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Spatial-temporal variability of in situ cyanobacteria vertical structure in
Western Lake Erie: Implications for remote sensing observations
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Communicated by Caren Binding

Remote sensing has provided expanded temporal and spatial range to the study of harmful algal blooms
(cyanoHABs) in western Lake Erie, allowing for a greater understanding of bloom dynamics than is possible
through in situ sampling. However, satellites are limited in their ability to specifically target cyanobacteria and
can only observe the water within the first optical depth. This limits the ability of remote sensing to make con-
clusions about full water column cyanoHAB biomass if cyanobacteria are vertically stratified. FluoroProbe data
were collected at nine stations across western Lake Erie in 2015 and 2016 and analyzed to characterize spatio-
temporal variability in cyanobacteria vertical structure. Cyanobacteria were generally homogenously distributed
during the growing season except under certain conditions. Aswater depth increased and high surface layer con-
centrations were observed, cyanobacteria were found to be more vertically stratified and the assumption of ho-
mogeneity was less supported. Cyanobacteria vertical distribution was related to wind speed and wave height,
with increased stratification at low wind speeds (b4.9 m/s) and wave heights (b0.27 m). Once wind speed and
wave height exceeded these thresholds the assumption of vertically uniform cyanobacteria populations was jus-
tified. These findings suggest that remote sensing can provide adequate estimates of water column cyanoHAB
biomass in most conditions; however, the incorporation of bathymetry and environmental conditions could
lead to improved biomass estimates. Additionally, cyanobacteria contributions to total chlorophyll-a were
shown to change throughout the season and across depth, suggesting the need for remote sensing algorithms
to specifically identify cyanobacteria.
© 2019 The Authors. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Lake Erie is the shallowest, and most productive of the Laurentian
Great Lakes (Beeton, 1965). Water quality is of major importance as
the lake provides drinkingwater to many of the 11.6million people liv-
ing in the lake'swatershedwhile also serving as a popular source of rec-
reation including swimming, boating, and fishing (Lake Erie Lamp,
2011). Persistent nuisance algal blooms led to phosphorus loading reg-
ulations in 1972 as part of the Great Lakes Water Quality Agreement
resulting in improved water quality and reductions in blooms through
the 1970s and 1980s (Makarewicz, 1993). Phytoplankton concentra-
tions began to increase again in the mid-1990s (Conroy et al., 2005),
and harmful algal bloom (cyanoHAB) events have been increasing in se-
verity throughout the 2000s in the western basin of Lake Erie (WBLE)
(Stumpf et al., 2012; Sayers et al., 2016). CyanoHAB development in
WBLE typically starts in mid/late July near the mouth of the Maumee

River and the bloom spreads eastward as the season progresses.
CyanoHAB biomass and extent typically peak between mid-August
and mid-September and typically disappear by late October (Wynne
and Stumpf, 2015).

In Lake Erie, the most common phytoplankton groups include
chlorophytes, bacillariophytes (or diatoms), and cyanobacteria. The
dominant phytoplankton group varies by year but together these
three groups can comprise as much as 90% of the total chlorophyll-a
concentration (Millie et al., 2009). TheWBLE cyanoHABs are dominated
by the cyanobacteria Microcystis aeruginosa. This cyanobacterium has
caused significant water quality and health impacts due to two charac-
teristics of the bloom. First, high concentrations ofMicrocystis are found
in surface scums (defined as algae above or in close proximity to the air-
water interface; Sayers et al., 2016) due to the ability of the cells to
produce gas vacuoles (Paerl, 1983). Second, Microcystis is capable of
producing toxins, most notably, microcystin, which is a hepatotoxin
(Millie et al., 2009; Rinta-Kanto et al., 2009). At high concentrations
such as those found in surface scums in the Great Lakes, microcystin
can cause skin irritations and gastrointestinal discomfort (if ingested)
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in humans and even death in wildlife and pets (International Joint
Commission, 2014). CyanoHABs in western Lake Erie led to a multi-
day “do not drink” advisory in 2014, impacting the drinking water sup-
ply of 500,000 residents of the Toledo, Ohio metro area (Henry, 2014).

Due to these concerns for public health and recreation, extensive re-
search has been undertaken in an effort to track cyanoHAB extent and
severity. In situ surveys ofWBLE have provided an extensive time series
of chlorophyll-a and cyanobacteria concentrations (Bridgeman et al.,
2013; Bertani et al., 2016). Pairedwith these in situ values, remote sens-
ing algorithms have been created to generate estimates of chlorophyll-a
concentration and cyanoHAB abundance or biomass from satellite im-
agery (Wynne et al., 2008; Stumpf et al., 2012; Shuchman et al., 2013;
Sayers et al., 2016). Remote sensing provides distinct advantages over
in situ sampling in that it can generate estimates over greater temporal
and spatial ranges as well as offering a detailed historical perspective.
One limitation of remote sensing for algal monitoring is that it can
only observe the water down to one optical depth, the portion of the
water column where approximately 90% of the remote sensing ob-
served signal originates (Gordon and McCluney, 1975; Werdell and
Bailey, 2005). The optical depth (used in this study to define the surface
layer) is equivalent to the inverse of the diffuse attenuation coefficient
just below the air-water interface (Gordon and McCluney, 1975) and
has also been shown to empirically relate to the Secchi disk depth
(Lee et al., 2018). In eutrophic waters like the western basin of Lake
Erie, this often means that remote sensing is observing a meter or less
of the water column (Wynne et al., 2010). Cyanobacteria has been
shown to accumulate near the air-water interface (Hunter et al., 2008;
Wynne et al., 2010) which has allowed the application of remote sens-
ing algorithms, i.e., the cyanobacteria index (CI). However, it is acknowl-
edged that only considering the surface layer concentrations can lead to
underestimation of bloom severity, particularly under high wind condi-
tions when Microcystis is more likely to be vertically mixed (Wynne
et al., 2010; Stumpf et al., 2012). Frequent cloud cover in the Great
Lakes can also be a concern for the tracking of cyanoHAB events with re-
mote sensing, often leading tomany consecutive days without a view of
the water conditions (Ackerman et al., 2013; Wynne et al., 2013; Xue
et al., 2017).

