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Abstract

The purpose of this dissertation is to introduce a new approach to the study of one

of the most basic and seemingly intractable problems in partition theory, namely

the conjecture that the partition function p(n) is equidistributed modulo 2. We

provide a doubly-indexed, infinite family of conjectural identities in the ring of series

Z2[[q]], which relate p(n) with suitable t-multipartition functions, and show how to,

in principle, prove each such identity. We will exhibit explicit proofs for 32 of our

identities. However, the conjecture remains open in full generality.

A striking consequence of these conjectural identities is that, under suitable exis-

tence conditions, for any t coprime to 3, if the t-multipartition function is odd with

positive density, then p(n) is also odd with positive density. Additionally if any

t-multipartition function is odd with positive density, then either p(n) or the 3-

multipartition function (or both) are odd with positive density. All of these facts

appear virtually impossible to show unconditionally today.

Our arguments employ a combination of algebraic and analytic methods, including

certain technical tools recently developed by Radu in his study of the parity of the

Fourier coefficients of modular forms.
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Chapter 1

Introduction

Let λ be an unordered list of positive integers. We say that λ is a partition of a

positive integer n if the elements of λ (called parts) sum to n (e.g., λ = (3, 2, 1) is a

partition of 6). Below are all the partitions of 5:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

Partitions have been of interest in mathematical research dating back to 1674, when

Gottfried Leibniz wrote to Johann Bernoulli regarding the “divulsions” of integers

[37]. The first formal work on partitions was by Leonhard Euler in 1775, in response

to a letter from Philip Naudé [21]. During his presentation to the St. Petersburg
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Academy, Euler proved what is now called the Pentagonal Number Theorem (Equa-

tion (1.1) below). In order to describe this result, we define the partition function,

denoted by p(n), which indicates the total number of partitions of n (for example,

per above, p(5) = 7). By convention, we say the only partition of 0 is the empty

partition; in particular, p(0) = 1.

Given a sequence {a0, a1, a2, . . . }, we call the series

∞∑
n=0

anq
n

the generating function of the sequence. In particular,

∞∑
n=0

p(n)qn

is the generating function of the partition numbers, commonly referred to as the

partition series. This will allow us to use the powerful machinery of abstract algebra,

specifically the theory of rings. We refer the reader to [23, 36] for a rigorous definition

of a ring and other standard facts of abstract algebra. Throughout this work, all rings

are assumed to be commutative with unity.

In general, if the terms of the sequence {a0, a1, a2, . . . } are elements of some ring R,

the generating function is an element of its ring of series, R[[q]]. This is defined as the

ring of all series with variable q and coefficients in R, where addition is degree-wise
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and multiplication is the convolution (or Cauchy product). Specifically, given two

series in R[[q]], f(q) =
∑∞

n=0 anq
n and g(q) =

∑∞
n=0 bnq

n, the product of f and g is

(f · g)(q) =
∑∞

n=0 cnq
n, where cn =

∑n
i=0 aibn−i for all n.

In ring theory, we say that an element is invertible if it has a multiplicative inverse in

the ring. A well-known fact in abstract algebra that will prove useful is stated below

without proof.

Proposition 1.0.1. Let R be a ring and let f(x) =
∑∞

i=0 aiq
i be a series in R[[q]].

Then f(x) is invertible in R[[q]] if and only if a0 is invertible in R.

The assumption that p(0) = 1, in conjunction with the above proposition, gives

us that the partition series is invertible in R[[q]], for any ring R. For convenience,

specifically when using modular forms, we will often pick R = Z. However, a majority

of this work focuses on the ring of series Zp[[q]] (especially for p = 2), where p is a

prime number and Zp = {0, 1, 2, . . . , p− 1} is a field with the operations of modular

addition and multiplication.

By Proposition 1.0.1, (1− qj) is invertible in R[[q]] for any ring R, and its inverse is

commonly denoted by

(1− qj)−1 =
1

1− qj
.

Additionally, by definition, a ring is closed under its operations. This, combined with

the fact that in Z[[q]], (1 − qj)−1 = 1 + qj + q2j + q3j + · · · , easily implies that the
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generating function of p(n), as an element of Z[[q]], can be written as the following

infinite product (see, for example, [4]):

∞∑
n=0

p(n)qn = (1 + q1 + q1+1 + q1+1+1 + · · · )(1 + q1 + q2+2 + q2+2+2 + · · · ) · · ·

=
∞∏
j=1

(1 + qj + q2j + q3j + · · · )

=
∞∏
j=1

1

1− qj
.

Note that this coincides with a result that can be proven using analysis (under suitable

assumptions of convergence), where the partition series becomes the Taylor Series

centered at 0 of
∏∞

j=1(1− qj)−1, for |q| < 1. It is important to remark that studying

the convergence of our series is not necessary when we view them as elements of

R[[q]]. However, as we evoke the theory of modular forms and complex analysis, we

may need to ensure that our series converge. In those cases, we will consider values

of q = e2πiτ , where τ ∈ C, such that convergence is guaranteed.

Euler’s Pentagonal Number Theorem [21] shows that the inverse of the partition series

in Z[[q]] has a special form, specifically:

∞∏
j=1

(1− qj) =
∞∑

n=−∞

(−1)nqn(3n−1)/2, (1.1)

where the n(3n − 1)/2 are called the generalized pentagonal numbers. We note that
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the right side of (1.1) is in Z[[q]], since n(3n + 1)/2 is a non-negative integer for all

n ∈ Z.

Since Euler’s seminal result, many prominent mathematicians have contributed to the

development of partition theory, including (but certainly not limited to) Andrews,

Dyson, Hardy, Rademacher, Ramanujan, Selberg, Stanley, and Sylvester. This con-

tinued interest in partitions exists, in part, since the theory lies at the intersection

of several major fields of mathematics. Euler proved a majority of his initial results

by employing algebraic and combinatorial arguments, while a large portion of recent

progress has taken place via the analytic machinery of modular forms, algebra, and

most recently also analytic number theory.

A very natural generalization of a partition is to allow the parts of the partition to be

assigned one of t colors. We call these the t-multipartitions (or t-colored partitions)

of n. For example, the 2-multipartitions of 3 are as follows:

(3), (3̄), (2, 1), (2, 1̄), (2̄, 1), (2̄, 1̄), (1, 1, 1), (1, 1, 1̄), (1, 1̄, 1̄), (1̄, 1̄, 1̄),

where ā and a have different colors. We denote the number of t-multipartitions of n by

pt(n) (for the above example, p2(3) = 10); specifically, p1(n) = p(n). With reasoning

similar for that of the partition series, it follows that the generating function for pt(n)
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is given by:
∞∑
n=0

pt(n)qn =
1∏∞

i=1(1− qi)t
. (1.2)

The goal of this dissertation is to provide additional insight into the long-standing

question of estimating the number of odd values of the partition function, p(n). We do

this by relating it to the number of odd values of the t-multipartition function, pt(n),

for many values of t. Specifically, we conjecture a new framework through which to

view the partition series and how it connects, in Z2[[q]], to the generating function

for the t-multipartitions for t > 3 (Equation (1.2)). This work is based on results in

[33] and [34], written by the author, William Keith, and Fabrizio Zanello. The former

paper has been accepted for publication in Annals of Combinatorics while the latter

is published in the Journal of Number Theory, which serves to further emphasize the

diversity of the subject.

The current available methods to analyze
∑∞

n=0 p(n)qn in Z2[[q]] are minimal. This

is due, in large part, to the fact that modular forms prove most effective when view-

ing the partition series in Zp[[q]] for primes p > 3, and the traditional techniques

essentially cease to work for p ≤ 3. In fact, significant progress has been achieved

regarding partition identities in Zp for p > 3 (see, among others, [3, 41, 47, 53, 56]).
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The most famous of these are the so-called Ramanujan’s identities, namely,

p(5k + 4) = 0 in Z5;

p(7k + 5) = 0 in Z7;

p(11k + 6) = 0 in Z11,

for all (non-negative) integers k. Other researchers [5, 6, 9, 13, 20, 24, 55] have

provided additional, non-nested arithmetic sequences where the partition function is

equal to 0 in Zp for p = 5, 7, 11, and powers of these primes. Analogous results were

shown for small powers of certain other primes [7, 10]. In this context, non-nested

means that {A′n + B′, n ∈ Z+} is not contained in {An + B, n ∈ Z+}; for example,

{25n+ 24, n ∈ Z+} is a nested subset of {5n+ 4, n ∈ Z+}, while {7n+ 5, n ∈ Z+} is

not. These results for p = 5, 7, 11 followed, in part, from identities (in Z[[q]]) for the

partition function.

