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Abstract 
 

The Great Lakes Region of North America has experienced more frequent extreme 

precipitation events recently, resulting in a large number of stream crossing failures. To evaluate 

failure risk and potential impacts of crossings in northern Michigan, we identified and conducted 

coarse assessments of all the stream crossings and dams in the North Branch Paint River 

Watershed. A subset of 11 culverts were selected from 49 identified sites for hydraulic analysis 

to estimate crossing failure discharge conditions. Stream crossing dimensions and upstream 

attributes were used to create metrics that predict failure risk without the need for complex 

hydraulic modeling, and these metrics were applied at the watershed scale. Sediment discharge 

and the economic impact associated with a failure event were also estimated for each stream 

crossing. Aquatic organism passability ratings were also determined for each crossing in the 

watershed. Five of the 11 modeled culverts were predicted to fail at discharges below the 50-

year flood. Upstream main channel length, bankfull width, culvert width, and upstream 

watershed area formed the best metrics for predicting failure with a combined R2 value of 0.9. 

Estimated cost of replacement was 19% more for a failed culvert than a planned replacement. 

Other unsurveyed culverts were analyzed to predicted failure condition discharge, and this 

resulted in an estimated cost of $1.4 million in total culvert replacement throughout the 

watershed for the 11 total culverts that would likely fail during a 50-year flood. Fish passability 

scores were lowest at culverts, and relationships between scores and risk of failure were 

assessed. Nine of the 20 culverts were impassable for fish year round, while 45% were barriers 

only at high flows. Risk of failure, in conjunction with organism passability, should be considered 

when prioritizing culverts for replacement. 
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1 Introduction  

Most of the transportation infrastructure in service today is the result of the economic 

booms that took place in the USA in the 1950s and 1960s; thus many of the stream crossings are 

approaching the end of their design life, prompting the design of techniques to assess their risk 

of failure (Biswas et al., 2001; Mai et al., 2014). These infrastructures (dams, bridges, and 

culverts) can fragment fluvial systems, and act as potential barriers to morphologic and ecologic 

processes in rivers (Brandt, 2000; Nilsson et al., 2005). Potential barriers affect morphological 

processes such as nutrient and sediment transport (Williams and Wolman, 1984; Collier et al., 

1998; Wood and Armitage, 1997; Liriano and Day, 2001; Stanley and Doyle, 2003; McNeely et 

al., 2007). Potential barriers also affect organism dispersal (Pépino et al., 2012). Fragmentation 

of river connectivity influences organism population dynamics in terms of migration for 

reproduction, forage, refuge, and other life history traits (Warren and Pardew, 1998; Roni et al., 

2002; Bowler and Benton, 2005; Nagrodski et al., 2012). Incorporating risk of failure techniques, 

along with stream connectivity impacts, in prioritization schemes to assess needed action at a 

potential barrier will optimize budgets, while restoring aquatic organism passage (AOP). 

Prioritization of stream habitat restoration is a general term used for the step-by-step 

process of methods used by water resources managers, ecologists, and engineers to make 

decisions about the addition, alteration, or removal of potential barriers and other changes to 

improve the structure of riverine systems (McKay et al., 2016). The purpose of barrier removal 

or replacement projects is mainly to increase stream connectivity, or passability, for aquatic 

organisms. Prioritization provides a mechanism to optimize restoration under some constraint, 

usually financing. Common prioritization techniques include scoring, ranking, optimization or 

scenario analysis (Schick and Lindley, 2007; Hicks and Sullivan, 2008; Mount et al., 2011; King 

and O’Hanley, 2014; McKay et al., 2016). Progress in planning and prioritization process 
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development has increased as barrier information becomes more widely available at larger 

spatial scales, allowing tools such as FishWerks (Moody et al., 2017, greatlakesconnectivity.org) 

to maximize the efficiency of connectivity improvement projects at the Great Lakes Basin scale. 

As of 2013, Januchowski-Hartely et al. (2013) identified 276,027 potential aquatic 

organism barriers in the Great Lakes Basin, 97% of which were stream crossings. Within this 

population of stream crossings were bridges, which generally do not hinder aquatic organism 

passage and have relatively low likelihood of failure. The predominant type of stream crossings 

were culverts, which can significantly influence passability. Culverts cost less to install than 

bridges, resulting in their more widespread use (Gibson, 2005). Approximately 34% of stream 

crossings in the Great Lakes Watershed are impassable while 29% are partially passable, 

implying that around 170,000 crossings may impact connectivity for fish (Januchowski-Hartely et 

al., 2013).  

An extensive amount of literature has proposed methods to prioritize barrier repair or 

removal to improve the opportunity for fish passage. McKay et al. (2016) reviewed 46 studies 

that examined barrier prioritization, and identify three steps in the prioritization process: 

establish the geographic extent of analysis, select a focal taxon, and identify management 

actions. The basis of these analyses is organism passage, and minimal consideration is given to 

prioritize a culvert based on its ability to convey potential flood flows and associated sediment 

or debris. 

In the last two decades, the northern Great Lakes Basin has experienced several major 

flood events. In Marquette County, Michigan on May 13, 2003, substantial rains caused two 

dams to fail, one of which released over eight billion gallons of water creating damage to three 

other dams, and damage or destruction of nine bridges (Nault and Hayes, 2003). On June 20, 

2012, 10.1 inches of rain fell in Duluth, Minnesota, greatly exceeding the area’s 100-year 24-
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hour storm depth of 6.9 inches (Graning and Hluchan, 2012). Damage to public infrastructure 

was estimated to cost upwards of $80 million (Cadotte, 2012), and the Federal Emergency 

Management Agency (FEMA) approved over $43.5 million in public assistance for the disaster 

(FEMA, 2012). Another major flood occurred in October 2012 in the Canadian city of Wawa, 

Ontario. Every road in and out of town became impassable, stranding the 3,000 residents. 

Highway 101, the only road leading to a community of 700, was washed out at a stream crossing 

preventing access to food, medicine and other human necessities (Kelly, 2012). Unpublished 

data from a flood that occurred in Northern Wisconsin on July 11, 2016 estimated flows at 

culvert failure sites that were 7.5 times greater than the 500-yr flow estimates (Dale Higgins, 

USDA Forest Service, 2017 unpublished data). Estimated damage to public infrastructure cost 

$26 million (Kaeding, 2017).  

Culvert failure conditions are complex and variable in nature. The two main failure 

conditions are inadequate flow capacity and structural collapse (Lian and Yen, 2003). The Great 

Lakes Basin is at risk of substantial increase in ‘great’ flood events according to climate change 

simulations composed by Milly et al. (2002). Thus, failure at culverts may become more 

common due to inadequate and outdated design. Structural collapse may also occur when the 

structure cannot handle a freight load (i.e. crushed), or prolonged erosional process at the 

culvert (Lian and Yen, 2003).  

Research has been integrated in culvert design to account for varied estimated flood 

discharges (Hager et al., 1998; FHWA 2012; Cafferata et al., 2004). Less effort has been put forth 

towards inventorying and prioritizing stream crossings that have a higher potential of failing 

under estimated flood values. Fitzgerald and Clifton (1998) inventoried 86 stream crossings in a 

watershed of southeast Washington and northeast Oregon after flooding in winter 1995-1996. 

Their analysis found that 51% of the crossings failed, and that sediment and wood restricted 



10 
 

flow at the majority of these failed crossings. Examination of failed culverts in the Pacific 

Northwest by Cafferata et al. (2004) concluded that large woody debris and sediment caused 

reduction in flow capacity, and this was the most common mechanism of culvert failure. They 

recommend the headwater depth to culvert diameter ratio (HW/D) be no larger than 1 in lower 

sloped watersheds, while no larger than 0.67 in mountainous watersheds with high slopes to 

accommodate wood and sediment passage associated with flood flows. Piehl et al. (1988) also 

argue that failure at a culvert has potential to occur when HW/D>1.  

 Given the increase of large storm events in the Great Lakes Basin, assessing the risk of 

culvert failure should be included in regional prioritization techniques. However, tools to predict 

flows and hydraulic conditions at culverts are complex and data intensive, and there is a need to 

develop simple assessment procedures from readily available data. This study assessed the 

vulnerability of culverts in the North Branch Paint River, Iron County, Michigan, USA (Figure 2.1), 

to failure at high flows by determining the maximum capacity that the culverts can withstand 

before failure. Peak discharge estimates over a range of return periods were established under 

current climatic conditions.  Predictors of culvert failure were assessed through testing ratios 

created from GIS-derived measurements and coarse level survey data. Multiple linear regression 

was used to predict the failure condition at every non-surveyed culvert in the watershed. We 

also assessed the habitat connectivity impacts of potential barriers for resident fish passability 

using established criteria. Finally, cost estimates for planned culvert replacements and 

replacements after failure were estimated and compared. 
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2 Methods 

Stream crossings in the North Branch Paint River watershed were identified, surveyed, 

and analyzed. A subset of crossings was used for in-depth analysis, and the results from this 

sample were extended to the watershed scale.    

2.1 Research Area and Description 

 The research area consisted of the North Branch Paint River (North Branch) watershed 

located in the Ottawa National Forest of Michigan’s Upper Peninsula (Figure 2.1). As of 2011, 

landuse in the 116.9 mi2 North Branch was 66.9% forested, 30.7% open water or wetland, and 

2.4% developed (Homer, 2015). Of the forests, 41.4% were coniferous, 40.9% were deciduous, 

and 17.6% were a mixture of both (Homer, 2015). Glacial deposits dominated by sand (68%) and 

silt (28%) were composed of soil classes of spodosols (68.9%), inceptisols (27.7%), and histolsols 

(16.7%) in the watershed (Soil Survey Staff, 2017). The North Branch had an average saturated 

permeability rate of 7.3 inhr-1 and a mean slope of 2.7% (Soil Survey Staff, 2017; NRCS, 2017). 

Average monthly precipitation in Amasa, MI, 14 miles east of the North Branch watershed 

boundary, was 2.3 inches per month from 1997-2017 (NCEI, 2017). Spring snowmelt is a 

dominant hydrologic influence in the Upper Peninsula, and an average of 212 in yr-1 of snow fell 

in Kenton, MI, 7 miles north of the North Branch watershed Boundary, from 2005-2016 (Damon 

Haan, USDA Forest Service, 2017, unpublished data). The North Branch stream orders range 

from 1 to 4 (Strahler, 1957), and the Paint River is a tributary to the Menominee River and Lake 

Michigan. 

