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inlet liquid mass flow rate, and (c) Low DAQ ṀV-in(t) data of inlet vapor mass 
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 Abstract 
 

 

Steady and steady-in-the-mean shear driven annular flow-boiling is experimentally 
investigated in this thesis. By annular flow-regime one means separated liquid and vapor 
flows with the flowing liquid film staying on the boiling-surface.  

The goals for the steady annular flow-boiling operations are to better understand relative 
importance of heat-transfer mechanisms (nucleation versus convective phase-change, with 
convective meaning absence of nucleation) and to develop better quantitative 
characterizations/correlations for heat-transfer rates. The goals for the steady-in-the-mean 
annular investigations was to explore improved means of significantly increasing heat 
transfer rates - while retaining the flow-regime's annularity.  

The experimental investigations (with FC-72 as a working fluid) were carried out within a 
horizontal test-section of 50 cm length and rectangular cross-section (depth = 15 mm and 
height = 2 mm). Temperature controlled heating (by using reversed and controllable 
thermo-electric coolers) at low heat-fluxes (in the range of 0.1 – 1 W/cm2) were used. 

The results establish enhancements between pulsatile (steady-in-the-mean) and 
corresponding steady cases to be up to 110% for local heat-flux measurements (at 40 cm 
location) and up to 18.3% for the overall heat-flux. The new physic based decomposition 
of heat transfer mechanisms – between micro-scale nucleate boiling and convective boiling 
(assuming no nucleation) – was established by synthesizing experimental data with 
corresponding data obtained from a very accurate 2D CFD convective modeling (assuming 
no nucleation) and simulation technique from Dr. Narain’s computational team. It is found 
that invisible micro nucleation plays a very big role in thin liquid film (400 – 40 µm thick) 
annular flow-boiling – and is responsible, typically, for removing about 70 to 90% of the 
total heat-flux at each location. Experimental data is also used to propose superior heat-
transfer coefficient correlations.  

For steady-in-the-mean cases, it can be concluded that to enhance the heat-flux in an 
efficient way, inlet liquid flow rate pulsations are best - particularly if the liquid pulsator 
frequency at suitably small amplitude is set close to the predominant noise frequency 
(found from the Fast Fourier Transform of the dynamic differential pressure measurement 
across the test-section) already present in the steady realization. 
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1 Introduction 

1.1 Context of Contemporary Needs 
Breakthroughs in reliable innovative high heat-flux (> 0.5 – 1 kW/cm2) millimeter (mm)-

scale flow-boilers, with appropriate working fluids (R134a, water, etc.,), consistent with 

the needs of different applications, have long been known [1, 2] to be a requirement for 

removing large amounts of heat from small areas. This thesis makes fluid-physics progress 

towards addressing the need for removing exponentially increasing amounts of heat (from 

small or large spaces) associated with electronics used in modern server racks, 

supercomputers, data centers, as well as other waste-heat recovery and power generation 

systems. The heat that must be removed has been increasing by a factor of 1.5–2 every year 

– although, lately, the rate has started plateauing. Thus, there is a need for steady and cost-

effective waste heat removal capabilities in excess of 0.5 – 1 kW/cm2, while maintaining 

hardware temperatures at or below 75o C. 

 

 
Figure 1.1: (a) Side-view schematic and a representative top-view photograph for a 

traditional flow-boiler. (b) Mechanism and contact-line physics for nucleate boiling 

ebullition cycle. 

 

Established technologies, such as an array of small diameter heat pipes (HP) or their 

Capillary HP and Looped HP variations [3] have limitations that make them inadequate 

solutions for these applications’ increasing high heat-flux and heat-load needs [4, 5] that, 

in turn, need high mass-fluxes in the in-tube boilers. Furthermore, any attempt to use 

traditional flow-boiling approaches leads to complex and inefficient flow-regimes (see Fig. 

1a) – with large pressure-drops – primarily because of shear dominance, easy loss of 
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annularity, etc. Also, efficient buoyancy-aided traditional pool-boiling mechanisms (Fig. 

1b) are not directly available for such applications, though there are limited opportunities 

for their use in immersion type electronic cooling approaches [6]. Thus, the physics 

underlying pool-boiling mechanisms needs to be harnessed (with suitable modifications) 

to address emerging flow-boiling needs that require lower representative temperature 

differences ΔT (between boiling-surface and saturation temperature) and pressure-drop 

penalties at high heat-fluxes. 

 

1.2 Established Technologies and their Limitations in 
Addressing Contemporary Needs 

A vapor compression cycle (see Fig. 1.2a) transfers heat - e.g. as in heat-pumps and 

refrigerators – from one temperature (typically lower) to another. As seen in Fig.1.2a, such 

systems consist of four main components: an evaporator/flow-boiler, a condenser, a 

compressor, and an expansion/throttling valve. Consider the fluid (or refrigerant) flow 

process through the evaporator/flow-boiler. In the flow-boiler, the fluid enters as a liquid 

or a liquid-vapor mixture at a pressure lower than the condenser. Heat is added to this 

evaporator/flow-boiler and is absorbed by the fluid – evaporating it from liquid to vapor. 

The vapor exiting the evaporator enters the compressor, where mechanical energy is added 

and absorbed by the vapor flow. As a result, vapor exits the compressor at a higher pressure. 

The vapor next enters the condenser where it rejects heat to the condenser surroundings – 

and changes its state to a liquid at higher pressure (than at the evaporator). Then the high 

pressure liquid flows through the throttling valve – where it experiences frictional drop in 

pressure – and exits as a saturated liquid or liquid-vapor mixture at lower pressure. The 

thermal management variation of the vapor compression cycle in Fig. 1.2a is shown in Fig. 

1.2b. As shown in Figs.1.2a-b, the fluid re-enters the evaporator and thus repeatedly 

experiences this cyclic process. It is well known that the transfer of heat (from heat source 

surrounding the evaporator to the heat sink surrounding the condenser) through such vapor 

compression cycles have been successfully used – in many applications – that serve society 
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and make human life more comfortable. Yet the very same cycle fails to be functional in 

numerous new applications, particularly those involving thermal management (Fig. 1.2b), 

where the flow-boiler tube must be small in diameter (< 5 mm), cannot be very long (e.g. 

as is the case for serpentine coils used in traditional operations), and yet must absorb a 

large amount of heat through a large mass-flux in the tube. This is because at small 

diameters and requisite large mass flow rates, high heat-flux traditional flow-boiling 

operations limit to shear driven situations, modeled as in Fig. 1.1a, which has problems 

with inefficiencies in flow-boiling brought out by: unmanaged flow-regimes, explosive 

uncontrolled nucleation rates, increased pressure-drops, etc. 

Compressor

Evaporator

Expansion/Throttling 
Valve

Liquid+Vapor Liquid

Vapor Vapor

Condenser

Reject 
Heat

Absorb 
Heat

High Pressure ZoneLow Pressure Zone

Evaporator

Expansion/Throttling Valve

Liquid+Vapor Liquid

Vapor
Vapor

Condenser

Reject 
Heat

Absorb 
Heat

Low Pressure ZoneHigh Pressure Zone

Typically
70 – 80 °C  

Pump

(a) (b)  
Figure 1.2: (a) Schematic of a typical vapor compression cycle. (b) Thermal-management 

variation of vapor compression cycle. The heat absorption to an evaporator, for electric 

cooling application, is often restricted to take place with 70-80 ̊C constrain on the source 

temperature. 
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1.3 Innovative Annular Flow-boiling Operation 

 
Figure 1.3: Innovative operations control the inlet quality and duct length – for a range of 

mass-fluxes and heating conditions – to ensure high heat-flux annular realizations (with 

300-50 µm thick liquid films in mm-scale hydraulic diameter ducts) without dry-out. The 

grey marked zone on the boiling-surface with its depicted local dynamic heat-flux qw
" (t) 

values are indicative of a representative local heat-flux measurement. The photograph 

below is of an actual annular experimental realization for a low heat-flux case. 

Innovative and effective steady annular flow-boiling operations (Kivisalu et al. 2014) 

require a change from traditional flow-boiler operations – associated with multiple flow-

regimes (see Fig. 1.1a for depiction of different flow-regimes in a horizontal duct, and 

Carey (1992) and Ghiaasiaan (2007) for discussions on different flow-regimes) – to 

operations such as the ones in Fig. 1.3. These operations control the flow-regimes through 

control of inlet quality and attain stable and steady annular flow-regime over all of a 

suitably chosen device length. Furthermore, to propose approaches that address high heat-

flux needs (500-1000 W/cm2 or greater) in future, as discussed in this thesis, resonant 

pulsations in the liquid and vapor flows are introduced to create large amplitude standing 

waves on the interface and investigate its heat-transfer and pressure-drop effects on the 

highly stabilized thin liquid film (300-200 µm thickness range) annular flow-boiling. Such 

flows are realized through flow-controls and one or more of the two pulsation input options 
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indicated, as sinusoids on the incoming flows, in Fig. 1.3. This is to make liquid film flow 

as choppy (i.e., up, down, and forward motions) as possible – within the feasibility offered 

by laminar flow restrictions imposed by the thinness of the liquid film flow (300-200 µm 

thickness range) on a wetting wall. The choppiness helps in introducing additional micro-

convection advantages to evaporation at the interface as well as, particularly at higher heat-

flux values, in altering and increasing the level of contributions from micro-scale nucleate 

boiling. Both micro-convection and micro-scale nucleate boiling, consisting of micron to 

submicron diameter bubbles, take advantage of high heat-flux contact-line flow-physics 

(see Fig. 1.1b) known to play a pivotal role in macro-scale pool-boiling during an ebullition 

cycle. The size limitations on the nucleating bubbles are imposed by imposed levels of 

heat-flux, enhancement approaches, liquid film-thicknesses, and accompanying significant 

changes in hydrodynamic forces relative to those present in pool-boiling (see Dhillon and 

Buongiorno 2017, Phan et al. 2009, Zeng et al. 1993a, Zeng et al. 1993b, etc.). 

1.4 Relationship to Background/Available Knowledge  

A recent review book chapter [7] from our modeling group discusses the relevant 

background knowledge for steady annular flow-boiling and enhancement approaches. 

These are obtained from: Void-fraction and Heat Transfer Empirical Correlations [8-14], 

Modeling and CFD-Synthesized Improved Empirical Correlations [15, 16], Flow Regime 

Maps and Associated Instabilities [12, 17-19], Critical Heat-flux Instabilities [20], 

Pressure-drop Correlations and Pumping Power Penalties [21-23], Effects of Gravity and 

Tube Geometries [24, 25], and Conventional Enhancement Techniques for Heat Transfer 

Coefficient (HTC) [26, 27]. This review article also discusses principles and design of 

flow-boilers’ (and flow-condensers’) underlying steady operations. These steady 

operations’ design principles are important for further improvements in operations, through 

existing [28-30] or future proposals for the enhanced steady-in-the-mean realization 

approaches. 

For related and additional discussions on pool-boiling contact-line flow-physics, see 

Gerardi et al. (2010), Kunkelmann et al. (2012), McHale and Garimella (2010) and 
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Raghupathi and Kandlikar (2016). Survey of the available literature on macro- and micro-

scale nucleation is not the focus of this research. Yet it is noted that some heuristic support 

for the above description of the role played by macro-/micro- nucleation can be obtained 

by superposition of convection mechanisms and available modeling for nucleating bubble 

mechanisms based on pool-boiling investigations. Such superposition-based simulations 

are available on FLUENT (2015). The phase distribution is obtained by solving continuity 

equations for volume fraction and Navier-Stokes equation for both the phases separately. 

The simulations use the Rensselaer Polytechnic Institute (RPI) nucleate boiling models as 

integrated by Kurul and Podowski (1991) and Lavieville et al. (2006). The RPI boiling 

model partitions the heat-flux from the wall into contributing mechanisms while adding 

information on models for bubble departure frequency (such as Cole 1960), departure 

diameter (such as Tolubinsky and Kostanchuk 1970), and nucleation site density (Lemmert 

and Chawla 1977). 

1.5 Scientific Issues for Traditional and Innovative Operations  

Despite the significant design knowledge/information available in the literature discussed 

in section 1.3, there is a lack of good and accurate experimental information – and 

modeling/simulation capabilities – even for the steady annular flow-boiling in Fig. 1.3. To 

design such flow-boilers, more accurate experiments-modeling synthesis based knowledge 

and information on: inlet quality restrictions, local heat transfer coefficient, pressure-drop, 

role of micro-nucleation, avoidance of critical heat-flux, etc. are needed for steady 

realizations in Fig. 1.3. There is also the question on what will be the differences between 

this thesis’s low heat-flux (0.1- 1 W/cm2) steady annular experiments involving FC-72 as 

a working fluid and the ongoing high heat-flux (10 - 500 W/cm2) steady annular 

experiments involving water as a working fluid. 

For effective development of enhanced annular steady-in-the-mean realizations (such as 

pulsatile cases discussed in [7, 9] there is a concurrent need for better understanding and 

integration of nucleate-boiling phenomena at single-bubble ([17], [31], etc.) and collective 

large-scale nucleation [32], [33] levels. In particular, the question relates to understanding 
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the significance and mechanisms of micro-nucleation in innovative annular flow-boiling 

discussed in Fig. 1.3 and ways of controlling (with regard to predominant bubble sizes, 

nucleation site densities, bubble departure frequencies, etc.) and enhancing its 

contributions – and then being successful in going from low heat-flux (0.1- 1 W/cm2) to 

high heat-flux (10 - 500 W/cm2) – for steady-in-the-mean realizations utilizing a suitable 

enhancement approach. 
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2 Existing Knowledge and Issues with Innovative 
Annular Flow-boiling  

There is an existing experimental knowledge for steady and pulsatile (steady-in-the-mean 

with large interfacial standing waves) annular flow-boiling cases reported in [7, 9].  

2.1 Earlier results and questions 

2.1.1 The earlier results 

• With proper inlet quality control, for a chosen total mass-flow rate and heating 

approach and level, annular flow-boiling is possible over the length of the duct. 

• For micro-scale thinness of the film at the heat-flux sensor location in Fig. 1.3, 

imposition of large-amplitude interfacial waves demonstrated that very large local 

heat-flux enhancements (200-300 % for annular flow-boiling and 700-800% for 

annular flow condensation) was possible for the low heat-flux FC-72 [7, 9] 

experiments. 

2.1.2 Questions arising from earlier results 

• The earlier experiments involving large-amplitude interfacial waves – with 

demonstrated and large local heat-flux enhancements of 200-300 % for annular 

flow-boiling [7, 9] – did not have a reliable measurement for length-averaged heat-

flux, yet preliminary estimates suggested an average heat-flux enhancement of no 

more than 20-30%. That fact implied that the enhancement flow-physics was likely 

different for different local film-thickness values over the local (and dynamic 

measurements capable) heat-flux sensor – and questions arose as to whether there 

will be greater dividend and opportunities present if: (i) average heat-flux 

measurements capability was added to the experiment, and (ii) the range of film-

thicknesses variations available for the annular flow realization was controlled to 

be, always, in the desired high enhancement range (say 300 – 50 µm). 



9 

 

• The earlier experiments [7, 9] involving superposition of large-amplitude 

interfacial waves also demonstrated very large local heat-flux enhancements of 

200-300 % for annular flow-boiling and even larger 700-800% for annular flow 

condensation. And yet, everything else being approximately the same, the local 

enhanced heat transfer coefficient (HTC) for flow-boiling was larger than for flow-

condensation (i.e. for similar local heat-flux, local temperature difference was often 

lower for flow-boiling – ceteris paribus). This raised questions as to possible 

presence of another mechanism – such as invisible micro-scale nucleation – which 

made micro-convection effects in flow-condensation different than those for flow-

boiling. 

 

• The earlier experiments [7, 9] were able to implement PID controls of the heaters 

to approximately fix temperatures at the nine thermocouple locations placed in 

between the reversed TECs (thermoelectric coolers) heaters described in [9]. It was 

realized that the nature of heat inputted from the heaters and the 3-D nature of 

conduction heat transfer resulting from certain exposed parts of the steel plate – 

whose top-surface constituted the boiling-surface – had significant spatial 

variations in the boiling-surface’s wall temperatures (in the flow direction with 

likely unrecorded peaks at the mid-point of the TEC heaters, where no 

thermocouples were placed). As a result, the raw temperature profiles Tw(x) and 

the “method of heating” curves  θw(x) reported in [9] were less than accurate. The 

question arose as to how to make the results more accurate by a better 

measurement/characterization of Tw(x) and θw(x). 

 

• The earlier experiments [7, 9] introduced pulsations in the incoming vapor flows to 

create vapor acoustics-enabled large amplitude standing waves on the interface of 

the highly stabilized thin liquid film (300-200 µm thickness range) experiencing 

flow-boiling in the annular regime. Although the experiments utilized resonant 

pulsations at the dominant noise frequency detected in the incoming liquid flow 
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(see Fig. 1.3), it was not clear whether the best energy efficient approach was being 

used to introduce pulsations and to create the large amplitude standing waves on 

the interface, assuming that such interfacial standing waves were the reason for 

enhanced heat-flux values observed [9] for both thin film flow-boiling as well as 

thin film flow-condensation. It was decided that a controlled (both in amplitude and 

frequency) introduction of pulsations in the incoming liquid with or without the 

earlier controlled (both in amplitude and frequency) introduction of pulsations in 

the incoming vapor – with option to keep the two pulsations synchronized – needed 

to be implemented to explore the best energy efficient approaches for creating the 

large amplitude standing waves on the interface, assuming that that remains the key 

issue for enhanced operations (as it was for flow-condensation). 

