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Revealing nitrate uptake and dispersion dynamics using high-frequency 
sensors and two-dimensional modeling in a large river system 

Amirreza Zarnaghsh a, Michelle Kelly b, Amy Burgin c, Admin Husic a,* 

a Department of Civil, Environmental and Architectural Engineering, University of Kansas 
b Department of Biological Sciences, Michigan Technological University 
c Department Ecology and Evolutionary Biology and Kansas Biological Survey-Center for Ecological Research, University of Kansas   

A R T I C L E  I N F O   
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A B S T R A C T   

Nitrate pollution of water bodies is a critical issue in many parts of the world because of its negative effects on 
aquatic ecosystem and human health. Effective management of pollution, such as the continuous or instanta-
neous release from point-sources, requires an understanding – with high spatial and temporal resolution – of how 
nitrate is dispersed and cycled within rivers. Nitrate sensing data show promise for this purpose, but their 
integration into numerical models is scarce; thus, questions remain regarding the necessary spatial grid size and 
temporal resolution required to resolve sensor readings. In this study, we developed an unsteady two- 
dimensional model to simulate nitrate transport, dispersal, and cycling along a 33-km stretch of the Kansas 
River (USA), following a strategic release of nitrogen from a decommissioned fertilizer plant. To validate 
modeled estimates of dispersion and uptake, we integrated 15-minute nitrate and temperature data from two 
aquatic sensors, one located proximal to the fertilizer release point and a second further downstream after 
complete lateral mixing. Model results at the site near to the contamination (0.4 km) were highly sensitive to 
river grid size and turbulent mixing, but insensitive to uptake. Results at the site far downstream of the 
contamination (31 km) were unaffected by grid size or mixing parameterization but were very sensitive to se-
lection of uptake rate. High-frequency sensors allowed us to resolve diel variability in nitrate signals, which we 
incorporated into the model to improve performance and model realism. The 33-km study reach assimilated 14% 
of the total nitrate load in the river, or approximately half of what was contributed by the fertilizer release, 
during the two-month study period. Regarding nitrate cycling, modeled Cdiel/Cmax ranged from 0.04 to 0.11 
whereas sensor observations showed much higher Cdiel/Cmax values of 0.11 to 0.25. Disagreements between data 
observations and model simulations in cycling are hypothesized to exist due to potential breakdown of the first- 
order rate kinetics. Together, our study shows the potential of combining numerical models and high-frequency 
data for a better understanding of the physical and biogeochemical processes that control nitrate dynamics in 
aquatic environments.   

1. Introduction 

Nitrate pollution in aquatic ecosystems is a significant environmental 
concern as it can lead to eutrophication, a process that results in the 
overgrowth of algae and other aquatic plants. This, in turn, can nega-
tively impact water quality and cause oxygen depletion (Burns et al., 
2019; Hansen and Singh, 2018; Kunz et al., 2017). One important 
mechanism of nitrate pollution in water bodies is the transport from a 
specific, identifiable source such as outfalls of wastewater treatment and 
industrial effluents, which is known as point-source pollution (Lee and 
Seo, 2010; Pilechi et al., 2016). Although this type of pollution has been 

extensively studied, the development of effective mitigation strategies is 
still limited by the challenge of predicting how nitrate is dispersed and 
cycled downstream (Huang et al., 2022; Velísková et al., 2014). 

The physical transport and biogeochemical fate of nitrate in rivers is 
most often modeled using the Advection-Dispersion-Reaction Equation 
(Jan et al., 2021). While analytical methods have been developed to 
solve simplified cases of this equation (van Genuchten et al., 2013), 
numerical models are increasingly favored for more complex scenarios, 
particularly given the advances in computer technology (Ramezani 
et al., 2019; Velísková et al., 2014). One major challenge in using these 
models is the significant uncertainty associated with dispersion 
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coefficients and reaction rates, which are highly site-specific and subject 
to large spatial and temporal variability (Camacho Suarez et al., 2019; 
Shin et al., 2020). These parameters are typically determined through 
experimental methods (Baek and Seo, 2016; Knapp et al., 2017), 
empirical or theoretical relationships (Jeon et al., 2007), or model 
calibration to field-observed data (Gualtieri et al., 2017). For example, 
estimating turbulent fluxes requires definition of the turbulent Schmidt 
number (St, ratio of momentum diffusivity to mass diffusivity), but no 
universally accepted values exist and methodologies for its determina-
tion are still a topic of development (Gualtieri et al., 2017). While nu-
merical models have contributed significantly to our understanding of 
nitrate transport in rivers, the temporal resolution of nitrate measure-
ments used for calibration, i.e., daily to weekly, is often insufficient to 
capture the time scales of physical and biogeochemical processes that 
affect nitrate dynamics at sub-daily scales. This is particularly crucial in 
the mixing zone close to the pollutant source, where nitrate concentra-
tions exhibit high variability in both space and time (Kim et al., 2011; 
Pilechi et al., 2016). 

In-situ high-frequency sensors that measure water quality parame-
ters every few minutes have opened new horizons in our understanding 
of aquatic hydrological and biogeochemical processes (Burns et al., 
2019; Rode et al., 2016b; Zarnaghsh and Husic, 2023). Researchers have 
utilized high-frequency nitrate data to assess the primary sources and 
pathways of nitrate and analyze the impact of climatic and anthropo-
genic factors on in-stream nitrate dynamics (Dupas et al., 2016; Husic 
et al., 2023; Lloyd et al., 2016). Further, the widespread deployment of 
high-frequency nitrate sensors has yielded extensive insights into the 
diel variation in nitrate concentrations, which can be an indicator of 

nitrogen transformation processes including assimilation and denitrifi-
cation (Kelly et al., 2021; Ledford and Toran, 2020). For example, sensor 
readings can resolve swings in nitrate that reflect assimilation by auto-
trophs during daylight hours and cessation during dark hours (Burns 
et al., 2019; Heffernan and Cohen, 2010) as well as heterotrophic uptake 
and release (Zhang et al., 2023). Despite the advantages of 
high-frequency nitrate data, they have not yet been integrated into 
models that predict the spread and cycling of point-source nitrate 
pollution. Given the increasing availability of high-frequency nitrate 
sensors and the large temporal variability of processes that affect the 
downstream transport of nitrate from local sources, it is both practical 
and logical to incorporate high-temporal resolution data into our models 
(Huang et al., 2022; Yang et al., 2023). 

In this study, we incorporate high-frequency nitrate sensor data into 
the evaluation of a hydrodynamic model to gain insights into nitrate 
dynamics at fine temporal and spatial scales. Specifically, the objectives 
of this study were to model and sense how a controlled release of ni-
trogen from a decommissioned fertilizer plant disperses downstream 
and is taken up by aquatic biota in the Kansas River, USA. Over the 
course of three months, we collected 15-minute nitrate data from two 
locations downstream of the fertilizer release. We constructed a two- 
dimensional numerical model of water and nitrate transport along the 
Kansas River and calibrated it to the high-frequency sensing data at the 
two locations. We advance understanding of the dispersion and cycling 
of nitrate in large-river systems and provide recommendations for 
integrating sensor data into numerical model evaluation. 

