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Abstract 

This dissertation includes four papers with each distributed in one chapter.  

In chapter 1, I compared the performance of eight multivariate phenotype association tests. 
The motivation to conduct this power comparison paper is as follows. For nearly 15 years, 
genome-wide association studies (GWAS) have been widely used to identify genetic 
variants associated with human diseases and traits. GWAS typically investigate genetic 
variants for a predefined phenotype, thus fail to identify weak but important effects. In 
recent years, many multivariate association tests have been developed. However, there is a 
lack of comprehensive summary of such kinds of approaches. To fill this important gap, I 
did this power comparison work. The results show that none of the methods is consistently 
more powerful than that of others. Relatively more powerful methods are still in large 
demanding. 

In chapter 2, I proposed a Weighted Combination of multiple Phenotypes approach 
(WCmulP) for testing multiple correlated phenotypes and one genetic variant of interest. 
WCmulP linearly combines the multiple phenotypes with optimal weights such that the 
score test statistic is maximized. I compare WCmulP with other widely used tests and 
conduct extensive simulation studies as well as real data analysis to evaluate the 
performance of these methods. The results show that WCmulP outperforms the compared 
methods in most of the simulation scenarios and real data analysis.  

As the availability of electronic health record (EHR), thousands of clinical phenotypes can 
be measured and collected systematically. As a result, the phenome-wide association 
studies (PheWAS) emerged to detect variants with a broad spectrum of phenotypes. 
However, the current PheWAS are intrinsically univariate test, which investigate the 
phenotype one at a time. Genuine PheWAS that simultaneously test the wide range of 
phenotypes need to be discovered.  In chapter 3, I proposed a novel PheWAS approach, 
which referred to as PheCLC (PheWAS using clustering linear combination), to examine 
genetic variation associated with up to thousands of phenotypes. PheCLC jointly analyzes 
a wide spectrum of human phenotypes as well as classifies them into different categories 
based on the International Classification of Diseases (ICD) codes. The simulation results 
show that PheCLC certainly controls type I error rates and is much more powerful than the 
traditional multivariate approaches.  

To date, GWAS have published thousands of common variants associated with human 
diseases. However, these common variants only contribute a small portion of the 
phenotypic variance. Many studies showed that rare variants could substantially explain 
missing heritability. In chapter 4, I derived a rare variant association study for family-based 
designs, where the rare variants can be enriched compared to population-based designs. I 
applied the proposed method as well as the other two family-based tests to the genetic 
analysis workshop 19 (GAW19) dataset and the results show that our method can identify 
more genes with power greater than 40% than the other two methods.                  



1 

 

1 Chapter 1 

Power Comparisons of Methods for Joint Association Analysis of Multiple 
Phenotypes 

Background/Aims: Genome-wide association studies (GWAS) have identified many 
variants that each affects multiple phenotypes, which suggests that pleiotropic effects on 
human complex phenotypes may be widespread. Therefore, statistical methods that can 
jointly analyze multiple phenotypes in GWAS may have advantages over analyzing each 
phenotype individually. Several statistical methods have been developed to utilize such 
multivariate phenotypes in genetic association studies, however the performance of these 
methods under different scenarios is largely unknown. Methods: In this study, we evaluate 
the performance of some of the existing methods for association studies using multiple 
phenotypes, which include O’Brien’s method, cross-validation method, optimal weight 
method, TATES, PCH, CCA, MANOVA and MultiPhen. We use simulation studies to 
compare the powers of these methods under a variety of scenarios, including different 
numbers of phenotypes, different values of between-phenotype correlation, different minor 
allele frequencies, and different mean and variance models. Results: Our simulation results 
show that there is no single method that has consistently good performance among all the 
scenarios. Each method has its own advantages and disadvantages. Conclusion: Our goal 
of this study is to provide researchers with useful guidelines on selecting statistical methods 
in the application of real data with multiple phenotypes. 

1.1 Introduction 

Currently, the analyses of most genome-wide association studies (GWAS) have been 
performed on a single phenotype. However, in the study of a complex disease, several 
correlated phenotypes may be measured for a disorder or its risk factors (Yang et al., 2010). 
For example, hypertension is measured by systolic blood pressures (SBP) and diastolic 
blood pressures (DBP), those two blood pressure indexes frequently display a linear 
relationship (Gavish et al., 2008); people’s cognitive ability is usually measured by 
memory, intelligence, language, executive function, visual-spatial function, and motor, 
some of those six measurements might have relationship (Locke et al., 2006). The 
correlation among those multiple phenotypes can be leveraged to improve the power of 
genetic association tests to identify genetic markers associated with one or more 
phenotypes (Aschard et al., 2014).  

It is not always clear how to best exploit the information to increase the power of detecting 
genetic markers that are associated with multiple phenotypes (Yang et al., 2010). One 
available method is the standard univariate association test, which performs one phenotype 
at a time (O’Reilly et al., 2012). However, analyzing each phenotype separately will suffer 
penalties from the multiple testing and result in a reduced power (Yang et al., 2010). 
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Recently, several methods are introduced to detect association using multivariate 
phenotypes (Yang et al., 2010; O’Reilly et al., 2012; O’Brien, 1984; van der Sluis et al., 
2013; Klei et al., 2008; Ferreira and Purcell, 2009). These multivariate analyses of 
phenotypes offer several advantages over analyzing each phenotype separately (Aschard 
et al., 2014; Zhou and Stephens, 2014; Stephens, 2013; Yang and Wang, 2012; Solovieff 
et al., 2013; Galesloot et al., 2014). First, joint analyses of correlated phenotypes can 
exploit the correlation among phenotypes (Yang and Wang, 2012). Second, most 
multivariate procedures can perform a single test for association with a set of phenotypes, 
which reduces the number of performed tests and alleviates the multiple testing burden 
compared to analyzing all phenotypes separately (Klei et al., 2008; Zhu and Zhang, 2009). 
Finally, in case of presence of pleiotropy, where a single genetic marker is associated with 
multiple phenotypes, a multivariate analysis of phenotypes is more consistent with biology 
compared to cross-phenotype comparison of univariate analysis (Chavali et al., 2010). In 
summary, modeling multivariate phenotypes may increase the power over analyzing 
individual phenotype separately in genetic association studies (Yang et al., 2010; Klei et 
al., 2008; Lange et al., 2004). 

Several methods to detect association using multivariate phenotypes have been introduced 
in recent years. These methods can be divided into three groups: combining test statistics 
from univariate analysis, variable reduction methods, and regression models (Yang and 
Wang, 2012). The first group includes O’Brien’s method (OB) (O’Brien, 1984), cross-
validation method (CV) (Yang et al., 2010), and Trait-based Association Test that uses 
Extended Simes procedure (TATES) (van der Sluis et al., 2013). Specifically, each method 
in this group is to perform univariate phenotype-genotype association test for each 
phenotype individually and then combine the test statistics from the univariate analysis 
(Yang et al., 2010; O’Brien, 1984; van der Sluis et al., 2013; Wei and Johnson, 1985). 
Variable reduction methods derive a single or a few new phenotypes that are linear 
combinations of the original phenotypes. The best-known method for variable reduction 
methods involves using one or more of the principal components of phenotypes (PCP) in 
place of the original phenotypes (Lan et al., 2003; Wang and Abbott, 2008). Building on 
the work of PCP, Klei et al. (2008) developed principal component of heritability (PCH) 
with coefficients maximizing the heritability of phenotypes. Another variable reduction 
method is canonical correlation analysis (CCA), which extracts the linear combination of 
phenotypes that explain the largest possible amount of the covariation between the genetic 
marker and all phenotypes (Ferreira and Purcell, 2009). Regression models, such as 
multivariate analysis of variance (MANOVA) and proportional odds logistic regression for 
joint model of multiple phenotypes (MultiPhen) (O’Reilly et al., 2012), can be used to 
analyze the association of a genetic marker with multivariate phenotypes. 

Even though several methods have been developed to jointly analyze multiple phenotypes 
including the above mentioned methods, there is a lack of thorough comparison between 
those methods. Each of the methods attains its maximal power only in special 
circumstances (O’Reilly et al, 2012; van der Sluis et al., 2013). Therefore, a thorough 
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power comparison of these methods is a meaningful and worthy work. In this article, we 
compare the power performance of eight methods in a variety of models. These eight 
methods include OB (O’Brien, 1984), CV (Yang et al., 2010), optimal weight method 
(OW), TATES (van der Sluis et al., 2013), PCH (Klei et al., 2008), CCA (Ferreira and 
Purcell, 2009), MANOVA, and MultiPhen (O’Reilly et al., 2012). Our ultimate goal of this 
study is to provide researchers with useful guidelines on selecting statistical methods in the 
application of real data with multiple phenotypes. 
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1.2 Comparison of Methods 

In this section, we briefly introduce each of those methods compared in this study. We use 
the following notations. Considering a sample of ݊ unrelated individuals, each individual 
has been genotyped at a genetic marker. Assume that there are ܭ  possibly correlated 
phenotypes. Let ࢀ ൌ ሺ ଵܶ, 	 ଶܶ, … , 	 ௄ܶሻ்  be a vector of ܭ  univariate test statistics, where 
௞ܶ	ሺ݇ ൌ 1, 2, … ,  ሻ is a test statistic for testing the association between a genetic markerܭ

and the ݇௧௛  phenotype. Assume that  ࢀ  asymptotically follows a multivariate normal 
distribution with mean ࢼ ൌ ሺߚଵ, ,ଶߚ … , ௄ሻ்ߚ  and (known or consistently estimated) 
covariance matrix	઱. The null hypothesis is	ܪ଴:	ࢼ ൌ ૙, and the alternative hypothesis is 
௞ߚ	at least one	ଵ:ܪ ് 0	for	݇ ൌ 1,… ,   .ܭ

O’Brien’s method (OB). O’Brien (1984) showed that if ଵߚ	 ൌ ଶߚ ൌ ⋯ ൌ ௄ߚ , the test 
statistic ்ࢋ઱ିଵࢀ is the most powerful test among a class of test statistics that are linear 
combination of	 ଵܶ, ଶܶ, … , ௄ܶ , where ࢋ ൌ ሺ1,1… ,1ሻ்  with length ܭ (O’Brien, 1984; Wei 
and Johnson, 1985). Under the null hypothesis, the test statistic ்ࢋ઱ିଵࢀ follows a normal 
distribution with mean 0 and variance	்ࢋ઱ିଵࢋ. 

Cross-validation method (CV). CV (Yang et al., 2010) averages multiple sample splitting 
results. In detail, splitting the sample into two subsets, one is called training set for 
estimating weights and the other is called testing set for constructing final testing statistic. 
Let ࢃࢀ  and ࢀ	denote the test statistic obtained from the training set and testing set, 
respectively. Then, the test statistic to test the association between a marker and multiple 
phenotypes is given by	ܵ ൌ ࢃࢀ

் ઱ିଵࢀ. The splitting procedure is repeated ܴ times (e.g., 100 

times), the final test statistic is	ܵ̅ ൌ ଵ

ோ
∑ ܵ௥ோ
௥ୀଵ , where	ܵ௥	is the test statistic	ܵ	based on 

the	ݎ௧௛	splitting procedure. The P-value of the final test statistic is calculated using a 
permutation procedure.  

Optimal weight method (OW). The above two methods are seeking a weight vector ࢇ such 
that ࢀ்ࢇ  can combine the univariate test statistics in a linear manner. ࢇ ൌ ઱ିଵࢋ  is 
proposed in the OB method while ࢇ ൌ ઱ିଵࢃࢀ is proposed in the CV method. For any  

vector	ࢇ that may not depend on the data at hand, ܹሺࢇሻ ൌ
൫ࢇ೅ࢀ൯

మ

ࢇ೅઱ࢇ
	follows a chi-square 

distribution with degree of freedom 1 under the null hypothesis. If we consider to choose 
૙ሻࢇܹሺ	such that	૙ࢇ	that depends on the data at hand, we can find 	ࢇ ൌ max

ࢇ
ܹሺࢇሻ. We can 

use ܹሺࢇ૙ሻ as a test statistic, which we call it the optimal weight method (OW). If we 

denote 	࢝ ൌ ઱
భ
మࢇ , then the optimal weight statistic 	ܹሺࢇ૙ሻ ൌ max

ࢇ
ܹሺࢇሻ ൌ

max
࢝

࢝೅઱ష
భ
మࢀࢀ೅઱ష

భ
మ࢝

࢝೅࢝
ൌ ࢀ઱ିଵ்ࢀ . Under the null hypothesis, ܹሺࢇ૙ሻ ൌ  follows a	ࢀ઱ିଵ்ࢀ

chi-square distribution with degrees of freedom	ܭ.  
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Trait-based Association Test that uses Extended Simes procedure (TATES). TATES (van 
der Sluis et al., 2013) combines P-values obtained in standard univariate GWAS to acquire 
one phenotype-based P-value, while correcting for correlations between phenotypes. In 
detail, after obtaining the univariate P-values ݌ଵ, … ,  ௄ from the corresponding univariate݌
association tests, those P-values are sorted in ascending order,	݌ሺଵሻ, … ,  ሺ௄ሻ. Then, we can݌
find the effective number of independent P-values of all ܭ  phenotypes, ݉௘,  and the 
effective number of P-values among the top ݇  P-values ,  ݉௘ሺ௞ሻ , where ݇ ൌ 1,… , ܭ .  

Finally, the ultimate P-value is given by	݊݅ܯ ൬
௠೐௣ሺೖሻ
௠೐ሺೖሻ

൰.  

Multivariate analysis of variance (MANOVA). Since we only consider one genetic marker 
in this study, one-way MANOVA is performed. Specifically, the Wilks’ lambda test is used 
to conduct a hypothesis test. The Wilks’ lambda test statistic is equivalent to the likelihood 

ratio test statistic, which is the ratio of the generalized variances 
|ࡱ|

|ࡱାࡴ|
, where ࡴ is the 

hypothesis sum of squares and cross product (SSCP) matrix, ࡱ is the error SSCP matrix, 
and |∙| is the determinant of a matrix. The explicit forms of ࡴ and ࡱ are given by	ࡴ ൌ
,෡்ࢼ	ሻࢄ்ࢄ෡ሺࢼ ࡱ ൌ ࢅ்ࢅ െ where	෡்,ࢼ	ሻࢄ்ࢄ෡ሺࢼ ෡ࢼ	 ൌ ,ሻିଵࢄ்ࢄሺࢄ்ࢅ ݊ is the	ࢄ ൈ 1	vector of 
genotypes for all ݊ individuals, and ࢅ	is the ݊ ൈ  .matrix of phenotypes for all individuals	ܭ

Under	ܪ଴ , െ2 log Λ ൌ െ݊ log
|ா|

|ுାா|
	has an asymptotic 	߯௄

ଶ 	distribution, where	Λ	denotes 

the ratio of the likelihood function under null hypothesis to the likelihood function under 
alternative hypothesis.    

Principal components of heritability (PCH). Variable reduction approach derives a single 
or a few new phenotypes that are linear combinations of the original phenotypes. Existing 
methods include principal components analysis (PCA) where for the first component, the 
coefficients maximize the variance of the multivariate phenotypes (Yang and Wang, 2012), 
principal component of heritability (PCH) with coefficients maximizing the total 
heritability of the phenotypes (Ott and Rabinowitz, 1999). Recently, Klei et al. (2008) 
developed a PCH method, in which the sample is randomly split in a training set, which is 
used to construct the optimal linear combination of phenotypes from a heritability point of 
view, and a test set, which is used for association testing between genotype and the optimal 
linear combination of phenotypes. The test statistic is calculated repeatedly using random 
splits of the data. Ultimately, the statistic is derived from an integration of the individual 
test statistics. 

