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Satellite monitoring of harmful algal blooms in theWestern Basin of Lake
Erie: A 20-year time-series
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Communicated by Joseph Ortiz

Blooms of harmful cyanobacteria (cyanoHABs) have occurred on an annual basis in western Lake Erie for more
than a decade. Previously, we developed and validated an algorithm tomap the extent of the submerged and sur-
face scum components of cyanoHABs using MODIS ocean-color satellite data. The algorithm maps submerged
cyanoHABs by identifying high chlorophyll concentrations (N18 mg/m3) combined with water temperature
N20 °C, while cyanoHABs surface scums are mapped using near-infrared reflectance values. Here, we adapted
this algorithm for the SeaWiFS sensor to map the annual areal extents of cyanoHABs in the Western Basin of
Lake Erie for the 20-year period from 1998 to 2017. The resulting classified maps were validated by comparison
with historical in situmeasurements, exhibiting good agreement (81% accuracy). Trends in the annual mean and
maximum total submerged and surface scum extents demonstrated significant positive increases from 1998 to
2017. There was also an apparent 76% increase in year-to-year variability of mean annual extent between the
1998–2010 and 2011–2017 periods. The 1998–2017 time-series was also compared with several different
river discharge nutrient loading metrics to assess the ability to predict annual cyanoHAB extents. The prediction
models displayed significant relationships between spring discharge and cyanoHAB area; however, substantial
variance remained unexplained due in part to the presence of very large blooms occurring in 2013 and 2015.
This newmulti-sensor time-series and associated statistics extend the current understanding of the extent, loca-
tion, duration, and temporal patterns of cyanoHABs in western Lake Erie.
© 2019 The Authors. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Cyanobacteria blooms are recurring events within biologically-
productive waters of the Great Lakes and notably the Western Basin of
Lake Erie (WBLE) (Vanderploeg et al., 2001; Bridgeman et al., 2013).
Harmful algal blooms dominated by the cyanobacterium Microcystis
(here termed cyanoHABs) have affected recreation, charter fishing,
and tourism in the Great Lakes and placed drinking water supplies for
millions of consumers at risk. A cyanoHAB in western Lake Erie in
2014 resulted in a three-day tapwater ban for approximately half amil-
lion customers in Toledo, Ohio (Wynne and Stumpf, 2015). Microcystis
produces microcystin, a hepatotoxin that can cause gastroenteritis,
liver damage and, in extreme cases, more serious illness and even
death (Rinta-Kanto et al., 2005). Microcystis blooms have occurred on
an annual basis in theWestern Basin of Lake Erie formore than a decade
(Budd et al., 2001; Rinta-Kanto et al., 2005; Stumpf et al., 2012; Steffen
et al., 2014).

Due to their temporal and spatial variability (“patchiness”),
cyanoHABs are extremely difficult to monitor using buoy- or ship-
based sampling (Kutser, 2004). Their concentrations can vary bymulti-
ple orders of magnitude over the distance of a few meters. Satellite re-
mote sensing provides the potential for long-term synoptic
monitoring of cyanoHAB events which can improve our understanding
of these phenomena to allow for the development of approaches that
reduce their incidence over the longer term.

Satellite remote sensing has been extensively used to map
cyanobacteria bloom dynamics in many areas throughout the world
with great success (Pettersson and Pozdnyakov, 2012). Several early
electro-optical (EO) satellite platforms, including Landsat 2 and the
Coastal Zone Color Scanner (CZCS), proved useful to detect significant
accumulations of cyanobacteria blooms in the Baltic Sea (Ulbricht,
1983) and southwestern tropical Pacific Ocean (Dupouy et al., 1988).
Additionally, Advanced Very High Resolution Radiometer (AVHRR)
thermal imagery was used to relate local increases in sea surface tem-
perature (SST) to surface accumulations of cyanobacteria in the Baltic
Sea (Kahru et al., 1993). Since the publication of these early studies, re-
search using satellite remote sensing to map cyanobacteria has
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expanded in the literature (Cullen et al., 1997) with work including
many areas throughout the world, with notable examples in the Baltic
Sea (Kahru, 1997; Kahru et al., 2000, 2007; Kahru and Elmgren, 2014;
Miller et al., 2006; Reinart and Kutser, 2006), Lake Taihu (Duan et al.,
2009, 2012; Hu et al., 2010; Huang et al., 2014), and South African
Lakes (Matthews et al., 2010, 2012; Matthews, 2014; Matthews and
Bernard, 2015; Oberholster and Botha, 2010).

Remote sensing algorithms have progressed from the early radiance
threshold approaches to more robust empirical and semi-analytical
methods as observing system capabilities have increased and better un-
derstanding of the underlying cyanobacteria optical properties were
achieved (Mishra et al., 2017). Robust algorithms to retrieve
chlorophyll-a concentrations of cyanobacteria blooms have been devel-
oped and adapted for many different freshwater systems to track
spatio-temporal dynamics (Gons, 1999; Mishra and Mishra, 2012; Li
et al., 2013). In parallel, algorithms were also developed (Dekker,
1993; Schalles and Yacobi, 2000; Simis et al., 2005, 2007; Li et al.,
2015) to estimate the presence of phycocyanin, a phycobilin pigment
unique to cyanobacteria, allowing for better determination of bloom
composition. However, while many cyanobacteria remote sensing algo-
rithms have been developed over the past 30 years, regional tuning or
parametrization is often required to adapt to the local scale
cyanobacteria/phytoplankton dynamics of individual systems.

In some areas within the Great Lakes basin, cyanoHABs have been
shown to occur in highly productive waters that are relatively shallow,
warm, and protected from persistent offshore winds (Ho andMichalak,
2015; Watson et al., 2016). These productive waters are optically com-
plexwith the color of thewater being determined by the concentrations
of three color-producing agents (CPAs): chlorophyll (CHL), colored dis-
solved organic matter (CDOM), and suspended mineral (SM) particles
(Jerlov, 1976; Bukata et al., 1995). Traditional marine water color re-
trieval algorithms developed for the open ocean, whose optical proper-
ties are dominated by phytoplankton absorption and scattering alone,
typically fail in optically complex waters (Budd and Warrington, 2004;
Witter et al., 2009; Ali et al., 2014). Additionally, traditional marine at-
mospheric correction procedures often yield erroneous water leaving
radiance values in optically complex water further reducing the ability
of traditional ocean-color retrieval algorithms to produce reliable re-
sults (Dash et al., 2012).