Fig. 1. (a) The Kansas River watershed is located in the central US, across the states of KS, CO, and NE. Our study corridor is situated between the cities of Lawrence 
(near “Bowersock Dam”) and DeSoto, KS (near “Far Site”). Gaging stations, sensor locations, and Farmland Fertilizer Plant inputs are mapped. Time-series plots of 
discharge (b, e) and nitrate (c, d, f) are shown for the Bowersock Dam, Farmland Release, Near Site, and Far Site. Vertical bars in the diel variation subplots (c, f) 
indicate 12-hour increments, alternating between midnight and noon. 
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2. Study Site and Materials 

2.1. Study Site 

The Kansas River, located in northeastern Kansas, is a 274 km-long 
sand bed river that begins at the confluence of the Smokey Hill and 
Republican Rivers (Junction City, KS) and feeds into the Missouri River 
in Kansas City, MO (Fig. 1a). The river drains 155,000 km2 of Kansas, 
Colorado, and Nebraska, has an average slope of less than 0.6 m per km, 
and is classified as an eighth-order, prairie, wide, and shallow river with 
an average width and depth of 164 m and 1.5 m, respectively. The mean 
annual flow recorded during the past twenty years in the Kansas River 
ranges from 55 m3/s in 2003 to 640 m3/s in 2019. The timing of flow in 
the Kansas River is regulated by releases from eighteen federal reservoirs 
that are located on major tributaries to the Kansas River, constituting 
approximately 80% of the basin’s total drainage area. The reservoir 
releases are specifically crucial during a drought period like 2018 as 
they provide drinking water source for about 800,000 people in Kansas. 
The only major dam built on the mainstem of the Kansas River is the 
Bowersock Dam in Lawrence, KS, which hosts the only functional hy-
droelectric plant in the state and is located directly upstream of our 
study reach. 

Starting in November 2017, and for a period of six months, the City 
of Lawrence, KS, was permitted to strategically release about 114 
million liters of nitrogen-contaminated water from a decommissioned 
fertilizer plant (named “Farmland”) into the Kansas River at a maximum 
rate of 1.9 million liters per day. The City’s aim was to avert a potential 
uncontrolled overflow of fertilizer from the contaminated storage sites 
and into the Kansas River. The released water was heavily polluted with 
average nitrate and ammonia concentrations of 342 mg NO−

3 − N L− 1 and 
125 mg NH+

4 − N L− 1, respectively (Kelly et al., 2021). This planned 
discharge of highly contaminated waste served as a unique opportunity 
to conduct an experiment to understand the effects of point-source ni-
trogen pollution on physical dispersion and biogeochemistry in a 
large-river ecosystem. In this study, we analyze and model a 33.5 km 
reach of the Kansas River that was impacted by the release, extending 
from 2.5 km upstream of the release at Bowersock Dam to 31 km 
downstream of the release at DeSoto, KS. 

2.2. Materials 

Fifteen-minute discharge data were available at the upstream (USGS 
06891080, Fig. 1b) and downstream (USGS 06892350, Fig. 1e) ends of 
our study region and provided the hydrologic boundary conditions for 
our water quality model. The high-frequency nitrate sensor data used for 
model evaluation in this study were collected and presented by Kelly 
and others (2021). Fifteen-minute nitrate data were collected from two 
locations, including one site that was monitored in Kelly et al. 2021 
(starting three months after releases began, Fig. 1c) and one that is 
continuously operated by the USGS (Fig. 1f). The relative locations of 
the two sensors to the Farmland input include (1) a near-bank sensor 0.4 
km downstream ("Near Site”), and (2) a mid-river sensor 31 km down-
stream at DeSoto (“Far Site”). Kelly and colleagues (2021) observed two 
additional locations as part of their research; however, these sites were 
excluded from this study due to factors such as effects near the dam, 
sensor burial, and malfunctions. These issues led to lower data quality 
and availability compared to the other sites. 

The Near Site sensor was positioned on the proximal (right) bank of 
the river. It was hypothesized that this site would capture the highly 
dynamic physical dispersion of newly introduced nitrogen into the river, 
given its proximity to the release. The Far Site sensor was deployed from 
a bridge into the middle of the river, thus capturing prevailing flow 
conditions. It was hypothesized that because the Far Site is sufficiently 
downstream of complete river mixing, i.e., physical river mixing no 
longer dominates variations in nitrate concentration, it would capture 

greater information relative to biogeochemical uptake processes. The 
deployed nitrate sensors were fixed optical sensors with 2-mm path 
length and a detection limit of 0.1 mg-N L− 1 (HACH Nitratax Plus SC, 
Loveland, CO, US). All quality assurance and controls steps taken for the 
high-frequency nitrate data are documented in Kelly and others (2021). 
The river width at the cross-sections where sensors were installed were 
211 m and 138 m for the Near and Far Sites, respectively. Daily volume 
and nitrate concentrations (Fig. 1d) of farmland waste pumped into the 
river were obtained from the City of Lawrence. 

3. Methods 

The two-dimensional (2D) flow and nitrate domains in our study area 
were simulated using the MIKE 21 FM model, which was developed by 
the Danish Hydraulic Institute (DHI). MIKE 21 FM employs a Flexible 
Mesh (FM), cell-centered Finite Volume spatial discretization scheme 
with unstructured triangular grids throughout the model region. This 
approach was selected as it provides more geometric flexibility and the 
possibility of altering the resolution at certain areas of interest in the 
model. In this study, we utilized the hydrodynamic (HD) and transport 
(TR) modules in MIKE 21 FM to simulate the river flow and transport/ 
cycling of nitrate, respectively. Further, we used lower order schemes for 
both spatial and time integration in our model due to availability of time 
and computational resources. More details on the MIKE 21 FM model-
ling can be obtained in the technical notes published by DHI (Danish 
Hydraulic Institute, 2019). 

Overall, our research procedure can be summarized as follows: 1) the 
hydrodynamics model was developed, calibrated, and validated to 
observed river discharge, and 2) with confidence in the validity of the 
hydrodynamic processes, a transport model for dispersion and cycling of 
nitrate was constructed. Then, 3) a grid sensitivity analysis was per-
formed to find the most appropriate grid resolution for the model to 
accurately capture nitrate sensor observations, and 4) physical nitrate 
dispersion was calibrated and the sensitivity of the model results to 
turbulent mixing was explored. Finally, 5) biochemical nitrate uptake 
was calibrated to the observed high-frequency diel nitrate fluctuations 
that occur due to temperature and light dependency of riverine biota. 

3.1. Water Model 

3.1.1. Numerical Model Equations 
The MIKE 21 FM hydrodynamic module solves the depth-averaged 

Saint-Venant equations (1,2,3) to obtain the water depth and velocity 
components: 

∂th + ∂x(hu) + ∂y(hv) = S (1)  

∂t(hu) + ∂y(huv) + ∂x

(

hu2 +
gh2

2

)

= gh
(
S0x − Sfx

)
(2)  

∂t(hv) + ∂x(huv) + ∂y

(

hv2 +
gh2

2

)

= gh
(
S0y − Sfy

)
(3)  

where h is the water depth, (u, v) are the longitudinal and transverse 
depth-averaged velocities, g is the gravitational constant, S is the source 
term, S0x and S0y are the water surface gradients, Sfxand Sfy are the 
roughness terms (depending on the roughness law), and z is topography. 
These equations are the simplified version of the Navier-Stokes equa-
tions that are valid assuming: 1) negligible velocity components and 
hydrostatic pressure distribution in the vertical direction, 2) incom-
pressible and homogenous fluid, and 3) small channel slopes. Our study 
satisfies these assumptions as the 33-km stretch of Kansas River we study 
is a shallow, wide river with a mean bed slope of 0.0004 m/m. 

