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Abstract

Recently, direct sampling methods became popular for solving inverse scattering prob-

lems to estimate the shape of the scattering object. They provide a simple tool to

directly reconstruct the shape of the unknown scatterer. These methods are based

on choosing an appropriate indicator function f on Rd, d = 2 or 3, such that f(z)

decides whether z lies inside or outside the scatterer. Consequently, we can determine

the location and the shape of the unknown scatterer.

In this thesis, we first present some sampling methods for shape reconstruction in in-

verse scattering problems. These methods, which are described in Chapter 1, include

Multiple Signal Classification (MUSIC) by Devaney [20], the Linear Sampling Method

(LSM) by Colton and Kirsch [14], the Factorization Method by Kirsch [36], and the

Direct Sampling Method by Ito et al [32]. In Chapter 2, we introduce some direct

sampling methods, including Orthogonality Sampling by Potthast [56] and a direct

sampling method using far field measurements for shape reconstruction by Liu [45].

In Chapter 3, we generalize Liu’s method for shape reconstruction in inverse elec-

tromagnetic scattering problems. The method applies in an inhomogeneous isotropic

medium in R3 and uses the far field measurements. We study the behavior of the

new indicator for the sampling points both outside and inside the scatterer.

xvii



In Chapter 4, we propose a new sampling method for multifrequency inverse source

problem for time-harmonic acoustics using a finite set of far field data. We study the

theoretical foundation of the proposed sampling method, and present some numerical

experiments to demonstrate the feasibility and effectiveness of the method.

Final conclusions of this thesis are summarized in Chapter 5. Recommendations for

possible future works are also given in this chapter.

xviii



Chapter 1

Introduction

Inverse scattering problems are of central importance in many areas of science and

technology, such as geophysical exploration, radar and sonar, non-destructing test-

ing and medical imaging (see, e.g., [1], [2], [6], [7], [8], [9], [12], [14], [16], [18], [21], [25],

[26], [27], [28], [29], [53] [35], [36], [44], [47], [46], [49], [54], [58], [60], [61], [62], [64]).

Usually, a wave is directed into a region of space to be investigated [56], as a result

a scattered wave is generated due the existence of obstacles or the structure of the

unknown area, this scattered wave is detected and measured away from the region.

By studying these scattered waves, the properties of the unknown obstacles/inhomo-

geneities, such as the shape, the size and the internal constitution, can be found. This

is known as the inverse scattering problem.

1



One approach for solving inverse scattering problems is a Sampling Method. The

basic idea of a sampling method is to design an indicator f on Rd, d = 2 or 3, such

that its value f(z) can be used to decide whether a point z lies inside or outside

the scatterer. According to the value of f(z) we can determine the location and the

shape of the unknown scatterer. These methods have the advantage of requiring less

prior information than iterative methods, it is not necessary to know the boundary

conditions satisfied by the total field or the topology of the unknown scatterer. In

addition, they are very fast in general, since no scattering problem need to be solved.

In this chapter, we briefly describe multiple signal classification (MUSIC) [20] and

how to use it to estimate the location of a number of pointlike scatterers. After

that we discuss the Linear Sampling Method (LSM) by Colton and Kirsch [14] and

the Factorization Method by Kirsch [36] for sound soft obstacle. Then we move

on to introduce the Direct Sampling Method by Ito et al. [32], and Orthogonality

Sampling by Potthast [56] in Chapter 2. Several advantages of these direct sampling

methods are inherited from the classical ones, including their independence on any

prior information on the geometry and physical properties of the unknown objects.

The key feature of these direct sampling methods is that the computation of the

indicator involves only inner products of the measurements, with some suitably chosen

functions. This makes them robust to noises and computationally faster than the

classical sampling methods. Nevertheless, their theoretical foundation is still far less

well developed than the classical sampling methods.
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In Chapter 2 we discuss a direct sampling method for inverse acoustic scattering

problems that uses the far field measurements, which was proposed by Liu [45] in

2016, and study the theoretical foundation of the proposed method.

In Chapter 3, we generalize Liu’s method and propose a direct sampling method for

inverse electromagnetic scattering problems in an inhomogeneous isotropic medium

in R3 using far field measurements. We study the behavior of the new indicator for

the sampling points both outside and inside the scatterer.

In Chapter 4, we propose a new sampling method for multifrequency inverse source

problem for time-harmonic acoustic that uses a finite set of far field data. We develop

some theory for the proposed sampling method, and present numerical experiments

to demonstrate the feasibility and effectiveness of the method.

Final conclusions of this thesis are summarized in Chapter 5. Recommendations for

possible future works are also given in this chapter.
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1.1 MUSIC Algorithm

1.1.1 Introduction

MUSIC (multiple signal classification) is essentially a method of characterizing the

range of a self-adjoint operator [10]. Suppose A is a self-adjoint operator and λ1 ≥

λ2 ≥ . . . are the eigenvalues of A corresponding to the eigenvectors v1, v2, . . .. Suppose

that λM+1 = λM+2 = . . . = 0 so that the vectors vM+1, vM+2, . . . span the null space

of A. In practice, λM+1, λM+2, . . . could be very small, i.e., below the noise level of

A. So the range of A is spanned by the vectors v1, v2, .., vM and the noise subspace of

A is spanned by the vectors vM+1, vM+2, . . . The projection onto the noise subspace

is given explicitly by

Pnoise =
∑
j>M

vjvj
T ,

where the superscript T denotes transpose, the bar denotes complex conjugate, and

vTj is the linear functional that maps a vector f to inner product 〈vj, f〉.

Since A is self-adjoint, then the noise subspace is orthogonal to the range. Therefore,

a vector f ∈ R(A) if and only if ‖Pnoisef‖ = 0 if and only if

1

‖Pnoisef‖
=∞.

4



This equation is the MUSIC characterization of the range of A.

If A is not self-adjoint, we use the singular value decomposition to construct MUSIC

algorithm.

1.1.2 The Use of MUSIC in Inverse Scattering Theory

MUSIC is generally used in signal processing problems as a method for estimating

the individual frequencies of a multiple-harmonic [11], [37]. As Devaney pointed out

in [20] it could also be used for imaging, i.e., it provides a method to determine the

point-like scatterers from the matrix Alp. This is the complex N × N matrix where

Alp is the measured field at the receiver number l for the antenna number j. The

following is the outlines of his approach.

Consider the mathematical model for wave propagation which is modeled by the

Helmholtz equation [10]

∆u+ k2u = 0

where k is the wave number. Suppose we have N antennas, located at the points

R1, R2, . . . , RN , which transmit spherically spreading waves. If the jth antenna is

excited by an input voltage ej, the incident field produced at the point x by the jth

5



antenna is

uinj (x) = G(x,Rj)ej,

where G(x,Rj) denotes the outgoing Green’s function for Helmholtz equation.

Assume we have an array of M point scatterers at locations X1, X2, ..., XM ∈ Rd,

d = 2 or 3. In this model we neglect all multiple scattering between the scatterers.

If uin(Xm) is the incident field on the mth scatterer, it produces at x the scattered

field G(x,XM)τmu
in(Xm), where τm (real constant) gives the strength of the mth

scatterer. The total scattered field due to the field emanating from the jth antenna

is

usj(x) =
m=M∑
m=1

G(x,Xm)τmG(Xm, Rj)ej.

If this scattered field is measured at antenna l, it is given by

usj(Rl) =
m=M∑
m=1

G(Rl, Xm)τmG(Xm, Rj)ej.

This expression gives the matrix A, whose (l, j)th element is

Al,j =
m=M∑
m=1

G(Rl, Xm)τmG(Xm, Rj).

6



This matrix can be written as

A =
m=M∑
m=1

τmgmg
T
m,

where

gm = (G(R1, Xm), G(R2, Xm), . . . . , G(RN , Xm))T .

For simplicity we consider only the case N > M, and this means more antennas than

scatterers.

The Green’s function is symmetric, for this reason, the matrix A is symmetric. How-

ever, A is not self-adjoint. We will form a self-adjoint matrix F = A∗A = AA where

the star denotes the adjoint and the bar denotes the complex conjugate. The matrix

F can be written as

F =
m=M∑
m=1

τm gmgTm

m=M∑
m=1

τmgmg
T
m.

From this, we observe that the eigenvectors of F are gm. This implies that the range

of F is spanned by the M vectors gm.

The MUSIC algorithm can be used to determine the location of the scat-

terers as follows [10]. Let p be any point and form the vector gp =

(G(R1, p), G(R2, p), . . . . , G(RN , p))
T . In this case, the point p coincides with the lo-

cation of a scatterer if and only if gp ∈ R(F ). As a result, Pnoiseg
p = 0 if and only

7



if

1

||Pnoisegp||
=∞.

Therefore, a plot of the function

W (p) =
1

||Pnoisegp||
, p ∈ Rd

should have sharp peaks at the location of the scatterers X1, X2, ..., XM .

Fig. 1.1 shows the result for the example where d = 2, number of scatters M = 4,

number of transducers N = 20, wave number k = 3 and the values of τ is 0.8 for all

scatterers. To the data, a uniform white noise has been added. More details about

MUSIC can be found in [42], [43], [35] and [30].

8
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1.2 Linear Sampling Method

The aim of this section is to introduce the Linear Sampling Method for determining

the scattering obstacle D from the knowledge of the far field pattern u∞(x̂, θ̂) for all

unit vectors x̂ and θ̂ defined on the unit sphere. The linear sampling method was

first proposed by Colton and Kirsch [14]. For more details, see [6], [17], [13] and [50].

Definition 1 [17] A Herglotz wave function is a function of the form

v(x) =

∫
S2

eikx·dgz(d)ds(d), x ∈ R3,

where S2 := {x ∈ R3 : |x| = 1} is the unit sphere in R3 and g ∈ S2. The function v is

called the Herglotz function with kernel g.

The basic idea of this method is to find a Herglotz wave function vi with kernel g,

such that the corresponding scattered wave vs approximates Φ(·, z) in the interior of

the scatterer D, where Φ(x, z) is the fundamental solution to the Helmholtz equation

which is defined by

Φ(x, z) =



i
4
H1

0 (k|x− z|) for d = 2

1
4π

e(ik|x−z|)

|x−z| for d = 3

(1.1)

10



Here, H1
0 is the zeroth order Hankel function of the first kind. Define the space L2(S2)

as the space of square integrable functions on the unit sphere S2. First we recall the

following theorem

Theorem 1.1 (Theorem 3.26 of [17]) Let vs be a radiating solution to the

Helmholtz equation with far field pattern v∞. Assume the bounded set D is the open

complement of an unbounded domain of class C2. Then the integral equation of the

first kind ∫
S2

u∞(x̂, d)g(d)ds(d) = v∞(x̂), x̂ ∈ S2

possesses a solution g ∈ L2(S2) if and only if vs is defined and continuous in R3\D̄.

Furthermore, the interior Dirichlet problem for the Helmholtz equation

∆vi + k2vi = 0 in D (1.2)

with the boundary condition

vi + vs = 0 on ∂D (1.3)

is solvable with any solution vi being a Herglotz wave function.

In the linear sampling method [17] we have to find the kernel gz as an approximate

11



solution to the integral equation of the first kind

Fgz = Φ∞(·, z), (1.4)

where

Φ∞(x̂, z) =
1

4π
e−ikx̂·z, (1.5)

is the far field of the fundamental solution Φ(x, z), which is defined in (1.1).