Canonical correlation analysis (CCA). CCA is a multivariate generalization of the 
Pearson product-moment correlation (Hotelling, 1936). Ferreira and Purcell (Ferreira and 
Purcell, 2009) used CCA to measure the association between the genetic marker and 
phenotypes. CCA extracts the linear combination of phenotypes that explain the largest 
possible amount of the co-variation between the marker and all phenotypes. The test is 
based on Wilks’ lambda and the corresponding F-approximation.  
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Joint model of multiple phenotypes (MultiPhen). MultiPhen (O’Reilly et al., 2012) inverts 
the general linear regression, in which the genotype is the response variable and all the 
phenotypes are independent variables. The genotype data is an allele count and is therefore 
modelled using ordinal regression. O’Reilly et al. (2012) used proportional odds logistic 
regression model which defines the class probabilities. A likelihood ratio test is performed 
to test the null hypothesis that none of the phenotypes have association with the genetic 
marker. 
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1.3 Simulation Study 

To compare different methods, we investigate their type-I error rates and powers by 
simulation data sets with 1,000 unrelated individuals. To generate genotype data on a 
genetic marker, we assume that minor allele frequency (MAF) is 0.1 or 0.3 and assume 
Hardy-Weinberg Equilibrium. For each individual, we generate ܭ	 ൌ 10, 20 and 40 
phenotypes. The ܭ phenotypes of an individual are generated from the following model 

 ࢟ ൌ ݔࣆ ൅  (1.1)                                                         	ࡱ

where 	࢟ ൌ ሺݕଵ, … ,  is the genotypic	ݔ ;are the phenotypic values of an individual	௄ሻ்ݕ
score of the individual at the genetic marker;	ࣆ ൌ ሺߤଵ, … ,  are the genetic effects of	௄ሻ்ߤ
the genetic marker on the phenotypes and their values depend on mean models (Table 
ࡱ	;(1.1 ൌ ඥ࢛࡮ߩ ൅ ඥ1 െ  where ,ࢿ	is a vector with random effect ࢛ and random error	ࢿߩ
ܭ	is a ࡮ ൈ ݊௨	loading matrix, the values	࡮	and ݊௨ depend on the variance models (Table 

1.2); 	࢛ ൌ ൫ݑଵ, … , ௡ೠ൯ݑ
்
,ሺ૙ܸܰܯ~ and	ሻࡵ ࢿ	 ൌ ሺߝଵ, … , ,ሺ૙ܸܰܯ~௄ሻ்ߝ 	ሻࡵ , where 	ࡵ	 is the 

identity matrix. From the assumptions above, we can have	ࡱ ൌ ሺܧଵ, … , ,ሺ૙ܸܰܯ~௄ሻ்ܧ ઱ሻ, 
where	઱ ൌ ்࡮࡮ߩ ൅ ሺ1 െ   .ࡵሻߩ

In our simulation studies, we consider six different mean models and two different variance 
models. Table 1.1 gives the values of the genetic effect ࣆ in different mean models. In 
mean model 1, the genetic marker has the same size and direction of effect on all 
phenotypes. In mean model 3, the genetic marker has effect on all the phenotypes, but has 
different directions of the effect. In mean models 2, 4, 5, and 6, the genetic marker has 
effect on part of the phenotypes, but has no effect on the rest.  

The two different variance models are based on the correlation setting among all the 
phenotypes. Table 1.2 gives the values of ݊௨  and ࡮  under the two different variance 
models. Under the first variance model, all of the phenotypes have correlation ߩ with each 
other. Under the second variance model, the first half phenotypes have correlation ߩ with 
each other, the second half phenotypes have correlation	ߩ, and there are no correlations 
between phenotypes in the first half and in the second half. 

The heritability of genotypes to the ݇௧௛ phenotype is given by  

݄ଶሺݕ௞ሻ ൌ
୴ୟ୰ሺ࢞ሻఓೖ

మ

୴ୟ୰ሺ࢞ሻఓೖ
మାଵ

ൎ varሺ࢞ሻߤ௞
ଶ                                           (1.2) 

The heritability of genotypes to the total ܭ phenotypes is given by	݄ଶ ൌ ∑ ݄ଶሺݕ௞ሻ
௄
௞ୀଵ ൎ

varሺ࢞ሻ∑ ௞ߤ
ଶ௄

௞ୀଵ . Then given the heritability	݄ଶ, we can calculate	ߙଵ, ,ଶߙ … ,  for different	଺ߙ
mean models in Table 1.1. 
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For OB, CV, OW, and TATES, we use the score test statistic under the linear model as the 
univariate phenotype-genotype association test. For the type-I error rates, we assume ࣆ ൌ
૙ such that the genetic marker is independent of all phenotypes. For power comparisons, 
we consider different values of heritability, different values of between-phenotype 
correlation, and different values of MAF. 
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1.4 Results 

For type-I error rates evaluation, we consider different numbers of phenotypes, different 
MAFs,	different variance models, and different values of significance levels. In the two 
variance models, we assume	ߩ ൌ 0.1. In each simulation scenario, the sample size is 1,000, 
P-values of CV and PCH are estimated by 1,000 permutations, and P-values of other 
methods are calculated by asymptotic distributions. The type-I error rates are evaluated 
using 1,000 replicated samples. For 1,000 replicated samples, the 95% confidence intervals 
(CIs) for type-I error rates at nominal levels 0.05 and 0.01 are (0.0365, 0.0635) and (0.004, 
0.016), respectively. Tables 1.3 and A.1.1-A.1.5 give the estimated type-I error rates of the 
eight methods for different numbers of phenotypes (10, 20, 40), different values of MAF 
(0.1, 0.3), different significance levels (0.01, 0.05), and two different variance models. 
From Table 1.3 and Tables A.1.1-A.1.5, we can see that except MultiPhen, almost all the 
estimated type-I error rates are within the 95% CIs, which indicates that the estimated type-
I error rates are not significantly different from the nominal levels. Thus, the seven tests 
are all valid tests under our simulation study. From our results, we noticed that when the 
number of phenotypes is large (e.g., 40), the type-I error rates of MultiPhen are inflated. 
This phenomenon is also noticed by other studies. For example, Aschart et al. (2014) 
pointed out that Multiphen suffers from an inflated type-I error rates when the ratio of the 
number of phenotypes over the number of individuals is relatively large (>0.01). Because 
of this, we did not include MultiPhen in the power comparisons when the number of 
phenotypes is 40.  

For power comparisons, we consider different values of MAF, different values of between-
phenotype correlation ߩ	 , different values of heritability, different numbers of 
phenotypes	ሺܭ ൌ 10, 20, 40ሻ, different mean models, and different variance models (see 
Figures 1.1-1.4 and Figures B.1.1-B.1.10). In each of the simulated scenarios, the sample 
size is 1,000, P-values of CV and PCH are estimated by 1,000 permutations, and P-values 
of other methods are calculated by asymptotic distributions. The power is evaluated using 
1,000 replicated samples at a significance level of 0.05.  

Our simulation results show the following patterns:  
1. None of the considered methods are consistently most powerful under the 

simulation scenarios (Figures 1.1-1.4 and B.1.1-B.1.10).  
2. OW, MANOVA, CCA, PCH, and MultiPhen have very similar power over all the 

simulation scenarios, and CV is consistently slightly less powerful than the five 
tests (Figures 1.1-1.4 and B.1.1-B.1.10). We call the five tests (OW, MANOVA, 
CCA, PCH, and MultiPhen) as group 1. The similar conclusion is also drawn in the 
following published works. van der Sluis et al. (2013) pointed out that under most 
circumstances, MultiPhen and MANOVA yield very similar results in terms of 
power. MANOVA is equivalent to CCA when CCA is applied to a single genetic 
marker at a time (Galesloot et al., 2014). The performance of Multiphen is similar 
to PCH and MANOVA when a small number of phenotypes are analyzed (Aschard 
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et al., 2014). According to O’Reilly et al. (2012), MultiPhen and CCA perform very 
similarly except in case of low MAF and non-normal phenotypes.  

3. OB has the highest power among all methods when the genetic effects are 
homogeneous (mean model 1). However, this method reduces power significantly 
when genetic effects are heterogeneous, especially when opposite directions of the 
genetic effects exist or when genotypes impact a small portion of phenotypes (mean 
models 3-5). (Figures 1.1-1.4 and B.1.1-B.1.10)  

4. Power comparisons of TATES with tests in group 1 and OB depend on the mean 
models, variance models, and the values of  . In general, TATES is the most 
powerful test when   is small and genotypes impact a very small portion of 
phenotypes. (Figures 1.1-1.4 and B.1.1-B.1.8) 

5. The power of OB decreases with the increasing of   because OB involves all 
phenotypes and information contained by all phenotypes will be decreased with the 
increasing of  ; the power of TATES is relatively robust to   because TATES 
essentially only depends on the phenotype that has the strongest association with 
the genotype; powers of tests in group 1 decrease or increase with the increasing of 
  depending on mean models and variance models. (Figures 1.3-1.4 and B.1.5-
B.1.8) 

6. Powers of all tests are robust to MAF. (Figures B.1.9-B.1.10) 

The power is also evaluated at a significance level of 5×10-8 for six methods because the 
two methods (CV and PCH) that use permutations to calculate their p-values are 
computationally extensive. The patterns of power comparisons at significance level 5×10-

8 (Figures B.1.11-B.1.14) are similar to those at significance level 0.05 (Figures 1.1-1.4). 
In summary, tests in group 1 have very similar power, and CV is slightly less powerful 
than tests in group 1. OB has the highest power among all methods when the genetic effects 
are homogeneous, but this method reduces power significantly when genetic effects are 
heterogeneous. In general, TATES is the most powerful test when between-phenotype 
correlation   is small and genotypes impact a very small portion of the phenotypes. 
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1.5 Discussion 

In the study of a complex disease, several correlated phenotypes are often measured as risk 
factors for the disease (Aschard et al., 2014). Analyzing multiple disease-related 
phenotypes could potentially increase power to detect association of genetic markers with 
a disease. In recent years, several multivariate analyses of GWAS have been introduced. A 
thorough comparison between those methods is needed for researchers to choose the best 
and most appropriate method under a certain circumstance. In this study, we used simulated 
data to compare the performance of eight commonly used methods (OW, MANOVA, 
CCA, PCH, MultiPhen, OB, CV, and TATES) for testing association between multiple 
phenotypes and a genetic marker. Our simulation results showed that there is not a single 
method that performs best under all the simulated scenarios we considered, each method 
has its own pros and cons.  

In our simulation studies, we did not study the effect of missing data. In the presence of 
missing data in the outcomes, dropping individuals with missing data in the analyses may 
result in power loss (Yang and Wang, 2012). Imputation can be used to impute missing 
genotype data or phenotype data. Missing phenotype data can be handled either by case-
wise deletion (if data are missing above a pre-defined per-individual missingness 
threshold) or mean imputation (i.e. a missing phenotype is replaced by the corresponding 
sample mean) (Tang and Ferreira, 2012). Missing genotype data can be imputed using 
dedicated software and appropriate reference panels (e.g. HapMap). 

Our study showed substantially different patterns of power comparisons among our 
simulated scenarios. Overall, OW, MANOVA, CCA, PCH, and MultiPhen have very 
similar power, and CV is slightly less powerful than the five tests. OB has the highest 
power among all methods when the genetic effects are homogeneous. TATES is the most 
powerful test when between-phenotype correlation   is small and genotypes impact a 
very small portion of the phenotypes. Because in practice, we do not know the number of 
phenotypes impacted by genotypes and we also do not know whether the genetic effects 
are homogeneous, we recommend that one can perform OB and one of the tests in group 1 
when between-phenotype correlation   is large, and one can perform TATES, OB, and 
one of the five tests in group 1 when between-phenotype correlation   is small. We can 

also construct a robust test as follows. Let TATESp , OBp , and OWp  denote the P-values of 
TATES, OB, and OW, respectively. Then, we define the test statistic of the robust test as 

 min , ,TATEro Sbu Wt B Os OT p p p . However, the performance of the robust test needs further 

investigation. 
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1.6 Tables and Figures 
Table 1.1. Six mean models used in the simulation studies 

Mean models Phenotype number Effect size (direction of the effect) 
 ሺ൅ሻ	ଵߙ 1 1
 ⋮ ⋮ 
 ሺ൅ሻ	ଵߙ ܭ 
2 1 0 
 ⋮ ⋮ 

 ൤
ܭ
2
൨ 0 

 ൤
ܭ
2
൨ ൅  ሺ൅ሻ	ଶߙ 1

 ⋮ ⋮ 
 ሺ൅ሻ	ଶߙ ܭ 
 ሺെሻ	ଷߙ 1 3
 ⋮ ⋮ 

 ൤
ܭ
2
൨ ߙଷ	ሺെሻ 

 ൤
ܭ
2
൨ ൅  ሺ൅ሻ		ଷߙ 1

 ⋮ ⋮ 
 ሺ൅ሻ		ଷߙ ܭ 
4 1 0 
 ⋮ ⋮ 
ܭ  െ 1 0 
 ሺ൅ሻ		ସߙ ܭ 
5 1 0 
 ⋮ ⋮ 

 ൤
ܭ4
5
൨ 0 

 ൤
ܭ4
5
൨ ൅ 1 ൬൤

ܭ4
5
൨ ൅ 1൰ߙହ		ሺ൅ሻ 

 ⋮ ⋮ 
 ሺ൅ሻ		ହߙܭ ܭ 
6 1 0 
 ⋮ ⋮ 

 ൤
ܭ2
3
൨ 0 

 ൤
ܭ2
3
൨ ൅ 1 ൬൤

ܭ2
3
൨ ൅ 1൰ߙ଺		ሺ൅ሻ 

 ⋮ ⋮ 
 ሺ൅ሻ		଺ߙܭ ܭ 

Note: ܭ is the total number of phenotypes; ሾ∙ሿ is the floor function; 	൅	ሺെሻ	indicates that 
the direction of the genetic effect on the phenotype is positive (negative); given heritability, 
,ଵߙ ,ଶߙ … ,  .଺ can be calculated based on formula (2.2) in Simulation sectionߙ
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Table 1.2. The values of ݊௨ and ࡮ in the two variance models.  

 

Variance models  Values of ࢛࢔ and 	࡮  

Model 1 ݊௨ ൌ ࡮,1 ൌ ሺ1, 1, … , 1ሻ் 

Model 2 ݊௨ ൌ ࡮,2 ൌ ቌ
ࢋ
ቂ௄ଶቃ

૙
ቂ௄ଶቃ

૙
௄ିቂ௄ଶቃ

ࢋ
௄ିቂ௄ଶቃ

ቍ 

Note: ࢋ
ቂ಼
మ
ቃ
	is a column vector with all elements 1’s, and length	ቂ௄

ଶ
ቃ; 	૙

ቂ಼
మ
ቃ
	is a column vector 

with all elements 0’s, and length	ቂ௄
ଶ
ቃ; ܭ is the total number of phenotypes considered in the 

simulation studies. 
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Table 1.3. Estimated type-I error rates for the eight methods under two variance models. 
The total number of phenotypes is	ܭ ൌ 20, MAF is 0.3, and the sample size is 1,000. ߙ	is 
the significance level. 

 Type-I error rates 

 Variance model 1 Variance model 2 

Methods ߙ ൌ ߙ 0.05 ൌ ߙ 0.01 ൌ ߙ 0.05 ൌ 0.01 

OB 0.053 0.011 0.048 0.011 

CV 0.044 0.013 0.042 0.010 

OW 0.049 0.013 0.044 0.013 

TATES 0.050 0.011 0.052 0.011 

MANOVA 0.049 0.013 0.047 0.013 

CCA 0.049 0.012 0.049 0.013 

PCH 0.051 0.010 0.044 0.014 

MultiPhen 0.060 0.013 0.049 0.015 
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Figure 1.1. Power comparisons of the eight methods as a function of heritability for the six 
mean models under variance model 1. The total number of phenotypes is	ܭ ൌ 	20, rho is 
0.1, MAF is 0.3, and the sample size is 1,000. Significance is assessed at the 5% level.  
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Figure 1.2. Power comparisons of the eight methods as a function of heritability for the six 
mean models under variance model 2. The total number of phenotypes is	ܭ ൌ 	20, rho is 
0.1, MAF is 0.3, and the sample size is 1,000. Significance is assessed at the 5% level.  
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Figure 1.3. Power comparisons of the eight methods as a function of rho for the six mean 
models under variance model 1. The total number of phenotypes is	ܭ ൌ 	20, heritability is 
0.01, MAF is 0.3, and the sample size is 1,000. Significance is assessed at the 5% level. 
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Figure 1.4. Power comparisons of the eight methods as a function of rho for the six mean 
models under variance model 2. The total number of phenotypes is	ܭ ൌ 	20, heritability is 
0.01, MAF is 0.3, and the sample size is 1,000. Significance is assessed at the 5% level.  
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2 Chapter 2 

A Novel Method to Test Associations between a Weighted Combination of 
Phenotypes and Genetic Variants 

Many complex diseases like diabetes, hypertension, metabolic syndrome, et cetera, are 
measured by multiple correlated phenotypes. However, most genome-wide association 
studies (GWAS) focus on one phenotype of interest or study multiple phenotypes 
separately for identifying genetic variants associated with complex diseases. Analyzing 
one phenotype or the related phenotypes separately may lose power due to ignoring the 
information obtained by combining phenotypes, such as the correlation between 
phenotypes. In order to increase statistical power to detect genetic variants associated with 
complex diseases, we develop a novel method to test a weighted combination of multiple 
phenotypes (WCmulP). We perform extensive simulation studies as well as real data 
(COPDGene) analysis to evaluate the performance of the proposed method. Our simulation 
results show that WCmulP has correct type I error rates and is either the most powerful test 
or comparable to the most powerful test among the methods we compared. WCmulP also 
has an outstanding performance for identifying single-nucleotide polymorphisms (SNPs) 
associated with COPD-related phenotypes.  

