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Communicated by Caren Binding

The Kent State University (KSU) spectral decomposition method provides information about the spectral signals
present in multispectral and hyperspectral images. Pre-processing steps that enhance signal to noise ratio (SNR)
by 7.37–19.04 times, enables extraction of the environmental signals captured by the National Aeronautics and
Space Administration (NASA) Glenn Research Center's, second generation, Hyperspectral imager (HSI2) into
multiple, independent components.We have accomplished this by pre-processing of Level 1 HSI2 data to remove
stripes from the scene, followed by a combination of spectral and spatial smoothing to further increase the SNR
and remove non-Lambertian features, such aswaves. On average, the residual stochastic noise removed from the
HSI2 images by this method is 5.43 ± 1.42%. The method also enables removal of a spectrally coherent residual
atmospheric bias of 4.28 ± 0.48%, ascribed to incomplete atmospheric correction. The total noise isolated from
signal by the method is thus b±7% based on analysis of multiple swaths. The method is essentially independent
of the order of operations, extracting the same spectral componentswithin error in all cases, spatial patterns that
are very similar and explaining nearly identical amounts of information from each image. Based on comparison
between multiple swaths the uncertainty in the variance associated with each component averages ±1.69% and
is as low as ±0.08% and in all cases b±3.15%.
© 2019 The Authors. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:
Hyperspectral remote sensing
NASA Glenn HSI2
Spectral decomposition
Unsupervised classification
Cyanobacterial harmful algal blooms
PACE

Introduction

The Lake Erie cyanobacterial and harmful algal bloom (CyanoHAB)
monitoring program lead by the NASA Glenn Research Center (Lekki
et al., 2017) has been developing hyperspectral and multispectral
methods to assess the extent and severity of the perennial toxic
cyanobacterial bloom that develops in the Western Basin of Lake Erie.
The backbone of the program is the airborne NASA Glenn Research
Center's second generation Hyperspectral imager (HSI2) sensor. This
paper discusses an analytical approach employed to maximize the in-
formation that can be extracted from scenes of these optically complex
waters. We present an analysis of several effective pre-processing steps

used with the Kent State University (KSU) spectral decomposition
method, which enhance the signal to noise ratio (SNR) of the
hyperspectral data to produce a Level-2 product that differentiates
various classes of color producing agents.

Over the years, optically complexwaters have proven tobe challeng-
ing environments for remote sensing of algal and cyanobacterial
pigments (Bullerjahn et al., 2016). Extraction of high quality signal
from these waters is important due to the growing concerns from
CyanoHABs; (Bullerjahn et al., 2016). The challenges to visible remote
sensing in coastal and inland waters arise from clouds, which obscure
signal (Martin, 2014), mixed pixels (Raychaudhuri, 2012,
Khodadadzadeh et al., 2014), difficulties with atmospheric correction
(Gao et al., 2006), adjacency effects (Houborg and McCabe, 2017) and
interference from bottom reflection (Brando et al., 2009; Eugenio
et al., 2015). While bottom reflectance can be integrated into water
leaving reflectance for some shallow areas, the high turbidity in Lake
Erie results in Secchi depths on the order of 0.1 to 2 m, which are
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significantly less than the water depth in most cases, minimizing this
potential source of error in this environment.

Another general source of error which has received less attention, is
the strong intercorrelation of reflectance bands in the visible wave-
length range. This behavior has been observed in large lakes using
bothmultispectral (Ali et al., 2014; Ali et al., 2016) andhyperspectral in-
struments (Ortiz et al., 2013). This problem, known asmulticollinearity,
often leads to violation of a fundamental statistical rule by treating cor-
related, multivariate datasets with approaches that assume indepen-
dent input variables (Kachigan, 1991; Smith, 2002; Shlens, 2014).
Algorithms that unmix signals based on spectral shape (e.g., Palacios
et al., 2015; Kudela et al., 2015; Soja-Woźniak et al., 2017), provide
one way to deal with the issue of multicollinearity in multispectral
and hyperspectral datasets.

The approach employed here, the KSU spectral decomposition
method uses varimax-rotated, principal component analysis (VPCA),
an eigenvalue-eigenvector decomposition to partition an image hyper-
cube into independent signals generated by the underlying color pro-
ducing agents that influence the scene (Ortiz et al., 2013; Lekki et al.,
2017; Ortiz et al., 2017). The method is an unsupervised soft classifica-
tion technique that makes use of all the coherent, linearly-correlated,
spectral information present (Ortiz et al., 2017). Thismethod is a variant
of the principal component analysis (PCA) approach formalized by
Preisendorfer and Mobley (1988). The varimax rotation simplifies the
eigenvectors (referred to as component loadings) by finding the inde-
pendent or orthogonal solution with the greatest separation between
the large and small loadings (Kaiser, 1958). That stepmakes the compo-
nent loadings easier to interpret (Kaiser, 1958). The communality pro-
vides a measure of the variance retained in the model on a band by
band basis. The component loadings,which account for known fractions
of variance in the image are then used to generate maps (component
scores) that document the spatial distribution of each component. A
full description of the theory and computation behind the KSU spectral
decomposition method is discussed in detail in the electronic supple-
mentary material (ESM) Appendix S1.

The objectives of this manuscript are to explore the sensitivity of the
KSU spectral decomposition method to the presence of stripes and
bands, to the order of operations during processing and to its reproduc-
ibility. Thepre-processing steps are evaluated by applying the KSU spec-
tral decomposition method to several HSI2 image swaths. The KSU
spectral decomposition method has been applied to both multispectral
(Lekki et al., 2017) and hyperspectral images (Ortiz et al., 2017). An-
other paper in this issue demonstrates that we can extract multiple
components from multispectral Moderate Resolution Imaging
Spectroradiometer (MODIS) images (Avouris and Ortiz, this issue).
Documenting the reproducibility of the method demonstrates its appli-
cability for use with data from coastal and inland waters that could be
imaged by proposed orbital hyperspectral missions such as the Plank-
ton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, or a Surface Biol-
ogy andGeologymission sensor as called for in theNASAdecadal survey
(National Academies of Sciences, Engineering, and Medicine, 2018).
When these orbital tools are deployed, they will create the opportunity
for enhanced estimation of pigment-related biomass and new capabili-
ties to identify algal and cyanobacterial composition based on extraction
of pigment-related components by visible derivative spectroscopy as
described here.

Striping and banding in the raw HSI2 swaths

Linear image artifacts, such as stripes or streaks - single pixel-wide
features - and bands - multiple pixels-wide features - degrade remote
sensing image quality (USGS Landsat 8 Users Handbook, 2016). Linear
stripes or bands can occur across all wavelengths or be isolated to a sin-
gle spectral band (Bouali, 2010). The orientation of the stripes or bands
in the raw image varies depending on their origin and is determined by
the sensor characteristics (USGS Landsat 8 Users Handbook, 2016).

Whisk-broom sensors (e.g., MODIS, Landsat 7 Enhanced Thematicmap-
per Plus (ETM+), Landsat 4–5 Thematic Mapper (TM), or Landsat 1–5
Multispectral scanner (MSS)) sensors produce horizontal, cross-track
stripes and bands (Antonelli et al., 2004; Bouali, 2010), while push-
broom sensors (Landsat 8 and the NASA Glenn HSI2) produce vertical,
along-track stripes and bands (Barsi et al., 2014).