Two such identities, the first of which Hardy described as “Ramanujan’s most beau-

tiful” [56], are:
∞∑
n=0

p(5n+ 4)qn = 5
∞∏
i=1

(1− q5i)5

(1− qi)6
; (1.3)

∞∑
n=0

p(7n+ 5)qn = 7
∞∏
i=1

(1− q7i)3

(1− qi)4
+ 49q

∞∏
i=1

(1− q7i)7

(1− qi)8
. (1.4)

Some of the most comprehensive results available today on partition identities modulo
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p are due to Ahlgren and Ono, who proved, using modular forms, that if m is any in-

teger coprime to 6, there are infinitely many, non-nested sequences {An+B, n ∈ Z+}

such that p(An+ B) = 0 in Zm [2, 3, 47]. Mahlburg [41] later explained combinato-

rially all such identities by means of a celebrated partition statistic called crank.

Many papers have been published on p(n) over Z2 (see for example [1, 29, 46, 51]),

but research in this direction has been comparably less successful. A natural and

important question to ask is:

Question 1.0.2. Given x > 0, for how many values of n ≤ x is p(n) odd?

In order to study this seemingly simple question, we consider the probability that

p(n) is odd for an n ≤ x, and then let x → ∞. We call this the density, δ1, of the

odd values of p(n). Thus, if the limit exists,

δ1 = lim
x→∞

#{n ≤ x : p(n) is odd}
x

.

Generalizing this to t-multipartitions, we define

δt = lim
x→∞

#{n ≤ x : pt(n) is odd}
x

,

again under the assumption that the limit exists. We note that, for parity reasons, it

is sufficient to restrict our attention to the case of t odd. To justify this, let t = 2ks
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be a positive integer, with s odd, and consider the following in Z2[[q]]:

∞∑
n=0

pt(n)qn =
∞∑
n=0

p2ks(n)qn =
1∏∞

i=1(1− qi)2
ks

=
1∏∞

i=1(1− q2
ki)s

=
∞∑
n=0

ps(n)q2
kn.

Therefore, δt = δs/2
k. It is a conjecture of Parkin and Shanks [51] (which is widely

believed by experts in the field) that δ1 = 1/2. In fact, the parity of p(n) appears

to be equidistributed, with no known infinite sequences of odd or even values. Even

more, there is significant computational evidence to suggest that for any positive,

integer-valued polynomial h(n), the odd values of p(h(n)) also have density 1/2 [1,

15, 16, 50, 63].

However, the current state of the art is still far away from showing that δt > 0 (much

less, δt = 1/2), for any given value of t. Indeed, we have still not shown that δt exists

for any t. As mathematician Paul Monsky once pointedly stated, “the best minds of

our generation haven’t gotten anywhere with understanding the parity of p(n)” [42].

Due to a large amount of computational evidence, we generalize the Parkin-Shanks

conjecture to every t ≥ 1. Namely, we have:

Conjecture 1.0.3 ([33], Conjecture 1). The density δt exists and is equal to 1
2

for

any positive odd integer t. Equivalently, if t = 2kt0 with t0 ≥ 1 odd, then δt exists and

equals 1/2k+1.

9



Currently, the best result on the odd values of the partition function, which has

improved on the work of multiple authors [1, 12, 22, 45, 49], is due to Belläıche,

Green, and Soundararajan [11] and states that the number of odd values of p(n) for

n ≤ x is �
√
x

log log x
, where we say f � g if f/g ≥ c for x → ∞ (with c a positive

constant). In fact, their bound holds for any t-multipartition function, pt(n), which

improves on the work of Zanello [68]. In particular, it is quite significant that it is

not even known that the number of odd values is �
√
x, for any t.

Conversely, we note that the current record lower bound on the number of even values

of p(n) is �
√
x log log x (see [12]). Unlike for the odd values, it is trivial to show

that the number of even values of p(n) is �
√
x. We will give a proof of this below.

However, the lower bound of
√
x log log x is highly nontrivial and was obtained by

means of modular forms.

Proposition 1.0.4. #{0 ≤ n ≤ x : p(n) is even} �
√
x.

Proof: Consider the following identity in Z2[[q]]:

[
1

1− q
+

1∏∞
i=1(1− qi)

] ∞∏
i=1

(1− qi) = 1 +

∑∞
n=−∞ q

n(3n−1)
2

1− q
. (1.5)

It is straightforward to see that the nonzero coefficients on the right side of (1.5) have

density 2/3; in particular, there are � x of them in degrees n ≤ x. This, combined

with the observation that
∏∞

i=1(1 − qi) has �
√
x nonzero coefficients in degrees
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n ≤ x (in fact, Equation (1.1) implies that, asymptotically, there are roughly
√

8
3
x

such coefficients), leads to the conclusion that

1

1− q
+

1∏∞
i=1(1− qi)

(1.6)

must have � x/
√
x =

√
x nonzero coefficients in degrees n ≤ x. From here, it

is sufficient to note that the nonzero coefficients of (1.6) are precisely the even

coefficients of the partition series. �

This dissertation provides a novel way to study the parity of p(n), by relating its

generating function in Z2[[q]] to that of the t-multipartitions in a nontrivial way. As

one anonymous reviewer of [34] said, this work is “very nice and [introduces] non-

standard ideas which might very well shed some light on [the Parkin and Shanks]

conjecture about the density of the odd values of the partition function.” Our work

shows that δ1 > 0 (assuming it exists) if there is any δt > 0 with a coprime to 3; and

that δ1 + δ3 > 0 (always assuming existence) if there exists any δt > 0.

We will prove the above delta implications as a consequence of a doubly-indexed,

infinite family of conjectural identities for pt(An + B) (for certain A, B, and t) in

Z2[[q]], which appear to be entirely new. We will then show how the modular form

machinery, in particular that introduced by Radu [54], can, in principle, be used

11



to prove any given case of our conjecture. After stating thirty-two specific cases of

our conjecture (see Theorems 2.0.3, 2.0.6, 2.0.7, 2.0.8, 2.0.9, 2.0.10, and 4.2.1), we

will provide an explicit proof of twenty-two of them via modular forms. Finally, we

will exhibit completely algebraic proofs for the final ten identities. It remains an

interesting open problem to find algebraic or combinatorial arguments for most of

our other conjectural identities.
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Chapter 2

Formulation of Results

In this chapter, we conjecturally relate the positivity of δt to that of δ1 + δ3 for all

t, and more specifically, the positivity of δt to that of δ1 for any t coprime to 3. We

explicitly prove this relationship for several t, as stated below. As we demonstrated

in Chapter 1, it is sufficient to consider the case of t odd.

Theorem 2.0.1. Let all of the following δi exist. Then δt > 0 implies δ1 > 0 for

t = 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49.

Theorem 2.0.2. Let all of the following δi exist. Then δt > 0 implies δ3 > 0 for

t = 9, 15, 21, 27, 33, 39, 45.

13



To prove these delta implications, we first provide several identities in Z2[[q]], which

will be proved in full in Chapter 3. Recall that
∑

n a(n)qn =
∑

n b(n)qn in Zp[[q]] if

a(n) = b(n) in Zp for all n. Unless specified otherwise, all identities from here on will

be in Z2[[q]]. For sake of ease throughout this document, we will use the common

notation

fk = fk(q) =
∞∏
i=1

(1− qki).