2.1 Introduction 

Genome-wide association studies (GWAS) aim to discover genetic variants associated with 
complex diseases (O’Reilly et al., 2012; Yang and Wang, 2012). In GWAS, researchers 
often collect data on multiple correlated phenotypes to get a better understanding of the 
complex disease (Yang et al., 2010). Here are some examples of what diseases are 
measured by multiple phenotypes. In type 2 diabetes (T2D) studies data are usually 
collected on a number of risk factors and diabetes-related quantitative phenotypes. 
Hypertension is measured by systolic blood pressures (SBP) and diastolic blood pressures 
(DBP) (Yang and Wang, 2012), and the correlation coefficient between SBP and DBP was 
greater than 0.5 in 95% of patients (Gavish et al., 2008). The metabolic syndrome refers to 
the co-occurrence of insulin resistance, obesity, atherogenic dyslipidemia and 
hypertension, and these factors are associated and share underlying mediators, pathway 
and mechanisms (Huang, 2009). The correlations between multiple phenotypes can be 
leveraged to improve the power of genetic association tests to identify markers associated 
with one or more of the phenotypes (Aschard et al., 2014). The standard approach to 
analyze these multiple correlated phenotypes is to perform single-phenotype analyses 
separately and report the findings for each phenotype (O’Reilly et al., 2012). However, 
analyzing one phenotype at a time will suffer penalties from the multiple testing and result 
in a reduced power especially for GWAS (Yang et al., 2010). Recently, the joint analysis 
of multiple phenotypes has become popular because it can increase statistical power over 
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analyzing phenotypes separately in detecting genetic variants (Yang et al., 2010; Aschard 
et al., 2014). 

There are three commonly used strategies to detect genetic associations between a genetic 
variant and multiple correlated phenotypes. The first one is combining test statistics (or p-
values) from univariate analysis. This strategy first tests an association between each 
phenotype and a genetic variant individually and then combines the univariate analysis 
results, i.e. test statistics or p-values, by using different approaches. The O’Brien’s method 
(O’Brien, 1984), sample splitting and cross-validation method (Yang et al., 2010), Trait-
based Association Test that uses Extended Simes procedure (TATES) (van der Sluis et al., 
2013), Unified Score-Based Association Test (USAT) (Ray et al., 2016), Fisher’s 
Combination (Yang et al., 2016), and Adaptive Fisher’s Combination (AFC) (Liang et al., 
2016) belong to this strategy. The advantage of this strategy is its simplicity and is 
especially useful for analyzing different types of phenotypes such as continuous, 
dichotomous and survival (Yang and Wang, 2012). The second one is data reduction. This 
strategy derives a single or a few new phenotypes that are linear combinations of the 
original phenotypes. Existing methods include projection-based techniques and canonical 
correlation analysis (CCA). Projection-based approaches include principal components 
analysis (PCA) and principal component of heritability (PCH), where principal 
components (PCs) are built to maximize either the phenotypic variance or heritability 
(Yang and Wang, 2012; Aschard et al., 2014; Klei et al., 2008; Wang et al., 2016). 
Canonical correlation analysis (CCA) finds the linear combination of phenotypes that 
explain the largest possible amount of the correlation between the genetic variant and all 
multiple phenotypes (Ferreira and Purcell, 2009). Data reduction approaches are in general 
only applicable to multiple phenotypes consisting of all continuous phenotypes that are 
approximately normally distributed (Yang and Wang, 2012). The third strategy is 
regression models which include mixed effect models (Zhou and Stephens, 2014; Korte et 
al., 2012; Casale et al., 2015), the generalized estimating equation (GEE) (Zeger and Liang, 
1986; Zhang et al., 2014), and reverse regression methods (O’Reilly et al., 2012; Yan et 
al., 2013; Wang et al., 2016). The linear mixed effects model (LME) and generalized linear 
mixed effects model (GLMM) are two commonly used mixed effects models, where the 
fixed effects are used for the genetic variant and random effects are used to account for 
phenotypic correlations. The GEE methods collapse the random effects and random 
residual errors in marginal regression models which are a class of models different from 
mixed effect models. The reverse regression methods take genotypes as the response 
variable and multiple phenotypes as predictors, such as the proportional odds logistic 
regression for joint model of multiple phenotypes (MultiPhen) (O’Reilly et al., 2012). 
Regression approaches are able to deal with a mixture of continuous, dichotomous, and 
survival phenotypes, but they are complicated and few available software were developed 
to implement these methods (Yang and Wang, 2012).  

In this article, we developed a novel allele-based method for testing association between 
multiple phenotypes and a genetic variant. First, we take the allele at the genetic variant as 
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the response variable and the multiple phenotypes as predictors. Then, we present a new 
multivariate method that we refer to as WCmulP (Weighted Combination of multiple 
Phenotypes), inspired by TOW (Test for testing the effect of an Optimally Weighted 
combination of variants) procedure proposed by Sha et al. (2012) for rare variant 
association studies and allele-based aproach proposed by Majumdar et al. (2015). For each 
of the independent individuals, WCmulP linearly combines the multiple phenotypes to 
“one phenotype” by using the optimal weights proposed by Sha et al. (2012). Then we use 
the score test based on the logistic model to test the association between the genetic variant 
and the linear combination of phenotypes. Using extensive simulation studies, we compare 
the performance of WCmulP with some of the existing methods, MultiPhen (O’Reilly et 
al., 2012), O’Brien’s method (O’Brien, 1984), TATES (van der Sluis et al., 2013), CCA 
(Ferreira and Purcell, 2009), and SHet (Zhu et al., 2015). Our results show that, in all of 
the simulation scenarios, WCmulP is either the most powerful test or comparable to the 
most powerful tests among the methods we compared. Finally, we evaluate the 
performance of our proposed method using a real data set, the COPDGene study from 
dbGaP.  
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2.2 Methods 

We consider a sample of	݊	unrelated individuals. Each individual has ܭ possibly correlated 
phenotypes. Let ,i kY  denote the	݇th phenotype of the	݅th individual. We propose to use an 

allele-based logistic regression model to test the association between a variant of interest 
and multiple phenotypes. For a genetic variant with two alleles, we use	ݔଶ௜ିଵ	and ݔଶ௜ to 
denote the coding of the two alleles of the	݅௧௛	individual such that we use ݔଵ and ݔଶ to code 
the two alleles of the first individual, use ݔଷ and ݔସ to code the two alleles of the second 
individual, and so on. For a variant with two alleles ܣ and	ܽ, if the genotype of the ݅th 
individual is	ܣܣ, we define	ݔଶ௜ିଵ ൌ ଶ௜ݔ ൌ 1; if the genotype is	ܽܽ, we define	ݔଶ௜ିଵ ൌ
ଶ௜ݔ ൌ 0 ; and if the genotype is ܽܣ	 , we define ଶ௜ିଵݔ	 ൌ 1  and ଶ௜ݔ	 ൌ 0 . We define 
the	݇௧௛	phenotype corresponding to the two alleles 2 1ix   and 2ix  of the ݅௧௛ individual as 

2 1,i ky   and 2 ,i ky , where 2 1, 2 , ,i k i k i ky y Y   . Hence, the total number of observations in the 

allele-based data is	2݊. We model the relationship between alleles and multiple phenotypes 
using the inverse logistic regression model 

logit൫ߨ௝൯ ൌ ߙ ൅ ଵߚ௝,ଵݕ ൅ ଶߚ௝,ଶݕ ൅ ⋯൅ ݆					,௄ߚ௝,௄ݕ ൌ 1, 2, . . . , 2݊,        (2.1) 

where	ߨ௝ ൌ Pr ቀݔ௝ ൌ 1ቚࢅ௝ ൌ ൫ݕ௝,ଵ, … , ௝,௄൯ݕ
்
ቁ, ߙ	is the intercept, and ࢼ ൌ ሺߚଵ, … ,  is	௄ሻ்ߚ

a ܭ-dimention vector of parameters. To test the association between multiple phenotypes 
and the variant is equivalent to test the null hypothesis	ܪ଴: ࢼ ൌ ૙ under equation (2.1). We 
use the score test statistic given by Sha et al. (2011) to test ܪ଴: ࢼ ൌ ૙	under equation (2.1). 
The test statistic is 

	ܵ ൌ  (2.2) 																																																															,ࢁଵିࢂ்ࢁ

where ࢁ	 ൌ ∑ ൫ݔ௝ െ ௝ࢅ൯ݔ̅
ଶ௡
௝ୀଵ , ࢂ ൌ ሺ1 െ ݔ̅	ሻݔ̅ 	∑ ൫ࢅ௝ െ ௝ࢅഥ൯൫ࢅ െ ഥ൯ࢅ

்ଶ௡
௝ୀଵ , ݔ̅ ൌ ଵ

ଶ௡
∑ ௝ݔ
ଶ௡
௝ୀଵ ,

ഥࢅ ൌ ሺݕതଵ, … , ത௄ሻ்ݕ  and ݕത௞ ൌ
ଵ

ଶ௡
∑ ௝,௞ݕ
ଶ௡
௝ୀଵ 	 for 	݇ ൌ 1,… , ܭ . The test statistic ܵ 

asymptotically follows a chi-square distribution with	ܭ	degrees of freedom.  

When K  is large, the score test may lose power due to the large degrees of freedom. To 
overcome this problem, we combine the	ܭ	phenotypes to one variable by using a linear 
combination of phenotypes,	ݕ௝ ൌ ∑ ௝,௞ݕ௞ݓ

௄
௞ୀଵ , where 1 ,, Kw w  are the weights. With the 

linear combination of phenotypes	ݕ௝ ൌ ∑ ௝,௞ݕ௞ݓ
௄
௞ୀଵ , the score test statistic in equation 

(2.2) becomes 

ܵሺݓଵ,… ௄ሻݓ, ൌ 2݊
ቀ∑ ൫௫ೕି௫̅൯௬ೕ

మ೙
ೕసభ ቁ

మ

	∑ ൫௫ೕି௫̅൯
మమ೙

ೕసభ ∑ ൫௬ೕି௬ത൯
మమ೙

ೕసభ

.                               (2.3) 
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We propose to use the optimal weights proposed by Sha et al. (2012), that is, ݓ௞
௢ ൌ

∑ ൫௫ೕି௫̅൯൫௬ೕ,ೖି௬തೖ൯
మ೙
ೕసభ

∑ ൫௬ೕ,ೖି௬തೖ൯
మమ೙

ೕసభ

 for	݇ ൌ 1,2, … , ଵݓ Actually, the optimal weights .ܭ
௢, … ௄ݓ,

௢  maximize 

ܵሺݓଵ,… ௄ሻݓ,  in equation (2.3). With this optimally weighted combination of 
phenotypes	ݕ௝

௢ ൌ ∑ ௞ݓ
௢ݕ௝,௞

௄
௞ୀଵ , the test statistic given in equation (1.3) becomes 

ܵሺݓଵ
௢, … ௄ݓ,

௢ሻ ൌ 2݊ ∙
∑ ൫௫ೕି௫̅൯ቀ௬ೕ

೚ି௬ത೚ቁమ೙
ೕసభ

∑ ൫௫ೕି௫̅൯
మమ೙

ೕసభ 	
	,                                  (2.4) 

where	ݕത௢ ൌ ଵ

ଶ௡
∑ ௝ݕ

௢ଶ௡
௝ୀଵ . From equation (2.2) to equation	(2.4), we reduced the dimension 

of the phenotypes from multivariate ሺݕ௝,௞, ݇ ൌ 1,… , ௝ݕሻ to univariate ሺܭ
௢ሻ with optimal 

weights ݓ௞
௢ such that equation (1.4) is the maximum of equation	(2.3). Since ݓଵ

௢, … ௄ݓ,
௢ 

are data-driven weights, ܵሺݓଵ
௢, … ௄ݓ,

௢ሻ does not follow a chi-square distribution. We use a 
permutation procedure to evaluate the p-value of	ܵሺݓଵ

௢, … ௄ݓ,
௢ሻ. In each permutation, we 

randomly shuffle the genotypes and keep the phenotypes unchanged. Since ∑ ൫ݔ௝ െ ൯ݔ̅
ଶଶ௡

௝ୀଵ  
does not change under each permutation, the test statistic ܵሺݓଵ

௢, … , ௄ݓ
௢ሻ is equivalent to  

ܶ ൌ ∑ ൫ݔ௝ െ ௝ݕ൯൫ݔ̅
௢ െ ത௢൯ଶ௡ݕ

௝ୀଵ .           (2.5) 

This test statistic T  is our proposed test statistic to test the effect of the Weighted 
Combination of multiple Phenotypes (WCmulP).  

The WCmulP method can also be extended to incorporate covariates. Suppose that there 
are 	݌	 covariates. Let ,i lZ  denote the thl  covariate of the thi  individual. We define 

the 	݈௧௛	 covariate corresponding to the two alleles 2 1ix   and 2ix  of the ݅௧௛  individual 

as	ݖଶ௜ିଵ,௟ and 2 ,i lz , where 2 1, 2 , ,i l i l i lz z Z   . We then adjust the phenotype value	ݕ௝,௞	for 

the covariates by applying linear regressions. That is,  

௝,௞ݕ																													 ൌ ଴,௞ߙ ൅ ௝,ଵݖଵ,௞ߙ ൅ ⋯൅ ௝,௣ݖ௣,௞ߙ ൅ ௝߬,௞.																							 

Let ݕ෤௝,௞	denote the residuals of ݕ௝,௞	in the linear regression. We incorporate the covariate 
effects in WCmulP by replacing ݕ௝,௞ in equation (2.5) by	ݕ෤௝,௞. With covariates, the statistic 
of WCmulP is defined as 

ܶ୛େ୫୳୪୔ ൌ ܶ|௬ೕ,ೖୀ௬෤ೕ,ೖ. 
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2.3 Comparison of Methods 

We compare the power of the proposed WCmulP with that of the following methods:  

Score (Score test): the test statistic of Score is given by equation (2.2). 

OB (O’Brien’s method) (O’Brien, 1984): the test statistic of OB,	்ࢋ઱ିଵࢀuni, is a linear 
combination of univariate test statistics, and it is the most powerful test among a class of 
test statistics that are linear combination of	ࢀuni, where ࢀuni is the vector of the univariate 
test statistics, Σ is the covariance matrix of ࢀuni, and ࢋ ൌ ሺ1,1… ,1ሻ் is a 1’s vector with 
length ܭ (the number of phenotypes).  

MultiPhen (Joint model of Multiple Phenotypes) (O’Reilly et al., 2012): it uses the 
proportional odds logistic regression to model the genotype data as ordinal response and 
phenotypes as predictors. A likelihood ratio test is used to test the null hypothesis.  

TATES (Trait-based Association Test that uses Extended Simes procedure) (van der Sluis 
et al., 2013): it combines univariate p-values to acquire one phenotype-based p-value, while 
correcting for correlations between phenotypes. The TATES p-value is given 

by	݊݅ܯ ൬
௠೐௣ሺೖሻ
௠೐ሺೖሻ

൰, where ݌ሺ௞ሻ is the ݇௧௛	ሺ݇ ൌ 1,… ,  ,ሻ sorted p-value in ascending orderܭ

݉௘ and ݉௘ሺ௞ሻ are the effective numbers of independent p-values of all ܭ phenotypes and 
݇ specified phenotypes, respectively. The effective numbers can be calculated from the 
correlation matrix of p-values.  

