaxial compression or by filing, then the austenite (111) and (200) peaks on the diffraction will exhibit increased broadening and centroid shifts from peak maxims b...
	Figure 2.2: Simulated diffraction pattern of an austenitic (FCC) material, showing the expected centroid shifts for the (111) and (200) peaks. The dotted line represented a twin-free material, where the solid line represents a twinned material. The pe...
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	3 Experimental Methods
	3.1 Sample Preparation
	3.1.1 Austempered Ductile Iron
	For the ADI samples, a commercially produced ductile iron (Dura-Bar Woodstock, IL) was utilized for metallurgical consistency. The material composition is given in Table 3.1.
	Table 3.1: Nominal chemical composition for commercially produced ductile iron used as a base material in this experiment (wt%). The carbon equivalent of the material is 4.42, calculated via wt%C+0.33*wt%Si.
	One heat-treatment cycle (two total steps) was used in this experiment; an austenitization step of 1 hour at 896 C and an austempering step of 1 hour at 382 C, with a final water quench after the austempering step. The samples were placed on a bed of ...

	3.1.2 304L Stainless Steel
	A 304L stainless steel cold-rolled bar (Speedy Metals Appleton, WI) was used for compression sample preparation. The approximate composition of the material is listed in Table 3.2.
	Table 3.2: Approximate chemical composition for commercially produced 304L stainless steel used as a standard material in this experiment (wt%). The material conforms to ASTM A276.
	The as-received rod was first annealed in a high-temperature box furnace at 1037 C for 30 minutes followed by a furnace cool to mitigate residual rolling texture present from the production process. The 12.7 mm diameter rod was cut into 25.4 mm sectio...


	3.2 Compression Testing & Optical Microscopy
	For compression testing, standard 150kN platens in an Instron 4206 load frame at a strain rate of 10-3 s-1 were utilized for testing. The strain was estimated using the crosshead measurements on the load frame used however the final strain was calcula...
	Figure 3.1: A) Diagram showing the orientation of the compression sample, with the arrows indicating the compression force direction. B) Diagram of the sample separation after cutting the compressed sample perpendicular to the compression direction sh...
	For the 304L stainless steel, an electrolytic etch consisting of 10% oxalic acid in a glass beaker at 6VDC for 60 seconds was used to observe grain boundaries. The list of all samples is given in Table 3.3.
	Table 3.3: List of all samples used in the present work. The austenitization/austempering step refers to the entire heat treatment step and lists the temperature and time used. The theoretical sample deformation is listed for all samples except for th...

	3.3 X-ray Diffraction
	Prior to collecting data, each sample for X-ray diffraction was polished following the same steps as the optical metallography samples (0.05μm alumina for ADI, 0.04μm silica for 304L), however the final polish step was followed by the same etch step a...
	Table 3.4: Count time and step size parameters used in the X-ray diffraction experiments performed at Michigan Tech on each type of sample.
	Table 3.5: 2θ  Scan ranges used in the X-ray diffraction scans for each sample type. The specific peaks measured in each range are listed in the first row.
	The step size was chosen to have ≥10 points above the FWHM to describe the top of the peak well for peak position determination from profile fitting. The total scan range was made wide enough that each peak had tails that extended four times the FWHM ...
	In addition to the data collected at Michigan Tech, a representative piece of each ADI sample was sent to the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Jonathon Almer at ANL kindly performed the experiment through a sample mai...

	3.4 Diffraction Spectra Analysis
	Rigorous data analysis was performed on the diffraction data obtained to achieve the best peak positions and profile fits possible. The raw data was first corrected for two functions that vary as a function of 2θ; atomic scattering factor, Lorentz-pol...
	OriginPro also gave PearsonVII peak fit results and these results agreed with the results from DMS-NT, however only the centroid results from OriginPro were analyzed further. Peak positions, centroids and associated errors were utilized in the peak sh...