In addition to tracking cyanoHAB in western Lake Erie using remote
sensing and in situ observations, predictive models have also been de-
veloped. Seasonal forecasts are used to predict the bloom severity for
a given year based on the spring phosphorus load from the Maumee
River and performwell in explaining the inter-annual bloom variability
(Stumpf et al., 2012; Obenour et al., 2014). A short-term forecast which
tracks the location and predicts the movement of cyanoHAB based on
satellite imagery, meteorological forecasts, and hydrodynamic models
has been developed (Wynne et al., 2013). Modeling of the vertical dis-
tribution ofMicrocystis colonies is also being developed in order to assist
water treatment plant operators who care about subsurface concentra-
tions wheremunicipal water intakes draw from and for the early detec-
tion of cyanoHAB (Rowe et al., 2016). Rowe's model has been
incorporated into NOAA's Lake Erie HAB Tracker (https://www.glerl.
noaa.gov/res/habs_and_hypoxia/habtracker.html; accessed on Decem-
ber 21, 2018) in order to estimate the distribution of cyanoHAB
throughout the water column and forecast this into the future.

When using a tool developed to track one specific algal group, such
as cyanobacteria, one must be cognizant of the abundance of other
algal/phytoplankton groups, particularly in eutrophic environments
like western Lake Erie where many different algae can exhibit bloom
abundances (Makarewicz, 1993;Millie et al., 2009). Typically, the abun-
dance of phytoplankton groups has been determined by direct cell
counts or abundance of group-specific pigments (i.e., carotenoids, xan-
thophylls, etc.) determined by high-performance liquid chromatogra-
phy (HPLC) (Ghadouani and Smith, 2005; Millie et al., 2009). Recently
several instruments have been developed to determine the in situ con-
centration of phytoplankton groups based on pigment fluorescence.
The FluoroProbe III (bbe-Moldaenke GmbH), hereafter simply referred

to as FP, is an instrument designed to estimate chlorophyll-a concentra-
tions as a function of depth in the water column based on the fluores-
cence response of various biological and non-biological constituents. It
can estimate the chlorophyll-a concentrations of several algal groups
(green algae, blue-green algae, diatoms, and cryptophyta) aswell as col-
ored dissolved organic matter (CDOM) fluorescence, temperature, and
transmissivity (Beutler et al., 2002).

The FP may underestimate chlorophyll-a concentrations in waters
where solar irradiation is highest due to non-photochemical quenching
(NPQ) or photoinhibition which can decrease the fluorescence yield of
phytoplankton (Falkowski and Raven, 2007). Laboratory analyses have
shown that most algal species are impacted by NPQ but that diatoms
and green algae are most severely impacted (Escoffier et al., 2015).
The recovery from NPQ varies widely by algal group and can take sev-
eral hours (Montero et al., 2002); and in addition to beingmore suscep-
tible to NPQ, some diatom species can migrate vertically through the
water column to avoid higher levels of irradiation (Heaney and
Furnass, 1980; Serra et al., 2009). Microcystis has been shown to have
protective measures against photoinhibition, especially in more turbid
or sediment-filled waters (Paerl et al., 1985; Sommaruga et al., 2009).

The objective of this study is to investigate the spatial and temporal
variability of phytoplankton community composition and cyanobacteria
vertical structure in western Lake Erie. The results of this analysis have
important implications for remote sensing andwhether remote sensing
can provide reasonable estimates of cyanobacteria biomass in western
Lake Erie. The analysis will be based on an extensive FP dataset collected
across western Lake Erie in 2015 and 2016, allowing for comparisons
across time and space (using station depth as a spatial proxy).

Methods

WBLE served as the study area, with sampling taking place on a
near-weekly basis from June through October in 2015 and 2016
resulting in 224 FP data points. Near-weekly data were collected from
7 master stations (WE2, WE4, WE6, WE8, WE12, WE13, WE15) while
stations WE9 and WE14 were not sampled continuously from year-to-
year. All data were collected using a single, consistently calibrated FP
owned by NOAA GLERL. Fig. 1 shows the locations of all sampling sta-
tions overlaid on the bathymetric depths of the basin. The western
basin of Lake Erie has an average depth of 7.4 mwith amaximum of ap-
proximately 19 m (Lake Erie Lamp, 2011). The depths sampled in this
study ranged from 2.2 to 13 m with an average of 6.2 m.

