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Abstract 
The Full-length complementary DNA OvereXpression (FOX) system is an approach to 

generating gain-of-function (GF) plants predominantly used for studying Arabidopsis. This 

approach inserts T-DNAs containing random full-length complementary DNA (fl-cDNA) 

with upstream promoter and downstream terminator into the host plant genome. Studies 

using this method report the success generating overexpression populations with high 

mutation rates. We choose to investigate the feasibility and effectiveness of this method 

using poplars. We suspected using a succulent xylem specific fl-cDNAs library would 

enrich the transformant poplars with mutants affected in traits specific to woody tissue 

development. We observed a characteristically high mutation rate (17.7%) significantly 

enriched for mutants with altered cell wall composition. We determined selection of tissues 

for RNA sampling greatly influence types of genes inserted and phenotypes observed, as 

seen by the enrichment for FOX mutants affected in traits liked to developing xylem. 

Furthermore, using the FOX system we discovered overexpression of a fl-cDNA 

homologous for poplar specific LONELY GUY 1 (LOG1) resulted in a near doubling of 

stem xylem width. LOG1 belongs to a gene family encoding enzymes that directly convert 

inactive cytokinins to their active conformations. Examining stem sections, we determined 

LOG1 overexpression greatly increased active cytokinin concentration causing xylem 

proliferation. Complete phenotype recapitulation for LOG1 FOX line using Gateway OE 

method validated the feasibility of the FOX system for studying poplars. 



1 

1 Introduction 

1.1 Economic & Environmental Value of Poplars 

The Populus genus comprises over 30 species, spans a majority of the temperate regions 

of the US and is of great environmental importance (Dickmann 2001, Brunner, Busov, and 

Strauss 2004). Poplars have also become model organisms for understanding tree biology 

due to available resources and specific biological features: these include facile clonal 

propagation, fast growth, and transformability (Busov et al. 2005, Brunner, Busov, and 

Strauss 2004). In addition, poplar has a high quality whole genome sequence and 

annotation (Tuskan et al. 2006) that facilitates both functional and comparative genomic 

analysis of traits. Using both genomic studies and hybridized species, the Populus genus 

provides a toolset for understanding complex traits specific to trees of economic and 

environmental importance (Tuskan et al. 2006). 

1.2 Mutagenesis Approaches for Functional Gene Discovery 

One feature making the poplar unique among other tree taxa is its amenability to 

mutagenesis by Agrobacterium transformation. This is extremely important: 

transformation allows for comprehensive understanding of an individual gene’s function 

(Busov et al. 2005). This high transformability allows for generation of large mutant 

poplars populations for gene discovery (aka, mutagenesis approaches). Mutagenesis 

through transformation is a preferred method in plants because the transformed DNA (T-

DNA) serves as a tag allowing for facile positioning of the lesion in the genome. 
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Mutagenesis approaches typically result in two types of mutants – loss-of-function (LF) 

and gain-of-function (GF). LF results from disruption of a gene-reading frame often by T-

DNA insertion. These LF mutations are recessive and require rounds of selfing to generate 

a progeny homozygous for the lesion that reveal the mutations effect. This makes LF 

impractical to study trees due to their long generation cycles (flowering occurs after many 

growing seasons). LF mutations are also problematic in plants due to the high level of gene 

redundancy observed in most plant genomes (Kondou, Higuchi, and Matsui 2010). This is 

especially problematic in poplars, which have experienced a recent whole-genome 

duplication (Kaul et al. 2000, Tuskan et al. 2006). Fortunately, these issues can often be 

circumvented using GF mutagenesis. 

Activation tagging (AT) is one approach to GF mutagenesis that introduces T-DNAs 

containing known, strong enhancers located near to a boarder of the activation tagging 

vector (ATV). Thus, random genome insertion with the ATV by Agrobacterium-mediated 

transformation serves a dual purpose: (1) genome placement and (2) induced proximal gene 

transcription. The promoter’s activity can operate more than 10kb from the insertion point 

to produce a GF phenotype observable in T0 (e.g., the primary transformant) plants 

(Kondou, Higuchi, and Matsui 2010, Weigel et al. 2000). 

In 2003, AT was first successfully used with poplars: within the pilot population a Populus 

GA2ox (GIBERRELLIN 2-OXIDASE) gene was discovered and characterized (Busov et 

al. 2003b). Subsequently, a number of other important Populus genes have been discovered 

and characterized using this method (Yordanov et al. 2014, Dash et al. 2017, Plett et al. 

2010) demonstrating the feasibility for this approach in functional gene discovery. 
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The full-length complementary DNA overexpression (FOX) system is another GF 

mutagenesis approach (Ichikawa et al. 2006, Kondou, Higuchi, and Matsui 2010). The 

system uses en block transformation of a normalized full-length complementary DNA (fl-

cDNA) library, directionally cloned between the strong 35S promoter and a terminator into 

transgenic plants (Carninci et al. 1996, Seki et al. 1998). 

1.3 Appealing Features of the FOX System GF Mutagenesis 
Approach 

First and foremost, the rate of mutant discovery of the FOX system is extremely high: using 

Arabidopsis, mutation rates range between ~10% and ~17% for the FOX approach 

(Ichikawa et al. 2006, Nakamura et al. 2007) compared to ~1% using AT (Weigel et al. 

2000). Multiple poplar AT studies had similar results, displaying mutation rates of ~1.5% 

(Busov et al. 2003b, Busov et al. 2011). Furthermore, fl-cDNA libraries are specific to gene 

expression profiles, which are influenced by spatial, temporal and environmental cues 

(Seki, Narusaka, Kamiya, et al. 2002, Seki and Shinozaki 2009). Thus, specificity of RNA 

extraction theoretically enriches a FOX population for genes specific to a particular 

process. Therefore, the system not only increase the overall mutation rate but also the 

instances of finding genes that affect a trait of interest. Combined, these two factors elevate 

the economic feasibility of the FOX system.  

FOX system greatly simplify the process of relating a gene to the observed GF phenotype 

in multiple ways. (1) The FOX system eliminates some ambiguities associated with cloning 

the causative genes using other methods like AT. For example, insertion of the ATV in a 

gene rich region can result in activation of several genes: these instances require expression 
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study of multiple genes making isolation of the causative more difficult. Furthermore, 

insertions in intron sequence as well as near genes prone to alternative splicing requires 

significant cloning work to identify the exact transcript that causes the phenotype. These 

difficulties do not exist in the FOX system as it relies on the introduction of already 

processed cDNA cloned into a predefined promoter/terminator context. The main difficulty 

of the FOX system arises with multiple insertions within a single line. However, 

Agrobacterium-mediated transformation typically generates 1-2 insertions within a single 

line (Gelvin 2012), thus there is a low level of complexity for determining the causative 

genes identity. (2) Cloning the culprit genes is also simpler using the FOX system: T-DNA 

promoter and terminator sequences flank the fl-cDNA and provide primer anchoring sites 

allowing for direct isolation of an inserted gene. AT relies on PCR with degenerate primers 

and/or ligation of adaptors, which may prove challenging in certain instances (Kondou, 

Higuchi, and Matsui 2010, Weigel et al. 2000, Ichikawa et al. 2006). (3) While AT is 

limited to studying endogenous genes, the FOX system can employ a transformable species 

to study FOX library generated from an entirely different species. This has been 

demonstrated multiple times (Kondou et al. 2009, Nakamura et al. 2007, Himuro et al. 

2011, Higuchi-Takeuchi, Mori, and Matsui 2013), often using Arabidopsis to study rice fl-

cDNA. Discovery of BROAD SPECTRUM RESISTANCE 1 (BSR1) from heterologous 

riceFOX Arabidopsis studies had real world application for development of biotechnology. 

Overexpression of BSR1 in the Arabidopsis plants generated a plant resistant to bacterial 

and fungal infections; subsequent overexpression in rice resulted in the similar phenotype 

(Dubouzet et al. 2011). 
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1.4 Regulation of Secondary Woody Growth 

Secondary growth (aka woody growth) is the production of vascular tissues with cell walls 

that have secondary wall thickening. The tissues that arise because of secondary growth 

form wood, which as discussed earlier, largely defines the environmental and economic 

significance of trees. Thus, understanding the molecular mechanisms that affect wood 

biomass productivity and quality are of significant interest.  

Secondary growth occurs in many plant taxa, including the model plant Arabidopsis but is 

short lived or a result of various types of treatments like decapitation, weight-induction and 

exogenous application of auxin (Levyadun 1994, Ko et al. 2004). Conversely, secondary 

growth occurs naturally (and in exaggeration) in trees and shrubs but these organisms are 

often difficult to use for molecular dissection. Thus, limited knowledge exists concerning 

the molecular mechanisms underlying secondary growth (Liu, Filkov, and Groover 2014). 

Nevertheless, significant progress has been made in the last years (reviewed in Zhang, 

Nieminen, et al. (2014) and Shi et al. (2017)). Secondary growth - like many other 

processes in plants - originates from meristem tissue, specifically vascular cambium. In 

many trees and shrubs vascular cambium is bifacial, meaning produces phloem to the 

outside and xylem to the inside of the stem trunk. Cambium cells actively divide and the 

active division zone is readily discernible by the size and shape of the undifferentiated 

cells. This cambial zone (CZ) is comprised of 6-8 cell files. The current progress for 

understanding the CZ regulatory mechanism involves a suit of various hormones and 

transcription factors (See Bhalerao and Fischer (2017), Ruzicka et al. (2015), and Du and 

Groover (2010) for extensive reviews). 
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Woody tissue development does not stop at the CZ: as the cells displace, they undergo 

expansion, differentiation, secondary cell wall (SCW) deposition and in case of xylem, 

programmed cell death (PCD). SCW and PCD are related processes that significantly affect 

woody biomass yield and quality. These determine the secondary cell wall composition 

that defines structural and mechanical properties of woody tissues (Li, Lu, and Chiang 

2006). The major constitutes of cell wall are lignin, cellulose, and hemicellulose, which 

comprise 95% of woody dry weight biomass. Genes regulating SCW and PCD involve cell 

wall biosynthesis enzymes, transcription factors and intercellular cross talk genes (Zhang, 

Nieminen, et al. 2014, Ruzicka et al. 2015). Because these processes can significantly 

affect woody biomass yield and quality, the molecular controls regulating the sequence of 

progression is of substantial interest. Although mechanisms governing CZ, SCW and PCD 

are well studied, the larger understanding of these mechanisms and biosynthetic pathways 

is still limited. 

1.5 Hypotheses & Objectives 

To date, the FOX system has been only used in Arabidopsis (Dubouzet et al. 2011, 

Ichikawa et al. 2006, Fujita et al. 2007, Nakamura et al. 2007, Kondou et al. 2009) and 

Lotus corniculatus (bird's-eye trefoil) (Himuro et al. 2011). Given the limited number of 

species used with the FOX system, it is unclear if high rates of mutant discovery occur with 

other species. Furthermore, the use of the system for identification of genes specific to a 

process of interest has to date not been investigated. Our current study determines the 

feasibility of the FOS system for studying secondary growth in poplars. 
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Hypothesizes for our experiment: 

1. Using model poplars with the FOX system will generate a transformant population with 

a high mutation rate. 

2. RNAs extracted from succulent xylem to develop the fl-cDNA library will enrich the 

FOX poplars for mutants affected in traits linked to xylem development. 

Objectives of study: 

1. Implement the FOX system in poplar to study the process of xylem development 

2. Determine basic parameters of how the system works in poplar 

3. Validate the gene discoveries through a recapitulation process  
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2 Methods & Materials 

2.1 Overview of Experiment 

 
Figure 2.1: An overview of the experiment. RNA templates extracted from succulent 
xylem tissue were reverse transcribed generating the fl-cDNAs. (1) Individual fl-cDNAs 
were cloned independently and directionally within a FOX vector. (2) Using 
Agrobacterium, Wild type (wt) 717 poplars were transformed generating a population of 
FOX poplars. (3) FOX poplars with significantly distinctive phenotypes determined 
through screening. Fl-cDNAs configuring significant phenotypes were isolated and 
characterized with cloning and sequencing. To validate the FOX system, (4) a 
characterized fl-cDNA was directionally cloned into an overexpression (OE) vector and 
(5) using Agrobacterium was used to generate GF mutants. Phenotypes of FOX and OE 
lines were compared to determine effectiveness of the FOX system for poplar mutagenesis. 

2.2 The FOX Poplar Library 

2.2.1 A Xylem Specific FOX Library 

Our intentions were to determine if the FOX system could be used to study genes associated 

with xylem development processes. To test this, we generated a collection of fl-cDNAs 

using succulent xylem tissue. Tissues were collected from an actively growing, 

approximately 15 year old aspen (Populus tremuloides) tree growing near the MTU 

campus using the method described in (Lin et al. 2014). We extracted total RNA using the 
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modified RNA extraction protocol (C.4). Bio S&T Inc. (Quebec, Canada) performed full 

transcript reverse transcription, amplification and normalization of fl-cDNAs. Proceeding 

this, the individual (fl)-cDNAs were cloned into the FOX vector pART277 (Fig. A.3) 

generating the FOX vector library. 

2.2.2 FOX System Mutagenesis of Poplars 

The FOX vector library was subsequently used for mutagenesis of the wt 717 poplar. First, 

D1H10B T1R E.coli were transformed with FOX library using heat shock protocol (E.1). 

D1H10B T1R transformants were grown on liquid LB (miller) media (F.2) with kanamycin 

(F.5) to select for presence of pART277 plant binary vector containing the kanamycin 

resistance gene. After growth period, the fl-cDNA:pART277 plant binary vector was 

extracted using QIAGEN maxiprep protocol (C.6). Glycerol Stock solutions of the 

transformed D1H10B T1R E.coli library was created using the protocol listed (E.3). 

Next, 1µl of the extracted fl-cDNA:pART277 library was used to electrotransform Agl-1 

Agrobacterium (Weigel 2002) (repeated 5 times). The electrotransformants were plated on 

LB (leonix) media (F.4) containing 50mg/L Rifampicin (F.6) and 100mg/L Spectinomycin 

(F.7). This generated 20 Petri plates (15cm diameter) containing approximately 1 million 

colonies. After a growth period of 48 hours all colonies were resuspended in 2 ml 50% 

glycerol per plate, and the entire bacterial library was collected in one 50ml tube and 

vortexed. A 0.5 ml aliquot from the library inoculated 100ml of liquid LB (leonix) (F3). 

Finally, wt 717 hybrid poplars were transformed with the FOX library using the 

Agrobacterium transformation protocol (E.4). Approximately 100 putative transgenics, 

transformed with FOX library clones were PCR-verified for the presence of the nptII 
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selectable marker (Table B.1). The phenotypic subset of plants were analyzed for their 

respective transgene expression using qRT-PCR (C.10). 

2.3 GF Recapitulation Poplars 

As the FOX system had not been used with poplars, we needed to determine if the FOX 

phenotypes were due to GF mutation. To validate the FOX phenotypes, we selected a 

mutant FOX line for recapitulation using gateway OE protocol. 

The cDNA used to generate the recapitulation constructs was amplified using B1 Pro35s 

and reverse B2 ocsCZ primers with modified B1 and B2 tails (respectively) (Table B.1 and 

Fig. B.2.1 and B.2.2) and the FOX plant gDNA (C.3). The BP clonase II protocol (D.3) 

was used to insert the amplified products into pDonr221 vector (Fig. A.4). 

The reaction was transformed into competent D1H10B T1R E.coli using the heat shock 

protocol (E.1). Successfully transformed colonies inoculated 5ml of liquid LB (miller) 

media (F.2) containing 50mg/L kanamycin (F.5). Bacterial cultures were grown overnight 

at 37oC and constant agitation and plasmid DNA extracted using the QIAGEN miniprep 

protocol (C.5). The presence of fl-cDNA confirmed using the restriction digestion protocol 

(D.1). DNA fragment size was predicted using ApE software. 

The fl-cDNA were transferred from the pDonr vector into the pK7WG2 binary vector using 

the LR clonase protocol (D.4). The reaction was transformed into D1H10B T1R E.coli 

competent cells using heat shock (E.1). Selection of successfully transferred and 

transformed cells was as described above for the BP reaction with the exception of 

spectinomycin (50mg/L) used for selection media. 
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2.4 Phenotypic Analysis 

Significance of the FOX lines was determined by screening each for a battery of traits. 

Three clonal replicates of each independent transgenic line, verified for the presence of 

nptII selectable marker (Table B.1) were grown under greenhouse conditions for three 

months. Each plant was measured for the following traits: height (cm), number of 

internodes, diameter at base (mm), diameter at 20 internode (mm), dry weight stem base 

(dw stem base) (g), green stem density (den-g) (g/cm3), dry stem density (den-d) (g/cm3), 

moisture content percentage (MC%), dry weight whole stem (dw whole stem) (g), dry 

weight leaves (dw leaves) (g) and cell wall content for cellulose, hemicellulose, and lignin 

(mass-to-charge ratio: m/z). 

The den-g measurements were determined using stem base cutting. Mass of the cutting was 

recorded (g). The cutting was placed in a graduated cylinder to determine water 

displacement (ml). The density was determined by dividing the recorded mass by the 

volume. 

The den-d measurements were determined using a similar manner to den-g: the difference 

between these measurement types was that the stem cuttings dried with the oven before 

taking measurements. 

The moisture content percentage was determined by looking at the percent difference den-

d and den-g measurements. 

Cell wall content was determined with pyrolysis molecular-beam mass spectrometry 

analysis (PyMBMS): for further detail see Zhang, Novaes, et al. (2014). 

Each line compared to wt 717 using a "student's" t-test (G.1). 



12 

3 Results 

3.1 Screen under Greenhouse Conditions Identifies many 
Phenotypic Lines 

Approximately 100 FOX lines, validated for the presence of the transgene were screened 

for changes in several traits (Table 3.1). We considered a FOX line to be a mutant as long 

as one trait displayed a significant p-value of less than 0.01. For these lines, all other traits 

significantly different from wt at p-values between 0 and 0.05 were also recorded (Table 

3.1). 

We found 20 of the 113 (17.7%) FOX poplars were significantly different from wt 717. 

We referred to these as mutant lines (Table 3.1). A majority of the mutant lines (16 of the 

20) had multiple significantly altered traits: on average, approximately 4 were affected in 

a given line (Table 3.1). Many of the measured traits showed trends of predominant 

decrease or increase among the mutant lines (Fig. 3.1). For example, height, internode 

number, leaf dry weight and cellulose content decreased in more than half of the mutant 

lines, while change of lignin and percent moisture content showed opposite tendencies 

(Fig. 3.1). Traits measurements that showed decrease were more prevalent among the 

mutant lines (Fig. 3.1).  
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Table 3.1: Mutant poplar FOX lines. P-values determined using a Student t-test (unpaired, 
unequal variance, n>=3). A line was considered mutant if at least one trait was significantly 
different at P<0.01. Traits that were significantly different at P<0.05 in these same lines 
are also listed. See materials and methods for details about the growth conditions and traits’ 
measurements. C5 - cellulose, C6 - hemicellulose, Den-D - density dry weight, Den-G - 
Density green weight, DW- dry weight, MC% - moisture content percentage, 20th - 20th 
internode. 