An assessment using satellite and near surface remote imagery analysis determined the 

North Branch to have a road density of 5.2 miles of road per square mile, with a total of 605 

miles of road in the watershed (Banach et al., 2016). These data identified 58 potential fish 
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passage barriers in the North Branch, including dams, culverts, bridges, fords, footbridges, and 

removed crossings (Banach et al., 2016). This number was greater than the number of crossings 

detected by the intersection of the total flow line with the State of Michigan’s “All Roads” 

shapefile, which suggested 27 stream crossings (State of Michigan, 2014). The Banach et al. 

(2016) data also had more crossings than data previously used by the Forest Service, which 

indicated that roads intersected the North Branch at 36 points (Amy Amman, USDA Forest 

Service, personal communication, 14 Nov 2017). The differences among the data sets are due to 

the inclusion of all roads and trails in the remotely sensed data set assembled by Banach et al. 

(2016), including decommissioned routes, as well as dams. Extensive ground reconnaissance via 

hiking and paddling in summer 2016 identified 49 potential barriers.  

 

Figure 2.1: Location of the North Branch Paint River Watershed in Iron County and the Upper Peninsula of 
Michigan. 
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2.2 Coarse Resolution Inventories 

 The 49 crossings and dams were inventoried in May and June 2016 following the Great 

Lakes Road Crossing Inventory Instructions (GLRCII) (GLRSCII, 2011) (Appendix A).  Qualitative 

observations included crossing type, construction material, and condition of the crossing. 

Measurements included road width, structure height, structure length, structure width, stream 

bankfull width, wetted width, and average wetted depth. Road characteristics such as approach 

length, slope, and adjacent low point were measured, and road fill depth above the culvert was 

estimated. Thalweg stream velocities were measured at the inlet and outlet of each structure, 

and in the stream where the channel was not apparently impacted by the crossing, with a 

handheld acoustic doppler velocimeter (SonTek, San Diego, CA, USA).  

Fish passability ratings at each potential barrier (Diebel et al., 2009), were determined 

based on water depths and velocities and outlet perch height. Scores were assigned as follows: 

0 indicated that most fish at all life stages would not be able to pass the structure; 0.5 indicated 

some species at different life stages would be able to pass; 0.9 suggested the structure was a 

barrier only at high flows; and 1 indicated the structure was not a barrier (Diebel et al., 2009). 

Velocities and passability ratings were for observed flow conditions, which varied from 

approximately half bankfull to bankfull. 

2.3 High Resolution Surveys 

Eleven culverts were chosen for high-resolution surveys and hydraulic modeling to 

predict flow conditions at failure. Five of the nine culverts with passability ratings of 0 were 

randomly selected (Figure 2.2). Six surveyed culverts were randomly selected from the 

remaining 11 culverts with passability scores greater than 0 (Figure 2.2). At each culvert, the 

coordinates of the road prism, culvert inlet, culvert outlet, and flood plain and stream channel 
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along four cross-sections were surveyed with a total station.  A total station is an electronic 

distance measurement instrument that determines the spatial coordinates of the position 

identified using a reflecting prism by reflectance and angle measurements. From multiple point 

measurements, elevation surfaces, and distances and slopes between points can be derived.  

 
Figure 2.2: Location, site identifier, and subwatershed of each high resolution survey site in the 

North Branch. 
 

We surveyed two cross sections upstream, and two cross sections downstream of each 

culvert, and extended each cross section into the floodplain. The cross sections located farthest 

from the culvert were selected so that channel and floodplain were not apparently impacted by 

the culvert. The other two cross sections were located within 10 m of the inlet or outlet to 

represent flow contraction and expansion conditions at the culvert. Thalweg channel elevations 
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were surveyed beyond the farthest upstream and downstream transects to establish channel 

slopes near the culvert.  

Elevation points on the road prism, the trapezoidal cross-sectional shape composed of 

the road tread and fill which crosses the floodplain, were also surveyed. Road prism points were 

measured at the top of the road, approximately half way down each fill slope, and at the point 

where the road fills met the floodplain (Figure 2.3). These measurements were made at 

approximately equidistant intervals along the road averaging between 15 and 40 ft spanning the 

floodplain width (e.g. Figure 2.3). Total station surveys averaged 203 points per site and ranged 

from 146 to 267 points per site. High resolution surveys were done in August 2016 and May 

2017. 

 
Figure 2.3: Cross section, road prism, and thalweg survey points at BUSH01. 
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2.4 Estimating Flood Discharge Values for Culverts in the North Branch 

There is no streamflow gage in the North Branch watershed, thus gaged reference 

reaches were used to select a method for estimating stream flows. Gages on the Black River, 

Middle Branch Ontonagon River, and the Iron River are located 13-68 miles from the outlet of 

the North Branch (Table 2.1). Log Pearson Type III (LP3) probability analysis of annual peak 

discharge values was used to determine return periods of the observed flows at the gaged sites 

(USGS, 1982). 

Table 2.1: River Name, USGS gage number, distance from the North Branch, upstream watershed area, 
and length of record for each reference gage used to establish flood discharge values for the ungaged 

North Branch (USGS A; B; C, 2016). 

River Name 
USGS 
Gage 

Number 

Distance 
from N. Br. 

Outlet  
(mi) 

 
Watershed Area 

(mi2) 

Length of 
Record 
(years) 

Black River 4031000 68 200 45 
Iron River 4060500 13 92 45 
Mid. Br. Ontonagon River 4033000 19 164 70 

 
 

Values from four peak discharge models were calculated from watershed attributes 

(Table 2.2) for each reference stream. The four models were: USGS Wisconsin Zone 4 regression 

equation (Walker and Krug, 2003); USGS Michigan Zone 1 regression equation (Holtschlag and 

Crosky, 1984) using the 1961 (USDC, 1961) and 2013 (NOAA, 2013) estimates of 100-yr, 24-hr 

precipitation; and the Michigan Department of Environmental Quality’s (MDEQ) method for 

computing flood discharges for small ungaged watersheds (Sorrell, 2010) (Table 2.2). 

Input values for the four models were derived from GIS (ESRI, 2017). Contributing area 

was derived from a 10-meter digital elevation model (DEM) (NRCS, 2017) using hydrology tools 

in ArcGIS (ESRI, 2017). Main channel slope was computed as the difference in elevation between 

points at 10% and 85% of the watershed’s hydraulic length above the culvert, where 100% is the 

watershed boundary, divided by the stream distance between points. The hydraulic length is the 
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linear distance of the longest flow path in a watershed. River channel length adjacent to wetland 

and open water was determined as the length of intersect of the watershed’s main flow line and 

the National Wetlands Inventory’s designated wetlands layer (Cowardin et al., 1979). 

Slenderness ratio was determined by squaring the hydraulic length (mi) and dividing by the 

contributing area (mi2). Soil characteristics were clipped to the watershed boundary from the 

State of Michigan’s Quaternary Geology layer, and the percent of each soil type within the 

watershed was identified (Farrand and Bell, 1982).  

Table 2.2: Flood discharge methods, models inputs, and sources of models used for comparison 
to gaged values in reference streams. 

Method Geomorphic and Climate Inputs Source 

Wisconsin 
Zone 4 
Regression 
Equation 

Contributing watershed area (mi2) 
Water storage in watershed (%) 

Main channel slope (ft mi-1) 
Soil permeability in watershed (in hr-1) 

Average annual snowfall (in) 

Walker  
and Krug, 

2003 

Michigan 
Zone 1 
Regression 
Equation 

Contributing watershed area (mi2) 
Hydraulic length (ft) 

Main channel slope (ft mi-1) 
Length of stream adjacent to lake or wetland (ft) 

USDC, 1961 or NOAA, 2013 100 yr-24 hr precipitation 
intensity (in hr-1) 

Quaternary soil type 2, 3, 5, 7, 8, 10-13, 15 (%) 

Holtschlag  
and Crosky, 

1984 

MDEQ 

Contributing drainage area (mi2) 
MI Zone 1 100 yr-24 hr precipitation intensity (5.32 in hr-1) 

Time of concentration (hours) 
Rainfall runoff curve number 

Sorrell, 2010 

 

 Estimated discharge values from each of the reference gage sites were compared with 

discharge estimates for the North Branch using linear regression. The USGS Michigan Zone 1 

regression equation using the 2013 precipitation intensity best fit the LP3 peak discharge 

estimates across the three reference gages (Appendix B). This equation was used to predict the 
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discharge at each culvert as an input to the hydraulic model (Section 2.5). Michigan Zone 1 

regression equations and the associated inputs are shown in Appendix C. 

2.5 Hydraulic Modeling of Culverts  

We simulated a river reach from the cross section and longitudinal survey data in the 

Hydrologic Engineering Center-River Analysis System 5.0.3 (HEC-RAS) modeling software (U.S. 

Army Corps of Engineers, 2016). Manning’s n values for the right and left floodplain, the 

channel, and the culvert were derived from a reference table (Brunner, 2016). Subcritical flow 

contraction and expansion coefficients, weir coefficients, entrance and exit loss coefficients and 

other culvert data were obtained from the HEC-RAS guidelines (Brunner, 2016) for each 

modeled site.   

 Culvert information, including construction material, length, height, width, and headwall 

conditions, was obtained from the coarse surveys. Discharge (Q) values derived from the 

regression equations (Section 2.4) were used to predict flow depths at the culvert for the 2, 5, 

10, 25, 50, 100, 200, and 500-year return period flows. We assumed that failure would occur at 

a headwater depth to culvert diameter (HW/D) ratio of 1 and calculated the discharge at failure 

(Qtop) for each modeled culvert through iterative model runs. The return period for the failure 

discharge was derived from the best-fit equation between discharge and return interval for each 

modeled culvert.  

2.6 Predicting Failure at a Culvert 

 A failure ratio was used to normalize failure flows across surveyed culverts. The ratio 

was the estimated Qtop divided by the 50-year discharge value (Q50) derived from the USGS 

regression equation (Section 2.4). Q50 was selected as it is a common discharge used for 

designing culverts (FWHA, 2012). Failure ratios greater than 1 indicated failure would occur at a 
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discharge greater than Q50. Similarly, ratios less than 1 indicated failure would occur at a 

discharge less than Q50. Because the precise flood recurrence interval associated with culvert 

failure was indistinguishable at discharges greater than 500-year interval, use of this ratio also 

reduced the impact of individual Qtop values that exceeded 500-year return intervals.  