2.2 New Experiments to Address the Questions Raised in 
Section 2.1  

For the new experiments, the revised plans have been incorporated in Fig. 2.1 below. 

40 cm
50 cm

200 µm gap

Reversed TEC Heating

Separator Plate 2 mm

Flush APT
10 cm

DPT

Vapor In (aV,fV)

Liquid In (aL,fL)
Mass flow rate

Vapor Exit

Liquid Exit

HFM: Heat-flux meter

∆p|10-40 cm

L-in(M )
Mass flow rate L-e(M )

TC: Thermocouple @ HFM

: Previously mounted thermocouples : Newly mounted thermocouples

or

or

 
Figure 2.1: A side view schematic of an instrumented test-section which has a 15 mm 

width (in direction out of the figure plane). The test-section is for new innovative flow 

boiling investigations (with FC-72 as the working fluid). 

To address the issue of large variations in liquid film thickness over the test-section, as 

discussed in the first bulleted questions/concerns in section 2.1.2, it was decided to shorten 

the length of the test-section, from L = 1 m to L = 0.5 m (as in Fig. 2.1 above). To 
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quantitatively and reliably assess the impact on average heat-flux values, and not just the 

local one at x = 40 cm in Fig. 2.1 above, its measurement was included by making 

arrangements to measure the exiting liquid flow rate (see Fig. 2.1 above) over and above 

the inlet liquid flow-rate for the test-section. 

The second bulleted question/concern in section 2.1.2 raised the issue of assessing the 

significance of micro-nucleation in annular flow-boiling. As an afterthought, it was 

realized that in an earlier work [34], local heat-flux values in a heat-fluxed control flow-

boiling experiment, it was found that experimental values of heat-fluxes were significantly 

larger (particularly at upstream thicker locations) than those predicted by a one-

dimensional modeling of flow-boiling that assumed insignificant effects of nucleate-

boiling on annular thin film flow-boiling. And yet, for many flow realizations involving 

dry-out over a 1 m length flow-boiler, it was found that the one-dimensional modeling 

predictions were in reasonable agreement with measured heat-fluxes near the suppressed 

nucleation dry-out zones whereas the measured heat-fluxes were significantly higher at 

thicker upstream locations (where, often, nucleating bubbles became big enough to be 

visible). It was decided that a more precise set of experimental results, when compared 

with a more precise set of results obtained from a precise suppressed nucleation modeling 

and its CFD-based solutions/simulations, can answer the question of significance of micro-

nucleation to heat transfer rates – and that if it is the dominant mechanism, there is no need 

to expect that micro-convection effects which was observed to be dominant for flow-

condensation [9] would also be equally dominant for flow-boiling. Despite the above 

clarity in hindsight, the existing literature’s attempts at decomposing local HTC into 

nucleate and convective boiling contributions were confusing – and it was not clear 

whether such results (as reviewed in [13]) applied to this situation (and this is sorted out 

and discussed in section 4). 

The third bulleted question/concern in section 2.1.2 raised the issue of the accuracy of raw 

temperature profiles Tw(x) and the “method of heating” curves θw(x), as reported in [9]. 

It was decided that this is best addressed by doing the difficult hardware modifications 

needed to add temperature measurements directly on the top of the reversed TECs (these 
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new thermocouples are indicated by blue dots underneath the boiling-surface of in Fig. 

2.1). 

The fourth bulleted question/concern in section 2.1.2 raised the issue of most energy 

efficient ways of introducing pulsations in the incoming liquid or vapor streams, 

particularly in the light of the hypothesis that creating large amplitude interfacial waves 

will remain important for flow-boiling at low (as in the current) and/or high heat-flux 

(ongoing) flow-boiling experiments. To address this, experimental facility was re-designed 

by incorporating a liquid line pulsator to allow investigations of enhanced steady-in-the-

mean annular realizations under controlled (both in amplitude and frequency) introduction 

of pulsations in the incoming liquid with or without the earlier [9] controlled (both in 

amplitude and frequency) introduction of pulsations in the incoming vapor – with option 

to keep the two pulsations synchronized. 
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3 Experimental Approach 

This section describes the experimental approach for flow-boiling operations in the 

innovative operation mode (see Fig. 1.3) – which utilizes vapor re-circulation to maintain 

steady annular flow regime over the entire boiling-surface of the test-section shown in Fig 

3.1 below (width w = 1.5 cm, height h = 2 mm, and length L = 50 cm). Moreover, the heat 

transfer enhancements between a steady case and its associated pulsatile cases (steady-in-

the-mean), as achieved by introducing controlled liquid and vapor pulsations in the inlet 

mass flow rates (see Fig. 3.1), has been studied with the help of a suitably designed set-up. 

The set-up design is based on modifications of an earlier set-up reported in ([7, 9]). The 

specific and time consuming modifications from the earlier one – as well as some hardware 

details – are separately described in Appendix A.  
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Figure 3.1: A side view schematic of an instrumented test-section which has a 15 mm 

width (in direction out of the figure plane). The test-section is for innovative flow-boiling 

investigations (with FC-72 as the working fluid). 

3.1 Set-up 
The rectangular cross-section horizontal channel test-section in Fig. 3.1 was used. The 

2 mm gap height channel in Fig. 3.1 has sides and the top of that are made of transparent 

plastic (machined out of transparent polycarbonate plates) covers. With some 

instrumentation details of the test-section as indicated in Fig. 3.1, the 50 cm length plastic 

cover (part of a 1m length cover) was mounted on the single horizontal stainless steel plate 
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of 50 cm length (part of a 1m length plate), underneath which are 5 thermoelectric modules 

used as heaters (denoted as TEC, because they are reversed thermoelectric coolers) evenly 

spaced along the 50 cm length of the channel. These TECs pump heat into the test-section 

through the bottom surface of the steel plate (which is 12.7 mm thick in the vertical 

direction, 5.08 cm wide in the horizontal direction, and 1.09 m long in the flow direction) 

and 5 individual heat sinks (mounted underneath the TECs) which withdraw heat 

(occasionally add for PID control) from the water flowing underneath them (see Fig. 3.1). 

Details of the water flow arrangement are described in [35]. These thermoelectric modules 

were operated using a computer-controlled variable voltage DC power supply which was 

PID controlled to maintain set point temperatures on the boiling-surface at specific 

locations – x (cm) locations given by {x (cm)} ≡  {5, 15, 25, 35, 45} – that are directly 

above the 4 cm square devices (with flow-direction spread of 4 cm) underneath the steel 

slab maintain desired wall temperature distributions for the boiling flow runs. Thus, it 

should be noted that for the boiling flow results reported here, the temperature control of 

the boiling-surface is automated, yielding approximately fixed “methods of heating” as 

described in section 4.  

 

For the test-section configuration, a differential pressure transducers, DPT (measuring 

∆p|10−40) shown in Fig. 3.1, were used to record the differential vapor pressure between the 

10 cm and 40 cm locations along the length of the channel. Besides other absolute pressure 

transducers (including one at the inlet at x = 0), a sensitive flush-type absolute pressure 

transducer at x = 10 cm location was used to measure pressure  p10. Mounted within the 

plate shown in Fig. 3.1, a flush heat-flux meter (HFM-40) of the thin-film thermopile type 

(as part of a removable probe supplied by Vatell Corp.) was first used to measure the time-

varying heat-flux and surface temperature over a 5 - 6 mm diameter surface whose center 

was 40 cm downstream from the test-section inlet (x = 0 in Fig. 3.1) and was centered 

across the channel width. When this dynamic data capable (2000 Hz) heat-flux meter 

(HFM-40) broke down, for the remaining data, it was replaced by Vatell’s steady heat-flux 

measuring (low DAQ of 1 Hz) new device. Thermocouples mounted in the plate recorded 

the temperature of the working fluid (FC-72) along the center line of the test-section at 
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distances x given by {x (cm)} ≡ {0, 5, 8.5, 11.5, 15, 18.5, 21.5, 25, 28.5, 31.5, 35, 38.5, 

41.5, 45, 48.5} locations in Fig. 3.1. The thermocouples measure within 1 mm radius and 

their tips are axially located within ± 0.5 mm of the boiling-surface.  
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Figure 3.2: A schematic of the experimental flow-loop. 

 

The test-section in Fig. 3.1 is mounted within the flow loop shown in Fig. 3.2. The flow 

loop provides for the re-circulating vapor flow as well as the incoming liquid flow that 

would experience flow-boiling. Computer-controlled variable-speed peristaltic pumps P1 

and P2 are used to pump the liquid. The recirculation loop is driven by a semi-hermetically 

sealed, rotary-vane type compressor CR, which is driven by a variable-speed external DC 

motor using magnetic coupling through the wall of the heated (thermostat controlled) 

compressor housing. The speed of the motor, which may be manually or computer 

controlled, is used to adjust the recirculating vapor flow supplied by the compressor. The 

heat sinks underneath the TECs in Fig. 3.1 are connected to a water loop of thermostatically 

or PID controlled temperatures. The flow rate of this water loop (described in [7]) was 
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manually controlled through the use of bypass and throttling valves. A liquid pressure 

pulsator PL, whose frequency can be manually adjusted by a motor speed knob was use to 

introduced liquid flow rate pulsations. Although pulsation energy could also be controlled 

for this device, that control could not be used above a certain amplitude level (therefore, a 

fixed amplitude was used for experiments involving/needing liquid flow rate pulsations). 

A vapor pressure pulsator PV, consisting of a variable speed DC powered diaphragm 

compressor (with the valves removed between its suction and discharge chambers), was 

used to introduce pulsations to the vapor supplied to the test-section. The speed of this 

pulsator was manually set through its motor controller to set the frequency of the imposed 

vapor pulsations, and the throttling valve VP was manually adjusted to control the 

amplitude of the imposed vapor pulsations. In the vapor line exiting the test-section, a 

pulsation reflector RV (consisting of a diffuser impinging on a flat plate with a circular 

pattern of small holes) was used to assist in reflecting acoustic energy – associated with 

vapor pressure/flow rate pulsations – back into the test-section. 

 

The pool-boiler (or evaporator in Fig. 3.2) was needed to start the flow-loop and arrange 

for the steady or steady-in-the-mean flow realizations indicated in Fig. 3.1. The 

temperature of the water reservoir surrounding the pool-boiler (or evaporator in Fig. 3.2) 

needed to be fixed to achieve saturation pressures in that reservoir which also helps in 

guiding the system pressure to desired levels. The internal ring-type heater of the pool-

boiler was computer controlled through pulse-width modulation (PWM). During start-up 

or transient operations, the pool-boiler was used to evaporate the liquid in it or feed the 

liquid in it through valve V1. It was also used to assist in fluid inventory control of the 

loop. A vertical counter-flow heat exchanger (of stainless steel welded construction, 

labeled Auxiliary Condenser in Fig. 3.2, with refrigerant flowing downward through a 6.8 

mm I.D. tube in the center and cooling water flowing upward in the annulus) was used to 

condense the working fluid boiled in the test-section. The cooling water used by the 

auxiliary condenser was part of a closed loop with the shell side of a shell-and-tube type 

heat exchanger (stainless steel), a centrifugal pump, and an elevated water tank. The water 
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flow through the tube side of the heat exchanger was provided from a separate chilled 

water loop [7].  

 

All data was logged and recorded using National Instruments hardware and a desktop 

computer as described in [35, 36]. The computerized flow-loop controls and management 

of data during experiments were mostly implemented through LabVIEW 2014 SP1 (32 

bit) but some were implemented/recorded separately (manually or through standalone 

devices such as compressor housing heaters controlled by thermostats). Additional details 

of the experimental system, instrumentation, and instrumentation accuracies and resulting 

uncertainties in measured or calculated data reported here are described in section 4.  

3.2 Preparations for Starting the Flow-loop 

First of all, before any experiment can be investigated, a leak test needs to be done 

(typically done with compressed air at 180 kPa). Since this is a research set-up with many 

kinds of instruments inserted in the flow-loop, maintaining the system at 100% leak free is 

close to impossible. Nevertheless, for reliable results and repeatability, keeping the leak 

rate at an acceptable minimum is essential. Typically, the overall leak rate (with all of the 

lines in the experimental set-up connecting all its sub-parts with all the valves open) is 

maintained at a rate that is lower than 0.1 kPa/hr. For reference, when the system is isolated 

in sections by closing appropriate valves, the leak rate for each section will be different 

and will depend on its volume and number of surface fittings in it. Most of the sub-sections 

leak rates were kept lower than 0.2 kPa/hr. At the test-section area, however, the volume 

being very small volume and it having many measuring instruments’ fittings exposed to 

the outside atmosphere, the leak rates were greatest compared to the rest of the system. The 

leak rate at the test-section itself is normally kept at or below 0.4-1 kPa/hr. In addition, 

there are some sub-sections such as: the pool-boiler, the compressor housing, and the 

auxiliary condenser that are quite robust and almost leak-free (see Fig 3.2). With such sub-

section leak rates ensured, the system leak rate was lower than 0.1 kPa/hr.  
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To be able to run an experiment, there are some additional preparations that, preferably, 

need to be done a day earlier - before the run. This is to reduce the work load on the run 

day. These are listed next. (i) Charging the batteries of the heat-flux amplifier and camera 

(ii) Water level of the Koolant chiller reservoir need to be checked and filled with distilled 

water, if necessary. (iii) The water reservoir in the auxiliary condenser cooling loop needs 

to be checked and filled, if necessary. (iv) The sump-pump water bucket, used in the bath-

temperature control flow-loop for the pool-boiler, needs to be filled. (v) The system in Fig. 

3.2 needs to be filled with the right amount of liquid FC-72 such that it has enough FC-72 

liquid inventory during experimental runs lasting about 24 hours, and then some more 

needs to be added to account for additional losses that will occur during vacuum and 

pressure purge processes for the loop. Even though, during the run, a suitable amount of 

the liquid can be added or removed from the system – this is to be avoided because, 

potentially, this may cause non-condensable air to get into the system necessitating some 

pressure purges soon afterward. Therefore, filling FC-72 liquid into the system – from 

underneath (say through valve V1 in Fig. 3.2) – by the right amount could be challenging 

since, during vacuum purge, some amount of FC-72 will be lost from the system. From 

past experience, a good practice was adding an extra 200 ml into the pool-boiler – after the 

liquid FC-72 has reached the level corresponding to the upper float switch located within 

the pool-boiler, and then after isolating the pool-boiler, more FC-72 liquid is added until 

liquid level reached the bottom of the vertical auxiliary condenser shown in Fig. 3.2 – 

followed by an additional extra 200 mL amount of FC-72 added to the condenser. In 

addition, 5-10 mL of liquid FC-72 needed to be squirted – with a syringe – into the 

compressor housing, this is mainly to allow FC-72 vapor to push other gases (air) out of 

the housing because FC-72 is heavier.   

3.3 Procedures 

 
It is important to note that, even when no vapor or liquid pulsations are imposed to achieve 

steady annular realizations in Fig. 3.1, there are some turbulence and compressor vane 

induced pressure fluctuations in the vapor, vibrations of the boiling-surface (from various 
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equipment in the flow loop and other sources), and liquid flow surges arising from the 

rollers of the peristaltic pumps. Nevertheless, these issues and associated pressure 

fluctuations (whose signatures are present in dynamic measurements) did not significantly 

shift (until, as discussed later, when vapor or liquid flow pulsations were deliberately 

imposed) the time-averaged dynamic heat-flux mean values at 40 cm.  

 

For steady-in-the-mean pulsatile realizations, once the flow in the test-section has been 

established, liquid or vapor flow pulsations are imposed at various amplitude levels and 

frequencies to investigate their effects on heat-flux at the 40 cm location, on the average 

heat-flux, and on the liquid-vapor interface morphology – a qualitative visual one – within 

the test-section. It has been experimentally verified that when vapor and liquid pulsations 

were removed, one approximately recovered the results from no imposed fluctuation cases. 

An actual test set-up of the schematic in Fig. 3.2 above is also show below in Fig. 3.3. 

 
Figure 3.3: A photograph of the experimental test set-up. 
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3.3.1 Start-up of the experiment 

• All experimental runs start with a vacuum purge process. The vacuum purge 

process starts by opening all of the valves in Figure 3.2 - except valve V1 

(which is shut to stop communication between the filled up pool-boiler and 

liquid up to the Auxiliary Condenser) and the valve which connects the 

vacuum pump to the system at V4 (this is a through a 3-way valve 

arrangement for V4, not shown in Fig. 3.2). Next the vacuum pump is turned 

on. The exhaust end of the vacuum pump is connected to a glass bottle 

surrounded by ice, this is to collect FC-72 vapor from the air-plus-vapor 

exhaust of the vacuum pump. The process lasts about 3 hours to assure that 

all of the non-condensable are evacuated out. After that, the system is 

isolated from the vacuum pump. The system is under very low vacuum 

pressures for about 2-3 hours. This purges it of non-condensable gases/air 

until only a sufficiently low and repeatable concentration amount remains 

within the predominantly liquid and vapor FC-72 within the system. After 

the vacuum purge is completed, the system is separated/closed-off from the 

line containing the vacuum pump. 

• The electric heater in the water reservoir surrounding the pool-boiler (not 

shown) is activated. Its independent PID temperature controller 

(implemented in earlier experimental investigations) is set to a temperature 

corresponding to the saturation pressure of FC-72 desired within the pool-

boiler.  