P-values 
FOX ID  < 0.01 < 0.05 
1F1-2 C6 DW Whole Stem, Height, Internodes 
1F1-3 C5, Height, MC% C6, Diameter Base, Den-D, DW leaves, 

DW Stem Base, DW Whole Stem, 
Internode, Diameter 20th 

1F1-5 C6 Den-D, DW Stem Base, DW Whole Stem, 
Height, Internodes, Lignin, MC% 

1F2-4 C6, Lignin C5, DW Stem Base, DW Whole Stem, 
Height, Internodes, MC% 

1F3-2 Lignin C5 
1F3-4 C6, Diameter 20th Den-D, DW Stem Base, DW Whole Stem, 

Height, Lignin, MC% 
1F3-9 MC% DW Whole Stem, Height, Internodes, 

Lignin 
1F43-3 MC% C6, DW Whole Stem, Lignin 
1F47-4 C5, MC% Height, Lignin 
2F1-1 DW Leaves, Height, 

Internodes 
Den-D 

2F6-5 C5 
 

2F58-1 Lignin 
 

3F10-6 Den-G MC% 
3F10-7 Den-G C6 
3F10-8 Lignin MC% 
3F12-7 Height DW Leaves, Internodes 
3F16-5 C5 DW Leaves 
3F16-6 DW, Leaves, DW Whole 

Stem Height, Internodes, 
Diameter 20th 

 

3F17-7 Lignin 
 

3F90-4 C5 
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Figure 3.1: Traits’ changes of mutant poplar lines. The confidence intervals are expressed 
as percent change from the wt 717 measurements. The x-axis represent the percent change. 
The y-axis indicate the genotype. A confidence interval for a trait that does not cross the 
0% line is statistically distinct from wt 717 and is a phenotypic attribute of the FOX line 
(see Table 1 and text section G.3). C5 - cellulose, C6 - hemicellulose, Den-D - density dry 
weight, Den-G - Density green weight, DW-dry weight, MC – moisture content percentage, 
20th - 20th internode.  
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3.2 Mutant Lines Predominantly Affected in Cell Wall 
Characteristics 

We observed a significant variability with respect to the types of traits affected in the 

different mutant lines. Most prominently, 16 of the 20 mutant lines displayed significant 

differences from the wt 717 in stem cell wall composition (lignin, cellulose, and/or 

hemicellulose content) (Table 3.1 and Fig. 3.1). Using chi-square test, we found a highly 

significant enrichment for affected cell wall trait within the mutant FOX lines (Fig. 3.2). 

This outcome is consistent with the RNA source tissue used to generation the fl-cDNAs 

(e.g., succulent xylem). The enrichment of mutants affected in cell wall characteristics, 

suggests that the mutant phenotypes result from overexpression of genes involved in cell 

wall biosynthesis. Interestingly and unexpectedly, traits linked to developing xylem (i.e. 

stem diameter and density) were significantly underrepresented (Fig. 3.2). This suggests 

the tissue sampling uncovered a specific stage and/or a process that dominated xylem 

development. 
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Figure 3.2: Affected traits are significantly over- and under-represented among the mutant 
FOX lines. Along the X-axis are measured traits. Along the Y-axis is the number of mutant 
line demonstrating significant difference from wt 717. P-values determined using a chi 
square test (unpaired, unequal variance, p=0.5, n=20, E=10, DF = 1). The ‘+‘ symbol 
indicates an overrepresented trait. The ‘-‘ symbol indicates an underrepresented trait. One, 
two or three of the ‘+/-‘ symbols indicate significance levels of P<0.05, 0.01 and 0.001, 
respectively. Den-D - density dry weight, Den-G - Density green weight, DW - dry weight, 
MC% - moisture content, 20th - 20th internode. 
 

3.3 Molecular Characterization of FOX lines 

To identify the genes underpinning the mutant phenotypes we PCR amplified the fl-cDNAs 

in all 20 mutant lines using a standard primer set designed to anneal to the 3’ end of the 

35S promoter and 5’ end of the OCS terminator (Table B.1 and Fig. B.2.1 and B.2.2). Of 

the 20 phenotypic lines, there were 13 single and 7 double insertions as evidenced by the 

number of bands amplified (Fig 3.4). We observed no mutant line with three fl-cDNA 

insertions. Among the mutants, the average insertion per line was 1.35 (Fig 3.4). 
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Of the 27 fl-cDNAs identified in the mutant lines, 24 were sequenced (Table 3.2). The lines 

with double fl-cDNA insertions required agarose gel purification; purification result in low 

DNA concentrations that are unacceptable for the accurate sequencing. We attribute all 

unsequenced fl-cDNAs to this. Additionally, we sequenced 32 fl-cDNAs from non-

phenotypic FOX lines (Table H.1). 

3.4 Mutant FOX Lines Harbor fl-cDNAs Linked to Xylem and Cell 
Wall Development  

Because of the relatively small number of genes/lines, we were unable to define a 

significantly enriched gene ontology (GO) categories. However, some of the FOX genes 

found in the mutant lines have a clear link to xylem development and particularly the cell 

wall biosynthesis. For example, the fl-cDNAs identified in 1FOX2-4.1, 1FOX3-9, 2FOX6-

5 and 3FOX90-4 lines showed strong homology to MICROTUBULE ASSOCIATED 

PROTEIN 65-8 (MAP65-8), IRREGULAR XYLEM 9 (IRX9), MYB103 and 

FASCICLIN-LIKE ARABINOGLACTAN PROTEIN 17 PRECURSOR (FLA17) from 

Arabidopsis (respectively)(Table 3.2). MAP genes are involved in assembly of microtubule 

biopolymers and regulates cell wall structure between plant cell (Wasteneys 2002); IRX9 

is a non-CLS (cellulose-synthase-like gene) involved in xylan biosynthesis (York and 

O'Neill 2008); MYB transcription factors have been found to regulate lignin biosynthesis 

(Ohman et al. 2013); FLA proteins have roles in wood formation in poplars (Wang et al. 

2017). Consistently, cell wall compositions for 1FOX2-4, 1FOX3-9, 2FOX6-5 and 

3FOX90-4 were all found to be significantly different from wt 717 (1FOX2-4: lignin, 

cellulose, and hemicellulose; 1FOX3-9: cellulose; 2FOX6-5: lignin; 3FOX90-4: lignin) 
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(Fig 3.1 and Table 3.1). These findings are consistent with the enrichment of mutant lines 

affected in cell wall composition (Fig 3.2). 

 

 
Figure 3.3: PCR amplification of the insertions in the mutant FOX lines. A GeneRuler 
1kbp Plus DNA ladder used to determine sizes of fragments. 
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Table 3.2: Functional annotation of the fl-cDNAs identified from mutant lines. Lines with 
more than 1 insertion are indicated with the same line number but with the ‘.1’ and ‘.2’ 
extensions. E-values based on Basis Local Alignment Sequencing Tool (BLAST) analysis 
of gene against P.trichocarpa genome (continued on next page). 

FOX line E-Value Pt Gene ID At Ortholog 
AGI 

Gene 
Name/Description 

1F1-2 0 Potri.002G104400 AT2G22500 DICARBOXYLATE 
CARRIER 1 (DIC1) 

1F1-3 1.9E-127 Potri.001G242300 AT5G59480 HALOACID 
DEHALOGENASE 
LIKE HYDROLASE 
(HAD) 

1F1-5.1 8.2E-145 Potri.002G070200 AT1G21320 Nucleic acid/nucleotide 
binding protein 

1F2-4.1 8.9E-132 Potri.003G173300 AT1G27920 MICROTUBULE 
ASSOCIATED 
PROTEIN 65-8 
(MAP65-8) 

1F2-4.2 6.8E-67 Potri.015G036000 AT3G17880 HSP70 INTERACTING 
PROTEIN 2(HIP2) 

1F3-2 0 Potri.005G033200 AT3G05330 TANGLED1 (TAN1) 
1F3-4 0 Potri.001G029600 AT5G13530 KEEP ON GOING 

(KEG)  
1F3-9 0 Potri.016G086400 AT2G37090 IRREGULAR XYLEM 

9 (IRX9) 
1F43-3 0 Potri.007G016100 AT4G36210 DUF726 
1F47-4.1 1E-133 Potri.013G013000 AT1G56230 DUF1399 
1F47-4.2 2.4E-102 Potri.005G101400 AT1G20693 HIGH MOBILITY 

GROUP B2 (HMGB2) 
2F1-1 0 Potri.014G045100 AT4G16780 HOMEOBOX 

LEUCINE ZIPPER 
PROTEIN 4 (HAT4) 

2F6-5.1 1.3E-113 Potri.003G132000 AT1G63910 MYB DOMAIN 
PROTEIN 103 
(MYB103) 

2F6-5.2 2.4E-35 Potri.002G160200 AT2G45910 U-box domain- 
containing protein  
kinase family protein 

2F58-1 5.4E-115 Potri.002G216000 AT1G54790 GDSL-motif esterase 
3F10-6.1 0 Potri.002G051400 AT5G36740 Acyl-CoA N-

acyltransferase with 
RING/FYVE/PHD-type  
zinc finger protein 
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FOX line E-Value Pt Gene ID At Ortholog 
AGI 

Gene 
Name/Description 

3F10-6.2 2.4E-164 Potri.002G067600 AT1G21090 Cupredoxin superfamily 
protein 

3F10-7.1 0 Potri.006G279100 AT4G31270 HARBINGER 
TRANSPOSON 
DERIVED PROTEIN 2 
(HDP2) 

3F10-8.2 4.5E-86 Potri.013G086700 AT5G36290 Uncharacterized protein 
family (UPF0016) 

3F12-7 0 Potri.018G047700 AT2G26280 CTC-INTERACTING 
DOMAIN 7 (CID7) 

3F16-5 2.1E-176 Potri.004G210800 AT2G28430 C3HC4 type family 
protein 

3F16-6 3.5E-89 Potri.009G010800 AT2G28305 LONELY GUY 1 
(LOG1) 

3F17-7 8.9E-176 Potri.008G020900 AT3G54260 TRICHOME 
BIREFRINGENCE-
LIKE 36 (TBL36) 

3F90-4 0 Potri.008G012400 AT5G06390 FASCICLIN-LIKE 
ARABINOGLACTAN 
PROTEIN 17(FLA17) 

3.5 fl-cDNA Upregulation 

We validated fl-cDNA upregulation for a subset of FOX lines: both mutant and non-

phenotypic lines were used (Tables 3.2 and H.1). Although, all fl-cDNA inserts were 

upregulated, there was a significant variation in the level of upregulation: approximately 

half of the lines showed expression increases up to 100-fold range. Interestingly, the 

other half showed huge upregulation levels, measuring into the thousands fold levels 

(Figure 3.4). The average upregulation level across all tested FOX lines was 1,423 fold 

greater that the wt 717 plant. 
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Figure 3.4: Validation of fl-cDNA upregulation in 14 different FOX lines. Overexpression 
tested in both phenotypic and non-phenotypic FOX poplar lines. A) Lines that showed 
upregulation up to 100 fold. B) Lines that showed overexpression levels greater than 100 
and less than 1000 fold. C) Lines that showed overexpression levels greater than 1000 fold. 
'F' indicates Mutant line; 'f' indicates non-phenotypic line. 
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3.6 P.trichocarpa Homologs to fl-cDNAs Expressed 
Predominantly in Xylem 

Because we extracted RNA from succulent xylem, we expected the fl-cDNA P.trichocarpa 

homologs to be expressed predominantly in xylem tissues. Using recently published RNA-

seq data gathered from multiple tissue types (Shi et al. 2017) and the 56 known fl-cDNAs 

sequences (Tables 3.2 and D.1) we interrogate the tissue-specificity (if any) of the 

recovered genes (Fig 3.5). Consistent with our expectations, we found the majority of fl-

cDNA homologs had highest expression in xylem tissue. 
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Figure 3.5: Tissue-specific expression of P.trichocarpa homologs of recovered fl-cDNAs. 
Expression estimates are based on published RNA-seq data by Shi et al. (2017). Z-scores 
were generated for each fl-cDNA based on the averages RNA expression results at each 
tissue (n=3). Each category was arranged from highest to lowest Z-score. A Z-score scale 
shows the range of values observed; the green color indicates a Z-score demonstrating a 
comparatively low expression for a gene at a particular tissue; the red color indicates a Z-
score demonstrating a comparatively high expression for a gene at a particular tissue. Scale 
bar at the bottom indicates the expression ranges. Heat map image was generated using 
Netwalker 1.0 software.  
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3.7 Discovery of Line with Increased Xylem Proliferation 

The mutant line, 3FOX16-6, displayed a phenotype of particular interest. Unlike other 

mutants, 3FOX16-6 was affected at the significant level of P<0.01 in five traits: height, 

internode number diameter at 20th internode, and dry weight of both leaf and whole stem 

(Table 3.1 and Fig. 3.1, 3.6, and 3.7). 3FOX16-6 also showed decreased apical dominance 

as evidenced by frequent occurrence of sylleptic branch proliferation (Fig. 3.7C). 

Because of the significant increase in diameter, we studied the anatomy of stem and the 

tissue(s) that contribute to the observed diameter increases (Fig. 3.8). We found the xylem 

radial width to be nearly doubled (1.89x) and the single major contributing factor to 

increased stem girth of the 3FOX16-6 lines (Fig. 3.8B). 

Significant changes to growth and development often impact cell wall structure (Du and 

Groover 2010). We observed no significant alteration to the three major cell wall 

constituents – lignin, cellulose and hemicellulose (Fig. 3.9).  
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Figure 3.6: 3FOX16-6 mutant line shows a suite of phenotypic changes. Significance of 
the differences determined using a Student t-test (unpaired, unequal variance, n>=9). One, 
two or three of asterisks indicate significance levels at P<0.05, 0.01 and 0.001, respectively. 
Light and dark grey bars indicate wt 717 and 3FOX16-6 line, respectively. DW-dry weight, 
20th - 20th internode.  
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Figure 3.7: 3FOX16-6 phenotypic changes. A) Whole plant photographs: on left, three 
ramets of wt 717: on right, three ramets of 3FOX16-6 line. B) Representative fully 
developed leaves from the 15th internode: on left, wt 717: on right, 3FOX16-6. C) Sylleptic 
branch outgrowth in 3FOX16-6: on left, wt 717: on right, 3FOX16-6. 
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Figure 3.8: displays increased xylem proliferation. A) Transverse stem sections taken from 
the 15th internode. On top, wt 717: on bottom, 3FOX16-6. B) Xylem width; light and dark 
grey indicates wt 717and 3FOX16-6 lines; Significance of the differences were determined 
using a Student t-test (unpaired, unequal variance, n>=4). One, two or three asterisks 
indicate significances at P<0.05, 0.01 and 0.001, respectively. Scale bar = 50 µm. P - Pith, 
Ph - phloem, X - xylem.  
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Figure 3.9: Cell wall composition in 3FOX16-6 is unchanged. Statistical significance was 
tested using a Student t-test (unpaired, unequal variance, n>=9). Light and dark grey bars 
indicate wt 717 and 3FOX16-6, respectively. A) Lignin. B) Cellulose. C) Hemicellulose. 
Measured using PyMBMS analysis. m/z - mass-to-charge ratio. 

3.8 Upregulated fl-cDNA of 3FOX16-6 Shows Homology to 
LONELY GUY 1 (LOG1) 

The sequence of the fl-cDNA upregulated (Fig 3.3) in 3FOX16-6 line showed highest 

sequence homology to LONELY GUY 1 (LOG1) from Arabidopsis and P.trichocarpa 

(Table 3.2). We therefore named the gene PtaLOG1 (Populus tremula X alba=Pta). The 

LOG1 gene was initially characterized in rice, and found to encode an 

phosphoribohydrolase enzyme from the cytokinin biosynthetic pathway (Kurakawa et al. 

2007). 

Inactive cytokinins are synthesized by modifications to an adenine base of an adenosine-

5'-(tri-, di-, mono-)phosphate by ISOPENTYL TRANSFERASE (IPT) (Sakakibara 2006). 

Initially, biological activation of cytokinin was thought to be regulated only through a two 

step conversion pathway requiring nucleotidase and nucleosidase for consecutive removal 

of inorganic phosphate and riboside groups, respectively (Sakakibara 2006) (Fig. 3.11A). 

The discovery of the LONELY GUY gene family revealed an alternative cytokinin 
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activation pathway where LOG can remove the phosphorylated riboside (ribosine-5'-(tri-

,di-,mono-)phosphate) in a single step reaction (Fig. 3.11A) (Kurakawa et al. 2007). 

3.9 LOG Genes Constitute a Small Family with Tissue-Specific 
Expression & Enzymatic Specificity 

A small gene family found in Arabidopsis and poplars with 9 and 15 members, 

respectively, encodes these enzymes (Immanen et al. 2013, Tokunaga et al. 2012). The 

different family members show differential expression and condition-specific enzyme 

optimums; this is suggestive of an evolution of LOG genes with specific functions in plant 

development (Kuroha et al. 2009). We found PtaLOG1 showed highest sequence 

homology to PtLOG1a which clusters in a clade containing AtLOG1/3/4, PtLOG1/6/8d 

(Fig. 3.10). 
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Figure 3.10: The evolutionary history was inferred using the UPGMA method (Sneath and 
Sokal 1973). The optimal tree with the sum of branch length = 2.04005468 is shown. The 
tree was drawn to scale, with branch lengths in the same units as those of the evolutionary 
distances used to infer the phylogenetic tree. The evolutionary distances were computed 
using the p-distance method (Thomas 2001). The analysis involved 24 amino acid 
sequences. All positions containing gaps and missing data were eliminated. There were 
113 positions in the final dataset. PtaLOG1 falls within a distinctive clade (outlined in 
green) containing the Arabidopsis homologs AtLOG1/3/4 and poplar homologs 
PtLOG1/6/8d. PtaLOG1 was most homologous to PtLOG1. Evolutionary analyses were 
conducted in MEGA7 (Kumar, Stecher, and Tamura 2016). 
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3.10 Active Cytokinins are Significantly Increased in 3FOX16-6 
Mutant Line 

To validate that PtaLOG1 had biochemical function in cytokinin biosynthesis, we 

investigated the levels of multiple cytokinin precursors and active forms in 3FOX16-6 line 

and compared them to wt 717 plants. Stem and leaf tissues were used in the analysis. 

Indeed, consistent with a role of PtaLOG1 in cytokinin activation, 3FOX16-6 plants 

showed significantly higher concentrations of iP within both stem and leaf tissues when 

compared to wt 717 plants (Fig. 3.11). The LOG substrate (iPRMP) also decreased 

significantly in stem tissues (Fig 3.11B). 
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Figure 3.11: Significantly altered cytokinin concentrations of 3FOX16-6. A) The 
biosynthesis and activation pathway for the iP type of cytokinins; 1) ISOPENTYL 
TRANSFERASE (IPT) modifies the adenine base of AMP generating iPRMP; 2) first step 
in the two step pathway: nucleotidase removal of inorganic phosphate from iPRMP 
generates iPR; 3) second step in the two step pathway: nucleosidase removal of riboside 
group from iPR generates iP. LOG gene activity of cytokinin nucleoside 5-monophosphate 
phosphoribohydrolase directly convert iPRMP to iP in a single step (Kurakawa et al. 2007, 
Sakakibara 2006). B) iPRMP concentrations from leaf and stem samples. C) iP 
concentrations from leaf and stem samples. Significance determined with a Student t-test 
(unpaired, unequal variance, n=4). ‘*‘ indicates significance difference at P<0.05. Light 
and dark grey bars indicate wt 717  and 3FOX16-6, respectively AMP - adenosie 
monophosphate, DMAPP - dimethylallyl diphosphate, iP - isopentenyl adenine, iPR - iP 
riboside, iPRMP - isopentenyl adenosine monophosphate, LOG - LONELY GUY. 
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3.11 Highest PtaLOG1 Expression in Xylem Tissues 

Using the data from Shi et al. (2017), we studied the PtLOG1 (the closest in homology to 

PtaLOG1) expression pattern. PtLOG1 showed highest expression in xylem, vessel and 

phloem tissues: the highest expression of PtLOG1 was in xylem tissue (Figure 3.12). 

 
Figure 3.12: PtLOG1 shows highest expression in xylem tissues. Expression quantified 
with published RNA-seq data (Shi et al., 2017). Error bars indicate standard deviation 
across three samples. 
 

3.12 FOX PtaLOG1 Phenotype Successfully Recapitulated 

Cloning PtaLOG1 into a separate overexpression construct was imperative to validating 

the results of this study for two reasons. First, recreating the 3FOX16-6 phenotype with 

another method using the same fl-cDNA demonstrates the PtaLOG1 as the culprit. Second, 

recreation of a FOX phenotype in another method validates the FOX hunting method can 

be used in conjunction with Populus tremula X alba for GF gene analysis. 

We recovered twelve independent PtaLOG1 OE lines validated with transgene 

upregulation (Fig. 3.13). Our results demonstrated variability in PtaLOG1 upregulation 

among the OE lines: we expected the OE lines with highest PtaLOG1 expression would 

confer a comparable phenotype to 3FOX16-6 (Fig. 3.4c and 3.13). These predictions were 
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confirmed, three independent lines (OE15, OE11-2, and OE17-2) displayed significance 

for the same trait set that were unique to the 3FOX16-6 lines (Figure 3.14). In addition to 

the three completely recapitulated lines was a fourth line (OE17-1) displaying three of the 

recapitulated traits. 