F is the far field operator be defined as

F : L2(S2)→ L2(S2)

Fg(x̂) =

∫
S2

u∞(x̂, θ̂)g(θ̂)ds(θ̂), x̂ ∈ S2 (1.6)

From Theorem 1.1, we conclude that gz is a solution of (1.4) if and only if the Herglotz

wave function

v(x) =

∫
S2

eikx·dgz(d)ds(d), x ∈ R3,

solves the interior Dirichlet problem

∆v + k2v = 0 in D (1.7)

12



with the boundary condition

v + Φ(· , z) = 0 on ∂D. (1.8)

Hence, if a solution to the integral equation (1.4) exists for all z ∈ D, then from the

boundary condition (1.8) the Herglotz wave function v and the fundamental solution

Φ(·, z) coincide [17]. So we conclude that ‖gz‖L(S2) → ∞ as the source point z

approaches to the ∂D. Therefore , ∂D can be determined by solving (1.4) for z taken

from a sufficiently fine grid in R3 and determining ∂D as the location where ‖gz‖L2(S2)

become large.

The solution to the interior Dirichlet problem (1.7) - (1.8) will have an extension as

a Herglotz wave function across the boundary ∂D only in very special cases. Hence,

the integral in (1.4) has no solution in general. The mathematical foundation of the

linear sampling method is provided in the following theorems.

Theorem 1.2 (Corollary 5.31 of [17]) Assume that k2 is not a Dirichlet eigenvalue

for the negative Laplacian for D. Then the Herglotz operator H : L2(S2)→ H
1
2 (∂D)

Hg(x) :=

∫
S2

eikx·dg(d)ds(d), x ∈ ∂D,

is injective and has dense range.

13



Definition 1.3 (Definition 1.11 of [37]) Let the data-to-pattern operator G :

H
1
2 (∂D)→ L2(S2) be defined by Gf = u∞ where u∞ ∈ L2(S2) is the far field pattern

of the solution u of the exterior Dirichlet problem with boundary value f ∈ H 1
2 (∂D)

∆u+ k2u = 0 in R3\D (1.9)

u = f on ∂D (1.10)

∂u

∂r
− iku = O

( 1

r2

)
, r = |x| → ∞ (1.11)

Theorem 1.4 (Corollary 5.32 of [17]) The operator G : H
1
2 (∂D) → L2(S2) is

bounded, injective and has dense range.

Theorem 1.5 (Theorem 5.17 of [17]) Assume that k2 is not a Dirichlet eigen-

value for the negative Laplacian for D. Then the single-layer potential operator

S : H−1/2(∂D)→ H1/2(∂D) is defined by

Sϕ(x) := 2

∫
∂D

Φ(x, y)ϕ(y)ds(y), x ∈ ∂D,

is a bijection with a bounded inverse.
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Theorem 1.6 (Theorem 3.29 of [17]) The far field operator F defined in (1.6)

has the factorization

F = −2πGS∗G∗, (1.12)

where G∗ : L2(S2) → H−1/2(∂D) and S∗ : H−1/2(∂D) → H1/2(∂D) are the adjoints

of G and S, respectively.

Proof From the definition of the far field operator F and the Herglotz operator

H. Note that Fg is far field pattern of the scattered wave corresponding to Herglotz

operator Hg as incident field. So we have,

F = −GH. (1.13)

The L2 adjoint H∗ : H−1/2(∂D)→ L2(S2) is defined by

H∗ϕ(x̂) :=

∫
∂D

e−ikx̂·yϕ(y)ds(y), x̂ ∈ S2.

The single-layer boundary operator S : H−1/2(∂D)→ H1/2(∂D), defined by

Sϕ(x) := 2

∫
∂D

Φ(x, y)ϕ(y)ds(y), x ∈ ∂D.

From the asymptotic behavior of the fundamental solution, note that H∗ϕ is just the
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far field pattern of the single-layer potential S with density 4πϕ and thus

H∗ = 2πGS,

Consequently,

H = 2πS∗G∗.

Plug the factorization of H in (1.13) to get the result. 2

Theorem 1.7 (Theorem 1.12 of [37]) Φ∞(·, z) ∈ R(G) if and only if z ∈ D.

Proof [37] Let z ∈ D. Define

u(x) := Φ(x, z) =
eik|x−z|

4π|x− z|
, x /∈ D,

and f := u|∂D. Then f ∈ H1/2(∂D) and the far field pattern of u is given by

u∞(x̂) =
1

4π
e−ikx̂·z, x̂ ∈ S2,

which coincides with Φ∞(·, z). So Gf = u∞ = Φ∞(·, z), i.e., Φ∞(·, z) ∈ R(G). This

ends the proof of the first part of the theorem.

Assume to the contrary, z /∈ D. Since Φ∞(·, z) ∈ R(G), then there exists f ∈

16



H1/2(∂D) with Gf = Φ∞(·, z). Let u be the solution of the exterior Dirichlet problem

with boundary data f and let u∞ = Gf be its far field pattern. Then by Rellich’s

lemma and analyticity the solution u to the exterior Dirichlet problem with bound-

ary trace u|∂D = f must coincide with Φ(·, z) in R3\(D ∪ {z}). If z ∈ R3\D, this

contradicts the fact u is analytic in R3\D and Φ(. , z) is singular at x = z.

If z ∈ ∂D, we have Φ(x , z) = f(x) for x ∈ ∂D, x 6= z. Since f ∈ H1/2(∂D),

then Φ(x , z)|∂D ∈ H1/2(∂D), which contradicts that Φ(x , z)|∂D /∈ H1/2(∂D) since

∇Φ(x, z) = O(1/|x− z|2) as x→ z. 2

We are now ready to derive the traditional linear sampling approximation result.

Note that the following theorem states the existence of particular solutions, which

allow us to find the shape of D, but dose not provide a method to calculate those

particular solutions.

Theorem 1.8 (Theorem 5.34 of [17]) Assume that k2 is not a Dirichlet eigen-

value of the negative Laplacian in D and let F be the far field operator of the scattered

field for Dirichlet boundary condition. Then the following hold:

1. For z ∈ D and a given ε > 0, there exists a function gεz ∈ L2(S2) such that

‖Fgεz − Φ∞(·, z)‖L2(S2) < ε (1.14)
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and the Herglotz wave function vgεz with kernel gεz converges to the solution w ∈ H1(D)

of the Helmholtz equation with w + Φ(·, z) = 0 on ∂D as ε→ 0.

2. For z /∈ D, every gεz ∈ L2(S2) that satisfies (1.14) for a given ε > 0 is such that

lim
ε→0
‖vgεz‖H1(D) =∞.

which means limε→0 inf
{
||vgεz ||H1(D) : gεz satisfies (1.14)

}
=∞.

Proof [17] Assume z ∈ D. Then by Theorem 1.7, Φ∞(·, z) ∈ R(G). So GΦ(·, z) =

Φ∞(·, z). By Theorem 1.2, for a given arbitrary ε > 0, there exists a Herglotz wave

function with kernel gεz ∈ L2(S2) such that

‖Hgεz − (−Φ(·, z))‖H1/2(∂D) <
ε

||G||
.

Consequently

‖GHgεz +GΦ(·, z)‖L2(S2) < ε.

Since F = −GH, we have

‖Fgεz − Φ∞(·, z)‖L2(S2) < ε.

Since k2 is not a Dirichlet eigenvalue of the negative Laplacian in D, from Theorem
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1.5, we conclude that the interior Dirichlet problem in H1(D) is well-posed. Hence,

if z ∈ D, then the convergence Hgεz + Φ(·, z)→ 0 as ε→ 0 in H1/2(∂D) holds, which

implies convergence vgε → w as ε→ 0 where w ∈ H1(D).

For z /∈ D, assume on the contrary that there exists a sequence {εn} → 0

and the corresponding gn = gεnz satisfies ‖Fgn − Φ∞(·, z)‖L2(S2) < εn such that

||vn||H1(D) remains bounded, where vn := vgn is the Herglotz wave function with

kernel gn. Since ||vn||H1(D) is bounded, without loss of generality we may as-

sume vn → v ∈ H1(D) weakly as n → ∞. Denote by vs ∈ H1
loc(R3\D)

the solution to the exterior Dirichlet problem for the Helmholtz equation with

vs = v on ∂D and by v∞ its far field pattern. Since Fgn is the far field

pattern of the scattered wave for the incident field −vn, from (1.14) we con-

clude v∞ = −Φ∞(·, z) and hence Φ∞(·, z) ∈ R(G), which contradicts Theorem

(1.7). 2

In the linear sampling method we can numerically determine the function gz in the

above theorem and hence the scattering object D. Tikhonov regularization [17] can

be used to solve (1.4). Generalization of the linear sampling method in inverse elec-

tromagnetic scattering can be found in [8]. For further details on the convergence of

the linear sampling method we refer [6], [37] and [4].
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1.3 Factorization Method

In general, there is no solution exists for (1.4) for noise-free data, hence, it is not

clear what solution will be obtained by using Tikhonov regularization. To avoid

this problem, Kirsch introduced in [36] and [34] the factorization method for solving

inverse scattering problem for both the obstacle and non-absorbing inhomogeneous

medium.

The idea of the factorization method [37] is to replace the far field operator in (1.4)

by the operator (F ∗F )1/4. One can then show that

(F ∗F )1/4gz = Φ∞(·, z) (1.15)

has a solution if and only if z ∈ D. This method is called the factorization method

since it relies on the factorization of the far field operator from Theorem 1.6.

Recall that the far field operator F has the following factorization

F = −2πGS∗G∗,

where G is data to pattern operator defined in Definition 1.3, S is the single-layer

operator, G∗ : L2(S2) → H−1/2(∂D) and S∗ : H−1/2(∂D) → H1/2(∂D) are the
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adjoints of G and S, respectively. Note that From the factorization of the far field

operator F, the range of F is contained in the range of G [37]. From Theorem 1.7,

we conclude that there is an explicit relationship between the range of the operator

G and the shape of D, that is, z ∈ D if and only if Φ∞(·, z) ∈ R(G) .

In the following theorem we summarize some well-known properties of the operator

F .

Theorem 1.9 (Theorem 1.8 of [37])

1. The far field operator F satisfies

F − F ∗ =
ik

2π
F ∗F,

where F ∗ is the adjoint operator of F .

2. The scattering operator S = I + ik
2π
F is unitary, i.e., SS∗ = S∗S = I.

3. The far field operator F is compact and normal, i.e., FF ∗ = F ∗F.

In the following lemma we summarize some well-known properties of S.

Lemma 1.10 (Lemma 1.14 of [37]) Assume that k2 is not a Dirichlet eigenvalue

of −∆ in D. Then the following holds.
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1. =〈ϕ, Sϕ〉 6= 0 for all ϕ ∈ H−1/2(∂D) with ϕ 6= 0, where = denotes for Im.

2. Let Si be the single layer boundary operator of S corresponding to the wave number

k = i. The operator Si is self-adjoint and coercive as an operator from H−1/2(∂D)

onto H1/2(∂D), i.e., there exits c0 > 0 depends on i such that

〈ϕ, Siϕ〉 ≥ c0||ϕ||2H−1/2(∂D) for all ϕ ∈ H−1/2(∂D).