After the vacuum purge, and before warming up the pool-boiler, the valve 

V2 is shut to isolate the pool-boiler from the rest of the system. The pool-

boiler has its own PID control. For the bath surrounding the pool-boiler, 

there is a circulating pump for pumping water out from the bottom of the 

stainless-steel case and putting it back, at a fixed temperature, on the top of 

the bath – this is mainly for keeping the bath temperature uniform (this 

nearly stagnant large uniform temperature water bath keeps the FC-72 
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vessel inside the pool-boiler at the same temperature, which becomes the 

pool-boiler’s saturation temperature). The PID control for bath temperature 

has two sources: one for high temperature and another for low temperature. 

The high temperature source is from a heater in the water bath flow-loop 

which will activate when the water bath temperature is lower than a set 

point. The cool temperature source is from another loop cooled by a radiator 

and fans – which will operate when the bath temperature is higher than the 

set point. This process of warming up the FC-72 liquid up to a desire set 

point temperature may take up to 45-60 minutes. The saturation temperature 

set here at the pool-boiler should be such that the corresponding saturation 

pressure is about 15 kPa or so higher than the test-section inlet pressure.  

This is because of the pressure drop, at a representative vapor flow rate, that 

occurs across the Coriolis flow meter.  

• After the above described pool-boiler warming up process, FC-72 vapor is 

let out of the system through valve V2, and this begins warming up of the 

rest of the system. Rope heaters wrapped around vapor lines (tubes) are 

turned on to keep saturated vapor coming out of the pool-boiler at about 5-

10 degrees superheat. 

• At the test-section, heating elements using reversed thermoelectric coolers 

(TECs) are turned on for a PID surface temperature control of temperatures 

directly above the five TECs. This “method of heating” at low heat-fluxes 

(0.1 – 1 W/cm2) avoids inadvertent overheating of boiling-surface and 

keeps dry-outs stable (unlike the dry-out instabilities expected at critical 

heat-fluxes at heat-flux controlled methods of heating). 

• The internal electric heater within the pool-boiler is next set at a heating 

level consistent with the mass flow rate desired at the inlet of the test-

section. 

• The vapor flowing the test-section goes to the auxiliary condenser, the 

liquid from there will be pumped back into the pool-boiler. As soon as liquid 
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is seen flowing from the auxiliary condenser to the L/V separator, valve V1 

is opened, and pump P1 is started at a mass flow rate consistent with the 

vapor mass flow rate from Coriolis flow meter FC-1. 

• Once the flow has stabilized, as indicated by steady or steady-in-the mean 

flow rate through Coriolis flow meter FC-1 and steady or steady-in-the mean 

pressure pin at the test-section inlet, valve V6 is partially opened, and the 

flow rate through pump P1 is increased to the sum of the boiling rate in the 

pool-boiler and the desired liquid mass flow rate into the test-section. 

Valves V1 and V6 are adjusted to achieve the desired mass flow splitting 

between the pool-boiler and test-section inlet. 

• Once the test-section pressures and flow rates have again stabilized at the 

desired levels, compressor CR is started at the desired speed. 

• Once the vapor sight glass is clear and the vapor flow through Coriolis meter 

FC-1 has again stabilized, the internal heater of the pool-boiler is turned off, 

valve V2 is closed, valve V6 is fully opened, and the flow through pump P1 

is reduced to the desired liquid inlet mass flow rate for the test-section. 

• The compressor speed is then increased until the desired re-circulating flow 

rate is again achieved through flow meter FC-1. 

• When liquid starts building up at the test-section exit, pump P2 is started 

and adjusted to the rate required to maintain the desired liquid level at the 

exit of the test-section, as verified visually through the clear test-section 

channel and liquid visualization chamber of Fig. 3.2. Measurement of 

hydro-static pressure at the bottom of the liquid visualization chamber may 

be used to implement computer-based feedback control of pump P2 to 

maintain the desired liquid level. 

• After the flow has been running for a while, some trapped air – mainly in 

the compressor housing and in the liquid line below the test-section – may 
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appear. This trapped air will typically flow to the top of the auxiliary 

condenser, where additional new pressure purging is done to remove the air.  

• When the flow-loop pressures, liquid and vapor flow rates into and out of 

the test-section, and test-section pressures have become steady or steady-

in-the-mean at their desired rates, the pressure pulsators PV and PL may be 

started and adjusted to their desired frequency.  

3.3.1.1 Non-pulsatile Steady Annular Flow-boiling 

• After the above start-up process is completed, the test-section in the system 

will be experiencing a steady annular flow realization with one inlet 

pressure provided the recirculating vapor flow rate is within a certain range 

for a given inlet liquid flow rate. Note that the effective operating sub-

system is now, for this operation, the one within the dashed brown enclosure 

in Fig 3.2 (or, in other words, the sub-system of interest excludes the pool-

boiler). There are variables for this sub-system’s operation that can be 

varied. These are sub-system’s pressure at the inlet of the test-section, inlet 

liquid mass flow rate, inlet vapor flow rate, and the “level” as well as 

“method of heating” (as described in section 4). The inlet pressure can be 

changed with the help of the pool-boiler – whose PID control during start 

up (along with other controls such as the ones for the liquid and vapor inlet 

flow rates) determine the test-section’s eventual total mass flow rate as well 

as the inlet pressure.  

3.3.1.2 Steady-in-the-mean Pulsatile flows Resulting from Imposed Pulsations 

• The new experimental test set-up has ability to impose pulsations into the 

liquid and vapor flows entering the test-section in Fig. 3.1. This is 

accomplished by the liquid pulsator PL and the vapor pulsator PV shown in 

Fig. 3.2. Pulsations from each of these pulsators have two aspects that can 

be controlled – these are their amplitudes and frequencies (it suffices here 

to think of the dominant frequency and the associated amplitude in the 
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dynamic pressure signals of the two incoming single-phase – liquid and 

vapor – streams). The amplitude of vapor pulsations can be changed by 

manually adjusting the ball valve VP in Fig. 3.2 (this is between the vapor 

pulsator line and the main vapor line) and the vapor pulsator frequency can 

be computer controlled by adjusting the motor speed of the pulsator. For the 

liquid pulsations both amplitude and frequency have to be controlled 

manually (knob turning). 

• Pulsatile cases are realized here after the test-section has reached a specific 

steady state of interest. To be able to assess the effects of pulsations on flow-

boiling, different combinations of amplitudes and frequencies have been 

investigated. First, a desired and approximately equal frequencies for each 

of the two pulsators are selected. Frequency of the liquid pulsator has to be 

set before vapor pulsator – this is done by manually adjusting the pulsator’s 

motor speed knob and then looking at the dominant pressure pulsation 

frequency by acquiring a dynamic liquid line pressure signal with high data 

acquisition rate (2,000 Hz), preliminary verification is done by just counting 

the number of peaks in one second. This process is repeated until the desired 

frequency for the liquid pulsator is achieved. Then the frequency of the 

vapor pulsator is set, by an approach similar to the one associated with the 

liquid pulsations. After the frequencies of both pulsators were set, amplitude 

of the liquid pulsator was set to a minimum allowable value – this is because 

of certain limitations (high amplitudes cause cavitation in the liquid line and 

structural vibrations) that were observed. Starting from a specific steady 

case, first “liquid only” pulsations’ effects are assessed for a given 

frequency and minimum amplitude setting for the liquid pulsator. After 

steady-in-the-mean realization is achieved, the associated data for the case 

are recorded. The second pulsatile realization is typically obtained for the 

same frequency but by employing “vapor only” pulsations using vapor 

pulsator at its maximum amplitude setting. The third case involves, “liquid 



25 

and vapor” pulsations at the same dominant frequency - with the liquid 

pulsator at its fixed allowable amplitude setting and vapor pulsator at a 

small amplitude (small opening of valve VP in Fig. 3.2). Subsequent “liquid 

and vapor” pulsatile cases were realized by gradually increasing the vapor 

pulsator amplitude (until valve VP in Fig. 3.2 reached its fully open 

configuration). After this, different sets of equal frequencies for the liquid 

and vapor pulsators were investigated. Note that, each experimental steady-

in-the-mean realization was recorded for about 30-40 minutes and during 

each such duration – 5 seconds of dynamic data were collected at 2000 Hz, 

about 3-5 times per steady-in-the-mean realization.  
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4 Experimental Results and Discussions for Steady and 
Enhanced Annular Flow-boiling  

As discussed in section 3, the experimental hardware and approach were modified to obtain 

experimental results for the following purposes. (i) Data for steady annular flow-boiling 

towards development of more accurate approaches (relative to existing knowledge and 

approaches) for developing HTC and pressure-drop correlations that are specific to annular 

flow-regimes and a well-defined parameter-range. This needs to be done in a way that one 

is able to make use of (or take into account) existing data that are larger in scope (inclusive 

of non-annular regimes and larger parameter space) and are available in the literature (see 

[13]. (ii) Data for steady-in-the-mean enhanced annular flow-boiling in a way that one can 

learn from enhancement results obtained from different approaches that introduce inlet 

mass flow-rate pulsations in the arrangement shown in Fig. 4.1 – specifically, pulsations 

in the liquid, vapor, or both the phases. 

The heating is over length "L = 50 cm" in Fig 4.1. The heating "levels" are characterized 

by the average temperature difference ∆T ≡ |T�w − Tsat(p0)| between the saturation 

temperature Tsat(p0) and the axially averaged mean wall temperature T�w (alternatively, for 

heat-flux controlled "method of heating, "the axially averaged mean wall heat-flux,  

qw
''��� ≡ 1

L ∫ qw
" (x). dxL

0 , could be used to define the level of heating). Furthermore, a specific 

non-uniform "method of heating" is defined as a specific function θw(x)  – or, equivalently, 

a specific function Ψq(x) for heat-flux controlled method of heating – through the relations: 

∆T(x) ≡ |Tw(x) − Tsat(p0)| ≡ ∆T. θw(x) (4.1) 

and 

qw
" (x) = q�w

" . Ψq(x) (4.2) 
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The local HTC hx is defined as 

qw
" (x) = hx. ∆T(x) (4.3) 

For non-uniform temperature-controlled heating used here, approximate and specific 

θw(x) ≠ 1 over 0 < 0 <  x <  L are defined and used here for correlating the reported data. 

40 cm
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Reversed TEC Heating

Separator Plate 2 mm

Flush APT
10 cm

DPT

Vapor In (aV,fV)

Liquid In (aL,fL)
Mass flow rate
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HFM: Heat-flux meter
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L-in(M )
Mass flow rate L-e(M )

TC: Thermocouple @ HFM

: Previously mounted thermocouples : Newly mounted thermocouples

or

or

 
Figure 4.1: A side view schematic of an instrumented test-section which has a 15 mm 

width (in direction out of the figure plane). The test-section is for innovative flow boiling 

investigations (with FC-72 as the working fluid). 

The basic features of data collected and reported in this section are described next. 

Data Processing and Errors 

The experimental runs are characterized by case numbers in Tables 4.1 - 4.6. Each steady 

or steady-in-the-mean case represents a unique set of experimental conditions which were 

held steady for a period of 30 - 45 minutes. The entire duration (or a significant subset) for 

each run case were selected for averaging of the relevant flow variables acquired at the low 

DAQ rate (~ 1.0 Hz). Due to programming limitations, during 5 second gaps in the time 

history of the low DAQ acquisition of flow variable data, the dynamic data was acquired 

at 2000 Hz for some key and feasible measurements of: differential pressure transducer 

data for ∆p|10−40, some of the absolute pressure transducers (specifically p10), and dynamic 

heat-flux sensor data (before the sensor broke down and was replaced by a heat-flux sensor 

that could only provide low DAQ steady measurements). For the reported dynamic data, 
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the Fast Fourier Transform (FFT) results were obtained by looking at a sample record 

length (of 5 s durations each) and truncating it for periodicity (to avoid leakage). It was 

found that considerations of the average dynamic signal, by considering several 5 s 

duration record lengths and averaging of their records, were not necessary for identifying 

the reported amplitudes and frequencies (e.g. ap40 for the p40 data reported in Table 4.6 of 

this section).   

Also, the uncertainties reported in the column headers of Tables 4.1-4.2 (and analogous 

ones in Tables 4.3-4.6) for time-averaged values of the flow variables only apply to their 

mean values; instantaneous values of data taken at the low DAQ rate may have uncertainty 

outside of that range. Uncertainties are reported as absolute (a number without a % 

symbol), relative (a number followed by a % symbol), or mixed (both a plain numerical 

value and a percentage – or its reporting in an equivalent % relative error form). Absolute 

uncertainties have the same units as the variable to which they are applied, and relative 

uncertainty values are applied as a percentage of the reported data values. To determine the 

uncertainty associated with any measurement with a mixed uncertainty (e.g. p0 with an 

absolute uncertainty of ± 0.5 kPa and in house calibration uncertainty of 2%), multiply the 

percent uncertainty (after division by 100) to the reported data value of interest; then add 

to it the absolute uncertainty, and that data value is reported to ± this sum. Here an 

equivalent approach is taken for po, where the maximum % uncertainty associated with ± 

0.5 kPa is added to the calibration uncertainty of 2%. The raw variables in Tables 4.1-4.6 

are those variables for which no Gaussian errors are reported. The raw variables’ errors 

reported in Tables 4.1-4.6 are made up of instrumentation and calibration errors. For some 

variables, associated instruments’ (such as Coriolis meters) vendors provide the combined 

instrumentation and calibration errors. For many other raw variables (such as 

measurements obtained from: thermocouples, turbine flow meter, absolute and differential 

pressure transducers, etc.), only the instrument error was specified by the vendors – the 

calibration errors were obtained from in-house calibration procedures and then added to 

the instrumentation error. For all other calculated variables reported in Tables 4.1 - 4.6, the 

maximum relative error and Gaussian error estimates were obtained by standard formula-
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based error propagation schemes (see [37]). The confidence interval on maximum relative 

error uncertainty values in Tables 4.1-4.6 is above 95% whereas, for Gaussian estimates, 

it is likely between 80 - 90 %. The reported estimates include effects of working 

temperature on the sensors, property table errors, etc. 

4.1 Steady Results and Discussions 

4.1.1 Steady Results 

The completed steady annular investigations are for modeling/simulation use of 

experimental data that is described here – with implementation details (work of the 

modeling/simulations team) as given in section 5. The data have been acquired from 

experimental runs (with FC-72 as a working fluid) dealing with innovative flow-boiler 

operations [9] within the rectangular cross-section test-section of Fig 4.1 (width w = 1.5 

cm, height h = 2 mm, and length L = 50 cm). The experimental procedures used has been 

described in section 3. The test-section inlet, in Fig 4.1, is at x = 0 and its exit is at x = 50 

cm where x denotes downstream distance location from the inlet. The bulk mean vapor 

temperature in Fig. 4.1 is slightly superheated, but the superheat can be neglected and the 

vapor can be assumed to be at close to saturation temperature Tsat(p0) for FC-72 vapor, 

where p0 is the inlet pressure. Instrumentations described in section 3 are used to measure 

the following variables: inlet pressure p0, mean differential pressure ∆p|10−40 (≡ p10 – p40) 

between the x = 10 cm and 40 cm locations of the test-section, inlet liquid flow rate ṀL-in, 

inlet vapor flow rate ṀV-in, mean wall temperature T�w ≡ 1
L ∫ Tw(x). dxL

0  where Tw(x) 

represents steady wall temperature variations with distance x (which have been measured 

at {x (cm)} ≡ {0, 5, 8.5, 11.5, 15, 18.5, 21.5, 25, 28.5, 31.5, 35, 38.5, 41.5, 45, 48.5} 

locations). While the inlet pressure p0 has been measured by an absolute pressure 

transducer at close to x = 0 location in Fig. 4.1, the values reported here are from the more 

accurate and stable measurements at x = 10 cm location. This is because p0 ≅  p10 is a 

good approximation and the location has less flow noise and a higher quality transducer.  
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The above described variables’ measured values are reported, for sample steady annular 

runs, in Table 4.1. All runs in this table report data for an approximately fixed “method of 

heating”  θw(x), which is defined in Fig 4.2 for 0 < x#≤ x ≤ xe < L.  The Tw(x) values for 

different runs in Table 4.1 are given in Table B.1 of Appendix B and the extended Tw(x) 

and  θw(x) curves are defined, over 0 < x ≤ L , in Appendix B’s Figs. B.1 – B.2.  

 

Table 4.1: Experimental run results of a set of steady run cases whose “method of 

heating” is defined by the function in Fig. 4.2. 