 

 
Figure 3.13: PtaLOG1 expression levels of various recapitulation overexpression lines. 
Lines arranged based on PtaLOG1 expression levels (high to low). OE - PtaLOG1 
overexpression line.  
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Figure 3.14: PtaLOG1 Overexpression lines demonstrate complete and partial 
recapitulation. Significance of the differences determined using a Student t-test (unpaired, 
unequal variance, n>=3). One, two or three asterisks indicate significances at P<0.05, 0.01 
and 0.001, respectively. DW - dry weight. 20th - 20th internode. 
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4 Discussion 

4.1 Purpose of Experimentation 

Using a pilot population of 113 independent lines, we examined the feasibility and 

efficiency of the FOX system in poplar for discovery genes controlling secondary woody 

growth, a process of major economic and environmental significance. We focused on the 

potential of this system for overcoming difficulties associated with applying traditional 

mutagenesis approaches to studying trees. Specifically, we were interested if the FOX 

system could increase the overall mutation rate and the frequency of mutants affected in a 

specific trait of interest: in this experiment wood formation. 

4.2 FOX System Generates High Mutation Rates with Poplars 

First, we determined the overall mutation rate. Screening for a battery of traits revealed a 

mutation rate of 17.7%, which was 12-fold increase to the mutation rates observed using 

activation tagging with poplars (~1.5% average) under greenhouse conditions (Busov et al. 

2011, Busov et al. 2003a). However, this outcome was not unusual. In Arabidopsis, 

mutation rates using the FOX system, ranged between ~10% and ~17% (Ichikawa et al. 

2006, Nakamura et al. 2007). Given our very stringent cut-off p-value used for determining 

the significance of the phenotypic changes in the mutant lines, there is possibility for the 

mutation rate to be even greater. The high mutation rate engendered by using the FOX 

system can significantly improve the efficiency and cost of gene discovery obtained 

through mutagenesis. 
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4.3 Enrichment for Mutants Affected in Cell Wall 

In addition to mutation rate, the proportion of mutants affected in a particular trait of 

interest is another factor influencing efficiency and feasibility of mutagenesis. Because 

mutagenesis is by nature random, the affected genes and traits are also random and thus 

the proportion of mutants affected in a specific trait of interest are only a fraction of all 

mutants discovered. Gene expression is specific: generally, the spatial and temporal 

expression patterns for genes important to a specific process is highest during a traits 

development. Hypothetically, a FOX library derived from a pool of RNA closely linked to 

the trait of interest should have higher occurrence of fl-cDNAs corresponding to genes 

important for this trait. Such tissue-specific FOX libraries would thus have a higher 

probability of producing phenotypic changes in the specific trait under study (Seki, 

Narusaka, Ishida, et al. 2002, Seki, Narusaka, Kamiya, et al. 2002). We tested this 

hypothesis by a generating the FOX library from RNA derived from developing xylem – 

tissue that give rise to wood. We expected this to increase the frequency of mutants affected 

in wood formation relative to other traits/processes. 

Several lines of evidence suggest that the FOX system does indeed increase the proportion 

of mutants affected in wood formation relative to other traits/processes. First and most 

importantly, the only trait that’s frequency of occurrence was disproportionately and 

significantly increased relative to the other 10 measure traits was cell wall composition 

characteristics (e.g., cellulose, lignin and/or hemicellulose) (Fig 3.2). 80% of all the 

discovered mutants were significantly affected in at least one of these three main cell wall 

constituents. Because wood formation requires massive synthesis of secondary cell wall 
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structure, it is not surprising that genes involved in this synthesis are highly expressed in 

developing xylem and hence their higher occurrence in the FOX library and the resulting 

increase in phenotypic lines affected in the process. Second, fl-cDNAs overexpressed in 

the phenotypic lines with changed cell wall composition, were found to be orthologs of 

Arabidopsis genes with involvement in cell wall synthesis like IRREGULAR XYLEM 9 

(IRX9), MYB103 and MICROTUBULE ASSOCIATED PROTEIN 65-8 (MAP65-8), 

FASCICLIN-LIKE ARABINOGLACTAN PROTEIN 17 (FLA17) (Table 3.2). Previous 

studies linked these genes to secondary cell wall formation (York and O'Neill 2008, Ohman 

et al. 2013, Ko et al. 2012, Wang et al. 2017). Third, the recovered fl-cDNAs correspond 

to genes with a high native expression in xylem tissues (Fig 3.5). Collectively, these data 

strongly suggests the FOX system can preferentially increase the discovery of genes linked 

in a particular trait, as in this case wood formation. 

As mentioned earlier, some of the genes found upregulated in the mutants with altered cell 

wall composition were of already characterized function. However, 15% of the mutant 

lines revealed genes of either completely unknown function, having a domain of putative 

function and/or encoding proteins with putative functions, yet to be characterized (Table 

3.2). Cell wall synthesis has been intensively studied for decades because of significant 

commercial importance to agricultural, forestry and more recently bioenergy industries 

(Nieminen et al. 2012, Lebedys 2014). Uncovering a significant number of genes not 

previously characterized in an intensively studied process with a small population is highly 

encouraging. 
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4.4 Affected Traits Highly Specific to RNA Sampling 

Since developing xylem (the tissue used for generation of FOX library) is the main driver 

of stem girth expansion, we expected an enrichment for lines affected in diameter growth. 

Unexpectedly, we found an underrepresentation of lines affected in dimeter growth (Fig 

3.2). The reasons for this outcome could be multiple. First, the sampling time of the tissue, 

both in diurnal and seasonal context could have affected the mRNA abundance of specific 

genes involved in xylem expansion and thus diameter growth (Guerriero, Sergeant, and 

Hausman 2014). Second, the CZ on the xylem side is only 4-5 cell layers and thus likely 

disproportionately small percentage of the overall population of sampled cells (Du and 

Groover 2010). This may have led to low abundance of genes involved in expansion and 

over-representation of genes involved in cell wall synthesis. Third, genes regulating 

cambium are typically strong developmental and hormonal regulators: these genes are 

expressed at very low levels and in a highly cell/tissue specific manner (Du and Groover 

2010, Shi et al. 2017). This would have compounded the dilution effect associated with the 

relative small proportion of sampled CZ cells. Fourth could be simply due to an 

inadequately short growth time: one study observed a 5-fold increase in the number of 

phenotypic activation tagged poplars after increasing the growth period (Busov et al. 2011). 

In summary, we believe the underrepresentation of lines affected in diameter growth is 

linked to the under-representation of mRNAs representing genes associated with diameter 

expansion through control of cambium activity. This finding underscores the need for 

precise sampling tissues for source material for the generation of the FOX library in regards 

to timing and cell types. Nevertheless, we identified some FOX plants with altered diameter 
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traits: one of these plants, the 3F16-6 line investigated further because of the significance 

of the phenotypic changes (discussed in more detail below). 

4.5 Discovery of PtaLOG1’s Role in Xylem Proliferation 

As mentioned earlier, 3FOX16.6 showed highly significant phenotypic changes (Fig. 3.6, 

3.7, and 3.8). Of particular interest was the increased diameter (Fig. 3.6, and 3.9), 

suggesting that the gene positively affects secondary growth. Cloning of the inserted fl-

cDNA, demonstrating its upregulation, validating increased bioactive cytokinins and most 

importantly recapitulation of the phenotype in multiple transgenic lines via 

retransformation of the gene under the same promoter, suggest that upregulation of 

PtaLOG1 and increase in bioactive cytokinins are causal for the observed phenotype (Fig. 

3.11, 3.12, 3.13, and 3.14). 

Although the role of cytokinins in regulation of secondary growth has been known for a 

while (Ursache, Nieminen, and Helariutta 2013, Immanen et al. 2013), experimental 

evidence has been largely derived from transgenic manipulations involving heterologous 

genes, like the Arabidopsis Adenosine Phosphate-Isopentenyltransferase 7 (AtIPT7) 

(Immanen et al. 2016) and CYTOKININ OXIDASE 2 (AtCKX2) (Nieminen et al. 2008), 

which led to increased and decreased cytokinin levels respectively. These studies have 

provided the first and significant insights into the role of cytokinins in regulation of 

secondary growth in poplars (Nieminen et al. 2008). However, mechanisms detailing bio-

molecule regulation of cytokinin levels and signaling are still unclear. 
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In plants, cytokinin activation uses both the two-step and one-step pathways. The two-step 

pathway converts cytokinin riboside 5’-monophosphates nucleosides and nucleobases 

through the activity of nucleotidase and nucleosidase (Dello Loio, Linhares, and Sabatini 

2008). In contrast, the direct pathway can produce nucleobases (active cytokinin) from 

cytokinin riboside 5’-monophosphates through a one-step process (Kuroha et al. 2009) 

(See Fig 3.11A). The enzyme that catalyzes this step is known as LONELY GUY (LOG), 

named after the phenotype of the mutant rice plant, which was used to identify the gene, 

and characterized with severe suppression of stamen development (Kurakawa et al. 2007). 

LOG is a cytokinin riboside 5’-monophosphate phosphoribohydrolase, and performs the 

two hydrolase activities leading to cytokinin activation. 

Separation of cytokinin biosynthesis from its activation allows for very precise temporal 

and spatial control of bioactive cytokinins. PtaLOG1 has the highest expression in xylem 

tissues and thus may provide a tissue-specific control of bioactive cytokinin levels. 

PtaLOG1 shows highest sequence homology to AtLOG1/3/4 (Fig. 3.10). These three 

Arabidopsis LOGs show distinct substrate specificities from the other LOGs and have 

identical pH optimum (Kuroha et al. 2009). In the Arabidopsis root, AtLOG3/4 are targets 

of LONESOME HIGHWAY (LHW), TARGET OF MONOPTEROS5 (TMO5), as well as 

its homolog, TMO5-LIKE1(T5L1) (Ohashi-Ito et al. 2014, De Rybel et al. 2013). LHW, 

TMO5 and T5L1 encode bHLH proteins that form heterodimers to regulate vascular tissue 

organization (Ohashi-Ito et al. 2014, De Rybel et al. 2013). Moreover, the LHW-T5L1 

complex transcriptional activation of LOG3/4 promotes xylem cell fate specification and 

proliferation (De Rybel et al. 2014). Our data suggests that a similar mechanism may 
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operate in xylem differentiation and proliferation during secondary woody growth.  First, 

PtaLOG1 that we have discovered has highest native expression in developing xylem (Fig 

3.12). Second, overexpression of PtaLOG1 resulted in increased secondary growth, 

specifically through nearly doubling (1.8-fold) xylem proliferation (Fig 3.8). Third, 

PtaLOG1 shows very high homology to AtLOG3/4, genes implicated in xylem cell 

specification in the Arabidopsis root (De Rybel et al. 2014). Finally, the promoter of 

PtaLOG1 contains multiple E-box cis-elements, which have been found to be the binding 

sites for vascular bHLH regulators like LHW, TMO5 and T5L1 (De Rybel et al. 2014, Liu 

et al. 2015). 

The study conducted by Sundell et al. (2017) had similar interest in this mechanism. 

Examining Populus tremula native expression for PtLHW and PtTMO5 homologs revealed 

high expression for both genes within xylem expansion region of the stem. Additionally, 

gene expression of homolog PtLOG6, a gene within the same phylogenetic clade as 

PtaLOG1 (Fig 3.10), was also incredibly high in the xylem expansion region. Although 

further investigation needed, these results collectively suggest PtaLOG1 and other family 

members of the same clade are key for regulating xylem proliferation. 

4.6 LOG Biotechnological Applications 

Biotechnological manipulation of girth growth is of significant interest because of potential 

for increasing woody biomass. Here we show that a native poplar LOG gene can 

significantly increase girth growth. However, because of the ubiquitous expression, 

transgenic plants also displayed, depending on level of overexpression, reduction in height 
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growth. This negative effect could likely be overcome using a xylem specific promoter. A 

recent discovery supports this hypothesis: using an Arabidopsis IPT7 gene regulated with 

a birch xylem specific promoter increased diameter growth in poplar transgenic trees 

without any negative pleiotropic effects (Immanen et al. 2016). Additionally, because 

PtaLOG1 shows homology to multiple P.trichocarpa homologs (Fig 3.10), and PtLOG6 

native expression has specificity to xylem expansion (Sundell et al. 2017), it will be 

important to investigate each genes possible contribution to xylem proliferation using both 

OE and knock-down lines. 
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5 Conclusions 
In regards to our first hypothesis, we concluded the FOX system does generate poplar 

transformant populations with high mutation rates. Further analysis of the mutant FOX 

lines confirmed the phenotypes were due to GF: we observed both increases in gene 

expression specific to fl-cDNAs and the recapitulation of 3FOX16-6 line with multiple 

PtaLOG1 OE lines. 

Regarding our second hypothesis, we concluded the FOX system could be used for 

identification of genes specific to xylem development. Using a fl-cDNA library specific to 

succulent xylem gene expression, we observed (1) a significant enrichment in lines affected 

with altered cell wall content (lignin, cellulose, and/or hemicellulose); (2) a xylem specific 

gene expression of P.trichocarpa homologs specific to sequenced fl-cDNAs; and (3) 

multiple mutant FOX lines with fl-cDNA of genes with known function in cell wall 

development. Additionally, a large proportion of the mutant FOX lines affected in cell wall 

characteristic trait had fl-cDNAs homologous to genes of unknown function; this 

demonstrated the FOX system can assist in functional gene discovery with well-studied 

traits (i.e. cell wall formation). 

These results have implications for the FOX systems use as a tool for functional plant 

genomic studies. We conclude a targeted RNA extraction will enrich a FOX plant 

population for traits of interest. We reached this conclusion after observing (1) 

P.trichocarpa homologs to our fl-cDNA library with highest native expression in xylem 

tissue and (2) a great number of mutants affected in traits linked to xylem tissue 

development. We conclude the FOX system could quicken rates for discovery for 
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economically and environmentally valuable traits of plant species susceptible to 

Agrobacterium transformation. 

Using the FOX system, we observed upregulation of xylem specific PtaLOG1 greatly 

increased the development of xylem tissue. Cross-referencing our data with the results of 

multiple studies, we became interested in multiple LOG gene family members with similar 

homology to PtaLOG1 with multiple gene showing roles in xylem proliferation and 

expansion. We believe the Phylogenetic clade specific to PtaLOG1 might cluster genes 

important for regulating xylem girth and therefore should be genetically and biochemically 

instigated further. 
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A Plasmids Used 

 

Figure A.1: pART7 plant cloning vector. 

 

 

Figure A.2: pART27 plant binary vector. 
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Figure A.3: pART277 plant binary vector. Used as the FOX vector. This vector was 
engineered using the region of the pART7 vector spanning from the CaMV 35S promoter 
to the OCS terminator (Fig. A.1) and the pART27 vector backbone (Fig. A.2): this was 
completed using a NotI restriction digestion (D.1), isolation and purification of correctly 
digested fragments (C.2), and T4 ligation (D.2). The multi cloning site (MCS) site of 
pART277 was further modified to accommodate the generation of the FOX library. Bio 
S&T Inc. (Quebec, Canada) performed all modifications. Specifically, two existing SfiI 
sites were removed from existing MCS and SfiIAB sites (5´-GGC CAT TAC GGC CAA 
CCT TGA TAT CGG CCG CCT CGG CC-3´) were inserted into the MCS (between EcoRI 
and HindIII).  
 

 

Figure A.4: pDonr221 cloning vector. 

 

 

Figure A.5: pK7WG2 plant binary vector. 
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B Primer Detail 
B.1 Primers List 

Table B.1: All primers used for experimentation. Designed using NCBI PrimerBLAST 
tool. 

Primer Name Sequence (5’3’) Annealing 
Temperature  

Primer 
purpose 

Oligo(dT)18 TTTTTTTTTTTTTTTTTT  Reverse 
transcription 

Random 
oligonucleotides(dN)18 

NNNNNNNNNNNNNNNNNN 58°C Reverse 
transcription 

Pro35s F CCACTGACGTAAGGGATGA
CGCACA 

66.3 Cloning 

ocsCZ R ATTAGTTCGCCGCTCGGTG 57.9 Cloning 
Npt II F ATCAGGATGATCTGGACGA

AGAG 
62.8 Transformati

on validation 
Npt II R GATACCGTAAAGCACGAGG

AAG 
62.7 Transformati

on validation 
B1 Pro35s F GGGGACAAGTTTGTACAAA

AAAGCAGGCTGGCCACTGA
CGTAAGGGATGACGCACA 

66.3 Cloning 

B2 ocsCZ R GGGGACCACTTTGTACAAG
AAAGCTGGGTCATTAGTTC
GCCGCTCGGTG 

57.9 Cloning 

Ubiq F AAGAGTGTGAGAGAGAGAA
GA 

56.0 qRT-PCR 

Ubiq R CCACGACCATCAAACAAGA
AG 

64.4 qRT-PCR 

1FOX1-3F GGTGTGGACTGTGCGTTAG
A 

62.4 qRT-PCR 

1FOX1-3R TGGAAAAGTGCCGGTGAGA
A 

60.4 qRT-PCR 

1FOX3-4F GACTTGGATGCTTGATCCA
TCAGA 

62.9 qRT-PCR 

1FOX3-4R GCATCCGAAGCAGCAGTGG
A 

64.5 qRT-PCR 

1FOX3-9F CAGGTTGGTTCCTCCACCA
T 

62.4 qRT-PCR 

1FOX3-9R ACGATTCCCACTCAGCTTG
T 

60.4 qRT-PCR 

1FOX43-3F GCATAACGGAGTATGGAGA
CTC 

62.7 qRT-PCR 

1FOX43-3R TGACTGCACGGTCCTACTC
A 

62.4 qRT-PCR 

1FOX46-1F TGGTGGAGGTTTCGAGTTT
C 

60.4 qRT-PCR 

1FOX46-1R CCCACATTGCCTTTGTTTC
T 

58.4 qRT-PCR 
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Primer Name Sequence (5’3’) Annealing 
Temperature  

Primer 
purpose 

2FOX1-1R TTGGTCCTTGCTCTTCGGT
T 

60.4 qRT-PCR 

2FOX1-1F CCTCTTGCTCTCGTGACAG
T 

62.4 qRT-PCR 

2FOX5-2F CAGACTGGCTTTGGTTGCT
G 

62.4 qRT-PCR 

2FOX5-2R TCTTCACCATTGGCTGTCC
C 

62.4 qRT-PCR 

3FOX10-5F ACGAAGAAGCTGCTGATGG
T 

60.4 qRT-PCR 

3FOX10-5R ACAGGCATACCAGGAGTTG
G 

62.4 qRT-PCR 

3FOX10-7F TCCGCCGTAGAATGGACAT
C 

62.4 qRT-PCR 

3FOX10-7R GTGCTCGAAGAAACACGCA
A 

60.4 qRT-PCR 

3FOX12-7F GGGAGAGGGCATGAACGAA
T 

62.4 qRT-PCR 

3FOX12-7R CGAGCACCCCTAGTGTGAT
G 

64.5 qRT-PCR 

3FOX16-5F AGCAACGAAAGCGCATCTA
T 

58.4 qRT-PCR 

3FOX16-5R GCAACCAGAGGTCCAAATG
T 

60.4 qRT-PCR 

3FOX16-6F GGCCGTCATGTGATTGGAG
T 

62.4 qRT-PCR 

3FOX16-6R CACATTCAGCAATCCCACC
G 

62.4 qRT-PCR 

3FOX903.1F TTTTCAGAGAAAGAGAGCC
TTTTGGT 

60.1 qRT-PCR 

3FOX90-3.1R CTGAACAAAAGCCAACGCC
A 

60.4 qRT-PCR 

3FOX90-3.2R CCAGGAACTCCATAAACTT
CTGTAC 

62.9 qRT-PCR 

3FOX90-3.2F GGAATTCTCGTGGACCGTG
T 

62.4 qRT-PCR 
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B.2 Primer Targeting Sites 
TCGACGAATTAATTCCAATCCCACAAAAATCTGAGCTTAACAGCACAGTTGCTCCTCTCAGAGCAGAATCG
GGTATTCAACACCCTCATATCAACTACTACGTTGTGTATAACGGTCCACATGCCGGTATATACGATGACTG
GGGTTGTACAAAGGCGGCAACAAACGGCGTTCCCGGAGTTGCACACAAGAAATTTGCCACTATTACAGAGG
CAAGAGCAGCAGCTGACGCGTACACAACAAGTCAGCAAACAGACAGGTTGAACTTCATCCCCAAAGGAGAA
GCTCAACTCAAGCCCAAGAGCTTTGCTAAGGCCCTAACAAGCCCACCAAAGCAAAAAGCCCACTGGCTCAC
GCTAGGAACCAAAAGGCCCAGCAGTGATCCAGCCCCAAAAGAGATCTCCTTTGCCCCGGAGATTACAATGG
ACGATTTCCTCTATCTTTACGATCTAGGAAGGAAGTTCGAAGGTGAAGGTGACGACACTATGTTCACCACT
GATAATGAGAAGGTTAGCCTCTTCAATTTCAGAAAGAATGCTGACCCACAGATGGTTAGAGAGGCCTACGC
AGCAGGTCTCATCAAGACGATCTACCCGAGTAACAATCTCCAGGAGATCAAATACCTTCCCAAGAAGGTTA
AAGATGCAGTCAAAAGATTCAGGACTAATTGCATCAAGAACACAGAGAAAGACATATTTCTCAAGATCAGA
AGTACTATTCCAGTATGGACGATTCAAGGCTTGCTTCATAAACCAAGGCAAGTAATAGAGATTGGAGTCTC
TAAAAAGGTAGTTCCTACTGAATCTAAGGCCATGCATGGAGTCTAAGATTCAAATCGAGGATCTAACAGAA
CTCGCCGTGAAGACTGGCGAACAGTTCATACAGAGTCTTTTACGACTCAATGACAAGAAGAAAATCTTCGT
CAACATGGTGGAGCACGACACTCTGGTCTACTCCAAAAATGTCAAAGATACAGTCTCAGAAGACCAAAGGG
CTATTGAGACTTTTCAACAAAGGATAATTTCGGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCAC
TTCATCGAAAGGACAGTAGAAAAGGAAGGTGGCTCCTACAAATGCCATCATTGCGATAAAGGAAAGGCTAT
CATTCAAGATCTCTCTGCCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAG
AAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGACATCTCCACTGACGTAAGGGATGACGCA
CAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACACG 
Figure B2.1: Anchoring site of Pro35s F within the FOX promoter based on sequence 
from pART277 plant binary vector. 
 