These artifacts can hamper the extraction of environmental compo-
nents by VPCA because they introduce systematic bias that can swamp
much or all the true environmental variance signals. This biasmanifests
as principal components that exhibit strong regular along-track or
cross-track patterns related to the measurement geometry of the
image. These geometric bias patterns, if present, may be expressed as
a variety of features that can either dominate or become convolved
with the environmental signal. Thus, unless stripes and bands are re-
moved (as is standard procedure) during image pre-processing prior
to spectral decomposition, it may only be possible to extract the domi-
nant component from the raw, striped image, or the environmental
components may only explain a fraction of the total variance in the
image. Exploring these issues here is useful, because VPCA is a relatively
novel procedure in water quality applications (Ortiz et al., 2013; Lekki
et al., 2017; Ortiz et al., 2017).

Single pixel wide stripes arise from relative gain variations associ-
ated with individual detectors (USGS Landsat 8 Users Handbook,
2016). Sensor Chip Assemblies (SCA) are focal plane arrays (Kean
et al., 2012; Schultz et al., 2014) made of multiple detector chips seg-
mented in a staggered array pattern (to allow cross-track overlap)
with as many as needed to cover the sensor cross-track field-of-view
(FOV). A monolithic focal plane (such as with the NASA Glenn HSI2) is
one in which a single SCA covers the entire FOV (Lekki et al., 2017).
The presence of banding and striping is due to a number of contributors,
including inadequately characterized differential non-linear responses
among detectors (often referred to as “residual photo-response non-
uniformity”); poorly characterized parameters for relative gain, and
bias (often referred to as “dark-current non-uniformity”); as well as
non-linearity, drift, or instability in gain and bias, or spectral differences
across or between SCAs. These potential contributors to striping and
banding are described in the USGS Landsat 8 (L8) Users Handbook
(2016) and are applicable to a variety of sensors.

Inmultispectral sensors, banding generally results from variations in
output between detector modules (SCAs) on the focal plane (Markham
et al., 2008). Landsat 8 has 14 modules and relative gain variations be-
tween the modules create banding (USGS Landsat 8 Users Handbook,
2016). The NASA Glenn HSI2 sensor has a monolithic focal plane detec-
tor over the entire FOV so this source of banding is not present in HSI2
data (Lekki et al., 2017). In the HSI2, spectral calibration changes (shifts
in detector wavelength) between laboratory calibration and flight oper-
ations cause striping and banding (Lekki et al., 2017). In imaging spec-
trometers, the diffraction grating efficiency is wavelength dependent
and can vary significantly over small wavelength intervals especially
for blazed gratings (Palmer and Loewen, 2005). With a spectral shift
after radiometric calibration, the transmission throughput of the spec-
trometer shifts, which can effectively change the relative gain between
adjacent detectors or groups of detectors (Eismann, 2012).

Stripes and bands that are present only in a single wavelength band
are referred to as spatial striping in images from linear detector arrays
(whisk-broom or push-broom). Spectral striping can arise from spec-
trally dependent relative bias or gain drift by individual detectors at
the same spatial location, but in different bands. This results in a calibra-
tion drift of band ratios, which is common inmultispectral systemswith
multiple focal plane modules (USGS Landsat 8 Users Handbook, 2016).
Although this mechanism is not applicable to the NASA GlennHSI2 sen-
sor due to the system design, biases can still occur. Besides detector re-
sponse drifts, an additional source can be the application of processing
to correct for atmospheric effects. Because of wavelength calibration
drift and errors in knowledge of the sensor's spectral response and at-
mospheric spectral structure, residual atmospheric noise between
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spectral bands can be introduced. Spectral striping is more difficult to
remove than spatial striping, but can be achieved through spectral
polishing methods (Schott, 2007). However, the process presented in
this paper addresses only the issue of spatial striping.

Our goal is to perform a relative gain correction, which will correct
for detector-level non-uniformity response. This relative gain correction
can be referred to as detector equalization or flat-field correction. The
HSI2 processing by NASA Glenn on Level 1 data prior to the work pre-
sented here performs a flat-field correction by taking the ratio of a
raw image collected inflight with a pre-measured image of the calibra-
tion sphere that converts the raw digital numbers (DN) to radiance
(Lekki et al., 2017). This calibration image is collected at the beginning
of the campaign season. The striping that remains and that we seek to
correct is the result of drift or non-linearity in individual detector re-
sponses that arise after the integrating sphere image was collected.

Because striping originates at the detector level, all destriping pro-
cessing must be applied prior to any pixel resampling, which includes
band to band registration on multispectral and hyperspectral systems
during geo-rectification. Resampling thus makes a pixel value depen-
dent on the response of multiple adjacent detectors, convolving any
striping that is present into the georectified image. Such an image may
not display visible stripes when viewed as reflectance due to the
smoothing inherent in the georectification, but stripes may manifest

when calculating a derivative or when applying the KSU spectral de-
composition method.

Methods

We analyze four Level 1 hyperspectral HSI2 swaths, which were
flown over water in the western basin of Lake Erie (Fig. 1). The naming
convention for swaths, which consists of the instrument name, date,
and location tag is as defined in Ortiz et al. (2017). The swathswere col-
lected on 21 June 2016 within a span of 26 min over Maumee Bay State
Park (MBSP), Toledo, OH (Fig. 1). The proximity of the swaths in time
and space provides useful information about the reproducibility of the
HSI2 images and the VPCA extraction procedure. To optimize the
order of operations during processing and document the correction pro-
cess, we focused on NASA HSI2 062116 Swath 15_MBSP, which has the
lowest noise fraction of the four swaths.

All image processing is conducted in the Harris Geospatial ENVI/IDL
(version 5.3) environment starting with NASA Glenn Level 1 processed
HSI2 data, which has been converted to radiance, but which has not yet
been georectified. The details of the NASA Level 1 image processing are
found in the NASA Technical Report 2017-219071 (Lekki et al., 2017).
NASA HSI2 Level 1 imagery is acquired in 496 pixel-wide swaths, of
varying lengths, depending on the flight path of the aircraft. The

Fig. 1. The geographic location of the HSI2 swaths collected on June 21, 2016 over Maumee Bay State Park.

Fig. 2. Flow chart describing the processing steps employed in this study.
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imagery has a spectral resolution of ~3 nm from 395 nm to 900 nm (170
bands). Ground resolution is dependent on flight speed and elevation
and varies from ~3 m2–6 m2.

The HSI2 sensor has a nominal spectral sampling resolution of
~3 nm, and a laboratory SNR at 532 nm of 1000:1 (Lekki et al., 2017).
We have further enhanced the field SNR by pre-processing of Level 1
HSI2 data to remove stripes from the scene, followed by a combination
of spectral and spatial smoothing to increase the SNR and remove non-
Lambertian features, such as waves from the images. Ortiz et al. (2017)
addressed the impact of various atmospheric correction approaches on
spectral signals and spatial patterns that can be extracted from
hyperspectral images using the KSU spectral decomposition method.
This work provides a useful assessment of how these standard pre-
processing steps influence the quality of the results that can be ex-
tracted by VPCA.