CCA (Canonical Correlation Analysis) (Ferreira and Purcell, 2009): it extracts the linear 
combination of phenotypes that maximizes the correlations between linear combinations 
of phenotypes and genotypes at the variant of interest. The test is based on Wilks’ lambda 
and the corresponding F-approximation.  

SHet (Test for Heterogeneous genetic effects) (Zhu et al., 2015): The test statistic of SHet, 
ܵு௘௧, is based on ܵு௢௠, which is the most powerful test statistic when the genetic effect is 
homogeneous. Both ܵு௢௠  and ܵு௘௧  are quadratic combinations of the univariate test 

statistics. The test statistic of ܵு௢௠ is	ܵு௢௠ ൌ
௘೅ሺோௐሻషభ்uni൫௘೅ሺோௐሻషభ்uni൯

೅

௘೅ሺௐோௐሻషభ௘
, where ܴ is the 

correlation matrix of uܶni , ܹ  is a diagonal matrix of weights for the univariate test 
statistics, and ݁ is a 1’s vector with length ܭ (number of phenotypes). ܵு௘௧	can be viewed 
as the maximum of ܵு௢௠ ’s satisfying different thresholds. More specifically, given a 
threshold, only test statistics with absolute values that are greater than the threshold are 
used, ܴ and ܹ are therefore partially used corresponding to the selected test statistics. The 
p-values of ܵு௘௧ can be evaluated by simulation.  
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2.4 Simulation Studies 

Our simulations are similar to that of Wang et al. (2016). To evaluate the type I error rates 
and powers of our method, we simulate genotype-phenotype data sets for ݊  unrelated 
individuals with total ܭ  phenotypes according to a variety of simulation scenarios. 
Specifically, genotype data at a genetic variant are simulated according to the minor allele 
frequency (MAF) under the assumption of Hardy-Weinberg equilibrium. We generate K  
phenotypes by the factor model  

21x fy c c    γ ,                                            (2.6) 

where  1, ,
T

Ky y y ; x  is the genotype score at the variant of interest;  1, , K     

is the vector of effect sizes of the genetic variant on the K  phenotypes; 

   1 ,, ~ 0,R

T
f f MVf N  ,  1 I A     , R  is the number of factors, A  is a 

matrix with elements of 1, I  is the identity matrix, and   is the correlation between if  

and jf  for i j ; γ  is a K  by R  matrix; c  is a constant number; and  1, , K

T     is 

a vector of  residuals, 
1 ,, K   are independent, and  ~ 0,1k N  for , ,1k K  . Based 

on equation (2.6), we consider the following six models.  

Model 1: There is only one factor and genotype has impacts on all traits with the same 

effect size. That is, 1R  ,  , ,
T    , and  1 ,1,

T γ . 

Model 2: There are two factors and genotype has impacts on two factors with opposite 

effects. That is, 2R  , 
2 2

, , , , ,

T

K K

    
 
     
 
 
  , and ߛ ൌ ܾ݀݅ܽ݃ሺܦଵ, ଶሻܦ , where 


2

,11,

T

i

K

D
 



 


 for 1,2i  , “ܾ݀݅ܽ݃” indicates the block diagonal matrix. 

Model 3: There are two factors and genotype has impacts on one factor. That is, 2R  , 

2

0, , 0, , ,

T

K

  
 
   
 
 

 , and ߛ ൌ ܾ݀݅ܽ݃ሺܦଵ, ଶሻ, where ܦ
2

,11,

T

i

K

D
 



 


 for 1,2i  . 

Model 4: There are four factors and genotype has impacts on one factor. That is, 4R  , 
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4

0, ,0, , ,

T

K

  
 
   
 
 

 , and ߛ ൌ ܾ݀݅ܽ݃ሺܦଵ, ,ଶܦ ,ଷܦ ସሻܦ , where 
4

,11,

T

i

K

D
 


 


 for 

,41,i   .  

Model 5: There are four factors and genotype has impacts on two factors. That is, 4R  , 

4 4

0, ,0, , , , , ,

T

K K

    
 
      
 
 

  , and ߛ ൌ ܾ݀݅ܽ݃ሺܦଵ, ,ଶܦ ,ଷܦ ସሻ, where ܦ
4

,11,

T

i

K

D
 


 


 

for ,41,i   . 

Model 6: There are four factors and genotype has impacts on three factors. That is, 4R 

, 
4 4

2 2 2
0, ,0, 1 2 , , , , , , ,, ,

4 1 4 1 4 1 4

T

K K

K

K K K

      
 

 
      


   

 
 

  , and ߛ ൌ

ܾ݀݅ܽ݃ሺܦଵ, ,ଶܦ ,ଷܦ ସሻ, where ܦ
4

,11,

T

i

K

D
 


 


 for ,41,i   . 

In the six models, the within-factor correlation is ܿଶ and the between-factor correlation 
is	ܿߩଶ. The structures of ߛ and covሺݔ|ݕሻ for different numbers of factors (ܴ ൌ 1, 2, and	4) 
when the number of phenotypes is 8 are given in Table A.2.2.  

We also generate phenotypes with covariates effects. We refer to Sha et al. (2012) and Sun 
et al. (2016) by adding two covariates in equation (2.6) as 

 1
2

20.5 0.5 1y z z fc cxe       γ , where 1z  is a continuous random variable 

generated from a standard normal distribution, 2z  is a binary random variable taking 

values of 0 and 1 with a probability of 0.5, and e  is a K-dimensional vector with all 
elements being 1’s. To evaluate type I error rates and powers, we consider 	݊ ൌ
1,000	unrelated individuals,	ܨܣܯ ൌ 0.3, and different numbers of phenotypes 8,16K  . 
To evaluate the type I error rates of all methods, we generate all phenotypes independent 
of genotypes by setting 0  . We evaluate type I error rates at significance levels	ߙ ൌ
0.001	and	0.01 for all methods. To evaluate powers, we vary the values of   (within-

factor correlation 2 0.5c   and between-factor correlation 2 0.1c  ) and vary the values 

of within-factor correlation 2c  (0.3,0.5,...,0.9) (between-factor correlation 2 0.1c   and 
ߚ ൌ 0.1,). 
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2.5 Simulation Results 

To evaluate the type I error rates of WCmulP and other six methods, we consider different 
numbers of phenotypes, different significance levels, and different numbers of factors. In 
each simulation scenario, the p-values of WCmulP and SHet are estimated using 10,000 
permutations, and the p-values of Score, MultiPhen, TATES, CCA and OB are estimated 
using their asymptotic distributions. The type I error rates of the seven methods are 
evaluated using 10,000 replicated samples. For 10,000 replicated samples, the 95% 
confidence intervals (CIs) for type I error rates of nominal levels 0.001 and 0.01 are 
ሺ0.00038, 0.00162ሻ	and	ሺ0.008, 0.012ሻ, respectively. The estimated type I error rates of 
WCmulP and other six methods are summarized in Table 2.1 (ܭ ൌ 8) and Table 2.2 (ܭ ൌ
16). From these tables, we can see that all estimated type I error rates of WCmulP are 
within 95% CIs, which indicates that the proposed WCmulP is a valid test. The estimated 
type I error rates of SHet, Score, MultiPhen, TATES, CCA and OB are not significantly 
different from the nominal levels.  

For power comparisons, we consider power as a function of genetic effect ߚ (Figures 2.1-
2.2) and power as a function of within-factor correlation ܿଶ (Figures 2.3-2.4). In each of 
the simulation scenario, the p-values of WCmulP and SHet are estimated using 1,000 
permutations and the p-values of Score, MultiPhen, TATES, CCA and OB are estimated 
using their asymptotic distributions. The powers of the seven methods are evaluated using 
1,000 replicated samples at a significance level of 0.01.  

Our simulation results show that:  
1. As expected, the powers of all methods increase as the genetic effect ߚ 

increases in each model (Figures 2.1-2.2).  
2. WCmulP is either the most powerful test or comparable to the most powerful 

tests in all six models (Figures 2.1-2.4).  
3. As number of phenotypes increases from ܭ ൌ 8 to	ܭ ൌ 16, WCmulP presents 

more obvious ascendancy than other methods.  
4. SHet, Score, MultiPhen, and CCA have similar performance in all six models; 

we call these four tests as group 1.  
5. OB is the most powerful test when the genetic effects are homogeneous (model 

1). However, OB reduces power significantly when genetic effects are 
heterogeneous, especially when opposite directions of the genetic effects exist 
(models 2, 5-6) or when the genetic variant impacts only a small portion of 
phenotypes (model 4). This phenomenon was also observed by Zhu et al. 
(2015).   

6. Power comparisons of TATES with tests in group 1 depend on the models. In 
general, TATES is more powerful than tests in group 1 when the genetic variant 
impacts on a portion of phenotypes (models 3 and 4).  

7. In general, as the within-factor correlation ܿଶ  increases, the powers of all 
methods decrease (Figures 2.3-2.4). TATES is relatively robust to ܿଶ because 
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it essentially only depends on the phenotype that has the strongest association 
with the genetic variant, as explained in Zhu et al. (2015).   

We also considered using principal components (PCs) of the phenotypes instead of the 
original phenotypes to do power comparisons and the results are given in Figures B.2.1-
B.2.4.  We exclude PCs that explain less than 10-6 of the total variation. Using PCs of the 
phenotypes, we observe that: (1) WCmulP, Score, MultiPhen, and CCA have very similar 
powers in all six models (Figures B.2.1-B.2.4). We call these tests as group s1. The tests 
in group s1 are either the most powerful tests or comparable to the most powerful one; (2) 
SHet is less powerful than the tests in group s1; (3) OB is the least powerful method in all 
six models because PCs likely have effects with different directions; (4) TATES becomes 
the most powerful method when the genetic variant has effects on all phenotypes with the 
same absolute value of effect sizes (models 1 and 2) because in this case, one of the PCs 
may capture the most of association information.  

We also compared the powers using a lower significance level 5×10-5 (Figure B.2.5). 
Figure B.2.5 shows that the pattern of the power comparisons by using significance level 
5×10-5 is similar to that by using significance level 0.01 (Figure 2.1). 
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2.6 Real Data Analysis 

Chronic obstructive pulmonary disease (COPD) refers to a group of diseases that cause 
airflow blockage and breathing-related problems. The Genetic Epidemiology of COPD 
Study (COPDGene) is a multicenter observational study designed to identify genetic 
factors associated with COPD, to define and characterize disease-related phenotypes, and 
to assess the association of disease-related phenotypes with the identified susceptibility 
genes (Regan et al., 2010). 10,192 participants (including 6,784 non-Hispanic Whites 
(NHW) and 3,408 African-Americans (AA)) are included in COPDGene. We selected 7 
key quantitative COPD-related phenotypes and 4 covariates that are the same as those in 
Liang et al. (2016). The detailed description of these 7 phenotypes is in Table 2.3, and their 
correlation structure is given in Figure B.2.6. The four covariates include Body Mass Index, 
Age, Pack-Years (one pack-year is defined as smoking one pack per day for one year), and 
gender. A set of 5,430 NHW across 630,860 SNPs were used in the analysis after excluding 
subjects with missing data in any of the 11 variables.  

We apply WCmulP and other six methods to both original 7 phenotypes (Table 2.4) and 
the principal components (PCs) of the phenotypes (Table A.2.1). PCs that explain less than 
10-6 of the total variation are excluded. In this way, one PC is excluded and there are 6 PCs 
left. Using the first few PCs is also a dimension reduction method. Thus, using PCs of the 
phenotypes, WCmulP uses two dimension reduction methods: using the first few PCs and 
the weighted combination of those PCs. To identify SNPs significantly associated with the 
7 COPD-related phenotypes and the top 6 PCs of the phenotypes, we use the genome-wide 
significance threshold of	5 ൈ 10ି଼. There are total 16 SNPs that are significant under at 
least one method (Table 2.4 and Table A.2.1). Those 16 SNPs have been reported being 
associated with the COPD-related phenotypes by previous studies (Pillai et al., 2009; Wilk 
et al., 2009; Wilk et al., 2012; Cho et al., 2010; Cho et al., 2010; 2012; 2014; Hancock et 
al., 2010; Young et al., 2010; Li et al., 2011; Zhang et al., 2011; Cui et al., 2014; Zhu et 
al., 2014; Lutz et al., 2015; Lee et al., 2015). From Table 2.4, we can see that MultiPhen 
identified the largest number of SNPs, 14 SNPs; WCmulP, SHet, Score, and CCA 
identified 13 SNPs; TATES identified 9 SNPs; and OB didn’t identify any SNPs, that’s 
likely because the true genetic effects of each SNP are heterogeneous for all phenotypes. 
From Table A.2.1, we can see that using PCs of the phenotypes, WCmulP identified all of 
the 16 SNPs; MultiPhen identified 15 SNPs; SHet, Score, and CCA identified 13 SNPs; 
TATES identified 4 SNPs; and OB identified 3 SNPs. In summary, the number of SNPs 
identified by WCmulP is comparable to the largest number of SNPs identified by other 
tests; and using PCs of phenotypes, WCmulP is the only method that identified all 16 SNPs. 
The results of the real data analysis are consistent with our simulation results.   
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2.7 Discussion  

In this article, we developed WCmulP to perform multivariate analysis of multiple 
phenotypes in association studies based on the following reasons: (1) complex diseases are 
usually measured by multiple correlated phenotypes in genetic association studies; and (2) 
there is increasing evidence showing that studying multiple correlated phenotypes jointly 
may increase powers for detecting genetic variants that are associated with complex 
diseases. Our results show that WCmulP has correct type I error rates and is either the most 
powerful test or comparable to the most powerful tests among the seven tests we 
considered. None of the other methods showed consistent good performances under the 
simulation scenarios. OB is the most powerful test when the genetic effects are 
homogeneous, while it loses power dramatically when genetic effects are heterogeneous; 
especially when opposite directions of the genetic effects exist. SHet, Score, MultiPhen, 
and CCA have similar powers and they are less powerful than WCmulP in most scenarios. 
TATES is more powerful only when the genetic variant affects a portion of phenotypes. In 
addition, in the real data analysis, WCmulP identified 13 (out of 16) significant SNPs, 1 
SNP less than the largest number of identified SNPs; using PCs of phenotypes, WCmulP 
is the only method that identified all 16 SNPs. The real data analysis results show that 
WCmulP has excellent performance in identifying SNPs associated with complex disease 
with multiple correlated phenotypes such as COPD. 

In the context of association studies, it is important to correct for population stratification 
(PS). PS refers to allele frequency differences between populations unrelated to the 
outcome of interest, but due to systematic ancestry differences. PS can cause seriously 
confounded associations if not adjusted properly (Knowler et al., 1988; Lander and Schork, 
1994). The principal component analysis (PCA) method (Chen et al., 2003; Zhang et al., 
2003; Zhu et al., 2002; Price et al., 2006; Bauchet et al., 2007) and linear mixed model 
(LMM) approach (Kang et al., 2010; Zhang et al., 2010; Hoffman, 2013) have been used 
to adjust for population stratification. There are also other methods such as 
multidimensional scaling (MDS) (Li and Yu, 2008), the robust PCA based on resampling 
by half means (RPCA-RHM) (Liu et al., 2013), and the robust PCA based on the projection 
pursuit (RPCA-PP) (Liu et al., 2013), which are extension methods of the PCA approach. 
PCA identifies several top principal components of the genotype data matrix and uses them 
as covariates in the association analysis. We propose to use PCA to control for PS in our 
proposed method when samples from different populations are involved. However, the 
performance needs further investigations.  