	A
	B
	X-ray diffraction sample
	Optical Metallography Sample
	4 Results
	4.1 Austempered Ductile Iron
	The standard ductile iron metrics of nodule count and nodularity were above the recommended requirements (nodule count >100mm-2 and 80% nodularity by area) that define suitable material for austempering. The nodule count and nodularity by area are giv...
	Table 4.1: Nodule count and nodularity by area results listed for each austempered ductile iron sample. Each sample had the same heat-treatment cycle. The standard errors (95% confidence) are listed for each value.
	The actual levels of deformation obtained are listed in Table 4.2. The volume fraction of martensite vs deformation in general followed the expected trend, that with increasing l deformation the martensite volume fraction increased. As shown in Table ...
	Table 4.2: Volume fractions of austenite, ferrite and martensite calculated for each ADI sample. The volume fraction of graphite nodules was ignored for this analysis, due to the inability to observe representative diffraction peaks.
	The error in a single peak position was determined with replicate measurements to be approximately 0.005  2θ for the annealed samples and 0.01  2θ for the deformed samples, where 0.005  2θ is also the smallest resolvable increment of the goniometer on...
	Table 4.3: Stacking fault probabilities calculated from the data collected at the Advanced Photon Source at APL beamline 1-ID. The 95% error level is listed to highlight the significance of error propagation in this analysis. The angle listed indicate...
	For the stacking fault peak shift analysis, the errors for the probabilities calculated from data collected at Michigan Tech were near or above 50% of the calculated result; reducing or eliminating the significance of the calculated stacking fault pro...
	While the twin fault probabilities were calculated from the Michigan Tech data, they were not calculated from the APS data due to the insufficient peak shape data required for centroid calculation. The austenite (111) peak was saturated due to over-ex...

	4.2 304L Stainless Steel
	Optical metallographic analysis from the top surface of the compression samples showed, as expected, equiaxed grains with a relative grain size of 75μm. Compared to the target compression levels of 15, 20 and 25%, the actual compression levels attaine...
	Table 4.5: Stacking and Twin faulting probabilities calculated for the ADI and 304L stainless steel samples from data collected at Michigan Tech. The 95% confidence errors are included to highlight the importance of error propagation in this analysis....
	For the 316L sample, where double peak difference result had two possible error calculation options, from individual peak errors or from the double peak difference error, the double peak difference error gave much lower stacking fault probability erro...
	Table 4.5: Stacking fault probabilities and errors associated with the two possible methods of calculating the error in the double peak difference method; from single peak error terms and the double peak difference error term. These errors were calcul...


	5 Discussion
	5.1 Planar fault measurement via X-ray diffraction
	The determination of planar faults, either stacking or twin, with x-ray diffraction can be difficult because of the very small peak shifts and/or centroid shifts that occur as a result of planar faults. Table 5.1 shows the theoretical peak shift value...
	Table 5.1: Calculated stacking and twin fault peak shifts based on given faulting probability. The average distance between faults was calculated using an average (111) d-spacing of 0.209nm, which was the average for all the ADI samples. The peak shif...
	As shown, until stacking fault probabilities are ≥0.001, then the peak shift or centroid shift is very small (≤0.00158  Δ2θ111, ≤0.00375  Δ2θ200) and would require very careful experimental procedures and precise equipment to measure. This is further ...
	It is clear from Equation 5.1 that both the errors in the Δ2θ shift and θ position, where the shift consists of the errors in both the annealed and deformed (faulted) peak positions and the ,θ-hkl-o. consists of half the error in the annealed peak pos...
	From Equation 5.2, the total error in the stacking fault probability calculation is due to the error in double peak shift term and the error in the θ111 and θ200 terms. The double peak shift error could be derived following two methods, as outlined in...
	Where the 𝜕𝛽1 and 𝜕𝛽2 partial differentials are abbreviations in place of partial differential taken with respect to the centroid shift in the (111) and (200) peaks respectively. Similar to the error propagation for the stacking fault probability ...
	Following the error propagation, attention must be paid to the experimental setup and sample preparation to minimize any errors that may occur during experimentation. There are a wide variety of effects that can cause changes in the diffraction patter...
	The intrinsic errors from sample defects can include sample transparency (low linear-absorption) and sample fluorescence (sample K-edge near beam K-edge) along with structural defects such as stacking faults, twin faults, internal stresses, grain-boun...
	5.1.1 Difficulties with ADI Measurement
	In the austempered ductile iron samples, the interpretation of the peak shift results became problematic with the use of one annealed sample as a baseline for each of the deformed samples. The experimental method was modified for the 304L stainless st...
	An additional source of error that was discovered during experimentation was the effect of carbon wt% on the tetragonality of the martensite after the transformation. The martensite transformation is assumed to be diffusion-less, thus the martensite t...
	Table 5.2: Calculated theoretical peak positions in 2θ  for martensite, transformed from the parent austenite. The peak-splitting is due to the carbon present in the unit cell, which lies on the c-axis. The d-spacing was calculated using the CuKα1 wav...
	At these high carbon levels, the (101) martensite reflection is very close to the (111) austenite reflection, within 0.2  2θ and thus it would be difficult to deconvolve the austenite peak from the martensite peak for analysis, without exact knowledge...