3.1.2. Data inputs, boundary conditions, and model uncertainty 
Resolving the physics of water flow relies on high quality 
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topographic data. We combined aerial 2-m resolution digital elevation 
models (AIMS, 2020) with bathymetric cross-sectional surveys of the 
Kansas River (personal communication with USACE, 2022) to constrain 
topographical inputs. The numerical grid was developed using the mesh 
generator tool in MIKE 21 FM with an average grid resolution of 20-m 
and a total number of grid cells on the order of 15,000 (Figure S1). 
The boundary conditions for the model included the upstream discharge 
at the Bowersock Dam and the downstream free outflow at the DeSoto. 
The daily discharge of waste effluent into the river was added as a 
“varying in time” point-source discharge. Groundwater inputs were not 
considered due to a lack of available data for parameterization and a 
satisfactory closing of the water budget to within 5% for the 33-km reach 
using only the upstream river and waste inputs. The critical 
Courant-Friedrichs-Levy (CFL) number was set at 0.8 and a time step 
interval of 30 seconds was used for the simulations. Density was 
assumed to be barotropic (not a function of salinity and temperature) 
and a flux based Smagorinsky formulation was selected to represent the 
horizontal eddy viscosity with a default Smagorinsky constant value of 
0.28 m2/s. The riverbed resistance was represented by a constant 
Manning roughness value that was calibrated to optimize flow predic-
tion. Model goodness of fit was based on comparison of modeled versus 
observed discharge using the Kling-Gupta Efficiency (KGE), which we 
define below in Section 3.2.3. 

3.2. Nitrate Model 

3.2.1. Numerical Model Equations 
Using the hydrodynamic parameters of the river (h, u, v), we simu-

lated the dispersal and fate of nitrate using the depth-integrated con-
servation equation for a scalar quantity: 

∂hC
∂t

+
∂huC

∂x
+

∂hvC
∂y

= hFC − hkpC + hCsS (4)  

where C is the depth-averaged nitrate concentration, kp is the nitrate 
decay/uptake rate, S is the load of nitrate source discharged by the 
fertilizer release, CS is the nitrate concentration in the source, FC is the 

horizontal dispersion term and calculated as 
[

∂
∂x
(
DH

∂
∂x
)
+ ∂

∂y

(
DH

∂
∂y

)]
C, 

and DH is the horizontal dispersion coefficient. Of particular interest for 
pollutant modeling, and one goal of this study, is the estimation of DH 
and kp. 

Dispersion is parameterized with a scaled eddy viscosity approach as: 

DH = νt/St (5)  

where νt is the sub-grid scale eddy viscosity and St is the turbulent 
Schmidt number. The eddy viscosity can be calculated using the Sma-
gorinsky formulation as C2

s Δ2 ̅̅̅̅̅̅̅̅̅̅̅̅̅
2SijSij

√
, where Cs is Smagorinsky con-

stant, Δ is the characteristic length of the grid, and Sij is the deformation 
tensor (Rodi, 2000). The turbulent Schmidt number represents the ratio 
of momentum diffusion to mass diffusion and is analogous to the tur-
bulent Prandtl number. An exact formulation for St is not 
well-established given its turbulent nature, thus it is often calibrated to 
data observations; typical St values for open channel flows range from 
0.2 to 2.1 (Gualtieri et al., 2017). 

Nitrate uptake is parameterized with a modified first-order kinetics 
formulation as: 

kp = kref fdayQ(T − Tref)/10
10 (6)  

where kref is the reference uptake rate for T = 15◦C, fday is a linear 
function bound from 0 (pre-dawn, lowest reactivity) to 1 (near-dusk, 
greatest reactivity) to simulate diel variations in uptake, Q10 is the 
temperature coefficient that describes the rate of reaction increase with 
every 10◦C rise in temperature, T is the water temperature, and Tref is 
the reference temperature. Q10 and Tref for nitrate uptake were 

determined from the literature as 3.1 and 15◦C, respectively (Reay et al., 
1999). As kp varies with temperature, we report a bulk uptake rate kp, 
which represents the mean uptake integrated over the study period. 
While removal can occur via pelagic and benthic algae as well as bac-
teria, MIKE-21 parameterizes a single rate for all reactions, thus this 
reflects the combined effects of multiple processes and interfaces. Later, 
we discuss how we vary these two parameters (St and kp) over a wide 
range derived from the literature to calibrate them and test their 
sensitivity. We constrain the uncertainty related to determining St and kp 

using aquatic sensors positioned close to and far from the waste release, 
respectively. 

3.2.2. Data inputs and boundary conditions 
The upstream boundary condition for the model defines a ‘back-

ground/ambient’ nitrate concentration that exists in the river prior to 
contamination by the fertilizer addition at Farmland. Originally, we 
intended to use a nitrate sensor at Bowersock Dam as the upstream 
input, but due to sensor interference these data were rendered unusable 
(Kelly et al., 2021). Instead, daily grab sample data collected by the City 
of Lawrence from Burcham Park, approximately 0.5 km upstream of the 
Bowersock Dam, were used (Figure S2). These samples were collected 
from the bank of the river near a slow-moving portion of the flow, which 
may not fully represent nitrate concentrations across the river-width. 
Thus, we averaged data collected during high flow conditions, where 
local effects are expected to be minimized, and set this as a constant 
upstream input for the month of February (Figure S2). For March, during 
the low-flow period (3/5/2018 – 3/31/2018), all samples collected at 
Burcham Park were below the detection limit due to local bank effects. 
To overcome this, we adopted a constant background concentration for 
this period, equivalent to the lowest concentration measured by a 
high-frequency sensor located at the Far Site (Figure S2). The Farmland 
Release was treated as a point-source. While the Farmland Release was 
composed of both nitrate and ammonium, only nitrate was detected in 
the downstream river (most ammonium samples were below detection 
limit; Kelly et al., 2021). Thus, we assumed rapid nitrification of 
ammonium, and we combined the NH+

4 and NO−
3 loads into a single 

point source of NO−
3 . Once the nitrate concentrations of the upstream 

inflow and point source were determined, the dispersion and uptake 
processes could then be modeled to simulate the evolution of the nitrate 
plume in the downstream direction. As part of the numerical scheme, as 
in the hydrodynamic model, we used a zero gradient (Neumann) 
boundary condition for the downstream section of the transport model. 