One disadvantage of WCmulP is that the test statistic does not have an asymptotic 
distribution and a permutation procedure is needed to calculate its p-value, which is time 
consuming compared to the methods whose test statistics have asymptotic distributions. 
The running time of WCmulP with 1,000 permutations on a data set with 5,000 individuals 
and 20 phenotypes on a laptop with 4 Intel(R) Cores(TM) i7-4790 CPU @ 3.6GHz and 4 
GB memory is no more than 0.15s. To perform GWAS, we can first select genetic variants 
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that show evidence of association based on a small number of permutations (e.g. 1,000), 
and then a large number of permutations are used to test the selected significant genetic 
variants (Wang et al., 2016). Furthermore, WCmulP cannot be used for rare variant 
association studies, although recent studies have shown that complex diseases are caused 
by both common and rare variants (Kang et al., 2010; Bodmer and Bonilla, 2008; Pritchard 
and Cox, 2002; Teer and Mullikin, 2010; Walsh and King, 2007). How to extend WCmulP 
to rare variant association studies is our future work.  

In our simulation studies, the numbers of phenotypes varied from 8 to 16 and the methods 
rely on all observations having fully observed phenotypes. However, in real data analysis, 
as the number of phenotypes increases the chance that missing at least one observation 
increases exponentially, especially in epidemiological and clinical research (Ali et al., 
2011; Dahl et al., 2016). There are several approaches to handle missing phenotypes: 
deletion-based methods, simple replacement methods, and imputation methods (Ali et al., 
2011). The most commonly used method for dealing with missing data is deletion-based 
method, in which observations with missing values are removed from the analysis (Ali et 
al., 2011). However, removal of observations with missing values will reduce sample size, 
thus resulting in power losses (Dahl et al., 2016). The simple replacement methods replace 
the missing values with plausible values for the variable with missing values, such as the 
sample mean (van der Sluis et al., 2013; Ali et al., 2011). It is a simple, unconditional 
method that does not depend on other variables. However, mean substitution approach may 
result in biased estimates where data are not missing completely at random (Ali et al., 
2011). Imputation is a more sophisticated approach that fills in missing values with 
predicted values using model-based methods or conditional imputation, including multiple 
imputation (MI), multivariate normal imputation (MVNI), and fully conditional 
specification (FCS) (Ali et al., 2011; De Silva et al., 2017; Schafer, 1997; Carlin, 2015; 
Raghunathan et al., 2001; Van Buuren et al., 2006; Carpenter and Kenward, 2012). In MI, 
the incomplete dataset is generated multiple times and missing values are replaced by 
values drawn from a posterior distribution according to a suitable imputation model that 
utilizes the rest of the data (Ali et al., 2011; De Silva et al., 2017). MVNI fits a joint 
imputation model to all the variables containing missing values under the assumption that 
the variables follow a multivariate normal distribution (Schafer, 1997; Carlin, 2015). For 
each variable with missing values, FCS fits separate univariate regression models and 
iteratively cycles through the univariate regression models (Raghunathan et al., 2001; Van 
Buuren et al., 2006; Carpenter and Kenward, 2012). In our real data analysis, we removed 
1354 observations with missing either phenotypes or covariates from 6784 samples. An 
alternative approach is to use mean substitution or imputation approaches to fill in the 
missing values.   
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2.8 Tables and Figures 

Table 2.1. Estimated type I error rates for the seven methods under three simulation 
settings. The number of phenotypes is	ܭ ൌ 8,	ܿଶ ൌ ଶܿߩ	,0.5 ൌ 0.1, and ܨܣܯ ൌ 	0.3. The 
p-values of WCmulp and SHet are evaluated using 10,000 permutations. The type I error 
rate of all of the seven methods is evaluated using 10,000 replicated samples at a 
significance level of	ߙ.  

Note: ܴ is the number of factors.   

  Type I error rates  

 ܴ ൌ 1 ܴ ൌ 2 ܴ ൌ 4 

Methods ߙ ൌ ߙ 0.001 ൌ ߙ 0.01 ൌ ߙ 0.001 ൌ ߙ 0.01 ൌ ߙ 0.001 ൌ 0.01 

WCmulP 0.0008 0.0097 0.0011 0.0091 0.0011 0.0104 

SHet 0.0008 0.0106 0.0009 0.0093 0.0008 0.0104 

Score 0.0006 0.0102 0.0008 0.0103 0.0004 0.0105 

MultiPhen 0.0011 0.0106 0.0011 0.0105 0.0005 0.0107 

TATES 0.0012 0.0094 0.0007 0.0121 0.0004 0.0106 

CCA 0.0008 0.0107 0.0010 0.0099 0.0008 0.0107 

OB 0.0007 0.0095 0.0016 0.0092 0.0013 0.0105 
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Table 2.2. Estimated type I error rates for the seven methods under three simulation 
settings. The number of phenotypes is	ܭ ൌ 16,	ܿଶ ൌ ଶܿߩ ,0.5 ൌ 0.1, and ܨܣܯ ൌ 	0.3. 
The p-values of WCmulp and SHet are evaluated using 10,000 permutations. The type I 
error rate of all of the seven methods is evaluated using 10,000 replicated samples at a 
significance level of	ߙ.  

 
  

  Type I error rates  

 ܴ ൌ 1 ܴ ൌ 2 ܴ ൌ 4 

Methods ߙ ൌ ߙ 0.001 ൌ ߙ 0.01 ൌ ߙ 0.001 ൌ ߙ 0.01 ൌ ߙ 0.001 ൌ 0.01 

WCmulP 0.0011 0.0089 0.0006 0.0094 0.0008 0.0098 

SHet 0.0009 0.0098 0.0009 0.0126 0.0008 0.0088 

Score 0.0010 0.0096 0.0011 0.0098 0.0010 0.0086 

MultiPhen 0.0011 0.0096 0.0011 0.0121 0.0013 0.0103 

TATES 0.0013 0.0110 0.0012 0.0102 0.0008 0.0104 

CCA 0.0012 0.0097 0.0009 0.0111 0.0011 0.0089 

OB 0.0011 0.0085 0.0006 0.0092 0.0007 0.0097 
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Table 2.3. Description of COPD-related phenotypes  

 

Phenotypes Descriptions 

Gas Trapping (GasTrap) 
Air trapping at -856 Hounsfield units  (HU) 
on expiratory chest CT scan 

Exacerbation Frequency (ExacerFreq) 
Number of COPD exacerbations during the 
year before study enrollment 

Emphysema (Emph) % Emphysema at -950 HU 

Airway Wall Area (Pi10) 
Square root of the wall area of a 
hypothetical 10 mm internal perimeter 
airway 

Emphysema Distribution (EmphDist) 
Log ratio of emphysema at -950 HU in the 
upper 1/3 of lung fields compared to the 
lower 1/3 of lung fields 

Six Minute Walk Distance (6MWD) Measure of exercise capacity 

FEV1 
Observed FEV1 (liters)/predicted FEV1 
(liters), with predicted values from 
Hankinson reference equations 
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Table 2.4. Significant SNPs and the corresponding p-values in the analysis of COPDGene. 
The p-values of WCmulP are evaluated using 10ଽ permutations; the p-values of SHet are 
evaluated using 10଼ permutations. The p-values of Score, MultiPhen, CCA, TATES, and 
OB are evaluated using asymptotic distributions. The grayed-out p-values indicate the p-
values	൐ 5 ൈ 10ି଼.  

Chr Variant identifier WCmulP SHet Score MultiPhen CCA TATES OB 

4 rs1512282 0 1.0E-08 1.90E-09 1.03E-09 1.69E-09 5.77E-09 0.339 

4 rs1032297 0 0 5.55E-14 7.69E-14 6.52E-14 6.22E-13 0.452 

4 rs1489759 0 0 1.11E-16 1.22E-16 1.11E-16 2.52E-16 0.483 

4 rs1980057 0 0 1.11E-16 8.14E-17 0 9.35E-17 0.411 

4 rs7655625 0 0 1.11E-16 9.13E-17 0 1.64E-16 0.478 

15 rs16969968 0 0 1.91E-11 7.84E-12 1.32E-11 2.98E-08 0.986 

15 rs1051730 1.00E-08 0 2.05E-11 8.16E-12 1.41E-11 2.63E-08 0.992 

15 rs12914385 0 0 1.78E-12 1.48E-12 1.76E-12 5.14E-10 0.999 

15 rs8040868 0 0 2.21E-12 2.59E-12 2.74E-12 2.40E-09 0.768 

15 rs951266 2.00E-08 0 2.42E-11 1.02E-11 1.77E-11 5.17E-08 0.956 

15 rs8034191 4.00E-08 1.0E-08 2.95E-10 7.74E-11 2.14E-10 1.02E-07 0.868 

15 rs2036527 4.00E-08 1.0E-08 5.58E-10 1.77E-10 3.99E-10 1.56E-07 0.880 

15 rs931794 4.80E-08 3.0E-08 3.13E-10 9.09E-11 2.35E-10 1.18E-07 0.913 

15 rs2568494 7.18E-06 1.93E-06 1.22E-07 4.23E-08 1.05E-07 2.88E-05 0.269 

15 rs17483721 8.12E-06 2.29E-06 2.26E-07 9.87E-08 2.11E-07 3.57E-05 0.308 

15 rs17483929 8.15E-06 2.13E-06 1.65E-07 6.53E-08 1.50E-07 2.82E-05 0.347 

 

  

  



36 

 

Figure 2.1. Power comparisons of the seven methods as a function of ߚ for the six models. 
The total number of phenotypes is	ܭ ൌ 	8, ܿଶ ൌ ଶܿߩ ,0.5 ൌ 0.1, and ܨܣܯ ൌ 	0.3. The p-
values of WCmulP and SHet are evaluated using 1,000 permutations. The power of all of 
the seven methods is evaluated using 1,000 replicated samples at a significance level of 
0.01.  
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Figure 2.2. Power comparisons of the seven methods as a function of ߚ for the six models. 
The total number of phenotypes is	ܭ ൌ 	16, ܿଶ ൌ ଶܿߩ ,0.5 ൌ 0.1, and ܨܣܯ ൌ 	0.3. The p-
values of WCmulP and SHet are evaluated using 1,000 permutations. The power of all of 
the seven methods is evaluated using 1,000 replicated samples at a significance level of 
0.01.  
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Figure 2.3. Power comparisons of the seven methods as a function of ܿଶ for the six models. 
The total number of phenotypes is	ܭ ൌ ଶܿߩ ,8	 ൌ ߚ ,0.1 ൌ 0.1, and ܨܣܯ ൌ 	0.3. The p-
values of WCmulP and SHet are evaluated using 1,000 permutations, the p-values of other 
methods are evaluated using asymptotic distribution. The power of all of the seven methods 
is evaluated using 1,000 replicated samples at a significance level of 0.01. 
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Figure 2.4. Power comparisons of the seven methods as a function of ܿଶ for the six models. 
The total number of phenotypes is	ܭ ൌ ଶܿߩ ,16	 ൌ ߚ ,0.1 ൌ 0.1, and ܨܣܯ ൌ 	0.3. The p-
values of WCmulP and SHet are evaluated using 1,000 permutations, the p-values of other 
methods are evaluated using asymptotic distribution. The power of all of the seven methods 
is evaluated using 1,000 replicated samples at a significance level of 0.01. 
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3 Chapter 3 

PheCLC: a Novel Statistical Method for Phenome-Wide Association Studies 

Over the last decade, genome-wide association studies (GWAS) have been widely 
performed to identify genetic associations for many complex diseases. Typically, GWAS 
use a phenotype-to-genotype strategy, starting with a particular phenotype that is 
associated with genetic variants across the genome, and over 1,000 GWAS have been 
published linking thousands of statistically significant genetic variants to hundreds of 
human diseases and traits. A common limitation of GWAS is that they focus on only a 
single phenotype or a small set of phenotypes at a time. As a complement to GWAS, 
phenome-wide association studies (PheWAS) use a genotype-to-phenotype approach, 
beginning with a genotype to test for associations over a broad range of phenotypes. 
PheWAS were first demonstrated with electronic health record (EHR) data in 2010 and 
have already demonstrated their capacity to discover genetic association related to a wide 
range of diseases. In this article, we derived a novel and powerful multivariate method, 
which we referred as PheCLC, to test the association between a genetic variant with large 
numbers of phenotypes. Suppose that there is a certain number of phenotypic categories 
containing different phenotypes. PheCLC first calculates the p-values for testing the variant 
of interest and the phenotypes within each phenotypic category using a clustering linear 
combination method recently proposed by our group. Then, it combines the p-values 
obtained from the first step using the method similar to adaptive Fisher’s combination 
method (Liang et al., 2016). We perform extensive simulation studies to compare the 
PheCLC method with other existing methods. The results show that our proposed PheCLC 
method controls the type I error rates very well and has outstanding performance over other 
methods. 

3.1 Introduction 

Over the last decade, as the completion of the Human Genome Project (Venter et al., 2001; 
Lander et al., 2001) and the HapMap Project (Frazer et al., 2007; International HapMap 
Consortium), our understanding of human genetic variation in the genome and its 
connection to human health were dramatically accelerated. As a result, genome-wide 
association studies (GWAS) emerged and have been widely used to identify genes or 
genetic variants that are associated with a single or a small number of human traits and 
diseases (Bush and Moore, 2012; Witte, 2010). By 2011, the US National Human Genome 
Research Institute (NHGRI) and the European Bioinformatics Institute (EMBL-EBI) 
published the GWAS Catalog (http://www.ebi.ac.uk/gwas/ ) highlighting a review of 
GWAS-identified variants, traits and studies (Hindorff et al., 2009). This review 
demonstrated that almost 5% of single nucleotide polymorphisms (SNPs) and almost 17% 
of genes are associated with more than one human traits (Sivakumaran et al., 2011). By 
2013, over 1000 GWAS had been published linking up to 4000 statistically significant 
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genetic variants to over 500 human traits and diseases (Hebbring, 2014). In general, GWAS 
use a phenotype-to-genotype strategy, beginning with a single disease or a small number 
of diseases, to evaluate the associations between the pre-defined disease or diseases and 
hundreds of thousands, to over a million, genetic variants across the genome and to identify 
the significant genetic associations (Hebbring, 2014; Pendergrass et al., 2013; Denny et al., 
2016). However, GWAS have several limitations. Frist, a general accepted significance 
threshold (5 ൈ 10ି଼) is commonly used in GWAS and the genetic variant with p-value 
which is less than this threshold is considered as significant (McCarthy et al., 2008; Risch 
and Merikangas, 1996). However, reaching this threshold by GWAS can be a challenge 
due to the burden of large-scale multiple testing. Second, the vast majority (more than 90% 
as reported by Paul et al., 2014) of significant SNPs are located in the intergenic regions 
(IGR) which are a subset of noncoding DNA. Identifying and interpreting their associations 
with human diseases is a major challenge (Hebbring, 2014). Third, GWAS SNPs are 
mainly tag SNPs (i.e. SNPs that have strong linkage disequilibrium (LD) with a causal 
variant) for common variants (Hindorff et al., 2009). Fourth, GWAS are examining the 
association with genetic variants with a limited number of traits and phenotypes 
(Pendergrass et al., 2012; Pendergrass et al., 2013; Bush et al., 2016; Denny et al., 2016). 
Therefore, most GWAS fail to identify clinically or biologically significant associations 
(Hebbring, 2014). 