	5.1.2 Peak Position Determination Errors
	Additional errors can arise during the peak fitting procedures, to determine the exact peak positions and centroids necessary for both stacking and twin faulting density measurement. Traditional peak fitting routines rely on a weighted fit to the erro...
	In addition, replicate measurements should be made in-order to quantify the other extrinsic errors in the experimentation. The errors given in Section 4 are a result of replicate measurements on respective samples and are assumed to be representative ...
	Alternative methods for obtaining fault probabilities, such as Fourier analysis are a feasible option for comparison to the peak shift values, as peak broadening is also a function of both stacking faults and twin faults and in a broader context micro...


	5.2 Interpreting Calculated Fault Probabilities
	In general, any source of change to the lattice parameter and thus d-spacing on specific planes will cause peak shifts as defined by the Bragg equation (λ=2dsinθ). Therefore, the results must be interpreted with a perspective on all other possible eff...
	5.2.1 Stacking Fault Probabilities
	Comparing the measured peak shift values in Tables 4.3 and 4.4 to the theoretical peak shift values in Table 5.1, it is apparent that there are some other factors influencing the peak shift in the ADI material. A peak shift caused by chemical homogene...
	This uniform directional shift could possibly be caused by a higher wt% of manganese in the compression sample, compared to the “annealed” sample used, which is possible given the experimental procedure used for the ADI. Considering the processing his...
	It is also possible that the additional coherency strains that are created during the martensite transformation are creating an additional peak shift in the austenite diffraction pattern. Previous literature has shown that the martensite transformatio...
	Assuming a carbon wt% of 1.9%, the volumetric strain created during the transformation from austenite to martensite would be approximately 3.6%. With the known amount of austenite transformed into martensite, the total volume change can be calculated ...
	Table 5.3: Total volumetric strain, Δa and peak shift values calculated for each ADI sample. The change in lattice parameter (Δa) was calculated following Equation 5.1. The ao used for the calculation was 3.63Å, which is the average measured lattice p...
	With the calculated Δa for each sample, the peak shifts for the (111) and (200) peaks can be calculated, also following Equation 5.1. Comparing these peak shift values to the theoretical shifts listed in Table 5.1, these values are large enough to pla...

	5.2.2 Twin Fault Probabilities
	The twin-fault probabilities calculated from the ADI samples do show a high density of twin faults, especially at higher deformation levels. However, it is unclear whether the asymmetry is solely due to the presence of twin-faults from this data alone...



	6 Conclusions
	The measurement of planar fault densities is inherently complex, due to the nature of the diffraction condition where any change in the lattice structure causes deviations from the theoretical perfect distribution of intensity. Isolating individual pe...
	1. Limited volume fraction of austenite (FCC) phase present, which affects the overall intensity that can be measured. This can be accounted for by utilization of high-brilliance sources like synchrotron or rotating anode x-ray sources.
	2. The loss of austenite due to the deformation-induced transformation that occurs after plastic deformation.
	3. Isolation of all other defects that cause peak shifts that are common when deforming materials, like dislocation build-up, changing crystallite sizes and coherency strains that may change during the austenite to martensite transformation. Assumptio...
	Additional studies to gain additional perspectives on the deformation behavior of ADI, such as transmission-electron microscopy could help corroborate the information interpreted from the diffraction data. It is feasible that the coherency strains int...
	With proper measurement parameters, Fourier analysis should be performed to complement planar fault densities measured from peak and centroid shifts, as the broadening can give information about microstrain and coherent diffracting domain size in addi...
	Further development of these methods could give more clues about the specific transformation behavior in austempered ductile irons. The transformation does occur in these materials according to these results, however it is not clear whether stacking f...
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	Appendix A : Single Crystallite Intensity Distribution