Watershed attributes (Appendix E), culvert dimensions (Appendix F), and upstream 

bankfull conditions (Appendix G) were correlated with failure condition across sites. These 

measurements and attributes were used to create metrics that might predict the failure 

condition at other culverts without the step of hydraulic modeling. In total, 61 metrics 

(Appendix H) were calculated and tested.  Linear regression was used to examine relationships 

between each metric and the failure ratio using the correlate function in R (R Core Team, 2013) 

in RStudio (RStudio Team, 2015). R2 values greater than 0.3 indicated significant correlation 

between the metrics and failure condition across surveyed sites.  

Multiple linear regression was also used to assess the failure condition. A model was 

built through forward selection to predict failure at other culverts in the North Branch that were 

not surveyed at high resolution. The independent culvert measurement with highest correlation 

to failure condition was used (Appendix F). Similarly, the bankfull condition and watershed 

attribute with the highest R2 value was used in the multiple linear analysis (Appendix G, 

Appendix E). Watershed area was also used in the linear analysis.  

2.7 Economic Implications of Culvert Failure  
We assessed the cost of a culvert failure by comparing the cost of a planned culvert 

replacement (TP), to the cost of a replacement after culvert failure (TF) at the same site. 

Adaptions to Perrin and Jhaveri’s (2004) life cycle cost analysis for replacing culverts were used 

to estimate TP: 

𝑇𝑇𝑃𝑃 = 𝐶𝐶𝑅𝑅 + 𝐶𝐶𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐷𝐷𝐷𝐷……….Equation 1 
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where CR is the cost of replacement, CSP is the cost of service associated with a planned culvert 

replacement, and CDP is the cost of user delay associated with planned culvert replacement. The 

cost of culvert failure (TF) was estimated by  

𝑇𝑇𝐹𝐹 = 𝐶𝐶𝑅𝑅 + 𝐶𝐶𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐷𝐷𝐷𝐷 + 𝐶𝐶𝐺𝐺𝐺𝐺 + 𝐶𝐶𝐸𝐸𝐸𝐸……….Equation 2 

where CR is the cost of replacement, CSF is the cost of service associated with a failed culvert 

replacement, CDF is the cost of user delay associated with failed culvert replacement, CGF is the 

cost to replace lost road fill, and CEF is the cost to remove sediment mobilized into the channel 

after failure. 

 Data from Great Lakes Road Crossing Inventory surveys in northern Wisconsin were 

used to create a Microsoft Access (Microsoft Corp., 2017) tool to estimate CR (Diebel, 2009). 

Inputs from the coarse survey are: structure type, bankfull width, structure length, structure 

width, road width, road surface type, and fill depth above culvert. This tool was used to 

establish estimates of CR in 2009 dollars, and we applied an annual inflation rate of 1.7% to 

convert to 2017 dollars (BLS, 2017). Fixed costs in this tool are shown in Table 2.3: 

Table 2.3: Fixed cost type and amount in 2009 $ used in estimating CR 

Type Excavation 
($/yd3) 

Backfill 
($/yd3) 

Bedding 
($/yd3) 

Crown Fill 
($/yd3) 

Cost (2009 $) 12 8 16 6 
 
Service cost (CS) is an estimate for the cost of oversight and engineering associated with 

replacing a culvert. We used a CS value of 20% of CR to estimate total planned cost (TP) 

(O’Shaughnessy et. al., 2016). Data for personnel costs during emergency replacement are not 

readily available, so we assumed 30% of CR to cover overtime cost and estimate the total failure 

cost (TF). 

 The cost of loss of use, or user delay (CD) after a culvert failure, was estimated using the 

approach of Perrin and Jhaveri (2004): 



21 
 

𝐶𝐶𝐷𝐷 = 𝑇𝑇 × 𝐻𝐻 × 𝐷𝐷 × (𝐶𝐶𝑃𝑃 × 𝑉𝑉𝑃𝑃 × 𝑉𝑉𝑂𝑂 + 𝐶𝐶𝐹𝐹 × 𝑉𝑉𝐹𝐹)……….Equation 3 

where T is the annual average daily traffic, which is estimated at 10 cars for forest roads 

in the Ottawa National Forest. H is the amount of delay in hours, and we assumed one hour of 

delay time based on the approximate speed and distance needed to detour around any single 

failed crossing (Banach et al., 2016); and D is the number of days the road is unpassable. We 

assumed a D of 2 days for planned replacements based on personal experience with culvert 

replacements, and 10 days for a failed replacement (Mark Fedora, USDA Forest Service, 

personal communication, 31 Oct 2017). CP is the cost per person hour, which was estimated at 

$24 per hour by inflating 2002 dollars at 2.1% to 2017 dollars (USDL, 2002; BLS, 2017). VP is the 

percent of passenger vehicle volume, which was estimated at 97% (TRB, 2000); and VO is the 

vehicle occupancy, which was estimated at 1.2 people per vehicle (Perrin and Jhaveri, 2004). CF 

is the cost per freight hour, estimated at $70 per freight hour by inflating 2002 dollars at 2.1% to 

2017 dollars (USDL, 2002; BLS, 2017), and VF is the percent of freight traffic volume, which was 

estimated at 3% (TRB, 2000). 

Failed culverts would contribute sediment from the road prism to the stream channel, 

and this material would need to be replaced to re-open the crossing and would also need to be 

removed from the stream to return it to its pre-failure condition. The cost of fill replacement 

(CG) was determined from estimating the total volume of fill that was mobilized from the road 

prism during failure. The lost volume was conservatively estimated by multiplying the road 

prism cross-sectional area times the downstream bankfull width, and subtracting the culvert 

volume (Figure 2.4). 
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Figure 2.4: Road prism dimensions 

This gives: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑅𝑅𝑅𝑅+𝑃𝑃𝑃𝑃𝑃𝑃
2

× 𝐹𝐹𝐹𝐹 × 𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣……….Equation 4 

Culvert volume will vary with the shape of culvert, typically cylindrical or rectangular. 

Cost of sediment replacement (CG) assumes an average of $29/yd3 of lost sediment (Neeson et 

al., in review).  

The estimated cost for sediment removal from the stream (CE) is $25/yd3 of lost 

sediment plus $4160 per day in operator and additional costs (Brian Halm, Streamside 

Environmental, personal communication, 27 Oct 2017). The dredge is able to remove 750 

yd3/day, and therefore would only be needed for one day for each site in the North Branch. 

Sediment removed from the stream would be deposited at a site located near the failed 

crossing, outside of the floodplain. The cost of removal of the sediment from the stream is one 

method to determine the economic value of the degradation of the ecosystem attributed to the 

culvert failure (Loomis et al., 2000). 
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3  Results 

3.1 Coarse Resolution Inventory 

 Ground surveys led to the confirmation of 49 potential barriers, which include 20 

culverts, 19 bridges, 8 dams, and 2 fords, and exclude removed crossings (Figure 3.1). This is 

nine less that the MTRI analysis for barriers in the watershed (Banach et al., 2016). Seventy-five 

percent of inventoried culverts occurred on first-order streams in the North Branch. Details of 

each potential barrier, including the type, material, dimensions and fish passability score, can be 

found in Appendix D. 

 
Figure 3.1: Inventoried potential barrier type and location in the North Branch (does not include removed 

crossings). 
 

Fish passability scores were given to each potential barrier. Thirty-five percent of all 

potential barriers had a passability score of 1, and 37% had a score of 0 (unpassable) (Figure 
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3.2). The majority of the remaining 28% of the barriers had a score of 0.9, indicating they would 

be barriers to passage only at high flow periods. Every dam in the watershed was unpassable. 

Every ford, 74% of the bridges, and 5% of the culverts had passability score of 1, allowing fish at 

all life stages to mobilize upstream and downstream (Figure 3.2). Forty-seven percent of the 

culverts were unpassable all year for fish at every life stage. The single bridge with the 

passability score of 0 was a decrepit all-terrain vehicle bridge constructed of logs and planks 

without any structural support spanning the river, causing debris build-up and scour. Eight of 

the ten crossings (excluding dams) with passability ranking of 0 occurred on first-order streams.  

 

Figure 3.2: Number of potential barriers in each fish passability rating category by stream crossing type. 
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3.2 Flood Discharge at Culverts in the North Branch 

 Subwatershed drainage area (DA) upstream of analyzed culverts ranged from 0.5 mi2 at 

JESSO to 46.6 mi2 at NBPR02 (Table 3.1). The average main channel slope upstream of culverts 

was 0.38%, with maximum slope above JESSO (0.97%) and minimum slope occurring above 

NBPR04 (0.08%) (Table 3.1). Each location was assumed to have a 100-yr, 24-hr precipitation 

value of 5.81 in hr-1 (NOAA, 2013). Table 3.1 shows other inputs used in the USGS regression 

equation. Estimated discharge (Q) values for the 2, 5, 10, 25, 50, 100, 200, 500-year flood event 

at each of the 11 culverts surveyed are shown in Table 3.2. Q2 ranged from 6 to 21 ft3 s-1 mi-2, 

and Q500 ranged from 24 to 129 ft3 s-1 mi-2 across sites. Average Q50 at culverts in the North 

Branch was 43 ft3 s-1 mi-2. 
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Table 3.1: Attributes for each surveyed location used in the USGS Michigan Zone 1 regression equation. 
 