A Satlantic HyperPro II profiler (Satlantic, Inc.) was deployed to col-
lect radiometric data including upwelling radiance and downwelling ir-
radiance throughout the water column. The profiler was deployed off
the unshaded side of the research vessel and sampled at a frequency
of 10 Hz while free-falling through the water column at a rate of
0.35 m/s, with special care taken to prevent the profiler from traveling
through the shadow of the research vessel. ProSoft software v7.7
(Satlantic, Inc.) was used to process the HyperPro data, generating
hyperspectral below-surface diffuse attenuation coefficients (K_Ed) de-
rived from the profiler's downwelling irradiance sensor (Ed).

The first optical depth for a homogenous water column has been re-
ported as the depth at which the downwelling irradiance diminishes to
1/e (approximately 37%) of the value at the air-water interface, equiva-
lent to 1/K(0,-). where K(0,-) is the attenuation coefficient just beneath
the air-water interface (Gordon and McCluney, 1975). For this study,
optical depth was calculated for each wavelength as the inverse of the
ProSoft-derived K_Ed metric. The mean optical depth was calculated
over the optical wavelengths (400–700 nm) for each cast. The spectrally
averaged optical depths were then pooled and the mean value was
computed. This mean optical depth value was then used to define the
surface layer in subsequent analyses. Themean optical depth represents
the portion of the water column observed, on average, by remote sens-
ing systems.
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The FP uses six light-emitting diodes to determine phytoplankton
group concentration (emitting light at 370, 470, 525, 570, 590, and
610 nm). Relative fluorescence at these six wavelengths is compared
to standard curves from specific phytoplankton groups to determine
the concentration of diatoms, blue-green algae (referred to as
cyanobacteria from this point on), green algae, and cryptophyta.
CDOM or “yellow substance” fluorescence is estimated using the
370 nm fluorescence excitation band in order to remove CDOM fluores-
cence contamination from algal chlorophyll concentrations (Beutler
et al., 2002).

In the field, the FP was deployed by hand over the side of the re-
search vessel with a rope. The FP was allowed to equilibrate just
below the air-water interface as the instrument warmed up. After this
warmup period, the instrumentwas allowed to descend slowly through
the water column at an approximate rate of 1 m/s, sampling at a rate of
1 Hz, until it hit the lake bottom, atwhich point it was pulled up quickly.
Data were extracted off the FP into the bbe++ software (version 2.6;
bbe-Moldaenke GmbH) where standard calibrations were applied in
order to derive phytoplankton group-specific chlorophyll-a concentra-
tions from thefluorescence returns. Regular in-lab validationswere per-
formed with known concentrations of algal cultures to check for
instrument drift.

Sediments were sometimes stirred up when the FP hit the lake bot-
tom during deployment which could impact the instrument retrievals.
To account for this, only downcast data were used in the analysis. Read-
ings fromwhen the instrument was warming up were also removed so
that the final analysis only includes the data points when the FPwas de-
scending through the water column.

Severalmetricswere derived from the FP outputs. Surface layer con-
centrations of chlorophyll-a for each algal groupwere derived as the av-
erage value of all measurements within the mean optical depth to
represent the data that are visible to remote sensing satellites. The con-
tribution of cyanobacteria to the total chlorophyll-a composition is

measured as the FP-derived cyanobacteria concentration divided by
the total chlorophyll-a concentration in the surface layer. The center
ofmasswas used as an indicator of vertical distribution of cyanobacteria
concentration and was calculated according to equations in Rowe et al.
(2016). This metric ranges from 0 to 1 and can be interpreted as the rel-
ative depth in thewater columnwhere the average concentration lies. A
value of 0.5 indicates that the average concentration lies 50% through
the water column and values closer to 0 indicate that the cyanobacteria
is more heavily concentrated near the air-water interface.

Thesemetricswere calculated for each cast, but analysis was focused
on the cyanoHAB season for data quality purposes. This is defined as the
time from when cyanoHABs typically begin to develop until they are
typically gone fromwestern Lake Erie, or approximately July 22 through
October 18 (Wynne and Stumpf, 2015). Limiting our dataset to the
cyanoHAB growing season cut our sample size to 136 casts.

Wind speed and wave height data were collected in order to assess
their effects on algal vertical structure. Modeled wind speed and signif-
icantwave heightwere generated through the Great Lakes Coastal Fore-
casting System (GLCFS; Schwab and Bedford, 1999) and acquired for
each sampling station from the Great Lakes Observing System (GLOS)
Point Query Tool for the GLCFS (http://data.glos.us/glcfs/; accessed on
December 20, 2017). For each data point, the variables were averaged
over the 24 h prior to FP data collection, as well as 12, 6, 3, 2, and 1 h
prior. Modeled wind speeds for stations WE4 and WE12 and modeled
wave heights for stationWE12were compared to buoys at the same lo-
cations (NOAA GLERL buoy THL01 at WE4, LimnoTech buoy 45165 at
WE12). All comparisons showed good agreement between modeled
and measured values.

Unless otherwise specified, all regression analyses were performed
with the Theil-Sen Estimator (Theil, 1950; Sen, 1968) using the mblm
package in R (Komsta, 2013). Theil-Sen is a nonparametric, median-
based analysis that is robust to outliers (Fernandes and Leblanc,
2005). To statistically compare measured center of mass values to a

Fig. 1.Map ofwestern basin Lake Erie showing the locations of the sampling stations. The bathymetric layer comes from the National Geophysical Data Center (National Geophysical Data
Center, 1999).
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well-mixed condition (center of mass = 0.5), data were binned by ei-
ther the Julian day or the station depth. The data in each bin were
then compared to the well-mixed condition using the Wilcoxon
Signed-Rank test. When binning by Julian day, casts were put into one
of 20 five-day bins ranging from day 200 to day 300. When binning by
station depth, casts were put into one of 6 2-meter bins ranging from
2 m to 14 m. Statistical significance was set at alpha = 0.05.

