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Abstract 
 

Plio-Pleistocene beach ridges in northern Florida are nearly 50 m above current sea level, 

but sea level during that time is not known to have been more than 25 m above current 

sea level.  The height of beach ridges in northern Florida therefore create a conundrum 

because Florida is located on a passive margin in what is considered a tectonically stable 

environment.  A series of recent studies have suggested that uplift on the Florida 

peninsula may be the result of the removal of subsurface crustal mass.  Karstification of 

Florida’s carbonate matrix may provide a mechanism for subsurface crustal mass 

removal and regional isostatic uplift.  The ability of karstification to drive uplift was 

assessed using a calcium mass balance study of the Suwannee River Basin, in north 

Central Florida. Limestone dissolution in the entire basin was determined though 

statistical relationships between Ca2+, which is the dominant cation in surface and 

groundwater and a primary component of calcite, and SpC and discharge.  Because some 

water discharging from the Suwannee River Basin is also undersaturated with respect to 

calcite, maximum karstification potential for the basin was also calculated by assuming 

chemostatic conditions.  Similar to past studies, isostatic uplift was calculated by 

assuming all dissolution occurred in the subsurface.  Results from the application 

predicted anywhere from 77 to 6.7 mm k.y.-1 of uplift, with three of the six methods 

between 24 to 29 mm k.y.-1.  Based on the results, karstification may be able to partially 

explain isostatic uplift of the northern Florida peninsula. 



1 

1. Introduction 
  Plio-Pleistocene beach terraces in Florida reach elevations of nearly 50 m above 

sea level (masl) (Pirkle and Czel, 1983).  The origin of these beach ridges has remained 

problematic because sea level only reached 25 m during the Plio-Pliestocene, indicating 

that the beach ridges could not have formed 50 masl (Miller et al., 2005), and Florida’s 

position on a passive margin means tectonic uplift of beaches that formed at lower 

elevations is unlikely.  Previous work has consequently suggested that beach terraces in 

Florida could have possibly reached their present elevations via karstification of 

carbonate bedrock and isostatic uplift (Opdyke et al., 1984; Willet, 2006; Adams et al., 

2010). 

Isostatic rebound can be induced by any process that removes mass from the 

Earth’s surface, because the crust “floats” on the mantle (Anderson and Anderson, 2010). 

Removal of crustal material causes the remaining crust to “float” higher in the 

asthenosphere.  Isostatic rebound has typically been attributed to removal of crustal 

material by valley incision (Lucchitta, 1979), mountain erosion (Champagnac, 2007) or 

removal of ice through regional deglaciation (Farrand, 1962), (Figure 1).  The dissolution 

of carbonate rock, otherwise known as karstification, also removes crustal mass, but 

much of the crustal mass is removed from the subsurface through processes of dissolution 

and cave formation.  
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Isostatic rebound in not a one to one ration between karstification and uplift, but 

instead accounts for several variables acting on the asthenosphere.  Assuming surface 

denudation is negligible, the decrease in crustal density caused by karstification should 

allow for isostatic uplift, as described by the following equation: 

𝑈𝑈 = (Ǩ)(𝜌𝜌𝑏𝑏𝑏𝑏)
𝜌𝜌𝑏𝑏𝑏𝑏+𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒

                                              (1)       

 

With U being uplift of the crustal plates, Ǩ yearly karstification of the crustal plate, ρbi 

representing original density of the carbonate matrix (2200 kg m-3), and ρeff is the 

effective density of the thickness of the crustal plate, or the difference in mass between 

Figure 1: Methods of isostatic response by removal of crustal material. (A) Fluvial or glacial 
erosion incising the landscape and removing mass. (B) Regional deglaciation removes 
overlying mass from the crust. (C) Mountain erosion displacing sediment over a region (D) 
Karstification dissolves carbonate. 

A. B. 

C. D. 
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the uplifted limestone mtrix and that which remains below the original surface (200 kg  

m-3) (Opdyke et al., 1984).  

Three studies have investigated the role of karstification in driving uplift of the 

Florida Plateau, each arriving at different karstification and uplift rates (Table 1).  