Severalmethods have been developed and adapted to identify Great
Lakes cyanoHABs based on algorithms that relate spectral reflectance
values in ocean-color satellite imagery to in situ water measurements
(e.g., Vincent et al., 2004; Becker et al., 2009; Wynne et al., 2010;
Stumpf et al., 2012; Sayers et al., 2016). Of these, the most commonly
applied approach has been the cyanobacteria index (CI) developed by
Wynne et al. (2008) based on the Fluorescence Line Height (FLH) algo-
rithm (Abbott and Letelier, 1999). Stumpf et al. (2012) used this ap-
proach to quantify cyanoHABs in western Lake Erie from 2002 to 2011
and relate the annual bloom extent to river discharge. More recently,
Sayers et al. (2016) generated cyanoHAB extentmaps using a combina-
tion of twomodified remote sensing approaches using theMODIS Aqua
sensor (MCH and SSI, see Methods section). Here, we adapt the MCH
and SSI approach to cyanoHAB mapping for the SeaWiFS sensor to ex-
tend the available time series of ocean-color cyanoHAB estimates for
western Lake Erie from 1998 to 2017.

Because of the limited time frame for which cyanoHAB maps are
available from the MODIS Aqua and MERIS ocean color satellites (now
16 years, 2002–2017), the ability to empirically model the various
drivers of annual bloom size and spatial distribution has been limited
(Obenour et al., 2014). Ho et al. (2017) recently explored extending
the MODIS/MERIS ocean-color time series by combining the Wynne/
Stumpf CI with a Landsat-based algorithm. They found good coherence
between the Landsat product and CI with respect to the macro-scale
characteristics of annual peak bloom area. However, Landsat's utility
for monitoring the temporal variations of the western Erie cyanoHAB
within a season are seriously limited by the satellite's 16-day revisit

cycle and by the high annual mean cloud cover in the Great Lakes (Ju
and Roy, 2008), resulting in few cloud-free Landsat scenes of western
Lake Erie collected per season. The combined SeaWiFS/MODIS time se-
ries of cyanoHAB extent presented here can both serve as additional
years of evaluation data for Landsat algorithms and help improve the
knowledge of Lake Erie cyanoHAB spatial heterogeneities and finer-
scale temporal variability needed to gain a mechanistic understanding
of the dynamics of cyanoHAB development and distribution.

In this study, we investigate the coherence of SeaWiFS and MODIS-
based cyanoHAB products in a combined time series of hindcast
cyanoHAB extent for western Lake Erie. A series of empirically-based
adjustments were made to reconcile the cyanoHAB classification differ-
ences between the two platforms observed for overlapping images. The
aims of this study are to: (i) document the adaptation of the MCH/SSI
approach for cyanoHAB mapping to the SeaWiFS satellite; (ii) evaluate
the SeaWiFS-derived cyanoHAB maps through comparison with in situ
data and with MODIS-derived maps for overlapping dates; and (iii) re-
visit the Sayers et al. (2016) discussion of the local factors driving an-
nual cyanoHAB dynamics in light of this longer time series.

Methods

Satellite imagery

SeaWiFS and MODIS uncalibrated Level 1A imagery was
downloaded from the NASA OceanColor data portal (https://
oceancolor.gsfc.nasa.gov). Level 1A data were processed to Level 2
(georeferenced with atmospheric and radiometric calibrations) using
NASA SeaDAS software. A fixed model pair aerosol correction and cus-
tom cloud masking approach was applied to the images to ensure that
the high NIR reflectance values of surface scum pixels were not
interpreted as atmospheric contamination (Sayers et al., 2016). Addi-
tionally, Sayers et al. (2016) reported that the fixed-model pair aerosol
selection approach resulted in more consistent and accurate remote
sensing reflectance values than the standard oceanic black pixel as-
sumption method during significant cyanoHAB events in western Lake
Erie.

Each cloud-free or mostly (N80%) cloud-free image of the Western
Basin of Lake Erie (Fig. 1) collected by SeaWiFS between mid-1997
and 2007 or by MODIS Aqua between mid-2002 and 2017 at times
when the water temperature in the Western Basin was above 20 °C—
the minimum temperature favorable to cyanoHAB development
(Sayers et al., 2016)—was downloaded. The 20 °C threshold was devel-
oped to reduce the number of false cyanoHAB identifications in cooler
water (b20 °C) periods when blooms of other phytoplankton, particu-
larly diatoms, can occur (Sayers et al., 2016). When an image with par-
tial cloud cover or other interference was collected within 3 days of a
better-quality image, only the better scene was retained in the image
set. The dates when the temperature exceeded and then fell below the
20 °C threshold for each year were determined using the AVHRR (pre-
2002) andMODIS (2002–2017) Sea Surface Temperature (SST) product.
The satellite-observed water temperatures were verified with buoy
measurements from the National Data Buoy Center (NDBC)when avail-
able (https://www.ndbc.noaa.gov/).

Bio-optical models

The hybrid bio-optical and vegetation index method of cyanoHAB
mapping described in Sayers et al. (2016) was applied to MODIS Aqua
imagery from 2014 through 2017 to extend the 2002–2013 time series
presented in that paper. Briefly, the first approach (modified CPA-A
HABs, or MCH) was a modification of the CPA Algorithm (CPA-A), a
semi-analytical bio-optical chlorophyll-a retrieval algorithm which si-
multaneously optimizes estimated concentrations for all three CPAs
using a hydro-optical model derived from extensive in situ measure-
ments collected in western Lake Erie (Shuchman et al., 2006, 2013).

509M.J. Sayers et al. / Journal of Great Lakes Research 45 (2019) 508–521

https://oceancolor.gsfc.nasa.gov
https://oceancolor.gsfc.nasa.gov
https://www.ndbc.noaa.gov/


For cyanoHABdetection, the CPA-A is enhancedwith empirical relation-
ships between chlorophyll-a and environmental variables and lever-
aged using the observed linear relationship between surface
chlorophyll-a and phycocyanin pigment concentrations in western
Lake Erie to estimate water column cyanoHABs. A threshold value of
18 mg m−3 of chlorophyll-a was used to classify pixels as cyanoHAB
based on a segmented regression analysis (Sayers et al., 2016). Briefly,
using in situ data from three eutrophic basins in the Great Lakes
(Green Bay, Saginaw Bay, and western Lake Erie), Sayers et al. (2016)
established a significant linear relationship between chlorophyll-a and
phycocyanin when chlorophyll-a was N18 mg m−3. The authors noted
there was little to no abundance of phycocyanin for chlorophyll-a
concentrations b 18 mg m−3. MODIS-estimated water temperature
was also used to distinguish between blooms of cyanobacteria (N20
°C) and other phytoplankton such as diatoms and green algae (b20
°C) (Sayers et al., 2016).