Theorem 2.0.3. The following sixteen identities hold in Z2[[p]]:

q
∞∑
n=0

p(5n+ 4)qn =
1

(f1)5
+

1

f5
, (2.1)

q
∞∑
n=0

p(7n+ 5)qn =
1

(f1)7
+

1

f7
, (2.2)

q
∞∑
n=0

p(11n+ 6)qn =
1

(f1)11
+

1

f11
, (2.3)

q
∞∑
n=0

p(13n+ 6)qn =
1

(f1)13
+

1

f13
, (2.4)

q
∞∑
n=0

p(17n+ 5)qn =
1

(f1)17
+

1

f17
, (2.5)

q
∞∑
n=0

p(19n+ 4)qn =
1

(f1)19
+

1

f19
, (2.6)

q
∞∑
n=0

p(23n+ 1)qn =
1

(f1)23
+

1

f23
, (2.7)

q2
∞∑
n=0

p(25n+ 24)qn =
1

(f1)25
+

q

f1
+

1

(f5)5
, (2.8)
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q2
∞∑
n=0

p(29n+ 23)qn =
1

(f1)29
+

q

(f1)5
+

1

f29
, (2.9)

q2
∞∑
n=0

p(31n+ 22)qn =
1

(f1)31
+

q

(f1)7
+

1

f31
, (2.10)

q2
∞∑
n=0

p(35n+ 19)qn =
1

(f1)35
+

q

(f1)11
+

1

f35
+

1

(f7)5
+

1

(f5)7
, (2.11)

q2
∞∑
n=0

p(37n+ 17)qn =
1

(f1)37
+

q

(f1)13
+

1

f37
, (2.12)

q2
∞∑
n=0

p(41n+ 12)qn =
1

(f1)41
+

q

(f1)17
+

1

f41
, (2.13)

q2
∞∑
n=0

p(43n+ 9)qn =
1

(f1)43
+

q

(f1)19
+

1

f43
, (2.14)

q2
∞∑
n=0

p(47n+ 2)qn =
1

(f1)47
+

q

(f1)23
+

1

f47
, (2.15)

q3
∞∑
n=0

p(49n+ 47)qn =
1

(f1)49
+

q

(f1)25
+
q2

f1
+

1

(f7)7
. (2.16)

We now frame the above identities in a much broader context. From this general-

ization, we conjecturally provide an infinite class of delta implications (under the

assumption all relevant δi exist) analogous to those given in Theorem 2.0.1: specif-

ically, Corollary to Conjecture 2.0.4 below. As usual, we denote by bac (resp. dae)

the nearest integer to a that is less (resp. greater) than or equal to a.

Conjecture 2.0.4 ([34], Conjecture 2.3). Fix any positive integer a coprime to 6.

Let b = 24−1 in Za (or in the trivial case a = 1, let b = 0) and k =
⌈
a2−1
24a

⌉
. Then, in

Z2[[q]],

qk
∞∑
n=0

p(an+ b)qn =
∑
d|a

bk/dc∑
j=0

ε1a,d,j q
dj∏

i≥1(1− qdi)
a
d
−24j , (2.17)
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for a suitable choice of the ε1a,d,j ∈ {0, 1}, where

ε1a,d,j =


1, if d = 1, j = 0;

0, if a
d
− 24j < 0.

Corollary to Conjecture 2.0.4. Fix any positive integer a not divisible by 3, and

suppose all necessary δi exist. If δa > 0, then δ1 > 0.

Something of note is what we mean by “necessary δi” in the above corollary. Given

any a coprime to 6, it is certainly sufficient to assume that for all 1 ≤ i ≤ a where

i is coprime to 6, δi exists, simply because those values of i correspond to the only

multipartition functions that may appear on the right side of the equation. However,

in general, a small quantity of such δi is actually needed in order to obtain a given

delta implication (since ε1a,d,j = 0 for many values of a, d, j), though determining

explicitly which seems extremely hard. This will be discussed further in Chapter 4.

We now give a proof of Corollary to Conjecture 2.0.4. This result, combined with

Theorem 2.0.3 (to be proven in Chapter 3), shows Theorem 2.0.1. Theorem 2.0.2 can

be proven in a similar fashion, as an easy application of Corollary to Conjecture 2.0.5

and Theorem 2.0.6.

Proof: We proceed by induction on a. The base case a = 1 is clear. We additionally
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provide a proof of the case a = 5, as this will give insight into the logic we will use

for the remainder of the argument. We use the corresponding Identity (2.1) from

Theorem 2.0.3 (to be proved later), namely,

q

∞∑
n=0

p(5n+ 4)qn =
1∏

i≥1(1− qi)5
+

1∏
i≥1(1− q5i)

.

Suppose that δ5 > 0 and δ1 = 0. Therefore, #{n ≤ x : p5(n) is odd} = δ5x + o(x),

while the number of odd coefficients up to x of 1/
∏

i≥1(1 − q5i) =
∑∞

n=0 p(n)q5n

is o(x). Hence, the number of odd coefficients up to x of
∑∞

n=0 p(5n + 4)qn is also

δ5x+ o(x), which yields δ1 ≥ δ5/5 > 0, a contradiction. This shows the case a = 5.

Now suppose the result holds for all cases up to and including an arbitrary a− 4 ≥ 5,

and assume δ1 = 0. We note that the next case is either a− 2 or a. We assume it is

a and, consequently, that δa > 0; the proof for the case a − 2 is entirely similar. By

Conjecture 2.0.4, there exists some identity of the form

qk
∞∑
n=0

p(an+ b)qn =
∑
d|a

bk/dc∑
j=0

ε1a,d,j q
dj∏

i≥1(1− qdi)
a
d
−24j ,

where ε1a,1,0 = 1. By assumption, the number of odd coefficients of qk
∑∞

n=0 p(an+b)qn

up to x must be o(x), and the number of odd coefficients of 1/
∏

i≥1(1 − qi)a is

δax + o(x). Therefore, at least one additional term in the finite double sum on

the right side must give positive density. It is sufficient from here to note that an
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additional term giving positive density must be of the form

qd0j0∏
i≥1(1− qd0i)

a
d0
−24j0

,

for suitable d0 and j0 with (d0, j0) 6= (1, 0), and that a/d0− 24j0 is always coprime to

6. By the inductive assumption, since δa/d0−24j0 > 0, then δ1 > 0. This contradiction

gives the result. �

Conjecture 2.0.4 is a special case (t = 1) of Conjecture 2.0.5, which posits that for

any odd integers a and t where 3|t if 3|a, an identity similar to (though usually more

complicated than) Identity (2.1) exists. In this context, “more complicated” means

that computational evidence suggests that as t and a increase, so does the number of

terms in the finite double sum.

Conjecture 2.0.5 ([34], Conjecture 2.4). Fix any positive odd integers a and t, where

3|t if 3|a. Let k =
⌈ t(a2−1)

24a

⌉
. Then, in Z2[[q]],

qk
∞∑
n=0

pt(an+ b)qn =
∑
d|a

bk/dc∑
j=0

εta,d,j q
dj∏

i≥1(1− qdi)
at
d
−24j

, (2.18)

where

b =



0, if a = 1;

t
3
· 8−1 in Za, if 3|t;

t · 24−1 in Za, otherwise,
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for a suitable choice of the εta,d,j ∈ {0, 1}, where

εta,d,j =


1, if d = 1, j = 0;

0, if a
d
− 24j < 0.

Corollary to Conjecture 2.0.5. Fix any positive integer A and suppose all neces-

sary δi exist. If δA > 0, then δ1 + δ3 > 0.

The proof for Corollary to Conjecture 2.0.5 is similar to that of Corollary to Conjec-

ture 2.0.4, and therefore is omitted in the fullest detail. However, in short, if A is

even, divide out all the factors of 2, and then proceed from the remaining odd part.

Given that all relevant δi exist, we will assume that δA is positive for A = at (with

a and t as in Conjecture 2.0.5) and δt = 0. This implies that one additional term

in the finite double sum must also give positive density, which inductively yields the

positivity of either δ1 or δ3.

We will now list several specific cases of Conjecture 2.0.5, namely for t = 3, 5, 7, 9, 15.

Theorem 2.0.6 gives the delta implications in Theorem 2.0.2. The subsequent four

theorems do not give any new delta implications, but provide additional insight into

the intrinsic beauty and patterns that appear to be at the heart of Conjecture 2.0.5.
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Theorem 2.0.6. The following seven identities hold in Z2[[q]]:

q
∞∑
n=0

p3(3n+ 2)qn =
1

(f1)9
+

1

(f3)3
, (2.19)

q
∞∑
n=0

p3(5n+ 2)qn =
1

(f1)15
+

1

(f5)3
, (2.20)

q
∞∑
n=0

p3(7n+ 1)qn =
1

(f1)21
+

1

(f7)3
, (2.21)

q2
∞∑
n=0

p3(9n+ 8)qn =
1

(f1)27
+

q

(f1)3
+

1

(f3)9
, (2.22)

q2
∞∑
n=0

p3(11n+ 7)qn =
1

(f1)33
+

q

(f1)9
+

1

(f11)3
, (2.23)

q2
∞∑
n=0

p3(13n+ 5)qn =
1

(f1)39
+

q

(f1)15
+

1

(f13)3
, (2.24)

q2
∞∑
n=0

p3(15n+ 2)qn =
1

(f1)45
+

q

(f1)21
+

1

(f15)3
+

1

(f5)9
+

1

(f3)15
. (2.25)