Order of operations tests

In the following sections, the impact of the key processing steps is
discussed. Following strip removal, the results of the VPCA could de-
pend to some extent on the order of operations of the other pre-
processing steps applied to increase the SNR ratio. These consist of the
radiance to reflectance transformation, which removes atmospheric
contamination, and spectral and spatial smoothing operations. To deter-
mine how sensitive the results were to the order of operations, we ana-
lyzed swath 062116 Swath 15_MBSP multiple times, altering the order
of operations of the various processing steps for four different cases
(Fig. 2). In each of the four cases, the initial and final processing steps
were identical. During analysis, the image was processed using the
steps described in the analysis flowchart (Fig. 2). The following subsec-
tions discuss the various processing steps.

Destriping procedure for HSI2 images

One of two standard, ENVI stripe removal tools was used to destripe
the images. The “Spectral Processing Exploitation and Analysis Resource
(SPEAR) Vertical Stripe Removal tool” is designed to remove along-track
features generated by push-broom sensors, while the horizontal
DESTRIPE algorithm in the Raster Data Management package is de-
signed to remove cross-track features in whisk-broom sensors. Both

tools require Level 1 data, which have not been georectified for process-
ing. The destriping tool in the Raster Data Management package re-
quests the number of detectors used to collect the scene as input and
would for our application require that the HSI2 scene be transposed
prior to analysis given the orientation of the level 1 image.

The SPEARVertical Stripe Removal tool asks for the percentage of the
image radiance histogram outliers to be masked during the correction
process. This information is used as the threshold outliermask. Unfortu-
nately, the details of the algorithm function are proprietary and not re-
ported by Harris Geospatial as noted in the help file for the tool.
However, we make some inferences on the likely nature of the tool
below in the discussion section based on its required inputs and the
resulting output. Per the published Harris Geospatial description of
this tool in the ENVI documentation, it is effective on relatively homoge-
neous scenes, and is not intended to be applied to imagery with both
bright land anddarkwater pixels. This does not pose a serious limitation
for ourwork, because in this applicationwe are exclusively interested in
thewater portion of the image. Although beyond the scope of this study,
enhancements to the tool that would allow it to address heterogeneous
brightness would generalize its use and likely improve its handling of
adjacency issues.

To evaluate the effectiveness of strip removal, the level of striping or
banding in the swaths can be quantified using a streakingmetric such as
defined in the Landsat 8 Operational Land Imager (OLI) requirements
document (Markham et al., 2008). Accordingly, the swaths were
cropped to remove land from the scene (Fig. 3b) to provide the SPEAR
Vertical Stripe Removal tool with a relatively uniform radiance field.
Themagnitude of stripingwas then evaluated by quantizing the relative
detector-to-detector uniformity forHSI2 band 46 as described in theOLI
requirements document (NASA, 2009; USGS Landsat 8 Users Handbook,
2016). Themean radiance in each band, i, and adjacent bands (columns i
− 1 and i + 1) were compared by calculating the streaking metric, Si,
using:

Si ¼
Li−1�

2ðLi−1 þ Liþ1Þ
��� ���

Li
; ð1Þ

where, Li, Li−1 and Liþ1 are the average radiances of the band pixel col-
umns i, i− 1, and i+1 respectively. The Landsat 8 maximum streaking

Fig. 3. Results of initial processing for (A) 061216 HSI2 Swath 15, (B) striped water pixels, (C) destriped image, (D) smoothed image. Solar illumination is from the east.
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requirement of Si = 0.005 was applied as a criterion to determine
whether the swaths had been adequately destriped.

Wave variance minimization

Due to their non-Lambertian scattering nature, waves are not desir-
able for our purposes, which is to understand the composition of the
material present in the lake. We thus remove as much of the wave-
related variance from the image as possible prior to spectral decompo-
sition. Accordingly, following stripe removal, the image was smoothed
with a single pass of a simple, median filter using a 5 × 5 kernel. This
kernel, maintains the pixel resolution of ~3.3 m2, depending on aircraft
elevation, but iteratively replaces the value in each pixel by the median
value of the 5 × 5 pixel neighborhood surrounding the pixel of interest.
The resulting image has a pixel density at ~3.3 m2 resolution, but fea-
tures smaller than 5 × 5 have been reduced in variance. This was
deemed to be a reasonable compromise between reducing the wave
variance and over smoothing the image. The smoothing function
removesmuch of thewave crest-related variance from the image, with-
out obscuring the major features that are present (Fig. 3d). We
employed less smoothing here than in our prior paper, because this
analysis was conducted on ~3.3 m2 pixels as opposed to ~1 m2 pixels
as in the prior paper (Ortiz et al., 2017). Future work could explore
the use of more sophisticated semi-variogram based smoothing
methods or ones which take into account windspeed and direction
(e.g., Chen and Gong, 2004), but the approach employed here is ade-
quate based on the results described below.

Edge pixel removal

Given the simplicity of the smoothing method employed, on at least
one of theHSI2 images collected on June 21, 2016, a narrow strip of edge
pixels did not contain valid data. The signal on the eastern and western
edges of the image swath was not coherent with the horizontal fronts
and filaments that are apparent in the rest of the image. These pixels
were removed from the image prior to further analysis. It was also nec-
essary to remove a two-pixel border from the edges of the image follow-
ing the kernel smoothing process. The two border pixels were too close
to the image edge to be incorporated into the smoothing process. More
sophisticated filters could address the loss of edge pixels, but this was
deemed acceptable given the very small fraction of the image area
that was affected.

VPCA application and identification of component loading patterns

Following the pre-processing steps, average reflectance and deriva-
tive spectra were calculated for each image to assess the similarity of

the input data and the degree of multicollinearity present. Pearson's
correlation coefficient and associated statistical significance tests quan-
tified the degree of correlation between the bands in each image. The
KSU spectral decomposition method was then applied independently
to each of the swaths both with and without strip removal. A full de-
scription of the theory and computation behind the KSU spectral de-
composition method is discussed in detail in ESM Appendix S1. VPCA
results for the striped vs. destriped image test for Swath 15, which are
representative of the data set are presented along with the results of
the destriped VPCA analysis for each swath. An error budget for the
striped vs. destriped image test for Swath 15 was used to determine
whether the VPCA method was sensitive to the order of operations.
The variance explained by each component, the component loading
spectral patterns and the component score spatial patterns for the
four swaths are qualitatively and quantitatively compared to evaluate
the reproducibility of the decomposition method.

Results

Stripe removal

Vertical, along-track, linear features are present in HSI2 062116
Swath 15_MBSP as a series of alternating bright and dark 1-pixel wide
stripes and 5 to 25-pixel wide bands (Fig. 3a & b). The sun is illuminat-
ing the track swath from east to west or right to left in the image. There
are two broad bands present in the image. A darker band is present in
the eastern portion of the image, while a brighter band is found along
the western edge of the swath. The horizontal environmental bands
and filaments are not linear features (Fig. 3b). The vertical stripes and
bands obscure the environmental, horizontal fronts and filament,
which are oriented approximately parallel to the coast along the south-
ern edge of the image. These fronts and filaments represent the coastal
transition zone into the Maumee Bay plume and the offshore waters of
theWestern Basin of Lake Erie heading to the north. There are alsowave
crests and whitecaps that can be observed in the image, running ap-
proximately perpendicular to a NE to SW line (Fig. 3b–c).