3. The difference S − Si is compact from H−1/2(∂D) onto H1/2(∂D).

Since the far field operator F is normal [37], then there exits a complete set of or-

thogonal eigenfunctions ψj ∈ L2(S2) with corresponding eigenvalues λj ∈ L2(C), j =

1, 2, 3, . . . The spectral theorem for compact normal operators yields that F has the

form

Fψ =
∞∑
j=1

λj(ψ, ψj)L2(S2)ψj, ψ ∈ L2(S2).

As a conclusion, the far field operator F has a second factorization in the form

F = (F ∗F )1/4A1 (F ∗F )1/4, (1.16)
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where the operator (F ∗F )1/4 : L2(S2) −→ L2(S2) is given by

(F ∗F )1/4ψ =
∞∑
j=1

√
|λj|(ψ, ψj)L2(S2) ψj, ψ ∈ L2(S2),

and A1 : L2(S2) −→ L2(S2) of F is given by

A1ψ =
∞∑
j=1

λj
|λj|

(ψ, ψj)L2(S2) ψj, ψ ∈ L2(S2).

The factorization method is based on the following result from functional analysis.

Theorem 1.11 (Theorem 1.23 of [37]) Let H be a Hilbert space, X a reflexive

Banach space and let the compact operator F : H −→ H have a factorization of the

form

F = BAB∗

with operators B : X −→ H and A : X∗ −→ X, such that

1. =〈ϕ,Aϕ〉 6= 0 for all ϕ ∈ R(B∗) with ϕ 6= 0.

2. The middle operator A has the form A = A0 + C for some compact operator C

and some self-adjoint operator A0 which is coercive on R(B∗).

3. The far field operator F is one to one and I + irF is unitary for some r > 0.
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Then the ranges of B and (F ∗F )1/4 coincide.

Let A : X −→ Y be a compact linear operator. The nonnegative square roots of

the eigenvalues µn for all n ∈ N of the nonnegative self-adjoint compact operator

A∗A : X −→ X are called singular values. Consider the orthonormal sequences ϕn in

X and gn in Y such that Aϕn = µngn, A
∗gn = µnϕn for all n ∈ N, then (µn, ϕn, gn)

is called the singular system of A.

Theorem 1.12 (Picard Theorem [17]) Let A : X −→ Y be a compact linear operator

in the Hilbert spaces X and Y with singular system (µn, ϕn, gn). Then equation of

the first kind

Aϕ = f

is solvable if and only if f belongs to the N(A∗)⊥ and satisfies

∞∑
n=1

1

µ2
n

|(f, gn)|2 <∞.

In this case the solution is given by

ϕ =
∞∑
n=1

1

µn
(f, gn)ϕn.
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Theorem 1.13 (Theorem 1.24 of [37]) Assume that k2 is not a Dirichlet eigen-

value of −∆ in D. Then the ranges of G and (F ∗F )1/4 coincide.

Proof. Apply Theorem 1.11 to the factorization of F in (1.12) where

H = L2(S2), X = H1/2(∂D), B = G, and A = −2πS∗. Then

Lemma 1.10 shows that A = −2πS∗ satisfies the conditions of Theorem 1.10.

If k2 is not a Dirichlet eigenvalue of −∆ in D, then F is one to one.

From Lemma 1.9, I + ik
2π
F is unitary. Thus the ranges of G and (F ∗F )1/4

coincide. 2

Theorem 1.14 (Theorem 1.25 of [37]) Assume that k2 is not a Dirichlet eigen-

value of −∆ in D. For any z ∈ R3, the following are equivalent

1. z ∈ D.

2. (F ∗F )1/4gz = Φ∞(·, z) is solvable in L2(S2).

3. W (z) :=

[∑
j

|(Φ∞,ψj)L2(S2)|
2

|λj |

]−1

> 0. Here λj ∈ C are the eigenvalues of the

normal operator F with corresponding normalized eigenfunctions ψj ∈ L2(S2).

Proof [37] By Theorem 1.7, z ∈ D if and only if Φ∞ ∈ R(G). By Theorem 1.13

the ranges of G and (F ∗F )1/4 coincide. So, z ∈ D if and only if Φ∞ ∈ R((F ∗F )1/4),
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that is, if and only if the equation

(F ∗F )1/4gz = Φ∞(·, z)

is solvable in L2(S2).

We write Φ∞(·, z) in spectral form as

Φ∞(·, z) =
∑
j

(Φ∞(·, z), ψj)L2(S2)ψj.

By the Picard Theorem, (F ∗F )1/4gz = Φ∞(·, z) is solvable in L2(S2), if and only if

∑
j

∣∣∣(Φ∞(·, z), ψj)
∣∣∣2
L2(S2)

|λj|
<∞.

In this case,

gz =
∑
j

(Φ∞(·, z), ψj)L2(S2)√
|λj|

ψj

is the solution of (F ∗F )1/4gz = Φ∞(·, z). Therefore, a point z ∈ R3 belongs to D if

and only if the series

∑
j

∣∣∣(Φ∞(·, z), ψj)
∣∣∣2
L2(S2)

|λj|
<∞.

2
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1.4 A Direct Sampling Method for Inverse Scat-

tering Problems

1.4.1 Introduction

In this section we present a direct sampling method for time harmonic inverse medium

scattering problems (IMSP) introduced by Ito, et al. [32]. The method directly es-

timates the shape of the unknown scatterers and based on a scattering analysis. It

involves only computing the inner product of the fundamental solutions with the

measured scattered field us located at the sampling points over the curve/surface Γ.

Ito, et al. [33] extended the method in [32] for electromagnetic scattering problems.

Li et al. [39] developed three inverse scattering schemes for locating multiple multi-

scale acoustic scatterers. Only one single far-field measurement is used for all of the

three locating schemes. Each scatterer component is allowed to be an inhomogeneous

medium with an unknown content or an impenetrable obstacle. The number of the

multiple scatterer components may be unknown.Futhermore, the scatterers could be

multi-scale.
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Li et al. [38] developed two inverse scattering schemes for locating multiple electro-

magnetic scatterers by using the electric far field measurement. The first scheme is

for locating scatterers of small size compared to the wavelength. The second scheme

is for locating multiple perfectly conducting compared to the incident electromagnetic

wavelength.

Song et al. [59] introduced a multi-dimensional sampling method to locate small

scatterers. The indicator function is based on multi-static response matrix which

is defined on a set of combinatorial sampling nodes inside the domain of interest.

Bektas and Ozdemir [5] extended the use of conventional direct sampling method

(DSM), which is only applicable to the multi-static measurement data, to the

mono-static measurement data for radar imaging applications. They define a testing

function which can be used in the indicator function of DSM with mono-static data.

Li et al. [48] employed a direct sampling method to reconstruct the support of the

potential for stationary Schrdinger equation.
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1.4.2 A Direct Sampling Method to an Inverse Medium

Scattering Problem

In this subsection, we introduce a direct sampling method to determine the shape

of the scatterers/inhomogeneities [32]. Suppose that a bounded domain Ω in the

homogeneous background space Rd (d = 2, 3) is occupied by some inhomogeneous

media. Assume that the incident field is given by ui = eikx·d, where d is the direction

of the plane wave and k is the wave number. Then the total field is defined as

u = ui + us, where us is the scattered field due to the inhomogeneous medium. The

total field u induced by the inhomogeneous media satisfies the Helmholtz equation

∆u+ k2q2(x)u = 0, (1.17)

where the function q(x) refers to the refractive index, i.e. the ratio of the wave speed

in the homogeneous background to that in the inhomogeneous medium.

Define η(x) = k2(q2(x)− 1), which combines the relative refractive index q2 − 1 with

the wave number k, to characterize the inhomogeneity. The function η(x) vanishes
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outside the inhomogeneous medium. Define the current induced by the inhomoge-

neous medium as I = ηu. The scattered field can be written as [15]

us =

∫
Ω

G(x, y)I(y)dy, (1.18)

which makes the total field satisfy

u = ui +

∫
Ω

G(x, y)I(y)dy. (1.19)

Here G(x, y) is the fundamental solution for the open field given by

G(x, y) =



i
4
H1

0 (k|x− y|) for d = 2,

1
4π

e(ik|x−y|)

|x−y| for d = 3,

(1.20)

where H1
0 is the zeroth order Hankel function of the first kind.

Multiplying both sides of (1.19) by η, we get the second-kind integral equation for

the induced current I:

I(x) = ηui + η

∫
Ω

G(x, y)I(y)dy. (1.21)

Consider a curve Γ which encloses the inhomogeneous medium. The fundamental
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solution G(x, xp) for the Helmholtz equation in the homogeneous background is given

by

∆G(x, xp) + k2G(x, xp) = −δ(x− xp), (1.22)

where δ(x− xp) is the Dirac delta function located at the point xp ∈ ΩΓ (the domain

enclosed by Γ) such that δ(x− xp) = 0 for all x 6= xp.

Let xq be another point in ΩΓ. Multiplying both sides of (1.22) by the conjugate

G(x, xq) of the fundamental solution G(x, xq):

[∆G(x, xp) + k2G(x, xp)]G(x, xq) = −δ(x− xp)G(x, xq). (1.23)

Integrating both sides over the domain ΩΓ, we obtain

∫
ΩΓ

[∆G(x, xp) + k2G(x, xp)]G(x, xq)dx

−
∫

ΩΓ

δ(x− xp)G(x, xq)dx = −G(xp, xq).

(1.24)

Next we consider equation (1.22) at xq and take its conjugate to get

∆G(x, xq) + k2G(x, xq) = −δ(x− xq). (1.25)

Multiplying both sides of the resulting equation by G(x, xp) and integrating over the
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domain ΩΓ, we get

∫
ΩΓ

[∆G(x, xq) + k2G(x, xq)]G(x, xp)dx

= −
∫

ΩΓ

δ(x− xq)G(x, xp)dx = −G(xp, xq).

(1.26)

Subtracting (1.26) from (1.24)

G(xp, xq)−G(xp, xq)

=

∫
ΩΓ

[
∆G(x, xp)G(x, xq) + k2G(x, xp)G(x, xq)

−∆G(x, xq)G(x, xp)− k2G(x, xq)G(x, xp)

]
dx

=

∫
ΩΓ

[
G(x, xq)∆G(x, xp)−∆G(x, xq)G(x, xp)

]
dx. (1.27)

Applying Green’s Second Theorem to (1.27), we get

G(xp, xq)−G(xp, xq) =

∫
Γ

[
G(x, xq)

∂G(x, xp)

∂n
−G(x, xp)

∂G(x, xq)

∂n

]
ds. (1.28)

The Sommerfeld radiation condition for Helmholtz equation states that

∂G(x, xp)

∂n
= ikG(x, xp) + higher order terms.
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Thus if we use the approximations

∂G(x, xp)

∂n
≈ ikG(x, xp) and

∂G(x, xq)

∂n
≈ −ikG(x, xq), (1.29)

which are valid if the points xp and xq are not close to the boundary Γ and substitute

(1.29) in the right side of (1.28), we get

∫
Γ

[
ikG(x, xp)G(x, xq) + ikG(x, xq)G(x, xp)

]
ds ≈ 2ik

∫
Γ

G(xp, xq)G(x, xq)ds. (1.30)

But, for any complex number z, z−z = 2i=(z). So the left hand side of (1.28) equals

to

G(xp, xq)−G(xp, xq) = 2i=(G(xp, xq)). (1.31)

From (1.29) , (130) and (1.31), we get

2ik

∫
Γ

G(x, xp)G(x, xq)ds ≈ 2i=(G(xp, xq)),

i.e., ∫
Γ

G(x, xp)G(x, xq)ds ≈ k−1=(G(xp, xq)). (1.32)

Consider the sampling domain Ω, where Ω ⊂ Ω. Dividing the domain Ω into a set of
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small elements τj and applying a rectangular quadrature rule, we get the approxima-

tion

us =

∫
Ω

G(x, y)I(y)dy ≈
∑
j

wjG(x, yj), (1.33)

where yj ∈ τj and the weight wj is given by wj = |τj|I(yj). Here |τj| is the volume

of the element τj. Since the induced current I vanishes outside the support Ω, the

summation in (1.33) is only over the elements intersecting Ω.