Theorem 2.0.7. The following two identities hold in Z2[[q]]:

q
∞∑
n=0

p5(5n)qn =
1

(f1)25
+

1

(f5)5
, (2.26)

q2
∞∑
n=0

p5(7n+ 4)qn =
1

(f1)35
+

q

(f1)11
+

1

(f7)5
. (2.27)
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Theorem 2.0.8. The following two identities hold in Z2[[q]]:

q2
∞∑
n=0

p7(5n+ 3)qn =
1

(f1)35
+

q

(f1)11
+

1

(f5)7
, (2.28)

q2
∞∑
n=0

p7(7n)qn =
1

(f1)49
+

q

(f1)25
+

1

(f7)7
. (2.29)

Theorem 2.0.9. The following two identities hold in Z2[[q]]:

q
∞∑
n=0

p9(3n)qn =
1

(f1)27
+

1

(f3)9
, (2.30)

q2
∞∑
n=0

p9(5n+ 1)qn =
1

(f1)45
+

q

(f1)21
+

1

(f5)9
. (2.31)

Theorem 2.0.10. The following identity holds in Z2[[q]]:

q
∞∑
n=0

p15(3n+ 1)qn =
1

(f1)45
+

q

(f1)25
+

1

(f3)15
. (2.32)
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Chapter 3

Proofs of Results

3.1 Modular Form Proofs

3.1.1 Preliminaries

We now present the necessary facts and notation coming from modular forms, along

with the main theorem of Radu [54]; for basic facts, proofs, and further details, we

refer the reader to [35, 48]. The notation used below mainly follows that of Radu

[54].

Fix N ≥ 1 and let Zd(N) denote the set of integer tuples with entries rδ indexed by
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the positive divisors δ of N . For a given r = (rδ) ∈ Zd(N), define

ω(r) =
∑
δ|N

rδ ; σ∞(r) =
∑
δ|N

δrδ ; σ0(r) =
∑
δ|N

N

δ
rδ ; Π(r) =

∏
δ|N

δ|rδ|.

Additionally, let
∑

n≥0 αr(n)qn =
∏

δ|N
∏

i≥1(1− qδi)rδ , and define

ga,b(q) = q
24b+σ∞(r)

24a

∞∑
n=0

αr(an+ b)qn.

Now let ∆∗ be the set of tuples (a,N,M, b, (rδ)) ∈ (N+)3 × {0, 1, . . . , a − 1} × Zd(N)

such that the following hold: for all primes p, if p|a then p|M ; if rδ 6= 0, then δ|aM ;

and if κ = gcd(a2 − 1, 24), then

24 | κaM
2

N
σ0(r); 8 | κMω(r);

24a

gcd(κ(24b+ σ∞(r)), 24a)
| M.

We define Γ0(N) in the following way:

Γ0(N) =


v w

x y

 ∈ SL2(Z) : x = 0 in ZN

 .

For a,N ∈ N+, b ∈ {0, 1, . . . , a− 1}, and r ∈ Zd(N), let Pa,r(b) be the set of residues

modulo a that can be written as bω2 + (ω2 − 1)σ∞(r)/24 for some integer ω with

24



gcd(ω, 6) = 1. Further, let

χa,r(b) =
∏

`∈Pa,r(b)

e2πi
(1−a2)(24`+σ∞(r))

24a .

Set f to be a modular form of weight k and some character χ for Γ0(N). We call

the level of f the least value of N for which f is a modular form of weight k for

Γ0(N). An η-quotient is a quotient of powers of the Dedekind η-function, η(τ), and

magnifications thereof, η(Cτ), where

η(τ) = q
1
24

∞∏
i=1

(1− qi), q = e2πiτ .

The following theorem of Gordon, Hughes, and Newman gives sufficient conditions

for any given η-quotient to be a modular form.

Theorem 3.1.1 ([26, 43]). Let N ≥ 1 be an integer and f(τ) =
∏

δ|N η
rδ(δτ), with

r = (rδ) ∈ Zd(N). If

σ∞(r) = σ0(r) = 0 in Z24,

then f is a modular form of weight k = 1
2

∑
rδ, level dividing N , and character

χ(d) =
(

(−1)k·β
d

)
, where β =

∏
δ|N δ

rδ and
( ·
d

)
denotes the Jacobi symbol.

Radu’s main theorem can be phrased as follows:

Theorem 3.1.2 ([54]). Let (a,N,M, b, r = (rδ)) ∈ ∆∗, s = (sδ) ∈ Zd(M), and let ν
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be an integer such that χa,r(b) = e
2πiν
24 (such an integer is guaranteed to exist by [54],

Lemma 43). Define

F (s, r, a, b)(τ) =
∏
δ|M

ηsδ(δτ)
∏

u∈Pa,r(b)

ga,u(q).

Then F is a weakly holomorphic modular form of weight zero and trivial character

for Γ0(M) if and only if the following conditions hold:

|Pa,r(b)| · ω(r) + ω(s) = 0; (3.1)

ν + |Pa,r(b)| · aσ∞(r) + σ∞(s) = 0 in Z24; (3.2)

|Pa,r(b)| ·
aM

N
σ0(r) + σ0(s) = 0 in Z24; (3.3)

Π(s) ·
∏
δ|N

(aδ)|rδ|·|Pa,r(b)| is a perfect square in Z. (3.4)

(We note that in the theorem above, |rδ| refers to absolute value while |Pa,r(b)| refers

to the cardinality of the set.) We now present theorems of Ligozat and Radu that

bound the order of the cusps for an η-quotient and the modular function F (s, r, a, b),

respectively. Our statements differ slightly from those in the original papers.

Theorem 3.1.3 ([35, 39, 48]). Let N be a positive integer. If f(τ) =
∏

δ|N η
rδ(δτ) is

an η-quotient satisfying the conditions of Theorem 3.1.1 for Γ0(N), then f can only

have cusps at rational numbers of the form γ
µ

, where µ|N and gcd(γ, µ) = 1. When
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f has a cusp γ
µ

, its order is the absolute value of

N

24

∑
δ|N

(gcd(µ, δ))2 · rδ
gcd

(
µ, N

µ

)
· µδ

. (3.5)

Theorem 3.1.4 ([54], Theorem 47 and Equations (56-57)). For F (s, r, a, b) and the

corresponding r ∈ Zd(N) and s ∈ Zd(M), as constructed above and satisfying the

conditions of Theorem 3.1.2, the order of F at any cusp is uniformly bounded from

above by the absolute value of

min
n∈N

M

gcd(n2,M)

|Pa,r(b)| min
m|a,

gcd(m,n)=1

1

24

∑
δ|N

rδ
(gcd(δm, an))2

δa
+

1

24

∑
δ|M

sδ
(gcd(δ, n))2

δ

 .

Finally, a classical result of Sturm [62] gives sufficient conditions to equate two holo-

morphic modular forms in Zp[[q]] for some given prime p. We phrase it in the following

way.

Theorem 3.1.5 ([62]). Let p be a prime number, and f(τ) =
∑∞

n=n0
a(n)qn and

g(τ) =
∑∞

n=n1
b(n)qn be holomorphic modular forms of weight k for Γ0(N) of charac-

ters χ1 and χ2, respectively, where n0, n1 ∈ N. If either χ1 = χ2 and

a(n) = b(n) in Zp for all n ≤ kN

12
·

∏
d prime; d|N

(
1 +

1

d2

)
,
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or χ1 6= χ2 and

a(n) = b(n) in Zp for all n ≤ kN2

12
·

∏
d prime; d|N

(
1− 1

d2

)
,

then f(τ) = g(τ) in Zp[[q]] (i.e., a(n) = b(n) in Zp for all n).

3.1.2 Proofs

We now show, as a sample, one special case of Conjecture 2.0.4, namely when a = 31

and t = 1 (see also Theorem 2.0.3, Equation (2.10)). In principle, any given identity

from Conjectures 2.0.4 and 2.0.5 can be shown using the exact same strategy, as we

will explicitly outline in the proof.

We will employ a technique introduced by Radu [54]. Our approach can be summa-

rized as follows: we start with the identity for qk
∑∞

n=0 pt(an+b)qn given by Conjecture

2.0.5. Then we consider the subset of ∆∗ where N = 1 and r = (r1) = (−t), and

determine an integer M ≥ 1 and an s-vector s such that the corresponding function

F satisfies the conditions of Theorem 3.1.2. If in the process, we encounter modular

forms that are weakly holomorphic, we clear the poles by multiplying by another

modular form of sufficiently high order (specifically, some η(4τ)24i always works), ac-

cording to Theorems 3.1.3 and 3.1.4. As a final step, we use Sturm’s bound (Theorem

28



3.1.5) to complete the proof.