Historically, cyanoHAB mapping algorithms in the Great Lakes have
not differentiated surface algal scums from sub-surface cyanobacteria in
the water column (Sayers et al., 2016). In situ monitoring in Lake Erie
has consistently indicated that the floating algae mats, or surface
scums, that sometimes form during cyanoHAB events in Lake Erie con-
tain extremely high concentrations ofMicrocystiswhich has the poten-
tial to affect public health. Thus, the second approach described in
Sayers et al. (2016), the surface scum index (SSI, Eq. (1)) used a band
ratio index to detect cyanoHAB surface scums:

SSI ¼ NIRð Þ− VISð Þ
NIRð Þ þ V ISð Þ

� �
N0 ð1Þ

where NIR represents spectral reflectance in a near-infrared satellite
band and VIS represents reflectance in a visible-range band, usually
red. Positive values in known water pixels were classified as surface

cyanobacteria scum based on the high reflectance of algae scum at NIR
wavelengths relative to low red reflectance controlled by chlorophyll
(and other pigments) absorption. Other researchers have used similar
approaches to successfully detect surface algae in other freshwater re-
gions throughout the world using sensor specific methodology (Peng
et al., 2008; Hu, 2009; Hu et al., 2010; Matthews et al., 2012). It should
be noted that there is no procedure for differentiating cyanobacteria
scum from other floating macrophytes either living or not living. How-
ever, because of the relatively large pixel size (250 m for MODIS) it
would require a significant bed orwrack offloatingmacrophytes to trig-
ger a positive SSI value.MODIS bands 9–13 (band centers: 443, 488, 531,
547, 667 nm; 1 km resolution)were used in theMCH, andMODIS bands
1 and 2 (645 and 858 nm, respectively; 250 m resolution) were used in
the SSI.

Satellite sensor inter-calibration

To generate cyanoHAB maps from SeaWiFS imagery, the MCH/SSI
approach was initially applied with minimal modification, using bands
2–6 (band centers: 443, 490, 510, 555, and 670 nm; 1 km resolution)
for the MCH, bands 6 and 8 (670 and 865 nm, respectively; 1 km reso-
lution) to calculate the SSI, and AVHRR SST as the water temperature
input. This initial product was compared with the previously validated,
MODIS-derived product for a selection of dates from2002 to 2007when
both sensors collected cloud-free images. Comparing the outputs for the
two sensors indicated that scum was initially under-classified in
SeaWiFS imagery, a problem that was corrected through a series of
empirically-based adjustments.

First, the MODIS-derived SSI product was compared to two
SeaWiFS-derived SSI products: the original version, using SeaWiFS
band 8 centered at 865 nm as the NIR input to the SSI algorithm, and a
second version using band 7 centered at 765 nm. It was determined

Fig. 1. The western Lake Erie study area is defined by the hatched area. The Maumee River is also shown as bold black line entering the basin.
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that the 765 nm SeaWiFS SSI was more similar to the MODIS product
based on Spearman rank correlation of SSI values for matched grid
cells. Second, it was observed that the SeaWiFS SSI was systematically
lower than MODIS SSI, in part due to the differences in sensor design
characteristics (bandwidth, signal-to-noise, etc.,) between MODIS
Aqua and SeaWiFS. To compensate for these differences and obtain a
SeaWiFS SSI product comparable to the MODIS product, the empirical
relationship between the SeaWiFS and MODIS SSI products over the
overlap period between the two datasets (2002−2010) was used to
apply an adjustment factor to the threshold value at which SeaWiFS
SSI is classified as scum. Third, these changes to the SeaWiFS SSI created
problems with some scum areas being misclassified as clouds; this was
correctedwith a simple thresholdfilter using the cumulative reflectance
of SeaWiFS visible bands. Fourth, several pixels along the shorelinewere
consistently flagged as scum, even outside of the cyanoHAB season, due
to spatial resolution differences between SeaWiFS and the MODIS-
based land mask utilized in the MCH/SSI method. This was resolved
by editing the land mask to exclude those pixels, yielding a slightly
smaller mapped water surface area. The cumulative effect of these ad-
justments is illustrated by Fig. 2. Finally, the absorption coefficients in-
cluded in the hydro-optical model utilized for the CPA-A were also
adjusted by comparing the results for MODIS and SeaWiFS for the
same dates and applying a vicarious calibration correction.

SeaWiFS product verification

In situ chlorophyll-a measurements collected in western Lake Erie
during the cyanoHAB season (August–September) between 1997 and
2007 were retrieved from EPA's Great Lakes Environmental Database
(GLENDA, http://www.epa.gov/glnpo/monitoring/data_proj/glenda/),
from the NOAAGreat Lakes Environmental Research Laboratory's Inter-
national Field Years on Lake Erie (IFYLE) Cruise Database (Hawley et al.,
2006; https://www.glerl.noaa.gov/res/projects/ifyle/), and from the
University of Toledo's Western Erie cruise database (Bridgeman et al.,
2013). In situ surface water chlorophyll-a concentrations N 18 mg/m3

when thewater temperature was N20 °Cwere considered to potentially
represent a cyanoHAB based on previous analyses (Wynne et al., 2013;
Sayers et al., 2016). Because presence of surface scumwas not recorded,
SSI was not evaluated separately from bloom presence/absence. Table 1
below summarizes the combined GLENDA, IFYLE and UT in situ data set
used to evaluate the SeaWiFSMCH product. The product was evaluated
by comparing each in situ observation to the value of the individual
SeaWiFS pixel that the observation falls within. Observationswere com-
pared to the SeaWiFS image collected closest in time to the observation,
up to a maximum of 3 days. It should be acknowledged that a single in
situ observation may or may not be spatially representative of the
water encapsulated within a single satellite pixel, ~1 km in the case of
SeaWiFS, however it is difficult to quantify this uncertainty with the
available data. A previous study conducted a sensitivity analysis to

confirm that using in situ observations taken within three days of an
image collection for algorithm evaluation purposes does not decrease
estimated algorithm accuracy relative to using observations from
within 12 h or one day (Ho et al., 2017).

SeaWiFS and MODIS product inter-comparison

The SeaWiFS- and MODIS Aqua-derived cyanoHAB products were
compared at both the pixel and basin scales. First, the similarity of the
classified map products (based on a simple matching coefficient) was
calculated for 89 pairs of images collected on the same day between
2002 and 2007 to quantify the similarity of bloom identification at spe-
cific locations between sensors. The time difference between the two
image collections ranged from 11 s to 1 h 46 min with a mean of
30 min. Pixels flagged as cloud cover were excluded from the compari-
son. Second, bloom areas were compared across this same set of date-
matched image pairs to evaluate the similarity of mapped bloom mag-
nitudes between sensors. Coefficients of determination and root mean
squared errors from weighted least squares regression between the
SeaWiFS- and MODIS-estimated annual mean surface scum and total
bloom areas were used to assess map similarity. Regression weights
were based on the number of pixels flagged as clouds in the SeaWiFS
image to account for the increase in uncertainty with cloud cover.
Weights were calculated as wi = 1 − (c/a), where wi is the weight ap-
plied for the ith date-matched image pair, c is the cloud-covered area in
the SeaWiFS image (km2) and a is the total mapped area in theWestern
Basin (2984 km2). Finally, a similar regression was performed using
only the annual maximum surface scum and total bloom areas for
each sensor.