3.2.3. Model calibration and uncertainty 
Model performance was evaluated by comparing the simulated ni-

trate concentrations to the observed timeseries recorded by the sensors 
at the two sites. To achieve the best-performing numerical model, we 
considered and assessed the sensitivity of three components that exert 
control over simulated concentrations: the resolution of the numerical 
grid, the value of the turbulent Schmidt number (St), and the uptake/ 
decay (kp) rate. First, in the immediate downstream vicinity of the 
Farmland Release, contaminated waste material on the order of 100s of 
mg-N/L rapidly mixes with background nitrate concentrations of less 
than 1 mg-N/L. To resolve the large mixing gradients that occur in this 
area, a finer resolution mesh is necessary than is required further 
downstream, where concentration gradients are much lower. Therefore, 
we determined the appropriate numerical grid resolution to resolve 
sensor readings using six different grid sizes ranging from 2.5 m to 20 m 
around the release point and the Near Site. Second, to evaluate the 
model’s sensitivity to the selection of the horizontal dispersion coeffi-
cient (DH), which depends on St, we assessed four different values of St 
(0.25, 0.50, 1.00, and 2.00), spanning the range reported in the litera-
ture (Gualtieri et al., 2017). Third, to fine-tune the modeled uptake of 
nitrate, we varied the decay rate (kp) between a value of zero (conser-
vative transport) and several values near the upper bound of estimates 
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reported in the literature (0.12, 0.24, and 0.36 1/d). Once the uncer-
tainty related to grid size, dispersion, and uptake was resolved, we used 
the optimal value for each of the three components to create a ‘best run’ 
for the model simulation. The non-optimal combinations of grid size, 
dispersion, and uptake were used to create uncertainty bounds for the 
‘best run’ prediction. To test the influence of biochemical uptake to the 
overall nitrate concentration, we compared results from our optimized 
reactive transport model to those of a conservative model where kp = 0. 

We compared the relative influence of transport time and reaction 
time at each site by calculating the Damköhler number (Da) as 

Da = τtrans/τreact (7)  

where τtrans represents the transport timescale (τtrans = Lt /u) and τreact 

represents the reaction timescale (τreact = 1/kp). Lt, u, and kp are 
representative length scales, mean streamwise velocities, and reaction 
rates, respectively, at the two sites. Lt is equal to 400 m for Near Site and 
31,000 m for far site. u is equal to 0.12 m/s for the Near Site, which is 
close to a streambank, and 0.61 m/s for the Far Site, which is situated in 
the channel thalweg. kp is equivalent for both sites and is to be deter-
mined through model calibration. A value of Da equal to 1 bifurcates 
nitrate dynamics into transport (Da < 1) or reaction (Da > 1) dominated 
processes (Ocampo et al., 2006). 

To quantify the goodness-of-fit of our modeled simulations, we 
evaluated performance using the Kling-Gupta efficiency (KGE), which is 
calculated as: 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

(8)  

where r, α, and β are the correlation, standard deviation, and bias terms, 
respectively. r is calculated as cov(xs,xo)/σsσo, α is calculated as σs/σ0, 
and β is calculated as μs/μ0 (Gupta et al., 2009). The mean and standard 
deviation terms are represented by μ and σ, respectively, while “o” and 
“s” represent observations and simulations, respectively. To further 
assess model goodness-of-fit, we compare the modeled versus observed 
relative magnitudes of diel nitrate swings (Cdiel/Cmax) at the Far Site. 
Biochemical effects, which are mediated by temperature and light, cause 
distinct diel swings in riverine nitrate (Cdiel), from a maximum con-
centration in the pre-dawn hours (Cmax) to a minimum concentration in 
the near-dusk hours. Prior to calculating Cdiel, a third-order, 12-hour 
Savitzky-Golay filter was used to smooth nitrate sensor readings and 
remove the influence of transient fluctuations in sensor readings while 
leaving intact dominant trends. A beta distribution, bound between 
0 and 1, was used to plot the distribution of Cdiel/Cmax for comparison 
between data observations and model simulations. Lastly, due to rela-
tively short period of our study (two months) and unique nitrate 
pollution conditions, we used the entire length of data for calibration 
without a separate validation dataset. Recent research has suggested 
that the traditional split-sample approach may not always be necessary 
(Shen et al., 2022), hence we proceed with the stated evaluation 
approach. 

4. Results 

4.1. Water Model 

Hydrology in the Kansas River is heavily influenced by upstream 
reservoirs, which have dammed approximately 80% of the river’s 
drainage basin and serve to store water during the wet season and 
release it during the dry season. Therefore, spikes in the hydrograph are 
associated with reservoir water releases as much as they are with runoff 
arrival (Fig. 1 b, c). Winter in the Kansas River basin is a period of less 
precipitation compared to summer, but because of reservoir releases, 
flows are higher during the late winter period (February, average flow of 
75.6 m3/s) than they are in the early spring (March, average flow of 46.2 
m3/s). Flow in the river was dynamic due to releases from upstream 

reservoirs (Figure S3) as well as four significant precipitation events 
(Ptotal > 4cm), which occurred on Feb. 2, Feb. 9, Mar. 19, and Mar 26. 
This unique hydrology influences the depth, velocity, and timing of 
water transport in our 33-km modeling domain. 

The hydrodynamic model we developed does exceptionally well to 
simulate flow transport dynamics from Bowersock Dam to DeSoto dur-
ing our two-month study period (KGE = 0.89; Fig. 2). Discharge peaks 
are well captured by the model for most parts of the high flow period, 
but with some underestimation during the latter months. The calibrated 
Manning’s n was 0.045 although sensitivity analyses showed negligible 
dependence of the results on the selection of Manning’s n (varied from 
0.02 to 0.06). Flow depths were generally larger in the upstream portion 
of the study reach compared to the rest of the reach (Fig. 2). The mean 
depth-averaged velocities at the near-bank and mid-river sensor sites 
were 0.12 m/s and 0.61 m/s, respectively. Successful simulation of river 
hydraulics in our study section gave us confidence to carry forward these 
results into a simulation of nitrate biochemistry. 

4.2. Nitrate Model 

4.2.1. High-frequency data observations 
Much like the hydrology of the Kansas River, reservoir releases 

impart considerable influence on the overall magnitude of nitrate con-
centration in the river (Fig. 1). The Far Site represents the net-effect of 
background nitrate delivered by reservoir releases and runoff as well as 
nitrate waste additions from Farmland. For this reason, three distinct 
periods in nitrate concentration occur at the Far Site: (1) elevated con-
centrations in February, (2) lower concentrations in March, and (3) ni-
trate spikes during two storm events in March (Fig. 1f). Nitrate 
concentrations in the river are greater when reservoir releases are high 
(C = 0.82 mg-NL-1 and Qreleases = 56 m3/s in February) versus when 
they are low (C = 0.46 mg-NL-1 and Qreleases = 22 m3/s in March), 
indicating the importance of reservoir releases to background riverine 
nitrate concentrations. In late March, several nitrate spikes in concen-
tration likely represent the delivery of agricultural runoff from within 
the 33-km study section, as several large discharge events were observed 
in the downstream gage (Fig. 1e), but not at the upstream gage (Fig. 1b). 
At the Near Site, nitrate concentrations were an order of magnitude 
larger (C = 5.3 mg − N L− 1) than at Far Site (C = 0.63 mg − N L− 1) 
due to the proximity of the Near Site to the Farmland release (Fig. 1c). 
During February, when reservoir contributions are high, the nitrate 
concentrations at Near Site were relatively small (C = 3.58 mg −