Note that as a increases, a much higher power of η(4τ)24 is needed to clear out

the poles, thus making the computational cost necessary to verify Sturm’s bound

significantly greater. Further, there appears to be no infinite family of identities

coming from either Conjecture 2.0.4 or 2.0.5 for which one can apply a uniform

Sturm bound, nor any family with a bounded number of terms. In fact, based on

our computations, the theorems proved in this dissertation appear to include every

identity consisting of three t-multipartition terms on the right side. In light of the

above reasons, we have not yet been able to prove our conjectures in any form beyond

a case-by-case basis.

Theorem 3.1.6. The following identity holds in Z2[[q]]:

q2
∞∑
n=0

p(31n+ 22)qn =
1

f31
+

1

(f1)31
+

q

(f1)7
. (2.10)

Proof: We will provide as broad a proof as possible for arbitrary a and t as in

Conjecture 2.0.5, and only look at the specific case of the statement (a = 31 and

t = 1) in the second part of the argument. We begin by using the function αr,

defined at the beginning of the previous subchapter, and set

∑
n≥0

αr(n)qn =
∑
n≥0

pt(n)qn =
1∏

i≥1(1− qi)t
. (3.6)
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Therefore, N = 1 and r = (r1) = (−t) . Now we consider Pa,r(b). We notice that

σ∞(r) = −t, and so

bω2 +
ω2 − 1

24
σ∞(r) = bω2 +

t(1− ω2)

24
.

Note that 24b = t in Za, and as such, the above becomes (in Za)

bω2 +
24b(1− ω2)

24
= bω2 + b− bω2 = b.

Therefore Pa,r(b) = {b}, for any a, b, and t satisfying the conditions of Conjecture

2.0.5. We now note that

ga,b(q) = q
24b−t
24a

∑
n≥0

pt(an+ b)qn;

χa,r(b) = e
2πi(24b−t)(1−a2)

24a ;

ν =
(1− a2)(24b− t)

a
.

Finally, notice that since |Pa,r(b)| = 1, by Theorem 3.1.2 we have

F (s, r, a, b)(τ) =
∏
δ|M

ηsδ(δτ) q
24b−t
24a

∑
n≥0

pt(an+ b)qn,

for some M and s-vector s = (sδ). Consider now the specific case of the statement,
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where a = 31, t = 1, and b = 22. We have N = 1, and r = (r1) = (−1). Additionally,

we choose M = 2 · 31 = 62. As proved above, P31,r(22) = {22}. Moving to the

conditions of Theorem 3.1.2, standard computations imply that we are looking for an

s-vector s that satisfies

ω(s) = 1;

σ∞(s) = 7 in Z24;

σ0(s) = 2 in Z24;

31 · Π(s) is a perfect square in Z.

It is not hard to check that s = (s1, s2, s31, s62) = (3, 1, 4,−7) satisfies these conditions.

This s-vector results in

F (s, r, 31, 22)(τ) = q
17
24
η(τ)3η(2τ)η(31τ)4

η(62τ)7

∞∑
n=0

p(31n+ 22)qn. (3.7)

This is a modular form of weight zero, by Theorem 3.1.2. Thus, in order to obtain

F (s, r, 31, 22)(q) on the left side of Equation (2.10), we have to multiply this latter

by

q
−31
24
η(τ)3η(2τ)η(31τ)4

η(62τ)7
. (3.8)
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Now consider the right side of (2.10). Expressing it in terms of η-quotients, it becomes:

q
31
24

η(τ)31
+

q
31
24

η(τ)7
+

q
31
24

η(31τ)
. (3.9)

By multiplying Formulas (3.8) and (3.9), we obtain

η(2τ)η(31τ)4

η(τ)28η(62τ)7
+
η(2τ)η(31τ)4

η(τ)4η(62τ)7
+
η(τ)3η(2τ)η(31τ)3

η(62τ)7
. (3.10)

At this point, in order to match the weight of the modular form F , we want to turn

the last displayed formula into a weight-zero modular form as well. Using the fact

that η(2τ) = η(τ)2 in Z2[[q]], we rewrite (3.10) as

η(τ)32η(31τ)4

η(2τ)29η(62τ)7
+

η(τ)8η(31τ)4

η(2τ)5η(62τ)7
+
η(τ)3η(2τ)η(31τ)3

η(62τ)7
. (3.11)

This is a modular form of weight zero, by Theorem 3.1.1 and the fact that the sum

of weight zero modular forms is a weight zero modular form. It will be sufficient to

show that the right side of (3.7) and (3.11) are equal in Z2[[q]]. Before using Sturm’s

Theorem, we must first clear all possible cusps. To do so, we notice that the bound

given in Theorem 3.1.4, uniform on all cusps of F (s, r, 31, 22), is

∣∣∣∣∣∣min
n∈N

62

gcd(n2, 62)

 min
m|31

gcd(m,n)=1

1

24

∑
δ|1

rδ
(gcd(δm, 31n))2

31δ
+

1

24

∑
δ|62

sδ
(gcd(δ, n))2

δ

∣∣∣∣∣∣
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=
567

8
= 70.875.

Theorem 3.1.3 allows us to make a similar calculations to clear the possible cusps of

(3.11), resulting in a bound on the order of 34. Thus a power of η(4τ) sufficient to

simultaneously clear cusps of (3.7) and (3.11) is 24 · 14 = 336. Hence the identity to

be checked in Z2[[q]] is

q
17
24η(4τ)336

η(τ)3η(2τ)η(31τ)4

η(62τ)7

∞∑
n=0

p(31n+ 22)qn
?
=

η(4τ)336
[
η(τ)32η(31τ)4

η(2τ)29η(62τ)7
+

η(τ)8η(31τ)4

η(2τ)5η(62τ)7
+
η(τ)3η(2τ)η(31τ)3

η(62τ)7

]
,

where both sides are holomorphic modular forms of weight k = 0 + 336
2

= 168. A

straightforward application of Theorem 3.1.5 gives a Sturm bound of at most 416, 640.

A Mathematica calculation verifies that this identity holds in Z2[[q]] up to that point,

completing the proof. �

We now provide a table of sufficient M and s-vectors needed to prove the Conjecture

for nineteen cases, stated in Theorems 2.0.3,2.0.6, 2.0.7, 2.0.8, 2.0.9, and 2.0.10.
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Table 3.1
This table provides a M and s-vector sufficient to prove the listed equation

number of its corresponding theorem.

Theorem and Equation M and s-vector
Theorem 2.0.3, Equation 2.3 M = 22, s = (10, 2, 11,−22)
Theorem 2.0.3, Equation 2.5 M = 34, s = (16, 2, 17,−34)
Theorem 2.0.3, Equation 2.6 M = 38, s = (18, 2, 19,−38)
Theorem 2.0.3, Equation 2.7 M = 46, s = (22, 2, 23,−46)
Theorem 2.0.3, Equation 2.9 M = 48, s = (6, 4, 3,−12)
Theorem 2.0.3, Equation 2.11 M = 70, s = (2, 2, 2, 8, 8, 1, 5,−27)
Theorem 2.0.3, Equation 2.12 M = 74, s = (7, 1, 6,−13)
Theorem 2.0.3, Equation 2.13 M = 82, s = (4, 2, 5,−10)
Theorem 2.0.3, Equation 2.14 M = 86, s = (8, 4, 17,−28)
Theorem 2.0.3, Equation 2.15 M = 94, s = (8, 4, 9,−20)
Theorem 2.0.6, Equation 2.21 M = 14, s = (8, 4, 19,−28)
Theorem 2.0.6, Equation 2.23 M = 22, s = (8, 4, 11,−20)
Theorem 2.0.6, Equation 2.24 M = 26, s = (4, 4, 23,−28)
Theorem 2.0.6, Equation 2.25 M = 30, s = (2, 2, 2, 4, 8, 4, 7,−26)
Theorem 2.0.7, Equation 2.27 M = 14, s = (4, 4, 1,−4)
Theorem 2.0.8, Equation 2.28 M = 10, s = (8, 4, 15,−20)
Theorem 2.0.8, Equation 2.29 M = 74, s = (4, 4, 3,−4)
Theorem 2.0.9, Equation 2.30 M = 6, s = (8, 8, 1,−8)
Theorem 2.0.9, Equation 2.31 M = 10, s = (4, 4, 5,−4)
Theorem 2.0.10, Equation 2.32 M = 6, s = (8, 8, 7,−8)
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3.2 Algebraic Proofs

We will now prove ten of the identities from Theorems 2.0.3, 2.0.6, 2.0.7, and 2.0.9

algebraically. As a reminder, all equalities are in the ring of series Z2[[q]].