Time-series analysis

After a quantitative comparison between the sensors' derived prod-
uctswas completed, their datawas combined to form a 20-year time se-
ries, extending the 12-year record reported by Sayers et al. (2016). The
SeaWiFS data was used from 1998 to 2001 and the MODIS Aqua data
was used from 2002 to 2017. Annual mean cyanoHAB and scum extent
were determined by taking the mean extent of high chlorophyll-a
(based on the MCH method) and scum (based on the SSI method),

Fig. 2. Comparison of SSI-based scum classification results from MODIS (left panel), the initial SeaWiFS result (center panel), and the corrected SeaWiFS result (right panel) for June 22,
2003. Black cells represent positive surface scum observations.

Table 1
Numbers of available in situwater quality samples measured in the western basin of Lake
Erie within 3 days of a cloud-free SeaWiFS image collection during a cyanoHAB season be-
tween 1998 and 2007. There were no valid matchups in 2000 or 2001.

Year 1998 1999 2002 2003 2004 2005 2006 2007 Total

HAB 0 0 8 12 15 4 4 4 47
No HAB 6 12 11 16 11 20 11 9 96
Total 6 12 19 28 26 24 15 13 143
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respectively, in all cloud-free images within the 20 degree surface tem-
perature window. Annual maximum extents for each product were de-
termined by taking the mean of the largest three extents for each year.
Seasonal trends were studied by breaking each year into 20 8-day win-
dows ranging from mid-May to mid-October and finding the mean ex-
tents within each window.

In WBLE, increases in cyanoHABs had previously been linked to nu-
trient loading and climate change (Stumpf et al., 2012; Michalak et al.,
2013). Using the MODIS Aqua cyanoHAB algorithm (described in the
Bio-optical model section) for imagery collected from 2002 to 2013,
Sayers et al. (2016) found that mean annual MCH and SSI extents
were significantly related to mean spring (March–June) discharge.
This analysis extended those comparisons to the longer 20-year
SeaWiFS/MODIS time series. Two dischargemetrics were used in deter-
mining this relationship. The first method was to use mean annual
spring (March–June) discharge (Q), consistent with historic discharge
modeling (Stumpf et al., 2012; Sayers et al., 2016). The second method
was to use half-weighted March–June discharge and add in fully
weighted July discharge only when the mean June water temperatures
were found to be above 20 degrees Celsius. This methodwill be referred
to asweighted discharge, orwQ. This discharge formulation comes from
Stumpf et al. (2016) and was found to more accurately predict bloom
severity. Sayers et al. found a significant linear relationship between dis-
charge andMCH and a significant cubic relationship between discharge
and SSI (Sayers et al., 2016). Stumpf et al. found that discharge and CI
were best modeled with an exponential model (Stumpf et al., 2012,
2016).

Mean daily discharge from the Maumee River was obtained from
USGS observations (http://waterdata.usgs.gov/nwis/) using station
04193500 at Waterville, Ohio. Monthly discharge data were derived as
the sum of the daily discharges. June water temperature was deter-
mined based on satellite imagery, averaging the surface water

temperatures of the southern section of the western basin as defined
in Stumpf et al. (2016) - south of the north end of Pelee Island (41.914
N) and west of Marblehead (82.741 W). Monthly SST data from 1998
to 2002 were generated from daily AVHRR data composited using the
GLSEA model (Schwab et al., 1999). For 2003–2017, MODIS Aqua
Level 3 Monthly 4 μ SST (downloaded from the NASA OceanColor data
portal) was used. Regression analyses between each discharge metric
and mean annual cyanoHAB and scum extents were performed in R to
determinewhich regressionmodel ismost explanatory andwhether ei-
ther discharge metric is an effective indicator of cyanoHAB extent.

Results

The Julian days of cloud free images for SeaWiFS (1998–2001) and
MODIS (2002–2017) are shown in Fig. 3 as black dots. The date at
which the water temperature exceeded and fell below 20 °C are identi-
fied as an X symbol on each line, with the left most and right most X
symbols representing the onset and end of 20 degrees respectively. In
some years (e.g. 2007, 2016) there are several images just outside of
the satellite observed 20 degree water temperature period. These
dates were included as buoy temperature measurements were still
above 20 degrees. Cloud free images are generally well distributed
throughout the cyanoHAB season, however, there are several periods
of prolonged cloud cover (e.g. September 2006, July 2013) that
prohibited the estimation of cyanoHAB extents in these periods. Typi-
cally, there were fewer quality images obtained for the SeaWiFS period
partially due to clouds as well as imperfect atmospheric correction.

The SeaWiFS-derived cyanoHABmapping products agreedwell with
the in situ observations (Table 2). CyanoHAB events were defined as re-
mote sensing derived pixel values and in situmeasurements with chlo-
rophyll concentration N 18mg/m3. Theoverall accuracy of 81% is slightly
lower than that obtained for the MODIS Aqua product (87% for MCH;

Fig. 3. Cloud free images (black dots) used to generate combined 20 year time series data set. SeaWiFS images were used from 1998 to 2001 and MODIS from 2002 to 2017. Also shown
(black X) are the 20 degree onset and offset dates established from satellite surface water temperature observations.
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Sayers et al., 2016). False positive and false negative classificationswere
equally frequent. Classification accuracy was lower when a cyanoHAB
was present (70%) than when absent (86%). Misclassified pixels tended
to be located near the edge of a bloom. There was no strong seasonal
trend in validation accuracy. This assessment confirms the suitability
of SeaWiFS for the MCH approach to cyanoHAB mapping.

At the pixel scale, the average similarity of the 89 date-matched
pairs of images was 89% (simple matching coefficient, SMC). There
was no significant relationship between SMC and the time difference
between MODIS Aqua and SeaWiFS collections (Pearson's r = −0.12,
n = 89, p = 0.28). This is in line with expectations given the similar
overpass times of SeaWiFS andMODIS Aqua for Lake Erie, and supports
the integration of SeaWiFS- and MODIS Aqua-derived cyanoHAB esti-
mates into a single time series.