 

 

 

Case ΔT G

Max relative error ±2.48% ±4% ±0.1% ±0.35% ±3% ±3.45% ±5.18% ±1.66% ±6.84% ±0.45% ±6.45% ±0.8% ±3.9% ±3% ±4.2%
Gaussian error - - - - - ±3.02% - - ±5.43% ±0.36% ±6.02% ±0.57% ±3.48% - ±3.17%

Unit [kPa] [Pa] [g/s] [g/s] [g/s] [g/s] [°C] [°C] [°C] [g/s] - -
1 110.04 47.56 0.245 0.390 0.052 0.583 59.40 60.90 1.50 0.635 21.175 0.614 0.918 0.136 0.216
2 109.94 53.58 0.266 0.389 0.098 0.556 59.38 60.94 1.56 0.655 21.826 0.594 0.850 0.124 0.187
3 109.97 71.73 0.291 0.388 0.103 0.577 59.38 60.88 1.49 0.680 22.659 0.571 0.849 0.175 0.211
4 109.70 80.94 0.326 0.387 0.132 0.580 59.31 60.86 1.55 0.712 23.747 0.543 0.814 0.195 0.216
5 110.03 91.52 0.327 0.427 0.138 0.616 59.40 60.94 1.54 0.754 25.123 0.566 0.817 0.172 0.211
6 109.37 96.03 0.328 0.445 0.108 0.665 59.22 60.84 1.62 0.773 25.760 0.576 0.861 0.186 0.246
7 108.71 129.16 0.578 0.439 0.403 0.613 59.04 60.74 1.70 1.017 33.884 0.432 0.603 0.121 0.195
8 108.83 279.86 0.582 0.826 0.300 1.108 59.07 60.70 1.63 1.408 46.929 0.587 0.787 0.177 0.315
9 108.77 416.00 0.578 1.078 0.122 1.534 59.06 60.59 1.54 1.656 55.204 0.651 0.926 0.241 0.510

10 108.29 508.63 0.842 1.076 0.429 1.488 58.93 60.51 1.58 1.917 63.905 0.561 0.776 0.223 0.461
11 107.45 1545.06 1.238 1.950 0.532 2.657 58.69 60.35 1.66 3.189 106.283 0.612 0.833 0.316 0.790

po Ṁtotal∆p|10−40cm ṀL−in Tsat(po) T�w XinṀV−in ṀL−out ṀV−out Xout qx|x=40 cm
"

[W/cm2][W/cm2][kg/s/m2]

qw
"
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Figure 4.2: The above representative non-dimensionlized temperature profile, over 

0 < x#≤ x ≤ xe < L, specifies the “method of heating” for all the experimental runs in Table 

4.1. 

The non-uniform heating method related spatial oscillations in θw(x), around θw(x) = 1 

over  x#≤ x ≤ xe in Fig. 4.2, result from a combination of factors related to the use of the 

reversed (coolers to heaters) thermoelectric heaters. These heaters, shown  in Fig. 4.1, 

control set point temperatures on the boiling-surface at specific locations – x (cm) locations 

given by {x (cm)} ≡  {5, 15, 25, 35, 45} – that are directly above the 4 cm square devices 

(with flow-direction spread of 4 cm) underneath the steel slab. The top-surface of the steel 

slab contains the test-section area that forms a 1.5 cm x 50 cm boiling-surface (Abs = 75 

cm2) in Fig 4.1. The steel slab itself is 12.7 mm thick in the vertical direction, 5.08 cm wide 

in the horizontal direction, and 1.09 m long in the flow direction. Most air exposed surfaces 

of the slab are wrapped with insulating materials to contain the convective loss of heat to 

ambient air. Furthermore, the vertical exposed edges of this slab also use some strip heaters 

(and then wrapped with insulating materials) to minimize convective loss of heat to 

ambient air. The three dimensional nature of heat-flux vectors within the steel slab that are 

responsible for heat loss from underneath the boiling-surface, coupled with the above 

explained set-point temperatures at specified locations, yield the lengthwise non-

uniformity in temperatures indicated by the spatial oscillations, around θw(x) = 1, as 

indicated in Fig. 4.2. 

In addition to the measured variables’ values reported in Table 4.1, some associated 

processed/calculated values of results corresponding to the runs in Table 4.1 are also shown 

in Table 4.2. The calculated variables in Table 4.1 are: saturation temperature Tsat(p0); 

average temperature difference ∆T; total mass flow rate Ṁtotal = ṀL(x) + Ṁv(x), where 

ṀL(x) and Ṁv(x) respectively denote the liquid and vapor mass flow rates at any distance 

x from the inlet in Fig. 4.1 (with ṀL−in ≡ ṀL(x = 0), ṀV−in ≡ ṀV(x = 0), ṀL−out ≡

ṀL(x = L), and ṀV−out ≡ ṀV(x = L)); mass-flux G ≡ Ṁtotal Acs⁄ , where cross-sectional 

area Acs = 0.3 cm2;  quality X(x) (≡ ṀV(x) Ṁin⁄ ) at any distance x becomes inlet quality 
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Xin  ≡ ṀV−in Ṁtotal⁄  at x = 0 and outlet quality Xout  ≡ ṀV−out Ṁtotal⁄  at x = 1; 

approximate total heat qtotal ≅  Ṁtotal ∗ (Xout − Xin) ∗ hfg supplied from the boiling-

surface to the flow, where hfg is the heat of vaporization (J/kg) of FC-72 at temperature 

Tsat(p0); and average heat-flux qw
''��� ≡ qtotal Abs⁄ , where the boiling surface area Abs = 75 

cm2. 

Generally, be it liquid or vapor mass flow rates or their phase-specific 

thermodynamic/transport properties, a subscript “L” denotes the liquid phase and a 

subscript “V” denotes the vapor phase. Both phases are modeled as incompressible (i.e. 

vapor Mach numbers are low). The properties (density ρ, viscosity µ, specific heat Cp, and 

thermal conductivity k) are denoted with subscript “I”. The properties are to take their 

representative constant values for each phase (I = "L" or "V"). 

Some of the calculated variables in Table 4.2 are: average HTC h�  ≡ qw
''��� ∆T⁄ , local HTC 

hx|x=40 cm  ≡ [qw
" (x) ∆T(x)]|x =40 cm⁄  where ∆T(x) and qw

" (x) are defined in Eqs. (4.1)-

(4.2), Nusselt Number Nux|x=40 cm, ReL-in, ReV-in, Retotal, Ja, and the remaining calculated 

variables in Table 4.2 are defined later on in this section. 

 

Table 4.2: Calculated parameters computed for the corresponding case-specific values in 

Table 4.1. 

 

Case Ja %nb - KM %µnb - CFD
Max relative error ±11.04% ±11.04% ±20.25% ±0.8% ±16.46% ±16.46% ±15.66% ±8.84% ±3% ±2% ±2% - -

Gaussian error ±8.02% ±8.02% ±13.79% ±0.57% ±10.52% ±10.52% ±10.49% ±5.62% ±1.73% ±1.41% ±1.41% - -
1 1439.57 842.11 57.34 0.614 65.33 4150.93 6758.96 0.0197 9.39 0.0091 0.02505 15.02 71.64
2 1196.80 1072.58 73.03 0.594 70.85 4137.72 6967.13 0.0206 9.39 0.0090 0.02504 15.59 80.80
3 1412.58 1264.11 86.08 0.571 77.66 4132.00 7232.78 0.0196 9.39 0.0090 0.02504 15.51 85.13
4 1389.95 1378.00 93.82 0.543 86.70 4116.43 7581.24 0.0204 9.40 0.0090 0.02502 16.24 87.51
5 1370.50 1208.48 82.29 0.566 87.14 4540.40 8019.16 0.0203 9.39 0.0091 0.02505 15.97 84.80
6 1513.82 1278.78 87.04 0.576 87.21 4736.85 8225.58 0.0214 9.40 0.0090 0.02500 16.27 84.07
7 1151.15 818.87 55.72 0.432 153.51 4670.49 10823.68 0.0223 9.41 0.0089 0.02495 18.62 86.72
8 1937.43 1273.33 86.64 0.587 154.53 8797.68 14989.42 0.0214 9.41 0.0090 0.02496 15.89 85.84
9 3314.93 2047.23 139.30 0.651 153.68 11474.63 17633.36 0.0202 9.41 0.0089 0.02495 14.18 TBC

10 2909.53 1853.53 126.08 0.561 223.32 11454.90 20417.93 0.0208 9.42 0.0089 0.02492 15.71 TBC
11 4774.78 2536.04 172.42 0.612 327.89 20780.01 33974.18 0.0217 9.43 0.0088 0.02485 14.61 TBC

h� hx|x=40 cm Nux|x=40 cm ReV−in ReTotalReL−in PrL ρV/ρL μV/μLXin
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Similar to the results in Table 4.1, additional measured values for steady annular runs are 

reported in Table 4.3 for a different approximately fixed “method of heating”  θw(x) ≡ 

(θw(x)|2nd) defined in Fig 4.3, for 0 < x#≤ x ≤ xe < L .  The Tw(x) values for different runs 

in Table 4.3 are given in Table B.2 of Appendix B whereas the extended Tw(x) and θw(x) 

curves are defined, for 0< x ≤ L, in Appendix B’s Figs. B.3-B.4. In addition to the 

measured variables’ values reported in Table 4.3, some associated processed/calculated 

values of results corresponding to the runs are also shown in Table 4.4. 

 

Table 4.3: Experimental run results of steady run cases which different from Table 4.1. 

 

 

Table 4.4: Calculated parameters based on values from Table 4.3. 

 

 

 

 

Case ΔT G
Max relative error ±2.47% ±0.1% ±0.35% ±3% ±3.45% ±1.6% ±5.13% ±6.74% ±0.45% ±6.45% ±0.8% ±3.9% ±3% ±4.2%

Gaussian error - - - - ±3.02% - - ±5.38% ±0.36% ±6.02% ±0.57% ±3.48% - ±3.17%
Unit [kPa] [g/s] [g/s] [g/s] [g/s] [°C] [°C] [°C] [g/s] - -

1 106.54 1.050 0.222 0.383 0.890 62.38 58.44 3.93 1.272 42.412 0.175 0.699 0.099 0.751
2 107.54 1.055 0.468 0.373 1.149 62.46 58.72 3.74 1.522 50.742 0.307 0.755 0.134 0.766
3 107.63 1.053 0.622 0.307 1.368 62.43 58.74 3.68 1.675 55.839 0.371 0.817 0.172 0.838
4 107.25 1.050 0.779 0.277 1.552 62.32 58.64 3.68 1.829 60.961 0.426 0.849 0.240 0.869
5 112.19 1.046 1.280 0.000 2.326 63.65 59.98 3.67 2.326 77.529 0.550 1.000 0.251 1.169
6 109.33 1.595 0.403 0.891 1.108 63.02 59.21 3.81 1.999 66.626 0.202 0.554 0.090 0.791
7 112.95 1.600 0.836 0.712 1.724 64.07 60.18 3.89 2.436 81.197 0.343 0.708 0.165 0.992
8 114.94 1.600 1.105 0.603 2.103 64.48 60.71 3.77 2.705 90.172 0.408 0.777 0.184 1.112
9 118.69 1.613 1.237 0.503 2.347 65.62 61.68 3.94 2.851 95.020 0.434 0.823 0.199 1.233

10 123.05 1.618 1.722 0.347 2.993 66.54 62.77 3.76 3.340 111.341 0.516 0.896 0.284 1.405

po ṀtotalṀL−in Tsat(po)T�w XinṀV−in ṀL−out ṀV−out Xout qx|x=40 cm
"

[W/cm2][W/cm2][kg/s/m2]

qw
"

Case Ja %nb - KM %µnb - CFD
Max relative error ±10.94% ±10.94% ±12.94% ±0.8% ±9.25% ±9.25% ±8.45% ±8.74% ±3% ±2% ±2% - -

Gaussian error ±7.94% ±7.94% ±11.03% ±0.57% ±6.65% ±6.65% ±6.6% ±5.56% ±1.73% ±1.41% ±1.41% - -
1 1908.96 327.32 22.24 0.175 277.39 2370.53 13564.38 0.052 9.44 0.0088 0.0248 36.48 65.63
2 2049.02 468.44 31.85 0.307 279.33 4982.04 16219.08 0.049 9.43 0.0088 0.0249 32.88 70.25
3 2275.05 619.61 42.13 0.371 278.98 6627.78 17847.66 0.048 9.43 0.0089 0.0249 31.06 TBC
4 2358.16 889.94 60.50 0.426 277.88 8299.74 19488.65 0.048 9.43 0.0088 0.0248 29.57 TBC
5 3122.18 1054.22 71.88 0.550 280.36 13597.97 24717.33 0.048 9.36 0.0092 0.0252 26.48 TBC
6 2075.93 302.70 20.60 0.202 424.44 4294.04 21274.91 0.050 9.40 0.0090 0.0250 36.72 TBC
7 2551.07 614.59 41.92 0.343 429.50 8880.05 25876.34 0.051 9.35 0.0093 0.0253 33.6 TBC
8 2950.08 739.49 50.50 0.408 431.67 11723.96 28705.64 0.050 9.32 0.0094 0.0254 31.28 TBC
9 3126.51 801.71 54.87 0.434 438.99 13105.50 30189.29 0.053 9.27 0.0098 0.0257 31.77 TBC

10 3734.36 1179.74 80.95 0.516 444.82 18196.67 35295.81 0.050 9.22 0.0101 0.0260 28.73 TBC

h� hx|x=40 cm Nux|x=40 cm ReV−in ReTotalReL−in PrL ρV/ρL μV/μLXin
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Figure 4.3: This non-dimensionalized temperature profile specifies the “method of 

heating” for the runs in Table 4.3. 

4.1.2 Discussions of Steady Results 

The above basic results (in Tables 4.1 and 4.3) explore steady annular flow-boiling for two 

different prescriptions of non-uniform wall temperature “methods of heating” – as 

specified by functions θw(x) in Figs. 4.2 and 4.3.  The non-dimensional local HTC hx 

values Nux are defined as 

Nux ≡ hx. Dh
kL

 ,  Dh ≡ 4Acs P⁄  (4.4) 

Using the cross-sectional area Acs and perimeter P for the rectangular cross-section test-

section (width w = 15 mm and height h = 2 mm), the hydraulic diameter Dh ≡ 2wh/(w +

h)  = 3.53 mm is used for reporting the processed experimental results in Table 4.2. 

Average constant thermal conductivity for the liquid flow is denoted as kL. For comparing 

or utilizing results from steady annular suppressed nucleation 2-D CFD simulation results 

(as discussed in section 5), a channel approximation (with h/w = 2/15 = 0.13 << 1) is used 

where the corresponding CFD model [14] has Dh ≅ 2h = 4 mm. 
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For other processed experimental values of variables in Table 4.2, the following definitions 

are used: 

X(x)  ≡ ṀV(x) Ṁin⁄ , Retotal ≡ GDh/µV, Ja ≡ CpL∆T/hfg, PrL ≡ µLCpL/kL (4.5) 

For laminar/turbulent nature of the flow assessments, one often uses "local" values of liquid 

and vapor Reynolds numbers (ReL(x) and ReV(x) respectively) defined as 

ReL ≡
G∙�1-X(x)�∙Dh

μL
,  and ReV ≡

G ∙ X(x) ∙ Dh

µv
 

(4.6) 

For separated annular flows considered here, ReL (or ReV) < 2000 continue to 

approximately indicate laminar nature of the flow in that phase. Similarly, ReL (or ReV) ≫ 

2000 continue to approximately indicate turbulent nature of the flow. 

As discussed in [13], any impact of  θw(x) is adequately taken into account by its use in 

computing the variations of quality X(x) with distance x. As far as θw(x) ≠ 1 conditions’ 

impact on non-dimensional local HTC hx values – given as Nux correlations – is concerned, 

most engineering correlations [13] do not take its effects into account because they consider 

it to be insignificant. This is largely due to the fact that most experiments do not employ 

conditions where θw(x) ≠ 1 variations are strong in the sense that, for 0 < x < L, the 

distance function ‖θw(x) − 1‖ is small, i.e. ‖θw(x) − 1‖ ≡ {1/(xe − x#)} ∙

∫ �{θw(x)-1}2+�θw
' (x)�

2
� ∙dxxe

x# ≪ 1. For example, in Figs. 4.1 and 4.3, ‖θw(x) − 1‖ values 

are respectively 0.018 and 0.004. Besides ignoring the impact of θw(x) ≠ 1 on Nux 

correlations, there is another reason. This has to do with the fact that in developing Nux 

correlations for local HTC as hx ≡ qw
" (x)/∆T(x), often hx is evaluated under  ∆T(x) ≡

∆T. θw(x) ≅  ∆T approximation. As a result, the impact on quality X(x) variations do not 

arise if the correct non-dimensional equations for dX/dx – if it correctly takes into account 

θw(x) effects as given in [13] – are used. 

Looking at the processed variables data in Table 4.2, it is clear that the range of non-

dimensional parameters for this set of steady annular experiments cover: 



36 

0.432 ≤ Xin ≤ 0.651;  63.29 ≤ ReL-in ≤ 327.89;  4022.11 ≤ ReV-in ≤ 20780.01  

6643.32 ≤ Retotal ≤ 33974.2;   0.0196 ≤ Ja ≤ 0.0296;  9.39 ≤ PrL ≤ 9.47                                   (4.7) 

0.0086 ≤ ρV/ρL ≤ 0.0091;  0.02465 ≤ µV/µL ≤ 0.02505.    

Similarly, looking at the processed variables data in Table 4.4, it is clear that the range of 

non-dimensional parameters for this second set of steady annular experiments cover: 

0.175 ≤ Xin ≤ 0.550;  277.3916 ≤ ReL-in ≤ 444.8155;  2370.53 ≤ ReV-in ≤ 18196.67  

13564.38 ≤ Retotal ≤ 35295.81;   0.048 ≤ Ja ≤ 0.053;  9.22 ≤ PrL ≤ 9.44                                  (4.8) 

0.0088 ≤ ρV/ρL ≤ 0.0101;  0.0248 ≤ µV/µL ≤ 0.0260.  

The purpose of obtaining the above described experimental results are threefold. They are 

needed to: (i) help assess the relative importance of micro-scale nucleate boiling in the 

reported experimentally measured values of local heat-flux or local HTC hx  (as reported 

here and in [34]) – this is to be achieved through a suitable synthesis with CFD based 

modeling capabilities of our team (see section 5), (ii) help the modeling group in our team 

(see section 5) to obtain and propose methodologies for more accurate flow-regime 

(annular, in this case) and parameter-space specific HTC correlations, and (iii) help 

develop better understanding and methodologies for experimental results – when 

experiments switch from steady annular realizations to corresponding steady-in-the-mean 

pulsatile annular flows with enhanced heat transfer. 