Opdyke et al. (1984) calculated karstification based on the mass flux of total dissolved 

solids from springs (e.g. Rosenau and Faulker (1975), Rosenau et al. (1977), and Slack 

and Rosenau (1979)). Willet (2006) also relied on mass flux data from springs, but used a 

dataset with a larger number of springs over a larger area than the Opdyke study (e.g. 

Rosenau et al., 1977; Scott et al., 2002; and Scott et al., 2004).  In both the Opdyke and 

Willet studies, modern karstification rates were assumed to be representative of 

karstification rates from the Plio-Pleistocene until the modern.  Realizing that 

karstification rates were likely to vary due to climate variability between the Plio-

Pliestocene and the modern, Adams et al. (2010) created a numerical model that related 

karstification rates to rainfall:  

                                                                             Ǩ = λṔ                                                   (2) 

where Ǩ is the average karstification rate, Ṕ is precipitation, and λ is a dimensionless 

parameter used as a calibration (tuning) factor.  The tuning parameter was used to 

describe the efficiency of dissolution in the carbonate matrix needed for karst-driven 

changes in crustal density to uplift beach ridges to their current elevations before being 

removed by surficial erosion (Adams et al., 2010). 
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Table 1: Karstification and Uplift Rates of from previous studies: 
Opdyke et al. (1984), Willet (2006), and Adams et al. (2010). 

  Opdyke Willet Adams 

Karstification (m k.y.-1) 0.0263 0.00733 0.0840 

Uplift (m k.y.-1) 0.0241 0.00672 0.0770 
 

Large differences in karstification and uplift rates calculated in these studies stem 

from differences in research methods.  Studies of mass flux from individual springs relied 

on point measurements rather than time series data; consequently, the Opdyke et al., 

(1984) and Willet (2006) studies do not consider how temporal variability in spring 

discharge could impact carbonate relationships, and hence flux of dissolved solids from 

springs.  Similarly, the Adams et al. (2010) model relates karstification to rainfall, but 

since the karstification model was not calibrated against observed karstification rates, its 

ability to represent actual karstification rates remains untested.  Of particular concern is 

that the model relates karstification to rainfall rather than recharge.  Evapotranspiration 

results in significant quantities of rainfall leaving the Florida carbonate platform as water 

vapor which does not transport dissolved solids. 

In this study, several combinations of legacy data from the Suwannee River Basin 

were used to better constrain karstification and uplift rates in the Florida carbonate 

platform.  Statistical relationships between daily average discharge and specific 

conductivity (SpC) measurements and measurements of Ca2+ concentrations in water 

samples collected at approximately monthly intervals at a United States Geological 

Survey gaging station near the mouth of the Suwannee River were used to estimate 
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karstification rates for the entire river basin. These results are compare to those of the 

Willet (2006), Opdyke et al. (1984), and Adams et al. (2010) studies. 

2. Study Area 
The Suwannee River basin is Florida’s largest river basin.  It is located in north-

central Florida, extends into Georgia (Figure 2) and is approximately 28,000 km2.  The 

basin consists primarily of wetlands, forests, and farmlands (Ham and Hatzell, 1996).  

The Suwannee River Basin has subtropical climate (Crane, 1986). Average rainfall is 

~132 cm y-1 and evapotranspiration rates are between 90 and 105 cm y-1, but large annual 

variations in both are common (Crane, 1986). 

 

 

 

 

 

 

 

 

 

In the upper 70% of the Suwannee River Basin, the Hawthorn group, Miocene in 

age, is exposed at the surface.  The Hawthorn group is composed of fine to coarse sands, 

Figure 2: Map of the Suwannee River Basin, including 
the Gopher Gaging Station.  Created using ArcMap. 
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silts, and clay materials. The Hawthorne group overlies the Ocala Limestone and acts a 

confining unit for the upper Floridian aquifer.  In the lower 30% of the basin, the 

Hawthorn group has been removed by erosion and the Suwannee and Ocala limestones 

are exposed at the surface.  Ocala is a fossiliferous limestone interbedded with dolostone 

and is Eocene in age, whereas the Suwannee Limestone a vuggy, muddy limestone that 

dates to the Oligocene (Scott et al., 1991; Martin and Gordon, 2000).  The erosional limit 

of the Hawthorn Group is the Cody Escarpment, a topographic break approximately 30m 

in relief (Martin and Gordon, 2000).  