At the basin scale, the weighted coefficient of determination (wR2)
and the rootmean squared error (RMSE) for theweighted linear regres-
sions of the mean basin wide bloom area date-matched pairs (n = 89)
indicated relatively strong agreement at 0.81 and 297 km2 respectively.
These uncertainty values are similar to those reported by Ho et al.
(2017) when comparing Landsat andMERIS cyanoHAB extents. The co-
efficient of determination (R2) and RMSE for annual maximum areas (n
=6)were 0.74 and 421 km2, respectively. The annualmaximum extent
RMSE (421 km2) between the SeaWiFS and MODIS observations was
approximately 14% of themapped area of the basin (2984 km2). This re-
sult is reasonable considering that the maximum extent observed by
each sensor may not have occurred on the same day, for example in
2002 the SeaWiFS maximum extent was observed on August 8th
while the MODIS maximum was on August 31st. The discrepancy be-
tween sensor observedmaxima are partially due to cloud formation be-
tween sensor overpasses or suboptimal viewing geometry of one
platform relative to the other as well as shoreline effects. While there
is no established threshold criteria to evaluate successful multi-sensor
ocean color product merger (IOCCG, 2007), the agreement (wR2) be-
tween SeaWiFS and MODIS cyanoHAB merged products identified in
this study is similar to those identified for other global ocean color prod-
uct mergers.

Finally, the SeaWiFS and MODIS Aqua products for the overlapping
2002–2007 years, described in the SeaWiFS and MODIS Product Inter-
comparison section, were compared based on the annual mean and
maximum cyanoHAB areas (Fig. 4, top panel) and surface scum areas
(Fig. 4, bottom panel). Trends inmean andmaximum annual cyanoHAB
area, as derived from the MCH algorithm, were very similar between
sensors, with a mean difference of 16% in overlapping years for both
metrics. Surface scum area showed more divergence between sensors,
with 68% and 64% difference in mean and maximum area, respectively,
in overlapping years. The greater disparity in scum areas between sen-
sors is potentially due to the difference in sensor spatial resolution (i.e.
MODIS is 250m and SeaWiFS is 1000m) and the difference in image ac-
quisition time (up to 1 h and 45 min). CyanoHAB surface scums are
highly dynamic in their vertical and horizontal distribution forming
patches which can quickly advect or mix down into the water column
making it problematic to observe similar spatial distributions over

short time-scales (Bosse et al., 2019; Lekki et al., 2019). The trends do
track fairly well between sensors for these metrics though, with the
only clear difference being the maximum scum extent in 2003 where
SeaWiFS maximum observed extent was almost two-fold greater than
that observed by MODIS.

Combining the SeaWiFS (1998–2001) and MODIS Aqua
(2002–2017) data into annual 20-year time series datasets, the mean
annual MCH cyanoHAB extent and maximum MCH annual cyanoHAB
extent trends along with linear fits and 95% confidence intervals were
calculated and are shown in Fig. 5. A significant linear relationship
was identified between year and mean annual extent (Fig. 5, left
panel, slope = 25.28, R2 = 0.34, p = 0.007), however, it is only
explaining 34% of the observed variability. The mean annual extent
was consistently between 200 and 500 km2 (representing between 7
and 17% of the WBLE) from 1998 to 2010; however, beginning in
2007, the mean extent displayed an upward trend, peaking in 2015
when the mean cyanoHAB extent exceeded 42% of the basin. Recent
years (2010–2017) have shown increased year-to-year variability
(Fig. 5, left panel), as indicated by the dramatic up and down cycling
of themean annual extents. Themean percent difference between con-
secutive annual extent pairs for the 1998–2009 period was 43.9% while
the 2010–2017 period was 75.8%, an approximate 76% increase in year-
to-year variability between the early (1998–2009) and more recent
(2010–2017) periods. The observed increase in inter-annual variability
is also evident from the large deviation inmean annual extents from the
95% confidence interval in 2012, 2013, and 2015. Regression model sta-
tistics are summarized in Table 3.

The maximum cyanoHAB extent (Fig. 5, right panel) has been con-
sistently and significantly increasing over the 1998–2017 period
(slope=57.7, R2=0.54, p b 0.001). Themaximumobserved cyanoHAB
extent has increased more than two-fold (linear trend predicted value
for 1998=802km2 and 2017=1899 km2) from1998 to 2017. Approx-
imately 54% of the observed variability inmaximumannual extent is ex-
plained by year, which is almost 60% more than for the mean annual
extent relationship (Fig. 5, left panel). The annual maximum extent
also showed significant variability, with five years (2003, 2005, 2007,
2011, and 2012) falling outside (both above and below) of the 95% con-
fidence interval. Regression model statistics are summarized in Table 3.

Trends in mean and maximum SSI extents were also derived from
the combined SeaWiFS and MODIS dataset and are shown in Fig. 6. A
significant linear relationship between mean annual SSI extent and
year was identified from the time-series data (Fig. 6, left panel, slope
=2.42, R2=0.39, p=0.003).While the trend is statistically significant,
large year-to-year variability is observed in the 2010–2017 period rela-
tive to the earlier years. The maximum scum extent is also increasing
significantly (Fig. 6, right panel, slope = 11.29, R2 = 0.39, p = 0.003)
throughout the 20 year period, however with large inter-annual vari-
ability similar to the mean annual scum extent. It is clear from Fig. 6
that large surface scums of cyanoHABs are becoming larger, on average,
in the western basin of Lake Erie.

In addition to significant interannual variability, satellite derived
cyanoHAB areal extents are highly variable within years (Fig. 7, left
panel). Intra-annual cyanoHAB variability (standard deviation of ob-
served bloom areas within each year) varied from 221 km2 to
633 km2with amean of 442 km2. Large intra-annual variability was ob-
served for both the early 1998–2010 period and the more recent
2011–2017 period indicating no discernible changes or trends in sea-
sonal variability across the combined 20 year time-series. Some of the
observed differences in intra-annual variability between years is the
product of a differing number of clear satellite observations (e.g. 13 im-
ages in 2001 and25 in 2015) aswell as the timingof available cloud-free
observations (e.g. 2001 had 3 August images and 2015 had 5 August im-
ages) while the remaining variability is likely due to seasonal variations
in bloom extent.

The seasonal variability of cyanoHAB extentwas examined using the
combined 20 year time series binned into 8-day composite values. Fig. 7

Table 2
Classification errormatrix for SeaWiFS-derivedMCH vs. in situ observations. The hybrid al-
gorithm agreedwith 116 out of 143 in situ observations for an overall accuracy of 81% and
Kappa coefficient of 0.57.

Field truth

HAB No
HAB

Total User's accuracy Commission
error

SeaWiFS HAB 33 13 46 72% 28%
No HAB 14 83 97 86% 14%
Total 47 96
Producer's
accuracy

70% 86% Overall
accuracy

81%

Omission error 30% 14% Kappa 0.57
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(right panel) shows the seasonal progression of cyanoHAB extent, de-
rived from the full 20-year data record. This progression shows gener-
ally small cyanoHAB extents (b300 km2) May through June (Day
120–180), followed by a steady increase from mid-July (Day 195)
until the cyanoHAB area peaks in mid- to late-September (Day
255–270) and then begins to decline until the end of the season.