The first two contexts are briefly discussed here – while related works of others [13, 14] in 

our group are summarized in section 5. The third context of enhanced steady-in-the-mean 

annular flows are discussed separately in section 4.2. 

4.1.2.1 Role of micro-nucleation 

For an assessment of the relative importance of micro-scale nucleate boiling in 

experimentally measured local heat-flux or local HTC values, data were obtained in the 
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parameter-space specified by Eq. (4.7). This is because, for this parameter space and 

‖θw(x) − 1‖ = 0.018 < 1, the Nux correlations obtained in [14] are valid. The results in 

[14] correspond to a hypothetical flow realization (with X(x), film-thickness versus 

distance, etc. variations obtained from CFD are different from the actual) under suppressed 

nucleation assumptions that have been obtained from a nearly exact and feasible CFD 

simulation approach. The results from this approach can be used to obtain the hypothetical 

“convective boiling only” contribution to local HTC, denoted hx|cb, at any x location in 

Fig. 4.1 provided one uses experimentally measured values of the inlet and wall 

temperature conditions in the nucleation-absent CFD [14] runs associated with the actual 

experimental runs of Table 4.1. Recall that the actual experimentally measured local HTC 

hx−40|Expt−st values in Table 4.1 are obtained from the relationship: qw-40 cm|Expt
'' ≡

hx−40|Expt−st ∙ (Tw(x) − Tsat(pin))|x=40 cm. As proposed in ([13],[14]) that the only 

feasible (at least in the near future) way to estimate local HTC contributions, denoted 

hx|µnb, from micro-scale nucleate boiling is to use the decomposition qw-40 cm|Expt
''  ≡  

qw-40 cm|Hypoth-CFD
'' + qw-40 cm|µnb

'' , which translates into hx|Expt−st ≡ hx|µnb + hx|cb. This 

approach has been used in Tables 4.2 and 4.4 for the measurement location of x = 40 cm. 

Table 4.2 shows that “% μnb-CFD ≡ hx|μnb hx|Expt-st*100⁄ ” is dominant, for the filled rows, 

and are in the 80-90% range. The filled rows in Table 4.2 reporting “% μnb-CFD” 

correspond to runs for which the thin liquid film flow is laminar and vapor flow is laminar 

near the interface – these being the only cases for which the necessary CFD procedures 

[14] are currently available. The unfilled rows with “TBC (to be computed)” entries under 

“% μnb-CFD” column-header in Tables 4.2 and 4.4 make the case for further maturation 

of the proposed decomposition procedure by developing and making available CFD-based 

effective estimates of convective HTC contributions – for flow-boiling simulations (under 

the hypothetical absence of nucleate boiling) that can be trusted to give good estimates for 

annular regimes for these unassessed runs, which involve significantly turbulent vapor 

(unlike the approach in [14]) and laminar liquid flows. 
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The local (at x = 40 cm) and average heat-flux measurements of qw-40 cm
''  and qw

''���, 

respectively in Table 4.1 tell a story consistent with the results in an earlier heat-flux 

controlled annular flow-boiling experiment [34]. For the temperature-controlled boiling 

experiments, average heat-flux (over the 50 cm length of the channel) is much higher than 

the measured local heat-flux. Furthermore, for the heat-flux controlled annular flow-

boiling experiment [34], the local experimentally measured heat-flux (or HTC hx) values 

at upstream locations near the inlet are much higher than estimates obtained from 

suppressed nucleation modeling/computational estimates (obtained from a 1-D version 

used in [34]). Still an order of magnitude agreement between experimentally obtained 

qw
" (x) and suppressed nucleation theory [34] is obtained for certain run conditions’ 

downstream locations where the liquid film is sufficiently thin (because of the locations’ 

proximity to stable dry-out conditions) and suppressed micro-nucleation conditions are 

actually achieved. Both current and earlier experimental results establish that micro-

nucleation heat-transfer is more significant at upstream thicker liquid locations (they were 

visible for some cases, particularly in [34]) where a larger range of bubble departure 

diameters (and associated frequencies) are available and these contributions gradually 

diminish over the length of the channel. Clearly, for 50 – 300 µm thick liquid films of 

interest here, micro-nucleation is a more significant carrier of heat than thin-film 

convection (without nucleation) mechanisms. It should be noted that the available pool-

boiling related experimental data and their analyses [13] for nucleation site densities, 

bubble departure diameter, bubble departure frequency, etc. should only be used as guides 

and are only approximately valid for the micro-scale nucleate boiling of interest here. This 

is because, for micro-/nano-scale bubbles, the bubble-ebullition cycles are affected by 

many other parameters that are not fully understood at this time [13]. 

This decomposition should not be confused with popularly available decompositions, as in 

[38], where ad hoc decompositions use the “nucleate boiling” term of the HTC correlation 

to relate to (or model) upstream larger diameter “nucleate boiling” regimes in traditional 

flow-boiling (i.e., all liquid flow at the inlet), while relating the remaining term to 

“convection” dominant flow-regimes (which include annular flows of interest here). This 
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is the reason why Kim and Mudawar correlations [38] yield (also see [13] for a proper 

description of assessments for this correlation), in Table 4.1, a very different “% nb-KM” 

(= 8 - 40%) for the heat carried by the so-called “nucleate boiling” terms.  

4.1.2.2 Role of experiments in obtaining more flow-regime and parameter-space 

based HTC correlations 

Looking at the two sets of data in Tables 4.1 and 4.3 along with the parameter spaces given 

in Eqs. (4.7) and (4.8), it is understood that one can obtain Nux correlations – ignoring 

θw(x) effects on Nux correlations – while accounting for its effects when obtaining quality 

X(x) variations with x [13]. The combined parameter space (for Eqs. (4.7) and (4.8)) under 

consideration is: 

0.175 ≤ Xin ≤ 0.651;  63.29 ≤ ReL-in ≤ 444.8155;  2370.53  ≤ ReV-in ≤ 20780.01  

6643.32 ≤ ReTotal ≤ 35295.81;   0.0196 ≤ Ja ≤ 0.053;  9.22 ≤ PrL ≤ 9.47                                   (4.9) 

0.0086 ≤ ρV/ρL ≤ 0.0101;  0.02465 ≤ µV/µL ≤ 0.0260.    

These experiments offer flow-regime (annular) and parameter-space (Eq. (4.9)) specific 

values of Nux|x =40 cm and qw
''��� (which, see section 5, corresponds to known values of 

∫ Nux∙θw(𝑥𝑥�)∙dx�x� = L Dh⁄
x� = 0  , where x� ≡ x Dh⁄ ). While these data, by themselves, are not 

sufficient for proposing accurate Nux correlations, they can be judiciously combined with 

many other flow-boiling data that already exist (and are considered in the correlation given 

in [38]) – and cover this flow-regime and parameter-space in Eq. (4.9) through 

considerations of numerous other experiments in millimeter scale hydraulic diameter 

channels and tubes. That is, the idea is to retain the form of such “order of magnitude” 

correlations ([38]) while seeking agreement with the reasonably specific and accurate 

steady annular flow-boiling data for the parameter space given in Eq. (4.9). This approach, 

see section 5, effectively expands the data presented in Tables 4.1 and 4.3 and yields a 

reliable correlation that caters to a different need. 
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The approach described in section 5 is quite important. It allows for future and other 

annular-regime data with known/specified parameter-space (as will be the case when we 

augment/replace the above data in Tables 4.1 and 4.3 with the moderate to high heat-flux 

“water as a working fluid” data obtained from our group’s new ongoing experiments [39]) 

that can be used to propose other useful correlations covering a parameter space different 

than the one given in Eq. (4.9). 

4.2 Pulsatile Enhanced Annular Flow Results and Discussions 

Previously proposed “low heat-flux (0.1 – 1 W/cm2)” innovative annular flow-boiling 

operations [9], a sub-case of operations indicated in Fig. 4.4, employed pulsatile vapor 

flows (of different amplitudes and frequencies, with FC-72 as working fluid) at the inlet 

with an unavoidable “low-level” pulsations that was always present in the liquid flow-rate. 

This “low-level” liquid pulsations were at approximately 3 Hz and came from a peristaltic 

liquid pump located upstream of the liquid inlet. This earlier study involved a 1 m length 

test-section as opposed to 50 cm long test-section in the current study. However the test-

section gap height of 2 mm and width of 15 mm in this current study was the same as in 

the earlier study [9]. The earlier reported results [9], for a representative flow condition 

and heating approach, indicated the following: (i) a dominant presence of the 3 Hz 

frequency (present at “low amplitude” in the liquid flow) and its harmonics (even when no 

vapor pulsations were imposed) in the dynamic heat-flux and local pressure measurements 

(as indicated by the Fast Fourier Transform, FFT, of the measurements at the 40 cm 

location), (ii) a significant enhancement, by 200-300%, of the local heat-flux (at the 40 cm 

measurement location) was observed when vapor pulsations of sufficient amplitude were 

imposed at the same 3 Hz frequency that intrinsically existed with the liquid flow at the 

inlet , and (iii) there were no good estimates available for average heat-flux values (though 

it was estimated to be in the low 20-40% range), it could not be directly estimated because 

the earlier flow-loop needed a flow-meter for measuring the liquid mass flow-rate exiting 

the test-section) with regard to the overall heat-flow rate enhancements that were being 

achieved over the length of the test-section.  
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The above described enhanced annular flows [9] were experiencing temperature controlled 

heating that utilized reversed (from cooler to heater) thermoelectric heaters described in 

section 3 – thereby maintaining nearly the same “method of heating” (i.e., θw(x)) for the 

enhanced steady-in-the-mean realization as in the regular steady realization. Furthermore, 

in the context of the definitions given in Eqs. (4.1) – (4.3), it is observed that while the 

local heat-flux at the 40 cm measurement location increased by 200-300% for some runs, 

the characteristic temperature-difference ∆T increased only a little (see Fig. 16 in [9]). This 

is because of thermoelectric heaters’ control efforts to hold ∆T approximately constant. 

This meant that the local HTC hx in Eq. (4.3) showed significant increases – indicating 

flow-physics improvements due to enhanced superposed pulsations at 3 Hz that also 

resulted in visually observed formation of large amplitude interfacial standing waves.   

At the time of interpreting the above results [9], there was a greater focus on paralleling 

the interpretation of the results with those of pulsatile annular flow-condensation (which 

showed even greater 600 – 800 % enhancements over steady realizations, though at 

comparable mass-flux and local quality, the magnitude of ∆T ≡ |T�w − Tsat(p0)| was 

higher). But, as discussed earlier in this section’s steady annular flow considerations and 

in [13], we have since established that micro-nucleation plays a dominant/significant role 

(as shown later on here, often 80 – 90% of the heat is being carried by this mechanism) for 

steady annular flow-boiling – whereas no similar mechanism exist for thin film annular 

flow-condensation. Therefore, while the micro-convection related hypotheses for pulsatile 

annular thin film flow-condensation – as discussed in [9] and improved in [13] – has merit, 

it is a relatively small factor for enhanced annular “low” heat-flux flow-boiling being 

studied here. 

In the above context, some of the main questions for the new pulsatile annular flow-boiling 

experiments are listed next. (i) What happens if the underlying liquid pulsation of 3 Hz 

coming from the liquid pump is muffled and results are obtained – for steady cases as well 

as pulsatile cases? For pulsatile cases (see Fig. 4.4), liquid alone pulsations, vapor alone 

pulsations, and impositions of pulsations in both the liquid and the vapor flows (using the 

liquid and vapor pulsators shown in the flow-loop Fig. 3.2) should be experimented with 
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at different mutually resonant frequencies, but at separately prescribed levels of 

amplitudes, that satisfy fPL ≅ fPV. Here fPL and fPV respectively represent the dominant 

frequencies (introduced by their pulsators) in the incoming liquid and vapor flows (see Fig. 

4.4 below). (ii) What is the relationship of observed local heat-flux enhancements to: 

micro-scale nucleation, ability of the interfacial standing waves’ “troughs” to be close 

enough to the boiling-surface ([13]) so it can favorably alter the bubble-nucleation 

associated heat rates, and micro-convection associated enhancements (as in flow 

condensation) that came from large amplitude wavy liquid film flows? (iii) What is the 

relationship of local heat-flux enhancements to enhancements in the length-averaged heat-

flux values? 

 
Figure 4.4: A schematic diagram of the test-section showing a flow realization with large 

amplitude standing waves on the liquid-vapor interface. The test-section is closed in the 

vapor flow direction for acoustics enabled formation of interfacial standing waves. The 

zones x1, x2 and x3 are zones of decreasing film thicknesses, respectively. Bubbles have 

been represented as “black dots” in zone x1 but are present in the liquid film throughout 

the test-section, except in the region of suppressed nucleation (zone x3). The liquid film 

thickness, shown as t(x), varies along the length of the channel, and is measured from the 

heating surface to the trough of the interfacial wave. 

4.2.1 Pulsatile Steady-in-the-Mean Annular Flow Results 

To answer the above questions, representative earlier experimental results [9] are shown in 

Fig. 4.5a-c below. The result in Fig. 4.5d shows a steady and pulsatile case’s dynamic heat-

flux results, in real time, at the 40 cm location, as obtained from the new 50 cm long test-

section facility described in section 3. During the steady and associated pulsatile (for which 
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fPL ≅ fPV = 5 Hz) experiments, the pressure-transducer for measuring ∆p|10−40 was not 

functional but the remaining variables’ time-averaged values were obtained and they are 

as shown in Table 4.5 – with the corresponding approximately fixed “method of heating” 

θw(x) shown as in Fig. 4.6. For the real time heat-flux data in Fig. 4.5d, the corresponding 

real time-data for the absolute pressure at x = 10 cm location (plotted as 

“p10(t) ≡ px=10 cm(t)-p�x=10 cm”), ṀL-in(t), and ṀV-in(t)  are shown in Fig. 4.7a-c 

respectively. As far as Coriolis meter readings in Figs. 4.5b-c are concerned, only their 

time-averaged values can be trusted (as these meters lack dynamic data measurements 

capabilities for frequencies above 2 Hz). The magnitudes of the Fast Fourier Transforms 

(FFTs) of the time varying p10(t) and heat-flux qw-40 cm
'' (t) data  – for the steady case – are 

respectively shown in Figs. 4.8 and 4.9. The magnitude of the FFT of heat-flux qw-40 cm
'' (t) 

data  – for the pulsatile case (with fPL ≅ fPV = 5 Hz) – is shown in Fig. 4.10. 

 



44 

Figure 4.5: (a) The experimentally obtained time-averaged heat-flux values for flow-

boiling of FC-72 exhibit primary dependence on amplitude of inlet pressure fluctuations. 

The black curve for fP ≈ 3 Hz represents experimental values (for ΔT ≈ 10 oC) and the 

indicated dashed-curve is an expected result from a new enhancement approach. (b) Time-

averaged heat-flux values for flow-condensation of FC-72 are experimentally obtained [9] 

(with ΔT ≈ 20 oC at mass-fluxes and fluid as in (a)) and their primary dependence on 

amplitude of local (at the Heat-flux Sensor location of x = 40 cm) pressure fluctuations are 

shown above for two frequencies – with the 28.4 Hz frequency likely being closer to the 

acoustics-enabled dominant frequency for interfacial standing waves. (c) Time-varying 

heat-flux measurements with and without imposed inlet vapor pulsations, measured by a 

flush-type dynamic heat-flux sensor at the 40 cm heat-flux meter location. The 

experimental arrangement is similar to the innovative arrangement in Fig. 2a (but with dry-

out and therefore without the recirculating liquid) [9]. (d) Dynamic and computed time-

averaged heat-flux values are shown for steady non-pulsatile and pulsatile cases in Table 

4.5. These are obtained for the new flow-boiling experiments with fPL ≅ fPV = 5 Hz and x 

= 40 cm location corresponds to the thicker x1 locations in Fig. 4.4 [Reproduction of Fig. 

4.5b – c was granted from Elsevier publishing, see Appendix C]. 

 

Table 4.5: Experimental runs associated with Fig. 4.5d are characterized by this Table 

(these are results when the original dynamic heat-flux sensor was available, not broken). 

 

 

Case ΔT G

Max relative error ±2.45% ±0.1% ±0.35% ±3% ±3.45% ±5.05% ±1.64% ±6.69% ±0.45% ±6.45% ±0.8% ±3.9% ±3% ±4.2%
Gaussian error - - - - ±3.02% - - ±5.31% ±0.36% ±6.02% ±0.57% ±3.48% - ±3.17%

Unit [kPa] [g/s] [g/s] [g/s] [g/s] [°C] [°C] [°C] [g/s] - -
Steady 121.03 1.734 1.225 0.498 2.461 62.27 65.73 3.46 2.959 98.630 0.414 0.832 2.159 1.365

Pulsatile 122.74 1.731 1.230 0.318 2.643 62.69 66.11 3.42 2.961 98.694 0.415 0.893 2.231 1.559

po ṀtotalṀL−in Tsat(po) T�w XinṀV−in ṀL−out ṀV−out Xout qx|x=40 cm
"

[kg/s/m2] [W/cm2] [W/cm2]

qw
"
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Figure 4.6: Heating method (Non-dimensionalized wall temperature profile) of cases in 

Table 4.5. There is a slight sub-cooling over x < xz = 10.65 mm. 