As an alternative approach to GWAS, phenome-wide association studies (PheWAS) is 
rapidly used to evaluate the impact of one or many genetic variants on a very broad range 
of phenotypes – the phenome (Pendergrass et al., 2012; Pendergrass et al., 2013; Hebbring, 
2014). PheWAS came into view partly due to the availability of dense electronic health 
record (EHR) data, which is the most frequently used phenome. In 2010, PheWAS was 
first performed as a method with EHR data and published in Bioinformatics (Denney et al., 
2010). Since then, more than half of PheWAS investigations have been demonstrated with 
EHR data (Denny et al., 2016). However, EHR-based phenotype data are generally 
collected for clinical use and may depict limited racial diversity (McCarty et al., 2011; 
Denny et al., 2010). Published PheWAS have been mainly implemented with the Electronic 
Medical Records and Genomics (Emerge) Network and Population Architecture using 
Genomics and Epidemiology (PAGE) I Network (Bush et al., 2016). Even though, 
PheWAS approach is still in an early stage, it has successfully displayed its capability of 
exploring the association between genetic variants and an extensive range of phenotypes. 
In the mechanics of conducting genetic association tests, current PheWAS are similar to 
the widely used GWAS, but from an inverse perspective. PheWAS use a genotype-to-
phenotype strategy, starting with a genetic variant of interest to test for associations across 
the so-called phenome (Hebbring, 2014). Flipping the direction of inference in PheWAS, 
compared with GWAS, has several motivations. First, genetic variants can be 
systematically analyzed for their effects on clinical traits and diseases (Bush et al., 2016). 
Second, genetic variants have long been recognized as factors that influence human 
diseases and traits, and they may depend on environmental exposures and life stages (Ober 
and Vercelli, 2011), both of which can be involved in complete phenome. Third, many 
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conditions have known comorbidities and have multiple genetic factors that contribute to 
their etiology. Available methods for PheWAS include univariate association test, which 
conducts a single test of association between the genetic variant of interest and each 
phenotype at a time, and multivariate methods, which test the genetic variant and a large 
number of phenotypes jointly. Many GWAS reported that the multivariate tests are more 
powerful than the univariate tests. Here, we review the commonly adopted multivariate 
methods for PheWAS: proportional odds logistic regression for joint model of multiple 
phenotypes (MultiPhen) (O’Reilly et al., 2012), which regresses the genetic variant on 
multiple phenotypes, fits the proportional odds regression model and uses a likelihood ratio 
test to obtain the p-value; the Trait-based Association Test that uses Extended Simes 
procedure (TATES) (van der Sluis et al., 2013), in which univariate p-values are combined 
to acquire one phenotype-based p-value, while correcting for correlations between 
phenotypes; the Principal Component of Heritability association test (PCH) (Klei et al., 
2008), which reduces the phenotypes to a single trait that has a higher heritability than any 
other linear combination of the phenotypes; canonical correlation analysis (CCA) (Ferreira 
and Purcell, 2009), which extracts the linear combination of phenotypes that explain the 
largest possible amount of the covariation between the genetic variant and all phenotypes; 
multivariate analysis of variance (MANOVA); and BIMBAM, which is a Bayesian model 
comparison and model averaging for multivariate regression (Stephens, 2013). Bush et al. 
(2016) compared the performance of those methods and reported that not a single approach 
performs best under all scenarios. Zhu et al. (2015) also compared most of the above 
methods (MultiPhen, TATES, PCH, CCA, and MANOVA) and pointed out that over all 
the simulation scenarios, MultiPhen, PCH, CCA, and MANOVA have very similar power 
when a small number of phenotypes are considered (൑ 20).  

In this article, we propose a novel and powerful multivariate approach that we refer to as 
PheCLC (Phenome-wide association study that uses Clustering Linear Combination 
method). This method can deal with more than one thousand correlated or uncorrelated 
phenotypes with over two thousand individuals. We suppose that the whole phenome can 
be classified into numerous phenotypic categories and each category contains a certain 
number of phenotypes. PheCLC is a two-step approach. In the first step, we apply the 
clustering linear combination (CLC) method within each phenotypic category and derive a 
CLC p-value for testing the genetic variant of interest with all phenotypes in that category. 
The second step then combines all CLC p-values obtained from the first step by using 
Adaptive Fisher’s Combination (AFC) method (Liang et al., 2016). In the simulation 
studies, we use the factor model (Wang et al., 2016) to generate thousands of phenotypes 
and evaluate the performance of our proposed PheCLC method, the results show that 
PheCLC has correct type I error rates and outperforms other methods that we compared 
with. 
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3.2 Methods 

In our analyses, we consider a sample with n ሺ݊ ൒ 2,000ሻ unrelated individuals, indexed 
by 	݅ ൌ 1,2, … , ݊ . Each individual has K ሺܭ ൒ 1,000ሻ phenotypes in total and suppose 
these K  phenotypes are from M  phenotypic categories in which the effects of genetic 
variant are different. Suppose that there are mK  phenotypes in the thm  category, 

where	݉ ൌ 1,2, … and 1	ܯ, MKK K  . Let imky  denote the thk  phenotype in the thm  

category of the thi  individual and ix  denote the genotype at the variant of interest for the 
thi  individual. We can also incorporate covariates into the analyses. Suppose that there are 

p  covariates, 1 ,,i ipz z , for the thi  individual, we adjust both the genotypes and phenotype 

values for the covariates using the method applied by Price et al. (2006) and Sha et al. 
(2012). That is, we regress both genotypes and phenotypes on the covariates through the 
following two linear models  

0 1 1 ...imk mk mk i pmk ip imky z z         and 0 1 1 ...i i p ip ix z z        . 

For simplification, in what follows, we assume that there are no covariates. We then use 
score statistics to test for association between the thk  phenotype in the thm  category and 
the variant of interest under the generalized linear model 0 1( ( | ))i mk mi k ikmg E y x x  . The 

score test statistic, mkT , is given by  

mkmk mkT VU , 

where 
1
( )( )

n

mk imk mk ii
U y xy x


    

and 22

1 1
( ) ( )

n n

mk imk mk ii i
V y x nxy

 
    . Under the 

null hypothesis that there is no association between the genetic variant and the thk  
phenotype in the thm  category (i.e. ߚ௠௞

ଵ ൌ 0), mkT  asymptotically follows standard normal 
distribution. Following these univariate association tests, we obtained ܭ௠ such score test 
statistics in the ݉௧௛ category. Next, we introduce the clustering linear combination (CLC) 
theorem and then apply CLC method to define an overall test statistic by combining the 
univariate test statistics in each category.  

Theorem of Clustering Linear Combination: we assume that ܶ ൌ ሺ ଵܶ, … , ௞ܶሻ் ∼
ܰሺߚ, Σሻ, where ߚ ൌ ሺߚଵ, … , …,ଵߚ ௞ሻ். Supposeߚ ,  clusters. That ܮ ௞ can be divided intoߚ

is, ߚ ൌ ൫ߠଵ1௞భ
் , … , ௅1௞ಽߠ

் ൯
்

, 1௦ ൌ ሺ1,… ,1ሻ் , and ݇ଵ ൅⋯൅ ݇௅ ൌ ݇ . If the hierarchical 
clustering method can correctly cluster ߚ, the most powerful test among all tests in the 
form ሺܶܥሻ்ሺܥΣ்ܥሻିଵሺܶܥሻ for an arbitrary ܮ ൈ ݇ matrix ܥ is given by Clustering Linear 
Combinations (CLC) test with statistic 

௅ܥܮܥ ൌ ሺܹܶሻ்ሺܹΣ்ܹሻିଵሺܹܶሻ 
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where ܹ ൌ ܤ Σିଵ and்ܤ ൌ ݀݅ܽ݃൫1௞భ, … , 1௞ಽ൯.   

For the thm  category, we apply CLC method to combine	 ௠ܶଵ, ௠ܶଶ, … , ௠ܶ௄೘  and obtain one 
CLC test statistic. Let us say that we calculate ܮ଴	(e.g., ܮ଴ ൌ 10) CLC test statistics, 

1 0,, LCC C LCL  , in the ݉௧௛ category. We then calculate the p-values of 1 0,, LCC C LCL  , 

1 0,,m mLp p , and take the minimum value of these p-values, denoted 1 0minm l L mlp p   ሺ݉ ൌ

1,… ሻ. Let ܯ,   1 ,, Mp p
 be order statistics of 1 ,, Mp p  such that    1 Mp p 

. For any 

predefined integer L  and cut points 11 Lc c M    (    1, 1,2, , ,10Lcc   ), we define 
the summation of negative  log mp  at cut point lc  as  

 
1

log
lc

l
m

mw p


  , , ,1l L  . 

Let lP denote the p-value of lw . Then, our proposed test statistic of PheCLC for testing the 
association between the genetic variant and all phenotypes is given by  

1min l L lT P  . 

To calculate the p-value of ܶ, we borrow the permutation procedure in Liang et al. (2016) 
and state this procedure as follows.  

Step 1. In each permutation, we randomly shuffle the genotypes and recalculate 
,ሺଵሻ݌ … , …,ଵݓ ሺெሻ and݌ ,  times of permutations. Let ܤ ௅. Suppose that we performݓ

௟ݓ
ሺ௕ሻ (ܾ ൌ 0,1, … ,  ௟ based on the ܾ௧௛ permuted data, whereݓ denote the value of (ܤ

ܾ ൌ 0 represents the original data.  

Step 2. We transfer ݓ௟
ሺ௕ሻ to ௟ܲ

ሺ௕ሻ by  

௟ܲ
ሺ௕ሻ ൌ

#ሼୢ:௪೗
ሺ೏ሻ	வ௪೗

ሺ್ሻ		௙௢௥	ௗୀ଴,ଵ,…,஻ሽ

஻
. 

Step 3. Let ܶሺ௕ሻ ൌ min
ଵஸ௟ஸ௅ ௟ܲ

ሺ௕ሻ. Then, the p-value of ܶ is given by 

#ሼ௕:்ሺ್ሻழ்ሺబሻ	௙௢௥	௕ୀଵ,ଶ,…,஻ሽ

஻
. 

As shown in Appendix of (Liang et al., 2016), the null distributions of ݌ଵ,݌ଶ,…,݌ெ and thus 
of ܶ do not depend on the genetic variant being tested. Thus, the permutation procedure 
described above to generate an empirical null distribution of ܶ needs to be done only once 
for many genetic variants. 
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3.3 Simulations 

To evaluate the type I error rates and powers of our proposed method, we generate 
genotypes according to minor allele frequency (MAF) and assume Hardy Weinberg 
Equilibrium. Then, we generate K  phenotypes by the factor model (Wang et al., 2016) 

21x fy c c    γ ,                                            (3.1) 

where  1, ,
T

Ky y y ; x  is the genotype score at the variant of interest;  1, , K     

is the vector of effect sizes of the genetic variant on the K  traits; 

   1 ,, ~ 0,M

T
f f MVf N  ,  1 I A     , A  is a matrix with elements of 1, I  

is the identity matrix, and   is the correlation between categories; γ  is a K  by M  

matrix; c  is a constant number; and  1, , K

T     is a vector of  residuals, and 1 ,, K   

are independent, and  ~ 0,1k N  for , ,1k K  . 

Based on equation (3.1), we consider six models: 

Model 1: There are 100M   categories and genotypes impact on one category. Let K
k

M


. That is,  1 , ,
TT T

M    , and  1, , Mdiag D D γ , where ,11,

T

i

k

D
 


 


  and T

i  for 

, ,1i M   are k  dimensional vectors; 1 1 0M     and  
1

2
1, ,M k

k
 


 .  

Model 2: There are 100M   categories and genotypes impact on two categories. Let 

K
k

M
 . That is,  1 , ,

TT T
M    , and  1, , Mdiag D D γ , where ,11,

T

i

k

D
 


 


  and 

T
i  for , ,1i M   are k  dimensional vectors; 1 2 0M    ,  1 1

2
1, ,M k

k
  


 , and 


/2 /2

1, ,1, 1, , 1M

k k

 
 
     

 
  .   

Model 3: There are 100M   categories and genotypes impact on five categories. Let 

K
k

M
 . That is,  1 , ,

TT T
M    , and  1, , Mdiag D D γ , where ,11,

T

i

k

D
 


 


  and 
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T
i  for , ,1i M   are k  dimensional vectors; 1 5 0M    ,  4 1

2
1, ,M k

k
  


 , 

 3 1

2
1, ,M k

k
   


 , 2

/2 /2

1, ,1, 1, , 1M

k k

 

 
     

 
  ,  1 1, ,1M   , and  1, ,1M    .   

Model 4: There are 50M   categories and genotypes impact on one category. Let K
k

M
 . 

That is,  1 , ,
TT T

M    , and  1, , Mdiag D D γ , where ,11,

T

i

k

D
 


 


  and T

i  for 

, ,1i M   are k  dimensional vectors; 1 1 0M     and  
1

2
1, ,M k

k
 


 .  

Model 5: There are 50M   categories and genotypes impact on two categories. Let K
k

M


. That is,  1 , ,
TT T

M    , and  1, , Mdiag D D γ , where ,11,

T

i

k

D
 


 


  and T

i  for 

, ,1i M   are k  dimensional vectors; 1 2 0M    ,  1 1

2
1, ,M k

k
  


 , and 


/2 /2

1, ,1, 1, , 1M

k k

 
 
     

 
  .   

Model 6: There are 50M   categories and genotypes impact on five categories. Let K
k

M


. That is,  1 , ,
TT T

M    , and  1, , Mdiag D D γ , where ,11,

T

i

k

D
 


 


  and T

i  for 

, ,1i M   are k  dimensional vectors; 1 5 0M    ,  4 1

2
1, ,M k

k
  


 , 

 3 1

2
1, ,M k

k
   


 , 2

/2 /2

1, ,1, 1, , 1M

k k

 

 
     

 
  ,  1 1, ,1M   , and  1, ,1M    .   

To evaluate type I error rates of the proposed method, we let 0  . To evaluate powers, 

we let 0  . In the simulation studies for evaluation of type I error rates and powers, we 

set ܭ ൌ 1000, ݊ ൌ 2000, MAF = 0.3, 2 0.5c   and 0.2  . 
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3.4 Results 

To evaluate the type I error rats of PheCLC and other three methods, we consider different 
numbers of categories. In each simulation scenario, the p-values of the proposed PheCLC 
are estimated using 200 permutations, and the p-values of TATES, MANOVA and OB are 
estimated using their asymptotic distributions. The type I error rates of all of the four 
methods are evaluated using 1,000 replicates. For 1,000 replicates, the 95% confidence 
intervals (CIs) for type I error rates of nominal levels 0.05 is (0.036, 0.063). The estimated 
type I error rates of PheCLC and other three methods are summarized in Table 3.1. Well-
controlled type I error rates were observed for PheCLC, TATES, MANOVA and OB in all 
scenarios. Namely, the proposed PheCLC is proved to be a valid method.    

To compare the powers of PheCLC with TATES, MANOVA and OB, we consider 
different sample sizes, different numbers of phenotypes for all six models. The power of 
the four methods at ߙ ൌ 0.05  is compared in Figure 3.1. We summarize the power 
comparison results as follows.  

1. PheCLC method outperformed TATAS, MANOVA and OB consistently in almost 
all scenarios.  

2. OB is the most powerful test among a class of tests with linear combination of 
univariate test statistics being the overall test statistic when the genetic effects are 
equal to each other (Yang et al., 2010). While in all of the six scenarios we 
considered, both zero and nonzero values were assigned to the genetic effects, 
which explains why the powers of OB are very low.  

3. When genotypes have effects on more than two categories, the powers of PheCLC 
are more than double that of TATES.  

In most scenarios, MANOVA is more powerful than TATES, and its powers are at least 
40% lower than that of PheCLC. 
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3.5 Discussion 

Over the last decade, GWAS have identified thousands of genetic variants that are 
associated with human diseases and traits (Pendergrass et al., 2012; Pendergrass et al., 
2013; Hebbring, 2014; Bush et al., 2016). Unfortunately, most GWAS have a limitation 
that they only focus on a pre-defined and a very limited number of phenotypes, as a result, 
they fail to identify clinically significant associations in which large numbers of 
phenotypes are involved (Pendergrass et al., 2012; Pendergrass et al., 2013; Denny et al., 
2016; Bush et al., 2016). As a complementary approach to GWAS, PheWAS can examine 
the associations between genetic variants and a broad set of phenotypes and have 
demonstrated to be effective in identifying significant variants (Hebbring, 2014; 
Pendergrass and Ritchie, 2015; Pendergrass et al., 2015). In 2010, the first PheWAS was 
published in Bioinformatics and it was a proof-of-concept (PoC) study that was not 
designed to reveal new discoveries but to verify known GWAS-significant associations 
and to validate the approach (Denny et al., 2010; Denny et al., 2011; Hebbring et al., 2013; 
Liao et al., 2013; Pendergrass et al., 2013; Ritchie et al., 2013; Shameer et al., 2014; Bush 
et al., 2016). Unlike GWAS that have been widely used for nearly a decade, PheWAS 
approach is still in its infancy. Even so, they have already demonstrated their potentiality 
to identify important genetic associations. PheWAS can be used to explore pleiotropy of 
genetic variants in a broad spectrum of phenotypes, discover interrelationships between 
phenotypes, and characterize the genetic architecture of many complex traits (Pendergrass 
et al., 2012).  