	Following the original derivation from Paterson, the lattice points in an FCC lattice are translated to be represented in hexagonal coordinates, as shown in Figure A.1. The translation done to reorient the sample unit cell to be in line with the close...
	Figure A.1: Visual depiction of the relationship between the FCC lattice and hexagonal lattice points required for the stacking and twin fault calculation. The FCC lattice directions are shown as a1,a2,a3 and they are translated to hexagonal coordinat...
	Using the hexagonal translation, the FCC unit cell can be represented as a unit cell containing 3 total atoms, with one atom per layer. The index mn is introduced to describe the position of an atom in a plane ,𝑚-3., in real space. The position of a ...
	Table A.1: Translations for FCC to hexagonal lattice points that are used in the stacking fault and twin fault calculation derivation. The A1A2A3 and HoKoLo are the hexagonal coordinates and reciprocal lattice indices, while the a1,a2,a3 and hkl are t...
	The delta term, 𝛿,,𝑚-3.., is the displacement of the layer in the m3 direction. Using this atom position equation, the intensity from a single crystal is given by Equation A.2. This double sum includes the complex conjugate to calculate the total in...
	The sums over ,𝑚-1.,𝑚-2. and ,𝑚′-1.,𝑚′-2., (i.e. the single plane A1A2) can be calculated immediately to a constant to narrow down the single crystal intensity equation to being dependent on the ,m-3. direction, because faulting will affect the at...
	To further simply this intensity expression, the diffraction vector can be represented in the reciprocal space vector, B1B2B3, following equation A.5, where h1h2h3 are continuous variables. These directly relate to the whole integer HoKoLo indices, wh...
	Now the intensity equation is represented as:
	The first ,,e-iϕ(m).. contains the combination δ,m., which is the displacement in the m3 layer position, while the second ,𝑒-,2𝜋𝑖𝑚,ℎ-3.-3.. term contains the m layer combination term ,𝑚-3.−,𝑚-,3-′.., which is determined from the vector perpendic...
	Appendix B : Reciprocal Space Intensity Distribution

	The probability difference functions are derived separately for each specific type of fault, stacking or twin, using Figure B.1a and B.1b respectively.
	Figure B.1: Probability trees for the FCC stacking sequence for A) stacking faults and B) twin faults. The α and β terms refer to the probability of a stacking or twin fault respectively.
	α is the term associated with the stacking fault probability and β is the term for twin fault probability. If (1-α) is the probability the sequence doesn’t indicate a stacking fault, then the probability that an atom is present in the A position on an...
	Equation B.1 is combined with Equation B.2 to calculate the entire difference equation for stacking faults in FCC materials (eq. B.3), assuming that the sum of the probabilities of finding either an A,B,C positioned layer on the m-2 layer is equal to 1.
	Similarly, the difference equation for twin faulting can be derived. In a normal stacking sequence, the next layer should always be different than the preceding two layers (i.e. AB->C, or BC->A), however if a twin fault is present then this relationsh...
	Combining these two probabilities, assuming that they are independent of each other and approximating 𝛼(1−α) by using just α, we obtain a combined difference equation:
	To solve this for the required ,P-m-A. term that is plugged into the intensity equation, Equation B.5 can be solved using a power form including m (a+b,x-m.), to obtain two solutions. To solve for the boundary conditions for these solution, the ,𝑃-𝑚...
	,P-m-0.=,1-3.,1+,1−,𝛽-𝑖,3−12𝛼−6𝛽...,,,−,1−𝛽.+𝑖,3−12𝛼−6𝛽.-2..-𝑚.+,1+,𝛽-𝑖,3−12𝛼−6𝛽...,,,−,1−𝛽.−𝑖,3−12𝛼−6𝛽.-2..-𝑚.. (B.6)
	Equation B.6 can be simplified, replacing the ,,−,1−𝛽.+𝑖,3−12𝛼−6𝛽.-2.. term with an exponential term which introduces two new variables Z and γ, and assumes the α2 and β2 are zero. The simplification is calculated as:
	Where Z and γ are equal to:
	Utilizing the abbreviation from Equation B.7, Equation B.6 for a positive m is now:
	For a negative m, it is slightly different:
	Equations B.11 and B.12 are the final difference equations that will relate the stacking or twin fault probability to the changes in the intensity distribution. Taking the starting layer to be in position A, then the displacements and phase factor for...
	Table B.1: Layer displacements and corresponding reciprocal phase factor for an mth layer as calculated from Figure A.1. The -, 0 or + term in each displacement or shift corresponds to the position of each layer relative to the base layer (A) in terms...
	Utilizing the reciprocal lattice phase factor given in Table B.1 in determining the average reciprocal space phase factor ,,𝑒-𝑖,𝜙-𝑚..., it is calculated as:
	The average phase factor can be calculated as:
	Using this relationship, each unique reflection in a {hkl} family of planes can be determined to be affected or unaffected by faulting. The average phase shift factor of the affected reflections in an {hkl} family of planes can be inserted into the eq...
	Inserting the average phase shift from affected reflections into Equation A.9, an updated reciprocal space intensity distribution function is calculated and is given as:
	The last exponential term in Equation B.15 can be expanded to the trigonometric form, where the i,sin-,2πim,h-3.-3.. terms cancels out due to orthogonality. Using the relations of ,sin-,m.A,cos-mB=..,sin-mA,cos-mB.. and ,cos-mA=,cos-mB.. Equation B.15...
	If we apply the criterion for affected and unaffected peaks, the cos and sin series in Equation B.17 can be combined to further simplify to:
	Equation B.18 is the final form of the intensity distribution in reciprocal space, as a function of the continuous variables, h1h2h3.
	Appendix C : Real Space Power Distribution and Stacking Fault Probability