Results

Substantial variability was found in the Satlantic HyperPro-derived
optical depth metric. On average (across all casts), the lowest optical
depth was observed at 402 nm (0.68 m) and highest at 566 nm
(1.65 m). The decreased optical depths in the short wavelengths (e.g.
402 nm) can be explained by the increased attenuation of light (i.e.
lower optical depth) due to significant CDOM and non-algal particle ab-
sorption. Conversely the greater optical depths observed in the green-
yellow wavelengths (i.e. 566 nm) correspond to a spectral region of
minimal phytoplankton pigment absorption thus more light penetrat-
ing deeper into the water. After averaging across the optical wave-
lengths for all casts, the derived optical depths were found to range
between 0.33 and 4.72 m with a mean of 1.12 m. Fig. 2 shows that
water tended to become less clear (lower optical depth) as the growing
season progressed, reaching a minimum around early-September
(Fig. 2A) and that deeper stations tended to be more clear (Fig. 2B).

The vertical distribution of phytoplankton groups, in particular
cyanobacteria, varied during sampling. The vertical profile examples
presented in Fig. 3 represent the variety of structures sampled in west-
ern Lake Erie, ranging fromwell-mixed to stratified. The center of mass
was used as an indicator of the degree of stratification and could be seen
to vary as well.

The phytoplankton community composition was relatively similar
across stations as evidenced from sampling at three stations (Fig. 4).
The percentage due to cyanobacteria increased at all stations during
the cyanoHAB growing season (July 22–October 18). These time series
also showed the varying contribution of diatoms over time. At stations
WE2 and WE12 (Fig. 4A and C, respectively), the increase in
cyanobacteria percentage appeared to coincide with a decrease in dia-
tom percentage. At station WE6 (Fig. 4B), the diatoms maintained a
strong contribution throughout the cyanoHAB growing season.

There was a significant increase in surface layer cyanobacteria con-
tribution in the cyanoHAB growing season (p b 0.01; Wilcoxon Rank
Sum test). The cyanobacteria contribution outside the cyanoHAB season
was 6.1% and increased to 34.8% within the growing season. When
narrowing to the cyanoHAB season there was a significant decline in
cyanobacteria contribution as the season progressed (p b 0.01;
Fig. 5A). Moreover, there was a significant decline in surface layer
cyanobacteria contribution as water depth increased (p b 0.01; Fig. 5B).

On average, the cyanobacteria were uniformly distributed through-
out the water column during the study period. Themean cyanobacteria
center of mass ranged from 0.25 to 0.64 during the cyanoHAB season
with a mean of 0.48 which is effectively well-mixed. This indicates
that in a hypothetical 10mwater column, the cyanobacteria concentra-
tion would be centered at 4.8 m as opposed to 5 m in a perfectly well-
mixed scenario with a center ofmass of 0.5. Therewas a statistically sig-
nificant (p b 0.01) decrease in center of mass as the season progressed
and a significant increase in center of mass as water depth increased
(p b 0.01).

Our data revealed a significant relationship between cyanobacteria
center of mass and cyanobacteria concentration within the surface
layer, such that increases in surface layer concentrations corresponded
with decreases in the center of mass (p b 0.01). Because of this observed
relationship, we split our dataset into two categories based on surface
layer cyanobacteria concentration in order to more clearly see how
other variables (i.e., time, station depth, wind speed, and wave height)
influence the vertical structure. The high concentration category in-
cluded casts where the surface layer cyanobacteria concentration
exceeded the mean (3.76 μg/L, n= 65) and low concentration was de-
fined as casts where the surface layer concentration was below the
mean (n = 71).

The low concentration category exhibited a significant declining
trend over time (p b 0.01; Fig. 6A) but binning this data into 5 day inter-
vals showed that the average center of mass fluctuated around 0.5 with
only two bins showing significant discrepancies from 0.5 based on the
Wilcoxon Signed-Rank test (p = 0.027, 0.043 for the August 13–18
and August 28–September 2 bins, depicted as days 227 and 242, respec-
tively). Both high and low cyanobacteria concentration data showed a
significant decline in center of mass as station depth increased (p b

0.01; Fig. 6B). The 2-m binned low concentration data did not show
any significant discrepancies from 0.5 throughout the depth range
based on the Wilcoxon Signed-Rank test (all p N 0.05). The binned
high concentration data visually showed a clear decline in average
cyanobacteria center of mass as depth increases and all bins had center
of mass significantly lower than 0.5 (p = 0.045, 0.001, 0.028, 0.007 for
the 2–4, 4–6, 6–8, and 8–10 m bins, respectively). Similarly, when
looking only at deeper stations (thosewith depth greater than the over-
all average of 6.2 m), there was a clear decline in center of mass as sur-
face layer cyanobacteria concentrations increased (p b 0.01). In
summary, cyanobacteria tended to be vertically stratified in deeper off-
shore waters when surface layer concentrations were high, with strati-
fication becoming more severe with increasing depths and/or
increasing surface layer concentrations. Cyanobacteria were generally
well-mixed in shallower nearshore waters and/or when surface layer
cyanobacteria concentrations were low.