Site Drainage 
Area 

Main 
Channel 

Slope 

Main 
Channel 

Adjacent to 
Swamp 

Slenderness 
Ratio 

100 yr, 24 hr 
Precipitation 

intensity 

Glacial 
Outwash Bedrock Glacial 

Coarse Till 

units mi2 % %  in hr-1 % % % 

BUSH01 24.1 0.24 87.2 8.0 5.8 14.1 9.3 76.6 

BUSH06 1.6 0.69 73.9 1.5 5.8 0.0 0.0 100.0 

JESSO 0.9 0.97 69.2 3.1 5.8 0.0 0.0 100.0 

MALLARD 2.8 0.39 76.7 1.2 5.8 0.0 0.0 0.0 

MITI 6.1 0.50 75.7 2.3 5.8 0.0 0.0 0.0 

NBPR02 46.1 0.12 75.4 3.6 5.8 15.2 2.2 11.1 

NBPR04 7.3 0.08 89.0 2.0 5.8 0.0 0.0 0.0 

PAINTCR 14.1 0.20 86.5 3.7 5.8 2.4 0.0 0.0 

UN33 0.5 0.35 69.9 3.9 5.8 0.0 0.0 100.0 

UNWINS 0.5 0.39 65.2 2.9 5.8 0.0 0.0 0.0 

WINS 2.6 0.25 90.2 4.8 5.8 0.0 0.0 0.0 
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Table 3.2: Estimated discharge at given return intervals across the surveyed sites in the North Branch.  
Site Q2 (ft3 s-1) Q5 (ft3 s-1) Q10 (ft3 s-1) Q25 (ft3 s-1) Q50 (ft3 s-1) Q100 (ft3 s-1) Q200 (ft3 s-1) Q500 (ft3 s-1) 

BUSH01 205 308 375 471 551 635 710 823 

BUSH06 32 55 71 95 116 140 162 196 

JESSO 18 31 40 54 66 79 92 111 

MALLARD 42 67 85 112 134 159 181 215 

MITI 82 132 165 215 257 304 345 409 

NBPR02 286 426 516 645 750 863 962 1,111 

NBPR04 67 104 128 164 192 224 252 295 

PAINTCR 112 172 212 269 316 368 413 482 

UN33 10 16 20 27 32 38 44 53 

UNWINS 9 14 17 23 27 32 36 43 

WINS 30 47 58 74 88 103 116 137 
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 Eight of the 11 modeled culverts exceeded a headwater depth to culvert diameter 

(HW/D) ratio of 1 at discharges with return periods less than 500 years (Table 3.3). Failure 

discharge (Qtop) ranged from 2 ft3 s-1 mi-2 at PAINTCR to 280 ft3 s-1 mi-2 at BUSH06. Three return 

intervals exceeded 500 years, and we classified these as >500-yr events. The minimum return 

interval for the failure flows was 1 year. Five of the culverts were predicted to fail at return 

intervals less than 50 years (Table 3.3). 

Table 3.3: Predicted failure discharge (Qtop), specific discharge at failure (qtop), design discharge (Q50), 
specific design discharge (q50), return interval of failure discharges, and failure condition ratio for each 

surveyed site in the North Branch.  

Site 
Discharge 
at Failure 

(Qtop) 

Specific 
Discharge  
at Failure 

(qtop) 

Design 
Discharge 

(Q50) 

Specific 
Design 

Discharge 
(q50) 

Failure 
Return 
Interval 

Qtop/ 
Q50= 

Failure 
Ratio 

  ft3 s-1 ft3 s-1 mi-2 ft3 s-1 ft3 s-1 mi-2 years   
PAINTCR 24 2 316 22 1 0.08 
JESSO 20 23 66 77 3 0.3 
UN33 29 54 32 61 27 0.89 
UNWINS 24 49 27 52 34 0.9 
MITI 233 38 257 42 30 0.91 
WINS 97 37 88 34 73 1.10   
MALLARD 155 55 134 49 88 1.16 
NBPR02 1,349 29 750 16 210 1.8 
NBPR04 429 59 192 26 >500 2.23 
BUSH01 1,713 71 551 23 >500 3.11 
BUSH06 449 280 116 73 >500 3.86 

 
3.3 Predictors of Culvert Failure 

From linear regression analysis comparing the 61 metrics with culvert failure ratio, 

seven metrics that compared a culvert measurement with an upstream attribute were identified 

to have an R2 greater than 0.3 (Table 3.4). Of these metrics, two are shown in Figure 3.3 and 3.4. 

The first metric is culvert width times main channel length divided by watershed area ((ft x ft) / 

ft2) (R2 = 0.70) (Metric a, Table 3.4), where main channel length is the distance of the major 
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contributing tributary upstream of the crossing. Total channel length (i.e. Metric c) is the 

combined length of every contributing tributary upstream of the crossing. This metric implies 

that failure condition is more likely when a narrower culvert is placed at a location with a 

relatively wide mean upstream watershed width (Figure 3.3).  

The second metric that correlated strongly with failure ratio is culvert width divided by 

bankfull width (ft / ft) (R2 = 0.37) (Metric g, Table 3.4), which represents the degree of channel 

constriction. This metric implies that when the channel is constricted by a culvert, the 

probability of failure increases. Five other metrics that compare a culvert measurement with 

upstream attribute with an R2 value greater than 0.3 were also noted (Table 3.4).  

Table 3.4: Metrics, units, correlation coefficient, coefficients of determination, and p-value for the metrics 
that showed strong correlation to culvert failure (R2>0.3)  

Metric Metric description Units in 
equation R R2 P 

a culvert width x main channel length / watershed area (ft x ft) / ft2 0.84 0.70 0.07 
b culvert width x hydraulic length / watershed area (ft x ft) / ft2 0.80 0.64 0.09 
e culvert length x total channel length / watershed area (ft x ft) / ft2 0.68 0.47 0.15 
f culvert width / hydraulic length ft / ft 0.67 0.45 0.21 
g culvert width / bankfull width ft / ft 0.61 0.37 0.08 
h culvert  length  x total channel length / watershed area (ft x ft) / ft2 0.61 0.37 0.06 
i culvert inlet area / watershed storage area ft2 / ft2 0.60 0.36 0.29 
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Figure 3.3: Linear regression between failure ratio and metric a (culvert width x main channel length / 
watershed area (ft x ft / ft2)), for the sample of 11 surveyed sites. 

  



 

31 
 

 

Figure 3.4: Linear regression between failure ratio and metric g (culvert width / bankfull width (ft / ft)), for 
the sample of 11 surveyed sites. 

 
Multiple regression revealed the following variables have the highest ability to explain 

the variability of modeled culvert failures: culvert volume (ft3) (R2 =0.67) among culvert 

measurements (Appendix F); bankfull width (ft) among upstream bankfull measurements (R2 = 

0.03) (Appendix G). Upstream main channel length (mi) correlated highest with the culvert 

failure ratios (R2 = 0.11), and watershed area (mi2) (R2 = 0.05) upstream the culvert was also used 

in the multiple regression analysis (Appendix E). Our linear analysis created a model with a 

multiple R2 value of 0.90, and a combined p-value of 0.004 (Table 3.6). 
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Table 3.6: Independent variables, individual and combined R2 and p-values for a multiple linear regression 
model used to predict culvert failure ratio. 

Independent variable R2 p-value 
Culvert volume (ft3) 0.67 0.001 
Bankfull width (ft) 0.03 0.56 

Main channel length (ft) 0.11 0.83 
Watershed Area (mi2) 0.05 0.09 

Combined 0.90 0.004 
 

The resulting equation from this regression was:  

𝑦𝑦 = 0.504 + 0.0009𝐶𝐶𝑉𝑉 − 0.005𝐵𝐵𝑊𝑊 + 0.0233𝑀𝑀𝐿𝐿 − 0.054𝑊𝑊𝐴𝐴……….Equation 5 

Where y is the failure ratio, CV is the culvert volume (ft3), BW is bankfull width (ft), ML is main 

channel length (mi), and WA is the watershed area (mi2). 

Failure ratios representing failure condition at unsurveyed culverts in the North Branch 

were predicted from this equation (Table 3.7). Six of the nine unsurveyed sites have an 

estimated failure condition less than one, and therefore are predicted to fail at a flood return 

interval less than 50 years (Figure 3.5). 

Table 3.7: Model inputs and estimated failure ratio at unsurveyed culverts in the North Branch. 
 

Site 
Culvert 
volume 

Bankfull 
width 

Main 
channel 
 length 

Watershed 
area  

Modeled  
Failure 
Ratio 

(ft3) (ft) (mi) (mi2) 

GOLD02 1531 36.0 4.3 5.49 1.5 
GOLD03 1578 18.4 0.3 0.48 1.8 
HOLM02 1500 15.0 2.0 4.68 1.6 
HOLM03 284 62.0 1.4 2.81 0.3 
MITITRIB01 41 3.5 0.3 0.71 0.5 
MITITRIB02 38 5.6 0.9 0.64 0.5 
NBPR10 330 16.4 2.4 7.16 0.4 
SILK01 13 12.0 0.7 0.14 0.5 
UNGOLD01 115 11.5 0.0 0.84 0.5 
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Figure 3.5: Culvert location and predicted failure ratio. 

 
 Four of the nine culverts with a passability score of 0 have potential to fail at a discharge 

less than Q50 (Table 3.8). The three perched culverts in the North Branch, are predicted to fail at 

a discharge less than Q50 (Table 3.8). 
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Table 3.8: Site, passability score, and predicted failure ratio at each culvert in the North Branch. Asterisks 
(*) indicate perched culverts. 

Site Passability 
Score 

Predicted 
Failure Ratio 

BUSH01 0 3.1 
BUSH06 0 3.9 
GOLD02 0 1.5 
GOLD03 0 1.8 
HOLM02 0 1.6 
HOLM03 0 0.3 
JESSO* 0 0.3 
UN33* 0 0.9 
UNWINS* 0 0.9 
MALLLARD 0.5 1.2 
MITI 0.9 0.9 
MITITRIB01 0.9 0.5 
MITITRIB02 0.9 0.5 
NBPR02 0.9 1.8 
NBPR04 0.9 2.2 
NBPR10 0.9 0.4 
PAINTCR 0.9 0.1 
SILK01 0.9 0.5 
UNGOLD01 0.9 0.5 
WINS 1 1.1 

 

3.4 Economic Implications of a Culvert Replacement in the North Branch 
 Cost of replacement (CR) estimates for surveyed sites in the North Branch are averaged 

$104,090 in 2017 dollars and ranged from $13,341 to $171,450.  Service costs (CS) estimated for 

planned and failed replacements averaged $20,818 and $31,227, respectively, across sites 

(Table 3.9).  
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Table 3.9: Total cost of replacement (CR), service cost of planned replacement (CSP), and service cost of 
failed replacement (CSF) for each site. 