We performed a series of tests using the SPEAR Vertical Stripe Re-
moval tool to optimize its performance at stripe removal (not shown).
We first explored the performance of the SPEAR tool using the default
setting, which is a 5% histogram outlier mask on radiance values. In
the default setting, three passes of the SPEAR Vertical Stripe Removal
tool were required to remove all the along track features. The process
was iterative, due to differences in radiance and variable thickness of
the stripes and bands. The thin stripes were removed more easily than
the thicker bands. The bright band along the western edge of the
image required three passes to be removed. To optimize the stripe re-
moval process, we then varied the value of the histogram outlier mask

Fig. 4. Streakingmetric (Si) analysis of the NASA HSI2 062116 Swath 15_MBSP image recorded by the HSI2 sensor before (A) and after (B) vertical stripe removal. Note the change in scale
between panels A and B. The red line shows the results relative to the Landsat 8 requirement.
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threshold from 10% to 0%. As expected, increasing the threshold beyond
5% did not remove the stripes in a single pass. The proportion of stripes
removed during a single pass increased as the histogram outlier mask
percentage decreased. Setting the outlier mask to 0% removed all the
stripes in a single pass for each of the images studied (Fig. 3c). Accord-
ingly, we set the outlier mask to 0% for our standard processing proce-
dure. Removal of the stripes and bands allows the horizontal,
environmental features in the image, along with the wave crests to
stand out clearly (Fig. 3c). To demonstrate the effectiveness of the stripe
removal process (Fig. 4), the before and after destriping images for
Swath 15 were evaluated using the Landsat streaking index (NASA,
2009; USGS Landsat 8 Users Handbook, 2016). The results (Fig. 4) easily
meet the Landsat 8 maximum streaking requirement of Si ≤ 0.005. It is
worth noting that a streaking metric around 0.0025 is roughly where
streaks first becomes visible in homogeneous, unaltered imagery.

Hyperspectral multicollinearity

The average reflectance spectra calculated for each of the four
destriped swaths are virtually identical (Fig. 5a). Reflectance values on
the blue end of the spectrum are 0.019 at 400 nm and gradually de-
crease to ~450 nm before gradually increasing to a maximum of
~0.027 at 570 nm, then dropping to 0.021 on the shoulder that starts
at 610 nm and which then gradually decreases to 0.018 at 650, before
dropping to a second shoulder with a value of 0.015 at 660 nm, which

drops gradually to 0.013 at 700 nm. The correlation of each band against
the 660 nm band was calculated to determine the correlation of the re-
flectance spectra with the absorption feature related to chl-a (Fig. 5b).
With a minimum Pearson's correlation coefficient N 0.9 against the
660 nm band, all the visible bands are significantly correlated at p ≪
0.001, given the degrees of freedom, which are N970 in all cases.

The average first derivative of the reflectance spectra for each of the
four swaths are also nearly identical (Fig. 5c). Minima in the reflectance
derivatives are centered on 410 to 420 nm, 590 nm, 660 nm and
700 nm, while maxima occur at 530 nm, 620 to 630 nm, and 680 nm.
The correlation of each band in the derivative spectra against 660 nm
was also calculated (Fig. 5d). While there is more structure to the corre-
lation of the derivative bands as a function of wavelength, virtually all of
them are also significantly correlated with the band centered on
660 nm. These results document the need to apply some means of
unmixing, such as VPCA, to remove multicollinearity from the
hyperspectral data set. The impact of the destriping on the VPCA is dem-
onstrated below by comparing the results of a VPCA conducted on the
Swath 15 data set before destriping (Fig. 6) against the results after
destriping (Fig. 7).

Error budget

A series of order of operations experiments were used to evaluate
how each step after destriping influences the partitioning of signal

Fig. 5. Average reflectance (A), the correlation of the reflectance bands vs. 660 nm (B), the derivative of the reflectance spectra (C), and the correlation of the derivative bands vs. 660 nm
(D) for the four HSI2 swaths collected off MBSP.

Fig. 6. Spatial patterns for VPCA component loading 1–6 (panels A–F) extracted from the striped image of NASA HSI2 062116 Swath 15_MBSP.
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from error during the VPCA. To determine an error budget for the order
of operations intercomparison, the variance (in percent) for Swath 15
was tracked as total variance (σT

2), which was partitioned into environ-
mental signal (σs

2), residual atmospheric noise (σa
2), and stochastic noise

(σe
2). The budget can thus be expressed as:

σ2
T ¼ σ2

s þ σ2
a þ σ2

e ð2Þ

The environmental signal is the sum of the variance of the compo-
nents that exhibited coherent spectral and spatial patterns. The residual
atmospheric noise exhibited a random spatial pattern and associated
spectral pattern with highest loadings toward the blue end of the spec-
trum (illustrated below). The stochastic noise is defined as the (uncor-
related) fraction of variance that was not extracted as part of the VPCA
model. The cutoff used for this determination is thenumber of eigenvec-
tors N1, plus one more. The total noise σ(a+e)

2 that can be extracted and
discarded can thus be taken as the sum of the residual atmospheric
noise and the stochastic noise.

The signal to noise ratio is defined as the ratio of the signal variance
divided by the noise variance:

SNR ¼ σ2
s =σ

2
aþeð Þ ð3Þ

The data is unit normalized, such that the sums of squares for each
variable sums to a total of 1. Thus the total unit-normalized variance is
equal to the number of wavelength bands, N, in the matrix. With the
unit normalized eigenvalues as the measure of variance, Eq. (3) can be
used to determine the initial SNR (SNRinitial) for each component prior
to extraction,which can be comparedwith thefinal SNR after extraction
(SNRextracted). Because the bands in the visible are highly correlated, the
initial SNR associated with each extracted signal is the signal variance
(γ) divided by the total variance (N), which is equal to the number of
bands, minus the signal variance for each component, m:

SNRinitial ¼ γm= N−γmð Þ ð4Þ

In contrast, the extracted SNR is provided by the signal variance for
each component divided by the stochastic noise variance, because
each of the components are orthogonal. The stochastic noise variance
is given by the difference between the total variance and the extracted
signal variance, which is the sum of them extracted eigenvalues:

SNRextracted ¼ γm= N−
XM
m

γm

 !
ð5Þ

The SNR gain (SNRgain) is then determined by dividing the extracted
SNR by the initial SNR. This provides a measure of the signal

amplification during the orthogonal decomposition:

SNRgain ¼ SNRextracted=SNRinitial ð6Þ

The error analysis results are presented in greater detail below, but it
is useful to consider the error budget here as it provides the basis for de-
termining the preferred order of operations. The environmental sign is
the sum of the variance explained by the extracted components less
the residual atmospheric noise component (Table 1). The stochastic
noise is the variance associated with unextracted eigenvalues, which
is given by the difference of 100 minus the variance of the extracted
components. This error analysis demonstrates that the dependence on
the order of operations for Cases 1–4 (Fig. 3) is insignificant, amounting
to 0.0 to 0.03% between cases, and the total error budget is remarkably
consistent (Table 1). The variation results from insignificant changes in
themagnitude of the residual atmospheric noise relative to the environ-
mental signal that is extracted. That difference is slightly less for Cases 1
and 2, and slightlymore for Cases 3 and4. This could potentially indicate
that there is a very slight dependence onwhen the transformation from
radiance to reflectance takes place, but no sensitivity to whether the
data were spectrally or spatially smoothed first or second. The total
error (residual atmospheric plus stochastic) for this swath ranged
from 8.32 to 8.35%. The method is thus effectively insensitive to the
order of operations within the observed margin of error.