Projecting the surface layer concentration throughout thewater col-
umn allows for the assessment of biomass estimation error if one were

Fig. 2. Variability of Satlantic HyperPro-derived optical depths for all stations from July 22 through October 18 in 2015 and 2016. A) optical depth plotted against the sampling date,
B) optical depth plotted against the station depth. For each date and station depth bin, the dot represents the mean optical depth and the bars represent one standard deviation.
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to assume awell-mixed condition.Whenwater depthswere b6.2m and
surface layer concentrations were high, assuming a well-mixed water
column resulted in an average biomass overestimation of 6.7% and got
as high as 52.1%.When water depths were N6.2 m, the average biomass
overestimation was 33.9% reaching as high as 75.3%.

In order to examine other factors controlling cyanobacteria vertical
distribution we compared cyanobacteria distribution to wind speed
and wave height. Because cyanobacteria were well-mixed when the
surface layer concentration was low, modeled wind speed and wave
height data were only compared to the cyanobacteria center of mass
for casts when high surface layer concentrations were observed
(Fig. 7). A segmented regression analysis (using the segmented package
in R; Muggeo, 2008) showed that there was a significant shift in the re-
lationships at a wind speed of 4.9 m per second (p b 0.01) and a wave
height of 0.27 m (p = 0.037). This analysis found significant positive
slopes when wind speeds and wave heights were below the thresholds
(slope = 0.07 and p b 0.01 for wind speed, slope = 0.19, p= 0.014 for
wave height) and non-significant slopes when wind speeds and wave
heights were greater than the thresholds with center of mass values av-
eraging 0.49 above the threshold in both comparisons. The piecewise
regression model for wind speed explained more variability than the
wave height model, with R2 values of 33.7% and 26.7%, respectively.
Comparing the segmented model R2 using different aggregation times,
it was found that averaging wind speeds and wave heights over the
24 h prior to sampling provided a better fit than any of the shorter
time periods.

Discussion

Remote sensing has been used to study cyanoHAB extent, severity,
andmovement in Lake Erie due to its spatial and temporal sampling ad-
vantages over in situ tracking (Wynne et al., 2008; Stumpf et al., 2012;
Wynne et al., 2013; Sayers et al., 2016). There are key limitations with
remote sensing though that could inhibit the ability to use the satellite
retrievals to adequately monitor cyanoHAB events. Because satellites
can only observe water down to one optical depth, assumptions have
to be made about the vertical structure in order to make water column
cyanobacteria biomass estimates. If the vertical structure is variable,
then a universal assumption of either mixed or stratified would lead
to errors in these estimates. Approaches that assume a highly stratified
water column and treat the surface layer concentrations as themajority
of the water column biomass (i.e., Wynne et al., 2010; Stumpf et al.,
2012) would underestimate in cases where the water column was
more mixed. Conversely, approaches that assume a homogenous
cyanobacteria distribution (as Bertani et al., 2016 did for in situ mea-
surements) would overestimate biomass in cases where vertical strati-
fication was present. This study used an extensive in situ FP time series
to investigate the variability of vertical structure in western Lake Erie in
order to assess the ability of remote sensing to study cyanoHAB inwest-
ern Lake Erie.

Even though cyanobacteria were typically homogenously distrib-
uted throughout the water column, significant variability was seen in
the cyanobacteria vertical structure metric, particularly when
cyanobacteria concentrations were high. When cyanobacteria concen-
trations within the surface layer were elevated, the center of mass was
found to be significantly lower than 0.5 (indicating that the
cyanobacteria were more concentrated toward the air-water interface)
and the vertical stratification became more severe as water depth in-
creased. Cyanobacteria has been reported to be well-mixed in shallow
lakes (Hunter et al., 2008), and stratification at increased depths is likely
due to temperature gradients since cyanoHAB growth is sensitive to
temperature (Robarts and Zohary, 1987; Kanoshina et al., 2003). Rowe
reported that western Lake Erie experiences varying surface mixed
layer depths as a result of the “diel cycle of surface heating and cooling”
with additional influence fromwind and that cyanobacteria buoyancy is
able to keep concentrations within this surface mixed layer where
growth conditions are optimal (Rowe et al., 2016).

The explanation for the relationship between cyanobacteria vertical
structure and surface layer concentration is less clear. Given that the
center of mass metric indicates where in the water column the
cyanobacteria is most heavily concentrated and that cyanobacteria
buoyancy limits the presence at depths below the surface mixed layer,
it is intuitive that increased concentrations in the surface layer would
skew the center of mass higher in the water column. However, it is
also possible that increased concentrations of cyanobacteria in the sur-
face layer are driving center of mass shifts in more indirect ways. It
has been shown that cyanobacteria blooms can increase the water tem-
perature near the air-water interface, providing a positive feedback
mechanism leading to increased cyanobacteria presence (Hense,
2007). Additionally, in small lakes, increased concentrations of
cyanobacteria are known to diminish the depth of the surface mixed
layer by attenuating light (Mazumder et al., 1990; Fee et al., 1996;
Houser, 2006), though this effect may be less of a factor in large lakes
(Fee et al., 1996). A potential confounding factor here is that
cyanobacteria colony size has been linked to increased buoyancy
(Walsby, 1972; Reynolds et al., 1987) so it is possible that the observed
relationship between cyanobacteria concentration and vertical struc-
ture is the result of a spurious correlation between concentration and
colony size. Going forward, collecting particle size distribution data
along with the FP profiles (either through the use of an in situ instru-
ment or a laboratory analysis of water samples) would allow for further
unraveling of this relationship.