Site 
Total Cost of 
Replacement 

(CR) 

Service cost of 
Planned 

Replacement 
(20% of CR) (CSP) 

Service cost of 
Failed 

Replacement 
(30% of CR) (CSF) 

BUSH01 $171,450 $34,290 $51,435 
BUSH06 $32,526 $6,505 $9,758 
JESSO $107,924 $21,585 $32,377 
MALLARD $171,450 $34,290 $51,435 
MITI $49,635 $9,927 $14,890 
NBPR02 $171,450 $34,290 $51,435 
NBPR04 $114,300 $22,860 $34,290 
PAINTCR $171,450 $34,290 $51,435 
UN33 $27,167 $5,433 $8,150 
UNWINS $114,300 $22,860 $34,290 
WINS $13,341 $2,668 $4,002 

 

 User delay costs (CD) were $599 for a planned culvert replacement lasting two days and 

$2,996 for a failed culvert replacement, lasting 10 days (Table 3.10). 

 Table 3.10: Inputs and associated costs to estimate CDP and CDF from Equation 1 and Equation 2.  

Input   
Planned 

Delay Cost 
(CDP) 

Failure 
Delay Cost 

(CDF) 
 T Daily Traffic 10 10 
 H Delay Time (hours) 1 1 
 D Days of Replacement 2 10 
 CP Personnel ($ hr-1)  $24 $24 
 VP % Passenger Traffic 97 97 
 VO Occupancy 1.2 1.2 
 CF Freight ($ hr-1) $70 $70 
 VF %  Truck Traffic 3 3 
 CD Cost Estimate $599 $2,996 

  

Cost of sediment replacement (CG) ranged from $377 to $5,945 at surveyed sites in the 

North Branch (Table 3.11). Cost of sediment removal (CE) from the downstream channel 

averaged $6,017 and ranged from $4,485 to $9,285 across sites (Table 3.11). 
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Table 3.11: Sediment loss, fill replacement cost (CG), and sediment removal cost (CE) at surveyed sites. 

Site Sediment Loss 
(yd3) 

Fill 
Replacement 

Cost (CG) 

Sediment 
Removal 
Cost (CE) 

BUSH01 75 $2,175  $6,035  
BUSH06 57 $1,653  $5,585  
JESSO 49 $1,421  $5,385  
MALLARD 111 $3,219  $6,935  
MITI 123 $3,567  $7,235  
NBPR02 205 $5,945  $9,285  
NBPR04 104 $3,016  $6,760  
PAINTCR 40 $1,160  $5,160  
UN33 15 $435  $4,535  
UNWINS 25 $725  $4,785  
WINS 13 $377  $4,485  

 

Total cost of a planned culvert replacement (TP) averaged $124,963 and ranged from 

$16,009 at WINS to $206,339 at BUSH01. Total costs of a replacement after failure (TF) were 11% 

to 39% more than TP, and averaged 19% more throughout analyzed sites (Table 3.12). The 

increase in cost varied with the complexity of the size and number of structures (pipes) at each 

crossing, and the relative amounts of sediment mobilized at failure.  
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Table 3.12: Estimated total planned cost of replacement, total failure cost of replacement, and the 
percent increase in cost because of culvert failure for each site. 

Site 
Total Planned 

Cost of 
Replacement (TP) 

Total Failure 
Cost of 

Replacement (TF) 

Percent 
Increase 

BUSH01 $206,339 $234,091 13% 
BUSH06 $39,032 $49,522 27% 
JESSO $129,509 $147,108 14% 
MALLARD $205,740 $233,039 13% 
MITI $59,562 $75,327 26% 
NBPR02 $205,740 $238,115 16% 
NBPR04 $137,160 $158,366 15% 
PAINTCR $205,740 $229,205 11% 
UN33 $32,600 $40,287 24% 
UNWINS $137,160 $154,100 12% 
WINS $16,009 $22,205 39% 
Average $124,963 $143,760 19% 

 
 Estimated costs of planned replacement for the nine unsurveyed culvert sites in the 

North Branch averaged $127,005 and ranged from $14,970 to $205,380. Assuming a 19% 

increase in cost to replace each culvert after failure, emergency replacement ranged from 

$17,811 to $245,115 at the unsurveyed culverts in the North Branch (Table 3.13). 

Table 3.13: Estimates for total planned and failure costs of replacement at unsurveyed culverts in the 
North Branch. 

Site 
Total Planned 

Cost of 
Replacement 

Total Failure 
Cost of 

Replacement 
UNGOLD $137,519 $163,648 
GOLD02 $205,979 $245,115 
GOLD03 $137,519 $163,648 
HOLM02 $137,519 $163,648 
HOLM03 $205,979 $245,115 
MITITRIB01 $14,968 $17,811 
MITITRIB02 $28,527 $33,947 
SILK02 $137,519 $163,648 
NBPR10 $137,519 $163,648 
Average $127,005 $151,136 

 



 

38 
 

4 Discussion 

4.1 Predictors of Culvert Failure 

As storms with increased intensity are occurring more often throughout the Great Lakes 

Basin (Changnon and Kunkel, 1995), the probability of culvert failure because of insufficient 

capacity is also increasing, and therefore prioritizing stream crossings based on potential risk of 

failure should be considered.  Wissink et al. (2005) argue that if a published review of culvert 

failures were to take place, the mechanisms of failure may be just as numerous as the number 

of failures. The interaction between culvert attributes, road composition, soil, upstream 

watershed conditions, and climate make failure identifiers difficult to quantify, especially across 

large areas and varying climate. Through multiple regression, this study identified that the 

individual attributes of culvert volume, upstream bankfull width, upstream main channel length, 

and upstream watershed area were good predictors of failure conditions at culverts. Though the 

equation in this study (Equation 5) may be over-fit and will need more data to develop a reliable 

model. Using culvert and upstream measurements that fall within the range of those in the 

North Branch multiple regression, failure ratios can be predicted at culverts in other watersheds 

in the northern Great Lakes Basin. Metric a (Table 3.4) can be used to estimate failure risk at a 

culvert. When applied across a sample of culverts, Metric a will indicate the relative probability 

that a culvert will fail under a commonly used design discharge (Q50).  Through comparing 

culvert width to upstream bankfull width (metric g, Table 3.4), or constriction ratio, potential 

failure conditions can also be predicted at a culvert. For example, PAINTCR had a constriction 

ratio of 0.056 and a predicted failure return interval of 1 year, while at the other end of the 

range in the North Branch, BUSH06 had a constriction ratio of 1.76 and a predicted failure 

return interval of >500 years (Table 3.4). Applying this simple analysis across a broad population 
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of culverts will aid in prioritization for risk of failure, as the culverts with smaller constriction 

ratios are at higher risk of failing at closer occurring return interval. After a major flooding event 

in New England states in 2012, 100% of culverts located in or near towns with constriction ratios 

<0.5 failed (Gillespie et al., 2014). Although our study watershed was not located in or near a 

town, there is relationship between constriction ratio, risk of failure, and fish passage 

throughout watersheds with differing landuse.  

These metrics could be used in the screening process for culvert replacement 

prioritization. By using USDA Forest Service recommendations, such as culverts that simulate the 

natural stream channel in terms of bankfull width and natural substrate throughout, risk of 

failure will be reduced at sites where channel constriction is measured (Gubernick et al., 2008). 

One example of a prioritization based on our results would be to replace culverts with a 

constriction ratio less than 0.5 with larger or more effective crossings, such as stream simulating 

culverts. Although stream simulating culverts are normally more costly than traditional culvert 

designs at implementation (Gillespie et. al., 2014), stream simulation culverts mimic the 

characteristics of the natural stream and allow unobstructed organism passage. A wide range of 

flood flows and associated wood and sediment loads are also able to pass through the stream 

simulation structures (Gubernick et al., 2008; Diebel et al., 2009; Cenderelli et al., 2011). 

4.2  Fish Passability  

The removal or remediation of a potential barrier to aquatic organism passage may 

increase stream connectivity. Observations from this study infer that passability and risk of 

failure can be associated in the North Branch. Nine culverts had passability ratings of 0, and of 

the nine, four were predicted to fail within the 50-year flood return interval. The other 11 

culverts with passability rank of 0.5, 0.9, and 1 had a predicted failure flood return that ranged 

from the 1 year to >500 year. The three surveyed culverts that had perched outlets (passability 
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0) also predicted Qtop return periods of less than 35-years, therefore a perched culvert should 

be ranked highest for replacement in terms of both fish passability and risk of failure. 

The majority of culverts that are passable (score 0.5, 0.9, 1) were scored 0.9, indicating 

that the culverts are barriers to fish only at high flows. Due to predictions of intense 

precipitation events occurring more often in the Great Lakes, these culverts will be less passable 

more often throughout the year (Kunkel, 2003; Groisman et al., 2005; Brandt et al., 2010; 

d’Orgeville et al., 2014). Fish passability scores are typically acquired from the field during a 

single visit, and often during periods of lower flow when streams are accessible .These one-time 

ratings may not be an accurate predictor of fish passability throughout the year or during 

periods of high flow. Spring run-off is necessary for many important fish in the Great Lakes to 

reach suitable spawning habitat, including; steelhead, walleye, sturgeon, and white sucker (Kling 

et. al, 2003). These seasonal high flows associated with snowmelt may decrease passability at a 

culvert with score 0.9 to 0.5 or even 0. Partial plugging due to ice in the culvert, or beaver 

activity may also impact passability scores. If fish passability is the overarching rationale for 

replacing a culvert, focal fish taxon population densities should be referred to in different 

stream reaches with impassable barriers (McKay et al., 2016). If more of the focal taxon occurs 

in a particular reach, or if there is documented decline in fish populations, we suggest that a 

more detailed survey and analysis of stream impairments be conducted. It is possible that 

connectivity could be addressed by prioritizing low passability or high failure risk culverts with 

improved designs. However, other negative pressure may also be affecting local fish 

populations, and this can only be accurately assessed using more detailed field surveys and 

analysis. .  
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4.3 Effects of Climate on Culvert Failure 

The regression equations that best predicted flood discharge estimates at the North 

Branch were established in 1984 (Holtschlag and Crosky, 1984). Even using these relatively 

dated equations, we found that the 100-yr 24-hr rainfall intensity based on the average from 

1944-2012 (NOAA, 2013) was a better predictor of observed discharge in the three reference 

streams than the intensity derived from the period 1909-1957 (USDC, 1961). This suggests that 

the climate has shifted sufficiently between these periods to affect the flood frequency 

response of the streams in the region. USGS regression equations are the most accepted 

statistical method to estimate flood frequency for ungaged streams (Dawdy et al., 2012) and 

updating the regression equations may lead to even more accurate flood predictions.   