Preferred workflow

Because the differences in the order of operationswere insignificant,
it is reasonable to select Case 2 as the preferred workflow. This enables
keeping several IDL steps grouped, together as a logistical consideration.
The preferred workflow is thus:

Case 2

1) Extraction of water pixels and cloud masking (ENVI)
2) Removal of invalid edge pixels, if present (ENVI)
3) Destriping using the SPEAR Vertical Stripe Removal tool (ENVI)

Fig. 7. Spatial patterns for VPCA component loading 1–6 (panels A–F) extracted from the destriped image of NASA HSI2 062116 Swath 15_MBSP.

Table 1
Order of operation error budget comparison for NASA HSI2 062116 Swath 15_MBSP.

Order of
operations

Environmental
signal

Residual
atmospheric
noise

Stochastic
noise

Total
error

Total
variance

Case 1 91.68 3.99 4.33 8.32 100.00
Case 2 91.68 3.99 4.33 8.32 100.00
Case 3 91.65 4.02 4.33 8.35 100.00
Case 4 91.65 4.02 4.33 8.35 100.00

528 J.D. Ortiz et al. / Journal of Great Lakes Research 45 (2019) 522–535



4) Ground Sample Distance (GSD) resampling (ENVI)
5) Spectral interpolation to 10 nm resolution (IDL)
6) Radiance to reflectance conversion to remove atmospheric con-

tamination (IDL)
7) Spatial median smoothing using a 5 × 5 pixel kernel (ENVI)
8) Edge clipping to remove unsmoothed pixels (ENVI)
9) Derivative transformation (IDL)

10) VPCA decomposition (ENVI/IDL)
11) Georectification

The image is thus destriped, followed by GSD resampling, then spec-
tral smoothing. From a conceptual standpoint, this order is appropriate
because the GSD sampling yields pixels that conserve radiance as early
as possible when using this approach. The image must be destriped be-
fore the pixels are resampled, or power from the stripes and bands
would be convolved into the image. This order of operationsmaximizes
the extractable signal, while minimizing transitions between the ENVI
and IDL work environments.

VPCA results: striped vs. destriped VPCA patterns

A total of six component loadings and component score maps were
extracted from each swath, along with communalities and the percent-
age of variance explained by each component. The extracted compo-
nent loadings were easily matched for spectral shape by visual
inspection, which enabled calculation of the average and standard devi-
ation of the component loadings across all swaths. The average compo-
nent loadings for the six spectral shapeswere then used to identify each
unknown component following the methods described in detail in ESM
Appendix S1. To document the effectiveness of the destriping process,
we compared a VPCA solution extracted from the raw, striped image
with the VPCA for the clean, destriped image. For the VPCA of the raw,
striped image, we did not include Step 4, destriping, in the image pro-
cessing workflow (Fig. 2). For the analysis of the clean images, we in-
cluded all processing steps in the workflow.

VPCA of the raw, striped image

The resulting spatial patterns for the striped image (Fig. 6) display
geometric patterns that obscure the underlying horizontal variations
that are clearly present in the destriped RGB image (Fig. 3) and its
VPCA decomposition (Fig. 7). The sum of the variance explained by
the six leading components in the striped VPCA, which includes a mix-
ture of environmental variance and stripe-related bias amounts to
93.6%.

The leading component from the striped image is dominated by a N-
S along track pattern that is superimposed on an east-west cross-track

contrast. There is a distinct spatial discontinuity about 1/3 of the way
north from the southern end of the track and narrowN-S stripes are ap-
parent in the image. The second component shows an even stronger
along-track pattern, with thick edge banding. Both components exhibit
spatial discontinuities that result from the vertical stripes within the
image cutting across the horizontal filaments. We observed features
like these in other HSI2 data that are processed without stripe removal.
Although some spatial environmental variability is present in the lead-
ing two components, much of the environmental variability is com-
pressed into the third and fourth components. The thick band running
along the western portion of the image dominates the 5th component.
The associated spectral patterns are noisy (not shown) and account
for less variability than the components extracted from the destriped
image (Fig. 7). The sum of the 1st and 2nd component loadings pro-
duces a spectral shape (not shown) that is similar to the leading compo-
nent of the clean, destriped solution, which is described below.

In this solution, it is not possible to entirely separate the environ-
mental variance from the stripe variance, but we can place bounds on
their relative contribution due to the orthogonality constraint of the
VPCA, because each component is independent. An upper limit for the
environmental variance extracted by the VPCA is the sum of the vari-
ance of the 1st, 3rd, 4th and 6th components (Fig. 6), which amounts
to ≤63% of the variance extracted. This is an upper limit on the environ-
mental variance extracted because much of the signal in these compo-
nents does not relate to the environment. A more conservative
estimate of the environmental variability that is extracted is given by
the variance sum of the 3rd, 4th and 6th components, which is ≥28%.
The environmental variability extracted by the VPCA of the striped
image thus likely lies between 28% and 63%. There is considerable
stripingobserved in the 1st, 2nd, and 5th components. Those three com-
ponents yield an upper limit on the noise variance of ≤66% of the vari-
ance in the image, because some of the variance in the 1st component
is environmental. The variance related to the striping thus lays between
the variance of the 2nd and 5th components, which is 31% and 66%, the
variance of all three. This indicates that relatively equal proportions of
environmental and striped variance are present in the image, but the
ratio of the two could range from ~1/3 to ~2/3.

VPCA of the clean, destriped images

In contrast, after removal of the vertical stripes and bands, the linear,
geometric patterns and sharp spatial discontinuities present in the com-
ponents extracted from the raw, striped image are gone (Fig. 7). Instead,
five of the six leading components are dominated by horizontal envi-
ronmental spatial patterns (VPCA components 1–4 and 6), which are
consistent with the features observed in the destriped RGB image
(Fig. 3). The spatial pattern for the 5th component is reduced to random

Fig. 8. Spatial patterns for VPCA component loading 1–6 (panels A–F) extracted from the destriped image of NASA HSI2 062116 Swath 09_WE6_MBSP. Note that the 3rd and 4th
components have switched rank in NASA HSI2 062116 Swath 09_WE6_MBSP relative to the other swaths.
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noise, with a spectral signal that is strongest in the blue, consistent with
atmospheric scattering as discussed further below. This spectral resid-
ual atmospheric noise accounts for 3.99% of the variance in the image.
An additional 4.33% noise variance was not extracted along with the
leading six components and is distributed in the trailing eigenvalues as-
sociated with the noise floor.

The five environmental components in the cleaned image account
for 91.68% of the variance in the data set, indicating that the noise in
the image has been reduced to 8.32% in the destriped analysis. This is
a considerable improvement over the result from the raw, striped
image in which the only relatively clean environmental signal that
could be extracted was limited to components 3, 4, and 6, which to-
gether captured only 28% of the variance in the striped image. The
destriping and smoothing processes have increased the amount of envi-
ronmental variance that can be cleanly extracted from a minimum of
28% to 91.68; an increase of ~3.3×. The spectral patterns exhibit less
noise than those observed in the component loadings extracted from
the striped image (not shown).