Dense networks of surface streams are present above the Cody Scarp.  Many of 

these streams sink into the subsurface where the flow off the Cody Scarp into the 

Suwannee or Ocala Limestones.  Below the Cody Scarp, there are only two main rivers, 

the Suwannee and its tributary the Santa Fe.  Prior to the two rivers converging, the 

Suwannee River at Branford gaging station has an average discharge rate of 351 m s-1. 

Both rivers receive a substantial quantity of their inflow from 18 first magnitude springs, 

which have flow rates greater than 2831.6 L s-1, and 87 second magnitude springs, with 

flow rates between 2831.6 L s-1 to 283 L s-1 (Hornsby and Ceryak 1998).  These first and 

second magnitude springs bring groundwater and dissolved limestone, to the surface.  All 

rain falling in the Suwannee River Basin that is not lost to evapotranspiration is 

discharged via the Suwannee River to the Gulf of Mexico.  There are no known 

submarine springs that discharge water from the Suwannee River Basin.  This study 

focusses on calcium concentration data collected between July 1999 to August 2008 and 

specific conductivity data collected from October 2005 to September 2007.  These time 
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frames were selected based on the longest amount of continuous, approved data provided 

by the USGS. 

3. Methods 
3.1 Water Flux from the Suwannee River Basin 

The Gopher River gaging station (USGS 02323592) is located ~12 km from the 

terminus of the Suwannee River.  Consequently, all water exiting the basin is measured at 

this station.  Daily average discharge data were obtained from the USGS waterwatch 

online database (waterwatch.usgs.gov)  

Discharge in the Suwannee River at the Gopher River gaging station is tidally 

influenced.  During droughts, very high tides and anomalous barometric events, such as 

hurricanes, can cause discharge values to be negative.  Only two days in our period of 

record were associated with negative daily average discharge values and both were 

treated as zero values. 

3.2 Ca2+ Flux from the Suwannee River Basin 

  Karstification was quantified karstification by calculating the mass flux of calcite 

from the basin using three complementary approaches.  In each case, the mass flux of 

calcite was determined on the basis of empirically derived relationships between 

dissolved Ca2+ concentrations measured in water samples that are collected at monthly 

intervals and discharge or specific conductance.  Similar to Opdyke et al. (1984) and 

Willet (2006), it was assumed that all dissolved Ca2+ is derived from calcite dissolution 

and 1 mol of Ca2+ in solution is equivalent to 1 mol of CaCO3 being exported from the 

basin.  

http://waterwatch.usgs.gov/
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3.3 Ca2+ Flux from Concentration-Discharge Relationships 

  Between July 1999, and August 2008 water samples were collected at monthly 

intervals and analyzed for major ions.  Discharge ranges from 3.5 x 106 to 7.7 x 107 m3 d-

1.  Data are available from the Suwannee River Water Management District data portal 

(mysuwanneeriver.com).  Because daily discharge values are available for the entire 

period of record used in this work, the primary method of calculating Ca2+ flux relied on 

statistical relationships between Ca2+ and daily average discharge on the day of water 

sample collection, which was best described with a power law (Figure 3).  Using the 

Generalized Reduced Gradient in the Solver Analysis with Microsoft Excel, four outliers 

(representing less than 4% of the data) were removed, improving the coefficient of 

determination from 0.4086 to 0.5052.  The power law relationship was used to calculate 

Ca2+ concentrations, ranging from 5.5 x 106 to 4.5 x 107 mol d-1, of water flowing through 

the Gopher River gaging station from daily discharge measurements and calculated daily 

Ca2+ flux from the basin by multiplying daily Ca2+ concentrations by daily discharge 

totals.  We assessed error by comparing the modeled Ca2+ concentrations to the measured 

concentrations on days where measured concentrations were available.  
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3.4 Ca2+ Flux from Concentration-Conductivity Relationships 

  The Gopher River gaging station continuously measured SpC and reported it as 

daily averages between 2005 to 2007 (data from USGS waterwatch online database). 