 
 
CTGCTTTAATGAGATATGCGAGACGCCTATGATCGCATGATATTTGCTTTCAATTCTGTTGTGCACGTTGT
AAAAAACCTGAGCATGTGTAGCTCAGATCCTTACCGCCGGTTTCGGTTCATTCTAATGAATATATCACCCG
TTACTATCGTATTTTTATGAATAATATTCTCCGTTCAATTTACTGATTGTACCCTACTACTTATATGTACA
ATATTAAAATGAAAACAATATATTGTGCTGAATAGGTTTATAGCGACATCTATGATAGAGCGCCACAATAA
CAAACAATTGCGTTTTATTATTACAAATCCAATTTTAAAAAAAGCGGCAGAACCGGTCAAACCTAAAAGAC
TGATTACATAAATCTTATTCAAATTTCAAAAGGCCCCAGGGGCTAGTATCTACGACACACCGAGCGGCGAA
CTAATAACGTTCACTGAAGGGAACTCCGGTTCCCCGCCGGCGCGCATGGGTGAGATTCCTTGAAGTTGAGT
ATTGGCCGTCCGCTCTACCGAAAGTTACGGGCACCATTCAACCCGGTCCAGCACGGCGGCCGGGTAACCGA
CTTGCTGCCCCGAGAATTATGCAGCATTTTTTTGGTGTATGTGGGCCCCAAATGAAGTGCAGGTCAAACCT
TGACAGTGACGACAAATCGTTGGGCGGGTCCAGGGCGAATTTTGCGACAACATGTCGAGGCTCAGCAGGAC
CTGCAGGCATGCAAGCTAGCTTACTAGTGATGCATATT 
Figure B2.2: Anchoring site of ocsCZ R within the FOX terminator based on sequence 
from pART277 plant binary vector. 
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GTTCATGGAAGATTGTCCTATCAGATGCTTAAACCCGACCCTGTCCTGAGGAATATCTTACTTAATGTGCC
TGTTCGTAAAGTTGTCTTTACCAATGCTGATAAGGCTCATGCAAGTCGAGTCCTTAGCAGGCTTGGATTGG
AGGATTGTTTTGAAAGGATCATATGCTTTGAGACTTTGAATGATGCTGCTAATAAAGGAAATGATCCTGTT
GATGGGGATGACAGAGAGGTTTTTGACTTCGATGAATATACTACCTGTCCTGATGCAGATCTTGTACCTCC
AAGGACCCCTGTGGTCTGCAAACCCTTTGAGGAAGCATTTGAGCAGGTTTTTAAGATCGCCGGCATCAGCC
CTCAAAAGACGTCGTTCTTTGATGATAGCATCCGTAACATACAGACTGGAAAAGGATTGGGTCTCCACACT
GTTTGGGTAGGCTCTTCTCATCGGATTGAAGGTGTGGACTGTGCGTTAGAGAGTCTTCATAATATCAAGGA
AGCACTGCCAGAACTCTGGGAAGCTAATGATAAGTCTGAAGCCATCAAGTATTCCAAGAAAGTTGCAATTG
AGACATCTGTGGAAGCTTAGCTAATTATTATTTTACTACTATTATTGTATTTTCTCACCGGCACTTTTCCA
TTACCATCTCTGTATTTTATATTCAGTGGGGGCTGAACATCTGAatgTTATTACGTTCTAATTATATTATA
GTAATTTAAATAGAGCACTCTGTTAGTGTGATTAAAAAAAAAAAAAAAGCCGCCTCGCATCGATAGCTTGA
TCTCTAGGAGTCTGCTTAATGGAGAATATGCGGAGACGCCTGGAACCCAGCCAT 
Figure B2.3: Anchoring sites for qRT-PCR 1FOX1-3 specific primers within the fl-
cDNA insert of HALOACID DEHALOGENASE-LIKE HYDROLASE (HAD) gene 
sequence 
 
 
 
GGGGGATCCCGCAGATCTCGAGGTTGAACATATATTTGAAGTGGGTGAGTGGGTGAAACTGAGGGAAGATG
TTAGTAACTGGAAATCTGTTGGACCAGGCAGTGTGGGTGTTGTACAGGGTATAGGATATGATGGAGATGAG
TGGGATGGAAGCATATATGTTGGTTTTTGTGGGGAGCAAGAAAGATGGGCGGGGCCTACTTCCCATCTTGA
AAGAGTTGAAAGACTCATGGTTGGGCAGAAAGTTAGGGTTAAACTTTCTGTGAAGCAGCCAAGGTTTGGGT
GGTCAAGCCACAGTCATGGAAGTGTTGGAACCATATCGGCAATTGATGCTGATGGGAAGCTGAGAATATAT
ACTCCAGTAGGCTCCAAGACTTGGATGCTTGATCCATCAGAAGTGGAGGTGGTAGAGGATGAAGAACTTCA
CATTGGAGATTGGGTGAAAGTAAGGGCATCCGTTTCCCCACCAACACGCCCCCCCTTTATAACTAAAAAAA
ATCAAACACTCCACTGCTGCTTCGGATGCCCCCACGCCCACCGTGTCCGTTTTGTTCTGTTTCCTCTCTTC
CCCACCCCGCCCCGCGGTGTTTCGGACACTGCTCACAAATTTTCACCCTTGCCCCCCTCCGTGGAGAAGGG
GCAAATTCTTTCCATTTCCGAAACCTCCGCAAACCCCAGGCTGTCTACCAGAAAAAAAAAGAAAACACCAA
GTCCCCCCCTTTTTCTATCCAGGACACCCCCACCCATTGTATGGATGATTCCCTCTCTCCCCCCCCGGGTG
TGTGTGTGGTTTTGTAAAACGCGGACGCCACCAACCCTTCCCCCCCAATCCTCTCCAAGAGTGGAGATTTT
TTTTATTTCTTTTCACGTGTTCATTTCTTGAAGAATAAAAGAGGCAGAATGTCTTTGGAGACCCCATCGCG
GAGAATCTAAT 
Figure B2.4: Anchoring sites for qRT-PCR 1FOX3-4 specific primers within the fl-
cDNA insert of KEEP ON GOING (KEG) gene sequence. 
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GGTCTTCCACATCTCTCAATCTCTCTCAAAGAATCCCTTTCTTTTTCCCCAAAACTCAGGGGTCAGTATCT
GAGCCAACAACTTGGTTTTTGATCACGTTTTTGAGAGGTTTAGCTTGATGGGCTCTGTGGAAAGATCAAAG
AGGAGAGTTCAGTTATGGAAGAAAGCTATAGTTCATTTTGGTTTGTGTTTTGTTATGGGGTTTTTCACAGG
TTTCGCTCCAGCAGGCAAGGCTTCAATTTTTACTAGTCATGTTGCTGCATCAAATAAATCGCAATCCTTGC
CGCAACCTGTTGAAATGTTGCACCAGCAGGCAGCAAGTGCACCACATGCTAGTAATGTCAACAGAAGTTTG
ATAGCTGAAACTGCAGTACCAGCTCCACCAAGCTCTAAGGAATCTGAACATGCAGCATTCTTGGAAAAAGA
AGAAACAGAATCCAAGTTAGCGCCAAGAAGACTGGCAATCATCGTTACGCCAACAAGCACTAAAGATCCGT
ATCAAGGGGTTTTCTTGAGGAGGTTGGCTAACACGATCAGGTTGGTTCCTCCACCATTATTGTGGATTGTT
GTGGAAAGGCAATCAGATTCAGATGAAATATCGGAGGTCCTTAGGAAAACAGGTATTATGTATAGGCATTT
GGTGTTCAAGGAGAATTTTACAGATCCCGAAGCAGAGTTGGGATCATCAAAGGAATGTAGCATTAATGCAC
ATTGAAAAAACACAAGCTGAGTGGGAATCGTTCATTTCTGCCCGGGCCTTTCCAATGATTACGATCGTGGG
CATTCTTTGACGAGATTAGACAAACTTGACGGTGTTAGGAAACATGGCTCGATGGCAGATACTTAAGACTA
GCTGAGAGAACGTGTCATGCAAGTGACTCTGTTATTGTCATTCCTTGACA 
Figure B2.5: Anchoring sites for qRT-PCR 1FOX3-9 specific primers within the fl-
cDNA insert of IRREGULAR XYLEM 9 (IRX9) gene sequence. 
 
 
 
ACGTCACCTTCAACTTCAACACGAAAAGAGGAAGAAAAGACCGTTTCAAACTATCACCGTTTTAAACCATC
ACTGATCGCTCAAAAAATGCTTTCTGCGACGATAGGAATCCTTTAAAACGACAACAAAATCCAGTCATGTC
AACCTCAAGCTCAACCACGGCGACGTCGTTTTTATCAGCGACGCAGAGATACGCAGCCGGAGCATTATTTG
CAATCGCTCTTCACCAAGCACAGATCCATCAAACCCGTCCGCTTGGCTTATCCCACGATGACTCGGAACAA
GAGGAACGAACCAGTTGCAGCAGTAGTCATAGTAATGGCAGCAGCAGTGATTCCGTTTCTGAAGACCCTGA
CCTTTGGATCCACGAAAATTCGGGCCTCCTCCGACCCGTATTCAGGTTTTTAGAGGTTGAGTCAGTAGCAT
GGACTGGACTTGAAGAGACAGCTGGTGGTTCTCCTGCTAAGCATCATGTTGGATCTTTCTTGAGGTTATTA
TCAGAAGAAAGTGGCAATGCGGCTTCTTCTTCTTCTCAAAGTTCGGATCAAGAAGTTGCTTTATCAAAGGC
TGTGATGTAATGGAAGAAACCATGGGGAGCGAATCCTGTGTCGTCCCAGTCTAGGAAGGAGAAGCATAACG
GAGTATGGAGACTCATGCCGTGAAAGTTATCTGCTGCAGTGAGGTGAATCACCTCTGAGGTGGAAAATGAT
CACAAAACTGCAAGGATGAACATCGCTGGAGTTAACGGATGCCACCTTGAACCTTGGACATATGTTGAGTA
GGACCGTGCAGTCAAAGTCTATGTTATCAAGAACTGGACTGGCTGTCGA 
Figure B2.6: Anchoring sites for qRT-PCR 1FOX43-3 specific primers within the fl-
cDNA insert of a DUF726 gene sequence. 
 
 
 
GGATATGTTAGGCAGAGCTGGAAGAATTGATGATGCATTGGTGGTGGTGAAAAACATGCCCATGAAGACAA
GTGGTAGCATATGGGGATCATTGCTCAACTCATGCCGCCTACATAACGAGGTCCCTCTTGCCGAGGCTATT
GCAAACCAGTTGTTTGAGCTTGAGCCATGTAATCCTGGGAACTATGTGATGCTCTCAAACATTTATGCAAA
TGCAGGGATGTGGGACTCTGTAAATATGGTTAGAGAGATGATGCAAAAAAGAAGAATCAGAAAAGAGGCTG
GATGTAGTTGGATACAGGTAAAGAATAAAATCCACTCTTTTGTAGCTGGTGGAGGTTTCGAGTTTCGTAAT
TCTGATGAATATAAGAAGATATGGAACAAAGTAAGGGAAGCCATGGAAGAATTTGGTTATATACCCAACAC
AGATGTGGTGCTTCATGATGTAAATGAAGAAACAAAGGCAATGTGGGTGTGTGGGCACAGTGAGCGCTTAG
CAACTGTTTTTTCTCTGATACATACTGCTGCCGGAATGCCAATCAGGATAACAAAGAACCTTCGTGTTTGT
GTAGATTGTCACTCTTGGATCAAGATAGTTTCAAGAGTGACAGGGAGGGTTATTGTTTTGAGAGATACAAA
CCGCTTCCACCATTTCAAGAAGTGCATGCTCTTGTAATGATTACTGGTGAAACCATTATACCAGAGCATAA
TTCTTTGAACCTTTTTATCTTTATTTCTCTTTGATGAGTCCATCGGCATGATCATACTACAATGCGATGCT
AGAAAAAAACAAAAAATGGCCGCCTCGGGCATCGATAAGCTTGAATCTCTAGAGTCTGCTTGAATGGAAAT
TGGCGAAGACGCTGA 
Figure B2.7: Anchoring sites for qRT-PCR 1fox46-1 specific primers within the fl-
cDNA insert of CHLOROPLAST RNA EDITING FACTOR 3 (CREF3) gene sequence. 
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GGAGAAAGGAGTGTTTATTTCGATTGGGAAGACTGAAGCTTTGGCTCTCTGGTGTTCGAGAGGAGTGAAGA
TGGGTGATAAAAATGATGGACTGGGCTTGAGTTTGAGCTTGGGATTCGATGGTACACAACCAAATCATCAA
CAGCAGCTTTCTATGAAGCTAAATCTCATGCCCGTACTTTCACAAAACAATCATAGAAAAACTTCCTTGAC
TGACCTCTTTCAATCATCAGATAGAGCATGTGGTACGAGGTTTTTTCAACGAGGAATTGACATGAACAGGG
TGCCAGCTGCAGTGACAGATTGTGATGACGAAACTGGGGTTTCTTCACCAAACAGCACGCTATCCAGCTTA
AGTGGTAAAAGAAGCGAAAGAGAACAGATTGGAGAAGAAACAGAAGCGGAGAGGGCCTCTTGCTCTCGTGA
CAGTGATGATGAAGATGGTGCTGGTGGTGATGCTTCTAGGAAGAAGCTGAGACTCTCAAAGGAACAGTCTT
TAGTGCTTGAAGAGACTTTCAAGGAACATAATACTCTTAATCCCAAGGAGAAGCTGGCTTTGTCAAAGCAG
TTGAATCTCAGGCCTAGGCAAGTGGAGGTGTGGTTTCAGAACCGAAGAGCAAGGACCAAGTTGAAGCAAAC
TGAAGTCGACTGCGAGTACCTAAAGAGGTGCTGTGAAAATCTAACAGAGGAGAACAGGAGGTTACAGAAGG
AGGTGCAAGAGCTTAGAGCACTGAAACTTTCCCCTCAGCTCTACATGCACATGAACCCTCCCACCACCCTC
ACCATGTGCCCTTCATGCGAGCGCGTTGCTGTCTCGTCATCTTCTGCTGCTGCCGCGTCCTCTGCTCTTGC
TCCAACTGCCTCAACCCGGCAACCACAACGACCGGTGCCCATTAACCCTTGGGCAACAATGCCCGTCCACC
ATCGAACTTTTGATGCTCCTGCTTCCAGGTCATGATTGTTAGCTTGAAGTAGGGGCTATTTGGTAAAGATA
AAATGGATGAAAGGATTTAGGATAAGATTTCCAGGCATCCACAGAAATTTGAGAGAATGTGGAATAGGGAG
AATATGAAATAAGACACGATCAGTGGTGGTAGTGGTTAGGATGTGATTTTGCTGACAAGTCCAGGTTGCAA
AGAGTGGACTAGTTGCAAAATATAGTGTTTATAAGTTGTAGGATGATTGGAAGGTGCGACAAAGGAATCCG
AATACAATATCTCCCTGCTGATTATTGTAGGATTTGATGTAGACAAAGTTGCTTTACTATGTAAAGAGAAT
AGTATTTTAGTGATCCAAAAAAAAAAAAAAAAAAAAAAGGCCGCCTCGGCCATCGATAAGCTTGGATCCTC
TAGAGTCCTGCTTTAATGAGATATGCGAGACGCCTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAGA
AAGCATTGCTTATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTG 
Figure B2.8: Anchoring sites for qRT-PCR 2FOX1-1 specific primers within the fl-
cDNA insert of HOMEOBOX-LEUCINE ZIPPER (HAT4) gene sequence. 
 
 
 
ATGTAAAAAAAGGTTAATTTCATATGATGGGTTGGCTTTGAGGTTTAATTTCTTTTAGCGGTCTTGTTCTT
GTAAATCTATTTTGGGCTTTAATTGTTTAGAGTGAGAACTTGAAGACATCAGACTGGCTTTGGTTGCTGGA
AATAGATCAAATGGCTCCAAGAGATAGAGATTTTGAGGTTGATCTTGAAAGTGGGGTGAGAAATAGTGTTG
AAGATTCATGTAAAAATGCAGGTTCAGGAGTAAAAACACCAACAAAGCCGTTGCTTGCTAAGATTTGTGGG
GCATTCGCCAATGGGACAGCCAATGGTGAAGAGAGGGTAAATTTGTGTGGCAACGTGTCAGACTCTGGTGG
TGATTCTGCAGACCATGCGAAGTCGGAGGGTGAAATATCTGTTGATCAAGTAGAGAAGAAAATGGTAAAAA
AGAAGCATAAAAAAACGAGCAATAAAAAGCCTCCTAGGCCTCCACGAGGTCCATCATTGGATGCTGCTGAC
CAGAAGCTGATCAAGGAGATTTCTGAACTAGCCATGTTGAAGCGTGCAAGGATTGAGCGGATGAAGGCCTT
GAAGAAATTAAAAGCTACGAAGCCATCATCCAATAACAATCTATTTGCCATGGTGTTCACCATTCTATTCT
GCCTTGTGATTCTCTTTCAAGGAATGTCATCCAGAGCTACATCTGCAAGCTCAATGGGATCTCCTGTGTCA
TCAGAGACAGCTGGTGATGTTTATTTCAGTTCATACTTTGGGATCCATCTGCAAGCGAGTCTAATGGACTG
GGTCTGGGATATCGAACCTTCATAGAAAACCATGCTGGTTCGATCTCCTAAATTCAGGACTGTGAGATGGA
GTGGGTAAAGAAGGACCGTTACCTGTTAATCAAC 
Figure B2.9: Anchoring sites for qRT-PCR 2fox5-2 specific primers within the fl-cDNA 
insert of a transmembrane gene sequence. 
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GAGTTGGGAGATGATATTCCGTCTTTGCCAGAGGGCAAAACACCATCCCTTCTGATGCCTCCAGCCCCTAT
TATGTGCGGTGGTGATTGGCCACTTCTGAGAGTTATGAAAGGTATATTTGAAGGTGGGCTGGATAATATGG
GCAAAGGTGGTGCTGATGAGGACGAAGAAGCTGCTGATGGTGACTGGGGTGAGGAACTGGACATGGTCGAT
GTGGATGGTTTGCAAAATGGGGATGTCTCAGCAATTTTGGAGGATGGGGAAGCAGCTGAAGAAAATGAAGA
GGAGGGAGGATGGGACCTTGAAGATCTGGAGCTACCTCCCGAGGCAGACACACCAAGGGCTTCTGTCAGTG
CCCGCTCATCAGTTTTTGTGGCTCCAACTCCTGGTATGCCTGTAAGTCAGATTTGGATTCAGAGATCTTCA
CTCGCTGCTGAACATGCCGCAGCTGGCAATTTTGATACGGCTATGCGACTACTCAACAGACAACTTGGAAT
TAAAAACTTTGTCCCGTTAAAGTCCATGTTTCTTGATCTTTACTCAGGCAGCCATACCTATCTTCGTGCAT
TTTCATCCACCCCAGTGATATCAGTGGCTGTTGGAGCGGGGATGGCAATGAGTCTGCCAGCCCTAATGTTA
GGGGTCCTCCAGGCTCTGTGTTCAATTTCTCCTCACTTGGAAAATAAGCTTACGCTGTACTAAGGCCACGA
CAACTGGGCAATTTGACTGAAGCACTAAACTCTTCCTTTGGCATTCTGCAACGATTCTCTGGATCTGTTCG
TTGATCACGATGCAGTGCATGATTCAACGAATTGATTATATAGTCAACAGTAGCTTTCGGATCTGCAATCG
AACTAAAAGAAAGCAGATGAAATG 
Figure B2.10: Anchoring sites for qRT-PCR 3fox10-5specific primers within the fl-
cDNA insert of coatomer alpha subunit gene sequence. 
 