	To interpret measured diffraction powder patterns, the reciprocal intensity distribution must be translated to real space (2θ) with an integration over all the crystallites in the sample. This will give the power distribution in real space. Figure C.1...
	Figure C.1: Representation of reciprocal lattice in terms of the axes B1B2 and B3. The standard lattice point, HoKoLo, is represented by R and the shifted point represented by R’. The B2 axis is pointing into the paper.
	The distribution of power in real space is given by the powder pattern theorem, calculated as Equation C.2. Using equation C.1, we can express the 𝑑,ℎ-3. term in terms of the reciprocal space shift, thus giving the adjusted power distribution in real...
	In a fixed diffractometer instrument, this power distribution must be represented in terms of the diffraction circle radius, R, where Equation C.3 must be divided by the term 2πRsin(2θ), which transforms the power distribution into Equation C.4:
	Recalling that in the reciprocal space intensity distribution, I,,h-1.,h-2.,h-3.., the terms that depend on d,h-1.d,h-2. are contained in the constant ψ2, therefore the integrals may be immediately performed to reduce this down to Equation C.5.
	The remaining terms include the summation terms from Equation 1.27 and the constant term in front of the integrals in Equation 1.31. To remove the M term in the constant (number of crystallites), we can let the N3 term be the average number of (111) l...
	In addition to this constant, an additional translation is derived from Figure C.1 to combine the affected and unaffected components into one power distribution function. If we assume that the line RO is along the b3 axis in an orthorhombic unit cell,...
	The ,,h-3-′.−,l-′.. term is equivalent to the ,B-3.,Δh-3. term in the original representation. Using this new representation to replace the old representation from the reciprocal space distribution derivation, the term ,,h-3.−,L-o.-3.−,±.,,3.α-4π. is ...
	Using this new term for the power distribution gives the updated power distribution equation:
	If we assume that the ,,N-m.,Z-m.-,N-3.. terms vary slowly with an increasing m value (layer), a further simplification can be made to move the q constant given in Equation C.11 out of the trigonometric term into the coefficient terms in Equation C.9....
	Which is equivalent a single cos function pulled from Equation C.9, where x=,,h-3.−,l-′.−ε.. If the coefficient terms vary slowly with m, we can replace the summation with an integral and introduce the new quantity, n=mq (m=n/q):
	Now, we can convert this modified integral back to a summation over m for the power equation:
	This relation can also be used to modify the sin term, to remove the q quantity. With these modified summations, the final power distribution equation for one single reflection is:
	Note that the total summation is now over n, which is equal to mq. To add the total contributions to the power distribution over an entire {hkl} family to calculate the ,,P-′.-2θ.(,h-o.), additional summations to add the affected and unaffected compon...
	Combining these two equations into one total power distribution function, dependent on a single {hkl} family yields:
	The two cos terms can be approximated to be equal to one single cos term, producing a term that has an average coefficient (broadening) and displacement (shift). The displacement term (ε) can also be approximated to be equal for both the sin and cos t...
	Equation C.18 represents the final power distribution function, from which stacking and twin fault probabilities may be derived. Broadening of the total {hkl} reflection is dependent on the sin term, which is proportional to the β (twin fault probabil...
	Inserting the displacement term (Equation C.21) we obtain a general form for the peak shift as a function of stacking fault probability
	Following Figure C.1, the reciprocal space terms can be related to the real space lattice dimensions and indices. The ,sin-ϕ. term can be directly related to the interplanar spacing, d, of the material with ,sin-ϕ.= ,B-3.,L-o.d. This modified equation...
	With the ,𝐵-3-2. term (reciprocal space vector) being equivalent to Equation C.25, with a being the cubic cell lattice parameter. By also replacing λ with 2dsinθ (Bragg law) we obtain Equation C.26.
	The a2 term can be replaced with ,d-2.,h-o-2. where ,h-o-2.=,,h-2.+,k-2.+,l-2.. (in cubic unit cell). Now Equation C.26 reduces to:
	Finally, multiplying by 180/π to convert from radians to degrees gives the final peak shift equation as a function of stacking fault probability.
	∆2θ=,,90,3.α,tan-θ.-,π-2.,h-o-2.(u+a)..,a-,±..,L-o. (C.28)
	Equation C.28 can be applied to any {hkl} family to determine the peak shift from stacking faults. For each family of planes, the constant must be calculated:
	Where the ,L-o. value must be calculated for each individual affected peak following the criterion, ,L-o.=3b±1. The ,tan-,θ-hkl-o.. refers to the standard, non-broadened peak position as it is derived from the original, unaffected lattice. For the {11...
	Table C.1: Calculated ,L-o. and ± values from the criterion for determining if a peak will be affected or unaffected by faulting. An affected peak will follow the criterion ,L-o.=3b±1, where unaffected peaks follow ,L-o.=3b. The ,L-o. term is calculat...
	The change in the difference between two peaks may also be used, through a combination of two separate single peak shifts. For the (200-111) shift, the change in peak difference between these two peaks can be calculated with Equation C.32.
	Appendix D : Twin Fault Probability