Spatial reproducibility

To document the overall reproducibility of the method, we applied
the KSU spectral decomposition method using the Case 2 processing
order (Fig. 2) to the four HSI2 swaths collected overMBSP. These swaths
were collected in the same region (Fig. 1)with four overpasses in a short
time span (26 min). The component scores enable visualization of how
the spatial patterns varied over the 26 min of the collection sequence.
The swaths were collected in sequential order, with Swath 9 collected

first and Swath 15 collected last. The numbers are not consecutive be-
cause additional swaths were collected on different lines while the air-
craft circled for subsequent passes. The results from the additional
images provide an upper limit on the reproducibility of the KSU spectral
decomposition method and the quality of the NASA Glenn HSI2 sensor
output, because some environmental changes exist due to the time off-
sets during the sample collection, but these should be relatively small
due to the short duration of the experiment from start to finish. The
VPCA results from all the images extract the same six components
(Figs. 7–10), with similar spectral shapes (Fig. 11), and variance for
each component (Table 2).

The effectiveness of the VPCA decomposition can be assessed based
on the SNR analysis for each swath. This gain is reported as SNRgain.
When presented in terms of signal to noise ratio, the improvements
are dramatic (Table 2). The increase in signal to noise ratio based on
the unit-normalized eigenvalues ranges on average from greater than
a factor of 7.37× to N19.04× times, with the largest increases in signal
to noise ratio associated with the smaller eigenvalues.

Spectral reproducibility

The reproducibility of the spectral patterns - the component load-
ings - extracted from each of the four swaths is very good. Except for
some sign flips, the components exhibit the same spectral shapes across
swaths (Fig. 11). Due to the rotation process and the fact that we ana-
lyzed each swath independently, some of the components flip sign or
change rank from solution to solution. In this case, component 3 and 4
switched position in NASA HSI2 062116 Swath 09_WE6_MBSP relative

Fig. 9. Spatial patterns for VPCA component loading 1–6 (panels A–F) extracted from the destriped image of NASA HSI2 062116 Swath 11_MBSP.

Fig. 10. Spatial patterns for VPCA component loading 1–6 (panels A–F) extracted from the destriped image of NASA HSI2 062116 Swath 13_MBSP.
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to the other swaths. For this reason, the matched components are re-
ferred to as Patterns A-F, rather than by component rank (Tables 3, 4).
It is possible to address this issue by matching the components based
on their spectral shapes, and by keeping track of the sign convention
during processing or by averaging the independent solutions and then
using the average VPCA loading matrix to generate consistent VPCA
scores for all images. Components that have been flipped in sign are de-
noted with a negative sign in their name. The VPCA scores (spatial pat-
terns) for the individually processed swaths were virtually identical to
the results for each swath when the average of the individual compo-
nent loadings were applied to each swath (not shown).

The standard deviation of the component loadings as a function of
wavelength ranged from ±0.003 to ±0.17, but averaged ±0.05 and

were essentially flat across the spectral range, indicating that is unlikely
that any significant components remain in the images after extraction of
the leading six (Fig. 11).

The spectral shapes of the individual and averaged component load-
ings are similar to the results from Swath 15, published in Ortiz et al.
(2017), although the component loadings presented in Ortiz et al.
(2017) are standardized, while we plot them in their unstandardized
form here. The component identifications here differ somewhat from
our earlier work because the results in this study are based on averages
of results obtained from four swaths, rather than one. Stepwise, least-
squares regression of the components against the constituent standards
in the spectral library was able to find statistically significant mixtures
for all of the spectral patternswith the exception of Pattern D, the resid-
ual atmospheric noise component (Table 3). Component Pattern A is
identified as a mixture of smectite, chlorite and α-carotene. This com-
ponent loading pattern was positively correlated with all three constit-
uents. Pattern B is a mixture that is positively correlated with diatoms
and quartz, but negatively correlated with neoxanthin, a carotenoid
found in green algae and terrestrial plants (Takaichi, 2011), andmusco-
vite. Pattern C is positively correlated with goethite. Pattern D is a mix-
ture that is positively correlated with hematite and phycocyanin, but
negatively correlated with chlorite. Pattern E is the spectral signature
that is inversely correlated with the residual atmospheric noise. Pattern
F represents a mixture that is positively correlated with
myxoxanthophyll, an accessory pigment found in cyanobacteria, and
chl b, but negatively correlated with phycocyanin and hematite. These
five environmental components are composed of constituents that are
known to occur in the western basin of Lake Erie.

The uncertainty on the variance explained for each component
ranged from aminimumof±0.08% to amaximumof±3.15%, averaging
±1.69% on a component by component basis (Table 4). The average un-
certainty for residual atmospheric noise (Pattern E) was 4.28 ± 0.48%,
while the random noise that was unexplained by the VPCAmodel asso-
ciated with the eigenvalues that were not extracted was 5.43 ± 1.42%.
The total errors on the method, which add in quadrature, was thus
6.93 ± 1.40%. We confirmed the origin of the residual atmospheric
noise as a path radiance residual relating to the atmospheric correction
by conducting an analysis on the uncorrected, radiometric data prior to

Fig. 11.Component loadings for the six spectral patterns (A–F) extracted from the four Swaths. The seventh panel (G) represents the standarddeviation of themeasurements from the four
swaths. The colored lines represent the spectral shapes extracted from each swath. The average for each swath is plotted as a bold black line. The best fit is the bold gray line. The associated
Pearson's correlation R value is provided.

Table 2
Signal to noise ratio associated with the clean VPCA decomposition.

VPCA 1 VPCA 2 VPCA 3 VPCA 4 VPCA 5 VPCA 6 Total

HSI2_062116_09_MBSP_MTRIcorr
Eigenvalues 17.84 4.51 3.97 1.08 0.92 0.38 28.70
Initial SNR 1.35 0.17 0.15 0.04 0.03 0.01
Extracted SNR 7.74 1.96 1.72 0.47 0.40 0.16
SNR Gain 5.71 11.50 11.73 12.99 13.06 13.29

HSI2_062116_11_MBSP_MTRIcorr
Eigenvalues 18.66 6.52 2.45 0.75 0.59 0.34 29.31
Initial SNR 1.51 0.27 0.09 0.02 0.02 0.01
Extracted SNR 11.02 3.85 1.45 0.45 0.35 0.20
SNR Gain 7.29 14.46 16.86 17.87 17.97 18.11

HSI2_062116_13_MBSP_MTRIcorr
Eigenvalues 19.96 5.73 2.32 0.73 0.55 0.30 29.60
Initial SNR 1.81 0.23 0.08 0.02 0.02 0.01
Extracted SNR 14.27 4.10 1.66 0.52 0.40 0.22
SNR Gain 7.89 18.07 20.50 21.64 21.77 21.95

HSI2_062116_15_MBSP_MTRIcorr
Eigenvalues 19.48 5.64 2.86 0.70 0.62 0.36 29.66
Initial SNR 1.69 0.22 0.10 0.02 0.02 0.01
Extracted SNR 14.51 4.20 2.13 0.52 0.46 0.27
SNR Gain 8.58 18.88 20.96 22.56 22.62 22.82
Average SNR Gain 7.37 15.73 17.51 18.77 18.85 19.04
Stdev SNR Gain 1.22 3.41 4.27 4.35 4.36 4.34
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atmospheric correction (not shown). We can compare the results from
the uncorrected radiance derivative datawith the reflectance derivative
data because the VPCA is based on the correlation between bands, not
their absolute values. The component shapes extracted in the

uncorrected case were similar to those extracted by the VPCA of the at-
mospherically corrected data, but with additional spectral noise. The
spatial patterns also looked like the atmospherically corrected spatial
patterns, but included more fine-scale heterogeneous noise. Of

Table 3
Stepwise, least-squares regression statistics.