Because Ca2+ is the dominant cation in solution in limestone terrains, variation in SpC 

primarily reflects variation in Ca2+ concentration (Ford and Williams, 2007). The 

relationship between SpC and Ca2+ concentration in monthly water samples was fitted 

linearly (Figure 4).  A least squares test resulted in the removal of two outliers (less than 

6% of the data) improving the goodness of fit from 0.5375 to 0.9324.  We used a linear 

relationship to calculate Ca2+ concentrations from daily average SpC and calculated daily 

0

0.5

1

1.5

2

2.5

0.00E+00 2.00E+07 4.00E+07 6.00E+07 8.00E+07 1.00E+08

Ca
2+

 (m
ol

 m
-3

)

Q (m3 day-1)

     0 2.00x107 4.00x107 6.00x107 8.00x107 1.00x108 

y = 4x106x-0.493 

 

Figure 3: Ratings curve of Ca2+ compared to discharge (Q). Ca2+ decreases exponentially 
as a result of an increase in discharge at the Gopher River Station.   
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Ca2+ flux from the basin by multiplying daily Ca2+ concentrations by daily discharge 

totals.  We assessed error by comparing the modeled Ca2+ concentrations to the measured 

concentrations on days where measured concentrations were available.  

 

 

3.5 Chemostatic Ca2+ Flux  

  At low discharges, Ca2+ concentrations in the Suwannee River Basin remain 

constant with minor fluctuations in discharge (Gulley et al., 2013), indicating chemostatic 

conditions (Godsey et al., 2009).  At higher discharges, Ca2+ concentrations decrease with 

discharge, indicating dilution.  Because dilution indicates rainwater has not reacted to 

equilibrium with calcite bedrock, we decided to determine what the flux of Ca2+ would be 

y = 0.0038x - 0.0061
R² = 0.9324
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Figure 4: Ratings curve of specific conductivity (SpC) and Ca2+. A positive linear relationship 
existed between SpC and Ca2+ with respect to discharge. 
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if dilution effects were removed and all effective rainfall reacted to equilibrium with 

calcite.  By extending the chemostatic relationship between Ca2+ and Q at low discharges 

to the entire range of discharges, we were able to assess how much limestone would have 

likely been removed if all effective rainfall infiltrated the aquifer and participated in 

karstification. Ca2+ fluxes were therefore calculated by multiplying the average Ca2+ 

concentration at the terminus of the Suwannee River during chemostatic conditions, 

which we defined as any discharge lower than 300 m3 s-1 (as determined in Gulley et al., 

2013) by the total discharge.  Physically, this approach would be the equivalent of 

removing the impermeable confining layer from the entire Suwannee River Basin.  From 

a modeling standpoint, we consider the chemostatic scenario to represent the maximum 

amount of karstification that we would expect to occur in the Florida carbonate platform. 

3.6 Karstification 

  Similar to the Opdyke and Willet studies, we calculate karstification assuming 

Ca2+ in solution was derived only from dissolution of the Ocala Limestone.  We 

calculated the volume of calcite dissolved from the basin over each measurement interval 

by summing the total Ca2+ flux from the basin using the three methods described above. 

We converted the molar flux to volume of calcite dissolved by assuming a molar volume 

for calcite of 36.934 cm3 mol-1 (Robie et al., 1984) and we assumed a porosity of 30% to 

calculate the volume of Ocala limestone dissolved (Budd and Vacher, 2004).  We express 

karstification as the volume of Ocala limestone dissolved by normalizing it to the area of 

the Suwannee River Basin, calculated from ArcMap. 

 



12 

3.7 Uplift 

  Similar to the Opdyke and Adams studies, we calculated uplift resulting from 

karstification over a 1.6 million year time period using equation 1.  Uplift rates were 

calculated based on karstification rates obtained using the Ca2+-Q, SpC-Ca2+ and 

chemostatic relationships.  We assumed that these karstification rates were representative 

of the last 1.6 million years, that all dissolution occurred in the subsurface and that 

surface denudation was insignificant in comparison to subsurface karstification.  In 

actuality, karstification and uplift rates would be lower than modern during periods of 

lower sea levels and their associated drier climates. 