Multiplying both sides of (1.33) by G(x, xp), where xp ∈ Ω, and integrating over the

boundary Γ, we get

∫
Γ

us(x)G(x, xp)ds ≈
∑
j

wj

∫
Γ

G(x, yj)G(x, xp)ds.

Therefore, ∫
Γ

us(x)G(x, xp) ≈ k−1
∑
j

wj=(G(yj, xp)). (1.34)

Eqn.(1.34) is valid under the assumption that the point scatterers yj and the

sampling points xp are far away from Γ , and the elements τj are sufficiently small.

Note that if the point xp is close to some point yj ∈ Ω, then G(yj, xp) is nearly

singular and therefore (1.34) makes the summation very large. Conversely, if xp is far

away from all physical point scatterers, then due to the decay property of G(x, y),

the sum in (1.34) will be very small.
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These observation leads to define the following index function for any point xp ∈ Ω,

Φ(xp) =
| < us(x), G(x, xp) >L2(Γ) |
||us(x)||L2(Γ)||G(x, xp)||L2(Γ)

. (1.35)

In practice,

† If |Φ(xp)| ≈ 1, xp ∈ Ω.

† If |Φ(xp)| ≈ 0, xp /∈ Ω.

Hence, Φ(xp) serves as a characteristic function of Ω and thus we can identify Ω from

the values of Φ(xp) when they are close to 1. Numerical experiments for this method

can be found in [32] and [65].
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Chapter 2

Direct Sampling Methods for

Shape Reconstruction in Inverse

Acoustic Scattering Problems

This chapter introduces two direct sampling methods for shape reconstruction in

inverse acoustic scattering problems (IASP). The first method is called the orthogo-

nality sampling method and was proposed by Potthast in 2010 [56]. The basic idea

of this method is to design an indicator function which is relatively small inside and

outside the unknown scatterer D and large on the boundary ∂D. The second method

was proposed by Liu in 2016 [45]. The basic idea of his method is to design an indica-

tor which is big inside the scatterer and relatively small outside. The method is very
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simple to implement since only the inner products of the measurements with some

suitably chosen functions are involved in computation of the indicator function. This

method uses the factorization of the far field operator to give a lower bound on the

proposed indicator function for sampling points inside the scatterer. For the sampling

points outside the scatterer, Liu shows that the indicator decays as sampling point

goes away from the boundary of the scatterer.

Several advantages of these direct sampling methods are inherited from the classical

ones, including their independence on any prior information on the geometry and

physical properties of the unknown objects. The key feature of these direct sampling

methods is that the computation of the indicator involves only inner products of

the measurements, with some suitably chosen functions. This makes them robust to

noises and computationally faster than the classical sampling methods.

We will generalize this method in Chapter 3 to the case of inverse electromagnetic scat-

tering problems in an inhomogeneous isotropic medium in R3. Moreover, in Chapter

4, we will generalize the method to the case of multifrequency inverse source problem

for time-harmonic acoustic with a finite set of far field data.
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2.1 Orthogonality Sampling Method

In this section we introduce the orthogonality sampling method by Potthast [56].

Consider the scattering of acoustic wave ui by an impenetrable scatterer D with

the Dirichlet boundary condition in two or three dimensions. The scattered field is

denoted by us and the total field u = ui + us satisfies the Helmholtz equation

∆u+ k2u = 0 in Rn\D,

u = 0 on ∂D.

(2.1)

The scattered field is assumed to satisfy the Sommerfeld radiation condition

lim
r:=|x|→∞

r
n−1

2 (
∂us

∂r
− ikuus) = 0.

2.1.1 Orthogonality Sampling

Potthast proposed orthogonality sampling based on the following indicator [55]

µ(z, k, θ) :=

∣∣∣∣ ∫
Sn−1

u∞(x̂, θ)eikx̂·zds(x̂)

∣∣∣∣, z ∈ Rn, (2.2)
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where u∞(x̂, θ) denotes the far field pattern for the scattering of an incident plane

wave with the direction θ, evaluated at the direction x̂ ∈ Sn−1, n = 2, 3.

Definition 2.1 [56] The orthogonality sampling indicator functional for the fixed

wave number k, is defined as

µ(y̆, k) =

∣∣∣∣ ∫
Sn−1

eikx̂·y̆ u∞(x̂)ds(x̂)

∣∣∣∣ (2.3)

on a grid G of points y̆ ∈ Rn from the knowledge of the far field pattern u∞(x̂) on

Sn−1.

Let Y β
α (·) for α ∈ N ∪ {0} and β = −α, ..., α be the spherical harmonics which form

a complete orthonormal system in L2(Sn−1) [17]. We recall the spherical harmonics

of order α = 0, 1 for x̂ = (x̂)nl=1 ∈ Sn−1. In three dimensional case,

Y 0
0 (x̂) =

√
1

4π
, Y −1

1 (x̂) =

√
3

8π
(x̂1 − ix̂2),

Y 0
1 (x̂) =

√
3

4π
x̂3, Y 1

1 (x̂) =

√
3

8π
(x̂1 + ix̂2).

In two dimensional case,

Y 0
0 (x̂) =

√
1

2π
, Y −1

1 (x̂) =

√
1

2π
(x̂1 − ix̂2), Y 1

1 (x̂) =

√
1

2π
(x̂1 + ix̂2).
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The Funk-Hecke formula is defined as [17]

∫
Sn−1

e−ikz·x̂Y β
α (x̂)ds(x̂) = µαfα(k|z|)Y β

α

( z
|z|

)
,

where

µα =


2π , n = 2;

4π
iα

, n = 3,

and fα(t) =


Jα(t) , n = 2;

jα(t) , n = 3,

with Jα and jα being the Bessel functions and spherical Bessel functions of order α,

respectively.

We start with a representation of the scattered field us for a sound-soft scatterer

D [50]

us(x) =

∫
∂D

Φ(x, y)
∂u

∂ν
(y) ds(y), x ∈ Rn\D,

where Φ(x, y), x 6= y, is the fundamental solution of the Helmholtz equation given by

Φ(x, y) =


i
4
H1

0 (k|x− y|) for n = 2,

1
4π

eik|x−y|

|x−y| for n = 3.

(2.4)
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The far field pattern of the scattered field us is given by

u∞(x̂) = γ

∫
∂D

e−ikx̂·y
∂u

∂ν
(y) ds(y), x̂ ∈ Sn−1,

where γ is a constant given by

γ :=


eiπ/4√

8πk
n = 2,

1
4π

n = 3.

Multiplying u∞(x̂) by fz with fz(x̂) := e−ikx̂·z, z ∈ Rn, and integrating over Sn−1

yeilds

∫
Sn−1

u∞(x̂)eikx̂·z ds(x̂) = γ

∫
Sn−1

∫
∂D

e−ikx̂·(y−z)
∂u

∂ν
(y) ds(y) ds(x̂),

= γ

∫
∂D

(∫
Sn−1

e−ikx̂·(y−z) ds(x̂)

)
∂u

∂ν
(y) ds(y).

For the three-dimensional case, we have

∫
Sn−1

u∞(x̂)e−ikx̂·z ds(x̂) = 4πγ

∫
∂D

j0(k|y − z|)∂u
∂ν

(y) ds(y).

The integral

usred(z) := 4πγ

∫
∂D

j0(k|y − z|)∂u
∂ν

(y) ds(y)

is called the reduced scattered field.
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Lemma 2.2 [56] The indicator function µ(y̆, k) given in (2.3) is equal to the

modulus of the field

usred(y̆) := γµ0

∫
∂D

f0(k|y̆ − y|)∂u
∂ν

(y) ds(y), y̆ ∈ Rn.

For the Neumann boundary condition, the indicator function in (2.3) is given by

usred,N(y̆) := γµ0

∫
∂D

∂

∂ν(y)
f0(k|y̆ − y|)u(y) ds(y), y̆ ∈ Rn.

The relation between the reduced scattered field and the shape of the scatterer is an

open problem and needs further investigation.

Recall that

µ(y̆, θ̂, k) :=

∣∣∣∣ ∫
Sn−1

u∞(x̂, θ̂, k)eikx̂·y̆ds(x̂)

∣∣∣∣
is the indicator function for fixed frequency k and fixed direction θ̂. Numerical ex-

amples show the feasibility and effectiveness of the indicator µ(y̆, θ̂, k) for location

reconstruction, in particular for small objects. But, µ(y̆, θ̂, k) does not work for shape

reconstruction of extended scatterers. To solve this difficulty, Potthast [56] suggested
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the following indicator function with respect to the all the incident directions

µ[MD](y̆, k) :=

∫
Sn−1

[µ(y̆, θ̂, k)]ρds(θ̂)

=

∫
Sn−1

∣∣∣∣ ∫
Sn−1

u∞(x̂, θ̂, k) eikx̂·zds(x̂)

∣∣∣∣ρds(θ̂), z ∈ Rn,

(2.5)

where ρ = 1 or ρ = 2, for y̆ ∈ Rn and fixed k ∈ R+ for the fixed frequency case.

Numerical examples show that the indicator function µ[MD] is a good indicator for

shape reconstruction for extended scatterers.

Potthast also extended the indicator function in (2.3) to one-wave multi-frequency

situation. When several frequencies are taken into account the results are signifi-

cantly improved . Assume that u∞ depends on the wave number k and is given for

k1, , k2, . . . , kM with some M ∈ N. Define the multi-frequency functional by

µ[MF ](y̆) :=

∫ kM

k1

∣∣∣∣ ∫
Sn−1

eikx̂·y̆ u∞(x̂, θ̂, k)ds(x̂)

∣∣∣∣ρdk, (2.6)

where ρ = 1 or ρ = 2, for y̆ ∈ Rn and fixed direction θ̂.

For the full multi-direction multi-frequency (MDMF) the indicator function is

µ[MDMF ](y̆) :=

∫ kM

k1

∫
Sn−1

∣∣∣∣ ∫
Sn−1

eikx̂·y̆ u∞(x̂, θ̂, k)ds(x̂)

∣∣∣∣ρds(θ̂) dk, (2.7)

where ρ = 1 or ρ = 2.
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There is no theoretical analysis established for the behavior of all of these indicator

defined in (2.5), (2.6) and (2.7).

2.1.2 Numerical Study of the Indicator Functions

In this subsection, we implement the indicator functions of orthogonality sampling

for a kite [50]. In Figures 2.1 - 2.6, we provide a numerical study of the above func-

tionals, including fixed frequency one wave µ(y̆, k), multi-direction fixed-frequency

µ[MD], multi-frequency fixed direction µ[MF ] and multi-direction multi-frequency

µ[MDMF ] setup.

Fig. 2.1 and Fig. 2.2 show the behavior of the indicator function µ(y̆, k) for one wave

fixed frequency when k = 1 and k = 3, respectively. From these figures, the location

of the unknown scatterer can be clearly seen, but no information about the shape of

the scatterer. In Fig. 2.3 and Fig. 2.4, the indicator function µ[MD] already provides

a lot of information about the shape of the scatterer, although it is still rather wavy.