N L− 1) due to dilution by large quantities of reservoir water. However, 
during the second half of the study period, when reservoir contributions 
decrease, the fertilizer waste constitutes a larger fraction of total river 
flow thus the Near Site had greater nitrate concentrations (C =

6.15 mg − N L− 1). 
Diel behavior varied both in terms of timing and magnitude at the 

two sites (Fig. 3). At the Near Site, the normalized diel (C/Cmax) curve 
typically crested at around 6 AM with the trough following 8 hours later 
at 2 PM. This behavior is typical of uptake mediated by phototrophs. On 
the other hand, at the Far Site, the inverse was observed; the trough of 
the C/Cmax curve occurred at around 6 AM with the crest occurring 8 
hours later at 2 PM, suggesting other drivers. Regarding the magnitude 
of Cdiel/Cmax, the Near Site had relatively greater swings (median: 0.27) 
than did the Far Site (median: 0.13) over the two-month study period. 
The Near Site showed little variability in median Cdiel/Cmax from 
February (0.28) to March (0.26), whereas median Cdiel/Cmax at the Far 
Site varied more considerably from February (0.11) to March (0.23). It is 
important to note that the diel patterns in Fig. 3 are not from a single 
event, but rather represent the median C/Cmax at a given timestep from 
all observed diel patterns at a site during the study. With an under-
standing of nitrate dynamics informed by high frequency sensor data, 
we proceed to model the dispersion and uptake of nitrate in the river 
corridor. 
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4.2.2. Numerical model simulations 
The optimal nitrate model, which includes both physical and 

biochemical processes, has very good performance at the Near Site (KGE 
= 0.76) and the Far Site (KGE = 0.70) and captures the order-of- 
magnitude difference in nitrate concentrations between the sites and 
the temporal evolution of concentrations at each site (Fig. 4). Close to 
the Farmland Release (inset panel in Fig. 4), nitrate gradients are 
extremely high, with fertilizer effluent (C ≈ 500 mg N L− 1) rapidly 
mixing with the ambient river water (C = 0.46 mg N L− 1). The volu-
metric discharge of fertilizer effluent is quite small (Q ≈ 0.02 m3 s− 1) 
compared to the total river discharge (Q = 61.5 m3 s− 1), but because of 
the nearly 1000-fold difference in concentrations, the effluent dramat-
ically alters the river’s nitrate chemistry and raises overall river con-
centrations (from 0.46 to 0.63 mg N L− 1). The Near Site is located 0.3 km 
downstream of the Farmland Release, on the same side of the riverbank, 
and concentrations reduce substantially by this point (down from > 500 
to 5.4 mg N L− 1) as the fertilizer release is diluted and mixed. Near- 
complete lateral mixing is achieved around the first major bend in the 
Kansas River, approximately 4.5 km downstream of the release, after 
which biochemical uptake – rather than turbulent mixing – becomes 
prominent in controlling longitudinal and temporal variation in nitrate 
concentrations. 

We simulated conservative transport conditions, i.e., dispersion oc-
curs but not uptake (kp = 0), to assess the importance of biological ac-
tivity in the river. Model results for the conservative condition (KGE =
0.69) are nearly identical to the optimal model results (KGE = 0.70), 
which include uptake (Fig. 4). Despite similarity in the model perfor-
mance metrics, the conservative model generally over-estimates con-
centrations, which the inclusion of uptake improves upon. Further, only 
the reactive model emulates the biologically driven diel fluctuations of 
nitrate that are observed in the data (Fig. 5). In February, the sensor data 
showed that median Cdiel/Cmax was 0.11 compared to 0.04, 0.06, and 
0.08 for the low, medium, and high kp values, respectively. In the 
warmer month of March, the sensor data showed that median Cdiel/Cmax 
was 0.23 compared to 0.07, 0.08, and 0.11 for the low, medium, and 
high kp values, respectively. Slightly larger modeled estimates of Cdiel/ 
Cmax occur in March compared to February, which are attributed to 
temperature-driven effects on first-order kinetics (ΔT = +6.2◦C in 
March). However, the observed Cdiel/Cmax values show a dramatic in-
crease from 0.11 to 0.23, which cannot be attributed entirely to tem-
perature changes. Regarding the timing of C/Cmax, our model similarly 
showed a mid-day crest in the diel curve at around 1 PM (not plotted), 
similar to the data observed at Far Site (Fig. 3) but with a less pro-
nounced Cdiel magnitude, as discussed earlier. 

4.2.3. Model evaluation and uncertainty 
To obtain the best nitrate model estimates and assess the uncertainty 

in the selection of triangular grid resolutions, turbulent Schmidt 
numbers (St), and nitrate uptake rates (kp), we varied these model pa-
rameters over a specific range to conduct a sensitivity analysis (Tables 1 
and 2). Our results indicated that model performance at the Near Site is 
quite sensitive to the selection of grid resolution and moderately sensi-
tive to the selection of St (Table 1). On the other hand, the Near Site is 
not at all sensitive to kp due the dominance of physical processes near 
the release (Table 2). Regarding the Far Site, model performance is 
sensitive to the selection of kp, but not to the selection of grid size or St 
due to the site being far downstream of where complete mixing has 
occurred. The Damköhler number (Da) was an order of magnitude 
greater at the Far Site (0.210) compared to the Near Site (0.014), sug-
gesting that the relative importance of reaction processes grows as 
material travels further downstream. Thus, the Near Site was used to 
fine-tune physical processes while the Far Site was used to fine-tune 
biochemical processes. 

The grid sensitivity analysis was performed using six different grid 
sizes ranging from 2.5 m to 20 m. For the Near Site, we obtained the best 
model results with the 4.5 m grid, with the grid resolutions larger and 
smaller than this value leading to overestimation and underestimation 
of the nitrate concentrations, respectively. For example, the peak nitrate 
concentration occurred on Mar. 19 and was estimated as 0.75 mg/L 

Fig. 2. Time-series of modeled versus observed discharge at the downstream Far Site (left panel). Modeled flow depths during a highly inundated period on February 
8, 2018, which show a sequence of pools and riffles around a meander (right panel). KGE = Kling-Gupta Efficiency. 

Fig. 3. Observed diel nitrate variation (Cdiel), at the Near Site and Far Site, 
normalized to daily maximum concentration (Cmax). Solid lines and shaded 
regions represent the median and 25th percentile bounds of C/Cmax, respec-
tively, calculated at each timestep for all days at a site. The eight-hour shift in 
the daily peak C between the sites is denoted by tshift. 
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using a 20 m grid or 19.66 mg/L using a 2.5 m grid, indicating the 
significance of selecting a proper spatial discretization for the area close 
to the release point. For the Far Site, however, we got satisfactory results 
regardless of the choice of the grid resolution, as indicated by the KGE 
difference smaller than 0.04 between the best and worst results at this 
site (Table 1). 

The nitrate dispersion sensitivity analysis was performed using four 
different St values (0.25, 0.50, 1.00, and 2.00; Table 1). The best model 
performance at the Near Site was obtained with an St of 1.00 for the Near 
Site (KGE = 0.76). In contrast, at the Far Site, we observed very small 
dependence of KGE on St across all simulations (maximum KGE differ-
ence of 0.01). The length required for full mixing of the released nitrate 
across the channel ranged from 3.6 km for 19.9 km, in models using 2.00 
and 0.25 as the St values, respectively, indicating that by the time the 
nitrate plume arrives to the downstream location, it has been fully mixed 
for at least 10 km irrespective of parameterization. 