 

 

(a) 
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(b) 

 

(c) 

Figure 4.7: For steady and steady-in-the-mean (pulsatile) cases reported in Table 4.5, (a) 

Sample real time dynamic data record for p10(t), (b) Low DAQ ṀL-in(t) data of inlet liquid 

mass flow rate, and (c) Low DAQ ṀV-in(t) data of inlet vapor mass flow rate. 
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Figure 4.8: The above shows the FFT of p10(t) associated with the steady case in Table 

4.5. This and other FFTs confirm a dominant noise frequency of 45 Hz. 

 

 
Figure 4.9: The above shows the FFT of qw-40 cm

'' (t) associated with the steady case in Table 

4.5. This and other FFTs confirm a dominant noise frequency of 45 Hz. 
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Figure 4.10: The figure above shows the FFT of qw-40 cm

" (t) associated with the pulsatile 

case in Table 4.5. The externally imposed pulsations frequency fPL≅fPV≅5 Hz clearly 

dominate the bubble nucleation frequency over the heat-flux sensor at 40 cm location. 

However, 5 Hz is not in sync with the 45 Hz in Fig. 4.8, hence the dominant subharmonics 

at 10, 15, 20, etc. Hz. 

It is clear from the FFT of the steady case in Figs. 4.8-4.9 that the dominant frequencies 

(though negligible) in p10(t) and qw-40 cm
'' (t) correlate with one another and are f ≅ 45 and 

46 Hz respectively. In principle, such dominant frequencies may be associated either with 

the “naturally” dominant mico-scale nucleate-boiling’s bubble departure frequencies (and 

associated bubble-departure diameters) in a negligible-noise steady realization, denoted 

fnat-bf, or may be close to some naturally present (of unknown or known origin) dominant 

noise frequency fnat-dom-noise present in the liquid flow rate that forces the bubble departure 

frequencies to be synchronized with it. The second conjectured possibility, related to 

sensitivity of dominant bubble-departure frequency to be such that it will get synchronized 

with inadvertent pulsation frequency (or frequencies) present in the liquid flow rate, is also 

supported by the earlier FFT of steady time varying qw-40 cm
'' (t) data in Fig. 4.5c, which 

showed (see [9]) significant influence/presence of dominant bubble-departure frequencies 
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that came from the small amplitude peristaltic pump frequency fnat-dom-noise of 3 Hz, which 

was also present in the steady liquid flow realization. This conclusion is important because 

dominance of micro-scale nucleate boiling has been already established in Table 4.2 and 

elsewhere [34]. However the reported dynamic flow measurements are able to reveal how 

sensitive the statistical variations associated with bubble departure diameters and 

frequencies are to random flow conditions. Therefore, in Figs. 4.8 – 4.9, there exists a 

natural dominant noise frequency in the steady realization p10(t) data, denoted fnat-dom-noise 

≈ 45 Hz (as well as in other upstream pressure transducer data whose FFT is not reported 

here),  but for the pulsatile imposition of fPL ≅ fPV = 5 Hz, the externally imposed frequency 

of greater energy dominates bubble-departure frequencies in  Fig. 4.10. 

The other important result in Table 4.5 is that, relative to the steady case, the local and 

average heat-fluxes (qw-40 cm
''  and qw

''��� respectively) for the pulsatile steady-in-the-mean 

cases, respectively showed enhancement levels of only 10.7% and 14.2%. These cases 

involved liquid and vapor pulsators (mid-level) operating at fPL ≅ fPV = 5 Hz. Even with 

increasing vapor pulsation amplitudes for this case (not reported/discussed here), local 

heat-flux enhancement levels were nowhere near 200-400% observed for the cases in Fig. 

4.5a and Fig. 4.5c. As verified later on by additional data, it is conjectured that this anomaly 

in local heat-flux enhancement levels is largely due to whether local film thickness at the 

heat-flux measurements locations are thick or thin enough  - relative to the amplitude of 

interfacial standing-waves (see Fig. 4.4) – to allow the “wave troughs” to come close 

enough (within tens of micrometers) to the wetting boiling-surface so the waves can also, 

besides micro-convection related enhancements of 15-30%, beneficially impact the bubble 

ebullition mechanisms associated with the micro-scale sized nucleating bubbles. 

After the results in Fig. 4.5d and Figs. 4.7-4.10 and Table 4.5 were obtained (around 

October 2016), the original (and expensive) dynamic heat-flux sensor failed (broke down). 

Subsequent results were obtained, after replacing the dynamic heat-flux sensor, by a low 

DAQ heat-flux sensor only good for measuring steady values and, also, after making the 
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differential pressure-transducer (measuring ∆p|10−40) measurements functional and 

reliable.  

More systematic experimental study of the steady-in-the-mean enhanced annular flow-

boiling 

This set of experimental runs investigate enhancement levels and energy efficiencies that 

are associated with different approaches for introducing pulsations (i.e. different 

amplitudes and frequencies for pulsations introduced at the inlet: in the liquid alone, in the 

vapor alone, or in both the liquid and the vapor flows) towards achieving different steady-

in-the-mean enhanced annular flows relative to a “fixed” representative steady annular 

flow realization. First a representative set of inlet liquid and vapor mass flow rates ṀL-in ≅

1.09 kg/s and ṀV-in ≅ 0.84 kg/s are approximately held fixed for steady and pulsatile flows 

in Table 4.6. This is achieved by the control strategies described in section 3. The inlet 

pressure is also approximately held fixed. Representative values of these variables are 

indicated in Table 4.6. Control of reverse thermoelectric heaters ensures, as before, that the 

“method of heating” θw(x) is being held approximately fixed, as shown in Fig. 4. 11. 
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Figure 4.11: Non dimensional wall temperature profile θw(x), 0 < x#≤ x ≤ xe < L, for the 

two runs in Table 4.6. 

The amplitude of liquid pulsations are controlled by the power settings of the liquid 

pulsator in Fig. 3.2. The amplitude of vapor pulsations is controlled by the vapor pulsator’s 

power settings along with the degree of opening of valve PV shown in Fig. 3.2. 

Experimental runs in Table 4.6 employed the liquid pulsator in only two modes – it was 

either “off” (denoted as LP-0 in the “Settings” column of Table 4.6) or “on” at a fixed 

power setting (denoted as LP-1 in the “Settings” column of Table 4.6). With regard to 

vapor pulsations, in Table 4.6, the vapor pulsator was either “off” (denoted as VP-0) or 

was “on” with increasing opening levels – up to “fully open” for the ball valve VP in Fig. 

3.2 (denoted as VP-1, VP-2, … up to VP-max). As indicated in Table 4.6, for the steady 

run shown as case 1, three different sets of pulsatile data were obtained that corresponded 

to fPL ≅ 29 Hz, fPL ≅ 23 Hz, and fPL ≅ 13 Hz. A quantitative measure of the pulsations’ 

amplitudes were obtained by looking at several time records of the absolute pressure p40(t) 

≡   p10(t) –{p10(t) - p40(t)}, obtaining their FFT and using the mean peak amplitude at f = 
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fPL, denoted as ap-40(fPL), as representative of the amplitude of the pulsations relevant to the 

characterization of heat-flux measurement qw-40 cm
'' .  

Table 4.6 also shows the local (at x = 40 cm) and length-averaged steady-in-the-mean heat-

flux values of qw-40 cm
''  and  qw

''���. In addition, the local and length-averaged HTC values of 

hx and h� are also reported for steady and enhanced annular realizations. 

4.2.2 Discussions for the Pulsatile Steady-in-the-Mean Annular Flow 
Results   

The FFT of p10(t) and p40(t) data associated with steady (negligible imposed pulsations) 

case in row-1 of Table 4.6 shows prominent presence of energy at 30, 45, and 60 Hz. Since 

the dynamic heat-flux sensor was not available, as for the earlier considerations of cases 

involving fnat-dom-noise ≈ 45 Hz in Figs. 4.8 - 4.10, it is conjectured that fPL ≈ 30 Hz is 

associated with fnat-dom-noise ≈ 30 Hz for case 1 in Table 4.6. Additional dynamic pressure 

measurements’ FFT results also support this conclusion. 

The first thing to observe in Table 4.6 is that “liquid only pulsation” cases, i.e. cases (LP-

1, VP-0) in the “Settings” column of Table 4.6, required minimum energy input from the 

liquid pulsator (with respect to larger energy inputs coming from vapor pulsator in Fig. 

3.2) and showed enhancement levels – relative to the steady case 1 – for local heat-flux 

qw-40 cm
''  that are, respectively, 123 % for fPL ≈ 29 Hz, 92.5 % for fPL ≈ 21 Hz, and 35 % for 

fPL ≈ 13 Hz. As was the case for high local heat-flux enhancement levels observed in Fig. 

4.5c, unlike the one in Fig. 4.5d, such high enhancements are likely due to the fact that the 

local film thickness at the heat-flux measurements locations are thin enough (see “x2” 

locations in Fig. 4.4)  - relative to the amplitude of interfacial standing-waves – to allow 

the “wave troughs” to come close enough to the wetting boiling-surface so the waves can 

beneficially impact the bubble ebullition mechanisms associated with the micro-scale sized 

nucleating bubbles. 
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However, for the same (LP-1, VP-0) cases in the “Settings” column of Table 4.6,  with the 

“method of heating” θw(x) as shown in Fig. 4.11, the average heat-flux qw
''��� values showed, 

respectively, enhancement levels of only 10.6 % for fPL ≈ 29 Hz, 19 % for fPL ≈ 21 Hz, and 

14.6 % for fPL ≈ 13 Hz. These lower enhancements of average heat-flux, as discussed for 

the case in Fig. 4.5d, are likely due to the fact that most of the enhanced annular flow-

boiling regions correspond to higher film thickness “x1” locations indicated in Fig. 4.4. 

Furthermore, when the “wave troughs” are far enough from the boiling-surface, it is likely 

that not only they cannot beneficially impact the micro-scale bubbles’ ebullition 

mechanisms, much of the pulsatile energy at the inlet of the liquid is transferred towards 

the interface and goes into generating large amplitude interfacial waves and enhanced 

interfacial shear. This is what happens in thicker liquid pulsatile annular flow-condensation 

as well, where enhancement levels of qw
''��� are 10-30%, consistent with similar enhanced 

interfacial shear cases of thicker wavy film flow-boiling. 

Another key observation in Table 4.6 is that when liquid flow rate pulsations are fixed at 

LP-1 level, and vapor pulsations of maximum amplitude are superimposed, i.e. (LP-1, VP-

max) cases in Table 4.6, and a lot of extra pulsatile energy is used to supplement liquid 

pulsations (through interfacial waves associated enhanced interfacial shear energies), the 

gains in average heat-flux qw
''��� are minimal with increasing pulsation amplitudes ap40(fPL). 

Some gains are limited to pulsation frequencies being off-resonant with respect to the 

dominant noise frequency (e.g., imposed fPL≅ fPV ≅ 13 Hz being away from fnat-dom-noise ≈ 

30 Hz). For these cases, Table 4.6 reports average heat-flux qw
''��� enhancement levels of: -

1.6 % for fPL ≈ 29 Hz, 18.3 % for fPL ≈ 21 Hz, and 19 % for fPL ≈ 13 Hz. These indicate 

that the extra micro-convection assisting vapor pulsations do not significantly help in 

comparison to the liquid only pulsation cases of (LP-1, VP-0) unless imposed pulsation 

frequencies are significantly off from fnat-dom-noise and one is interested in local heat-flux 

enhancements at thin x2 locations in Fig. 4.4. For such cases, Table 4.6 reports local heat-

flux qw-40 cm
''  enhancement levels of 81.4 % for fPL ≈ 29 Hz, 110 % for fPL ≈ 21 Hz, and 85 

% for fPL ≈ 13 Hz. These trends cannot be consistently predicted in terms of thickness 



55 

levels under the troughs – which are not known. But the fact that the enhancement levels 

are large are suggestive of the fact that the heat-flux sensor locations for these 

measurements correspond to thin “x2” locations indicated in Fig. 4.4. 

Table 4.6 results also suggest that monotonic increase in qw-40 cm
''  values with pulsation 

amplitude ap40(fPL), as seen in Fig. 4.5a with respect to pulsation amplitude ap10(fPL), occur 

only for “significantly” off-resonant case of fPL ≈ 13 Hz relative to fnat-dom-noise ≈ 30 Hz. For 

this, consider cases 16-19 in Table 4.6. For these cases increase in qw-40 cm
''  is associated 

with increase in pulsation amplitude ap40(fPL). 

All the above results suggest that local heat-flux qw-40 cm
''  enhancements come from thin 

enough “x2” locations in Fig. 4.4 – and whether one is close to or off the fnat-dom-noise ≈ 30 

Hz frequency, the most energy efficient strategy for local heat-flux enhancements is liquid 

only pulsations corresponding to (LP-1, VP-0) cases in the “Settings” column of Table 4.6 

– this is perhaps true for an arrangement where liquid pulsators energy could be gradually 

increased from LP-1 levels. Such an arrangement, however, were not available for the 

reported experiments due to certain hardware limitations (associated with cavitation and 

structural vibrations of the flow-loop) associated with increasing liquid pulsator amplitudes 

in Fig. 3.2.  

The fact that “x1” locations in Fig. 4.4 do not allow sufficient local heat-flux enhancements 

due to pulsations not reaching the boiling-surface (where nucleation occurs) also has to do 

with the introduced energy of pulsations more easily escaping through interfacial waves on 

to the vapor flow. 

The above understanding and conclusions have helped Dr. Narain and his team to come up 

with superior ways of controlling micro-scale nucleation that are likely to yield large 

enhancements for both local qw
'' (x) and average qw

''��� levels. 
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5 Experiments Enabled Modeling and Simulations that 
Yield Heat-Transfer Correlations and Assess Role of 
Micro-nucleation for Steady Annular Flow-boiling 

This main contributions of this thesis are in section 4. However, this section presents results 

from Dr. Narain’s modeling/simulations group [40] which is enabled by results and 

discussion in section 4. The steady annular experimental data reported in section 4 has 

three uses that are listed below. 

(i) It enables scientific estimates of the role and significance of micro-nucleation 

in the experimentally measured values of heat transfer rates associated with 

steady annular flow-boiling. 

(ii) It enables, in conjunction with other existing experimental data, a more reliable 

development of local HTC correlation that is specific to flow-regime (annular 

in this case) and parameter ranges. The approach can be easily generalized to 

cover other parameter ranges (e.g. those that are being obtained from our 

ongoing experiments – with water as a working fluid and moderate to high heat-

flux heating). 

(iii) The steady annular HTC correlations in (ii) above are also essential to the 

development of correlations for the enhanced steady-in-the-mean annular flow-

boiling (as discussed for pulsatile cases in section 4.2). The local HTC, as 

experimentally measured, for the enhanced annular flow-boiling when written 

as hx|Expt−enhanced is best correlated as hx|Expt−enhanced ≡ hx|Expt−st +

∆hx|enhanced where hx|Expt−st is obtained from steady annular empirical HTC 

correlations in (ii) above and ∆hx|enhanced is related to the enhancements 

observed for the steady-in-the-mean cases (as in section 4.2). 

Of the three uses above, the first two are briefly described here for completeness – as it is 

part of an extended work [40] that is enabled by this thesis. Correlation development for 
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hx|Expt−enhanced is not undertaken by the modeling/simulations group until a new set of 

data is obtained by a superior enhancement approach. 

5.1 Role of Micro-nucleation 

Experimental estimates of local (at x = 40 cm) HTC hx|x=40 cm are available in Tables 4.2 

and 4.4. These tables are respectively associated with runs in Tables 4.1 and 4.3 with 

“method of heating” specified in Figs. 4.2 and 4.3. The question is how does one estimate 

the role and significance of micro-nucleation in the heat-transfer process – or, in other 

words, what percentage of the experimentally measured values of hx|x=40 cm are affected 

by micro-nucleation phenomena? 

In this section, we limit our considerations to the local HTC hx|x=40 cm values available in 

Table 4.2 – and associated with run cases 1-8. This is because these runs correspond to 

steady annular realizations where the liquid flow is laminar and the vapor flow is 

sufficiently laminar near the interface though core vapor flows could be turbulent provided 

one is restricted to the parameter-space specified by Eq. (4.7) (which means, 

approximately, ReV-in ≤ 20780 and ReV-out ≤ 31000). 

The local (at x = 40 cm) and average heat-flux measurements, qw-40 cm
''  and qw

''���, respectively, 

in Table 4.1 tell a consistent story. For these temperature-controlled boiling experiments, 

average heat-flux (over the 50 cm length of the channel) is much higher than the measured 

local heat-flux. This is because micro-nucleation is more significant at upstream locations 

and it gradually diminishes over the length of the channel. In addition, nucleate boiling 

mechanisms transfer (significantly) more heat than thin-film convection (without 

nucleation) mechanisms. This fact has also been experimentally confirmed, with 

visualization, in an earlier heat-flux controlled flow-boiling experiments [34].  

What is unique about this experimental data set in Tables 4.1-4.2 is that – together with 

results from a rigorous modeling and CFD simulation (to be described) – it allows a feasible 

“decomposition method” for experimentally measured local heat-flux (at x = 40 cm) 
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values, qw-40 cm
'' ≡ hx−40|Expt−st ∙ (Tw(x) − Tsat(pin)), into convective and micro-scale 

nucleate boiling parts. This is done by defining the convective contribution to local heat-

flux to be the one associated with a hypothetical realization under suppressed nucleation 

assumptions. Figures 5.1 and 5.2 below show, respectively, an actual experimental and a 

hypothetical suppressed nucleation realization. 