Theorem 2.0.3.

q
∞∑
n=0

p(5n+ 4)qn =
1

(f1)5
+

1

f5
, (2.1)

q
∞∑
n=0

p(7n+ 5)qn =
1

(f1)7
+

1

f7
, (2.2)

q
∞∑
n=0

p(13n+ 6)qn =
1

(f1)13
+

1

f13
, (2.4)

q2
∞∑
n=0

p(25n+ 24)qn =
1

(f1)25
+

q

f1
+

1

(f5)5
, (2.8)

q3
∞∑
n=0

p(49n+ 47)qn =
1

(f1)49
+

q

(f1)25
+
q2

f1
+

1

(f7)7
, (2.16)

q
∞∑
n=0

p3(3n+ 2)qn =
1

(f1)9
+

1

(f3)3
, (2.19)

q
∞∑
n=0

p3(5n+ 2)qn =
1

(f1)15
+

1

(f5)3
, (2.20)

q2
∞∑
n=0

p3(9n+ 8)qn =
1

(f1)27
+

q

(f1)3
+

1

(f3)9
, (2.22)

q
∞∑
n=0

p5(5n)qn =
1

(f1)25
+

1

(f5)5
, (2.26)

q

∞∑
n=0

p9(3n)qn =
1

(f1)27
+

1

(f3)9
. (2.30)
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Proof: Identity (2.1):

q
∞∑
n=0

p(5n+ 4)qn =
1

(f1)5
+

1

f5
.

We will use Ramanujan’s identity (Equation (1.3)), which in Z2[[q]], reduces to:

∞∑
n=0

p(5n+ 4)qn =
(f5)

5

(f1)6
.

Using an identity of Blecksmith-Brillhart-Gerst (see [14], p. 301; cf. also Hirschhorn’s

Equation (13) in [29]), we see that

f1∏∞
i=1(1− q10i−5)

= f1f5 =
∞∑
n=1

qn
2−n +

∞∑
n=1

q5n
2−5n+1. (3.12)

A famous result (see [32], page 90) on the inverse of the 3-multipartition function

states:

(f1)
3 =

∞∑
n=0

qn(n+1)/2,
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Therefore, since we are working in Z2[[q]],

∞∑
n=1

qn
2−n +

∞∑
n=1

q5n
2−5n+1 =

∞∑
n=0

(
qn(n+1)/2

)2
+ q

∞∑
n=0

(
q5n(n+1)/2

)2

=

(
∞∑
n=0

qn(n+1)/2

)2

+

(
q

∞∑
n=0

q5n(n+1)/2

)2

= (f1)
6 + q(f5)

6

Thus, we have transformed Equation (3.12) into

f1f5 = (f1)
6 + q(f5)

6. (3.13)

Dividing across (3.13) by (f1)
6f5, we obtain

1

(f1)5
=

1

f5
+ q

(f5)
5

(f1)6
. (3.14)

Finally, substituting Equation (3.14) into (1.3) gives

q

∞∑
n=0

p(5n+ 4)qn = q
(f5)

5

(f1)6
=

1

(f1)5
+

1

f5
,

which is (2.1).
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Identity (2.2):

q
∞∑
n=0

p(7n+ 5)qn =
1

f 7
1

+
1

f7
.

We will start with Identity (1.4) in Z2[[q]], namely:

∞∑
n=0

p(7n+ 5)qn =
(f7)

3

(f1)4
+ q

(f7)
7

(f1)8
, (1.4)

along with the following, which is equivalent to an identity of Lin ([40], Equation

2.4):

f1f7 = (f1)
8 + q(f1)

4(f7)
4 + q2(f7)

8. (3.15)

Dividing across (3.15) by (f1)
8f7 yields

1

(f1)7
=

1

f7
+ q

(f7)
3

(f1)4
+ q2

(f7)
7

(f8)8
.

Substituting the above into (1.4) gives

q
∞∑
n=0

p(7n+ 5)qn = q
(f7)

3

(f1)4
+ q2

(f7)
7

(f1)8
=

1

(f1)7
+

1

f7
.

Identity (2.4):

q
∞∑
n=0

p(13n+ 6)qn =
1

f 13
1

+
1

f13
.

We employ a classical result of Zuckerman [69] for p(13n+ 6), which can be stated in
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Z2[[q]] as:
∞∑
n=0

p(13n+ 6)qn =
f13

(f1)2
+ q5

(f13)
11

(f1)12
+ q6

(f13)
13

(f1)14
. (3.16)

Additionally, we see from Calkin et al. [17] that

f13
f1

= (f1)
12 + q(f1)

10(f13)
2 + q6(f13)

12 + q7
(f13)

14

(f1)2
. (3.17)

Thus after dividing the terms of (3.17) by (f1)
12f13, we obtain:

1

(f1)13
=

1

f13
+ q

f13
(f1)2

+ q6
(f13)

11

(f1)12
+ q7

(f13)13

(f1)14
.

Substituting into Equation (3.16) yields:

∞∑
n=0

p(13n+ 6)qn =
f13

(f1)2
+ q5

(f13)
11

(f1)12
+ q6

(f13)
13

(f1)14
=

1

(f1)13
+

1

f13
.

Identity (2.8):

q2
∞∑
n=0

p(25n+ 24)qn =
1

(f1)25
+

q

f1
+

1

(f5)5
.

To prove this, we will again use an identity of Zuckerman [69] (or alternatively, [13],

Equation (21.1)) in Z2[[q]], which gives us that

∞∑
n=0

p(25n+ 24)qn =
(f5)

6

(f1)7
+ q2

(f5)
18

(f1)19
+ q4

(f5)
30

(f1)31
, (3.18)
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along with a repeated application of Equation (3.14). We start by multiplying (3.18)

by q2:

q2
∞∑
n=0

p(25n+ 24)qn = q2
(f5)

6

(f1)7
+ q4

(f5)
18

(f1)19
+ q6

(f5)
30

(f1)31
. (3.19)

Factoring the right side of Equation (3.19) appropriately, we obtain:

q
f5
f1

[
q

(f5)
5

(f1)6

]
+

(f1)
5

(f5)2

[
q

(f5)
5

(f1)6

]4
+ (f1)

5

[
q

(f5)
5

(f1)6

]6
. (3.20)

We now substitute Equation (3.14) in. Thus (3.20) becomes:

q
f5
f1

[
1

(f1)5
+

1

f5

]
+

(f1)
5

(f5)2

[
1

(f1)5
+

1

f5

]4
+ (f1)

5

[
1

(f1)5
+

1

f5

]6
.

Multiplying out and canceling like terms yields:

q
f5

(f1)6
+

q

f1
+

1

(f1)25
+

1

(f1)5(f5)4
. (3.21)

Again factoring, substituting Equation (3.14) in, distributing, and then combining
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like terms finally yields:

q2
∞∑
n=0

p(25n+ 24)qn =
1

(f5)4

[
q

(f5)
5

(f1)6

]
+

q

f1
+

1

(f1)25
+

1

(f1)5(f5)4

=
1

(f5)4

[
1

(f1)5
+

1

(f5)

]
+

q

f1
+

1

(f1)25
+

1

(f1)5(f5)4

=
1

(f1)25
+

q

f1
+

1

(f5)5
.

Identity (2.16):

q3
∞∑
n=0

p(49n+ 47)qn =
1

(f1)49
+

q

(f1)25
+
q2

f1
+

1

(f7)7
.

We deduce, from an identity of Zuckerman [69], the following in Z2[[q]]:

∞∑
n=0

p(49n+ 47)qn = x+ qf1x
2, (3.22)

where we have set x = q2
(f7)

12

(f1)13
+ q6

(f7)
28

(f1)29
.
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We will also evoke Equation (2.2):

q
∞∑
n=0

p(7n+ 5)qn =
1

(f1)7
+

1

f7
, (3.23)

and Equation (1.4), which in Z2[[q]] becomes:

∞∑
n=0

p(7n+ 5)qn =
(f7)

3

(f1)4
+ q

(f7)
7

(f1)8
. (3.24)

By setting

y =
q−1

(f1)7
+
q−1

f7
(3.25)

and combining Equations (3.23) and (3.24), we obtain:

y =
(f7)

3

(f1)4
+ q

(f7)
7

(f1)8
.