By fixing the grid resolution and St values to 4.5 m and 1.00, 
respectively, we analyzed the impact of kp on nitrate concentrations at 
the Far Site by varying kp between 0 and 0.36 1/d. At conservative 
transport conditions (kp = 0) and at the lowest uptake rate (kp = 0.12 1/ 
d), model performance is generally high. Model performance at the Far 
Site decreases as higher uptake rates (0.24 and 0.36 1/d) are used, due to 
over-estimation of biotic uptake. In sum, the optimal model has a grid 
size of 4.5 m near the Farmland Release, a turbulent Schmidt number 
equal to 1.00, and a nitrate uptake rate of 0.12 1/d. 

Fig. 4. Calibrated nitrate model results at the Near and Far Sites during the spring of 2018. Shading represents uncertainty bounds on model outputs. A spatial map 
of nitrate predictions is also shown for the wettest day of the study period February 25, 2018, with an inset to highlight large concentration gradients near the 
Farmland Release. KGE = Kling-Gupta Efficiency. 

Fig. 5. Comparison of observed and modeled diel nitrate variation, Cdiel, 
normalized to daily maximum concentration, Cmax, at the Far Site. Model results 
are shown for three different uptake rates (kp, 1/d). Modeled results of Cdiel/ 
Cmax are similar between February and March with a slight increase in March 
due to warmer waters and increased rates. On the other hand, data results show 
a decoupling of Cdiel/Cmax between February and March, which cannot be 
attributed to temperature changes alone, indicating non-first order processes. 
The units of Cmean are mg-N/L. 

Table 1 
Sequential evaluation of model sensitivity to physical parameters: grid resolu-
tion and turbulent Schmidt number (St). Grid size was calibrated first. There-
after, St was calibrated second. The optimal parameterization at each step in the 
sequential evaluation is indicated by bold font. KGE = Kling-Gupta Efficiency.  

Grid Size 
(m) 

Near Site 
(KGE) 

Far Site 
(KGE) 

St (-) Near Site 
(KGE) 

Far Site 
(KGE) 

20 -0.35 0.72 for grid size = 4.5 m 
10 0.06 0.69  
5 0.60 0.73 0.25 0.42 0.68 
4.5 0.76 0.70 0.5 0.68 0.69 
3.8 0.65 0.71 1 0.76 0.69 
2.5 -0.22 0.71 2 0.59 0.69  

Table 2 
Evaluation of model sensitivity to the biochemical parameter: mean uptake rate 
(kp). Physical process optimization of grid size and St is inherited from Table 1. 
The optimal parameterization for biochemical uptake is indicated by bold font. 
KGE = Kling-Gupta Efficiency.  

kp (d− 1) Near Site (KGE) Far Site (KGE) 

for grid size = 4.5 m and St = 1.00 
0 0.76 0.69 
0.12 0.76 0.70 
0.24 0.76 0.62 
0.36 0.76 0.54  
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5. Discussion 

We developed a 2-D hydrodynamic model that was fine-tuned using 
high-frequency nitrate sensor data to better comprehend, with high 
temporal accuracy, the transport and cycling of nitrate released from a 
fertilizer plant into a large river. Specifically, we asked: (1) What ad-
vantages does integrating high-frequency sensor data offer in under-
standing biogeochemical processes and improving model evaluation? 
(2) Can the model accurately predict the magnitude of diel nitrate var-
iations in nitrate dynamics that occur due to biotic assimilation? (3) 
How sensitive are the model results to variations in grid size, turbulent 
dispersion, and decay rate, and how does this sensitivity change over 
space and time? 

To the first question, integrating high-frequency sensor data not only 
“fills the gaps” between discrete grab-samples in a timeseries, providing 
more model evaluation data, but it also reveals pertinent biochemical 
processes, such as diel nitrate variability, which are typically not 
available from sampling at coarser resolutions. This additional layer of 
knowledge about the system provides us an opportunity to improve our 
models to have greater fidelity to the processes we seek to simulate. To 
the second question, we show that while the hydrodynamic model used 
in this study (MIKE 21) can satisfactorily simulate overall trends 
observed in the nitrate sensor data, it underestimates the magnitude of 
diel nitrate variation. This potentially occurs because the reactive 
module within MIKE 21 is built on first-order kinetics, which some 
systems may not always exhibit – such as the Kansas River during this 
prolonged period of unusually high nitrate loading. Lastly, to the third 
question, we find that turbulent mixing and dispersion dominate nitrate 
dynamics near the controlled release, but that after a longitudinal dis-
tance of approximately 20 river widths, nitrate reactivity becomes a 
more prominent control. 

5.1. Transport of nitrate in a large river system, fine-tuning of dispersion 
and uptake 

Our understanding of the fate of point-source nitrate pollution within 
downstream water bodies is limited by our ability to accurately predict 
dispersion (a physical aspect) and uptake (a biochemical aspect), which 
are influenced by hydrological, biological, and morphological factors 
(Jung et al., 2019; Kim et al., 2011). While large rivers are known to 
have considerable mixing due to turbulent flow and complex channel 
morphology, predicted dispersion coefficients in such rivers vary by an 
order of magnitude, highlighting the need to improve our understanding 
of mixing processes (Gond et al., 2021; Pilechi et al., 2016). While it has 
long been recognized that small streams have a higher nitrate removal 
efficiency (Peterson et al., 2001), recent studies have also shown that 
large rivers can play a significant role in retaining and transforming 
nutrients, thereby reducing their downstream transport (Kelly et al., 
2021; Newcomer Johnson et al., 2016). However, the detailed mecha-
nisms that govern these transformations in large rivers are largely un-
clear. For example, in a study conducted in the same reach as ours, Kelly 
et al. (2021) did not observe any impact of nutrient saturation in the 
vicinity of the Farmland Release, which contrasts with previous findings 
that indicate that high nitrate concentrations can lead to uptake satu-
ration (Wollheim et al., 2018). 

Regarding the physical aspects, our best model performance was 
achieved with a turbulent Schmidt number (St) of 1, which falls within 
the range of turbulent Schmidt numbers reported in the literature 
(Gualtieri et al., 2017; Tominaga and Stathopoulos, 2007). However, it 
is important to acknowledge that the value of the turbulent Schmidt 
number can vary significantly depending on factors such as flow con-
ditions, geometry, and the specific substance being transported. There-
fore, direct comparison of our obtained value with other values in the 
literature can be challenging due to these contextual differences. We 
purposefully calibrated the turbulent Schmidt number using the Near 
Site sensor data because the large gradients in longitudinal and lateral 

concentrations, and the relevance of physical processes as indicated by 
the Damköhler number. Previous studies have shown mixing co-
efficients are generally larger at the apex of channel bends (where the 
Near Site is located) where secondary flows can accelerate the mixing 
process (Jung et al., 2019). Our findings indicate that the mixing coef-
ficient near the point of release has a significant impact on the accuracy 
of the model results. For reliable predictions of areas near the release 
point, it is crucial to calibrate the model using observed data collected 
from a site located nearby. Otherwise, the model results may not be 
accurate for those areas. In our case, the nitrate results become inde-
pendent from the selection of the horizontal dispersion coefficient once 
the fully mixed condition is reached, which occurred after approxi-
mately 20 river widths in the optimal model scenario. 