The same applies for the case µ[MF ] when we use multi-frequency fixed direction, as

shown in Fig. 2.5. For the case of multi-frequency multi-direction, see Fig. 2.6, the

indicator µ[MDMF ] provides stable and reliable shape reconstructions.
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Figure 2.1: Constructing orthogonality sampling µ(y̆, k) for fixed frequency
k = 1, and incident wave angle θ̂ = π.

Figure 2.2: Constructing orthogonality sampling µ(y̆, k) for fixed frequency
k = 3, and incident wave angle θ̂ = π.
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Figure 2.3: Behavior of the multi-directions functional µ[MD] for k = 1
and for six different incident waves with the angle of incidence being multi-
ples of π/3.

Figure 2.4: Behavior of the multi-directions functional µ[MD] for k = 3
and for six different incident waves with the angle of incidence being multi-
ples of π/3.
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Figure 2.5: Behavior of the multi-frequency functional µ[MF ] for k =
{1, 1.5, 2, 2.5, 3} with single incident wave angle θ̂ = π/3.

Figure 2.6: Behavior of the multi-frequency functional µ[MDMF ] for k =
{1, 1.5, 2, 2.5, 3} for six different incident waves with the angle of incidence
being multiples of π/3.
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2.2 A Direct Sampling Method for Shape Recon-

struction in Inverse Acoustic Scattering Prob-

lems

2.2.1 Introduction

In this section we introduce a direct sampling method for shape reconstruction in

inverse acoustic scattering problems (IASP), proposed by Liu in 2016 [45], using the

far field measurements. The basic idea of this method is to design an indicator which

is big inside the scatterer and relatively small outside.

With the help of the factorization of the far field, Liu established a lower bound

estimate for the sampling points inside the scatterer. For the sampling points outside

the scatterer, the indicator function decays as Bessel functions when the sampling

point goes away from the boundary of the scatterer. At the end of the section, we

will discuss the stability of the method. For more details, see [45].

Let Ω ⊂ Rn, where n = 2, 3, be an open and bounded domain with Lipschitz boundary
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∂Ω such that Rn\Ω is connected. The incident field is of the form

ui(x, θ̂) = eikx·θ̂, x ∈ Rn, (2.8)

where θ̂ ∈ Sn−1 denotes the direction of the incident wave and k is the wave number.

Then the scattering problem for the inhomogeneous medium is to find the total field

u = ui + us such that

∆u+ k2(1 + q)u = 0 in Rn, (2.9)

lim
r:=|x|→∞

r
n−1

2

(∂us
∂r
− ikuus

)
= 0, (2.10)

where q ∈ L∞(Rn) such that =(q) > 0 , q = 0 in Rn\Ω and (2.10) is the Som-

merfeld radiating condition that holds uniformly with respect to all directions

x̂ := x/|x| ∈ Sn−1.

If the scatterer Ω is impenetrable, the direct scattering is to find the total field

u = ui + us such that

∆u+ k2u = 0 in Rn\Ω, (2.11)

B(u) = 0 on ∂Ω, (2.12)

lim
r:=|x|→∞

r
n−1

2

(∂us
∂r
− ikuus

)
= 0, (2.13)
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where B denotes one of the following three boundary conditions:

(1)B(u) := u on ∂Ω; (2)B(u) :=
∂u

∂ν
on ∂Ω; (3)B(u) :=

∂u

∂ν
+ λu on ∂Ω.

These correspond, to the case when the scatterer Ω is sound-soft, sound-hard, and

of impedance type, respectively. Here, ν is the unit outward normal to ∂Ω and

λ ∈ L∞(∂Ω) is the impedance function such that =(λ) > 0 almost everywhere on ∂Ω.

Every radiating solution of the Helmholtz equation has the following asymptotic be-

havior at infinity:

us(x, θ̂) =
ei
π
4

√
8kπ

[
e−i

π
4

√
k

2π

]n−2
eikr

r
n−1

2

{
u∞(x̂, θ̂) +O

(
1

r

)}
as r := |x| → ∞,

(2.14)

with x̂ = x
|x| ∈ Sn−1. The inverse problem we consider in this section is to determine

Ω from a knowledge of the far field pattern u∞(x̂, θ̂) for x̂, θ̂ ∈ Sn−1.

Liu in his paper [45] proposed a new direct sampling method by using the following

indicator

Inew(z) :=

∣∣∣∣ ∫
Sn−1

e−ikθ̂·z
∫
Sn−1

u∞(x̂, θ̂)eikx̂·zds(x̂)ds(θ̂)

∣∣∣∣, z ∈ Rn (2.15)
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2.2.2 Theoretical Foundation of the Proposed Sampling

Method

For the sampling points inside the scatterer Ω, it is shown that there is a lower

bound for the indicator Inew(z), and for the sampling points outside the scatterer

the indicator function, Inew(z) starts to decay as z go away from the boundary of Ω.

Moreover, the method is stable with respect to the noise in the data.

The indicator function Inew(z) given by (2.15) can be written in the form

Inew(z) := |(Fφz, φz)|, z ∈ Rn. (2.16)

Here, we denote by (· , ·) the inner product of L2(Sn−1), and F is the far field operator

defined as

F : L2(Sn−1)→ L2(Sn−1),

Fg(x̂) =

∫
Sn−1

u∞(x̂, θ̂)g(θ̂)ds(θ̂), x̂ ∈ Sn−1. (2.17)

Also φz is the test function defined as

φz(ϑ) = e−ikz·ϑ, ϑ ∈ Sn−1. (2.18)
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2.2.2.1 Resolution analysis for the sampling points inside the scatterer

The method is based on the following result from functional analysis.

Theorem 2.3 (Theorem 1.16 of [37]) Let X, Y be (complex) reflexive Banach

spaces with dual X∗, Y ∗, respectively, and the dual forms 〈 · , ·〉 in 〈X∗, X〉 and

〈Y ∗, Y 〉. Let F : Y ∗ → Y and B : X → Y be linear operators with

F = BAB∗

for some linear and bounded operator A : X∗ → X, which satisfies a coercivity

assumption, i.e., there exists c > 0 such that

|〈ϕ,Aϕ〉| > c||ϕ||2X∗ for all ϕ ∈ R(B∗) ⊂ X∗.

Then , for any φ ∈ Y , φ 6= 0,

φ ∈ R(B) if and only if inf{|(ψ, Fψ)| : ψ ∈ Y ∗, (ψ, φ) = 1} > 0

Moreover, if φ = Bϕ0 ∈ R(B) for some ϕ0 ∈ X then

inf{|(ψ, Fψ)| : ψ ∈ Y ∗, (ψ, φ) = 1} ≥ c

||ϕ0||2X
.
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Proof [37] First, note that,

|〈ψ, Fψ〉| = |〈ψ,BAB∗ψ〉| = |〈B∗ψ,AB∗ψ〉| ≥ c||B∗ψ||2X∗ , for all ψ ∈ Y ∗.

Let φ = Bϕ0 for some ϕ0 ∈ X. For ψ ∈ Y ∗ with 〈ψ, φ〉 = 1, we have

|〈ψ, Fψ〉| ≥ c||B∗ψ||2X∗ =
c

||ϕ0||2X
||B∗ψ||2X∗ ||ϕ0||2X ≥

c

||ϕ0||2X
|〈B∗ψ, ϕ0〉|2

=
c

||ϕ0||2X
|〈ψ,Bϕ0〉|2 =

c

||ϕ0||2X
|〈ψ, φ〉|2 =

c

||ϕ0||2X
.

This proves

inf{|(ψ, Fψ)| : ψ ∈ Y ∗, (ψ, φ) = 1} ≥ c

||ϕ0||2X
.

Assume that φ /∈ R(B). Define V := {ψ ∈ Y ∗ : 〈ψ, φ〉 = 0}. We want to show B∗(V )

is dense in R(B∗) ⊂ X∗. This is equivalent to show that [B∗(V )]⊥ and [R(B∗)]⊥ =

N(B) coincide. Let ϕ ∈ [B∗(V )]⊥. Then 〈B∗ψ, ϕ〉 = 0 for all ψ ∈ V, which implies

that 〈ψ,Bϕ〉 = 0 for all ψ ∈ V, and hence that Bϕ ∈ V ⊥ = span{φ}. Since φ /∈ R(B),

this implies Bϕ = 0, i.e., ϕ ∈ N(B).

By Hahn-Banach Theorem [51] one can find φ̂ ∈ Y ∗ with 〈φ̂, φ〉 = 1. Since B∗(v) is

dense in R(B∗), we can choose a sequence {ψ̂n} in V such that

B∗ψ̂n → −B∗φ̂ as n→∞.
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Set ψn = ψ̂n + φ̂. Then 〈ψn, φ〉 = 〈ψ̂n, φ〉+ 〈φ̂, φ〉 = 0 + 1 = 1, and

B∗ψn = B∗ψ̂n +B∗φ̂→ −B∗φ̂+B∗φ̂ = 0 n→∞.

Since |〈ψ, Fψ〉| = |〈B∗ψ,AB∗ψ〉|. By using the Cauchy-Schwartz inequality implies

that

|〈ψn, Fψn〉| ≤ ||A|| ||B∗ψn||2X∗

and thus |〈ψn, Fψn〉| → 0, n→∞. Consequently,

inf{|(ψ, Fψ)| : ψ ∈ Y ∗, (ψ, φ) = 1} = 0,

which is a contrapositive. 2

For all z ∈ Rn, define Az ⊂ L2(Sn−1) by

Az := {ψ ∈ L2(Sn−1) : (ψ, φz) = 1}.

First we consider the case of scattering by a impenetrable scatterer, as modeled by

(2.11) - (2.13). This is discussed in Kirsch’s book [37].

Lemma 2.4 (Lemma 1.17 of [37]) LetX be a Banach space and A, A0 : X∗ → X

be a linear and bounded operators such that
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1. =〈ϕ,Aϕ〉 6= 0 for all ϕ ∈ R(B∗) with ϕ 6= 0.

2. 〈ϕ,A0ϕ〉 is real-valued for all ϕ ∈ R(B∗), and there exists c0 > 0 such that

〈ϕ,A0ϕ〉 ≥ c0||ϕ||2X∗ for all ϕ ∈ R(B∗),

3. A− A0 is compact.

Then there exists c > 0 such that

|〈ϕ,Aϕ〉| > c||ϕ||2X∗ for all ϕ ∈ R(B∗) ⊂ X∗.

Lemma 2.5 (Lemma 1.20 of [37]) Assume that k2 is not a Dirichlet eigenvalue

of −∆ in Ω. For any z ∈ R3, z ∈ Ω if and only if

inf{|(Fψ, ψ)| : ψ ∈ Az} > 0.

where F is defined by (2.17) . Furthermore, for z ∈ Ω we have the estimate :

inf{|(Fψ, ψ)| : ψ ∈ Az} ≥
c

||Φ(·, z)||2
H

1
2 (∂Ω)

for some constant c > 0 which is independent of z. Φ(., z) is the fundamental solution
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of Helmholtz equation.

Proof From Theorem 1.6, F has the following factorization

F = −2πGS∗G∗.

From Theorem 1.10, the middle operator S∗ satisfies the conditions of Lemma 2.4.