In an analysis by Groisman et al. (2005), Michigan, Wisconsin, Minnesota, Illinois, and 

Ohio experienced a 20% increase in the frequency of intense precipitation (upper 0.3% daily 

precipitation) from 1893-2002.  Kunkel (2003) concludes that 5 year 24 hour storm events have 

increased 4% per decade since 1900. About 85% of these storm events occurred between the 

months of May and September with roughly 90% of the trend attributed to increasing 

temperatures in the region. By 2050 the median 50-year return precipitation amount in the 

Great Lakes Basin is projected to increase by 14%-29%, increasing potential discharge 

(d’Orgeville et al., 2014). Total precipitation is projected to increase in the Great Lakes basin 

during winter months, and Brandt et al. (2010) caution that current precipitation measurements 

should not be used in hydrologic predictions in the Great Lakes. Acquisition of the annual peak 

flow distribution from USGS stream gaged data in the culvert prioritization area of interest will 

make future climate predictions more precise. Because snowmelt is a major hydrologic input in 

the upper Great Lakes (Wu and Johnston, 2006), models that emphasize winter precipitation 

predictions should be used to acquire future potential peak discharges.  
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One possible extension of this study would be to use predicted regional precipitation 

increases to recalculate the distribution of discharges using the USGS equations and convey the 

ratio of discharge at culvert failure to a future Q50. Kling et al. (2003) found that two Great 

Lakes regionalized general circulation models (PCM and HadCM3) predicted 100-yr 24-hr 

precipitation events to increase, if not double, by 2100. An estimated discharge of 1,741 ft3 s-1 is 

predicted where the North Branch joins the South Branch Paint River for the Q50 event using 

the current (NOAA, 2013) 100-yr 24-hr precipitation value of 5.8 in hr-1. Assuming the 

precipitation will double over the next century and all the other coefficients in the USGS 

regression equations for Michigan remain constant, the calculated future discharge would be 

5,139 f3 s-1, nearly three times the current estimate. (Holtschlag and Crosky, 1984, Kling et. al., 

2003).    

4.4 Age of Infrastructure and Culvert Failure 

The age of surveyed culvert is one key trait that can lead to culvert failure and was not 

accounted for in this study. The useful design life for corrugated metal pipe ranges from 35 to 50 

years, and concrete ranges from 50-100+ years (Perrin and Jhaveri, 2004).  Najafi et al. (2008) 

conclude that the majority of stream crossings and drainage infrastructure in the USA is nearing, 

if not already passed, the end of their design life. Culvert failure rates are also high near the 

beginning of their life due to improper installation or manufacturing problems (Najafi, 2005). If 

the culvert is installed at erroneous elevation or slope compared with the natural stream 

conditions, or if the structure does not have adequate bedding material, one major discharge 

may cause failure within a few years of installation. Thus, the relationship between probability 

of structural failure and time creates a “bathtub” curve with high probability of culvert failure at 

installation, low probability of failure during the remainder of the design life, and increased 
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probability of failure after the design life has been surpassed (Najafi, 2005). By adding a rank 

associated with years-post-installation, probability of failure due to culvert age can be included 

in the prioritization process. For example, age-of-culvert scores could be low for the first 0-5 

years, then increase and be constant for age 6-40 culverts, then decrease back to the original 

implementation score for culverts that exceed 40 years of age. This age-of- structure score could 

then be added to the passability score and failure ratio estimated for the culvert. Summing of 

these scores  would provide a simple prioritization ranking  where a lower value would indicate 

a culvert that should be replaced sooner than one with a higher score, though there is less 

rationale to replace a new culvert, unless there is observable malfunction due to improper 

installment. For example, a culvert age 0-5 could have an age-of structure of 0.5, age 6-40 could 

have a score of 1, and a 40+ year-old culvert could have a score of 0.1. Such that, a 31 year old 

culvert with a failure ratio of 0.8, and a fish passability score of 0.9 would have a prioritization 

ranking of 2.7. As that same culvert ages another decade, assuming no changes to failure ratio 

and passability scores, the prioritization rank would decrease to 1.8. This type of application, 

across a large number of culverts will provide a ranking system that addresses risk of failure, 

passability, and age of the culvert.  

4.5  Economic Impact of Single and Multiple Failures 

Costs of individual culvert failure vary due to size of structure(s) and the amount of 

sediment and fill mobilized from the road prism at failure. Larger storms may road fill wider than 

downstream bankfull width to mobilize into the downstream channel and floodplain. To 

accommodate more potential sediment loss, a width estimate greater than downstream 

bankfull could be used (Equation 4). A suite of assumptions could be used to identify costs 

attributed to loss of riverine ecosystem service at a culvert failure location (Levine, 2013). This 
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study used the cost to remove sediment from the stream channel as a mechanism to estimate 

this added cost at failure. Loss of recreation, water quality for municipal use, and navigation 

values are not accounted for, and could be important for particular river systems.  

To apply an economic application to river connectivity for fish, a cost benefit analysis 

could be created where the benefit is stream connectivity and the cost is the net present value 

investment of the culvert of interest. To acquire the stream connectivity, one could simply 

multiply the amount of miles upstream of the culvert with the passability score subtracted from 

one. The net present value could be estimated by subtracting the present value of an 

emergency culvert replacement from the planned cost of culvert replacement. The output of 

this cost benefit analysis would be in dollars per mile, and could be used in situations where fish 

passability is strongly weighted.     

Cumulative impacts associated with multiple failures within the watershed from the 

same storm were not taken into account in the economic analysis of this study. An event 

producing Q50 would potentially cause 11 of the 20 surveyed culverts to fail, and replacing 

these would cost $1.4 million after the emergency using the per-culvert replacement costs. 

Realistically, a large storm producing multiple failures would increase the cost estimates from 

this study, which were developed based on the replacement of a single culvert. The majority of 

the added costs would come from; insufficient availability of labor resulting in added delays and 

service costs.  The delay cost does not account for higher value delay estimates such as 

emergency vehicle access or response time, or prolonged detours lasting longer than an hour. 

To create a more accurate estimate of the cost associated with user delay, detour and daily 

durations can be manipulated in Equation 3 (Section 2.7). Estimates for these added costs are 

dependent on a suite of assumptions such as, permanent human residency in the watershed, 

age of residents, and local commerce (Perrin and Jhaveri, 2004). Because of the reliance of the 
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delay cost on the population density, estimates of the total cost of a culvert failure would likely 

increase in areas with greater development. The North Branch is located in Iron County, MI, 

U.S.A, which has a population density of 9 people per square mile (US Census Bureau A, 2016), 

which is less than other counties in the northern Great Lakes region such as, for example, 

Antrim County, MI, U.S.A (48 people per square mile) (US Census Bureau B, 2016). Another 

unrecognized cost in the individual replacement analysis is the cost of financing, which may not 

be an issue for single replacements and therefore is an appropriate simplification for single 

culvert failure analysis. However, for large storms such as the Q50 that would potentially take 

out 11 culverts in the North Branch, the financing availability and cost may be significant and 

this could further extend the time needed to complete the repairs.  

4.6  Recommendations  

It is recognized that free flowing freshwater ecosystems are critical and increase the 

wellbeing of humanity (Brisbane Declaration, 2007). Poff et al. (2015) argue for new water 

management models that call for collaboration of water resource engineers, conservation 

ecologists, and stakeholders to engage and collaborate in the decision-making process. 

By using either the individual metrics, multiple linear regression or fish passability 

scoring, a map could be created for a given watershed, similar to Figure 3.5, where a green point 

indicates a culvert with low risk of failure or high passability, and a red point indicates a culvert 

with high risk of failure or low passability.  By visually representing culverts in space, simple 

assumptions and decisions can be made pertaining to the amount of stream that would be 

reconnected with a given replacement. By integrating or associating a prioritization score, such 

as one described above in Section 4.3, recommendations can be made to remove or replace a 

culvert based on both fish passability and risk of failure.  Culverts with failure ratios close to 1 or 
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a combined passability and failure rating in the middle of the group of analyzed culverts could 

be assessed using more rigorous methods. In these cases, given available time and funds, 

surveying with a total station and doing hydraulic modeling with a model such as HEC-RAS might 

help identify culverts that are on the margin of the priority list. If there are river reaches that are 

more suitable for fish habitat or populations, or where habitat restoration has been made a 

priority, more weight could be given in the prioritization to fish passability. Regardless of the 

method of prioritization, if a culvert is targeted for upgrade, the stream simulation design 

should be considered for the replacement culvert to create more natural hydrologic and 

ecologic stream dynamics.  

Given the small sample size of potential barriers in the North Branch, more analysis on 

other small subwatersheds would strengthen the predictive ability of the metrics. Also, this 

study focused on prioritizing potential barriers in relatively undeveloped forests in the northern 

Great Lakes Basin, and our results should apply to other watersheds with similar attributes. The 

North Branch has very low developed land, and negligible amount of land used for agriculture as 

compared to other parts of the northern Great Lakes Basin. Using our approach on other 

watersheds with higher rates of impervious or agricultural land use would also increase 

confidence in the metrics we identified as good predictors of the risk of culvert failure at high 

flows.   
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5 Conclusion 

We estimated the impacts associated with stream crossing infrastructure in low-order 

streams in Northern Michigan. Because culverts have the greatest risk of failure, we analyzed 

the economic and ecologic implications of potential culvert failure. We identified all the 

structures in the North Branch Paint River watershed and applied fish passability ratings and the 

Great Lakes Road Crossing Inventory Instructions (GLRCII) for each structure. We also calculated 

the discharge that would cause the headwater to depth ratio to exceed one and the return 

interval associated with this discharge for a sample of 11 culverts and associated stream 

segments that were surveyed. This study identified predictors from the relatively easily obtained 

measurements from the GLRCII and tested their ability to predict potential failure. Two metrics 

had high predictive ability. The first metric was culvert width times main channel length divided 

by watershed area ((ft x ft) / ft2). This metric implies that failure condition is more likely when a 

narrower culvert is placed at a location with a relatively wide mean upstream watershed width. 