Variability in extent is evident in each of the 8-day periods with greater
variance (453 km2) occurring once the bloomhas initiated (i.e. after day
200) relative to pre-initiation variance (185.5 km2).

The spatial and temporal extent of cyanoHABsduring the 20 year pe-
riod in the western basin can be easily examined with the use of heat
maps. A heat map is simply the frequency of occurrence of cyanoHABs

Fig. 4. Comparison ofmean andmaximumannual cyanoHAB areas based on theMCH (top panel) and surface scum areas based on the SSI (bottompanel) in theWestern Basin of Lake Erie
for SeaWiFS (1998–2007) and MODIS Aqua (2002–2017).

Fig. 5. (left panel) Annual mean cyanoHAB extent (km2) from the MCH with a linear best fit line (slope = 25.28, R2 = 0.34, p = 0.007) and 95% confidence interval shaded in grey and
(right panel) annualmaximumcyanoHAB extentwith a linear best fit line (slope=57.7, R2= 0.54, p b 0.001) and 95% confidence interval shaded in grey. Points from 1999 to 2001 come
from the SeaWiFS sensor; points from 2002 to 2017 come from the MODIS Aqua sensor.
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within each pixel for a given year. Fig. 8 presents annual heat maps for
the 1998–2017 period. These annual maps show the increasing extent
of cyanoHABs across the basin aswell as their spatial patternswhich ap-
pear to be focused around the mouth of the Maumee River and extend
east along the southern edge of the lake while rarely traveling north
into the outflow of the Detroit River. The SeaWiFS period
(1998–2001) heat maps all show large areas where no cyanoHAB was
observed (shown black) within a given year. With the exception of
2007, the large area of cyanoHAB-free water in the western basin has
dramatically decreased since 1998, with 2017 exhibiting only 5% per-
cent of the basin as free of cyanoHAB.

Simple heat maps can illustrate the cumulative occurrence of
cyanoHABs across the basin over the combined 1998–2017 time series
(Fig. 9). The total cyanoHAB heat map (Fig. 9 top panel) is comprised
of both water column mixed (MCH) and surface scum (SSI) mapped
pixels and represented in weeks of occurrence. The most frequent
cyanoHAB occurrences are concentrated in theMichigan andOhio near-
shore areas extending approximately 12–16 km into the basin. Signifi-
cant occurrences (8–16 weeks) are also observed extending outward
to the middle of the basin and amongst the island archipelago to the
east. Very few (b4 weeks) cyanoHAB occurrences were detected in the
proximity of the Detroit River plume (light and dark blue). The surface
scum heat map demonstrates the very limited temporal and spatial ex-
tent of these events in the western basin during the 1998–2017 period
(Fig. 9 bottom panel). Surface scums were prevalent (N8 days) in the
mouth of the Maumee River extending just up the Michigan and Ohio
shorelines. There was also significant occurrence of scums near the
islands in the middle and eastern end of the basin possibly due to in-
creased accumulation from prevailing winds and underlying currents.
Interestingly, there are very few scum occurrences along the southern
shore of the basin just north of Sandusky Bay which is in contrast with
the total cyanoHAB cumulative distribution that shows wide-spread
presence. Finally, very few scum forming blooms are observed in the
northern half of the basin in the vicinity of the Detroit River outflow.

In order to better understand drivers controlling mean annual
cyanoHAB extent, several previously definedmetrics of mean spring dis-
charge for the Maumee River as well as fit types were compared to an-
nual MCH and SSI values for the Western Basin of Lake Erie for
1998–2017 period. In all cases themeanweighted spring dischargemet-
ric, wQ, (Stumpf et al., 2016) produced more significant relationships
with cyanoHAB extent than the mean March–June discharge metric, Q
(MCH linear – wQ p = 0.01, Q p = 0.019; MCH exponential - wQ p =
0.002, Q p= 0.009; SSI cubic –wQ p b 0.001, Q p= 0.004, SSI exponen-
tial –wQ p=0.002, Q p= 0.011). The relationships between cyanoHAB
extents andwQ are shown in Fig. 10. A significant linear relationshipwas
found between wQ and MCH (y = 1.53x + 64.14, p = 0.01, R2 = 0.27;
Fig. 10, top left panel).While significant,wQonly explains 27% of the var-
iance inmean annualMCH extent due in part to the two extremely large
extent years in 2013 and 2015. A significant exponential fit betweenwQ
and MCH annual extent was also identified (y = 165.92 ∗ 100.022X, p =
0.002, R2 = 0.39; Fig. 10, top right panel). The exponential model is bet-
ter than the linear model for predicting MCH annual extent, however, it
was still only able to capture 39% of the variance again in part due to the
large 2013 and 2015 events. Model equations and statistics are summa-
rized in Table 4.

The wQ discharge metric was also able to predict mean annual SSI
extent. A significant cubic relationship was observed between wQ and
annual SSI (y = 0.002x3 + 0.09x2 − 3.11x + 25.92, p b 0.001, R2 =
0.71; Fig. 10, bottom left panel). An exponential relationship was also
identified between wQ and annual SSI (y = 1.84 ∗ 100.047X, p = 0.002,
R2 = 0.45; Fig. 10, bottom right panel). The cubic model explains
more of the variance in annual SSI extent than the exponential model
(cubic R2=0.71, exponential R2=0.45). The cubicmodel is able to pre-
dict the two largest SSI extent events in 2011 and 2017 better than the
exponential model which underestimates both years. The slightly nega-
tive trend in the cubic model from 5 to 10 wQ is likely unrealistic and
simply an artifact of small extent variability in the lowest three observa-
tions. Model equations and statistics are summarized in Table 4.

Discussion

This study documents the development and validation of thefirst re-
ported cyanoHABmonitoring product generated from the SeaWiFS sen-
sor and the intercomparison with the MODIS cyanoHAB distribution
product for Lake Erie. Modification of cyanoHAB/phytoplankton map-
ping algorithms for different remote sensing platforms and inter-
comparisons of their results is not new for Lake Erie. Wynne et al.
(2013) modified the Cyanobacteria Index (CI) for application with

Table 3
Linear regression statistics for the 20-year time series mean and maximumMCH and SSI
annual extents.