Regarding the biochemical aspects, a nitrogen mass balance of the 
Kansas River system during the two-month study period showed that 
154 tN (metric tons of N) flowed into our study reach from the upstream 
basin. The controlled release of fertilizer added an additional 60 tN to 
the study reach, bringing the total N inputs to 214 tN. Assuming con-
servative conditions in the river, i.e., no biochemical transformation 
during transport, this would be the amount of nitrogen exported 
downstream. However, due to modeled nitrogen uptake, which we as-
sume to be entirely biotic assimilation as denitrification rates were 
measured to be minor (Kelly et al., 2021), this number was lowered from 
214 to 185 tN. In sum, uptake of reactive nitrogen accounted for 29 tN of 
removal, at a rate of 0.10 g-N m− 2 d− 1, which represents 14% of the total 
river load during this period. Thus, nearly half the fertilizer addition was 
assimilated within the 33-km reach. This areal uptake rate is comparable 
to studies of other large, polluted river systems (Finkler et al., 2023; 
Newcomer Johnson et al., 2016; Rode et al., 2016a). Thus, the Kansas 
River has some ability to mitigate nitrogen pollution through temporary 
nitrogen removal. 

By utilizing a formulation of uptake rate that takes into consideration 
the time of day and temperature (Equation 6), diel variations due to 
biological activity were represented in our model. At the Near Site, while 
we observed diel patterns in the sensor data (Fig. 3), we observed no 
noticeable difference in our model performance at the Near Site when 
applying kp within the range of 0 to 0.36 1/d (Table 2). We largely 
attribute this insensitivity to the significant nitrogen loading from 
nearby Farmland Release overriding the modeled nitrate signal. In 
contrast, our model results for the Far Site, 33-km downstream of the 
release, were much more sensitive to the uptake parameter. The best 
model performance was obtained with a mean decay rate of 0.12 1/ 
d (normalized to area: 0.10 g-N m− 2 d− 1), which is smaller than the 
uptake rate calculated from time-series analysis by Kelly et al. (2021) for 
the same site (0.58 ± 0.38 g-N m− 2 d− 1). Model results using larger 
uptake values (up to 0.36 1/d, corresponding to 0.30 g-N m− 2 d− 1) were 
within the standard deviation of the Kelly et. al (2021) time-series re-
sults but were sub-optimal in terms of overall performance. Differences 
in uptake estimates between the two methods could be a result of spatial 
scale: the time-series analysis captures the heterogeneity of a single 
location using sensor measurements whereas the numerical model 
simulates the entire reach, introducing homogeneity as fine features are 
smoothed out. Our calibrated uptake rate was found to be in the range of 
polluted rivers and streams (Burns et al., 2019; Jarvie et al., 2018) but 
significantly larger than natural streams (Heffernan and Cohen, 2010; 
Rode et al., 2016a), suggesting that point-source pollution can influence 
biogeochemical processes that extend up to tens of kilometers from the 
release point. 

5.2. Integration of high-frequency sensing data into numerical model 
evaluation 

The increasing availability of high-frequency nitrate data provides 
an opportunity to improve monitoring resolution to the timescales of 
biogeochemical processes in rivers, which has resulted in a growing 
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demand to incorporate such data into numerical models (Husic et al., 
2023). It is the typical notion that models lose effectiveness when 
transitioning from coarser to finer time scales, such as from monthly to 
daily to hourly (Yuan et al., 2020). This is in part due to the fact that the 
temporal resolution of our historical data observations (sporadically 
collected at daily-to-monthly periods) did not match the temporal res-
olution of our model evaluation (continuously simulated at 
minute-to-hourly scales). In contrast, a major benefit of incorporating 
high-frequency nitrate data into advection-dispersion-reaction 
modeling is that the disagreement between temporal frequency of data 
and models can be closed, i.e., there is a coherence between our ob-
servations and simulations. Integrating high-frequency sensor data “fills 
the gaps” between sporadic grab-samples in a timeseries, providing 
more model evaluation data to increase confidence in model outputs. 
Further, high-frequency data discerns intricate details regarding diel 
variations and rapid fluctuations in nitrate concentration, such as those 
found near the Farmland Release (Fig. 3), which otherwise might be 
overlooked with infrequent grab sampling. Thus, richer insights from 
high-frequency data raise expectations of model fidelity to the “real 
world” and also expose areas in which our existing models falter. 

One way in which high-frequency aquatic sensor data can improve 
model fidelity is through the identification of sub-daily processes, such 
as nitrate diel patterns (Fig. 5). Since the proliferation of nitrate sensors 
in the late 2000’s, diel variations have been the subject of study using 
high-frequency measurements (Burns et al., 2016; Heffernan and Cohen, 
2010), but have only recently been integrated numerical model evalu-
ation (Yang et al., 2023). In Burns et al. (2016), estimated Cdiel/Cmean 
variations in the Potomac River, Maryland, were equal to 0.04 and were 
attributed to a combination of uptake and denitrification. Heffernan and 
Cohen (2010) showed greater Cdiel/Cmax equal to 0.11 at the spring-fed 
Ichetucknee River, Florida, which they similarly attributed to both 
denitrification and uptake. While our modeling results in the Kansas 
River are in line with reported values (modeled Cdiel/Cmax ranged from 
0.04 to 0.11), the sensor observations showed much higher Cdiel/Cmax 
values of 0.11 to 0.25. The magnitude of Cdiel/Cmax does not necessarily 
seem tied to nitrate concentration, as the Potomac River (C = 1.09 
mg-N/L) had the largest mean nitrate concentrations compared to the 
Ichetucknee (C = 0.43 mg-N/L) and Kansas (C = 0.64 mg-N/L) Rivers, 
but the smallest Cdiel/Cmax. Differences between our observed diel var-
iations (> 0.11) and those that we modeled and saw reported in the 
literature (< 0.11) could be due to the unique nutrient loading scenario 
during this period in the Kansas River. Kelly and others (2021) hy-
pothesized that the microbiome of the Farmland fertilizer ponds was 
tuned to very high nitrate conditions (C ≈ 500 mg N L− 1), thus when 
discharged into the Kansas River, the biota maintain a high capacity for 
nutrient removal in their new environment. Lastly, while whole-river 
denitrification rates in the Kansas River have previously been reported 
to be low (< 0.02 g-N m− 2 d− 1; Kelly et al., 2021), there could be 
temporal or spatial heterogeneity of hot spots of denitrification, which 
could account for some of the nitrate loss beyond what we predicted by 
assimilatory uptake alone. 