Suppressed
nucleation zoneNucleating bubbles

x
x = 0

in-VM

in-LM

(x)q"
Expt|w

(x)ΔExpt

 
Figure 5.1: An actual experimental realization with known/measured values of ṀL−in, 

ṀV−in, wall temperature variation Tw(x), and some values of qw
" (x)|Expt. 

x
x = 0

in-VM

in-LM

(x)q"
|CFDw

(x)ΔCFD

Assumed suppression of nucleation
throughout the test-section

 
Figure 5.2: A hypothetical flow realization obtained by a rigorous CFD which employs 

experimental values (as in Fig. 5.1) of ṀL−in, ṀV−in, etc. as inlet condition and 

experimental values of wall temperature variation Tw(x) as thermal boundary condition. 

CFD predicts wall heat-flux qw|CFD
" (x), etc. which are typically different (because micro-

nucleation phenomena is not modeled) than corresponding values in Fig. 5.1. 
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The CFD-based estimates of convective heat-flux qw|CFD
" (x)≡ hx|cb-CFD∙∆T(x) and 

associated local values of convective HTC hx|cb-CFD are reliable as the only missing physics 

in the simulations (see [41] and Fig. 5.3 below) are the phenomena of nucleation (rather 

micro-scale invisible nucleation in experiments involving liquid film thicknesses in the 300 

– 50 µm range). 

 

Figure 5.3: A representative and rigorous CFD simulation (that models all flow-physics 

quite accurately, except for nucleating bubbles) result [41] showing the streamlines for 

steady annular suppressed nucleation flow-boiling. [Reproduction of the figure was 

granted from Springer International Publishing, see Appendix C]. 

It is proposed [40] that the easiest feasible decomposition of the measured values of 

qw
" (x)|Expt is to acknowledge that the difference between the much larger qw

" (x)|Expt in 

Fig. 5.1 and the associated qw|CFD
" (x) in Fig. 5.2 is due to micro-nucleation. That is, 

 

 
qw|µnb

" (x) ≡ qw|Expt
" (x) − qw|CFD

" (x) 

hx|µnb ≡ hx|Expt − hx|cb−CFD 
(5.1) 
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Use of Eq. (5.1) in Table 4.2 yields the calculated results for % μnb-CFD ≡ 

hx|μnb hx|Expt*100⁄  at the x = 40 cm location. Table 4.2 shows that micro-nucleation heat-

transfer is dominant, some 80 – 90% of the total heat-flux at a representative location is 

due to this phenomena. The above decomposition defines micro-nucleation HTC 

differently than the ones which consider convection effects on the nucleating bubbles as 

part of the convective heat-transfer component. However, the proposed decomposition is 

both more feasible and more reliable (recall that experiments agree with CFD over 

suppressed nucleation zones, if they actually exist in a particular realization [34]). Also, 

the same CFD approach for annular condensation [11, 12] agree with known experiments 

(see [42]). 

Though for some cases, CFD is directly used to obtain hx|µnb through Eq. (5.1), the 

approach mostly followed here is to obtain hx|cb−CFD in Eq. (5.1) from the CFD-based Nux 

correlation given in [41]. This is because the parameter space in Eq. (4.7) satisfies the 

criteria for use of Nux correlation in [41]. This correlation is used here first to calculate the 

quality X(x) variations – as per procedure given in [13] – and then to compute hx|cb−CFD 

values. A sample X(x) calculation for case 3 in Tables 4.1-4.2 with "method of heating" 

θw(x) as in Fig. 4.2 is shown in Fig. 5.4. The caption of Fig. 5.4 gives the X(x) value at x 

= 40 cm which is used in Nux correlation in [41] to obtain  hx|cb−CFD and how, together 

with Table 4.2 and Eq. (5.1), one obtains “% μnb-CFD.” 
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(a) 

 

(b) 

Figure 5.4: (a) A representative X(x) calculation for case 3 in Tables 4.1-4.2 is shown. 

Here X(x = 40 cm) = 0.783 in Nux correlation in [41] yields  hx|cb−CFD= 206.1 W/(m2-K). 

(b) The figure shows a graphical comparison between hx|Expt = 1072.6 W/( m2-K) in Table 

4.2, and hx|μnb = 866.5 W/( m2-K) (calculated from Eq. (5.1)). The corresponding 

% μnb-CFD = 80.8%. 
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The above described decomposition should not be confused with popularly available 

decompositions, as in [38], where ad hoc decompositions use the “nucleate boiling” term 

of the HTC correlation to relate to (or crudely model) upstream larger diameter “nucleate 

boiling” regimes in traditional flow-boiling (i.e., all liquid flow at the inlet), while relating 

the remaining term to “convective” dominant flow-regimes (which include annular flows 

of interest here) as discussed in [13]. This is the reason why Kim and Mudawar [38] 

correlations yield, in Table 4.2, only 8-40% of the heat from their so-called “nucleate 

boiling” terms. The unfilled rows (with "TBC" entries) in Tables 4.2 and 4.4 make the case 

for further maturation of the proposed decomposition procedure by developing, as 

proposed, CFD-based flow-boiling simulations (under the hypothetical absence of nucleate 

boiling) that can be trusted to give good estimates for significantly turbulent vapor and 

laminar liquid annular flow-boiling regimes. 

5.2 Parameter-range Specific HTC Correlation for Steady 
Annular Flow-boiling 

As discussed in section 4.1.2.2, the results in Tables 4.1 – 4.4 cover the parameter space in 

Eq. (4.9) and “methods of heating” in Figs. 4.2-4.3. The results specifically yield values of 

hx−40cm ≡ qw-40cm
'' ∆T(x)⁄  and h�≡ qw

''��� ∆T⁄ . These correspond to the known experimental 

values of Nux|x =40 cm-Expt and Nu����L ≡ ( Dh L)∙⁄ ∫ Nux∙θw(x�)∙dx�x�=L Dh⁄
x�=0 . Thus any reasonably 

correct new Nux correlation proposal, represented as Nux|prop, satisfying the fundamental 

physics and non-dimensionalization based structure given in [13] should also satisfy: 

 
Nux|prop x = 40 cm ≅ Nux|x =40 cm|Expt, and 

Nu����L|prop ≅ Nu����L|Expt 
(5.2) 

It should be recalled from [13] that the fundamental physics and non-dimensionalization 

based structure for Nux|prop is given as: 

 Nux = Nux  �X, Xin, Retotal, Ja, PrL,
ρV

ρL
,
µV

µL
, We, {S*}non-dim� (5.3) 
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where, the parameters in the argument list of Eq. (5.3) has been defined earlier and in [13]. 

It is worthwhile to recall that {S*}non-dim represents relevant properties and other variables 

that characterize vapor-liquid-solid interactions at micro/nano-layers found near contact-

lines over the heated solid-surfaces and particularly those which, in turn, influence 

macroscopic behavior of nucleating bubbles (see, [19, 20, 43] etc.). The list of such 

variables may include non-dimensional values of: contact-angles, surface-texture profile 

measures, liquid-vapor-solid interactions that relate to contact-angles and nucleation site 

density, surface chemistry, time-averaged local values of wall heat-flux (or wall 

temperature) that affect the growth, departure, and emission frequency of a representative 

bubble. The transient bubble dynamics (not necessarily the average nucleate boiling heat-

transfer coefficient Nux) is also affected by parameters that affect the thermal transients of 

the externally or internally heated solid, which forms the boiling-surface (these include the 

solid’s density, specific heat, thermal conductivity, and characteristic thickness in the heat 

flow direction). For now, all correlations are sought for a given fixed set of solid-liquid-

vapor interactions (including boiling-surface texture) – and hence {S*}non-dim dependence 

in Eq. (5.3) will not be explicitly recognized. 

The new proposed correlation is of the form as shown in Eqs. (5.4) – (5.7) 

 hx|prop ≡ hx = hx|nb + hx|cb (5.4) 

where, 

 
hx|nb ≡ ��α �Bl

PH

PF
�

γ

PR
0.38� �0.023(ReL − Re∗)βPrL

0.4 kL

Dh
� , for ReL > Re∗

0, for ReL ≤ Re∗
 

  (5.5) 

and 

 
hx|cb ≡ �5.2 �Bl

PH

PF
�

0.1∙γ+0.01

WeL0
−0.54 + 3.5 �

1
X�tt

�
0.94

�
ρV

ρL
�

0.25
� �0.023ReL

βPrL
0.4 kL

Dh
� (5.6) 

 



64 

The parameters in the above definitions of hx are: 

 
Bl ≡

q�w
"

G. hfg
, PR =

po

pcr
, ReL ≡

G(1 − X)Dh

µL
, ReL0 ≡

GDh

µl
, PrL ≡

µLCp,L

kL
, 

(5.7) 
 

WeL0 ≡
G2Dh

ρLσ
, X�tt = �

µL

µV
�

0.1
�

1 − X
X

�
0.9

�
ρV

ρL
�

0.5
 

where, PF is the wetted perimeter (in case a tube/channel is not wetted on all its periphery) 

and PH is the heated perimeter (and includes cases for which a tube/channel is not heated 

on all its periphery). This is also the perimeter where qw
" (x) is replaced by  qw

''����. 

It can be seen that the proposed correlation has a structure similar to that of HTC correlation 

proposed by Kim and Mudawar [38]. This is partly because, besides satisfying the first 

relationship in Eq. (5.2), hx|prop (or Nux|prop)  should also agree with experimental values 

obtained for several values of x = x* which are different than x = 40 cm, as long as 0 < x#≤ 

x* ≤ xe < L. Since, such extensive experimental data is difficult from the current 

experimental setup, it is suggested that a correlation structure similar to that of the 

correlation proposed by Kim and Mudawar in [38] be used, since this correlation covers a 

very large data set which include the parameter space in Eq. (4.9) – i.e. horizontal 

millimeter-scale ducts with FC-72 as working fluids at comparable mass and heat-fluxes. 

Furthermore, Kim and Mudawar correlation Nux|KM in [38], despite employing different 

non-dimensional numbers as compared to the ones in Eq. (5.3), also approximately satisfies 

the structure in Eq. (5.3) (see Appendix of [40]). Since, the purpose of Kim and Mudawar 

correlations in [38] is different – which is to provide an “order of magnitude” estimate for 

flow-boiling covering a much larger set of flow-regimes and fluids (than just the parameter 

set in Eq. (4.9)) – it is required here that Nux|prop  approximately satisfy: 

 0.1 ∗ Nux|KM ≤ Nux|prop ≤  3.0 ∗ Nux|KM    (5.8) 

However, the new proposed correlation, while having a structure similar to the one 

proposed by Kim and Mudawar [38], also has some major differences. The differences are 

as follows: 
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(i) The overall HTC has a “superposition” form instead of the power-law form in 

the original correlation by Kim and Mudawar – i.e., the nucleate and convective 

boiling terms are directly added instead of being combined through a power-

law form (Eq. (5.4)). That is n = 1 instead of the n =2 of [38] in the more general 

power law form discussed in [13]. 

(ii) The explicit dependence of nucleate boiling component of HTC hx|nb on 

quality, as given in the correlation by Kim and Mudawar [38], has been 

discarded since there is an implicit dependence through liquid Reynolds number 

ReL (defined in Eq. (5.7)). 

(iii) A new term Re∗ has been introduced in the correlation to model the known 

possibility of suppression of nucleation if the liquid film thickness or liquid 

Reynolds number goes below this threshold value of Re∗. As given in Eq. (5.5), 

the nucleate boiling component of HTC hx|nb becomes zero below a certain 

Re∗and above a particular quality for a given operating condition. Note that Re∗ 

is expected to be a function of liquid Reynolds number at the inlet ReL,in. 

Besides a change in Eq. (5.4), the original parameters in [38] for the above definitions of 

hx|cb and hx|nb are: α = 2345, β = 0.8, γ = 0.7 and Re∗ = 0. When an optimization 

procedure is used to satisfy Eqs. (5.2) and (5.4), say for case 2 in Table 4.2, one finds that 

α = 2627, β = 1, γ = 0.575 and Re∗ = 22.85 = 0.322∗ ReL,in. The resulting “fit” satisfies 

both the first and second equalities in Eq. (5.2) to within 1%. 

Fig. 5.5a, shows a comparison of quality variation (for case 2 in Table 4.2) along the length 

of the channel from the experiment, and as predicted by the new proposed correlation and 

the correlation proposed by Kim and Mudawar [38]. Fig. 5.5b shows the variation of 

Nusselt number values along the length of the channel, as predicted by the new proposed 

correlation and the correlation proposed by Kim and Mudawar [38], based on the quality 

variations presented in Fig. 5.5a. 
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(a) 

 
(b) 
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Figure 5.5: (a) Variation of quality along the length of the channel from the experiment 

(Expt) and as predicted by the new proposed correlation (Nux|prop) and the original 

correlation by Kim and Mudawar (Nux|KM). (b) Variation of Nusselt number along the 

length of the channel, as predicted by the new proposed correlation (Nux|prop) and the 

original correlation proposed by Kim and Mudawar (Nux|KM). 

The above procedure can be further optimized covering all the cases in Tables 4.1 - 4.4 for 

the parameter space in Eq. (4.9) and “methods of heating” in Figs. 4.2-4.3. The results are 

reported in [40]. 

In summary, the above approach and its future variations provide an excellent new 

approach for proposing Nux|prop over a specified parameter range (Eq. (4.9) in this case) 

and a specified flow-regime (steady annular flows here). 
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6 Alternative More Efficient Ways for Realizing 
Enhanced Steady-in-the-mean Annular Flows 

It was not clear from the reported results on low heat-flux (0.1 – 1 W/cm2) flow-boiling, if 

energy efficient inlet flow-rate pulsations in the liquid is the most effective way of 

achieving high heat-flux (500 – 1000 W/cm2) annular flow-boiling realizations with all 

evidence pointing to a very significant role of micro-nucleation in removing heat from the 

boiling-surface. 

It is therefore decided/recommended that Dr. Narain and his group should focus on their 

ongoing high heat-flux (500 – 1000 W/cm2) annular flow-boiling experiments with their 

new and different active energization approach that they have developed to alter and 

control the micro-nucleation phenomena at the boiling-surface. 
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7 Conclusions 

The major conclusions of the experimental investigations, aided by contributions from 

the modeling/simulations group, are listed below. 

 Experimental and modeling support structure has been developed and synthesized 

to yield parameter-specific HTC correlations. 

 Experimental and modeling support structure has been developed and synthesized 

to establish the dominance of micro-scale nucleation to heat-transfer rates for 

laminar liquid and near-interface laminar vapor flows. The modeling support 

structure needs to be further developed for estimates as they relate to frequently 

present laminar liquid and fully turbulent (including near interface zone) vapor 

flows.  

 Pulsatile annular flow results employing inlet pulsations in the liquid and vapor 

flow rates show that enhancements over steady realizations are possible. Inlet liquid 

flow rate pulsations are most efficient and the bubble-departure diameters and 

associated frequencies are quite sensitive to flow conditions (and dominant 

frequency of noise in the steady realization is a good place to start amplification 

and control of micro-scale nucleation).  

 While liquid side pulsations’ frequency synchronized to dominant noise 

frequencies present in steady annular realizations are found to be quite effective at 

thin film locations, the understanding gained from these investigations pave the 

way for alternative effective ways (scientific/technological breakthroughs are under 

development) for enhancing and controlling the dominant nucleate-boiling 

contributions for high heat-flux (500 – 1000 W/cm2) annular flow-boiling 

realizations over the entire length of a flow-boiler. 
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A Appendix A: Flow-loop Modifications Undertaken 
for this Thesis 

 

A.1 Description of Existing Apparatus/Equipment 

The original flow boiling loop is described in Fig. A.1 below. The list below give the salient 

components used in this flow-loop as well as for the reported flow boiling experiments.  

• Test-Section 

• Pool-boiler 

• Peristaltic/Displacement pumps 

• Compressor with Magnetic-Coupling Levitated Shaft 

• LabVIEW and DAQ 

• Absolute Pressure Transducers 

• Differential Pressure Transducers 

• Coriolis Flow Meters 

• Vapor Pulsator 

• Auxiliary Condenser 

The changes made to the experimental flow-loop shown in Fig. A.1 are incorporated in the 

modified flow-loop shown in Fig. 3.2. The key activities that have been completed to obtain 

the modified flow-loop in Fig. 3.2 are described later on in section A.2 onwards. In this 

section we review the features of the salient components in the original flow-loop shown 

in Fig. A.1. 

Test-Section: 

The earlier test-section [7, 9] used a stainless steel plate as a heat exchange surface and it 

had a machined plastic channel (forming the other three sides of the rectangular cross-

section channel) fastened on top of it [7, 9]. The stainless steel is heated via reversed 

thermo-electric modules (TECs). The electrical control and heat source arrangements for 
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the reversed TECs allow a temperature-controlled heating of the boiling-surface. The 

plastic channel is machined to have a channel width and height of 15 mm and 2 mm, 

respectively. The earlier experiments in [7, 9] had a channel length of 1 m, but the new 

forthcoming experiments have a test-section channel length of 0.5 m. 

Pool-boiler: 

The pool-boiler is used to initially supply the flow-loop and the test-section with the 

requisite starting vapor flow rates of the working fluid. After start-up conditions have been 

achieved and the system reaches quasi-steady (approximately steady-in-the-mean) 

conditions within the test-section, the pool-boiler is cut-off from the rest of the flow-loop. 

This is done by closing suitable ball valves.  

Peristaltic/Displacement Pumps: 

The pumps within the system are controlled through actuating milli-Amp signals (via 

pulse-width management) into the pump that moves the liquid through the liquid lines in 

its vicinity.  