Wind speed and/or wave height were also found to be critical to de-
termining periods when cyanobacteria may be vertically stratified in
the water column. Heavy winds have been widely reported as a key
driver of vertical mixing of cyanoHAB (Wallace et al., 2000; Gons
et al., 2005; Hunter et al., 2008; Wynne et al., 2010; Rowe et al.,
2016). Several studies have identified threshold wind speeds required
for vertical mixing in shallow inland lakes, from 3.1 m/s (Cao et al.,
2006) to 4 m/s (George and Edwards, 1976; Hunter et al., 2008;

Fig. 3. Example FP profiles demonstrating different vertical structures in western Lake Erie and the corresponding cyanobacteria center of mass. A) example of a well-mixed station from
WE13 on 8/25/2015 where the cyanobacteria center of mass is approximately 0.5, B) example of a vertically stratified cyanobacteria population from WE2 on 8/17/2015 with a
cyanobacteria center of mass of approximately 0.33, C) example of a highly stratified cyanobacteria population from WE2 on 8/31/2015 with a center of mass of approximately 0.29.
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Fig. 4. Surface layer algal composition time series for three stations in WBLE in 2015: WE2 (A), WE6 (B), and WE12 (C). Each bar represents the percent composition of total chlorophyll-a by each algal group over the top 1.12 m. Empty columns
indicate dates where sampling occurred, but no FP measurements were recorded within the top 1.12 m.
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Huang et al., 2014). A 6.2 cm wave height threshold, or approximately
0.2 ft, was previously identified as sufficient to force mixing (Cao
et al., 2006). These thresholds are lower than what was identified in
our analysis (4.9 m/s wind speeds and 0.91 ft wave heights), likely
due to the fact that western Lake Erie is deeper than the other lakes
studied.Windmixing thresholds have also been identified using remote
sensing for larger lakes more similar to Lake Erie. For Lake of theWoods
(which straddles the USA/Canada border), Binding et al. (2011) re-
ported a lower cyanobacteria mixing threshold at wind speeds of
3 m/s, though this was for blooms of Aphanizonmenon rather than
Microcystis (Binding et al., 2011). Studying Microcystis blooms in west-
ern Lake Erie, Wynne et al. (2010) found a greater threshold wind
speed, reporting that wind speeds N15 knots (approximately 7.7 m/s)
were likely to cause mixing. This study's finding of a threshold at
4.9 m/s most closely matches the NOAA Lake Erie Harmful Algal
Bloom Bulletin, which notes that wind speeds N10 knots (approxi-
mately 5.14 m/s) may result in an increased chance of mixing
(https://tidesandcurrents.noaa.gov/hab/hab_publication/Lake_Erie_
HAB_Bulletin_Guide.pdf; accessed on July 20, 2018). Because the verti-
cal structure varies with station depth as well as disturbance due to
winds and waves, it follows that a universal assumption of either a
mixed or stratified water column would lead to errors in estimating
cyanobacteria biomass based on remote sensing-derived surface layer
values.

Aside from varying water column vertical structure, current remote
sensing algorithms also face issues with how cyanobacteria concentra-
tions are derived. Due to spectral resolution limitations of most sensors,
these algorithms are typically using spectral features specific to
chlorophyll-a (i.e., the chlorophyll-a absorption maxima around
667nm, andfluorescence peak at 681nm, etc.) to generate relationships
to estimate cyanobacteria abundance/biomass (Wynne et al., 2010;
Stumpf et al., 2012; Sayers et al., 2016). This approach is adequate if
cyanobacteria are consistently the dominant algal group during the
cyanoHAB season, but if the surface layer algal group composition is var-
iable then these relationships could be invalid. Wynne notes that the CI
algorithm “may be sensitive to large blooms of other types of phyto-
plankton” (Wynne et al., 2010).

Western Lake Erie was found to exhibit a diverse phytoplankton
community even during the cyanoHAB growing season. Despite the in-
creased concentration of cyanobacteria during the bloom season, they
only accounted for N50% of total chlorophyll-a in the surface layer in
17% of the samplings during bloom season. The mean cyanobacteria
contribution during the bloom season was 34.8%, similar to what was
reported in 2005 and greater than what was seen in 2003 and 2004
(Millie et al., 2009). Seasonal trends observed in the FP data were also
compared to previously reported trends. Diatoms were the dominant
algal group from the start of sampling until late July and again in the
fall as the cyanobacteria died down, agreeing well with the findings of

Fig. 5.Temporal and spatial variability of surface layer cyanobacteria percentage for all stations from July 22 throughOctober 18 in 2015 and 2016. A) cyanobacteria percent composition in
the top 1.12m plotted against the sampling date, B) cyanobacteria percent composition in the top 1.12m plotted against the station depth. Regression line in panel B was calculated using
the full un-binned dataset and was derived using the Theil-Sen Estimator, showing a significant decline in percent composition as depth increased (p b 0.01). For each date and station
depth bin, the dot represents the mean optical depth and the bars represent one standard deviation.