Extent Slope R2 p-Value

Mean MCH 25.28 0.34 0.007
Maximum MCH 57.7 0.54 b0.001
Mean SSI 2.42 0.39 0.003
Maximum SSI 11.29 0.39 0.003

Fig. 6. (left panel) Annualmean scumextent (km2) from the SSIwith a linear best fit line (slope=2.42, R2=0.39, p=0.003) and 95% confidence interval shaded in grey and (right panel)
annual maximum scum extent with a linear best fit line (slope = 11.29, R2 = 0.39, p = 0.003) and 95% confidence interval shaded in grey. Points from 1999 to 2001 come from the
SeaWiFS sensor; points from 2002 to 2017 come from the MODIS Aqua sensor. The linear fits in the figure are not intended for scum area prediction.
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MODIS and showed generally good agreement between basin-wide
cyanoHAB distributions. This modification allowed for a longer time-
series (2002–2015) to be used to generate theNOAA cyanoHAB forecast
model currently in operation (Stumpf et al., 2016). Similarly, Ho et al.
(2017) evaluated multiple Landsat 5 algorithms to estimate phyto-
plankton blooms and compared the results with those obtained from
the MERIS and MODIS CI products. The Landsat 5 inter-comparison
allowed for a longer phytoplankton bloom time record (1984–2015)
to be developed which was further used to explore the interaction of
long-term internal loading of dissolved reactive phosphorus (DRP)
and annual spring loadings to better predict phytoplankton blooms in
western Lake Erie (Ho et al., 2017). While the Landsat data integration
allows for amuch longer time-series, the 16-day revisit time in conjunc-
tion with frequent cloud cover limit its ability to provide seasonal vari-
ability as well as robust uncertainties in annual extents. Prior to this
study, SeaWiFS has not been used to map or monitor cyanoHAB pres-
ence in the Great Lakes. Other researchers have previously used
SeaWiFS data to extend cyanoHAB observations in other water bodies
throughout the world (Miller et al., 2006; Kahru et al., 2007; Kahru
and Elmgren, 2014) to improve understanding of long-term environ-
mental changes. Results from these studies indicated the added value
of including SeaWiFS data in long-term monitoring of cyanoHAB distri-
butions, strongly suggesting similar value would be expected from its
application in Great Lakes water bodies. Incorporation of daily revisit
SeaWiFS data into the time series extends the previously derived
MODIS record (2002–2013; Sayers et al., 2016) back to 1998 providing
more robust annual and seasonal observations to better understand
how cyanoHAB dynamics have changed over the past 20 years. This
new dataset clearly augments those cyanoHAB products previously de-
veloped for Lake Erie (Stumpf et al., 2012, 2016; Sayers et al., 2016; Ho
et al., 2017).

The annual trends generated by the new SeaWiFS/MODIS integrated
cyanoHAB extent products are similar to those produced by prior inves-
tigators that used theMERIS sensorwhich has beenwell documented to
produce robust cyanoHAB estimates (Stumpf et al., 2012; Wynne et al.,
2013). There are several differences in the methodologies that can lead
to different results, however. The Cyanobacteria Index (CI) uses MERIS
spectral bands located at 665, 681, and 709 nm to relate the spectral
shape in this wavelength region to abundance of cyanobacteria
(Gower et al., 1999;Wynne et al., 2008). In the case of high phytoplank-
ton/cyanobacteria biomass, particulate scattering (possibly enhanced
due to cyanobacteria cell structure) begins to overwhelm the signal
from pure water absorption in the red edge spectral region forming a
peak at ~709 nm while phycobilipigment fluorescence overwhelms
chlorophyll-a absorption to form a peak around 665 nm (Matthews

et al., 2012). These two peaks formed on both sides of the Q-band
chlorophyll-a absorption feature (~675 nm) form a trough in reflec-
tance at approximately 681 nm. The depth of this trough relative to
the surrounding peaks is the basis for the CI estimation of cyanobacteria
abundance. Because of the cyanobacteria particle scattering and
phycobilipigment fluorescence dominance of this spectral response
and the strong absorption by pure water, the CI requires a moderate
presence of biomass before positive identification is achieved. For ex-
ample, Rowe et al. (2016) related the CI low level of detection to ap-
proximately 23 mg/m3 of chlorophyll-a. The MCH method used in this
study is a full spectrum (412–667 nm) inversion model that takes into
account both scattering and absorption processes to retrieve
chlorophyll-a concentrations which are then empirically related to the
cyanobacteria phycobilin pigment phycocyanin (Sayers et al., 2016).
The MCH was shown to be able to empirically estimate phycocyanin
when chlorophyll-a concentrationswere N18mg/m3. Therefore, the dif-
ference between CI andMCH extent values may be related to the differ-
ence in each algorithm's low level of detection of chlorophyll-a biomass
that in some cases can result in differences in the retrieved biomass/area
of cyanoHAB blooms at very low concentrations that can be observed
during the bloom initiation period.

Another unique aspect of this study is the generation of the
cyanoHAB surface scum extent 20-year “heat map” which depicts
areas experiencing intense blooms that have been associated with
very high toxin levels making them a particularly high concern for pub-
lic health (Bartram and Rees, 1999). Scums can form and dissipate rap-
idly with the shifts in prevailing wind and waves (Paerl and Ustach,
1982; Wynne et al., 2013; Rowe et al., 2016; Bosse et al., 2019 this
issue) making them difficult to track and characterize with in situ mea-
surements. The SSI approach used in this study makes use of the signif-
icant near-infrared scattering of surface algal mats to identify their
presence from satellite sensors. Using the SSI to characterize scum oc-
currence for the 20-year time series identifies areas where scums are
most often located. As expected, scums were common in the mouth of
the Maumee River where very shallow waters, shelter from prevailing
winds, and injection of critical nutrients occur. Significant scum occur-
rence was also identified around the islands with the most significant
accumulations on the west ends that corresponds to the direction of
the prevailing summerwinds (from the southwest). These observations
suggest scums can be formed as wind driven currents advect near-
surface particles, which rapidly accumulate as they are pushed into
the island shorelines. Underlying currents and surface winds may also
be responsible for the observation that scum “hot spots” do not match
those identified for the total cyanoHAB extent (cellsmixed in the optical
depth sampled from satellite remote sensing). For example, Bosse et al.

Fig. 7. left panel, Mean total cyanoHAB extent (floating and nonfloating) over the 20-year data record inWestern Basin Lake Erie plottedwith standard deviation errors. right panel, Mean
8-day seasonal pattern of total cyanoHAB extent in Western Basin Lake Erie, plotted with standard deviation error bars.
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(2019, this issue) suggested surface accumulations of high biomass
cyanobacteria were more frequent in deeper waters under low wind
conditions; whereas, shallower areas (b3 m) were more often well
mixed under similar conditions. In this scenario, persistent high bio-
mass blooms in shallow waters may often be well mixed which can be
identified with theMCH but not SSI. This may be why the large shallow
(2–6m) area along themiddle of the southern shoreline shows frequent

blooms with MCH (Fig. 8) but essentially no scum occurrences (Fig. 9)
over the 20-year period. Identification of scum “hot spots” is a new
and unique aspect of this study that was previously unreported and
will be particularly useful for regionalwatermanagers aswell as for eco-
system modeling.