However, the PheWAS approaches have presented several challenges (Pendergrass et al., 
2012; Pendergrass et al., 2013; Hebbring 2014; Denny et al., 2016; Bush et al., 2016). The 
biggest challenge of PheWAS is interpretations. For example, when there exists a 
significant association between a genetic variant and multiple phenotypes, multiple 
possible interpretations must be taken into consideration, such as true pleiotropy, false 
phenotype distinction because of mis-characterization of the true phenotype, and 
confounded phenotype relationships (Bush et al., 2016). Furthermore, the phenome is not 
universally defined and PheWAS have been limited by how well the human phenome can 
be defined (Hebbring, 2014). The International Classification of Disease (ICD) codes are 
an internationally recognized, standardized coding system used to define disease status and 
the two widely used versions are the ninth and tenth (ICD9/10) (Denny et al., 2010; 
Hebbring, 2014). Unfortunately, not every ICD code is equal (McCarty et al., 2007), and 
it’s infeasible to manually assess the validity of the whole phenome for all patients. Second, 
like GWAS, PheWAS are hypothesis-generating approaches that are challenged by 
multiple hypotheses (Hebbring, 2014). However, unlike GWAS in which a significance 
threshold 5.0 ൈ 10ି଼ is commonly used, a generally accepted threshold has not emerged 
due to the variations in the number of phenotypes and genotypic variants in PheWAS (Bush 
et al., 2016). One way to correct for multiple testing is Bonferroni correction; however it 
may not be an appropriate comparison adjustment due to the non-independence of the 
phenotypes as well as the variants (Hebbring, 2014; Verma et al., 2016). In addition, 
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differences across populations may affect the ability to validate findings (Hebbring, 2014). 
For example, it’s likely to see different results from a population with European ancestry 
compared with a population with African ancestry due to significant differences in the 
linkage disequilibrium structure and allele frequencies between the two populations 
(Hebbring, 2014).  

The PheWAS concept is not new, but it was not developed as a method until very recently 
due to the limited availability of cohorts with multiple phenotypes (Bush et al., 2016). 
Examples of available tests for PheWAS include MultiPhen (O’Reilly et al., 2012), PCH 
(Klei et al., 2008), TATES (van der Sluis et al., 2013), CCA (Ferreira and Purcell, 2009), 
MANOVA, and BIMBAM (Stephens, 2013). In this article, we proposed PheCLC to test 
the association between a genetic variant and a wide spectrum of phenotypes. PheCLC 
takes into account the possibility that phenotypes are from different phenotypic categories, 
which is common in PheWAS due to the very large number of phenotypes, and conducts 
genetic association tests in each category. Then, the p-values obtained from all categories 
are combined using AFC method (Liang et al., 2016) in order to derive the PheCLC p-
value. Even though PheCLC has already demonstrated its validity and capacity in the 
simulation studies, there are still some improvements in this method. Bush et al. (2016) 
pointed out the necessity of using meta-analysis for PheWAS, and how to apply PheCLC 
to meta-analysis becomes one of our future projects. In addition, we will extend PheCLC 
approach to perform pathway-based analysis. As Hebbring (2014) reported that, the 
pathways may play an essential role in many disease aetiologies.         

To summarize, PheCLC has well-controlled type I error rates and is more powerful than 
the currently available methods for PheWAS in most scenarios that we studied. PheCLC 
allows researchers to test genetic associations for a large number of phenotypes that are 
from different phenotypic categories. 
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3.6 Tables and Figures 

Table 3.1. Estimated type I error rates for the four methods with different number of 
categories. The sample size is 2000, the total number of phenotypes is 1000=ܭ, rho is 0.2, 
ܿଶ=0.5 and MAF is 0.3. The type I error rate is evaluated using 1,000 replicated samples 
at a significance level of 0.05.  

 

 

  

Methods 

Type I error rates 

ܯ ൌ ܯ 100 ൌ 50 

PheCLC 0.053 0.058 

TATES 0.058 0.038 

MANOVA 0.040 0.058 

OB 0.038 0.040 
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Figure 3.1. Power comparisons of the four methods as a function of beta for the six models. 
The sample size is 2000, total number of phenotypes is	ܭ ൌ 1000, MAF is 0.3, c2 is 0.5, 
and rho is 0.2. The power of all of the four methods is evaluated using 1,000 replicated 
samples at a significance level of 0.05. 
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4 Chapter 4 

A Novel Statistical Method for Rare-variant Association Studies in General 
Pedigrees 

Both population-based and family-based designs are commonly used in genetic association 
studies to identify rare variants that underlie complex diseases. For any type of study 
design, the statistical power will be improved if rare variants can be enriched in the 
samples. Family-based designs, with ascertainment based on phenotype, may enrich the 
sample for causal rare variants and thus can be more powerful than population-based 
designs. Therefore, it is important to develop family-based statistical methods that can 
account for ascertainment. In this paper, we develop a novel statistical method for rare-
variant association studies in general pedigrees for quantitative traits. This method uses a 
retrospective view that treats the treat as fixed and the genotype as random, which allows 
us to account for complex and undefined ascertainment of families. We then apply the 
newly developed method to the Genetic Analysis Workshop 19 data set and compare the 
power of the new method with two other methods for general pedigrees. The results show 
that the newly proposed method increases power in most of the cases we consider, more 
than the other methods.   

4.1 Background 

There is increasing interest in detecting associations between rare variants and complex 
traits. Although statistical methods to detect common variant associations are well 
developed, these variant-by-variant methods may not be optimal for detecting associations 
with rare variants as a result of allelic heterogeneity as well as the extreme rarity of 
individual variants (Li and Leal, 2008). Recently, several statistical method for detecting 
associations of rare variants were developed for population-based designs, including the 
cohort allelic sums test (Morgenthaler and Thilly, 2007), the combined multivariate and 
collapsing method (Li and Leal, 2008), the weighted sum statistic (Madsen and Browning, 
2009), the variable minor allele frequency threshold method (Price et al., 2010), the 
adaptive sum test (Han and Pan, 2010), the set-up method (Hoffmann et al., 2010), the 
sequence kernel association test (Wu et al., 2011), and the test for optimally weighted 
combination of variants (Sha et al., 2012). 

Meanwhile, quite a few statistical methods for rare variant association studies have been 
developed for family-based designs. For any type of study design, the statistical power will 
be improved if rare variants can be enriched in the samples. If one parent has a copy of a 
rare allele, half of the offspring are expected to carry it, and, hence, variants that are rare 
in the general population could be very common in certain families (Shi and Rao, 2011). 
Therefore, family-based designs may plan an important role in rare-variant association 
studies. Because of the importance of family-based designs in rare-variant association 
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studies, several family-based rare-variant association methods for quantitative traits (Liu 
and Leal, 2012; Chen et al., 2013; Svishcheva et al., 2014) and for qualitative traits (Zhu 
et al., 2010; Feng et al., 2011; Zhu and Xiong, 2012) have been developed. However, most 
of these methods were developed under the assumption of random ascertainment and 
family-based designs with random ascertainment may not yield enrichment of rare variants. 
To analyzing the sequencing data in general pedigrees provided by Genetic Analysis 
Workshop 19 (GAW19), we proposed a novel method to the GAW19 data set, we 
compared the power of the proposed method with that of two popular methods for family-
based designs.  
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4.2 Methods 

Consider a sample of ݊ pedigrees with ݊௜  members in the ݅௧௛  pedigree and a genomic 

region with ܯ  variants. Let ݕ௜௝  and ݃௜௝ ൌ ൫݃௜௝ଵ, … , ݃௜௝ெ൯
்
	denote the trait value and 

genotypes of the ܯ variants in the genomic region for the ݆௧௛	individual in the ݅௧௛	pedigree. 
Let ݔ௜௝ ൌ ∑ ௠݃௜௝௠ெݓ

௠ୀଵ 	denote the weighted combination of genotypes at the ܯ	variants, 
where ݓ ൌ ሺݓଵ,…  .is a weight function	ெሻ்ݓ,

For given genotypes, we assume that ݕ௜௝ ∼ ܰ൫ߙ ൅ ,ߚ௜௝ݔ ଶ൯. Using the notation ݃௜ߪ ൌ

൫݃௜ଵ, … , ݃௜௡೔൯
்
, the retrospective likelihood is given by 

ܮܴ ൌෑPr൫ ௜݃หݕ௜ଵ, … , ௜௡೔൯ݕ

௡

௜ୀଵ

 

ൌෑ
Pr൫ݕ௜ଵ, … , ௜௡೔|݃௜൯ݕ Prሺ݃௜ሻ

∑ Pr൫ݕ௜ଵ, … , ௜௡೔ห݃௜ݕ
∗൯ Prሺ݃௜

∗ሻ௚೔
∗

௡

௜ୀଵ

 

ൌෑ
exp ቀെ∑ ൫ݕ௜௝ െ ߙ െ ൯ߚ௜௝ݔ

ଶ௡೔
௝ୀଵ Prሺ݃௜ሻ	ଶቁߪ2/

∑ exp ቀെ∑ ൫ݕ௜௝ െ ߙ െ ௜௝ݔ
∗ ൯ߚ

ଶ௡೔
௝ୀଵ ଶቁߪ2/ Prሺ݃௜

∗ሻ௚೔
∗

	

௡

௜ୀଵ

 

where ∑ 	௚೔
∗ represents the summation of all possible genotypes. Based on the ܴܮ, the score 

test statistic for testing the null hypothesis ܪ଴: ߚ ൌ 0 is given by  

௦ܶ௖௢௥௘ ൌ ܷଶ/ܸ	                                                      (4.1) 

where ܷ ൌ ∑ ∑ ൫ݔ௜௝ െ ௜௝ݕ൯൫ݔ̅ െ ത൯௡೔ݕ
௝ୀଵ

௡
௜ୀଵ , ܸ ൌ ∑ݓ௧Σݓ ௜ݕ

்Φ௜ݕ௜
௡
௜ୀଵ , ௜ݕ ൌ

൫ݕ௜ଵ, … , ௜௡೔൯ݕ
்
, തݕ ൌ ଵ

∑ ௡೔
೙
೔సభ

∑ ∑ ௜௝ݕ
௡೔
௝ୀଵ

௡
௜ୀଵ , Φ௜	 is twice the kinship coefficient of the 

݅௧௛	pedigree, and Σ ൌ ሺݒ݋ܿ ଵ݃ଵ, ଵ݃ଵሻ	 is the covariance matrix of the multiple variant 

genotype of one individual. Σ	can be estimated by  Σ෠ ൌ ଵ

∑ ௡೔
೙
೔సభ

∑ ∑ ݃௜௝
௡೔
௝ୀଵ

௡
௜ୀଵ . It is worth 

pointing out that ௦ܶ௖௢௥௘	 is equivalent to the quantitative version of the retrospective 
likelihood score statistic proposed by Schaid et al (2013).  

Because rare variants are essentially independent, following Pan (2000) and Sha et al 
(2012), we replace  Σ෠	by  Σ෠଴ ൌ ݀݅ܽ݃൫Σ෠൯. Then, the score test statistic ௦ܶ௖௢௥௘	becomes 

଴ܶሺݓሻ ൌ ௜ݕ෍ݓ	Σ෠଴	்ݓ/்ݑݑ்ݓ
்Φݕ௜

௡

௜ୀଵ
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where ݑ ൌ ∑ ∑ ൫݃௜௝ െ ݃̅൯൫ݕ௜௝ െ ത൯௡೔ݕ
௝ୀଵ

௡
௜ୀଵ . As a function of ݓ, ଴ܶሺݓሻ	reaches its maximum 

when ݓ ൌ Σ෠଴
ିଵݑ	and the maximum value of ଴ܶሺݓሻ	is ்ݑ	Σ෠଴

ିଵ	ݑ/∑ ௜ݕ
்Φݕ௜

௡
௜ୀଵ . We define 

the statistic of optimally weighted score test (OW-score) as 

ைܶௐି௦௖௢௥௘ ൌ Σ෠଴	்ݑ
ିଵݑ/෍ݕ௜

்Φݕ௜

௡

௜ୀଵ

ൌ ෍ሺݑ௠ଶ ௠௠ሻߪ/
ெ

௠ୀଵ

/෍ݕ௜
்Φݕ௜

௡

௜ୀଵ

 

where ߪ௠௠	is the ሺ݉,݉ሻ௧௛	element of  Σ෠଴	and ݑ௠	is the ݉௧௛	element of ݑ.  Under the null 
hypothesis, ைܶௐି௦௖௢௥௘	 is asymptotically distributed as a mixture of independent ߯ଶ 
statistics (Liu et al., 2007; Liu et al., 2009). Alternatively, the distribution of ைܶௐି௦௖௢௥௘ can 
be approximated by a Satterwaite approximation for the distribution of quadratic forms 
(Wu et al., 2011; Kwee et al., 2008; Liu et al., 2008) or a scaled ߯ଶ distribution (Schaid et 
al., 2013). We propose to approximate the distribution of ைܶௐି௦௖௢௥௘  by a scaled ߯ଶ 
distribution with the scale ߜ and degree of freedom ݀ estimated by the expectation and 
variance of ைܶௐି௦௖௢௥௘ . Note that ݑ ∼ ܰሺ0, Σ∑ ௜ݕ

்Φݕ௜
௡
௜ୀଵ ሻ . We have  ்̂ߤ ൌ

෠ሺܧ ைܶௐି௦௖௢௥௘ሻ ൌ Σ෠଴	൫Σ෠݁ܿܽݎݐ
ିଵ൯  and  ߪො்

ଶ ൌ ෞݎܽݒ ሺ ைܶௐି௦௖௢௥௘ሻ ൌ Σ෠଴	൫Σ෠݁ܿܽݎݐ2
ିଵ	Σ෠	Σ෠଴

ିଵ൯ . 
Then, the scale ߜ is estimated as  ߜመ ൌ ො்ߪ

ଶ/ሺ2	்̂ߤሻ and the degree of freedom ݀ is estimated 
as  መ݀ ൌ ்ߤ̂	2

ଶ/ߪො்
ଶ. 

We compare the performance of our OW-score with (a) WS-score, the score test given by 
equation (4.1) with weight given by Madsen and Browning (2009) and (b) famSKAT, 
family-based sequence kernel association test given by Chen et al (2013). 
  



56 

 

4.3 Results 

We applied our proposed method as well as the WS-score test and famSKAT to the 
simulated data from GAW19. All tests were conducted on 849 individuals, from 20 
pedigrees, that had no missing genotypes or phenotypes. Sex, age, blood pressure 
medication status, and smoking status were considered as covariates in this study. We were 
aware of the underlying simulation model.  

There are two related phenotypes, systolic blood pressure (SBP) and diastolic blood 
pressure (DBP), at three time points. We considered the average of DBP at three time points 
as the phenotype of interest in our analysis. We compared the power of the three tests (OW-
score, WS-score, and famSKAT) to detect association between each of the top 14 genes 
that influence the phenotype of interest. We used the variants between the first functional 
single nucleotide polymorphism (SNP) and the last functional SNP in each gene in our 
analysis. We did not consider CABP2 because the power of the three tests are essentially 
the same due to the only one variant in this gene. To adjust the effects of the covariates on 
the phenotype of interest, we first applied a linear model by regressing the phenotype of 
interest on the covariates: sex, the average of age, the average of blood pressure medication 
status, and the average of smoking status. The power comparisons based on the 200 
replicated data sets are given in Table 4.1. Significance level is assessed at 5%. This table 
shows that the OW-score test identified three genes with power greater than 40%, 
famSKAT identified 1 gene with power greater than 40%, and the WS-score test could not 
identify any genes with power greater than 40%. OW-score and famSKAT have different 
power mainly because they use different weights. Let ݓ௠  and ௠ܹ  denote the weights, 
rescaled to the interval (0, 1), of the OW-score test and famSKAT for the ݉௧௛ variant. 
Then, ݓ௠ ൐ ௠ܹ when minor allele frequency (MAF) is less than 0.01; ݓ௠ ൑ ௠ܹ when 
MAF is in the interval (0.01, 0.05); ݓ௠ ൐ ௠ܹ when MAF is greater than 0.05. The OW-
score test has much higher power than famSKAT for RAI1 and REPIN1 because none of 
the MAFs of the causal variants in RAI1 and REPIN1 are in the interval (0.01, 0.05).  