	As seen in equation C.20, the sin term coefficient ,B-n. is directly dependent on β, thus the peak broadening from the sin term is directly related to this probability. It was shown by Cohen and Wagner that the associated center of gravity (centroid) ...
	The centroid shift from the peak maxima can be calculated using the following relation:
	Where the ,𝑃-2𝜃-′. is the power distribution function from Equation C.18, and ,h-3. is equal to the ,,h-3.−,l-′.−δ. term in Equation C.18. If we assume that no other faulting is present, this calculation simplifies to:
	Now if we substitute Equation C.20 for Bn and evaluate the sum over infinite n values we obtain Equation D.3, assuming infinitely large crystallites ((s-so)<<λ).
	Following the same convention that was used in the stacking fault peak shift derivation to convert the centroid shift to real space, we obtain the final centroid shift equation for any {hkl} family. The a term is the number of affected reflections and...
	For the direct calculation, Equation D.4 may be solved out to simplify for single reflections.
	Combining these two equations to analyze two peak centroid shifts in a single calculation yields the equation for the twin-fault probability:
	Appendix E : Error Propagation

	Standard errors calculated from replicate measurements from the (111) peak position for each type of sample were propagated through for each method of stacking and twin fault calculation. For single peak stacking fault calculation, the error was calcu...
	with the partials listed below. The summation term is considered a constant for each unique HKL.
	For the double peak analysis, in addition to the single peak errors the error in double peak change is also included and the total error was calculated following:
	with the partials listed below. The summation term that was present in the single peak analysis was calculated and is included in the partials directly.
	The twin fault probability error was calculated utilizing the errors included both singular peak maxima positions and singular peak centroid shifts from the maxima following the same procedure as the stacking fault probabilities. The double peak (200-...
	With the partials being listed in equations A.9 through A.12 below:
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