The second metric that correlated strongly with failure is culvert width divided by bankfull 

width, which represents the degree of channel constriction. This metric implies that as the 

upstream channel is constricted by a culvert inlet, the probability of failure increases. We 

estimated the cost of culvert replacement following failure would average 19% more than 

planned culvert replacements. By applying this analysis of the risk of failure in the prioritization 

process for culvert replacements, potential economic and environmental costs could be 

avoided, particularly as storms become more intense in the Great Lakes Basin as the climate 

changes.
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7 Appendices 
Appendix A: Great Lakes Road Crossing Inventory Instructions (GLRCII) field data sheet (GLRSCII, 2011):
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Appendix A continued: Great Lakes Road Crossing Inventory Instructions (GLRCII) field data sheet (GLRSCII 
2011): 
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Appendix B:   
Table B.1 Cross-watershed comparisons of return interval discharge values (ft3/s) from Log-Pearson Type 
3 (LP3) analysis of observed data; USGS Wisconsin Zone 4 regression equation; USGS Michigan Zone 1 
regression (I) using 1961 24-hr precipitation value; USGS Michigan Zone 1 regression (II) using 2013 24-hr 
precipitation value; and MDEQ method for the Middle Branch Ontonagon River, Black River, and Iron 
River (USGS, 1982).  

Return 
Interval 

Log Pearson 
Type 3 

USGS 
Wisconsin 
Regression 

MDEQ 
 USGS 

Michigan 
Regression I  

 USGS 
Michigan 

Regression II  
Mid. Br. Ontonagon River (164 mi2)   

2 806  733  192  806  902  
5 1,162  927  373  1,108  1,334  

10 1,406  1,083  549  1,299  1,605  
25 1,726  1,287  864  1,553  1,993  
50 1,967  1,444  1,167  1,749  2,309  

100 2,215  1,822  1,547  1,954  2,655  
Iron River (92 mi2) 

2 459  394  155  380  408  
5 634  525  293  537  602  

10 744  622  424  640  730  
25 878  748  653  778  909  
50 973  843  869  885  1,052  

Black River (184 mi2)) 
2 3,784  2,008  537  2,297  2,747  
5 5,998  2,488  972  3,280  4,397  

10 7,541  2,907  1,382  3,900  5,449  
25 9,547  3,459  2,095  4,754  7,054  
50 11,066  3,891  2,758  5,439  8,436  

100 12,595  4,991  3,587  6,161  10,005  
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a) b) 

 

 

c) d) 

 

 

Figure B.1: Linear regression comparing the four peak discharge model outputs with LP3 
estimates at the USGS gage on the Middle Branch Ontonagon River (USGS C, 2016). 
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a) b) 

 
 

c) d) 

 
 

Figure B.2: Linear regression comparing the four peak discharge model outputs with LP3 
estimates at the USGS gage on the Iron River (USGS B, 2016). 
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a) b) 

 

 

c) d) 

 

 

Figure B.2: Linear regression comparing the four peak discharge model outputs with LP3 
estimates at the USGS gage on the Black River (USGS A, 2016). 
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Appendix C: USGS Michigan Zone 1 regression equations for Q5, Q10, Q25, Q50, and Q100: 
Q5 = 0.9890*100.6869 CA0.8931 S0.2164 (CS+1)-0.1741 SR-0.1148 I1.0458 (OW+1)-0.1524 (M+1)0.1669 (FT+1)0.1017 

(MT+1)0.0884 (C+1)0.0905 (BR+1)0.0963 (CT+1)0.0400 

Q10 = 0.9840*100.6688 CA0.8902 S0.2256 (CS+1)-0.1749 SR-0.1280 I1.1936 (OW+1)-0.1548 (M+1)0.1660 (FT+1)0.1100 

(MT+1)0.1004 (C+1)0.0999 (BR+1)0.0901 (CT+1)0.0443 

Q25 = 0.9790*100.6099 CA0.8878 S0.2372 (CS+1)-0.1744 SR-0.1351 I1.4077 (OW+1)-0.1564 (M+1)0.1666 (FT+1)0.1194 

(MT+1)0.1117 (C+1)0.1091 (BR+1)0.0831 (CT+1)0.0489 

Q50 = 0.9761*100.5569 CA0.8860 S0.2464 (CS+1)-0.1738 SR-0.1414 I1.5657 (OW+1)-0.1569 (M+1)0.1681 (FT+1)0.1254 

(MT+1)0.1184 (C+1)0.1142 (BR+1)0.0784 (CT+1)0.0521 

Q100 = 0.9741*100.4936 CA0.8853 S0.2558 (CS+1)-0.1727 SR-0.1487 I1.7299 (OW+1)-0.1574 (M+1)0.1703 (FT+1)0.1308 

(MT+1)0.1242 (C+1)0.1181 (BR+1)0.0740 (CT+1)0.0539 

Where inputs are:  

CA = contributing drainage area (mi2) 
S = main channel slope (ft/mi) 
CS = river channel length adjacent to swamp, wetlands and open water bodies (ft) 
SR = slenderness ratio (hydraulic length2/CA) 
I = 100yr-24 hr precipitation intensity per the 2013 NOAA Atlas (5.81 in) 
OW = postglacial alluvium (sand/gravel) in watershed, soil types 3, 7, 8 (%) 
M = postglacial muck and peat in watershed, soil type 2 (%) 
FT = postglacial fine-textured till in watershed soil type 10 (%) 
MT = postglacial medium-textured till in watershed soil type 10, 11(%) 
C = lacustrine clay and silt in watershed, soil type 5 (%) 
BR = bedrock in watershed, soil type 15 (%) 
CT = postglacial coarse-textured till in watershed, soil type 13 (%) 
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Appendix D: Coarse inventory data: site, latitude, longitude, potential barrier type, barrier material, barrier 
dimensions, and fish passability score. 

Site ID Latitude Longitude Type Material Length 
(ft) 

Width 
(ft) 

Height 
(ft) 

Passability 
Score 

BUSH03 46.2602 -88.7679 Bridge Metal 12.0 40.3 3.9 0 
BUSH04 46.2664 -88.7740 Bridge Metal/Conc. 16.4 43.5 8.5 0.5 
BUSH05 46.2590 -88.8279 Bridge Wood 15.0 24.5 5.3 0.5 
BUSH07 46.2435 -88.8392 Bridge Metal/Wood 7.0 55.5 6.0 0.9 
BUSH08 46.2631 -88.7716 Bridge Wood 2.8 15.5 3.0 0.9 
MITI02 46.3439 -88.9297 Bridge Metal/Conc./Wood 12.0 50.0 4.4 1 
NBPR01 46.3156 -88.7714 Bridge Metal/Concrete 16.7 49.5 7.2 1 
NBPR03 46.2988 -88.8762 Bridge Metal/Concrete 17.9 59.0 4.9 1 
NBPR05 46.2994 -88.8527 Bridge Metal/Wood 5.3 75.0 5.7 1 
NBPR06 46.2620 -88.7446 Bridge Wood 5.0 100.5 5.6 1 
NBPR07 46.2879 -88.8959 Bridge Wood 4.8 43.5 2.0 1 
NBPR09 46.2981 -88.7464 Bridge Metal/Conc./Wood 10.0 130.0 6.4 1 
PNTCR01 46.3059 -88.8824 Bridge Wood 6.0 31.5 2.1 1 
PNTCR03 46.2991 -88.8801 Bridge Metal/Wood 8.0 24.5 4.3 1 
POST01 46.2421 -88.8654 Bridge Metal/Conc. 39.5 24.0 5.7 1 
THREE01 46.2818 -88.9071 Bridge Metal/Concrete 40.3 20.0 7.0 1 
THREE02 46.2464 -88.9303 Bridge Metal/Concrete 32.0 12.0 4.7 1 
WINS01 46.3333 -88.7655 Bridge Concrete 20.4 24.3 3.6 1 
NBPR08 46.2917 -88.8899 Bridge Metal/Wood 6.0 50.0 5.5 1 
BUSH06 46.2296 -88.8464 Culvert Metal 54.4 13.8 5.9 0 
GOLD02 46.2847 -88.6883 Culvert Metal 39.3 8.0 6.2 0 
GOLD03 46.3156 -88.6828 Culvert Metal 60.0 6.2 5.4 0 
HOLM02 46.3414 -88.8295 Culvert Metal 44.5 7.4 5.8 0 
HOLM03 46.3483 -88.8279 Culvert Metal 19.0 5.0 3.8 0 
JESSO 46.2608 -88.8407 Culvert Metal 36.0 2.9 2.1 0 
MALLARD 46.2921 -88.9417 Culvert Metal 48.8 7.5 4.2 0.5 
MITI 46.3430 -88.9146 Culvert Metal 46.0 8.0 5.6 0.9 
MITITRIB01 46.3479 -88.9411 Culvert Concrete 33.0 2.5 2.5 0.9 
MITITRIB02 46.3405 -88.9425 Culvert Metal 30.0 2.5 2.5 0.9 
NBPR04 46.2931 -88.9135 Culvert Metal 45.0 10.8 7.1 0.9 
NBPR10 46.2951 -88.9193 Culvert Metal 20.0 6.0 3.5 0.9 
PAINTCR 46.3235 -88.8906 Culvert Metal 23.6 5.0 5.0 0.9 
SILK01 46.3580 -88.8836 Culvert Metal 19.5 1.3 1.3 0.9 
UNGOLD01 46.2891 -88.6612 Culvert Metal 35.5 2.3 1.8 0.9 
UN33 46.2426 -88.9294 Culvert Metal 36.0 3.0 3.0 0 
UNWINS 46.3393 -88.7555 Culvert Metal 34.5 3.0 3.0 0 
BUSH01 46.2431 -88.7393 Double_Cul Metal 45.3* 21.5** 7.0* 0 
NBPR02 46.3061 -88.8092 Double_Cul Metal 24.9* 3.5** 7.1* 0.9 
WINS 46.3612 -88.7606 Triple_Cul Metal/Plastic 32.3* 6.7** 3.9* 1 
DAM10 46.3022 -88.8186 Dam Debris 21.0 20.0 4.5 0 
EPNTDAM01 46.3509 -88.8824 Dam Earthen Berm 25.8 5.4 2.0 0 
HOLMDAM01 46.3238 -88.8063 Dam Earthen Berm 49.0 60.0 5.7 0 
MALDAM01 46.2951 -88.9193 Dam Open Crest 0.5 7.0 4.3 0 
NBPRDAM01 46.2992 -88.8798 Dam Open Crest 7.5 29.0 1.8 0 
NBPRDAM02 46.2998 -88.8640 Dam Open Crest 10.5 8.0 1.0 0 
PAINTDAM01 46.3338 -88.8854 Dam Earthen Berm 174.0 16.0 2.6 0 
WINSDAM01 46.3337 -88.7653 Dam Earthen Berm 32.0 20.8 3.5 0 
HOLM01 46.3375 -88.8139 Ford NA 8.0 47.6 NA 1 
UNKNBPR01 46.2983 -88.8228 Ford NA 8.5 7.9 NA 1 

*averaged length and height at double/triple culverts, ** combined width at double/triple culverts



Appendix E: Surveyed culvert sites and the respective failure ratio, watershed attributes, and coefficients derived by comparing failure ratio with attributes. 