 
 
ATATAAAAAAATTGGCAATCCCTAGAGCAGAGCAAGATAGGCCTAGGTTTGCCTTGATCTAAACTCTATCT
CACTCACTCTCATTCACACTCTGGGCTACACAAGACAGAAGAACAGAAGCACCACCATGAGCTCAACCCGA
AGGCCCTCCCTCGCCTCCAAGCCCCGTCACTCGTTCTCTCCGCCGTAGAATGGACATCAGCACTGCCACTC
TGAAACGCTGCGGCTGATCTCTGCACCATTACTCTCCTTTCTTCTGAGGTTCAAATGGAGGTAATTGTTAA
TAAGAAGAAGCGTAGAAAGGAGCAACGAGAGAGCAATAATAATAATAATCAATTGCGTGTTTCTTCGAGCA
CTCCACGCACGCGTTCTCAGGTTTCCCCGGAGTGGACAACTAAAGAAGCGTTGATTCTAGTGAATGAGATC
GTTGCTGTTGAAAAAGATTGTTTGAAAGCCTTATCTACCTATCAGAAATGGAAGATCATTGTCGATAACTG
CGTTGTCCTGGATGTTTCCCGGAATTTGAATCAATGTCGGACCAAGTGGAACTCTTTAGTTAATGAGTACA
ACCTGATTAAAAATTGGGACAAGGAGTCTGAGTCCCGAAGTGATTTCTATTGGTCTTTGGAGAGTGAAAGG
AGAAAGGAGTTCGGACTGCCAGAGAATTTTAATGATGAACTTTTCAGAGCTATTGATGATTATATGTGGGT
GCCACAAGGAACACGCAGATACGGATGCTGGATCCAGATCCAGATCCAGATCAGATACTGACTCTGAAGTC
TTGACTTGCTTCATGCAATACAAGCCTGGGAACAGAATCAACGTGCGTCCAAGTCTCTGAATATCCCTATG
GGAAGAAAAGAACCCAGCGAATGC 
Figure B2.11: Anchoring sites for qRT-PCR 3FOX10-7specific primers within the fl-
cDNA insert of HARBINGER TRANSPOSON DERIVED PROTEIN 2 (HDP2) gene 
sequence. 
 
 
 
AGGGGTTGAAGCGGAGAAAAGATGTGCTCTAGTTAAAGCGTGGGAAGAAAATGAGAAAGCTAAAGCGGAGA
ACAAGGCTCACAAGAAACTCTCTGCCATTGGATCATGGGAGACAATCAAGAGAGAGTCTGTGGAGGCAAAA
ATAAAGAAGTATGAGGAAAAAGTGGAAAAGAAGAAGGCTGAATATGCAGAGAAAATGAAGAACAAAGTAGC
CGAACTCCACAAGGCAGCCGAGGAGAAGAAAGCAATGATTGAAGCAAAAAAAGGCGAGGACCGTCTCAAGA
ATCCATTTATCGCCAGAGGAATCCAGCTAGTCTAGAGATGCAGGGAACTGGGAGAGGGCATGAACGAATGA
TAGACCTTCATGGGCTGCATGTAACTGAAGCCATTCACGTGCTAAAGCACGAGTTGAGTATTCTGAGGAGC
ACAGCACGGGCAGCAGATCAGTGTTTGCAGGTTTATATATGTGTTGGAACGGGCCATCACACTAGGGGTGC
TCGCACTCCCGCAAGACTTCCAGTTGCTGTACAGCGATACCTGCTCGAAGAAGAGGGCCTTGACTACACTG
AACCACAGCCAGGGCTGCTTCGAGTAGTGATGTATTGAACCAGCGTCACAGCAGCATGATGAGGTATAGGA
GTTTTTTGACACAATGCAAAACCCAAGCCATAGTCATCAAATCATTCTGTATCTGTATATGGGAGATATTG
AAGAAGAAGTAGTCGAAAGCTGAAAAATAAAAAAGAGAAAAATGTGAGTTAGGAAAGTAAAGACGGAGCAG
AGTGTATCATAGTGTACAGGTGACGCGATTACATTTTGTAAGCGATCAGGCACCTACATGGGAGGCCGGAC 
Figure B2.12: Anchoring sites for qRT-PCR 3FOX12-7specific primers within the fl-
cDNA insert of CTC-INTERACTING DOMAIN 7 (CID7) gene sequence.  
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GGACCCGAACAAGCAGAACAGGGCAGACAACCCATTCTTTCTTTCTGCAAAATCAAAAACTATAATACAGC
AGCGCCATGATCAGCATCCTAGCTCAAGAGCGTCTGCTGGGCGCCGCATTGGGAGCTGCGTTTGCGGGTTT
CATTGTTTATGAGCAACGAAAGCGCATCTATCAATCCATTTCACCCGAACATCCCCAATCCCAGTTGAGAG
AGCCCATATTTGGAAAGCAATTTCGTTCAGAGTTCGAACTTGCTTGGAACAAAGCTGTGGACCAGACATTT
GGACCTCTGGTTGCTTCTCTTAATTCACGTAGGCATTAAGACTTTGGATTAGTTTCATTGCTATTGATTTA
ACATTTATATCAAGTTCTGAGCCATGTACATGCAATAGTTCTAAATCATTTCATGGGACGTGTTCTGAGGC
TGACTATGATTGAAACTCAAATAATATATTACCTCACTTGTAATATTTTGGAATTTTAAACAACTTGTATG
GCATGGCTTATTTTCTTGTAATATTTTGGAATTTTAAACAAGCTGCATGACATGGCTTATTTTCTCCTTAA
AAAAAAAAAAAAAAAAGGCCGCCTCGGCCATCGATAAGCTTGGATCCTCTAGAGTCCTGCTTTAATGAGAT
ATGCGAGACGCCTGACCCAGCTTTCTTGTACAAGGTGTGGTCCCAAAACACACAG 
Figure B2.13: Anchoring sites for qRT-PCR 3FOX16-5specific primers within the fl-
cDNA insert of a C3HC4 type family gene sequence. 
 
 
 
GGCTAAGCTTGTGTGGTGCTGGTGGGTCACTTATAGGGGTGGAGACGGAGAGGGTATTTCTTCAAGACACA
GTTGTTGTTCTTTGTTTTCTGGGAAAGAAGGGGAGAGGGAGAGGGAAATGGATGTGGAAATGAAGCAATCG
AGATTTAAAAGGATTTGTGTGTTTTGTGGTAGTAGTCCGGGAAAGAAAAGCAGCTATAAAGATGCTGCTAT
TGAGCTTGGAAAAGAATTGGTATCAAGAAATATTGACCTGGTTTATGGAGGAGGGAGTATTGGTTTAATGG
GGTTAATTTCTCAAGCTGTTTTTGATGGTGGCCGTCATGTGATTGGAGTTATCCCCAAGACACTCATGCCT
AGAGAGATCACTGGAGAAACAGTAGGTGAAGTGAAGGCTGTTGCTGATATGCACCAAAGGAAGGCTGAAAT
GGCTAGACATTCCGATGCTTTTATTGCCTTACCTGGTGGCTACGGGACCCTTGAAGAACTGCTTGAAGTCA
TAACTTGGGCCCAGCTTGGCATCCATGACAAGCCGGTGGGATTGCTGAATGTGGATGGATATTACAACTCC
CTGCTGTCATTCATTGACAAAGCGGTAGAGGAAGGCTTCATCAATCCAAGCGCACGCCATATAATTGTATC
CGCCCCCACCCCAAGAGAGCTTGTCAAGAAAATGGAGGAGTATTTTCCACGACATGAAATAGTGGCCTCAA
AGCTAAGCTGGGAGATTGAACAGTTAGGCTACCCTCCACAATGTGATATCTCAAGGTAAGATCGTGGCCCG
GTTATGACAAACTATGCAAATAGATTGAAGAGATTATACTGGCGGATCCAGAGTGTTGTTTAGGAAGAGAC
ATGGACCTCCAGAATATTTACCCCAAGAAGATGAAATAAAAAAACCTTGTTTTGCCAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAGGCCGCCTCGGCCATCGATAAGCTTGGATCCTCTAGAGTCCTG
CTTTAATGAGATATGCGAGACGCCTGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAGAAAGCATTGCT
TATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATCCAGCTGATATC
CCCTATAGTGAGTCGTATTACATGGTCATAGCTGTTTCCTGGCAGCTCTGGGCCGTGTCTCAAAATCTCTG
ATGTTACATTGCACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTTGGCTTACATAAACAGTAA
TACAGGGGTGTTATGGAGCATATTCAACGGGAAACGTCGAGGGCGCGATTAATCAACATGAATGCTGATTA
TTGGTTAAATGGCTCGGCGAATATGTCGGCATCAGTGCCACATTCTTATCGCTTGTATGGAGCCGATGCCT
AAGTGTTTTCGGAACTGGCCAA 
Figure B2.14: Anchoring sites for qRT-PCR 3FOX16-6specific primers within the fl-
cDNA insert of LONELY GUY 1 (LOG1) gene sequence. 
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GATTTTCAGAGAAAGAGAGCCTTTTGGTTTGGTTTTAGCAGGTGGTGTGTTTTTTCTTTTCGGGCTTTGTT 
AATGGCAGATAGAGTTGGTATACTGGTTAAAAGCATTTGCTGAAGAGAAGCAGGGAGTTTGATGTGCTGTT
GGCGTTGGCTTTTGTTCAGTGCAGATTGGGACTGCTCAGTAGCTCTTGATAAGCTTTTGCTTGTCTTGGGT
TTCTTTTGTTGGCTTAGTACCACAAGTGATTCTCGAGTTATTTATGAGCTTTACTACCTGTTATGGTGGAA
GAAAAGGTTTGCTAACAAAGAGATTGGAGATGATTACAGCAGCCCGGCGAGAGAGCTCTTCTTTATGTTCT
GTTTAAGAAAGCCATCTTCTTTAAGGAACAATCAAGAACTATGTTCATCAGTGAGAATAGCAGATGCACTT
GTCCATCACGACCAAGAATCCCAGCTCGATGTTAATACAGGCAAAGATATATTGCTCCGGTCCTGGAGCGA
TGACAATGTGGAGACAGAGCTCATGAGGCTGCATAGTCTCTCAGGTCCGCCAAGATTTCTCTTTACAATTG
TTGAAGAAACAAAGGAGGACTTGGAGTCTGAAGATGGCAGGTCTAGAGGTGATCCTAAGAGTGCGAAAGGA
TCAAGAAGTAGAAGCTTAAGTGATTTGCTTCGTACTGTGGAGACTCCATATCTAACCCCTCTTTCTTCTCC
ACCATTTTTCACACCTCCTCTTACTCCTAACTATAATCAGATTGGATTCAATCATCTCTTTGAATCGTCAA
AAGATGCAGAGTTCAATAAGATAAGATCATCACCACCTCCAAAATTCAAGTTCTTACAGGATGCGGATGAG
AAACTACATAGAAGGAAATTGATGCAAGAAGCTGGGGAGAAGGTCCAAAGGCATGATGTTTTTGCTCAGGA
TCATACCAAAATACCTGCTAGTTCTAATTCTCACAAAGACGAGGATGATGGGCCTTTTATCACC 
Figure B2.15: Anchoring sites for qRT-PCR 3fox90-3.1 specific primers within the fl-
cDNA insert of a transmembrane gene sequence. 
 
 
 
GAAACCCAGAAGTCTAGATTCTCACGCTTTATAAAATTAACAAATAAATAAACCCCACTTTCCTAGCTCCC
ACTGTAGAATTTTCCTTCTACCTACTCTGTTCATATTCTGAAACTCCAATTCTAGTGAGGTTTCTTCTCCT
TTCAAGTTTTCTTTGCTTCCCGCAGTCCTTGTTTTCCAAAACATGTCATCTATACTAACCTCACAAGGTGT
GGTATTAGCCACAGTCATGGCAGTTTCAAGTACGGTGGTCTTTCTTGCCTTTTCCAAGCAAAAAACGTTGC
CCCATCAAGTACTCTCTGAGAATCGAGATTCCGAATCTCCGACTCCAAGTCAAGACTTGCGTTCTTGCTTA
AGTTCAGAGGGAAAGAGAAAGAAGAAGAGAGTGCAATTTGCAGAGAATGTGAAGAATACAAAAGGGAATGG
TGATGAGTACAGAAGGGAGAGGCAGAGTCCCTGGCATGCTAGGCGAGAGAGAGAGGTTTCGAATACAAGAA
TGAGCAGAGTTTGCAGAAACGAAATCCAGGGAAATCATGGAATGCCAGAAAATAGGGTTGCTTTGTACAGT
GGAATTCTCGTGGACCGTGTACACAAAATGGAATGTTCATATTTATTTCAGTAAATTCTTGGGTAATTATT
ACCTCAACTTTTCCTCTAGAAAATGTGTATATGTGAAGGGAGGCTCTGTTATTTTAATGCATCAGAGCCTT
TTCCATATTATGGATTTAAAGTCGAATTATTGTGTACAGAAGTTTATGGAGTTCCTGGATTTTTCAATTTT
AAAAAAAAAAAAAAAAGGCCGCCTCGGCCATCGATAAGCTTGGATCCTCTAGAGTCCTGCTTTAATGAGAT
ATGCGAGACGCCTGACCCAGCTTTCTTGTAACAAAGTTGGCATTATAAGAAAGCATTGCTTATCAATTTGT
TGCAACGAACAGGTCACTATCAGTCAAAATAAAATCATTATTTGCCATCCAGCTGATATCCCCTATAGTGA
GTCGTATTACATGGTCATAGCTGTTTCCTGGCAGCTCTGGCCCGTGTCTCAAAATCTCTGATGTTACATTG
CACAAGATAAAAATATATCATCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGTGTTA
TGAGCCATATTCAACGGGAAACGTCGAGGCCGCGATTA 
Figure B2.15: Anchoring sites for qRT-PCR 3fox90-3.2 specific primers within the fl-
cDNA insert of a cytochrome P450 family gene sequence. 
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C Nucleic Acid Visualization, Extraction, Amplification & 
Isolation 

C.1 0.7% Agarose Gel Electrophoresis 

 Components   50 ml volume 

 1x buffer TAE   50 ml 

 Agarose powder  0.55 g 

The components combined in an Erlenmeyer flask and heated using a microwave until 

agarose dissolved completely. 2 drops of concentrated ethidium bromide (EtBr) was added 

to the 0.7% agarose TAE solution (F.8). The solution was poured into a cast and allowed 

to cool until solidified. The agarose gel was placed in an electrophoresis chamber and 

submerged in 1x TAE buffer. Nucleic acid samples mixed with appropriate amounts of 

visualization dyes and loaded into the wells: a DNA ladder (Thermo Scientific GeneRuler 

1kb plus) was loaded into at least one well so the size of the nucleic acids can be 

determined. Gel images captured using UVP GelDoc-IT Imaging System and 

VisionWorksLS software.  

C.2 QIAGEN QIAquick Gel Extraction Purification 

Used protocol supplied by the manufacture (www.qiagen.com/handbooks). Concentrations 

checked using NanoDrop spectrophotometer. 
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C.3 Modified Genomic DNA (gDNA) Extraction 

 Extraction Buffer 1 (EB1) 200ml Total Volume 

 NaCl 2.5 M   40ml 

 EDTA 0.5 M   20ml 

 TrisHCl 1M   20ml 

 Water    120ml 

 PVP    4g 

 Extraction Buffer 2 (EB2) 25ml Total Volume 

 EB1    20ml 

 10% SDS   2.5ml 

 β-ME    25µl 

 QIAGEN RNaseA  13µl 

gDNA was extracted from leaf tissues of transformed and wt 717. Leaf tissues from in vitro 

grown plants were sampled and stored in a 1.5ml microcenterfuge tubes containing two 

glass beads. The sampled leaf tissues were immediately frozen with liquid nitrogen and 

stored at -80oC until further processed. Using the TissueLyser, the frozen tissue was 

disrupted for 1 minute at 30 hertz and subsequently frozen with liquid nitrogen. To insure 

tissue disruption (repeated twice).  

A volume of 450 µl of EB2 buffer was added to the disrupted leaf tissue, and the suspension 

was placed on a 65°C heating block for 15 minutes. A volume of 125µl 2M potassium 

acetate was added to the suspension, mixed thoroughly through vortexing, and placed on 

ice for 15 minutes. The suspension was centrifuged at maximum speed for 20 minutes. 
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A volume of 200 µl of chloroform:isoamil alcohol (24:1) was added to the supernatant and 

mixed thoroughly via vortexing. The mixture was centrifuged at 10k rpm for 5 minutes to 

separate the chloroform organic layer from the isoamil alcohol layer. The chloroform 

bound DNA was transferred to a new 1.5 ml microcentrifuge tube without disturbing the 

interface (repeated twice). 

The gDNA was precipitated using 400µl of isopropanol. The precipitated DNA was 

pelleted by centrifugation at top speed for 5 minutes: the liquid was decanted and the pellet 

was dried. The DNA pellet was washed with a 700µl volume of 70% EtOH, mixed by 

vortexing, and centrifuged: the liquid was decanted and the pellet was dried. The DNA 

pellet was resuspended in 35 µl of DNase free water. The concentration and purity of 

gDNA samples checked using NanoDrop spectrophotometer. gDNA samples visualized 

using the electrophoresis protocol (C.1). 

C.4 Modified RNA Extraction 

 DNase Master Mix  10x RXN 

 RDD Buffer   700 µl 

 DNase    100 µl 

RNA was extracted from various tissues of transformed and wt 717 hybrid poplars. 

Sampled tissue were placed in 1.5 ml microcenterfuge tube containing 2 glass beads, 

immediately frozen with liquid nitrogen and stored under -80oC until further processed. 

Using the TissueLyser, the frozen tissues were disrupted for 1 minute at 30 hertz and 

immediately frozen with liquid nitrogen (repeated twice). 
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A volume of 500µl volume of RLT buffer with (PVP) (0.1g/ml) was added to the disrupted 

tissue and immediately vortexed. A volume of 200µl 5M potassium acetate was added to 

the suspension and mixed through inversion. The suspension was centrifuged at a 

maximum speed at 4°C for 20 minutes. 