Fig. 6. Temporal and spatial variability of cyanobacteria center of mass for all stations from July 22 through October 18 in 2015 and 2016, with data split by surface layer cyanobacteria
concentration. High concentration represents casts where the surface layer cyanobacteria concentration was greater than the mean (3.76 μg/L) and low concentration represents casts
where the surface layer concentration was below the mean. A) cyanobacteria center of mass plotted against the sampling date, B) cyanobacteria center of mass plotted against the
station depth. Regression lines in panel B were calculated using the full un-binned dataset and were derived using the Theil-Sen Estimator, both showing a significant decline in center
of mass as depth increased (p b 0.01). For each date and station depth bin, the dot represents the mean optical depth and the bars represent one standard deviation.
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prior in situ studies (Munawar and Munawar, 1982; Ghadouani and
Smith, 2005). Cyanobacteria began developing in late-July in Maumee
Bay before spreading eastward and persisted until mid-October, corre-
sponding well with observations based on remote sensing (Wynne
and Stumpf, 2015).

Our analysis also showed that the contribution of cyanobacteria to
the total chlorophyll-a concentration was found to be variable through
time and space in western Lake Erie. Cyanobacteria contribution de-
clined significantly over the cyanoHAB season, but this trend appears
to be better modeled with a non-linear function. The percentage of
cyanobacteria in the surface layer increases from the beginning of the
growing season, peaking inmid-August before it begins todecline. Liter-
ature suggests that the cyanobacteria peak varies by year (Bridgeman
et al., 2013), but the mid-August peak we identified was also seen in
other studies (Bridgeman et al., 2013; Wynne and Stumpf, 2015).
Cyanobacteria were shown to be more dominant at shallow stations,
with its contribution declining as station depth increased. Geographi-
cally, the shallowest sampling stations are closest to the mouth of the
Maumee River and depths increase as distance from Maumee Bay in-
creases. Multiple remote sensing studies have shown that within west-
ern Lake Erie, Maumee Bay is most severely impacted by cyanoHAB
with maps showing declining severity further from the Maumee River
(Wynne and Stumpf, 2015; Sayers et al., 2016). The variable phyto-
plankton community and cyanobacteria contribution suggest that in
most cases one cannot simply use chlorophyll-a concentration as a sur-
rogate for cyanobacteria abundance/biomass.

Since significant variability was identified in cyanobacteria vertical
structure and surface layer composition, current remote sensing ap-
proaches for tracking cyanobacteria may require some improvement
when being used to estimate water column biomass. This could include
expanding algorithms to utilize spectral features more specific to
cyanobacteria in addition to the total chlorophyll-a features currently
targeted, including the absorption maxima at 620 nm (Bryant, 1994)
which is available on the European Space Agency's Ocean Land Color In-
strument (OLCI) aboard Sentinel-3. Stumpf et al. note that the total
chlorophyll-a features at 665 and 681 nm are targeted rather than the
620 nm band because of the increased sensitivity of these bands to pig-
ment concentrationwhich enhances the ability of satellite remote sens-
ing algorithms to retrieve biomass variations (Stumpf et al., 2016).
However, themaximumpeak height (MPH) algorithm, while retrieving
concentrations of chlorophyll-a rather than cyanobacteria, uses these
more sensitive bands while also incorporating the 620 nm band as an
indicator of cyanobacteria presence (Matthews et al., 2012; Matthews
and Odermatt, 2015). Promise has also been shown in the use of
hyperspectral remote sensing to utilize these and other bands to track
cyanobacteria blooms (Kudela et al., 2015) and to break down the ob-
served water color into phytoplankton functional groups (Werdell

et al., 2014). Other indicators or predictors (i.e., water temperature)
could also be used to help estimate cyanobacteria abundance/biomass
from chlorophyll-a measures (Stumpf et al., 2012; Sayers et al., 2016).

There has been little reporting on the variability of optical depth and
light attenuation in Lake Erie. O'Donnell et al. (2010) measured the dif-
fuse attenuation coefficient (Kd) at 14 stations in the western and cen-
tral basins of Lake Erie over the course of two days in 2007, finding
large differences driven by the concentration and composition of opti-
cally active constituents including chlorophyll-a. Based on the calcula-
tion of optical depth as the inverse of Kd, they found spectrally
averaged optical depths ranging from approximately 0.66 to 1.66 m
(O'Donnell et al., 2010). Results from this study showed an approxi-
mately four-fold larger range of optical depths, likely because of our ex-
panded temporal sampling. The expanded range of optical depths
reported in this study is important for the interpretation of remote sens-
ing data in terms of understanding the volume of water being observed
by the sensors.

Knowledge of the spectral variability of optical depths is also impor-
tantwhen using remote sensing to studywater quality. An optical depth
of approximately 1m for thewavelengths between 660 and 700 nmhad
been previously estimated based on a chlorophyll concentration of 10
μg/L (Wynne et al., 2010). Our data was in agreement with this value,
with an average optical depth of 0.9 m across the same wavelengths,
however depths were found to range from 0.35 to the theoretical pure
water maximum of 2 m (Pope and Fry, 1997; Wynne et al., 2010). The
range of optical depths was much wider at other wavelengths which
is critical information for algorithms utilizing other portions of the opti-
cal spectrum. At the commonly used 550 nmband (O'Reilly et al., 2000;
Shuchman et al., 2013) the average optical depth observed was 1.6 m
but ranged between 0.3 and 9.3 m. This spectral variability indicates
that remote sensing bands in different portions of the spectrum (i.e.,
red, green, and blue) are observing different volumes of water. In the
case of a well-mixed water column, this effect is likely negligible. How-
ever, under stratified conditions, these different volumes could contain
different particle compositions and/or concentrations. The vertical dis-
tribution of cyanobacteria has been shown to impact remote sensing re-
flectance retrievals (Kutser et al., 2008), indicating that multispectral
remote sensing algorithms for studying cyanoHAB need to take this
varying optical depth into account.