Therefore, there exists c > 0 such that

|〈S∗ϕ, ϕ〉| > c||ϕ||2H1/2(∂Ω) for all ϕ ∈ R(G∗) ⊂ H1/2(∂Ω).

From Theorem 1.7, z ∈ Ω if and only if Φ∞(·, z) ∈ R(G).

Now, in Theorem 2.3, by choosing Y = L2(S2), X = H1/2(∂Ω), B = G and

A = −2πS∗, we have

z ∈ D ⇐⇒ inf{|(Fψ, ψ)| : ψ ∈ Az} > 0.

Since Φ∞ = GΦ(., z)|∂Ω for z ∈ Ω, we have for z ∈ D

inf{|(Fψ, ψ)| : ψ ∈ Az} ≥
c

||Φ(·, z)||2
H

1
2 (∂Ω)

for some constant c > 0 independent of z. 2
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For the case B(u) is not sound soft, the same lower bound can be obtained as in

Lemma 2.5 (See Theorem 2.8 of [37]).

For the case of scattering by an inhomogeneous medium, as modeled by (2.9) - (2.10),

Liu [45] established a lower bound for the scatterer points inside Ω. First we list

some of the results on the factorization of the far field operator for inhomogeneous

medium [37].

Assumption 2.6 [37] Let q ∈ L∞(Rn) satisfy

1. =(q) ≥ 0 and q = 0 in Rn\Ω.

2. There exists c1 > 0 such that 1 + <(q) ≥ c1 for almost all x ∈ Ω.

3. |q| is locally bounded below, i.e., for every compact subset D ⊂ Ω there exists

c2 > 0 (depending on D) such that |q| ≥ c2 for almost all x ∈ D.

4. There exists t ∈ [0, π] and c3 > 0 such that <[e−itq(x)] ≥ c3|q| for almost all

x ∈ Ω.

The inner product of L2(Ω) is denoted by (· , ·)Ω. Define the weighted space L2(Ω, |q|)

as the completion of L2(Ω) with respect to the norm corresponding to the inner

product

(φ, ψ)L2(Ω,|q|) =

∫∫
Ω

φψ|q| dx.
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The homogenous interior transmission problem is defined as finding the solutions

v, w ∈ H2(Ω) such that

∆v + k2(1 + q)v = 0 in Ω, ∆w + k2w = 0 in Ω

and

v = w on ∂Ω and
∂v

∂ν
=
∂w

∂ν
on ∂Ω,

Let u = v−w. Then u vanishes on ∂Ω and u = v−w satisfies the differential equation

∆u+ k2(1 + q)u = −k2 qw in Ω.

Definition 2.7 [37] We say that k2 is an interior transmission eigenvalue if there

exists (u,w) ∈ H1
0 (Ω)×L2(Ω, |q|) with (u,w) 6= (0, 0) and a sequence {wj} in H2(Ω)

such that wj → w in L2(Ω, |q|), ∆wj + k2wj = 0 in Ω, and

∫
Ω

[5u · 5ψ − k2(1 + q)uψ]dx = k2

∫
Ω

qwψdx for all ψ ∈ H1(Ω).

Lemma 2.8 (Theorems 4.5, 4.6 and 4.8 of [37]) Assume that the conditions of

Assumption 2.6 hold and F be the far field operator define by (2.17). Then
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1. The far field operator F has the factorization

F = H∗TH,

where H : L2(Sn−1)→ L2(Ω) is defined by

(Hg)(x) =
√
|q(x)|

∫
Sn−1

g(θ)eikx·θds(θ), x ∈ Ω,

the adjoint operator H∗ : L2(Ω)→ L2(Sn−1) is defined by

(H∗ϕ)(x̂) =

∫∫
D

ϕ(y) eikx̂·θ
√
|q(y)|ds(y), x̂ ∈ Sn−1,

and T : L2(Ω)→ L2(Ω) is defined by

Tf = k2
( q
|q|

)
(f +

√
|q|vΩ), f ∈ L2(Ω).

where v ∈ H1
loc(Rn) is the radiating solution of

∆v + k2(1 + q)v = −k2
( q
|q|

)
f in Rn.

2. Define T0 : L2(Ω) → L(Ω) by T0f = k2
(
q
|q|

)
f for f ∈ L2(Ω). Then T − T0 is
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compact and <[e−itT0] is coercive, i.e., there exits c > 0 such that

<[e−it(T0f, f)Ω] ≥ c||f ||2L2(Ω), f ∈ L2(Ω).

3. Assume that k2 is not an interior transmission eigenvalue. Then

=(Tf, f)Ω > 0 for all f ∈ R(H), f 6= 0.

Theorem 2.9 (Lemma 2.4 of [45]) Assume that the conditions of Assumption

2.6 holds and k2 is not an interior transmission eigenvalue. Then the middle operator

T : L2(Ω) → L2(Ω), which is defined in Lemma 2.8, part 1, satisfies the coercivity

condition, i.e., there exists a constant c > 0 such that

|(Tf, f)Ω| > c||f ||2L2(Ω), for all f ∈ R(H).

Proof [45] Suppose to the contrary there is no c > 0 such that

|(Tf, f)Ω| > c||f ||2L2(Ω) for all f ∈ R(H),

Then there exits a sequence {fj} ∈ R(H) such that

||fj||L2(Ω) = 1 and (Tfj, fj)Ω → 0 as j →∞.
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Since the unit ball in L2(Ω) is weakly compact there exists a subsequence {fj} which

converges weakly to some f ∈ R(H). From Lemma 2.8 part (2) the operator T − T0

is compact, which implies

(T − T0)fj → (T − T0)f in L2(Ω).

Hence

((T − T0)(f − fj), fj)Ω → 0 as j →∞.

Since T is linear, we can rewrite (Tf, fj)Ω as

(Tf, fj)Ω = (Tfj, fj)Ω + ((T − T0)(f − fj), fj)Ω

+(T0(f − fj), f)Ω − (T0(f − fj), f − fj)Ω

Note that the left hand side (Tf, fj)Ω converges to (Tf, f)Ω, while the first three

terms on the right hand side converge to zero. By definition of T0 and the assumption

that =(q) ≥ 0, we deduce that =(T0(f − fj), f − fj)Ω ≥ 0. From this fact and part 3

of Lemma 2.8, we have f = 0. By using part 2 of Lemma 2.8, <[e−itT0] is coercive.

Thus,

c||fj||2Ω ≤ <[e−it(T0fj, fj)Ω] ≤ |e−it(T0fj, fj)Ω|

= |(T0fj, fj)Ω| ≤ |((T0 − T )fj, fj)Ω|+ |(Tfj, fj)Ω|,
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which tends to zero as j →∞. Therefore, fj → 0, which contradicts to the assumption

that ||fj||Ω = 1. 2

Lemma 2.10 (Theorem 4.6 of [37]) Assume that the conditions of Assumption 2.6

hold. For z ∈ R3, z ∈ Ω if and only if φz ∈ R(H∗), where φz is defined in (2.18).

Proof Let z ∈ Ω. We need to show φz ∈ R(H∗). For any ε > 0, choose a function

χ ∈ C∞(R) with χ(t) = 1 for |t| ≥ ε and χ(t) = 0 for |t| ≤ ε/2. Let Bε(z) ⊂ D

be any closed ball with center z and radius ε > 0 that is completely contained in

Ω. Define v ∈ C∞(R3) by v(x) = χ(|x − z|)Φ(x, z) in R3. Then v = Φ(·, z) on ∂Ω

and ∂v
∂ν

= ∂Φ(·, z)/∂ν on ∂Ω and ∆v + k2v = 0 for |x− z| ≥ ε. From representation

theorem (Theorem 2.1 of [17]) we have for x ∈ Ω

v(x) =

∫
∂Ω

{
Φ(x, y)

∂v(y)

∂ν
− v(y)

∂Φ(x, y)

∂ν(y)

}
ds(y)−

∫∫
Ω

{∆v(y) + k2v(y)}Φ(x, y)dy

=

∫
∂Ω

{
Φ(x, y)

∂Φ(y, z)

∂ν(y)
− Φ(y, z)

∂Φ(x, y)

∂ν(y)

}
ds(y)

−
∫∫
|y−z|<ε

{∆v(y) + k2v(y)}Φ(x, y)dy

=

∫
Ω

{
Φ(x, y)∆Φ(y, z)− Φ(y, z)∆Φ(x, z)

}
ds(y)

−
∫∫
|y−z|<ε

{∆v(y) + k2v(y)}Φ(x, y)dy
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=

∫
Ω

{
− k2Φ(x, y)Φ(y, z) + k2Φ(y, z)Φ(x, z)

}
ds(y)

−
∫∫
|y−z|<ε

{∆v(y) + k2v(y)}Φ(x, y)dy

= −
∫∫
|y−z|<ε

{∆v(y) + k2v(y)}Φ(x, y)dy

Since Φ(·, z) and v coincide outside Ω we conclude that

φz(x̂) = v∞(x̂) = −
∫∫
|y−z|<ε

{∆v(y) + k2v(y)}e−ikx̂·ydy for x̂ ∈ S2.

Set

w =


−(∆v + k2v)/

√
|q| in Bε(z);

0 in Ω\Bε(z).

(2.19)

Then w ∈ L2(Ω) since |q| is bounded below on Bε(z) and φz = H∗w; thus φz ∈ R(H∗),

which ends first part of the proof.

Let now z /∈ Ω and assume that there exists w ∈ L2(Ω) with φz = H∗w on S2. Then,

by Rellich’s Lemma (Theorem 2.13 of [17]) and the unique continuation,

∫∫
Ω

w(y)Φ(x, y)
√
|q(y)|dy = Φ(x, z) for all x in the exterior of Ω ∪ {z}.

Note that the right hand side has singularity at z /∈ Ω while the left hand side is a C1

function in R3 (Lemma 4.1 of [24]), because it is a solution to the Helmholtz equation
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in the exterior of D. This is a contradiction, and the proof is complete. 2

Using Theorem 2.3 and the previous three Lemmas 2.8, 2.9 and 2.10, we formulate

the following result.

Lemma 2.11 (Lemma 2.5 of [45]) Consider the scattering by inhomogeneous

medium, as modeled by (2.9)- (2.10). Assume that the conditions of Assumption 2.6

hold and k2 is not an interior transmission eigenvalue. Then z ∈ Ω if and only if

inf{|(Fψ, ψ)| : ψ ∈ Az} > 0.

Furthermore, for z ∈ Ω we have the estimate

inf{|(Fψ, ψ)| : ψ ∈ Az} ≥
c

||w(·, z)||2L2(Ω)

(2.20)

for some constant c > 0 which is independent of z and w is defined by (2.19).

Proof From Lemma 2.8, part 1, F has the following factorization

F = H∗TH.

Since k2 is not an interior transmission eigenvalue, then from Theorem 2.9, there
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exists c > 0 such that

|(Tf, f)| > c||f ||2L2(Ω) for all ϕ ∈ R(H).

From Theorem 2.10, z ∈ Ω if and only if φz(·, z) ∈ R(H∗).

Now apply Theorem 2.3 by choosing Y = L2(S2), X = L2(Ω), B = H∗, and A = T .

We have

z ∈ D ⇐⇒ inf{|(ψ, Fψ)| : ψ ∈ Az} > 0.

Since φz = H∗w, for z ∈ D, we have

inf{|(Fψ, ψ)| : ψ ∈ Az} ≥
c

||w(·, z)||2L2(Ω)

for some constant c > 0 that is independent of z. 2

Note that

γ := (φz, φz) =

∫
Sn−1

|φz|2ds =

∫
Sn−1

1ds =


2π in n = 2;

4π in n = 3.