3.8 Rainfall and Evapotranspiration 

  While rainfall data does not factor into our calculation of karstification, we assess 

relationships between rain falling on the Suwannee River Basin and the volume of water 

leaving the basin as discharge to determine how reasonable rainfall might be as a 

dissolution indicator.  We assume the difference between rainfall and discharge is 

approximately equal to evapotranspiration over annual timescales (Kirchner, 2009). 

Because rainfall that evaporates or transpires to the atmosphere does not export Ca2+ 

from the basin, rainfall may not be an ideal proxy for dissolution.   

  Rainfall data was collected from 12 USGS rain gauge stations located inside and 

adjacent to the basin.  A majority of the rain gauging stations had 4 to 14 years of 

available daily rainfall data, with 75% of the stations having a decade or more of data. 

The volume of rain falling in the basin was calculated using Thiessen Method via ArcGIS 

10.2.2.  Polygons were adjusted through time, so that the number of polygons increased 
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each time a new rain gage came on line. Precipitation was averaged over a two year 

period from 2005 to 2007.  The period was selected based on having 10 operational rain 

stations, the most out of all the years, allowing for the greatest distribution of available 

data collection points over the basin.  

4. Results 

4.1 Rainfall and Evapotranspiration 

  Annual rainfall totals between 2001 and 2008 ranged from a high of 1.46 m y-1 in 

2004 to a low of 0.95 m y-1 in 2007, with an average annual of 1.21 m (Figure 5). 

Average annual discharge from the Suwannee River Basin, normalized to drainage basin 

area, ranged from 0.61m y-1 in 2005 to 0.12 m y-1 in 2002, resulting in an annual average 

discharge, and hence effective rainfall, of 0.26 m y-1 from 2001 to 2008. 

Evapotranspiration was determined to be 0.94 m y-1 or 78% of the annual rainfall. 

Maximum evaporation was 1.19 m yr-1 in 2004 and was at a minimum in in 2005 with 

0.64 m y-1. 
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4.2 Ca2+ Fluxes 

  Modeled daily fluxes of Ca2+ calculated from Ca2+-Q relationships varied from 

~3.14 x 106 to 4.27 x 107 mol d-1 (Figure 6B).  Modeled Ca2+ concentrations were similar 

to measured Ca2+ concentrations during at low flows estimated at 2 x 107 m3d-1 (Figure 3) 

but varied with increased discharge. Over the entire period of record, average residual 

values were 0.92.  Annual modeled Ca2+ flux varied from a low of 4.71 x 109 mol y-1 in 

2002 to a high of 8.74 x 109 mol y-1 in 2005 and had a yearly average of 6.38 x 109 mol 

over the eight-year record (Table 2). 
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Figure 5: Comparison of annual rainfall, discharge at the Gopher River Station, and 
evapotranspiration over the Suwannee River Basin from 2001 to 2008. 
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Table 2: Loss of Ca2+ from the Suwannee River as determined through Ca2+-Q, 
Chemostatic, and SpC-Ca2+ methods.  The table reflects only years with full data 
available.  

Year Ca2+-Q Chemostatic SpC-Ca2+ 

2000 5.37 x109 5.65 x109  

2001 5.33 x109 5.98 x109  

2002 4.71 x109 4.45 x109  

2003 8.40 x109 1.44 x1010  

2004 7.61 x109 1.30 x1010  

2005 8.74 x109 1.59 x1010  

2006 5.85 x109 7.52 x109 6.29 x109 

2007 5.01 x109 5.00 x109  

Average 6.38 x109 7.94 x109 6.29 x109 
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Figure 6: A) Residuals of actual flux measured at Gopher Station vs theoretical values 
calculated from the curve ratings. B) Time series of discharge with Ca2+ flux displayed as a line 
grey line while actual Ca2+ measurements are represented by black dots.  
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    Modeled daily fluxes of Ca2+ calculated from SpC-Ca2+ ranged from 2.47 x 106 