Pattern A

R R-squared Adjusted R-squared S F p-Value

0.97 0.94 0.93 0.26 209.79 1.40E−17

VAR Coefficient Standard error t p-Value N t VIF SBC
Smectite + chlorite 0.95 0.05 20.15 3.36E−18 1.00 −183.37
a-Carotene 0.15 0.05 3.08 4.57E−03 1.00

Pattern B

R R-squared Adjusted R-squared S F p-Value

0.91 0.82 0.79 0.45 29.80 2.27E−09

VAR Coefficient Standard error t p-Value N t VIF SBC
Bacillariophyceae 0.95 0.09 10.42 8.94E−11 1.21 −141.60
Quartz (Ottawa Sand) 0.32 0.09 3.60 1.32E−03 1.12
Neoxanthin −0.24 0.09 −2.50 1.91E−02 1.29
Muscovite −0.22 0.09 −2.41 2.34E−02 1.22

Pattern C

R R-squared Adjusted R-squared S F p-Value

0.75 0.56 0.54 0.68 36.80 1.33E−06

VAR Coefficient Standard error t p-Value N t VIF SBC
Goethite −0.75 0.12 −6.07 1.33E−06 1.00 −127.37

Pattern D

R R-squared Adjusted R-squared S F p-Value

0.94 0.89 0.87 0.36 70.26 7.08E−13

VAR Coefficient Standard error t p-Value N t VIF SBC
Hematite 0.77 0.09 8.82 1.97E−09 1.80 −160.33
Phycocyanin 0.24 0.07 3.54 1.46E−03 1.06
Chlorite −0.23 0.09 −2.69 1.22E−02 1.77

Pattern F

R R-squared Adjusted R-squared S F p-Value

0.88 0.78 0.75 0.51 22.96 3.27E−08

VAR Coefficient Standard error t p-Value N t VIF SBC
Myxoxanthophyll 0.528 0.099 5.34 1.38E−05 1.15 −135.13
Phycocyanin −0.40 0.098 −4.09 3.74E−04 1.13
Chlorophyll b 0.268 0.099 2.70 1.19E−02 1.16
Hematite −0.248 0.093 −2.66 1.32E−02 1.02

Table 4
Variance explained by each component.

Pattern and interpretation Pattern A:
+smectite,
+chlorite,
+a-carotene

Pattern B:
+diatoms, +quartz,
−neoxanthin,
−muscovite

Pattern C:
−goethite

Pattern D:
+hematite,
+phycocyanin,
−chlorite

Pattern
E:
residual
Atm
noise

Pattern F:
+myoxanthophyll,
−phycocyanin,
+chl b, −hematite

Variance Residual
random
noise

Total
noise

Swath
JGLR_062116_09_MBSP_MTRIcorr VPCA 1 VPCA 2 VPCA −4 VPCA −3 VPCA

−5
VPCA 6

48.46 15.30 11.54 10.96 4.99 1.32 92.57 7.43 8.95
JGLR_062116_11_MBSP_MTRIcorr VPCA −1 VPCA 2 VPCA −3 VPCA −4 VPCA

−5
VPCA 6

51.62 21.03 10.25 6.20 4.04 1.41 94.54 5.46 6.79
JGLR_062116_13_MBSP_MTRIcorr VPCA −1 VPCA −2 VPCA 3 VPCA −4 VPCA

−5
VPCA 6

54.68 21.02 8.78 5.64 4.08 1.29 95.49 4.51 6.08
JGLR_062116_15_MBSP_MTRIcorr VPCA 1 VPCA 2 VPCA −3 VPCA −4 VPCA 5 VPCA −6

55.34 17.06 9.84 7.99 3.99 1.46 95.67 4.33 5.89
Average 52.52 18.60 10.10 7.70 4.28 1.37 94.57 5.43 6.93
Standard deviation 3.15 2.89 1.14 2.40 0.48 0.08 1.42 1.42 1.40
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importance, Pattern E was not present in this solution confirming that
its origin is related to the atmospheric correction method.

Discussion

All visible reflectance data exhibit strong correlations between
bands due to the nature of the electronic processes that drive absorption
in that part of the electromagnetic spectrum (Kokaly et al., 2017). A
strong correlation is present in the visible part of the spectrum for the
NASA Glenn HSI2 data set (Fig. 5) that must be removed to allow mul-
tiple bands to be used in concert in data products. Unmixing the spectra
allows one to avoid errors arising from multicollinearity and assump-
tions of independent input variables in multivariate data analysis. This
provides justification for application of the KSU spectral decomposition
method, which enables extraction of the maximum amount of non-
redundant information from the hyperspectral data set.

The full atmospheric correctionprocedure employedwith these data
is discussed in detail in Ortiz et al. (2017). Ortiz et al. (2017), also docu-
mented that the KSU spectral decomposition method was relatively in-
sensitive to the type of atmospheric correction that was applied. Four
variations of the empirical line method were applied: the EML0, ELM1
and ELM2 methods made use of curved mirrors to reflect downwelling
irradiance back to the sensor for use as part of the atmospheric correc-
tion. Field measurements of downwelling irradiance and surface reflec-
tance measured with a Malvern Panalytical ASD FieldSpec Pro HH are
then used to calculate surface reflectance using relationships derived
from radiative transfer theory. The fourth method explored in Ortiz
et al. (2017), theMichigan Tech Research Institute (MTRI) Blacktop Cal-
ibration method uses an upward facing Malvern Panalytical ASD
FieldSpec Pro HH mounted in the NASA Glenn aircraft to obtain
downwelling irradiance to calculate at-sensor remote sensing reflec-
tance in conjunction with the NASA Glen HSI2 radiance measurements.
The at-sensor reflectance is then converted to surface reflectance by
comparison with reflectance measurements of a well-characterized,
blacktop surface at Maumee Bay State Park, the NASA Glenn CyanoHAB
field calibration site. In Ortiz et al. (2017) the ELM0 method, which ex-
plained the highest fraction of variance in swath 15was used to identify
the composition of the components. Here we analyzed all four swaths
using the MTRI blacktop method because that approach can be applied
without the need to deploy mirror targets in each scene.

Ortiz et al. (2017) documented that the KSU spectral decomposition
method was capable of isolating and removing residual atmospheric
and stochastic error variance that was present in the hyperspectral
data set. This study confirms that the residual atmospheric noise associ-
ated with VPCA 5 (Pattern E) is found in multiple swaths collected on
the same day and is in fact related to residual atmospheric noise. We
conclude this because that component is absent from a spectral decom-
position applied on data that had not been atmospherically corrected,
but which was otherwise processed identically to the other results pre-
sented here. The major findings of this study are to document the im-
pact of striping on VPCA, the insensitivity of the KSU spectral
decomposition method to order of operations and to quantify its en-
hancement to SNR and reproducibility. Understanding the reproducibil-
ity of the KSU spectral decomposition method is important to enable its
optimal usewith future, planned hyperspectral orbitalmissions, such as
PACE, or future sensors needed for the Surface Biology andGeologymis-
sion as defined in the 2018 NASA Decadal Survey (National Academies
of Sciences, Engineering, and Medicine, 2018).