(2.21)

This implies that ψz := φz/γ ∈ Az. By the linearity of the far field operator F and
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using the estimate (2.20) or Lemma 2.5, we have

Inew(z) = |(Fφz, φz)|

= γ|(Fψz, φz)|

≥ γ inf {|(Fψ, ψ)| : ψ ∈ Az}

≥ cγ

Mz

, z ∈ Ω.

for some constant c > 0 which is independent of z. Here Mz is defined by

Mz =


||Φ(·, z)||2

H
1
2 (∂Ω)

for the scattering by impenetrable scatterers;

||w(·, z)||2L2(Ω) for the scattering by inhomogeneous medium.

(2.22)

The main result is summarized by the following Theorem

Theorem 2.12 (Theorem 2.6 of [45]) Under the assumptions of Lemmas 2.5

and 2.11, we have

Inew(z) ≥ cγ

Mz

, z ∈ Ω,

for some constant c > 0 which is independent of z. Here, Mz is defined by (2.22) and

γ is defined by (2.21).
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2.2.2.2 Resolution analysis for the sampling points outside the scatterer

In this subsection we study the behavior of Inew outside the scatterer Ω [45]. First

we need to introduce the following Lemma

Lemma 2.13 ( Riemann-Lebesgue Lemma [3]) If f is L1-integrable on Rd, i.e., if

the Lebesgue integral of |f | is finite, then the Fourier transform of f satisfies

f̂(z) :=

∫
Rd
f(x)e−iz·x dx→ 0, as |z| → ∞.

As we know the far field pattern has the following form

u∞(x̂, θ̂) =

∫
∂Ω

{
us(y, θ̂)

∂e−ikx̂·y

∂ν(y)
− ∂us(y, θ̂)

∂ν
e−ikx̂·y

}
ds(y), x̂ ∈ Sn−1

Substituting u∞(x̂, θ̂) into Inew, yields [45]

Inew(z) :=

∣∣∣∣ ∫
Sn−1

e−ikθ̂·z
∫
Sn−1

u∞(x̂, θ̂)eikx̂·zds(x̂)ds(θ̂)

∣∣∣∣
=

∣∣∣∣ ∫
Sn−1

∫
Sn−1

∫
∂Ω

{
us(y, θ̂)

∂e−ikx̂·(y−z)

∂ν(y)

− ∂us(y, θ̂)

∂ν
e−ikx̂·(y−z)

}
ds(y)ds(x̂)e−ikθ̂·zds(θ̂)

∣∣∣∣
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Figure 2.7: Decay behavior of Spherical Bessel function j0(x) in two di-
mensions.

=

∣∣∣∣ ∫
Sn−1

∫
Sn−1

∫
Ω

{
− ikus(y, θ̂)ν(y) · x̂e−ikx̂·(y−z)

− ∂us(y, θ̂)

∂ν
e−ikx̂·(y−z)

}
ds(x̂)ds(y)e−ikθ̂·zds(θ̂)

∣∣∣∣
:=

∣∣∣∣ ∫
Sn−1

G(z, θ̂)e−ikθ̂·zds(θ̂)

∣∣∣∣,
with

G(z, θ̂) :=

∫
∂Ω

{
− ikus(y, θ̂)ν(y).

∫
Sn−1

x̂e−ikx̂·(y−z)ds(x̂)

−∂u
s(y, θ̂)

∂ν

∫
Sn−1

e−ikx̂·(y−z)ds(x̂)

}
ds(y).

(2.23)

Substituting the Funk-Hecke formula onto (2.23), we get

G(z, θ̂) =

∫
∂Ω

{
−ikµ1u

s(y, θ̂)ν(y).
y − z
|y − z|

f1(k|y−z|)−µ0
∂us(y, θ̂)

∂ν
f0(k|y−z|)

}
ds(y).

We conclude that G(z, θ̂) is a superposition of the Bessel functions f0 and f1. The
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Figure 2.8: Decay behavior of Bessel function J0(x) in two dimensions.
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Figure 2.9: Decay behavior of Spherical Bessel function j1(x) in two di-
mensions.

following asymptotic formulas for the Bessel and spherical Bessel functions hold

j0(t) =
sin t

t

{
1 +O

(
1

r

)}
, as t→∞,

j1(t) =
cos t

t

{
− 1 +O

(
1

r

)}
, as t→∞,
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Figure 2.10: Decay behavior of Bessel function J1(x) in two dimensions.

J0(t) =
sin t+ cos t√

πt

{
1 +O

(
1

r

)}
, as t→∞,

J1(t) =
cos t− sin t√

πt

{
− 1 +O

(
1

r

)}
, as t→∞.

See Fig. 2.7, 2.8, 2.9 and 2.10 for the behavior of these four functions. This further

implies that G(z, θ̂) decays as the sampling points z go away from the boundary ∂Ω.

By Riemann-Lebesgue Lemma, we obtain that

Inew(z)→ 0, as |z| → ∞.
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2.2.2.3 Stability statement

We end this section by a stability statement, which shows that the lower bound of the

indicator function Iz is bounded above for all sampling points inside the scatterer.

Theorem 2.14 (Theorem 2.7 of [45]) Let Ω be a bounded domain in Rn, n =

2, 3, and denote by BC(Ω) the space of bounded continuous functions on Ω with sup

norm. Then

||Inew(·)||2BC(Ω) ≤ γ2

∫
Sn−1

∫
Sn−1

|u∞(x̂, θ̂)|2ds(x̂)ds(θ̂), (2.24)

where γ is given by (2.21).

Proof [45] By using the Cauchy-Schwartz inequality, we have, for all z ∈ Ω

|Inew(z)|2 :=

∣∣∣∣ ∫
Sn−1

e−ikθ̂·z
∫
Sn−1

u∞(x̂, θ̂)eikx̂·zds(x̂)ds(θ̂)

∣∣∣∣2

≤
∫
Sn−1

|e−ikθ̂.z|2 ds(θ̂)
∫
Sn−1

∣∣∣∣ ∫
Sn−1

u∞(x̂, θ̂)eikx̂·zds(x̂)

∣∣∣∣2ds(θ̂)
=

∫
Sn−1

1 ds(θ̂)

∫
Sn−1

∣∣∣∣ ∫
Sn−1

u∞(x̂, θ̂)eikx̂·zds(x̂)

∣∣∣∣2ds(θ̂)
≤ γ

∫
Sn−1

∫
Sn−1

|u∞(x̂, θ̂)|2ds(x̂)

∫
Sn−1

|eikx̂·z|2 ds(x̂) ds(θ̂)

= γ

∫
Sn−1

∫
Sn−1

|u∞(x̂, θ̂)|2ds(x̂)

∫
Sn−1

1 ds(x̂) ds(θ̂)
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= γ2

∫
Sn−1

∫
Sn−1

|u∞(x̂, θ̂)|2ds(x̂)ds(θ̂),

We have used the fact that |e−ikθ̂·z| = |eikx̂·z| = 1 for all x̂, θ̂ ∈ Sn−1 and z ∈ Ω. 2

2.2.3 The Relation Between Inew and µ[MD]

It is shown that there is a relation between Inew and µ[Md] when ρ = 2, which is

discussed in Section 2.1 of this chapter. To find this relation, we need the following

lemma.

Lemma 2.14 (Lemma 2.8 of [45])

1. The far field pattern satisfies the reciprocity relation

u∞(x̂, θ̂) = u∞(−θ̂,−x̂) for all x̂, θ̂ ∈ Sn−1.

2. The far field operator satisfies

F − F ∗ − i

4π

( k
2π

)n−2

F ∗F = 2iR, (2.25)

where F ∗ is the L2-adjoint of F and R : L2(Sn−1) −→ L2(Sn−1) is a self-adjoint

nonnegative operator. The operator R vanishes for the cases of Dirichlet or Neumann
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boundary conditions. For the impedance boundary conditions, the operator R is

given by

Rh(x̂) :=

∫
Sn−1

(∫
∂Ω

=(λ)u(y, θ̂)u(y, x̂)ds(y)
)
h(θ̂)ds(θ̂), x̂ ∈ Sn−1.

For the case of inhomogeneous medium, the operator R is given by

Rh(x̂) :=

∫
Sn−1

(∫
∂Ω

k2=(λ)u(y, θ̂)u(y, x̂)ds(y)
)
h(θ̂)ds(θ̂), x̂ ∈ Sn−1,

where u(·, θ̂) is the total field in Ω corresponding to the incident plane wave ui(·, θ̂)

with incident direction θ̂.

Proof See Theorems 1.8, 2.5 and 4.4 of [37].

By interchanging the roles of x̂ and θ̂ and using reciprocity relation in the previous

lemma, we have, for ρ = 2, [45]

µ[MD](z) =

∫
Sn−1

∣∣∣∣ ∫
Sn−1

u∞(x̂, θ̂) eikx̂·zds(x̂)

∣∣∣∣2ds(θ̂)
=

∫
Sn−1

∣∣∣∣ ∫
Sn−1

u∞(−x̂,−θ̂) e−ikx̂·zds(x̂)

∣∣∣∣2ds(θ̂)
=

∫
Sn−1

∣∣∣∣ ∫
Sn−1

u∞(θ̂, x̂) e−ikx̂·zds(x̂)

∣∣∣∣2ds(θ̂)
=

∫
Sn−1

∣∣∣∣ ∫
Sn−1

u∞(x̂, θ̂) e−ikθ̂·zds(θ̂)

∣∣∣∣2ds(x̂)
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= ||Fφz ||2L2(Sn−1).

Since F − F ∗ = 2i=(F ), we can rewrite (2.25) as

2i=(F ) = 2iR +
i

4π

( k
2π

)n−2

F ∗F.

From this, we have

=(Fg, g) = (Rg, g) +
1

8π

( k
2π

)n−2

(Fg, Fg).

Taking g = φz, we get

|(Fφz, φz)| ≥ =(Fφz, φz) = (Rφz, φz) +
1

8π

( k
2π

)n−2

(Fφz, Fφz).

Since R is a nonnegative operator, we have

Inew = |(Fφz, φz)| ≥
1

8π

( k
2π

)n−2

||Fφz||2L2(Sn−1). (2.26)

By using the Cauchy-Schwartz inequality, we have

|(Fφz, φz)|2 ≤ ||Fφz||2L2(Sn−1)||φz||2L2(Sn−1) = 2n−1π||Fφz||2L2(Sn−1). (2.27)
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Combination of the previous two inequalities (2.26) and (2.27) yields

1

8π

( k
2π

)n−2

||Fφz||2L2(Sn−1) ≤ |(Fφz, φz)| ≤
√
π2

n−1
2 ||Fφz||L2(Sn−1),

1

8π

( k
2π

)n−2

||Fφz||2L2(Sn−1) ≤ Inew(z) ≤
√
π2

n−1
2 ||Fφz||L2(Sn−1). (2.28)

The inequalities (2.28) and the results given in the previous two subsections show

why Potthast’s reconstruction scheme by using the indicator µ[MD] for ρ = 2 works

for shape reconstruction in inverse acoustic scattering problems.
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Chapter 3

New Sampling Method for Shape

Reconstruction in Inverse

Electromagnetic Scattering

Problems

3.1 Introduction

In this chapter, we propose a new direct sampling method for inverse electromagnetic

scattering problems. We generalize Liu’s method, which was discussed in Chapter
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2 for inverse acoustic scattering problems to the case of electromagnetic scattering

problems in isotropic and source free media. In this method we will propose an

indicator function which is big when the sampling point lies inside the scatterer and

when the sampling point moves away from the boundary of the scatterer the value

of the indicator function decays and goes to zero. The method is very simple to

implement since only the inner products of the measurements with some suitably

chosen functions are involved in computation of the indicator function.