Site failure 
ratio 

watershed 
slope 

area weighted 
permeability 

main channel 
length 

total channel 
length 

hydraulic 
length 

watershed 
area 

storage 
area 

main 
channel 

slope 

% in/hr ft ft ft2 ft2 ft2 % 
BUSH01 3.1 2.8 6.3 67901 135643 73341 672705792 154167552 0.24 
BUSH06 3.9 2.6 6.4 6088 6088 8044 44719741 6651786 0.70 
JESSO 0.3 3.1 2.8 1997 1997 8553 24086938 4583209 0.97 
MALLARD 1.2 2.8 6.1 3392 3906 9513 78065096 32991299 0.39 
MITI 0.9 3.8 5.5 12938 16971 19862 169821274 54223488 0.50 
NBPR02 1.8 3.2 8.2 62864 146786 67746 1284112558 372915418 0.12 
NBPR04 2.2 4.1 6.6 14492 14492 20391 204412792 75388769 0.08 
PAINTCR 0.1 3.6 6.6 30994 47150 37927 392527872 129913344 0.20 
UN33 0.9 2.4 13.0 362 362 7920 14809006 2135485 0.35 
UNWINS 0.9 1.5 9.5 2273 2273 6500 14443799 5623073 0.39 
WINS 1.1 1.8 8.7 14642 16483 18526 71273917 34583155 0.25 
R -0.007 -0.048 0.331 0.325 0.287 0.220 0.149 -0.075 
R2 0.00005 0.002 0.110 0.106 0.082 0.048 0.022 0.006 
P 0.135 0.079 0.010 0.236 0.029 0.440 0.008 0.158 

64 



65 

Appendix F: Surveyed culvert sites and the respective failure ratio, culvert dimensions, and R2 values 
derived by comparing failure ratio with dimensions. 

Site failure 
ratio 

culvert 
slope 

culvert 
width 

culvert 
height 

culvert 
length 

culvert 
inlet 
area 

culvert 
volume 

% ft ft ft ft2 ft3 
BUSH01 3.109 0.6 21.5 7.0 45.3 95.0 4300.1 
BUSH06 3.860 0.8 13.8 5.9 54.4 56.5 3076.3 
JESSO 0.299 2.1 2.9 2.1 36.0 4.8 172.2 
MALLARD 1.163 2.7 7.5 4.2 48.8 27.7 1350.9 
MITI 0.907 0.4 8.0 5.6 46.0 35.2 1618.7 
NBPR02 1.799 3.0 23.5 7.1 24.9 158.4 3944.2 
NBPR04 2.230 1.2 10.8 7.1 45.0 60.0 2697.8 
PAINTCR 0.076 1.7 5.0 5.0 23.6 19.6 463.7 
UN33 0.885 0.4 3.0 3.0 36.0 7.1 254.5 
UNWINS 0.902 0.2 3.0 3.0 34.5 7.1 243.9 
WINS 1.104 2.3 6.7 3.9 32.3 19.4 624.0 
R -0.201 0.706 0.657 0.624 0.558 0.817 
R2 0.040 0.498 0.432 0.389 0.311 0.667 

P 0.876 0.905 0.557 0.971 0.518 0.448 
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Appendix G: Surveyed culvert site and the respective failure ratio, upstream bankfull conditions, and R2 
values derived by comparing failure ratio with conditions. 

Site failure 
ratio 

bankfull 
width 

average bankfull 
depth 

bankfull 
area 

ft ft ft2 
BUSH01 3.109 51.0 1.7 88.3 
BUSH06 3.860 7.8 1.0 12.8 
JESSO 0.299 10.0 0.6 4.7 
MALLARD 1.163 33.0 0.8 12.7 
MITI 0.907 23.5 1.7 44.0 
NBPR02 1.799 36.0 2.8 108.8 
NBPR04 2.230 18.0 0.4 7.6 
PAINTCR 0.076 89.2 1.6 135.5 
UN33 0.885 6.0 0.4 4.2 
UNWINS 0.902 12.8 1.5 41.6 
WINS 1.104 4.5 0.4 7.1 
R -0.163 0.095 -0.076 
R2 0.0266 0.009 0.0058 

P 0.994 0.616 0.780 



Appendix H: Metric, metric description, units, R values, and R2 values of all metrics used in correlations. 
Metric Metric description Units in equation R R2 
a (culvert weight x main channel length)/watershed area ft2 / ft2 0.835 0.697 
b (culvert width x hydraulic length)/watershed area ft2 / ft2 0.800 0.640 
c culvert height/culvert width ft / ft -0.708 0.501 
d culvert width/culvert height ft / ft 0.683 0.467 
e (culvert length x total channel length)/watershed area ft2 / ft2 0.683 0.466 
f culvert width/hydraulic length ft / ft 0.670 0.449 
g culvert width/bankfull width ft / ft 0.606 0.367 
h (culvert  length  x total channel length)/watershed area ft2 / ft2 0.605 0.366 
i inlet area/storage area ft2 / ft2 0.597 0.356 
j culvert length/culvert width ft / ft -0.568 0.323 
k (culvert width  x culvert length)/bankfull area ft2 / ft2 0.545 0.297 
l inlet area/watershed area ft2 / ft2 0.542 0.294 
m inlet area/bankfull area ft2 / ft2 0.523 0.274 
n bankfull width/cuvlert width ft / ft -0.520 0.271 
o hydraulic length/culvert width ft / ft -0.513 0.263 
p (culvert length x main channel length)/watershed area ft2 / ft2 0.503 0.253 
q bankfull area/inlet area ft2 / ft2 -0.483 0.234 
r (culvert width x culvert length)/watershed area ft2 / ft2 0.468 0.219 
s bankfull area/(culvert width x culvert length) ft2 / ft2 -0.450 0.202 
t storage area/inlet area ft2 / ft2 -0.413 0.171 
u bankfulll width/culvert height ft / ft -0.388 0.151 
v main channel slenderness ratio mi2 / mi2 0.386 0.149 
w culvert width/culvert length ft / ft 0.383 0.147 
x watershed area/inlet area ft2 / ft2 -0.376 0.141 
y culvert height/hydraulic length ft / ft 0.375 0.141 
z culvert height/bankfull width ft / ft 0.353 0.125 
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Appendix H continued: Metric, metric description, units, R values, and R2 values of all metrics used in correlations. 
Metric Metric description Units in equation R R2 
aa (total channel length x watershed slope)/(culvert length x culvert slope) (ft2 x %) / (ft2 x %) 0.351 0.123 
ab (culvert inlet area x culvert slope)/(watershed area x watershed slope) (ft2 x %) / (ft2 x %) 0.347 0.120 
ac hydraulic length/watershed area mi / mi2 -0.344 0.118 
ad (culvert length x culvert slope)/(total channel length x watershed slope) (ft x %) / (ft x %) -0.324 0.105 
ae culvert length/culvert height ft / ft -0.313 0.098 
af (main channel length x main channel slope)/(culvert length x culvert slope) (ft x %) / (ft x %) 0.304 0.092 
ag bankfull width/cuvlert length ft / ft -0.290 0.084 
ah total channel length/watershed area mi / mi2 0.280 0.078 
ai watershed area/(culvert width x culvert length) ft2 / ft2 -0.270 0.073 
aj hydraulic length/total channel length mi / mi -0.244 0.060 
ak (watershed area x watershed slope)/(culvert inlet area x culvert slope) (ft2 x %) / (ft2 x %) -0.231 0.054 
al main channel length/culvert height ft / ft 0.231 0.053 
am (culvert length x culvert slope)/(main channel length x main channel slope) (ft x %) / (ft x %) -0.227 0.052 
an culvert length/main channel length ft / ft -0.220 0.048 
ao (hydraulic length x watershed slope)/(culvert length x culvert slope) (ft x %) / (ft x %) 0.216 0.047 
ap cuvlert length/bankfull width ft / ft 0.200 0.040 
aq 100 yr 24 hr precipitation intensity/area weighted permeability* (in/hr) / (in/hr) -0.195 0.038 
ar main channel length/culvert width ft / ft -0.192 0.037 
as culvert height/main channel length ft / ft -0.185 0.034 
at (culvert length x hydraulic length)/watershed area ft2 / ft2 -0.185 0.034 
au culvert slope/watershed slope % / % -0.183 0.034 
av main channel length/watershed area mi / mi2 0.165 0.027 
aw main channel length/culvert length ft / ft 0.149 0.022 
ax culvert length/hydraulic length ft / ft 0.136 0.019 
ay culvert height/culvert length ft / ft 0.132 0.018 
az main channel length/total channel length mi / mi -0.115 0.013 

* uses the NOAA, 2013 precipitation intensity (5.81 inhr-1)
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Appendix H continued: Metric, metric description, units, R values, and R2 values of all metrics used in correlations.
Metric Metric description Units in equation R R2 
ba hydraulic lengthslenderness ratio mi2 / mi2 0.113 0.013 
bb culvert width/main channel length ft / ft -0.088 0.008 
bc main channel slope/culvert slope % / % -0.088 0.008 
bd hydraulic length/culvert length ft / ft 0.087 0.008 
be (culvert length x culvert slope)/(hydraulic length x watershed slope) (ft x %) / (ft x %) -0.074 0.005 
bf hydraulic length/culvert height ft / ft 0.070 0.005 
bg area weighted permeability/100 yr 24 hr precipitation intensity* (in/hr) / (in/hr) -0.048 0.002 
bh watershed slope/culvert slope % / % -0.048 0.002 
bi culvert slope/main channel slope % / % 0.046 0.002 

* uses the NOAA, 2013 precipitation intensity (5.81 inhr-1)
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