Now substituting into Equation (3.22), we have that

∞∑
n=0

p(49n+ 47)qn = y4(f1)
3q2 + y8(f1)

7q5.

By (3.25), we derive the following identity:

∞∑
n=0

p(49n+ 47)qn = q2(f1)
3

[
q−1

(f1)7
+
q−1

f7

]4
+ q5(f1)

7

[
q−1

(f1)7
+
q−1

f7

]8
. (3.26)
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Since we are working in Z2[[q]], (3.26) can be rewritten as

∞∑
n=0

p(49n+ 47)qn = (f1)
3q2
[
q−4

(f1)28
+

q−4

(f7)4

]
+ (f1)

7q5
[
q−8

(f1)56
+

q−8

(f7)8

]
.

Distributing and multiplying through by q3 yields:

q3
∞∑
n=0

p(49n+ 47)qn = q
1

(f1)25
+ q

(f1)
3

(f7)4
+

1

(f1)49
+

(f1)
7

(f7)8
. (3.27)

The final piece needed is an algebraic result of Lin ([40], Equation 2.4), specifically:

f1f7 + q2(f7)
8 = (f1)

8 + q(f1)
4(f7)

4. (3.28)

Dividing Equation (3.28) by f1(f7)
8 gives

1

(f7)7
+
q2

f1
=

(f1)
7

(f7)8
+ q

(f1)
3

(f7)4
.

Substituting into Equation (3.27), we obtain:

q3
∞∑
n=0

p(49n+ 47)qn =
1

(f1)49
+

q

(f1)25
+
q2

f1
+

1

(f7)7
.
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Identity (2.19):

q
∞∑
n=0

p3(5n+ 2)qn =
1

(f1)15
+

1

(f5)3
. (2.20)

We start from an identity of Chan ([18], Theorem 1; see also Xiong [65], Theorem

1.1), which has the immediate corollary:

∞∑
n=0

p3(3n+ 2)qn =
(f3)

9

(f1)12
. (3.29)

We can combine this with a result of Hirschorn and Sellers ([30], Theorem 2.1; note

that a power of 2 is missing from the factor (q12)∞ in the published version of this

paper), which yields

1

(f1)9(f3)9
=

q

(f1)12
+

1

(f3)12
. (3.30)

Multiplying across this latter identity by (f3)
9 and combining with (3.29), we easily

obtain

q
∞∑
n=0

p3(3n+ 2)qn = q
(f3)

9

(f1)12
=

1

(f1)9
+

1

(f3)3
.

Identity (2.20):

q

∞∑
n=0

p3(5n+ 2)qn =
1

(f1)15
+

1

(f5)3
.

We begin with a result of Chan-Lewis ([19], Identity (1.11); see also Xiong [66]),

44



which states:

q

∞∑
n=0

p3(5n+ 2)qn = q
(f5)

3

(f1)6
+ q2

(f5)
9

(f1)12
+ q3

(f5)
15

(f1)18
. (3.31)

Using a similar proof technique to that for (2.8), we factor appropriately, and the

right side of (3.31) becomes:

1

(f5)2

[
q

(f5)
5

(f1)6

]
+

1

f5

[
q

(f5)
5

(f1)6

]2
+

[
q

(f5)
5

(f1)6

]3
.

Substituting in Equation (2.1), we obtain:

1

(f5)2

[
1

(f1)5
+

1

f5

]
+

1

f5

[
1

(f1)5
+

1

f5

]2
+

[
1

(f1)5
+

1

f5

]3
.

Multiplying out and combining like terms yields the intended result, specifically:

q
∞∑
n=0

p3(5n+ 2)qn =
1

(f1)15
+

1

(f5)3
.

Identity (2.22):

q2
∞∑
n=0

p3(9n+ 8)qn =
1

(f1)27
+

q

(f1)3
+

q

(f3)9
.

After 3-dissecting (3.29) (which is equivalent to a result of Xiong; [67] Theorem 1.2),
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and multiplying both sides by q2, we obtain:

q2
∞∑
n=0

p3(9n+ 8)qn = q4
(f3)

36

(f1)39
.

We start by rewriting the right side of the identity above as:

(f3)
36(f1)

9

(
q4

(f4)12

)
.

Then we apply Identity (3.30) (under the transformation of q → q4) and the last

displayed formula becomes:

(f3)
36(f1)

9

(
1

(f12)12
+

1

(f4)9(f12)9

)
. (3.32)

Using the identity f2 = (f1)
2 in Z2[[q]], we can transform (3.32) into

(f3)
36(f1)

9

(
1

(f3)48
+

1

(f1)36(f3)36

)
.

Distributing through the above, we obtain:

1

(f1)27
+

(f1)
9

(f3)12
.
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Using Identity (3.30) one final time yields:

q2
∞∑
n=0

p3(9n+ 8)qn =
1

(f1)27
+

1

(f3)9
+

q

(f1)3
.

Identity (2.26):

q
∞∑
n=0

p5(5n)qn =
1

(f1)25
+

q

(f5)5
. (2.26)

Recall Identity (2.1), which states:

q
∞∑
n=0

p(5n+ 4)qn =
1

(f1)5
+

1

f5
.

Extracting every power q5n from this identity and equating the resulting series in

Z2[[q]], we obtain

q
∞∑
n=0

p(25n+ 24)q5n+4 =
∞∑
n=0

p(n)q5n +
∞∑
n=0

p5(5n)q5n.

Making the substitution q5 → q, the above identity becomes:

q

∞∑
n=0

p(25n+ 24)qn =
∞∑
n=0

p(n)qn +
∞∑
n=0

p5(5n)qn.
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Multiplying the above by q and then using Equation (2.8) yields:

q
∞∑
n=0

p5(5n)qn = q2
∞∑
n=0

p(25n+ 24)qn + q
∞∑
n=0

p(n)qn. (3.33)

The right side of Equation (3.33) can be expressed (as a result of (2.8)) as:

(
1

(f1)25
+

q

f1
+

1

(f5)5

)
+

q

f1
.

Combining like terms gives the following:

q
∞∑
n=0

p5(5n)qn =
1

(f1)25
+

1

(f5)5
.

Identity (2.30):

q
∞∑
n=0

p9(3n)qn =
1

(f1)27
+

1

(f3)9
. (2.30)

We will prove this entirely similarly to the previous identity. Consider Equation

(2.19):

q
∞∑
n=0

p3(3n+ 2)qn =
1

(f1)9
+

1

(f3)3
=
∞∑
n=0

p9(n)qn +
∞∑
n=0

p3(n)q3n.
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Extracting out the q3n terms from the above equation, we obtain

q

∞∑
n=0

p3(3(3n+ 2) + 2)q3n+2 =
∞∑
n=0

p9(3n)q3n +
∞∑
n=0

p3(n)q3n.

Transforming q3 → q and then multiplying through by q yields:

q2
∞∑
n=0

p3(9n+ 8)qn = q
∞∑
n=0

p9(3n)qn + q
∞∑
n=0

p3(n)qn.

It is sufficient from here to note that, by Equation (2.22), this is equivalent to

1

(f1)27
+

q

(f1)3
+

1

(f3)9
= q

∞∑
n=0

p9(3n)qn +
q

(f1)3
.

Finally, combining like terms proves the result and completes the theorem. �
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Chapter 4

Conclusion

4.1 Discussion of Results

This dissertation provided a conjectural family of identities in Z2[[q]], which relate

the partition function and certain t-multipartition functions, as explicitly laid out

in Conjecture 2.0.4. We additionally conjectured that this is a special case of an

infinite, two-dimensional set of multipartition identities (stated in Conjecture 2.0.5).

The purpose of these identities is to provide a new framework in which to view and

approach Question 1.0.2. In short, given appropriate existence conditions, if δt > 0

for any t, then δ1 + δ3 > 0 (Corollary to Conjecture 2.0.5). More specifically, if 3 does

not divide t, then δt > 0 =⇒ δ1 > 0 (Corollary to Conjecture 2.0.4). We proved this
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relationship explicitly for t ≤ 49.

4.2 Future Work

A natural direction for future work is to establish a relationship between δ1 and

δ3. The nicest possible such relationship would be δ1 > 0 ⇐⇒ δ3 > 0, though

the results in this dissertation do not appear to give either implication. Another

intriguing direction would be to show a reverse implication between δt and δ1 for t

coprime to 3: specifically, δ1 > 0 implies that δt > 0. In fact, it would be interesting

to prove any delta implication of the form δa > 0 =⇒ δb > 0, for odd b > a > 0.