The FP has been shown to be an effective tool to characterize phyto-
plankton in in situ settings (Gregor andMaršálek, 2004; Ghadouani and
Smith, 2005), but the application of FP results does require some cau-
tion. Due to the FP deployment methods and output filtering of upcast
data, there is limited sampling of the top meter of the water column.
The average depth of the first measurement was 0.62 m below the air-
water interface and 12.5% of casts did not have a measurement within
1 m of the air-water interface. Because cyanoHABs are known to

Fig. 7. Comparison between cyanobacteria center of mass and modeledwind speed (A) andmodeled significant wave height (B) for all points within the cyanoHAB growing season (July
22–October 18) in 2015 and 2016. The plotted lines represent the results from segmented regression analysis. Bothwind speed andwave height showed a significant positive relationship
with center of mass up to a threshold value, abovewhich the water columnwas consistently well-mixed (wind speed: slope= 0.07, p b 0.01, threshold= 4.9 m/s; wave height: slope=
0.19, p= 0.014, threshold = 0.27 m).
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concentrate near the air-water interface in calm conditions, our FP
dataset may have missed some of the largest concentrations of
cyanobacteria, particularly when surface scums were present. The
cyanobacteria dominance in the surface layer is likely underestimated
by not sampling this shallowest portion of the water column. In highly
stratified conditions, not sampling the top meter may also falsely sug-
gest a more mixed water column than is actually present.

Undersampling the topmeter ofwater does not invalidate the trends
that were found, but it does compromise our ability to directly link the
FP results to remote sensing retrievals. This is particularly true in turbid
waters where the optical depth could be shallow enough that it is not
sampled at all by current FP deployment methods. There are a few
methodological improvements that can be made to the FP deployment
to improve sampling within the top meter of water. For example, after
allowing the FP to warm up in the water, the instrument can be lifted
completely out of thewater before beginning the descent process. Alter-
natively, the FP can be deployed in a horizontal position. Since the
instrument's LED sensors are located approximately 0.5 m below the
top of the cage, a horizontal deploymentwould allow the user to ensure
that the top portion of the water column is being sampled even if the
warm up period takes place in the water. Increasing the sampling rate
(slower rate of lowering) would also allow for more measurements
within the top meter. Another approach to ensure data within the top
meter would be to collect a water sample from the surface layer, store
it in a cool, dark space, and analyze it in the lab with the FP inWorkSta-
tion mode. Since surface scum thickness generally does not exceed
1–2 cm it is unlikely to ever be adequately sampled with a FP in the
field. In this case, integrationwith remote sensing algorithms that iden-
tify surface scums could be used to identify areas where thewell-mixed
water column assumption is not met. One such algorithm is the Surface
Scum Index (SSI)which uses an implementation of theNDVI overwater
pixels to identify scums (Sayers et al., 2016).

The FP is also susceptible to errors in pigment fluorescence quantum
yields which can vary in surface layer samples due to non-
photochemical quenching (NPQ) (Falkowski and Raven, 2007).
Quenching has been shown to increase as the level of incoming radia-
tion increases (Sackmann et al., 2008), causing the FP to underestimate
concentrations by 10–40% in waters where the photosynthetically ac-
tive radiation is greatest (Leboulanger et al., 2002; Serra et al., 2009). Be-
cause radiation levels decrease in deeper waters, fluorescence quantum
yields can increase and lead to biased vertical profiles, suggesting a deep
chlorophyll layer when one is not actually present (Sackmann et al.,
2008). Microcystis has been suggested to be less impacted by NPQ
than other species (Paerl et al., 1985; Sommaruga et al., 2009), but
NPQ could lead to overestimates of cyanoHAB dominance in the surface
layer while also limiting our ability to study the concentration and
structure of other algal groups with FP data.

Several techniques exist for avoidingNPQ or correcting for it. In low-
sediment waters, particulate backscattering has been shown to be cor-
related with chlorophyll-a concentrations and the fluorescence:back-
scattering ratio can be propagated from deep layers to the air-water
interface to determine the level of quenching and correct for it
(Sackmann et al., 2008). However, sediments are frequently present in
western Lake Erie, limiting the effectiveness of this approach. Concur-
rent photochemical yield estimations can also be used to correct for
NPQ (Chekalyuk and Hafez, 2011). Sampling at night or before sunrise
would limit the effect of NPQ on our data, butwould also limit the appli-
cability of the results to remote sensing data (most satellites fly over be-
tween 11 am and 2 pm) due to relatively rapid daily vertical migration
patterns typically observed for buoyant cyanobacteria (Kromkamp and
Mur, 1984; Ibelings et al., 1991).

Despite the minor issues with the data, this extensive FP dataset has
provided and will continue to provide extreme value to the research
community. The FP provides a quickway to assess vertical homogeneity
of phytoplankton, a necessary requirement for applications to remote
sensing. The spatial and temporal coverage of this dataset allows for

users of the data to study trends across the western basin over the
course of multiple growing seasons at a finer scale than prior data
allowed.
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