We also evaluated the type I error rate of the proposed OW-score test. To evaluate the type 
I error, we used 1000 blocks (100 variants in each block) from chromosome 5 that are far 
from causal variants. In each block, we applied the OW-score test to each of the 200 
replicates to test association between genotypes and the phenotype of interest. We obtained 
one p-value for each replicate and each block. The type I errors of the proposed test were 
0.04887, 0.00921, and 0.00131 at significance levels of 0.05, 0.01, and 0.001, respectively. 
We also considered the average of SBP at three time points as the phenotype of interest, 
which yielded similar results.  
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4.4 Discussion 

Next-generation sequencing technologies make directly testing rare variant association 
possible. However, the development of powerful statistical methods for rare variant 
associations studies is still underway. In this article, we proposed a novel statistical method 
for rare-variant association studies based on general pedigrees for quantitative traits. The 
application to the GAW19 data set showed that the proposed method has correct type I 
error rate and is more powerful than the other two methods against which our method was 
compared.  

We described our method for quantitative traits. For qualitative traits, we can derive a score 
test similar to that given by equation (4.1). However, the performance of the proposed 
method for qualitative traits requires further investigation. Like many statistical methods 
for rare variant associations studies, the proposed method can consider phenotype 
measurement at only one time point. Statistical methods based on sequence data have been 
developed for unrelated individuals that have phenotype measurements at multiple time 
points (Wang et al., 2014). From a statistical standpoint, modeling using longitudinal 
phenotypes is more informative than using phenotypes at a single time point and thus can 
increase the power of an association test (Wang et al., 2014; Furlotte et al., 2012). Our 
future work includes extension of the proposed method to longitudinal phenotypes.  
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4.5 Conclusions 

In this article, we developed a novel statistical method for rare variant association studies 
in general pedigrees (randomly ascertainment pedigrees or ascertained pedigrees). 
Application to GAW19 data set showed that the newly proposed method is more powerful 
than the other two methods in most of the cases. Our new method uses a retrospective view, 
which allows us to account for complex and undefined ascertainment of families. The 
GAW19 data is based on randomly ascertained pedigrees. Results of applying our method 
to GAW19 data showed that the proposed method has correct type I error based on random 
ascertainment. When random ascertainment is violated and ascertainment is based on trait 
values, the proposed method is expected to have correct type I error. If pedigrees are 
ascertained because of extreme trait values, the proposed method is expected to have higher 
power than methods based on randomly ascertained pedigrees.        
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4.6 Table 

Table 4.1. Power comparisons of the three tests using the average of DBP at three time 
points as phenotypes. Significance level is assessed at 5%. 

Genes OW scoreT   WS scoreT   FamSKAT 

CGN 0.135 0 0.035 
FLT3 0.005 0 0.08 
LEPR 0.05 0.015 0.065 
MAP4 0.175 0.185 0.425 
MTRR 0.465 0.005 0.06 
NRF1 0 0.005 0.035 

PTTG1IP 0.02 0.145 0.06 
RAI1 0.845 0.005 0.155 

REPIN1 0.915 0.05 0.085 
SLC35E2 0.005 0 0.05 

TNN 0 0 0.035 
ZFP37 0 0.005 0.005 

ZNF443 0.01 0.015 0.195 
ZNF544 0.005 0.015 0.06 
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Appendix A: Supplementary Tables 

Table A.1.1. Estimated type-I error rates for the eight methods under two variance models. 
The total number of phenotypes is	ܭ ൌ 10, MAF is 0.3, and the sample size is 1,000. ߙ	is 
the significance level.   

 Type-I error rates 

 Variance model 1 Variance model 2 

Methods ߙ ൌ ߙ 0.05 ൌ ߙ 0.01 ൌ ߙ 0.05 ൌ 0.01 

OB 0.052 0.013 0.046 0.011 

CV 0.056 0.006 0.042 0.010 

OW 0.047 0.006 0.046 0.009 

TATES 0.060 0.008 0.040 0.007 

MANOVA 0.047 0.006 0.046 0.009 

CCA 0.045 0.009 0.046 0.011 

PCH 0.048 0.006 0.048 0.010 

MultiPhen 0.049 0.007 0.049 0.012 
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Table A.1.2. Estimated type-I error rates for the eight methods under two variance models. 
The total number of phenotypes is	ܭ ൌ 40, MAF is 0.3, and the sample size is 1,000. ߙ	is 
the significance level. 

 Type-I error rates 

 Variance model 1 Variance model 2 

Methods ߙ ൌ ߙ 0.05 ൌ ߙ 0.01 ൌ ߙ 0.05 ൌ 0.01 

OB 0.038 0.007 0.060 0.011 

CV 0.051 0.010 0.058 0.014 

OW 0.045 0.011 0.056 0.015 

TATES 0.045 0.012 0.051 0.011 

MANOVA 0.046 0.011 0.063 0.016 

CCA 0.046 0.012 0.063 0.016 

PCH 0.045 0.011 0.057 0.017 

MultiPhen 0.055 0.015 0.076 0.015 
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Table A.1.3. Estimated type-I error rates for the eight methods under two variance models. 
The total number of phenotypes is	ܭ ൌ 10, MAF is 0.1, and the sample size is 1,000. ߙ is 
the significance level. 

 Type-I error rates 

 Variance model 1 Variance model 2 

Methods ߙ ൌ ߙ 0.05 ൌ ߙ 0.01 ൌ ߙ 0.05 ൌ 0.01 

OB 0.051 0.005 0.056 0.014 

CV 0.043 0.009 0.040 0.009 

OW 0.044 0.006 0.041 0.009 

TATES 0.048 0.010 0.047 0.007 

MANOVA 0.045 0.007 0.041 0.010 

CCA 0.042 0.008 0.039 0.010 

PCH 0.045 0.006 0.039 0.011 

MultiPhen 0.046 0.008 0.044 0.009 

 

  



73 

 

Table A.1.4. Estimated type-I error rates for the eight methods under two variance models. 
The total number of phenotypes is	ܭ ൌ 20, MAF is 0.1, and the sample size is 1,000. ߙ is 
the significance level. 

 Type-I error rates 

 Variance model 1 Variance model 2 

Methods ߙ ൌ ߙ 0.05 ൌ ߙ 0.01 ൌ ߙ 0.05 ൌ 0.01 

OB 0.043 0.010 0.046 0.008 

CV 0.058 0.012 0.050 0.010 

OW 0.059 0.013 0.049 0.008 

TATES 0.047 0.008 0.052 0.018 

MANOVA 0.059 0.014 0.051 0.008 

CCA 0.059 0.014 0.052 0.009 

PCH 0.059 0.014 0.048 0.007 

MultiPhen 0.065 0.013 0.054 0.011 
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Table A.1.5. Estimated type-I error rates for the eight methods under two variance models. 
The total number of phenotypes is	ܭ ൌ 40, MAF is 0.1, and the sample size is 1,000. ߙ is 
the significance level. 

 Type-I error rates 

 Variance model 1 Variance model 2 

Methods ߙ ൌ ߙ 0.05 ൌ ߙ 0.01 ൌ ߙ 0.05 ൌ 0.01 

OB 0.048 0.009 0.050 0.009 

CV 0.044 0.007 0.053 0.013 

OW 0.037 0.004 0.055 0.012 

TATES 0.042 0.010 0.058 0.014 

MANOVA 0.042 0.004 0.060 0.017 

CCA 0.046 0.005 0.064 0.015 

PCH 0.039 0.006 0.059 0.017 

MultiPhen 0.053 0.008 0.072 0.016 
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Table A.2.1. Significant SNPs and the corresponding p-values in the analysis of 
COPDGene using the principal components (PCs) of phenotypes. The p-values of 
WCmulP are evaluated using 10ଽ permutations, the p-values of SHet are evaluated using 
10଼ permutations. The grayed-out p-values indicate the p-values	൐ 5 ൈ 10ି଼.  

 

  

Chr Variant identifier WCmulP SHet Score MultiPhen CCA TATES OB 

4 rs1512282 0 0 1.33E-09 9.28E-10 1.19E-09 2.85E-06 1.01E-04 
4 rs1032297 0 0 1.18E-13 2.19E-13 1.40E-13 2.58E-09 6.91E-07 
4 rs1489759 0 0 2.22E-16 3.14E-16 2.22E-16 3.19E-12 2.32E-08 
4 rs1980057 0 0 1.11E-16 2.16E-16 1.11E-16 9.21E-13 1.72E-08 
4 rs7655625 0 0 2.22E-16 2.68E-16 1.11E-16 1.80E-12 1.63E-08 
15 rs16969968 0 0 7.84E-12 3.93E-12 5.42E-12 6.56E-07 1.99E-03 
15 rs1051730 0 0 8.23E-12 4.02E-12 5.63E-12 5.43E-07 1.35E-03 
15 rs12914385 0 0 5.60E-13 5.10E-13 5.53E-13 4.94E-07 4.64E-05 
15 rs8040868 0 0 8.47E-13 1.10E-12 1.05E-12 3.42E-07 2.58E-04 
15 rs951266 0 0 9.82E-12 4.85E-12 7.16E-12 6.65E-07 2.96E-03 
15 rs8034191 0 0 1.04E-10 3.19E-11 7.56E-11 4.19E-06 6.25E-03 
15 rs2036527 0 0 2.13E-10 7.79E-11 1.52E-10 9.02E-06 5.36E-03 
15 rs931794 0 0 1.04E-10 3.29E-11 7.71E-11 2.47E-05 1.66E-02 
15 rs2568494 4.10E-08 6.0E-08 6.97E-08 2.58E-08 6.01E-08 3.01E-04 3.69E-02 
15 rs17483721 5.00E-08 2.2E-07 1.25E-07 6.10E-08 1.17E-07 2.86E-04 2.64E-02 
15 rs17483929 4.00E-08 9.0E-08 8.89E-08 3.89E-08 8.08E-08 2.94E-04 3.28E-02 
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Table A.2.2. The structures of ߛ and covሺݕሻ for different numbers of factors when number 
of phenotypes is 8.  
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Appendix B: Supplementary Figures 

Figure B.1.1. Power comparisons of the eight methods as a function of heritability for the 
six mean models under variance model 1. The total number of phenotypes is	ܭ ൌ 	10, rho 
is 0.1, MAF is 0.3, and the sample size is 1,000. Significance is assessed at the 5% level.  
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Figure B.1.2. Power comparisons of the eight methods as a function of heritability for the 
six mean models under variance model 2. The total number of phenotypes is	ܭ ൌ 	10, rho 
is 0.1, MAF is 0.3, and the sample size is 1,000. Significance is assessed at the 5% level.  
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Figure B.1.3. Power comparisons of the seven methods as a function of heritability for the 
six mean models under variance model 1. The total number of phenotypes is	ܭ ൌ 	40, rho 
is 0.1, MAF is 0.3, and the sample size is 1,000. Significance is assessed at the 5% level.  
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Figure B.1.4. Power comparisons of the seven methods as a function of heritability for the 
six mean models under variance model 2. The total number of phenotypes is	ܭ ൌ 	40, rho 
is 0.1, MAF is 0.3, and the sample size is 1,000. Significance is assessed at the 5% level.  
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Figure B.1.5. Power comparisons of the eight methods as a function of rho for the six mean 
models under variance model 1. The total number of phenotypes is	ܭ ൌ 	10, heritability is 
0.01, MAF is 0.3, and the sample size is 1,000. Significance is assessed at the 5% level. 
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Figure B.1.6. Power comparisons of the eight methods as a function of rho for the six mean 
models under variance model 2. The total number of phenotypes is	ܭ ൌ 	10, heritability is 
0.01, MAF is 0.3, and the sample size is 1,000. Significance is assessed at the 5% level. 
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Figure B.1.7. Power comparisons of the seven methods as a function of rho for the six 
mean models under variance model 1. The total number of phenotypes is ܭ	 ൌ 	40 , 
heritability is 0.01, MAF is 0.3, and the sample size is 1,000. Significance is assessed at 
the 5% level. 
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Figure B.1.8. Power comparisons of the seven methods as a function of rho for the six 
mean models under variance model 2. The total number of phenotypes is ܭ	 ൌ 	40 , 
heritability is 0.01, MAF is 0.3, and the sample size is 1,000. Significance is assessed at 
the 5% level. 
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Figure B.1.9. Power comparisons of the eight methods as a function of MAF for the six 
mean models under variance model 1. The total number of phenotypes is ܭ	 ൌ 	20 , 
heritability is 0.02, rho is 0.1, and the sample size is 1,000. Significance is assessed at the 
5% level. 
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Figure B.1.10. Power comparisons of the eight methods as a function of MAF for the six 
mean models under variance model 2. The total number of phenotypes is ܭ	 ൌ 	20 , 
heritability is 0.02, rho is 0.1, and the sample size is 1,000. Significance is assessed at the 
5% level. 
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Figure B.1.11. Power comparisons of the six methods as a function of heritability for the 
six mean models under variance model 1. The total number of phenotypes is	ܭ ൌ 	20, rho 
is 0.1, MAF is 0.3, and sample size is 1000. Significance level is 5×10-8.  
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Figure B.1.12. Power comparisons of the six methods as a function of heritability for the 
six mean models under variance model 2. The total number of phenotypes is	ܭ ൌ 	20, rho 
is 0.1, MAF is 0.3, and sample size is 1000. Significance level is 5×10-8. 
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Figure B.1.13. Power comparisons of the six methods as a function of rho for the six mean 
models under variance model 1. The total number of phenotypes is	ܭ ൌ 	20, MAF is 0.3, 
and sample size is 1000. Significance level is 5×10-8. 
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Figure B.1.14. Power comparisons of the six methods as a function of rho for the six mean 
models under variance model 2. The total number of phenotypes is	ܭ ൌ 	20, MAF is 0.3, 
and sample size is 1000. Significance level is 5×10-8.  
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Figure B.2.1. Power comparisons of the seven methods as a function of ߚ  for the six 
models using the principal components (PCs) of phenotypes. The total number of 
phenotypes is	ܭ ൌ 	8, ܿଶ ൌ ଶܿߩ ,0.5 ൌ 0.1, and ܨܣܯ ൌ 	0.3. The p-values of WCmulP 
and SHet are evaluated using 1,000 permutations. The power of all of the seven methods 
is evaluated using 1,000 replicated samples at a significance level of 0.01. 
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Figure B.2.2. Power comparisons of the seven methods as a function of ߚ  for the six 
models using the principal components (PCs) of phenotypes. The total number of 
phenotypes is	ܭ ൌ 	16, ܿଶ ൌ ଶܿߩ ,0.5 ൌ 0.1, and ܨܣܯ ൌ 	0.3. The p-values of WCmulP 
and SHet are evaluated using 1,000 permutations. The power of the seven methods is 
evaluated using 1,000 replicated samples at a significance level of 0.01. 

 

  



93 

 

Figure B.2.3. Power comparisons of the seven methods as a function of ܿଶ for the six 
models using the principal components (PCs) of the phenotypes. The total number of 
phenotypes is	ܭ ൌ ଶܿߩ ,8	 ൌ 0.1, and ܨܣܯ ൌ 	0.3. The p-values of WCmulP and SHet are 
evaluated using 1,000 permutations, the p-values of other methods are evaluated using 
asymptotic distribution. The power of all of the seven methods is evaluated using 1,000 
replicated samples at a significance level of 0.01. 
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Figure B.2.4. Power comparisons of the seven methods as a function of ܿଶ for the six 
models using the principal components (PCs) of the phenotypes. The total number of 
phenotypes is	ܭ ൌ ଶܿߩ ,16	 ൌ 0.1, and ܨܣܯ ൌ 	0.3. The p-values of WCmulP and SHet 
are evaluated using 1,000 permutations, the p-values of other methods are evaluated using 
asymptotic distribution. The power of all of the seven methods is evaluated using 1,000 
replicated samples at a significance level of 0.01. 
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Figure B.2.5. Power comparisons of the seven methods as a function of ߚ  for the six 
models. The total number of phenotypes is	ܭ ൌ 	8, ܿଶ ൌ ଶܿߩ ,0.5 ൌ 0.1, and ܨܣܯ ൌ 	0.3. 
The p-values of WCmulP and SHet are evaluated using 100,000 permutations. The power 
of all of the seven methods is evaluated using 1,000 replicated samples at a significance 
level of 5 ൈ 10ିହ. 
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Figure B.2.6. The correlation matrix plot of the 7 COPD-related phenotypes. 
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