to 4.14 x 107 mol d-1
 (Figure 7B).  Residual errors varied little between baseflow and 

periods of increased discharge, resulting in an average residual value of 1.01 over the 

entire period of record (Figure 7A).  Annual Ca2+ flux can only be modeled for 2006, the 

only year in our dataset with a complete SpC timeseries is 6.29 x 109 mol y-1.  
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  For the chemostatic model, fluxes of Ca2+ ranged from ~ 7.19 x 105 to 1.23 x108 

mol d-1
 (Figure 8).  The lowest daily flux of 7.19 x 105 mol d-1 was in 2002, the driest 

year.  The highest daily flux of 1.23 x 108 mol d-1 occurred in 2005, the year with the 
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highest rate of discharge from the basin.  In 2005, the greatest annual loss of Ca2+, 1.59 x 

1010 mol was recorded during that nine-year period.  

 

4.3 Karstification 

  Average karstification rates were highest when we assumed chemostatic 

conditions and lowest when we used the SpC-Ca2+ model.  Our karstification rates varied 

within 30% of one another: SpC-Ca2+ had the lowest rate at 35.50 k.y. m-1, Ca2+-Q at 

34.48 k.y. m -1 and the chemostatic method having the highest rate at 24.90 k.y. m-1.  In 

contrast, Opdyke et al. (1984) had slightly lower rates, at 41.45 k.y. m-1, Willet’s (2006) 

method was the slowest of them all, 148.83 k.y. m-1 and Adams et al. (2010) had a 
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significantly higher rate of karstification when compared to the other methods at 12.99 

k.y. m-1 (Figure 9).  

 

 

4.4 Uplift  

  Average annual uplift rates reflect annual karstification rates. Uplift rates were 

highest for chemostatic conditions and lowest for SpC-Ca2+.  The uplift rates varied 

within 30% from the highest to the lowest rate: chemostatic with the highest rate at 40.2 

m m.y.-1, Ca2+-Q at 29.0 m m.y.-1, and the SpC-Ca2+ method having the lowest uplift rate 

at 28.2 m m.y.-1.  Opdyke et al. (1984) and Willet (2006) had significantly lower average 

annual uplift rates at 24.1 m m.y.-1 and 6.72 m m.y.-1, respectively.  Adams et al. (2010) 

uplift rate was higher than the other methods, resulting in 77.0 m m.y.-1.  
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5. Discussion 

  Our three models of karstification and uplift are similar in magnitude to the 

estimates of Opdyke et al. (1984), but significantly greater than Willet (2006) and 

significantly lower than Adams et al. (2010).  In the following section, we examine the 

limitations of our karstification model and suggest reasons for differences between our 

models and those of Opdyke, Willet and Adams.  

5.1 Rainfall and Evapotranspiration 

  The primary driving force for karstification is effective rainfall (i.e. recharge) 

which infiltrates into carbonate bedrock subsurface.  Our results suggest that, on average, 

78% of annual rainfall is returned to the atmosphere via evapotranspiration.  Because the 

Adams at al. (2010) model relates karstification to rainfall, rather than recharge, it may 

overestimate dissolution rates because water that leaves the basin through 

evapotranspiration does not export carbonate bedrock from the basin. 

5.2 Comparison of Ca2+-Q and SpC-Ca2+ Models 

  While the statistical relationships between Ca2+-Q and SpC-Ca2+ were 

significantly different, the overall magnitude of karstification estimated by the two 

models differed by only 3%.  The poor correlation between Ca2+-Q is likely caused by 

hysteresis in the relationships between Ca2+ and Q (Gulley et al., 2011). Ca2+ 

concentrations in the Suwannee River basin are lower on the rising limb of the 

hydrograph, when rapid increases in river stage hydraulically dam inputs of Ca2+ rich 

groundwater from karst springs; Ca2+ concentrations are higher for equivalent discharges 

on the falling limb of flood hydrographs because Ca2+-rich groundwater begins flowing 
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back into the river (Gulley et al., Dec 2013). Consequently, statistical relationships 