The supernatant was transferred to QIAshredder Spin column and centrifuged for 2 minutes 

at 4°C. The QIAshredder column was discarded and the flow through was transferred to a 

new 1.5 ml microcenterfuge tube containing 250 µl of 100% EtOH.  The solution was 

mixed by inversion, transferred to an RNeasy mini spin column and centrifuged at 4°C for 

1 min. A volume of 350 µl RW1buffer was applied to the RNeasy mini spin column and 

was used to wash the column with a 1 minute centrifugation at 10K rpm. Residual genomic 

DNA removed by on column digestion. A volume of 80µl DNase master mix (see above) 

was directly applied to the column and the reaction was allowed to proceed for 10 minutes 

at room temperature. The DNase reaction terminated by a second 350µl RW1 buffer 

washing step. 

A volume of 500µl RPE buffer was then applied to the RNeasy mini spin column and 

centrifuged at 10k rpm. The purified RNA eluted from the column using a volume of 35µl 

DNase free water by 1 minute centrifugation at max speed. The concentration and purity 

of RNA samples checked using NanoDrop spectrophotometer. The RNA integrity checked 

using the electrophoresis protocol (C.1). 

C.5 QIAGEN Miniprep Plasmid Extraction 

Used protocol supplied by the manufacture (www.qiagen.com/handbooks). Concentrations 

checked using NanoDrop spectrophotometer. 
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C.6 QIAGEN Maxiprep Plasmid Extraction 

Used protocol supplied by the manufacture (www.qiagen.com/handbooks). Concentrations 

checked using NanoDrop spectrophotometer. 

C.7 Thermo Scientific RevertAid RT cDNA Synthesis 

 RNA mix     12 µl total volume 

 Total RNA    0.1 ng 

 Oligo dT (2 µM)   2 µl 

 DNase free water   Bring to volume 

 RevertAid RT MM   10x RXN 

 5x Reaction Buffer   40 µl 

 RiboLock inhibitor (20 U/µl)  10 µl 

 dNTP Mix 50 µM   20 µl 

 RevertAid RT (200 U/µl)  10 µl  

 Steps   Temperature  Time 

 Annealing  42°C   60 minutes  2x 

 Extension  45°C   30 minutes  2x 

 Denaturation  70°C   10 minutes  2x 

 Hold   4°C   ∞ 

RNA was first denatured by incubation of the ‘RNA mix’ for 5 minutes at 65°C in a PCR 

tube and then immediately placed on ice. A volume of 8 µl of RevertAid RT master mix 

was added to the 12µl of denatured RNAs and using the cDNA synthesis program single 

stranded complementary DNAs (cDNA) were synthesized. 
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C.8 Thermo Fisher DreamTaq Green PCR 

 Reaction Components  20 µl total volume 

 10x green DreamTaq master mix 10µl 

 Primer 2 µM    2 µl 

 DNA template    500 ng 

 DNase free water   Bring to volume 

 Steps   Temperature  Time 

 Hold   94°C   2 minutes   

 Denaturation  94°C   15 seconds  30x 

 Annealing  55-60°C  30 seconds  30x  

 Extension  68°C   1.5 minutes  30x 

 Extension  68°C   5 minutes 

 Hold   4°C   ∞ 

PCR amplicons visualized using electrophoresis protocol (C.1). 
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C.9 Thermo Fisher Platinum Taq DNA PCR 

 Reaction components  25 µl total volume 

 10x high fidelity PCR buffer  2.5 µl 

 Primer 2 µM    2.5 µl 

 MgSO4 50 µM    1 µl 

 dNTP Mix 50 µM   0.5 µl 

 Platinum taq (5 U/µl)   0.25 µl 

 DNA template    500 ng 

 DNase free water   Bring to volume 

 Steps   Temperature  Time 

 Hold   94°C   2 minutes 

 Denaturation  94°C   15 seconds  30x 

 Annealing  55-60°C  30 seconds  30x 

 Extension  68°C   1.5 minutes  30x 

 Extension  68°C   5 minutes 

 Hold   4°C   ∞ 

PCR amplicons visualized using electrophoresis protocol (C.1). 
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C.10 QIAGEN SYBR qRT-PCR 

 Reaction components  20 µl total volume 

 2X SYBR Green PCR MM  10 µl 

 Primer 2 µM    2 µl 

 cDNA Template (5x dilution)  100 ng 

 DNase free water   Bring to volume 

 Steps   Temperature  Time 

 Hold   95°C   10 minutes 

 Denaturation  95°C   15 seconds  40x 

 Annealing/Extend 60°C   1 minute  40x 

ΔΔCt analysis used to determine the relative expression levels of different genes. 

Instructions for how to conduct this analysis detailed with the webpage 

(http://sabiosciences.com/manuals/IntrotoqPCR.pdf). 
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D DNA Digestion & Ligation 
D.1 Restriction Digestion 

 Reaction Components 50 µl total volume 

 Restriction enzyme  10 units (1µl) 

 Template DNA  1 µg 

 10X NEBuffer   5 µl 

 DNase free water  Bring to volume 

 Restriction Digestion Program Temperature  Time 

 Enzymatic reaction   Variable  1 hour 

 Enzyme inactivation   65°C   20 Minutes 

The reaction components mixed on ice in PCR reaction tubes. The reaction conducted with 

a PCR machine using the reaction digestion program listed above. The reaction temperature 

was dependent on the specific restriction enzyme. Restriction digestions can be performed 

with multiple restriction enzymes. The success of the restriction digests were checked using 

0.7% agarose gel electrophoresis protocol (C.1). 
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D.2 NEB T4 DNA Ligase Protocol 

 Reaction components  20 µl total volume 

 T4 DNA ligase buffer (10x)  2 µl 

 Vector DNA    0.020 pmol 

 Insert DNA    0.060 pmol 

 T4 DNA ligase   1 µl  

 DNase free water   Bring to volume 

 T4 ligase program  Temperature  Time 

 NEB T4 reaction  25°C   10 minutes 

 Inactivation   65°C   10 minutes 

D.3 Gateway BP Clonase II Protocol 

 Reaction components  8 µl total volume 

 PCR products with attB tails   150 ng 

 pDonr221 vector (150ng/µl)  1 µl 

 TE buffer    Bring to 6 µl volume 

 BP Clonase II enzyme mix  2 µl (added last)  

The BP reactions incubated at 25°C for 1 hour. Proteinase K solution was added to 

inactivate BP clonase II and end the reaction: this step was incubated at 37°C for 10 

minutes. Reaction checked using restriction digestion protocol (D.1). DNA fragment size 

predicted using ApE software. 
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D.4 Gateway LR Clonase II Protocol 

 Reaction components   8 µl total volume 

 Destination Vector (150 ng/µl) 1 µl 

 Entry vector    150 ng 

 TE buffer    Bring to 6 µl volume 

 LR Clonase II enzyme mix  2 µl (added last) 

The LR reactions were incubated at 25°C for 1 hour. Proteinase K solution was added to 

inactivate BP clonase II and end the reaction: this step was incubated at 37°C for 10 

minutes. Reaction checked using restriction digestion protocol (D.1). DNA fragment size 

predicted using ApE software. 
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E Transformation Protocols 
E.1 Heat Shock Transformation 

A 50µl aliquot of DH10B-T1R E.coli and 0.1 µg of respective plasmid DNA were 

combined and incubated on ice for 30 minutes. After incubation, the cells were placed on 

a 42°C heating block for 30 seconds and immediately placed back on ice. A volume of 

250 µl of SOC media was added to the cellular suspension and the heat shock treated 

DH10B-T1R cells were grown at 37°C for 1 hour in the shaker incubator. The 20 µl of 

heat shock treated  DH10B-T1R cells were plated on specific selective media to select for 

transformation. The plates were incubated at 37°C overnight 

E.2 Freeze Thaw Agrobacterium Transformation 

A 50µl aliquot of chemically-competent Agrobacterium, AGL-1 cells, was mixed with 0.1 

µg of destination binary vector and were frozen in liquid nitrogen. The frozen cells were 

placed on a 37°C heating block for five minutes and immediately placed on ice. A 1ml 

volume of LB (lenoix) liquid media (F.4) was added, incubated at 28°C for 4 hours with 

gentle agitation and plated on selective LB (leonix) media (F.3). Successfully transformed 

colonies appeared after 2-3 days incubation at 28°C. 

E.3 Glycerol Stock Preparation 

After confirmation of transformation, a 500µl aliquot of either transformed AGL-1 or 

DH10B-T1R cells within LB liquid media was added to 500 µl of 50% glycerol solution in 

a 2 ml microcenterfuge tube. The glycerol stock was frozen with liquid nitrogen and stored 

in -80°C. 
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E.4 Poplar Transformation 

wt 717 poplars transformed using Agrobacterium with the method described by Han et al. 

(2000). 
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F Growth Media & Stock Solutions 
F.1 LB (Miller) Plating Media 

 Components 

 Agar    1.6 g 

 LB (miller)   2.5 g 

 Water    100 ml 

LB (miller) and agar were combined with water in 500 ml Pyrex glass container and 

mixed. The mixture was autoclaved, cooled and specific stock antibiotics stocks were 

added to the appropriate concentrations before pouring into Petri dishes. Used for E.coli 

growth. 

F.2 LB (Miller) Liquid Media 

 Components 

 LB (miller)   2.5 g 

 Water    100 ml 

LB (miller) was combined with water in 500 ml Pyrex glass container and mixed. The 

mixture was autoclaved, cooled and specific stock antibiotics stocks were added to the 

appropriate concentrations. Used for E.coli growth. 
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F.3 LB (Leonix) Plating Media 

 Components 

 Agar    1.6 g 

 LB (leonix)   2 g 

 Water    100 ml 

LB (leonix) and agar were combined with water in 500 ml Pyrex glass container and 

mixed. The mixture was autoclaved, cooled and specific stock antibiotics stocks were 

added to the appropriate concentrations before pouring into Petri dishes. Used for 

Agrobacterium growth. 

F.4 LB (Leonix) Liquid Media 

 Components 

 LB (leonix)   2 g 

 Water    100 ml 

LB (leonix) was combined with water in 500 ml pyrex glass container and mixed. The 

mixture was autoclaved to remove contamination. The mixture was autoclaved, cooled 

and specific stock antibiotics stocks were added to the appropriate concentrations. Used 

for Agrobacterium growth. 
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F.5 Kanamycin 50 mg/ml stock 

 Components 

 Kanamycin sulfate  500 mg 

 Water    10 ml 

Kanamycin sulfate was dissolved into water. A 0.2 µm filter syringe was used to filter the 

solution. Kanamycin stocks were stored in 1 ml aliquots in the -20°C refrigerator. 

F.6 Rifampicin 50 mg/ml stock 

 Components 

 Rifampicin   500 mg 

 100% methanol  10 ml 

Rifampicin was dissolved into the 100% methanol. Rifampicin stocks were stored in 1 ml 

aliquots in the -20°C refrigerator. 

F.7 Spectinomycin 50 mg/ml stock 

 Components 

 Spectinomycin  500 mg 

 Water    10 ml 

Spectinomycin was dissolved into water. A 0.22 µm filter syringe was used to filter the 

solution. Spectinomycin stocks were stored in 1 ml aliquots in the -20°C refrigerator. 
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F.8 TAE buffer (50x Concentration) 

 Components 

 Tris base   242 g 

 Acetic acid (glacial)  57 ml  

 Water    1000 ml 

The components above are combined; the buffer should be brought to a pH of 8. 
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G Statistical Analysis 
G.1 Chi Square Goodness of Fit Test 

Conducted to determine the significance of the frequency of a traits alteration within the 

mutant FOX subset. Conducted as described in chapter 10 of Carlson (1973). 

G.2 “Student’s” t-test 

Conducted to determine if a measured trait showed significant difference from the wt 717 

poplar. Conducted as described in chapter 10 of Carlson (1973). 

G.3 Confidence Interval 

Conducted to show variability of mutant FOX line traits from the wt 717 trait mean values. 

Conducted as described in chapter 10 of Carlson (1973). 

G.4 Z-score Statistic 

Conducted to normalize data for NetWalker 1.0 software and generate heatmap. Conducted 

as described by the "Data Import and Processing" tutorial page of NetWalker website 

(https://netwalkersuite.org/). 
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H Additional Sequencing Data of Nonphenotypic FOX 
Lines 

Table H.1: Functional annotation of the fl-cDNAs identified in the non-phenotypic lines. 
Lines with more than 1 insertion are indicated with the same line number but with the ‘.1’ 
and ‘.2’ extensions. E-values based on BLAST analysis of gene against P.trichocarpa 
genome (continued on next page). 

FOX line E-Value Pt Gene ID At Ortholog 
AGI 

Gene 
Name/Description 

1f2-5.1 0 Potri.012G077300 AT1G60010 D-ribose-binding  
periplasmic protein 

1f2-5.2 0 Potri.008G153800 AT3G22520 Spindle assembly  
abnormal protein 

1f3-1 0 Potri.001G448900 AT1G32810 RING/FYVE/PHD 
zinc finger 

1f3-5 0 Potri.017G087200 AT5G39570 PLD REGULATED 
PROTEIN 1 
(PLDRP1) 

1f3-10 0 Potri.005G055300 AT2G30590 WRKY DNA 
BINDING PROTEIN 
21 (WRKY21) 

1f6-1 0 Potri.017G137200 AT3G14330 CHLOROPLAST 
RNA EDITING 
FACTOR 3 (CREF3) 

1f43-2.3 2.1E-174 Potri.017G007400 AT2G43970 LA RELATED 
PROTEIN 6B 
(LARP6B) 

1f45-4 1.7E-121 Potri.015G122500 AT2G35120 Single hybrid motif  
superfamily protein 

1f46-1 0 Porti.017G137200 AT3G14330 CHLOROPLAST 
RNA EDITING 
FACTOR 3 (CREF3) 

1f47-1 0 Potri.008G094300 AT3G29360 UPD GLUCOSE 
DEHYDROGENASE 
2 (UGD2) 

1f47-2.1 0 Potri.002G015100 AT3G03190 GLUTATHIONE-S-
TRANSFERASE 11 
(GSTF11) 

1f47-5 0 Potri.014G052500 AT1G02170 LSD ONE LIKE 3  
(LOL3) 

2Fox4-4 0 Potri.014G017900 AT2G26680 FbkM family  
methyltransferase 
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FOX line E-Value Pt Gene ID At Ortholog 
AGI 

Gene Name/Description 

2f5-2 0 Potri.008G102700 AT3G17120 Transmembrane protein 
2f7-1 0 Potri.018G018600 AT4G31820 ENHANCER OF PINOID 

(ENP) 
2f10-2 0 Potri.004G224000 AT1G20920 REGULATOR OF CBF 

GENE EXPRESSION 1 
(RCF1) 

2f57-2 0 Potri.002G100900 AT4G09020 ISOAMYLASE 3 (ISA3) 
3f10-1 0 Potri.002G158500 AT1G01730 hypothetical protein 
3f10-4 0 Potri.008G190000 AT1G23760 POLYGLACTURONASE 

3(PG3) 
3f10-5 0 Potri.015G069700 AT1G62020 Coatomer alpha subunit 
3f12-2.1 8.2E-86 Potri.005G199700 AT3G03773 HSP90 
3f12-8.1 2.5E-132 Potri.006G104600 AT5G01650 MIF superfamily protein 
3f13-2.2 3.5E-174 Potri.002G188600 AT3G62220 Protein kinase 

superfamily protein 
3f13-7 2.6E-98 Potri.009G054400 AT5G19350 RNA-binding protein 
3f17-8 0 Potri.005G186900 AT1G43850 SEUSS (SEU) 
3f18-1 2.9E-81 Potri.019G002500 AT5G36930 Disease Resistance 

protein (TIR-NBS-LRR 
class) family 

3f18-6 0 Potri.010G116500 AT1G15140 FERREDOXIN-NADP(+) 
OXIDOREDUCTASE-
LIKE (FNRL) 

3f30-6 1.2E-104 Potri.004G053000 AT2G33990 IQ DOMAIN 9 (IQD9) 
3f54-1 0 Potri.004G068400 AT2G25720 Hypothetical protein 
3f90-3.1 0 Potri.008G054400 AT5G59350 Transmembrane protein 
3f90-3.2 0 Potri.001G192800 AT1G52565 Cytochrome P450  

family protein 
3f90-5 1.5E-116 Potri.006G085400 AT4G31180 IMPAIRED IN BABA-

INDUCED DISEASE 
IMMUNITY 1 (IBI1) 
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	The Full-length complementary DNA OvereXpression (FOX) system is an approach to generating gain-of-function (GF) plants predominantly used for studying Arabidopsis. This approach inserts T-DNAs containing random full-length complementary DNA (fl-cDNA)...

	1 Introduction
	1.1 Economic & Environmental Value of Poplars
	The Populus genus comprises over 30 species, spans a majority of the temperate regions of the US and is of great environmental importance (Dickmann 2001, Brunner, Busov, and Strauss 2004). Poplars have also become model organisms for understanding tre...

	1.2 Mutagenesis Approaches for Functional Gene Discovery
	One feature making the poplar unique among other tree taxa is its amenability to mutagenesis by Agrobacterium transformation. This is extremely important: transformation allows for comprehensive understanding of an individual gene’s function (Busov et...
	Mutagenesis approaches typically result in two types of mutants – loss-of-function (LF) and gain-of-function (GF). LF results from disruption of a gene-reading frame often by T-DNA insertion. These LF mutations are recessive and require rounds of self...
	Activation tagging (AT) is one approach to GF mutagenesis that introduces T-DNAs containing known, strong enhancers located near to a boarder of the activation tagging vector (ATV). Thus, random genome insertion with the ATV by Agrobacterium-mediated ...
	In 2003, AT was first successfully used with poplars: within the pilot population a Populus GA2ox (GIBERRELLIN 2-OXIDASE) gene was discovered and characterized (Busov et al. 2003b). Subsequently, a number of other important Populus genes have been dis...
	The full-length complementary DNA overexpression (FOX) system is another GF mutagenesis approach (Ichikawa et al. 2006, Kondou, Higuchi, and Matsui 2010). The system uses en block transformation of a normalized full-length complementary DNA (fl-cDNA) ...

	1.3 Appealing Features of the FOX System GF Mutagenesis Approach
	First and foremost, the rate of mutant discovery of the FOX system is extremely high: using Arabidopsis, mutation rates range between ~10% and ~17% for the FOX approach (Ichikawa et al. 2006, Nakamura et al. 2007) compared to ~1% using AT (Weigel et a...
	FOX system greatly simplify the process of relating a gene to the observed GF phenotype in multiple ways. (1) The FOX system eliminates some ambiguities associated with cloning the causative genes using other methods like AT. For example, insertion of...

	1.4 Regulation of Secondary Woody Growth
	Secondary growth (aka woody growth) is the production of vascular tissues with cell walls that have secondary wall thickening. The tissues that arise because of secondary growth form wood, which as discussed earlier, largely defines the environmental ...
	Secondary growth occurs in many plant taxa, including the model plant Arabidopsis but is short lived or a result of various types of treatments like decapitation, weight-induction and exogenous application of auxin (Levyadun 1994, Ko et al. 2004). Con...
	Woody tissue development does not stop at the CZ: as the cells displace, they undergo expansion, differentiation, secondary cell wall (SCW) deposition and in case of xylem, programmed cell death (PCD). SCW and PCD are related processes that significan...

	1.5 Hypotheses & Objectives
	To date, the FOX system has been only used in Arabidopsis (Dubouzet et al. 2011, Ichikawa et al. 2006, Fujita et al. 2007, Nakamura et al. 2007, Kondou et al. 2009) and Lotus corniculatus (bird's-eye trefoil) (Himuro et al. 2011). Given the limited nu...
	Hypothesizes for our experiment:
	1. Using model poplars with the FOX system will generate a transformant population with a high mutation rate.
	2. RNAs extracted from succulent xylem to develop the fl-cDNA library will enrich the FOX poplars for mutants affected in traits linked to xylem development.
	Objectives of study:
	1. Implement the FOX system in poplar to study the process of xylem development
	2. Determine basic parameters of how the system works in poplar
	3. Validate the gene discoveries through a recapitulation process


	2 Methods & Materials
	2.1 Overview of Experiment
	Figure 2.1: An overview of the experiment. RNA templates extracted from succulent xylem tissue were reverse transcribed generating the fl-cDNAs. (1) Individual fl-cDNAs were cloned independently and directionally within a FOX vector. (2) Using Agrobac...