High-frequency observations are also useful for determining where 
our modeling assumptions may falter. The numerical model we use 
(MIKE 21), like many other models of transport in rivers, assumes that 
nitrate fate follows a first-order decay, i.e., decay rate is linearly 
dependent on concentrations. However, the sensor data showed that 
even with a nearly 50% decrease in mean concentration from February 
to March (0.82 vs 0.46 mg-N/L), the value of Cdiel was relatively un-
changed (0.10 vs 0.11 mg-N/L), suggesting zero-order behavior, i.e., 
reactivity is independent of concentration. We looked at ten years of 
consecutive sensor data in the Kansas River (2013 to 2023), excluding 
the 2018 year of release, and found similar patterns: similar Cdiel values 
in February (0.09 ± 0.06 mg-N/L) and March (0.11 ± 0.14 mg-N/L) 
despite different nitrate concentrations in February (1.02 ± 0.41 mg- 
N/L) versus March (0.70 ± 0.50 mg-N/L). This finding suggests that 

point-source pollution was not the underlying reason for the zero-order 
behavior. This behavior could be explained by the lower water tem-
perature, less stable hydrology during February, and reduced primary 
production, which may have led to less biotic activity and thus less ni-
trate uptake, despite the abundance of nitrate during February (Kelly 
et al., 2021). Previous studies have also attributed the independence of 
nitrate uptake on concentrations to the limitation of nitrate uptake by 
the availability of other nutrients and organic matter (Johnson et al., 
2012). 

Alternate explanations – other than the breakdown of first-order 
kinetics – that could be responsible for the divergence of observed diel 
patterns from the patterns hypothesized by phototrophic activity 
include (1) heterotrophic activity or release of nitrogen (Yang et al., 
2023) and (2) hydraulic transport, dispersion, and storage (Hensley and 
Cohen, 2016). Yang and others (2013) identify four types of diel uptake 
patterns from a clustering analysis of 178 days of diel variation in the 
Lower Bode River, Germany. Our Near Site most closely follows what 
the authors call a “C1” pattern, which are typical of autotrophic-induced 
diel variations (crest in the early morning and trough in the late after-
noon; Fig. 3). On the other hand, the Far Site showed the opposite 
behavior, which the authors call a “C4” pattern (trough in the early 
morning and crest in the afternoon; Fig. 3). This latter pattern is 
less-explored, but could be the result of redox controls and 
heterotrophic-related removal, such as denitrification (Zhang et al., 
2023), although in our study area measured denitrification rates were 
low compared to uptake (Kelly et al., 2021). Nitrification is a possibility 
for the increases in daytime NO−

3 because NH+
4 − N in the fertilizer 

effluent was highly concentrated (up to 125 mg L− 1). However, most 
samples of NH+

4 downstream of the release were below the detection 
limit (Kelly et al., 2021), thus we don’t consider this mechanism as the 
most likely. On the other hand, a non-biochemical reason for the varying 
diel behavior at the two sites could be the result of physical transport. 
Storage and transport of upstream nitrogen can cause obscuring of the 
local biochemical dynamics at a site (Hensley and Cohen, 2016). In our 
case, we have a large fertilizer release, where upstream diel swings are 
an order of magnitude greater (for February, Cdiel was 1.02 ± 0.41 
mg-N/L at Near Site and 0.09 ± 0.06 mg-N/L at Far Site), which is then 
advected downstream at an average of 0.61 m/s. The distance between 
the sites is approximately 31 km. Thus, the average travel time (τ =

L/u) is 14 hours, which is not far from the observed time shift (tshift is 8 
to 12 hours) between peak NO−

3 at Near Site and Far Site (Fig. 3). Thus, 
physical transport from the Near Site could account for some of the 
behavior at the Far Site. However, the fertilizer addition only amounts to 
1/4 of the nitrogen in the study reach (3/4 of the nitrogen enters the 
reach via the Kansas River at the upstream boundary). Further, we 
observe the same disconnect in first-order behavior at the Far Site even 
in years without fertilizer additions, thus there must be additional 
mechanisms at play. While our results point to potential zero-order 
behavior, more study is required to refine estimates of nitrogen 
cycling within the Kansas River. 

Beyond the processes that may be occurring in the field, there are 
also limitations regarding how we represent them in models. Numerical 
models must inherently make some simplifications of the real-world. 
The model we use, whilst robust and generally performs well, has 
some structural limitations that pose constraints on fully resolving field 
measurements. First, MIKE 21 only allows for temporal variation in 
decay rate and does not account for spatial variability. Allowing for 
spatial determination of changes in uptake could resolve some discrep-
ancies between sites as redox conditions will vary within a reach 
(Hubbard et al., 2010; Yang et al., 2019). Second, MIKE 21 considers a 
single value for bulk nitrate reactivity, which we assume to represent net 
uptake by all biota within the river system. Other model formulations, 
such as the Water Quality Analysis Simulation Program (WASP), can 
differentiate between benthic and pelagic uptake and other reaction 
pathways (Huang et al., 2022), which has potential for improved model 
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performance. Third, uncertainties associated with how we defined up-
stream, lateral, and tributary nitrate and water inputs hindered the 
model’s ability to represent observed conditions. To minimize the as-
sumptions imposed on the model, and because our upstream nitrate 
sensor malfunctioned, we assumed a constant value for daily nitrate 
input as the upstream boundary condition (i.e., inputs did not have diel 
patterns; Figure S2). This forces the model to develop all diel patterns 
within the study reach, which was only partially accomplished. To 
improve on this, we would have sensing data to resolve this uncertainty 
as other authors have done (e.g., Huang et al., 2022; Yang et al., 2023). 
Despite these areas for improvement, our model is nonetheless robust 
and performs very well based on comparison to established performance 
metrics for nitrate models (Wellen et al., 2015). 

6. Conclusion 

In this study, we sensed and modeled the dispersal and uptake of 
nitrate following a controlled release of fertilizer into a large river sys-
tem. The integration of nitrate sensing data into numerical models is an 
underexplored territory, leaving critical questions about the requisite 
spatial grid size and temporal resolution needed to effectively interpret 
sensor readings in numerical models. Notably, our findings reveal that 
the Near Site, positioned within 0.4 km of the release point, emerged as 
the most susceptible to variations in river grid size and turbulent mixing 
parameterization. Conversely, at the Far Site, located 31 km from the 
release, model performance was largely unaffected by selection of grid 
size and turbulent mixing, but was rather sensitive to selection of uptake 
rate. The integration of high-frequency sensor data allowed us to resolve 
diel variability in nitrate signals, which we incorporated into the model 
to improve model realism. Regarding nitrate cycling, modeled Cdiel/Cmax 
ranged from 0.04 to 0.11 whereas sensor observations showed much 
higher Cdiel/Cmax values of 0.11 to 0.25. Discrepancies between data 
observations and model simulations are postulated to result from the 
breakdown of first-order rate kinetics under variable environmental 
conditions in the field. The heterogeneity that can occur within the 
environment is difficult to completely resolve, and simple laboratory- 
derived relationships often fail to transfer to the field. Nonetheless, 
leveraging dense datasets that reveal temporal structure, which may 
otherwise be omitted by traditional sampling, can allow us to identify 
where models falter and how they can be improved. Together, our study 
shows the potential of combining numerical models and high-frequency 
data for a better understanding of the physical and biogeochemical 
processes that control nitrate dynamics in aquatic environments. 
Explaining these complexities has the potential to pave the way for 
improved environmental management and sustainability practices. 
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