between Q and Ca2+ are weak.  In contrast, SpC is a direct function of the number of ions 

in solution.  Because Ca2+ is the dominate cation, statistical correlations between Ca2+ 

and SpC are strong and Ca2+ concentrations can be calculated from SpC records with 

reasonable accuracy during the rising and falling limb of individual flood events.  The 

similarity in annual karstification rates calculated the SpC-Ca2+ and Ca2+-Q models 

suggests that, while Ca2+-Q relations do not describe instantaneous fluxes of Ca2+ 

particularly well, the residual errors cancel out and allow annual Ca2+ fluxes to be 

approximated with the same degree of accuracy as the SpC-Ca2+ model. 

5.3 Chemostatic Model 

  Maximum theoretical karstification rates were calculated for the basin by 

assuming chemostatic conditions. Chemostatic conditions assume that all rainfall is able 

to infiltrate into the ground and equilibrate with carbonate minerals.  While many of 

Florida’s springs and spring fed rivers are essentially chemostatic, the Suwannee River 

Basin, like many of Florida’s river basins, is not.  Typically, the Suwannee River is 

chemostatic until discharge exceeds 300 m s-1.  Discharge that exceeds this threshold is 

derived from runoff from the upper 70% of the Suwannee River basin, which is overlain 

by low-permeability siliciclastics that generate runoff that has not reacted to equilibrium 

with carbonate minerals.  During floods, the hydraulic head in the river becomes greater 

than the hydraulic head in surrounding groundwater, hydraulically damming groundwater 

inputs to the river and allowing the majority of floodwater to discharge to the Gulf of 

Mexico without reacting to equilibrium with carbonate minerals (Gulley et al., Dec 
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2013).  Differences between our Ca2+-Q and SpC-Ca2+ models with the chemostatic 

model suggest that if all runoff from the Suwannee River Basin were to react to 

equilibrium with calcite, average annual karstification rates would be 27-29% greater 

than predicted by our Ca2+-Q and SpC-Ca2+models.  We thus consider the chemostatic 

model to be a theoretical maximum for karstification within the basin. 

5.4 New Constraints on Karstification and Uplift 

 Our results provide new constraints on karstification and uplift rates for Florida. 

The Suwannee River Basin has well-documented hydrological boundaries, providing 

previously unavailable constraints on the footprint of karstification, and our statistical 

models allow Ca2+ flux to be estimated for the entire Suwannee River Basin at daily 

timescales.  Willet (2006) and Opdyke et al. (1984) studies used coarse resolution 

sampling of karst springs, which do not account for temporal variability in carbonate 

fluxes and have only limited information to constrain drainage basin area.  Groundwater 

flow patterns and unrecorded springs may alter the magnitude of Ca2+ removal from 

investigations not utilizing a delineated basin.  

5.5 Comparison of Opdyke, Willet, and Adams Studies 

  Two of our long-term karstification models, Ca2+-Q and SpC-Ca2+, are similar in 

magnitude to Opdyke’s et al. (1984) estimates.  Since our models our within 3% of each 

other, we will compare the karstification rate of Ca2+-Q, which had the slightly faster 

rate.  Opdyke’s et al. (1984) karstification rate was 17% lower than Ca2+-Q.  Willet’s 

(2006) model used a similar approach but factored in a more robust dataset, which 

included a number of second and third magnitude springs collected in the early 2000s via 
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Scott et al. (2004), resulting in the use of over 400 springs for the study.  Willet’s (2006) 

had a karstification rate 77% lower than Ca2+-Q and 72% lower than Opdyke’s et al. 

(1984) calculation.  Willet (2006) determined the difference for his lower rate was 

Opdyke et al. (1984) assumed higher values for carbonate lost through spring discharge.  