	2.2 The FOX Poplar Library
	2.2.1 A Xylem Specific FOX Library
	Our intentions were to determine if the FOX system could be used to study genes associated with xylem development processes. To test this, we generated a collection of fl-cDNAs using succulent xylem tissue. Tissues were collected from an actively grow...

	2.2.2 FOX System Mutagenesis of Poplars
	The FOX vector library was subsequently used for mutagenesis of the wt 717 poplar. First, D1H10B T1R E.coli were transformed with FOX library using heat shock protocol (E.1). D1H10B T1R transformants were grown on liquid LB (miller) media (F.2) with k...
	Next, 1µl of the extracted fl-cDNA:pART277 library was used to electrotransform Agl-1 Agrobacterium (Weigel 2002) (repeated 5 times). The electrotransformants were plated on LB (leonix) media (F.4) containing 50mg/L Rifampicin (F.6) and 100mg/L Specti...
	Finally, wt 717 hybrid poplars were transformed with the FOX library using the Agrobacterium transformation protocol (E.4). Approximately 100 putative transgenics, transformed with FOX library clones were PCR-verified for the presence of the nptII sel...


	2.3 GF Recapitulation Poplars
	As the FOX system had not been used with poplars, we needed to determine if the FOX phenotypes were due to GF mutation. To validate the FOX phenotypes, we selected a mutant FOX line for recapitulation using gateway OE protocol.
	The cDNA used to generate the recapitulation constructs was amplified using B1 Pro35s and reverse B2 ocsCZ primers with modified B1 and B2 tails (respectively) (Table B.1 and Fig. B.2.1 and B.2.2) and the FOX plant gDNA (C.3). The BP clonase II protoc...
	The reaction was transformed into competent D1H10B T1R E.coli using the heat shock protocol (E.1). Successfully transformed colonies inoculated 5ml of liquid LB (miller) media (F.2) containing 50mg/L kanamycin (F.5). Bacterial cultures were grown over...
	The fl-cDNA were transferred from the pDonr vector into the pK7WG2 binary vector using the LR clonase protocol (D.4). The reaction was transformed into D1H10B T1R E.coli competent cells using heat shock (E.1). Selection of successfully transferred and...

	2.4 Phenotypic Analysis
	Significance of the FOX lines was determined by screening each for a battery of traits. Three clonal replicates of each independent transgenic line, verified for the presence of nptII selectable marker (Table B.1) were grown under greenhouse condition...
	The den-g measurements were determined using stem base cutting. Mass of the cutting was recorded (g). The cutting was placed in a graduated cylinder to determine water displacement (ml). The density was determined by dividing the recorded mass by the ...
	The den-d measurements were determined using a similar manner to den-g: the difference between these measurement types was that the stem cuttings dried with the oven before taking measurements.
	The moisture content percentage was determined by looking at the percent difference den-d and den-g measurements.
	Cell wall content was determined with pyrolysis molecular-beam mass spectrometry analysis (PyMBMS): for further detail see Zhang, Novaes, et al. (2014).
	Each line compared to wt 717 using a "student's" t-test (G.1).


	3 Results
	3.1 Screen under Greenhouse Conditions Identifies many Phenotypic Lines
	Approximately 100 FOX lines, validated for the presence of the transgene were screened for changes in several traits (Table 3.1). We considered a FOX line to be a mutant as long as one trait displayed a significant p-value of less than 0.01. For these...
	We found 20 of the 113 (17.7%) FOX poplars were significantly different from wt 717. We referred to these as mutant lines (Table 3.1). A majority of the mutant lines (16 of the 20) had multiple significantly altered traits: on average, approximately 4...
	Table 3.1: Mutant poplar FOX lines. P-values determined using a Student t-test (unpaired, unequal variance, n>=3). A line was considered mutant if at least one trait was significantly different at P<0.01. Traits that were significantly different at P<...
	Figure 3.1: Traits’ changes of mutant poplar lines. The confidence intervals are expressed as percent change from the wt 717 measurements. The x-axis represent the percent change. The y-axis indicate the genotype. A confidence interval for a trait tha...

	3.2 Mutant Lines Predominantly Affected in Cell Wall Characteristics
	We observed a significant variability with respect to the types of traits affected in the different mutant lines. Most prominently, 16 of the 20 mutant lines displayed significant differences from the wt 717 in stem cell wall composition (lignin, cell...
	Figure 3.2: Affected traits are significantly over- and under-represented among the mutant FOX lines. Along the X-axis are measured traits. Along the Y-axis is the number of mutant line demonstrating significant difference from wt 717. P-values determ...

	3.3 Molecular Characterization of FOX lines
	To identify the genes underpinning the mutant phenotypes we PCR amplified the fl-cDNAs in all 20 mutant lines using a standard primer set designed to anneal to the 3’ end of the 35S promoter and 5’ end of the OCS terminator (Table B.1 and Fig. B.2.1 a...
	Of the 27 fl-cDNAs identified in the mutant lines, 24 were sequenced (Table 3.2). The lines with double fl-cDNA insertions required agarose gel purification; purification result in low DNA concentrations that are unacceptable for the accurate sequenci...

	3.4 Mutant FOX Lines Harbor fl-cDNAs Linked to Xylem and Cell Wall Development
	Because of the relatively small number of genes/lines, we were unable to define a significantly enriched gene ontology (GO) categories. However, some of the FOX genes found in the mutant lines have a clear link to xylem development and particularly th...
	Figure 3.3: PCR amplification of the insertions in the mutant FOX lines. A GeneRuler 1kbp Plus DNA ladder used to determine sizes of fragments.
	Table 3.2: Functional annotation of the fl-cDNAs identified from mutant lines. Lines with more than 1 insertion are indicated with the same line number but with the ‘.1’ and ‘.2’ extensions. E-values based on Basis Local Alignment Sequencing Tool (BLA...

	3.5 fl-cDNA Upregulation
	We validated fl-cDNA upregulation for a subset of FOX lines: both mutant and non-phenotypic lines were used (Tables 3.2 and H.1). Although, all fl-cDNA inserts were upregulated, there was a significant variation in the level of upregulation: approxima...
	Figure 3.4: Validation of fl-cDNA upregulation in 14 different FOX lines. Overexpression tested in both phenotypic and non-phenotypic FOX poplar lines. A) Lines that showed upregulation up to 100 fold. B) Lines that showed overexpression levels greate...

	3.6 P.trichocarpa Homologs to fl-cDNAs Expressed Predominantly in Xylem
	Because we extracted RNA from succulent xylem, we expected the fl-cDNA P.trichocarpa homologs to be expressed predominantly in xylem tissues. Using recently published RNA-seq data gathered from multiple tissue types (Shi et al. 2017) and the 56 known ...
	Figure 3.5: Tissue-specific expression of P.trichocarpa homologs of recovered fl-cDNAs. Expression estimates are based on published RNA-seq data by Shi et al. (2017). Z-scores were generated for each fl-cDNA based on the averages RNA expression result...

	3.7 Discovery of Line with Increased Xylem Proliferation
	The mutant line, 3FOX16-6, displayed a phenotype of particular interest. Unlike other mutants, 3FOX16-6 was affected at the significant level of P<0.01 in five traits: height, internode number diameter at 20th internode, and dry weight of both leaf an...
	Because of the significant increase in diameter, we studied the anatomy of stem and the tissue(s) that contribute to the observed diameter increases (Fig. 3.8). We found the xylem radial width to be nearly doubled (1.89x) and the single major contribu...
	Significant changes to growth and development often impact cell wall structure (Du and Groover 2010). We observed no significant alteration to the three major cell wall constituents – lignin, cellulose and hemicellulose (Fig. 3.9).
	Figure 3.6: 3FOX16-6 mutant line shows a suite of phenotypic changes. Significance of the differences determined using a Student t-test (unpaired, unequal variance, n>=9). One, two or three of asterisks indicate significance levels at P<0.05, 0.01 and...
	Figure 3.7: 3FOX16-6 phenotypic changes. A) Whole plant photographs: on left, three ramets of wt 717: on right, three ramets of 3FOX16-6 line. B) Representative fully developed leaves from the 15th internode: on left, wt 717: on right, 3FOX16-6. C) Sy...
	Figure 3.8: displays increased xylem proliferation. A) Transverse stem sections taken from the 15th internode. On top, wt 717: on bottom, 3FOX16-6. B) Xylem width; light and dark grey indicates wt 717and 3FOX16-6 lines; Significance of the differences...
	Figure 3.9: Cell wall composition in 3FOX16-6 is unchanged. Statistical significance was tested using a Student t-test (unpaired, unequal variance, n>=9). Light and dark grey bars indicate wt 717 and 3FOX16-6, respectively. A) Lignin. B) Cellulose. C)...

	3.8 Upregulated fl-cDNA of 3FOX16-6 Shows Homology to LONELY GUY 1 (LOG1)
	The sequence of the fl-cDNA upregulated (Fig 3.3) in 3FOX16-6 line showed highest sequence homology to LONELY GUY 1 (LOG1) from Arabidopsis and P.trichocarpa (Table 3.2). We therefore named the gene PtaLOG1 (Populus tremula X alba=Pta). The LOG1 gene ...
	Inactive cytokinins are synthesized by modifications to an adenine base of an adenosine-5'-(tri-, di-, mono-)phosphate by ISOPENTYL TRANSFERASE (IPT) (Sakakibara 2006). Initially, biological activation of cytokinin was thought to be regulated only thr...

	3.9 LOG Genes Constitute a Small Family with Tissue-Specific Expression & Enzymatic Specificity
	A small gene family found in Arabidopsis and poplars with 9 and 15 members, respectively, encodes these enzymes (Immanen et al. 2013, Tokunaga et al. 2012). The different family members show differential expression and condition-specific enzyme optimu...
	Figure 3.10: The evolutionary history was inferred using the UPGMA method (Sneath and Sokal 1973). The optimal tree with the sum of branch length = 2.04005468 is shown. The tree was drawn to scale, with branch lengths in the same units as those of the...

	3.10 Active Cytokinins are Significantly Increased in 3FOX16-6 Mutant Line
	To validate that PtaLOG1 had biochemical function in cytokinin biosynthesis, we investigated the levels of multiple cytokinin precursors and active forms in 3FOX16-6 line and compared them to wt 717 plants. Stem and leaf tissues were used in the analy...
	Figure 3.11: Significantly altered cytokinin concentrations of 3FOX16-6. A) The biosynthesis and activation pathway for the iP type of cytokinins; 1) ISOPENTYL TRANSFERASE (IPT) modifies the adenine base of AMP generating iPRMP; 2) first step in the t...

	3.11 Highest PtaLOG1 Expression in Xylem Tissues
	Using the data from Shi et al. (2017), we studied the PtLOG1 (the closest in homology to PtaLOG1) expression pattern. PtLOG1 showed highest expression in xylem, vessel and phloem tissues: the highest expression of PtLOG1 was in xylem tissue (Figure 3....
	Figure 3.12: PtLOG1 shows highest expression in xylem tissues. Expression quantified with published RNA-seq data (Shi et al., 2017). Error bars indicate standard deviation across three samples.

	3.12 FOX PtaLOG1 Phenotype Successfully Recapitulated
	Cloning PtaLOG1 into a separate overexpression construct was imperative to validating the results of this study for two reasons. First, recreating the 3FOX16-6 phenotype with another method using the same fl-cDNA demonstrates the PtaLOG1 as the culpri...
	We recovered twelve independent PtaLOG1 OE lines validated with transgene upregulation (Fig. 3.13). Our results demonstrated variability in PtaLOG1 upregulation among the OE lines: we expected the OE lines with highest PtaLOG1 expression would confer ...
	Figure 3.13: PtaLOG1 expression levels of various recapitulation overexpression lines. Lines arranged based on PtaLOG1 expression levels (high to low). OE - PtaLOG1 overexpression line.
	Figure 3.14: PtaLOG1 Overexpression lines demonstrate complete and partial recapitulation. Significance of the differences determined using a Student t-test (unpaired, unequal variance, n>=3). One, two or three asterisks indicate significances at P<0....


	wt 717
	4 Discussion
	4.1 Purpose of Experimentation
	Using a pilot population of 113 independent lines, we examined the feasibility and efficiency of the FOX system in poplar for discovery genes controlling secondary woody growth, a process of major economic and environmental significance. We focused on...

	4.2 FOX System Generates High Mutation Rates with Poplars
	First, we determined the overall mutation rate. Screening for a battery of traits revealed a mutation rate of 17.7%, which was 12-fold increase to the mutation rates observed using activation tagging with poplars (~1.5% average) under greenhouse condi...

	4.3 Enrichment for Mutants Affected in Cell Wall
	In addition to mutation rate, the proportion of mutants affected in a particular trait of interest is another factor influencing efficiency and feasibility of mutagenesis. Because mutagenesis is by nature random, the affected genes and traits are also...
	Several lines of evidence suggest that the FOX system does indeed increase the proportion of mutants affected in wood formation relative to other traits/processes. First and most importantly, the only trait that’s frequency of occurrence was dispropor...
	As mentioned earlier, some of the genes found upregulated in the mutants with altered cell wall composition were of already characterized function. However, 15% of the mutant lines revealed genes of either completely unknown function, having a domain ...

	4.4 Affected Traits Highly Specific to RNA Sampling
	Since developing xylem (the tissue used for generation of FOX library) is the main driver of stem girth expansion, we expected an enrichment for lines affected in diameter growth. Unexpectedly, we found an underrepresentation of lines affected in dime...

	4.5 Discovery of PtaLOG1’s Role in Xylem Proliferation
	As mentioned earlier, 3FOX16.6 showed highly significant phenotypic changes (Fig. 3.6, 3.7, and 3.8). Of particular interest was the increased diameter (Fig. 3.6, and 3.9), suggesting that the gene positively affects secondary growth. Cloning of the i...
	Although the role of cytokinins in regulation of secondary growth has been known for a while (Ursache, Nieminen, and Helariutta 2013, Immanen et al. 2013), experimental evidence has been largely derived from transgenic manipulations involving heterolo...
	In plants, cytokinin activation uses both the two-step and one-step pathways. The two-step pathway converts cytokinin riboside 5’-monophosphates nucleosides and nucleobases through the activity of nucleotidase and nucleosidase (Dello Loio, Linhares, a...
	Separation of cytokinin biosynthesis from its activation allows for very precise temporal and spatial control of bioactive cytokinins. PtaLOG1 has the highest expression in xylem tissues and thus may provide a tissue-specific control of bioactive cyto...
	The study conducted by Sundell et al. (2017) had similar interest in this mechanism. Examining Populus tremula native expression for PtLHW and PtTMO5 homologs revealed high expression for both genes within xylem expansion region of the stem. Additiona...

	4.6 LOG Biotechnological Applications
	Biotechnological manipulation of girth growth is of significant interest because of potential for increasing woody biomass. Here we show that a native poplar LOG gene can significantly increase girth growth. However, because of the ubiquitous expressi...


	5 Conclusions
	In regards to our first hypothesis, we concluded the FOX system does generate poplar transformant populations with high mutation rates. Further analysis of the mutant FOX lines confirmed the phenotypes were due to GF: we observed both increases in gen...
	Regarding our second hypothesis, we concluded the FOX system could be used for identification of genes specific to xylem development. Using a fl-cDNA library specific to succulent xylem gene expression, we observed (1) a significant enrichment in line...
	These results have implications for the FOX systems use as a tool for functional plant genomic studies. We conclude a targeted RNA extraction will enrich a FOX plant population for traits of interest. We reached this conclusion after observing (1) P.t...
	Using the FOX system, we observed upregulation of xylem specific PtaLOG1 greatly increased the development of xylem tissue. Cross-referencing our data with the results of multiple studies, we became interested in multiple LOG gene family members with ...
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	Table B.1: All primers used for experimentation. Designed using NCBI PrimerBLAST tool.
	B.2 Primer Targeting Sites