Again, our identities as described do not appear to help in this direction.

Finally, an exciting future research project would, of course, consist of proving in

full Conjecture 2.0.5. This appears to require an entirely new approach, for reasons

discussed in this work. An obvious difficulty that might need to be overcome is finding

for which tuples {a, d, j, t} we have εta,d,j = 1. One starting point could be to relate,

in Z2[[q]],
∞∑
n=0

pt(an+ b)qn and
∞∑
n=0

pT (An+B)qn,

where TA = ta. For example, consider the following theorem and corollary, of which

we omit a complete proof.
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Theorem 4.2.1. The following two identities hold in Z2[[q]]:

q6
∞∑
n=0

p(125n+ 99)qn =
1

(f1)125
+

q

(f1)101
+

q2

(f1)77
+

q4

(f1)29
+

q5

(f1)5
+

1

(f5)25
; (4.1)

q6
∞∑
n=0

p5(25n+ 20)qn =
1

(f1)125
+

q

(f1)101
+

q2

(f1)77
+

q4

(f1)29
+

1

(f5)25
+
q5

f5
. (4.2)

Sketch of Proof: For Equation (4.1), set M = 250 and s = (2, 2, 2, 4, 8, 4, 5,−26) in

Theorem 3.1.2, and for Equation (4.2), set M = 50 and s = (2, 2, 9, 2, 2,−12). From

here, the proof is similar to that of Theorem 3.1.6, given in Chapter 3. �

Corollary 4.2.2. The following identity holds in Z2[[q]]:

∞∑
n=0

p(125n+ 99)qn +
∞∑
n=0

p5(25n+ 20)qn +
∞∑
n=0

p(5n+ 4)qn = 0. (4.3)

The fact that most of the terms for
∑∞

n=0 p(125n + 99)qn and
∑∞

n=0 p5(25n + 20)qn

are the same is hardly a coincidence. Understanding how Identity (4.3) generalizes

could provide additional insight into further identities of Conjecture 2.0.5 and how

they might relate on a deeper level.
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[46] J.-L. Nicolas and A. Sárközy,: On the Parity of Partition Functions, Illinois J.

Math. 39 (1995), 586–597.

[47] K. Ono: Distribution of the partition function modulo m, Ann. Math. 151 (2000),

293–307.

[48] K. Ono: The Web of Modularity: Arithmetic of the Coefficients of Modular

Forms and q-series, CBMS Regional Conference Series in Mathematics, Amer.

Math. Soc. 102 (2004), Providence, RI.

[49] K. Ono: Parity of the partition function, Adv. Math. 225 (2010), no. 1, 349–366.

[50] K. Ono: Parity of the partition function in arithmetic progressions, J. Reine

Angew. Math. 472 (1996), 1–15.

60



[51] T.R. Parkin and D. Shanks: On the distribution of parity in the partition func-

tion, Math. Comp. 21 (1967), 466–480.

[52] H. Rademacher: On the expansion of the partition function in a series, Ann. of

Math. (2) 44 (1943), 416–422.

[53] C.-S. Radu: A proof of Subbarao’s conjecture, J. Reine Angew. Math. 672 (2012),

161–175.

[54] C.-S. Radu: An algorithmic approach to Ramanujan-Kolberg identities, J. Sym-

bolic Comput. 68 (2015), 225–253.

[55] S. Ramanujan: On Certain Arithmetical Functions, Trans. Cambridge Philos.

Soc. 22 (1916), no. 9, 159–184.

[56] S. Ramanujan: Congruence properties of partitions, Proc. London Math. Soc.

(2) 19 (1919), 207–210.

[57] A. Selberg: The History of Rademacher’s Formula for the Partition Function,

p(n), Normat 37 (1974), 141–146, 176.

[58] J.-P. Serre: Divisibilité des coefficients des formes modulaires de poids entier,

C.R. Acad. Sci. Paris A 279 (1974), 679–682.
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Appendix A

Sample Code

Below is the code that was used to find most of the congruences, as well as enough

evidence to suggest the conjectures. The comments throughout the code will make

the purpose of each function clear.

A.1 PartitionCongruences.py

## Pentagonal Numbers ##

def pent(n):

pentNums = []

i = 0

p1 = 0
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p2 = 0

while p1 <= n and p2 <= n:

i+=1

p1 = int(i*(3*i-1)/2)

j = -i

p2 = int(j*(3*j-1)/2)

if p1 <= n:

pentNums.append(p1)

if p2 <= n:

pentNums.append(p2)

return pentNums

## this is the generating function of p(n) ##

def GeneratingFunctionP(limit):

PentNums = pent(limit)[:]

GF = [0,1,3,4,5]

if limit <= 5:

return GF

for i in range(GF[-1]+1, limit +1):

indicator = 0

for j in PentNums:

if i - j in GF:

indicator += 1

if indicator % 2 == 1:

GF.append(i)

return GF

## this is the generating function of fa ##

def GeneratingFunctionPa(a,limit):

x = GeneratingFunctionP(int(limit/a))[:]

GF = []

for aterm in x:
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GF.append(aterm*a)

return GF

## Triangular Numbers ##

def tri(n):

triNums = []

i = 0

t1 = 0

while t1 <= n:

i+=1

t1 = int(i*(i+1)/2)

if t1 <= n:

triNums.append(t1)

return triNums

## this is the generating function of p3(n) ##

def GeneratingFunctionP3(limit):

TriNums = tri(limit)[:]

GF = [0,1,2,4]

if limit < 5:

return GF

for i in range(GF[-1]+1, limit +1):

indicator = 0

for j in TriNums:

if i - j in GF:

indicator += 1

if indicator % 2 == 1:

GF.append(i)

return GF

## this is the generating function of fa^3 ##
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def GeneratingFunctionPa3(a,limit):

x = GeneratingFunctionP3(int(limit/a))[:]

GF = []

for aterm in x:

GF.append(aterm*a)

return GF

## Left side of Conjecture .... ##

## Choose an a, t, and number of terms of the conjecture←↩
##

## function will return b as a print and the nonzero ←↩
powers of q ##

def generalTerm(a,t,terms):

k = int(ceil(t*(a**2-1) /(24*a)))

b = int(t*(1-a**2) /24) % a

t1 = t % 3

t2 = int(t/3)

threes = []

ones = []

for i in range(t1):

ones.append(GeneratingFunctionPa(a,terms))

for i in range(t2):

threes.append(GeneratingFunctionPa3(a,terms))

x = multOfSeries(threes ,terms)[:]

y = multOfSeries(ones ,terms)[:]

GT = multOfSeries ([x,y],terms)

return GT

## random functions needed ##
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def floor(n):

return (int(n))

def ceil(n):

if int(n) == n:

return n

else:

return int(n)+1

## sum a list of power series together ##

def sumOfSeries(series ,terms):

SUM = series [0][:]

for i in range(1,len(series)):

newSeries = series[i][:]

for aterm in newSeries:

if aterm in SUM:

SUM.remove(aterm)

if aterm not in SUM:

if aterm < terms:

SUM.append(aterm)

SUM.sort()

return SUM

## multiply a list of power series together ##

def multOfSeries(series ,terms):

if len(series) == 1:

return series [0]

if len(series) == 0:

return [0]

MULT = series [0][:]

for i in range(1,len(series)):

M = MULT [:]
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MULT = []

newSeries = series[i][:]

for aterm in M:

for anotherTerm in newSeries:

if aterm+anotherTerm <= terms:

if aterm+anotherTerm in MULT:

MULT.remove(aterm+anotherTerm)

else:

MULT.append(aterm+anotherTerm)

MULT.sort()

return MULT

## shifts by some power of q in front ##

def shift(k,series ,terms):

newSeries = []

for aterm in series:

if aterm + k <= terms:

newSeries.append(aterm + k)

return newSeries
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Appendix B

Letters of Permission

On the Density of the Odd Values of the Partition Function [33] has been accepted

for publication in the Annals of Combinatorics (Springer). As it has not yet been

published (at the time of this dissertation’s publication), we (Samuel Judge, William

Keith, and Fabrizio Zanello) still retain the copyright and as such, there is no need

to obtain letters of permission.

On the Density of the Odd Values of the Partition Function, II: An Infinite Con-

jectural Framework [34] was published in the Journal of Number Theory (Elsevier).

Per the Author’s Rights, we (Samuel Judge and Fabrizio Zanello) retain the right to

publish this work again in the form of a dissertation (see below for details).
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