Annual cyanoHAB extents derived from the new 20-year integrated
dataset reinforces the prevailing assumption that cyanoHABs are

Fig. 8. Frequency of occurrence annual heat maps of cyanoHAB presence for the 1998–2017 period. Areas of more frequent occurrence are shown in warmer colors while areas of no-
occurrence are shown in black. Data from 1999 to 2001 come from the SeaWiFS sensor; data from 2002 to 2017 come from the MODIS Aqua sensor.
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getting worse in Lake Erie. Multiple investigators have used remote
sensing and in situ sampling data to determine that cyanoHAB extents
are becoming larger and more prevalent in Lake Erie (Stumpf et al.,
2012; Bridgeman et al., 2013; Michalak et al., 2013; Wynne and
Stumpf, 2015; Sayers et al., 2016; Stumpf et al., 2016). For example,
Stumpf et al. (2012), using MERIS data, showed maximum bloom
areas were larger in 2008, 2009, and 2011 than previous years back to
2002. These observations were updated by Stumpf et al. (2016) using
the merged MERIS and MODIS CI products which identified very large
blooms in 2013 and 2015. Similarly, Sayers et al. (2016) also identified
greater mean annual cyanoHAB extent in 2011 and 2013 for the west-
ern basin of Lake Erie. Finally, Bridgeman et al. (2013) noted from in

situ observations that the 2011 bloom was 29 times larger than the
smallest bloom recorded since 2002.

The addition of the 2016 and 2017 annual cyanoHAB extents pre-
sented in this study showed the continuation of the cyclical pattern in
extents that began between 2010 and 2011. This pattern has been evi-
dent and increasing where, until 2017, every other year saw a new
“all-time record” cyanoHAB extent. The down years between the
peaks were also increasing at a relatively continuous rate, indicating
even the so called “down” (relative to the previous year) cyanoHAB
years (2012, 2014, 2016) are increasing in mean annual extent. More-
over, this study shows the substantial linear increase in maximum
cyanoHAB extent throughout the time-series suggesting that even if
the mean annual extent is not large there is a high probability of a
very large bloom occurring for at least some period of time within
each year moving forward. These results would agree with the conclu-
sions of other researchers (Obenour et al., 2014; Matisoff et al., 2016;
Watson et al., 2016; Ho and Michalak, 2017) that suggest other factors
beyond spring phosphorus loading are driving the increase in blooms
observed since 2010.

The new 20-year fused cyanoHAB time series allows for the evalua-
tion or re-formation of predictive models in the face of changing envi-
ronmental and meteorological drivers. While previous models have
allowed for general predictions, our analysis suggests that much vari-
ability is still unaccounted for and future predictions based on these
simple models need to be used with caution. Stumpf et al. (2012) re-
ported the first cyanoHAB prediction model that established an expo-
nential relationship between Maumee River spring discharge and CI-
derived abundance from the 2002–2011 period. Sayers et al. (2016)
found similar significant relationships between spring discharge and
mean annual total and surface scum extents, respectively for the
2002–2013 period. This study found the 20-year time-series extent
data to generally agree with the mean spring discharge models of
Stumpf et al. (2012) and Sayers et al. (2016), butwith greater deviations
(and less predictive power) observed in larger outlier bloom years
(2013 and 2015). This study also showed better prediction of extents
using the wQ, the weighted discharge metric suggested by Stumpf
et al. (2016); however, there was still a significant amount of unex-
plained variance suggesting that spring discharge alone is of limited
prediction power for very large bloom extents. Stumpf et al. (2016) dis-
cusses the unique set of conditions, including bloom initiation location
and high turbidity, which possibly resulted in the large outlier bloom
in 2015 thatwas notwell predicted by discharge alone. This observation
is in agreement with the finding of Sayers et al. (2016) that the annual
frequency of sediment re-suspension events have some power to pre-
dict large cyanoHAB blooms.

Observed variance in the weighted discharge, wQ, prediction of the
20-year time series data is also possible due to the inherent difference
in modeled metrics of annual cyanoHABs. The NOAA operational fore-
cast (Stumpf et al., 2016) is built upon a predictive model using dis-
charge to estimate cyanoHAB biomass (summation of individual
image pixel CI values) and not areal extent where the new 20-year
time series data are estimates of areal extent regardless of biomass.
The twometrics provide different information as there is the possibility
to achieve a single basin-wide biomass value from either a spatially lim-
ited bloom of very high biomass or a large spatial bloomof low biomass.
The new integrated SeaWiFS/MODIS extent products provide a comple-
mentary dataset (to the NOAA CI product) to approach annual
cyanoHAB predictions.

Conclusions and recommendations

This new extended 20-year time series for theWestern Basin of Lake
Erie providesmore quantitative support for thewidespread observation
that cyanoHABs have becomemore severe (larger and longer lasting) in
recent years, beginning in the mid-2000s and accelerating after 2010.
Comparison of the SeaWiFS and MODIS Aqua products at the pixel,

Fig. 9. Cumulative frequency of occurrence heat maps of total cyanoHABs (top) and
surface scum (bottom) for the 1998–2017 period. Warmer colors indicate more
frequent occurrence.
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daily, and annual scales confirm that the imagery from these two sen-
sors was successfully fused into a single, consistent time series. Includ-
ing SeaWiFS imagery from years prior to the launch of MODIS Aqua
demonstrated that these earlier cyanoHAB events were smaller than
in later years but spatially similar, with the most persistent and intense
blooms located in Maumee Bay and along the southern shore of the
basin with very little activity in the Detroit River outflow. Looking at
the cumulative occurrence map for the 20-year time series (Fig. 9),
only the plume of Detroit River water in the northwest corner of
WBLE has consistently remained cyanoHAB-free.

This 20-year time series demonstrates the complexity of relating
cyanoHABs extent and duration to simple drivers such as river dis-
charge. The 20-year record, which includes 8-day seasonal composites,
can be used to further quantify the effect of other drivers including

meteorological conditions, resuspension events, land cover changes,
and agricultural practices on cyanoHABs extent and duration.

TheMCH/SSI method could be further adapted for usewith the CZCS
imagery of Lake Erie collected from 1979 to 1987, providing better his-
torical context for Lake Erie. This extends to the time period pre-mussel
invasion and thus could allow for the quantification of the impact of
thesemussels on cyanoHAB events. Themethod could also be extended
spatially, given that some Lake Erie cyanoHABs in recent years have ex-
tended into the central basin of the lake. Finally, the sediment plume
maps incidentally produced as part of the MCH could be developed
into their own time series to better understand variations in erosion
and sediment load in the Maumee River.
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