	TCGACGAATTAATTCCAATCCCACAAAAATCTGAGCTTAACAGCACAGTTGCTCCTCTCAGAGCAGAATCGGGTATTCAACACCCTCATATCAACTACTACGTTGTGTATAACGGTCCACATGCCGGTATATACGATGACTGGGGTTGTACAAAGGCGGCAACAAACGGCGTTCCCGGAGTTGCACACAAGAAATTTGCCACTATTACAGAGGCAAGAGCAGCAGCTGACGCGTACACAACAAGTCAGCAA...
	Figure B2.1: Anchoring site of Pro35s F within the FOX promoter based on sequence from pART277 plant binary vector.
	CTGCTTTAATGAGATATGCGAGACGCCTATGATCGCATGATATTTGCTTTCAATTCTGTTGTGCACGTTGTAAAAAACCTGAGCATGTGTAGCTCAGATCCTTACCGCCGGTTTCGGTTCATTCTAATGAATATATCACCCGTTACTATCGTATTTTTATGAATAATATTCTCCGTTCAATTTACTGATTGTACCCTACTACTTATATGTACAATATTAAAATGAAAACAATATATTGTGCTGAATAGGTT...
	Figure B2.2: Anchoring site of ocsCZ R within the FOX terminator based on sequence from pART277 plant binary vector.
	GTTCATGGAAGATTGTCCTATCAGATGCTTAAACCCGACCCTGTCCTGAGGAATATCTTACTTAATGTGCCTGTTCGTAAAGTTGTCTTTACCAATGCTGATAAGGCTCATGCAAGTCGAGTCCTTAGCAGGCTTGGATTGGAGGATTGTTTTGAAAGGATCATATGCTTTGAGACTTTGAATGATGCTGCTAATAAAGGAAATGATCCTGTTGATGGGGATGACAGAGAGGTTTTTGACTTCGATGAATA...
	Figure B2.3: Anchoring sites for qRT-PCR 1FOX1-3 specific primers within the fl-cDNA insert of HALOACID DEHALOGENASE-LIKE HYDROLASE (HAD) gene sequence
	GGGGGATCCCGCAGATCTCGAGGTTGAACATATATTTGAAGTGGGTGAGTGGGTGAAACTGAGGGAAGATGTTAGTAACTGGAAATCTGTTGGACCAGGCAGTGTGGGTGTTGTACAGGGTATAGGATATGATGGAGATGAGTGGGATGGAAGCATATATGTTGGTTTTTGTGGGGAGCAAGAAAGATGGGCGGGGCCTACTTCCCATCTTGAAAGAGTTGAAAGACTCATGGTTGGGCAGAAAGTTAGGG...
	Figure B2.4: Anchoring sites for qRT-PCR 1FOX3-4 specific primers within the fl-cDNA insert of KEEP ON GOING (KEG) gene sequence.
	GGTCTTCCACATCTCTCAATCTCTCTCAAAGAATCCCTTTCTTTTTCCCCAAAACTCAGGGGTCAGTATCTGAGCCAACAACTTGGTTTTTGATCACGTTTTTGAGAGGTTTAGCTTGATGGGCTCTGTGGAAAGATCAAAGAGGAGAGTTCAGTTATGGAAGAAAGCTATAGTTCATTTTGGTTTGTGTTTTGTTATGGGGTTTTTCACAGGTTTCGCTCCAGCAGGCAAGGCTTCAATTTTTACTAGTC...
	Figure B2.5: Anchoring sites for qRT-PCR 1FOX3-9 specific primers within the fl-cDNA insert of IRREGULAR XYLEM 9 (IRX9) gene sequence.
	ACGTCACCTTCAACTTCAACACGAAAAGAGGAAGAAAAGACCGTTTCAAACTATCACCGTTTTAAACCATCACTGATCGCTCAAAAAATGCTTTCTGCGACGATAGGAATCCTTTAAAACGACAACAAAATCCAGTCATGTCAACCTCAAGCTCAACCACGGCGACGTCGTTTTTATCAGCGACGCAGAGATACGCAGCCGGAGCATTATTTGCAATCGCTCTTCACCAAGCACAGATCCATCAAACCCGT...
	Figure B2.6: Anchoring sites for qRT-PCR 1FOX43-3 specific primers within the fl-cDNA insert of a DUF726 gene sequence.
	GGATATGTTAGGCAGAGCTGGAAGAATTGATGATGCATTGGTGGTGGTGAAAAACATGCCCATGAAGACAAGTGGTAGCATATGGGGATCATTGCTCAACTCATGCCGCCTACATAACGAGGTCCCTCTTGCCGAGGCTATTGCAAACCAGTTGTTTGAGCTTGAGCCATGTAATCCTGGGAACTATGTGATGCTCTCAAACATTTATGCAAATGCAGGGATGTGGGACTCTGTAAATATGGTTAGAGAGA...
	Figure B2.7: Anchoring sites for qRT-PCR 1fox46-1 specific primers within the fl-cDNA insert of CHLOROPLAST RNA EDITING FACTOR 3 (CREF3) gene sequence.
	GGAGAAAGGAGTGTTTATTTCGATTGGGAAGACTGAAGCTTTGGCTCTCTGGTGTTCGAGAGGAGTGAAGATGGGTGATAAAAATGATGGACTGGGCTTGAGTTTGAGCTTGGGATTCGATGGTACACAACCAAATCATCAACAGCAGCTTTCTATGAAGCTAAATCTCATGCCCGTACTTTCACAAAACAATCATAGAAAAACTTCCTTGACTGACCTCTTTCAATCATCAGATAGAGCATGTGGTACGA...
	Figure B2.8: Anchoring sites for qRT-PCR 2FOX1-1 specific primers within the fl-cDNA insert of HOMEOBOX-LEUCINE ZIPPER (HAT4) gene sequence.
	ATGTAAAAAAAGGTTAATTTCATATGATGGGTTGGCTTTGAGGTTTAATTTCTTTTAGCGGTCTTGTTCTTGTAAATCTATTTTGGGCTTTAATTGTTTAGAGTGAGAACTTGAAGACATCAGACTGGCTTTGGTTGCTGGAAATAGATCAAATGGCTCCAAGAGATAGAGATTTTGAGGTTGATCTTGAAAGTGGGGTGAGAAATAGTGTTGAAGATTCATGTAAAAATGCAGGTTCAGGAGTAAAAACA...
	Figure B2.9: Anchoring sites for qRT-PCR 2fox5-2 specific primers within the fl-cDNA insert of a transmembrane gene sequence.
	GAGTTGGGAGATGATATTCCGTCTTTGCCAGAGGGCAAAACACCATCCCTTCTGATGCCTCCAGCCCCTATTATGTGCGGTGGTGATTGGCCACTTCTGAGAGTTATGAAAGGTATATTTGAAGGTGGGCTGGATAATATGGGCAAAGGTGGTGCTGATGAGGACGAAGAAGCTGCTGATGGTGACTGGGGTGAGGAACTGGACATGGTCGATGTGGATGGTTTGCAAAATGGGGATGTCTCAGCAATTTT...
	Figure B2.10: Anchoring sites for qRT-PCR 3fox10-5specific primers within the fl-cDNA insert of coatomer alpha subunit gene sequence.
	ATATAAAAAAATTGGCAATCCCTAGAGCAGAGCAAGATAGGCCTAGGTTTGCCTTGATCTAAACTCTATCTCACTCACTCTCATTCACACTCTGGGCTACACAAGACAGAAGAACAGAAGCACCACCATGAGCTCAACCCGAAGGCCCTCCCTCGCCTCCAAGCCCCGTCACTCGTTCTCTCCGCCGTAGAATGGACATCAGCACTGCCACTCTGAAACGCTGCGGCTGATCTCTGCACCATTACTCTCCT...
	Figure B2.11: Anchoring sites for qRT-PCR 3FOX10-7specific primers within the fl-cDNA insert of HARBINGER TRANSPOSON DERIVED PROTEIN 2 (HDP2) gene sequence.
	AGGGGTTGAAGCGGAGAAAAGATGTGCTCTAGTTAAAGCGTGGGAAGAAAATGAGAAAGCTAAAGCGGAGAACAAGGCTCACAAGAAACTCTCTGCCATTGGATCATGGGAGACAATCAAGAGAGAGTCTGTGGAGGCAAAAATAAAGAAGTATGAGGAAAAAGTGGAAAAGAAGAAGGCTGAATATGCAGAGAAAATGAAGAACAAAGTAGCCGAACTCCACAAGGCAGCCGAGGAGAAGAAAGCAATGA...
	Figure B2.12: Anchoring sites for qRT-PCR 3FOX12-7specific primers within the fl-cDNA insert of CTC-INTERACTING DOMAIN 7 (CID7) gene sequence.
	GGACCCGAACAAGCAGAACAGGGCAGACAACCCATTCTTTCTTTCTGCAAAATCAAAAACTATAATACAGCAGCGCCATGATCAGCATCCTAGCTCAAGAGCGTCTGCTGGGCGCCGCATTGGGAGCTGCGTTTGCGGGTTTCATTGTTTATGAGCAACGAAAGCGCATCTATCAATCCATTTCACCCGAACATCCCCAATCCCAGTTGAGAGAGCCCATATTTGGAAAGCAATTTCGTTCAGAGTTCGAA...
	Figure B2.13: Anchoring sites for qRT-PCR 3FOX16-5specific primers within the fl-cDNA insert of a C3HC4 type family gene sequence.
	GGCTAAGCTTGTGTGGTGCTGGTGGGTCACTTATAGGGGTGGAGACGGAGAGGGTATTTCTTCAAGACACAGTTGTTGTTCTTTGTTTTCTGGGAAAGAAGGGGAGAGGGAGAGGGAAATGGATGTGGAAATGAAGCAATCGAGATTTAAAAGGATTTGTGTGTTTTGTGGTAGTAGTCCGGGAAAGAAAAGCAGCTATAAAGATGCTGCTATTGAGCTTGGAAAAGAATTGGTATCAAGAAATATTGACC...
	Figure B2.14: Anchoring sites for qRT-PCR 3FOX16-6specific primers within the fl-cDNA insert of LONELY GUY 1 (LOG1) gene sequence.
	GATTTTCAGAGAAAGAGAGCCTTTTGGTTTGGTTTTAGCAGGTGGTGTGTTTTTTCTTTTCGGGCTTTGTT
	AATGGCAGATAGAGTTGGTATACTGGTTAAAAGCATTTGCTGAAGAGAAGCAGGGAGTTTGATGTGCTGTTGGCGTTGGCTTTTGTTCAGTGCAGATTGGGACTGCTCAGTAGCTCTTGATAAGCTTTTGCTTGTCTTGGGTTTCTTTTGTTGGCTTAGTACCACAAGTGATTCTCGAGTTATTTATGAGCTTTACTACCTGTTATGGTGGAAGAAAAGGTTTGCTAACAAAGAGATTGGAGATGATTACA...
	Figure B2.15: Anchoring sites for qRT-PCR 3fox90-3.1 specific primers within the fl-cDNA insert of a transmembrane gene sequence.
	GAAACCCAGAAGTCTAGATTCTCACGCTTTATAAAATTAACAAATAAATAAACCCCACTTTCCTAGCTCCCACTGTAGAATTTTCCTTCTACCTACTCTGTTCATATTCTGAAACTCCAATTCTAGTGAGGTTTCTTCTCCTTTCAAGTTTTCTTTGCTTCCCGCAGTCCTTGTTTTCCAAAACATGTCATCTATACTAACCTCACAAGGTGTGGTATTAGCCACAGTCATGGCAGTTTCAAGTACGGTGG...
	Figure B2.15: Anchoring sites for qRT-PCR 3fox90-3.2 specific primers within the fl-cDNA insert of a cytochrome P450 family gene sequence.
	C Nucleic Acid Visualization, Extraction, Amplification & Isolation
	C.1 0.7% Agarose Gel Electrophoresis


	Components   50 ml volume
	1x buffer TAE   50 ml
	Agarose powder  0.55 g
	The components combined in an Erlenmeyer flask and heated using a microwave until agarose dissolved completely. 2 drops of concentrated ethidium bromide (EtBr) was added to the 0.7% agarose TAE solution (F.8). The solution was poured into a cast and a...
	C.2 QIAGEN QIAquick Gel Extraction Purification

	Used protocol supplied by the manufacture (www.qiagen.com/handbooks). Concentrations checked using NanoDrop spectrophotometer.
	C.3 Modified Genomic DNA (gDNA) Extraction

	Extraction Buffer 1 (EB1) 200ml Total Volume
	NaCl 2.5 M   40ml
	EDTA 0.5 M   20ml
	TrisHCl 1M   20ml
	Water    120ml
	PVP    4g
	Extraction Buffer 2 (EB2) 25ml Total Volume
	EB1    20ml
	10% SDS   2.5ml
	β-ME    25µl
	QIAGEN RNaseA  13µl
	gDNA was extracted from leaf tissues of transformed and wt 717. Leaf tissues from in vitro grown plants were sampled and stored in a 1.5ml microcenterfuge tubes containing two glass beads. The sampled leaf tissues were immediately frozen with liquid n...
	A volume of 450 µl of EB2 buffer was added to the disrupted leaf tissue, and the suspension was placed on a 65(C heating block for 15 minutes. A volume of 125µl 2M potassium acetate was added to the suspension, mixed thoroughly through vortexing, and ...
	A volume of 200 µl of chloroform:isoamil alcohol (24:1) was added to the supernatant and mixed thoroughly via vortexing. The mixture was centrifuged at 10k rpm for 5 minutes to separate the chloroform organic layer from the isoamil alcohol layer. The ...
	The gDNA was precipitated using 400µl of isopropanol. The precipitated DNA was pelleted by centrifugation at top speed for 5 minutes: the liquid was decanted and the pellet was dried. The DNA pellet was washed with a 700µl volume of 70% EtOH, mixed by...
	C.4 Modified RNA Extraction

	DNase Master Mix  10x RXN
	RDD Buffer   700 µl
	DNase    100 µl
	RNA was extracted from various tissues of transformed and wt 717 hybrid poplars. Sampled tissue were placed in 1.5 ml microcenterfuge tube containing 2 glass beads, immediately frozen with liquid nitrogen and stored under -80oC until further processed...
	A volume of 500µl volume of RLT buffer with (PVP) (0.1g/ml) was added to the disrupted tissue and immediately vortexed. A volume of 200µl 5M potassium acetate was added to the suspension and mixed through inversion. The suspension was centrifuged at a...
	The supernatant was transferred to QIAshredder Spin column and centrifuged for 2 minutes at 4(C. The QIAshredder column was discarded and the flow through was transferred to a new 1.5 ml microcenterfuge tube containing 250 µl of 100% EtOH.  The soluti...
	A volume of 500µl RPE buffer was then applied to the RNeasy mini spin column and centrifuged at 10k rpm. The purified RNA eluted from the column using a volume of 35µl DNase free water by 1 minute centrifugation at max speed. The concentration and pur...
	C.5 QIAGEN Miniprep Plasmid Extraction

	Used protocol supplied by the manufacture (www.qiagen.com/handbooks). Concentrations checked using NanoDrop spectrophotometer.
	C.6 QIAGEN Maxiprep Plasmid Extraction

	Used protocol supplied by the manufacture (www.qiagen.com/handbooks). Concentrations checked using NanoDrop spectrophotometer.
	C.7 Thermo Scientific RevertAid RT cDNA Synthesis

	RNA mix     12 µl total volume
	Total RNA    0.1 ng
	Oligo dT (2 µM)   2 µl
	DNase free water   Bring to volume
	RevertAid RT MM   10x RXN
	5x Reaction Buffer   40 µl
	RiboLock inhibitor (20 U/µl)  10 µl
	dNTP Mix 50 µM   20 µl
	RevertAid RT (200 U/µl)  10 µl
	Steps   Temperature  Time
	Annealing  42(C   60 minutes  2x
	Extension  45(C   30 minutes  2x
	Denaturation  70(C   10 minutes  2x
	Hold   4(C   (
	RNA was first denatured by incubation of the ‘RNA mix’ for 5 minutes at 65(C in a PCR tube and then immediately placed on ice. A volume of 8 µl of RevertAid RT master mix was added to the 12µl of denatured RNAs and using the cDNA synthesis program sin...
	C.8 Thermo Fisher DreamTaq Green PCR

	Reaction Components  20 µl total volume
	10x green DreamTaq master mix 10µl
	Primer 2 µM    2 µl
	DNA template    500 ng
	DNase free water   Bring to volume
	Steps   Temperature  Time
	Hold   94(C   2 minutes
	Denaturation  94(C   15 seconds  30x
	Annealing  55-60(C  30 seconds  30x
	Extension  68(C   1.5 minutes  30x
	Extension  68(C   5 minutes
	Hold   4(C   (
	PCR amplicons visualized using electrophoresis protocol (C.1).
	C.9 Thermo Fisher Platinum Taq DNA PCR

	Reaction components  25 µl total volume
	10x high fidelity PCR buffer  2.5 µl
	Primer 2 µM    2.5 µl
	MgSO4 50 µM    1 µl
	dNTP Mix 50 µM   0.5 µl
	Platinum taq (5 U/µl)   0.25 µl
	DNA template    500 ng
	DNase free water   Bring to volume
	Steps   Temperature  Time
	Hold   94(C   2 minutes
	Denaturation  94(C   15 seconds  30x
	Annealing  55-60(C  30 seconds  30x
	Extension  68(C   1.5 minutes  30x
	Extension  68(C   5 minutes
	Hold   4(C   (
	PCR amplicons visualized using electrophoresis protocol (C.1).
	C.10 QIAGEN SYBR qRT-PCR

	Reaction components  20 µl total volume
	2X SYBR Green PCR MM  10 µl
	Primer 2 µM    2 µl
	cDNA Template (5x dilution)  100 ng
	DNase free water   Bring to volume
	Steps   Temperature  Time
	Hold   95(C   10 minutes
	Denaturation  95(C   15 seconds  40x
	Annealing/Extend 60(C   1 minute  40x
	ΔΔCt analysis used to determine the relative expression levels of different genes. Instructions for how to conduct this analysis detailed with the webpage (http://sabiosciences.com/manuals/IntrotoqPCR.pdf).
	D DNA Digestion & Ligation
	D.1 Restriction Digestion


	Reaction Components 50 µl total volume
	Restriction enzyme  10 units (1µl)
	Template DNA  1 µg
	10X NEBuffer   5 µl
	DNase free water  Bring to volume
	Restriction Digestion Program Temperature  Time
	Enzymatic reaction   Variable  1 hour
	Enzyme inactivation   65(C   20 Minutes
	The reaction components mixed on ice in PCR reaction tubes. The reaction conducted with a PCR machine using the reaction digestion program listed above. The reaction temperature was dependent on the specific restriction enzyme. Restriction digestions ...
	D.2 NEB T4 DNA Ligase Protocol

	Reaction components  20 µl total volume
	T4 DNA ligase buffer (10x)  2 µl
	Vector DNA    0.020 pmol
	Insert DNA    0.060 pmol
	T4 DNA ligase   1 µl
	DNase free water   Bring to volume
	T4 ligase program  Temperature  Time
	NEB T4 reaction  25(C   10 minutes
	Inactivation   65(C   10 minutes
	D.3 Gateway BP Clonase II Protocol

	Reaction components  8 µl total volume
	PCR products with attB tails   150 ng
	pDonr221 vector (150ng/µl)  1 µl
	TE buffer    Bring to 6 µl volume
	BP Clonase II enzyme mix  2 µl (added last)
	The BP reactions incubated at 25(C for 1 hour. Proteinase K solution was added to inactivate BP clonase II and end the reaction: this step was incubated at 37(C for 10 minutes. Reaction checked using restriction digestion protocol (D.1). DNA fragment ...
	D.4 Gateway LR Clonase II Protocol

	Reaction components   8 µl total volume
	Destination Vector (150 ng/µl) 1 µl
	Entry vector    150 ng
	TE buffer    Bring to 6 µl volume
	LR Clonase II enzyme mix  2 µl (added last)
	The LR reactions were incubated at 25(C for 1 hour. Proteinase K solution was added to inactivate BP clonase II and end the reaction: this step was incubated at 37(C for 10 minutes. Reaction checked using restriction digestion protocol (D.1). DNA frag...
	E Transformation Protocols
	E.1 Heat Shock Transformation


	A 50µl aliquot of DH10B-T1R E.coli and 0.1 µg of respective plasmid DNA were combined and incubated on ice for 30 minutes. After incubation, the cells were placed on a 42(C heating block for 30 seconds and immediately placed back on ice. A volume of 2...
	E.2 Freeze Thaw Agrobacterium Transformation

	A 50µl aliquot of chemically-competent Agrobacterium, AGL-1 cells, was mixed with 0.1 µg of destination binary vector and were frozen in liquid nitrogen. The frozen cells were placed on a 37(C heating block for five minutes and immediately placed on i...
	E.3 Glycerol Stock Preparation

	After confirmation of transformation, a 500µl aliquot of either transformed AGL-1 or DH10B-T1R cells within LB liquid media was added to 500 µl of 50% glycerol solution in a 2 ml microcenterfuge tube. The glycerol stock was frozen with liquid nitrogen...
	E.4 Poplar Transformation

	wt 717 poplars transformed using Agrobacterium with the method described by Han et al. (2000).
	F Growth Media & Stock Solutions
	F.1 LB (Miller) Plating Media


	Components
	Agar    1.6 g
	LB (miller)   2.5 g
	Water    100 ml
	LB (miller) and agar were combined with water in 500 ml Pyrex glass container and mixed. The mixture was autoclaved, cooled and specific stock antibiotics stocks were added to the appropriate concentrations before pouring into Petri dishes. Used for E...
	F.2 LB (Miller) Liquid Media

	Components
	LB (miller)   2.5 g
	Water    100 ml
	LB (miller) was combined with water in 500 ml Pyrex glass container and mixed. The mixture was autoclaved, cooled and specific stock antibiotics stocks were added to the appropriate concentrations. Used for E.coli growth.
	F.3 LB (Leonix) Plating Media

	Components
	Agar    1.6 g
	LB (leonix)   2 g
	Water    100 ml
	LB (leonix) and agar were combined with water in 500 ml Pyrex glass container and mixed. The mixture was autoclaved, cooled and specific stock antibiotics stocks were added to the appropriate concentrations before pouring into Petri dishes. Used for A...
	F.4 LB (Leonix) Liquid Media

	Components
	LB (leonix)   2 g
	Water    100 ml
	LB (leonix) was combined with water in 500 ml pyrex glass container and mixed. The mixture was autoclaved to remove contamination. The mixture was autoclaved, cooled and specific stock antibiotics stocks were added to the appropriate concentrations. U...
	F.5 Kanamycin 50 mg/ml stock

	Components
	Kanamycin sulfate  500 mg
	Water    10 ml
	Kanamycin sulfate was dissolved into water. A 0.2 µm filter syringe was used to filter the solution. Kanamycin stocks were stored in 1 ml aliquots in the -20(C refrigerator.
	F.6 Rifampicin 50 mg/ml stock

	Components
	Rifampicin   500 mg
	100% methanol  10 ml
	Rifampicin was dissolved into the 100% methanol. Rifampicin stocks were stored in 1 ml aliquots in the -20(C refrigerator.
	F.7 Spectinomycin 50 mg/ml stock

	Components
	Spectinomycin   500 mg
	Water    10 ml
	Spectinomycin was dissolved into water. A 0.22 µm filter syringe was used to filter the solution. Spectinomycin stocks were stored in 1 ml aliquots in the -20(C refrigerator.
	F.8 TAE buffer (50x Concentration)

	Components
	Tris base   242 g
	Acetic acid (glacial)  57 ml
	Water    1000 ml
	The components above are combined; the buffer should be brought to a pH of 8.
	G Statistical Analysis
	G.1 Chi Square Goodness of Fit Test


	Conducted to determine the significance of the frequency of a traits alteration within the mutant FOX subset. Conducted as described in chapter 10 of Carlson (1973).
	G.2 “Student’s” t-test

	Conducted to determine if a measured trait showed significant difference from the wt 717 poplar. Conducted as described in chapter 10 of Carlson (1973).
	G.3 Confidence Interval

	Conducted to show variability of mutant FOX line traits from the wt 717 trait mean values. Conducted as described in chapter 10 of Carlson (1973).
	G.4 Z-score Statistic

	Conducted to normalize data for NetWalker 1.0 software and generate heatmap. Conducted as described by the "Data Import and Processing" tutorial page of NetWalker website (https://netwalkersuite.org/).
	H Additional Sequencing Data of Nonphenotypic FOX Lines

	Table H.1: Functional annotation of the fl-cDNAs identified in the non-phenotypic lines. Lines with more than 1 insertion are indicated with the same line number but with the ‘.1’ and ‘.2’ extensions. E-values based on BLAST analysis of gene against P...