Levitated Magnetic Coupling Oil-Free RPM Controlled Compressor: 

The compressor is used to move a fraction of the exiting vapor from the exit of the test-

section back to its inlet (see Figs. 3.2 and A.1). The control of the compressors RPM, is 

used to assist in controlling the recirculating vapor’s mass flow rate.  

LabVIEW and DAQ: 

LabVIEW is used to assist with data collection and in controlling of various controllable 

devices/equipment within the flow-loop.  

Absolute Pressure Transducers (APTs): 

Various APTs are used in the flow-loop to electronically record the pressure at suitable 

locations within the flow-loop. Their placements are not shown in Figs. A.1 or 3.2, but a 
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couple of placements allowing key measurements are: the pool-boiler pressure, the 

pressure at the inlet of the test-section, etc.  

Differential Pressure Transducers (DPTs): 

Two DPTs are used across the test-section (of Fig. A.1) to measure and record the pressure 

difference across the test-section lengths of 0 to 40 cm and 40 to 90 cm. Because of the 

shorter channel length in the new design, the new experiments replace these 2 DPTs with 

a single DPT across test-section lengths of 10 to 40 cm.  

Coriolis Flow Meters: 

Two Coriolis flow meters are used to measure the mass flow rates of the liquid and vapor 

flows being introduced at the innovative flow-boiler test-section’s inlet. The flow meters’ 

readings are also used to assist in the feedback control of pumps and compressor to suitably 

direct attainment [7, 9] of approximate steady flow conditions.  

Vapor Pulsator: 

The vapor pulsator is a modified pump that does not work as a pump because its inlet and 

outlet are connected together (see descriptions in [7, 9]). This configuration causes a “pull 

and push” pressure superposition in the pulsator line – connected to the vapor line of the 

flow-loop through a T-junction connection. Therefore, this pulsator also imposes pressure 

fluctuations within the flow-loop’s vapor line - establishing a pulsatile “steady-in-the-

mean” liquid-vapor flow within the test-section. The speed of the pulsator motor controls 

the frequency of the imposed pulsations, and a throttling valve in the pulsator line 

independently controls the amplitude of the imposed pulsations. 

Auxiliary Condenser: 

The auxiliary condenser in Fig. 3.1 is a vertical tube-in-tube heat exchanger that condenses, 

in its inner tube, part of the vapor (the portion that is not recirculated) created in the test-

section. The outer tube is cooled by a controlled flow rate and controlled inlet temperature 
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water-flow arrangement (through a market available chiller, not shown in Figs. 3.1 and 

A.1). 
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Figure A.1: Original flow-loop structure used in previous experiments. 

 

A.2 Modified Flow-Loop and Its New Components 

For the modified flow-loop, shown in Fig. 3.2, we describe the following key new 

components: 

• Shorter New Test-Section 

• New Heat Exchanger 

• New Liquid Pulsator 

• New Liquid Exit Fitting and Visualization Chamber 

• New Liquid Pulsation Damper 

• New Turbine Flow Meter  
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• New Imbedded Thermocouples 

 

Shorter New Test-Section: 

The new test-section is redesigned, fabricated, and instrumented in a manner similar to the 

flow-boiler test-section described earlier in [7, 9]. This is to avoid complete boil off 

(necessary for the proposed innovative flow-boilers [7, 9]) – or dry-out within the test-

section - for a larger number of test runs as well as to allow measurements of the overall 

heat transfer rate (by measuring the exiting liquid flow rate). This ensures that the liquid 

flow in the new test-section (see Fig. 3.1) is over a shorter length (it has a width of 15 mm, 

height of 2 mm, and length of 0.5 m). The new test-section continues to have a 

dynamic/steady heat-flux measurement capability at x = 40 cm location. 
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Figure A.2: A picture shows a comparison of the test-section channel lengths. On the 

bottom steel plate, there is a liquid drainage outlet near the “closed end” markings. 

Heat Exchanger: 

The heat exchanger in Fig. A.1 (between V6 and pump P2) has been moved, modified, and 

inserted prior to the liquid test-section inlet (but before the liquid pulsator) in Fig. 3.2. This 

heat-exchanger movement and modification is to ensure that the liquid entering the test-

section has a temperature much closer to its saturation temperature (at the test-section 

operating pressure) than the previous design and location allowed. This is important 

because many innovative vapor compression cycle designs being recommended by our 

group cannot allow significant sub-cooling. 
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Liquid Pulsator: 

 

Figure A.3: A photograph of a liquid pulsator. 

The liquid pulsator has been inserted immediately after the liquid Coriolis flow meter and 

heat exchanger, and right before the test-section inlet in Fig. 3.2. It is a variable speed and 

displacement piston pump whose inlet and outlet lines are connected to each other - and to 

the liquid line through the single branch line shown in Fig. 3.2. The new “liquid pulsator” 

serves a similar purpose to the vapor pulsator shown in Fig. 3.2, except that its use at the 

same frequency as the vapor pulsator is expected to significantly decrease the total pulsatile 

energy (considering both the pulsators) needed for high heat-flux performance of the 

innovative steady-in-the-mean flow-boiler operations [7, 9]. This device is central to 

expanding our understanding the benefits of our earlier findings [7, 9] - with regard to best 

ways of achieving enhanced steady-in-the-mean annular flow-boiling. 
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Exit Fittings and Visualization Chamber: 

 

Figure A.4: A comparison of the old and new exit fittings. 

A new vapor exit fitting (at the upper part of the test-section) was designed, machined, and 

positioned near the “closed end” at 50 centimeter length location of the test-section in Fig. 

3.1. Also, the visualization chamber downstream of the fitting (not shown in Fig. A.4 bit 

shown in the schematics of Figs. A.1 and 3.1) has been change to a smaller size to allow 

less liquid to accumulate in the visualization chamber itself. Moreover, the gap between 

the test-section and the sight-glass has been reduced significantly to help assure appropriate 

liquid level at the test-section exit. 
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Pulsation Damper: 

 

Copper Tube End Cap

Cushion Material  

Figure A.5: A photograph of a pulsation dampener and its schematic. 

The pulsation damper shown in Fig. A.5 has been inserted immediately downstream of the 

liquid line displacement pump P1 shown in Fig. 3.2. The displacement pump is a peristaltic 

pump that moves liquid based on periodic squeezing of a flexible tube. This pump induces 

pulsations within the liquid line - and was providing useful fixed frequency pulsations in 

the earlier Fig. A.1 flow-loop’s innovative operations [7, 9] for any given liquid flow rate 

at the test-section inlet. The very same pulsations are now unwanted in the new operations 

- because we want to have choice and control on the liquid line pulsations and we do not 

want pump P1 induced pulsations to interfere with the more controllable (both in frequency 

and amplitude) pulsations from the new liquid pulsator PL. The damper is therefore inserted 

to stifle the peristaltic pump generated pulsations. 
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Turbine Flow Meter: 

 

Figure A.6: A picture of a turbine flow meter. 

The turbine flow meter has been inserted after the liquid exits the liquid pump P2 in Fig. 

3.2. Between pump P2 and the turbine flow meter, there is a filter (not shown in Fig. 3.2) 

which protects the turbine flow meter from being plugged with particles in the liquid flow. 

The turbine flow meter measures the flow rate of liquid exiting the test-section and has 

been calibrated (with the help of a Coriolis Meter) to measure liquid flow rates (around a 

range of liquid temperatures in the vicinity of certain expected liquid lines temperatures of 

interest). 
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New Imbedded Thermocouples: 

 

TEC

New Thermocouples 
were imbedded

0.04" from surface of 
the Test-sectionHeat Direction

Original 
Thermocouples  

Figure A.7: An illustration of imbedded thermocouples and their schematic. 

Small thermocouples (40 AWG, bare tip) were imbedded into the stainless steel test-section 

and potted with an epoxy that has thermal conductivity close to stainless steel. The tips of 

thermocouples were 0.02” away from the boiling surface directly on top of TECs – as they 

were missing in the earlier Fig. A.1 flow-loop - to give a better and more precise wall 

temperature measurement towards defining the “method of heating (see section 4)” profile. 

These measured wall temperature “profiles” are critical to the planned synthesis of 

modeling with experiments as discussed in sections 4 and 5. 
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B Appendix B: Full raw data of section 4 
 

Table B.1 

Raw Tw(x) data for Table 4.1 where {x (cm)} ≡ {0, 5, 8.5, 11.5, 15, 18.5, 21.5, 25, 28.5, 

31.5, 35, 38.5, 41.5, 45, 48.5}. 

 

 

 

 

 

 

 

 

 

 

 

(±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C)
1 58.16 61.50 59.26 59.87 60.50 59.58 59.76 60.00 60.59 61.55 63.50 60.72 61.31 63.00 63.15
2 58.19 62.50 59.33 59.94 61.50 59.15 59.47 61.00 60.39 61.15 64.00 60.40 60.66 63.00 61.85
3 58.17 61.50 59.29 59.93 60.50 59.60 59.77 60.00 60.59 61.33 63.50 60.55 61.00 63.00 63.31
4 58.29 61.50 59.29 59.89 60.50 59.59 59.74 60.00 60.58 61.28 63.50 60.56 60.89 63.00 63.28
5 58.60 61.50 59.36 59.99 60.50 59.70 59.85 60.00 60.65 61.40 63.50 60.69 60.95 63.00 63.42
6 58.18 61.50 59.27 59.86 60.50 59.62 59.73 60.00 60.52 61.30 63.50 60.54 60.82 63.00 63.24
7 57.83 61.50 59.22 59.70 60.50 59.51 59.60 60.00 60.29 61.17 63.50 60.37 60.68 63.00 62.99
8 57.86 61.50 59.23 59.72 60.50 59.46 59.55 60.00 60.12 61.04 63.50 60.40 60.54 63.00 62.87
9 57.97 61.50 59.15 59.60 60.50 59.37 59.41 60.00 59.84 60.85 63.50 60.21 60.26 63.00 62.52
10 57.14 61.50 59.11 59.54 60.50 59.31 59.36 60.00 59.81 60.84 63.50 60.11 60.15 63.00 62.30
11 57.13 61.50 59.02 59.54 60.50 59.21 59.20 60.00 59.38 60.47 63.50 59.85 60.03 63.00 61.41

Case Tw(x1) Tw(x2) Tw(x3) Tw(x4) Tw(x5) Tw(x6) Tw(x7) Tw(x8) Tw(x9) Tw(x10) Tw(x11) Tw(x12) Tw(x13) Tw(x14) Tw(x15)
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Figure B.1 

Raw temperature profile of Table 4.1 
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Figure B.2 

Raw non-dimensionalized temperature profile of Table 4.1 and Figure 4.2 
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Table B.2 

Raw Tw(x) data for Table 4.3 where {x (cm)} ≡ {0, 5, 8.5, 11.5, 15, 18.5, 21.5, 25, 28.5, 

31.5, 35, 38.5, 41.5, 45, 48.5}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C)
1 56.42 64.00 61.06 61.32 64.00 62.32 61.62 64.00 61.89 61.93 64.00 61.19 61.73 64.00 63.79
2 56.39 64.00 61.26 61.51 64.00 62.33 61.90 64.00 61.99 62.07 64.00 61.32 61.84 64.00 63.93
3 56.34 64.00 61.25 61.52 64.00 62.19 61.81 64.00 61.96 61.98 64.00 61.24 61.79 64.00 63.94
4 56.23 64.00 61.10 61.42 64.00 62.03 61.64 64.00 61.72 61.81 64.00 61.12 61.56 64.00 63.77
5 56.47 65.75 62.42 62.67 65.75 63.18 62.65 65.75 62.82 62.89 65.75 62.23 62.49 65.75 65.21
6 57.90 64.50 61.63 62.08 64.50 62.97 62.41 64.50 62.60 62.69 64.50 61.94 62.39 64.50 64.06
7 57.85 66.00 62.80 63.05 66.00 63.69 63.17 66.00 63.32 63.45 66.00 62.74 62.98 66.00 65.39
8 58.77 66.50 63.10 63.38 66.50 63.95 63.52 66.50 63.46 63.65 66.50 63.15 63.23 66.50 65.88
9 59.18 68.00 64.21 64.38 68.00 64.95 64.51 68.00 64.47 64.62 68.00 64.14 64.17 68.00 66.68

10 60.15 69.00 65.09 65.29 69.00 65.74 65.34 69.00 65.15 65.42 69.00 65.09 65.28 69.00 67.48

Case Tw(x1) Tw(x2) Tw(x3) Tw(x4) Tw(x5) Tw(x6) Tw(x7) Tw(x8) Tw(x9) Tw(x10) Tw(x11) Tw(x12) Tw(x13) Tw(x14) Tw(x15)
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Figure B.3 

Raw temperature profile of Table 4.3 
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Figure B.4 

Raw non-dimensionalized temperature profile of Table 4.3 and Figure 4.3 
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Table B.3 

Raw Tw(x) data for Table 4.5 where {x (cm)} ≡ {0, 5, 8.5, 11.5, 15, 18.5, 21.5, 25, 28.5, 

31.5, 35, 38.5, 41.5, 45, 48.5}. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C)
Steady 59.95 68.01 62.95 63.53 68.00 63.11 63.24 69.00 63.39 64.06 71.01 65.94 66.01 71.01 63.49

Pulsatile 62.00 68.04 62.91 63.57 68.03 63.17 63.20 69.01 63.42 64.46 72.04 66.46 66.59 72.01 63.95

Case Tw(x1) Tw(x2) Tw(x3) Tw(x4) Tw(x5) Tw(x6) Tw(x7) Tw(x8) Tw(x9) Tw(x10) Tw(x11) Tw(x12) Tw(x13) Tw(x14) Tw(x15)



92 

Figure B.5 

Raw temperature profile of Table 4.5 
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Figure B.6 

Raw non-dimensionalized temperature profile of Table 4.5 and Figure 4.6 

 

 

 

 

 

 

 

 

 

 



94 

Table B.4 

Raw Tw(x) data for Table 4.6 where {x (cm)} ≡ {0, 5, 8.5, 11.5, 15, 18.5, 21.5, 25, 28.5, 

31.5, 35, 38.5, 41.5, 45, 48.5}. 

 

 

 

 

 

 

 

 

 

 

(±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C) (±1°C)
1 59.47 67.00 63.56 63.98 67.00 64.36 64.18 67.00 64.61 64.81 67.00 63.74 63.75 67.00 66.49
2 59.18 67.00 63.59 63.88 67.00 64.13 63.85 67.00 63.93 64.23 67.00 63.34 63.42 67.00 66.46
3 59.43 67.00 63.72 64.04 67.00 64.31 64.11 67.00 64.07 64.46 67.00 63.52 63.73 67.00 66.71
4 59.41 67.00 63.80 64.15 67.00 64.33 64.16 67.00 64.33 64.53 67.00 63.57 63.72 67.00 66.69
5 59.49 67.00 63.94 64.22 67.00 64.41 64.24 67.00 64.42 64.65 67.00 63.69 63.79 67.00 66.83
6 59.74 67.00 63.95 64.22 67.00 64.43 64.27 67.00 64.35 64.71 67.00 63.73 63.81 67.00 67.00
7 59.65 67.00 64.01 64.35 67.00 64.48 64.34 67.00 64.43 64.68 67.00 63.77 63.80 67.00 66.81
8 59.64 67.00 64.05 64.31 67.00 64.52 64.37 67.00 64.61 64.70 67.00 63.80 63.83 67.00 66.89
9 59.56 67.00 63.89 64.29 67.00 64.45 64.31 67.00 64.35 64.66 67.00 63.73 63.80 67.00 66.77
10 59.11 67.00 63.42 63.76 67.00 64.00 63.71 67.00 63.82 64.14 67.00 63.20 63.42 67.00 66.44
11 58.97 67.00 63.49 63.80 67.00 64.07 63.79 67.00 63.65 64.28 67.00 63.25 63.58 67.01 66.48
12 58.90 67.00 63.46 63.75 67.00 64.04 63.76 67.00 63.60 64.20 67.00 63.23 63.51 67.00 66.43
13 58.95 67.00 63.44 63.73 67.00 64.01 63.73 67.00 63.58 64.22 67.00 63.23 63.43 67.00 66.46
14 59.20 66.99 63.57 63.89 67.00 64.16 63.91 67.00 64.07 64.30 67.00 63.34 63.52 67.00 66.47
15 59.13 67.00 63.60 63.87 67.00 64.18 63.92 67.00 63.87 64.33 67.00 63.33 63.63 67.00 66.54
16 59.12 67.00 63.53 63.87 67.00 64.12 63.85 67.00 63.67 64.29 67.00 63.29 63.53 67.00 66.44
17 59.11 67.00 63.49 63.80 67.00 64.08 63.82 67.00 63.71 64.29 67.00 63.30 63.46 67.00 66.44
18 59.09 67.00 63.47 63.83 67.00 64.06 63.79 67.00 63.87 64.21 67.00 63.29 63.42 67.00 66.43
19 59.05 67.00 63.42 63.78 67.00 64.00 63.72 67.00 63.97 64.18 67.00 63.23 63.36 67.00 66.43

Case Tw(x1) Tw(x2) Tw(x3) Tw(x4) Tw(x5) Tw(x6) Tw(x7) Tw(x8) Tw(x9) Tw(x10) Tw(x11) Tw(x12) Tw(x13) Tw(x14) Tw(x15)
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Figure B.7 

Raw temperature profile of Table 4.6 
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Figure B.8 

Raw non-dimensionalized temperature profile of Table 4.6 and Figure 4.11 
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C Appendix C: Copyright documentation 
 

Permission for Figure 4.5b and c from Elsevier publishing: 
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Permission for Figure 5.3 from Springer International Publishing: 
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