Willet (2006) argued he had a more robust dataset of spring discharge; however, the 

difference could be a result of flux per unit area.  The study area Opdyke et al. (1984) 

used was the north central part of the Florida peninsula accounting for only 30% of the 

state.  In contrast, Willet (2006) expanded his study area to cover as estimated 50% by 

including the Florida panhandle.  When comparing the volume of water estimated to have 

discharged from the springs, Willet (2006) calculation of 2.29 x 107m3 d-1 was only 18% 

greater than Opdyke’s et al. (1984).  Willet’s (2006) expanded study area showed a 

decrease in flux per unit area when compared to Opdyke’s et al. (1984), resulting in a 

decreased karstification rate of the carbonate matrix. 

Our statistical models of karstification suggest that the numerical model used by 

Adams et al. (2010) significantly overestimate karstification.  Karstification rates 

predicted by the Adams model are 62% greater than the Ca2+-Q model and 48% greater 

than the chemostatic model.  The inability of the chemostatic model to match the 

karstification rates of Adams et al. (2010) suggest that relating dissolution rates to 

rainfall, rather than recharge, would overestimate dissolution rates even if all effective 

rainfall was retained on, or within, the Florida carbonate platform until it equilibrated 

with carbonate bedrock.   
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5.6 Comparison of Uplift Calculations 

While our results suggest that karstification can account for much of the uplift 

required to get the beach ridges to their present elevation, the models make a number of 

assumptions that may result in overestimation of uplift.  Our models assume current 

climate conditions reflect past climate and do not account for known climate variability 

over the Plio-Pliestocene.  We know that Florida had a much drier climate during glacial 

periods, suggesting that our karstification rates are too high.  Decreased rainfall, 

particularly between 800 k.y. to 400 k.y., as suggested by Adams et al. (2010) from his 

model, would decrease the karstification rate, significantly so that the decrease in 

evapotranspiration rates would not be able to offset the loss of infiltrated water into the 

carbonate bedrock. 

  Because uplift rates are a direct function of karstification, discrepancies between 

uplift rates reflect discrepancies with karstification rates. Our Ca2+-Q, SpC-Ca2+, and 

chemostatic models produced uplift rates of 46.1 m, 45.1 m, and 54.4 m, respectively, 

within 1.6 m.y.  Our uplift rates are therefore similar to, but slightly faster than Opdyke’s 

et al. (1984) model which predicts 38.4 m of uplift during that same time period.  In 

contrast, 6.82 m.y. are required for Willet’s (2006) model to achieve 50 m of uplift but 

only 0.59 m.y. for Adams et al. (2010).   

5.7 Unresolved Questions 

  Our models, along with Opdyke’s et al. (1984) model, only provide 30-40 m of 

uplift of the 50m beach terraces.  Additional mechanism would be needed in order to 
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account for the difference in height.  One explanation was offered by Walcott (1972), 

describing farfield glacial isostatic adjustments along the east coast of the United States. 

Walcott (1972), suggests the removal of the Laurentide Ice Sheets of ice caused an 

isostatic rebound throughout much of the east coast, including Florida, which could 

account for the additional uplift needed. Indeed, the warped coastline indicates uplift is 

not driven by steady rate processes, but of varying karstification rates driven by 

precipitation and glacial isostatic rebound.  

  A second factor not accounted for was denudation of the surface over the period 

of study.  Any mass lost over the surface would lower the resulting uplift.  Willet (2006) 

and Opdyke et al. (1984) used an estimate of 10m of denudation. The extent to which the 

area experienced denudation is unknown.    

6. Conclusion 

  The models presented in this study were used explain a significant portion of 

uplift observed in terraces in northern Florida.  Previous models assumed calcium 

measurements taken from first and second magnitude springs across the region and did 

not account for yearly fluctuations in discharge.  Other studies using precipitation as the 

driver for dissolution neglect evapotranspiration rates; therefore, not being able to predict 

fluxes of calcium into the oceans through discharge.  Compared to previous work, our 

models encompass a defined study area based on the Suwannee River watershed, with 

discharge measurements taken from the pour point of a system.   

  The dissolution rates for our models were slightly faster than that determined by 

Opdyke’s et al. (1984) model.  However, since our models were derived under current 
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climate conditions, not necessarily reflecting that of intermittent glacial periods, we 

conclude that the Opdyke et al. (1984) model would be more suitable of that time period 

than the Adams et al. (2010).   
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