Pre-processing of remote sensing images is critical to enable the pro-
duction of derived products and is standard procedure for processing of
images such as those collected by the NASA HSI2. However, the impact
of stripes and bands on the KSU spectral decompositionmethod has not
been previously explored. A variety of stripe and band removal ap-
proaches have been proposed to improve image quality (e.g., Shen
and Zhang, 2009). Removal of stripes and bands qualitatively enhances
the visibility of features and enables calculation of derived products that

rely on radiometric consistency between pixels within a scene. These
approaches can be grouped into tools that remove stripe-related vari-
ance by equalizing the means and/or standard deviations between
pixels (Method of Moments: Gadallah et al., 2000), by equalizing the
histograms of radiometric values between bands (Horn and
Woodham, 1979; Algazi and Ford, 1981; Rakwatin et al., 2007), or that
filter out stripe related noise using low pass filters such as infinite im-
pulse response filters, wavelets or Fourier analysis methods (Statistical
Filtering Methods: Torres and Infante, 2001; Chen et al., 2003; Chen
et al., 2017). Some hybrid approaches make use of a combination of
one or more of these subclasses (Chang et al., 2007a, 2007b; Münch
et al., 2009; Shen and Zhang, 2009). Iterative approaches are often
quite effective at removal of stripes and bands (Bouali, 2010). The
most effectivemethods appear to be the hybridmethods or iterative ap-
proaches (e.g., Bouali and Ladjal, 2011; Lastri et al., 2015; Liu et al.,
2016a, 2016b; Chen et al., 2017). The method of moment tools were
among the earliest approaches developed. Limitations of the method
are discussed in Horn and Woodham (1979). Method of moment tools
seem to be the least effective as they fail in the case of non-linear or ir-
regular stripes and can leave residual stripes or generate new stripes
during the removal process (Horn and Woodham, 1979; Gadallah
et al., 2000).

The Harris documentation of the proprietary ENVI destriping tools is
not extensive although prior publications have evaluated their effec-
tiveness in comparison to other methods (Scheffler and Karrasch,
2013; Lastri et al., 2015). These tools can provide acceptable results, par-
ticularly when the scene is radiometrically homogenous as is the case
with the water portions of our images. The SPEAR Vertical Stripe Re-
moval tool is designed to remove along-track features generated by
push-broom sensors, while the horizontal DESTRIPE algorithm in the
Raster Data Management package is designed to remove cross-track
features in whisk-broom sensors. Both tools require Level 1 data. The
ENVI vertical stripe removal tool requests the fraction of the radiometric
histogram to employ during strip removal and is thus most likely a his-
togram correction tool. TheDESTRIPE algorithm in the Raster DataMan-
agement package requests information on the number of detectors and
is thusmost likely amethod of moment-based tool. There are two other
ENVI legacy destriping tools available for the PC version of ENVI that are
both based on the method of moments. We did not employ either of
these other tools, which are redundantwith the DESTRIPE tool available
for the Mac version of the ENVI software employed at KSU. We com-
pared results from the SPEAR destriped images with ones destriped
using the DESTRIPE tool and determined the two ENVI methods pro-
duced similar results.We have found the SPEARVertical Stripe Removal
tool to be easier to use for our purposes because conceptually, it was de-
signed for usewith push-broom sensors. As a result, the image does not
need to be transposed for use with this tool. We are employing it as part
of our standard processing protocol as needed. Use of this tool lets us
avoid two transposition steps during image processing.

Criteria that have previously been used to compare the quality of
destriping tools in the literature are: visual inspection of images to
look for residual striping, analysis of cross-track means to look for out-
lier pixels, calculation of image SNR statistics in several ways before
and after stripe removal, and calculation of difference images that sub-
tract the destriped from the striped image to isolate the destriped signal.
Often destriping assessment is based on the arbitrary selection of a sin-
gle band for visualization. In our application, we employ VPCA to com-
pare the spectral and spatial structure of the images before and after
stripe removal. This is a useful approach because VPCA removes redun-
dant information from images, allowing presentation of the maximum
amount of information in the minimum number of optimal linear
band combinations. Based on our results, in future applications, VPCA
could be used successfully to assess sensor design choices or image
pre-processing procedures as it is employed here.

The results of this study document that removal of stripes enables
better partitioning of the environmental variance within the scene
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(Fig. 6 vs. Fig. 7). By partitioning the variance into orthogonal compo-
nents, theKSU spectral decompositionmethod can enhance the average
SNR of the individual components by a factor of 7.37× to 19.04×.

The component scores, indicating the spatial pattern extracted from
the cleaned images, lack any geometric bias that can be attributed to
flight geometry or instrument design in the clean analysis in
Figs. 7–10. The VPCA process itself is also able to partition the environ-
mental signal from residual atmospheric path radiance bias that was
not removed during the conversion from radiance to reflectance (Ortiz
et al., 2017). Forward, stepwise multiple linear regression of the stan-
dardized, component loading spectral patterns can then be used to
identify the composition of the signals that give rise to the spectral pat-
terns in the image. The shape of the spectral component loading signals
extracted from Swaths 9, 11, and 13 were very similar to those for
Swath 15 published in (Ortiz et al., 2017) as can be seen in Fig. 11.

This principal component regression based identification step is
important because it solves one of the primary limitations of the un-
supervised classification method, which is how to determine the
identity of the extracted image features. Application of the method
to multiple scenes documents that the reproducibility of the signal
is 6.93 ± 1.40%. The method also addresses the mixed pixel problem
by partitioning the variance within each pixel into its contribution
from each of the extracted components. This powerful, unsuper-
vised, soft classification technique thus addresses some of the
major problems that vex remote sensing analysis: sensitivity to at-
mospheric correction, removal of stochastic noise, and partitioning
and identification of image constituents to address the mixed pixel
problem. Application of the KSU Spectral decomposition method
holds great promise to enhancemonitoring applications and develop
retrospective time series to explore regional changes in climate and
environmental conditions.

With the loss of the hyperspectral imager for the coastal ocean
(HICO) from the International Space Station (Keith et al., 2014) and
the decommissioning of Hyperion on the USGS Earth Observing 1 satel-
lite there are no longer any non-commercial, hyperspectral visible re-
mote sensing assets in Earth orbit, although a new hyperspectral
instrument, the DLR Earth Sensing Imaging Spectrometer (DESIS) has
been installed on the International Space Station and is beginning to de-
liver data. The results presented here are encouraging and indicate that
the KSU spectral decomposition method is one approach that will en-
able users to capitalize on the additional non-redundant spectral infor-
mation that can be extracted from proposed orbital hyperspectral
sensors on missions such as PACE, or the Surface Biology and Geology
mission proposed within the Decadal Survey (National Academies of
Sciences, Engineering, and Medicine, 2018). Deploying these tools will
allow enhanced determination of pigment-related biomass estimates
and yield new capabilities to identify algal and cyanobacterial composi-
tion based on extraction of pigment-related spectra by visible derivative
spectroscopy as well as a host of other applications.

Conclusions

Our work documents that we can extract multiple VPCA compo-
nents from NASA Glenn HSI2 images, further enhancing their high
SNR in the process. The VPCA signals extracted from the HSI2 are repro-
ducible in terms of their spectral and spatial patterns. We have docu-
mented a standard processing stream for analysis of these images and
demonstrated that the results are independent of the order of opera-
tions in which they are applied. A critical step in the pre-processing of
the images is the removal of any along-track or cross-track stripes or
bands arising from sensor-related issues. This powerful, unsupervised,
soft classification technique thus addresses several major problems in
visible remote sensing: insensitivity to atmospheric correction, removal
of stochastic noise, and partitioning and identification of image constit-
uents to address the mixed pixel problem.
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