We consider electromagnetic wave [37] propagation in an inhomogeneous isotropic

medium in R3 with electric permittivity ε = ε(x) > 0, constant magnetic permeability

µ = µ0, and electric conductivity σ = σ(x). We assume that ε(x) = ε0, where ε0 is

constant, and σ(x) = 0 for all x outside some sufficiently large ball. Let k = ω
√
ε0µ0 >

0 be the wave number with frequency ω. An incident electromagnetic field consists of

a pair H i and Ei which satisfy the time harmonic Maxwell system in vacuum, i.e.,

curl Ei − iωµ0H
i = 0 in R3, (3.1)

curl H i + iωε0E
i = 0 in R3. (3.2)

The total fields are superpositions of the incident and scattered fields, i.e., E = Ei+Es
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and H = H i +Hs, and satisfy

curl E − iωµ0H = 0 in R3, (3.3)

curl H + iωεE = σE in R3. (3.4)

The tangential components of E and H are continuous on the interfaces where σ and

ε are discontinuous. The scattered field Es, Hs satisfies the Silver-Muller radiation

condition √
µ0

ε0
Hs(x)× x− |x|Es(x) = O

(
1

|x|

)
as |x| → ∞ (3.5)

uniformly for all directions x̂ = x
|x| .

As seen from (3.3) the magnetic field is divergence free, i.e., div(H) = 0. So we will

always work with the magnetic field H only. In general this is not the case for the

electric field E. Uniqueness and existence of the scattering problems (3.1) - (3.5) is

shown in chapter 9 of Colton and Kress ’s book [17].

From (3.4), we have E = 1
σ−iωεcurlH. Substituting in (3.3) yields

curl

[
1

σ − iωε
curl H

]
− iωµ0H = 0. (3.6)
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Let εr denote the (complex-valued) relative permittivity

εr(x) =
ε(x)

ε0
+ i

σ(x)

ωε0
.

Then (3.6) can be written as

curl

[
1

εr
curl H

]
− k2H = 0 in R3, (3.7)

where again k = ω
√
ε0µ0. Then the incident field H i satisfies

curl2H i − k2H i = 0 in R3. (3.8)

The Silver-Muller radiation condition becomes

curl Hs(x)× x̂− ikHs(x) = O
(

1

|x|2

)
as |x| → ∞. (3.9)

Let D ⊂ R3 be open and bounded such that ∂D is C2 and the complement R3\D

is connected. Let εr ∈ L∞(D) satisfying =(εr) ≥ 0 in D, and εr = 1 in R3\D. We

consider the special case where the incident waves H i and Ei [17], [37] are

H i(x, θ; p) = p eikθ·x and Ei(x, θ; p) = − 1

iωε0
curl H i(x, θ; p) = −

√
µ0

ε0
(θ × p) eikθ·x,

(3.10)
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where θ ∈ S2 is a unit vector giving the direction of incidence and p ∈ C3 is a constant

vector giving the polarization. We assume that p·θ =
∑3

j=1 pjθj = 0 in order to ensure

that H i and Ei are divergence free.

Every radiating solution of the Maxwell equation has the following asymptotic

form [17]

Hs(x, θ; p) =
eik|x|

4π|x|

{
H∞(x̂, θ; p) +O

(
1

|x|2

)}
as |x| → ∞, (3.11)

Es(x, θ; p) =
eik|x|

4π|x|

{
H∞(x̂, θ; p)× x̂+O

(
1

|x|2

)}
as |x| → ∞,

uniformly in all directions x̂ = x
|x| where the vectors field H∞ and E∞ are defined on

the unit sphere S2 and are known as the magnetic and the electric far field patterns,

respectively. H∞ and E∞ are tangential vector fields, i.e., H∞(x̂, θ; p) · x̂ = 0 and

E∞(x̂, θ; p) · x̂ = 0 for all x̂ ∈ S2 and all θ ∈ S2 and p ∈ C3 with p · θ = 0. Since

E∞(x̂, θ; p) = H∞(x̂, θ; p)× x̂, it is sufficient to work only with one far field pattern,

H∞. The far field pattern depends on p linearly, i.e, we can write H∞(x̂, θ; p) =

H∞(x̂, θ)p for all p ∈ C3 with p · θ = 0, where H∞(x̂, θ) ∈ C3×3 is a matrix.

Let q(x) = 1− 1/εr(x). Then the function q(x) vanishes outside the inhomogeneous

medium, i.e., q(x) = 0 in R3\D. The inverse problem we consider in this chapter is

to determine the support D of q from a knowledge of the far field pattern H∞(x̂, θ; p)

for all x̂, θ ∈ S2 and all p ∈ C3 with p · θ = 0. We consider two cases of the
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inhomogeneous medium D. First, we will consider the case where D is absorbing

everywhere with =(εr) > 0 on D. Second case, we consider the general case where

only parts of D may be absorbing, i.e., we allow general values for ε.

In this chapter, we propose a new direct sampling method using the indicator

Iz := k2

∣∣∣∣ ∫
S2

(θ̂ × p) e−ikθ·z ·
∫
S2

H∞(x̂, θ̂)(x̂× p) eikx̂·zds(x̂)ds(θ̂)

∣∣∣∣, z ∈ R3, (3.12)

where, x̂ ∈ S2, θ ∈ S2 and p ∈ C3. The theoretical foundation of the proposed recon-

struction scheme will be established in the next section. By using the factorization of

the far field operator which discussed in [37], we show a lower bound of the indicator

Iz for the sampling points inside the scatterer.

3.2 Theoretical Foundation of the Proposed Sam-

pling Method

The aim of this section is to establish the mathematical basis of our sampling method.

We introduce the subspace L2
t (S3) of L2(R3,C3) consisting of all tangential fields on
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the unit sphere [37], i.e.,

L2
t (S2) :=

{
g : S2 → C3 : g ∈ L2(S2), g(x̂) · x̂ = 0, x̂ ∈ S2

}
.

F : L2
t (S2)→ L2

t (S2) is the far field operator defined as

Fp(x̂) :=

∫
S2

H∞(x̂, θ̂; p(θ̂)) ds(θ̂) =

∫
S2

H∞(x̂, θ̂) p(θ̂) ds(θ̂), x̂ ∈ S2. (3.13)

For all sampling point z ∈ R3, define a test function φz ∈ L2
t (S2) as

φz(ϑ) := ik(ϑ× p) e−ikz·ϑ, ϑ ∈ S2. (3.14)

We can rewrite the indicator function Iz, which is given by (3.12), in the form

Iz := |(Fφz, φz)|, z ∈ R3. (3.15)

Here, we denote by ( · , · ) the inner product of L2
t (S2). Define the spaces [37]

H0(curl,D) = {v ∈ H(curl,D) : ν × v = 0 on ∂D},

Hloc(curl,R3) =
{
v : R3 −→ C3 : v|D ∈ H(curl,D), where D ⊂ R3

}
,

where

H(curl,D) =
{
v ∈ L2(D,C3) : curl v ∈ L2(D,C3)

}
.
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The electromagnetic interior transmission problem is defined as finding the solutions

v, w ∈ H(curl,D) such that

curl

[
1
εr
curl v

]
− k2v = 0 in D, curl2w − k2w = 0 in D,

ν × v = ν × w on ∂D and 1
εr
ν × curl v = ν × curl w on ∂D.

Let u = v − w. Then u and w satisfy

curl

[
1
εr
curl u

]
− k2u = curl[q curl w] in D, curl2w − k2w = 0 in D,

ν × u = 0 on ∂D and 1
εr
ν × curl u = qν × curl w on ∂D.

We say that the wave number k2 is an interior transmission eigenvalue [37] if there

exists a non-vanishing pair (u,w) ∈ H0(curl,D)×L2(D,C3, |q|) and a sequence {wi}

in H(curl,D) with wj → w in L2(D,C3, |q|) such that

curl
[ 1

εr
curl u

]
− k2u = curl [ qw ] in D, curl2wj − k2wj = 0 in D,

and

1

εr
ν × curl u = qν × w on ∂D,

where L2(D,C3, |q|) denotes the weighted L2−space of vector fields on D.
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3.2.1 Resolution Analysis for the Sampling Points Inside the

Scatterer

For all z ∈ R3, define Az ⊂ L2
t (S2) by

Az := {ψ ∈ L2
t (S2) : (ψ, φz) = 1},

where φz is the test function given by (3.14). To establish a lower bound for the indi-

cator function inside the scatterers, we first make the following general assumptions

on the εr.

Assumption 1 [37] Let εr ∈ L∞(D) satisfy

1. =(εr) ≥ 0 in D and εr = 1 in R3\D.

2. There exists c1 > 0 with <(εr) ≥ c1 on D.

3. For all f ∈ L2(R3,C3) with compact support there exists a unique radiating

solution v of curl

[
1
εr
curl v

]
− k2v = curl f in R3.

4. |εr − 1| is locally bounded below, i.e., for every compact subset M ⊂ D, there

exists c > 0 (depending on M) with |εr − 1| ≥ c for almost all x ∈M.
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Lemma 3.1 (Theorems 5.10, 5.11, 5.12 , 5.15 of [37] )

Assume that the conditions of Assumption 1 hold. Let T : L2(D,C3) → L2(D,C3)

be given by

Tf = k2(sign q)
[
f +

√
|q| curl v

]
,

where the contrast is q = 1 − 1/εr, sign q := q/|q| and v ∈ Hloc(curl,Rn) is the

radiating solution of curl
[

1
εr
curl v

]
− k2v = curl

[
q√
q
f
]
in R3. Then we have

1. Let F be the far field operator defined by (3.13) and H : L2
t (S2) → L2(D,C3)

defined by

(Hp)(x) =
√
|q(x)| curl

∫
S2

p(θ)eikx·θds(θ), x ∈ D.

Then F has the factorization

F = H∗TH,

where H∗ : L2(D,C3)→ L2
t (S2) denotes the adjoint of H, which is given by

(H∗ϕ)(x) = ikx̂×
∫∫

D

ϕ(y)e−ikx̂·y
√
|q(y)| dy, x̂ ∈ S2.

2. For any ε > 0. Choose a function χ ∈ C∞(R) with χ(t) = 1 for |t| ≥ ε

and χ(t) = 0 for |t| ≤ ε/2. Let Bε(z) ⊂ D be any closed ball with center z
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and radius ε > 0 that is completely contained in D. Define w0 ∈ C∞(R3) by

w0 = χ(|x− z|)Φ(x, z) in R3, where Φ(x, z) = 1
4π

eik|x−z|

|x−z| , x 6= z. Set

w =


−p(∆w0 + k2w0)/

√
|q| in Bε(z);

0 in D\Bε(z).

(3.16)

Then w ∈ L2(D,C3) and φz = H∗w where φz is defined in (3.14).

3. Assume that k2 is not an eigenvalue of the interior transmission eigenvalue

problem. Then =(Tf, f)L2(D) > 0 for all f ∈ R(H) ⊂ L2(D,C3) with f 6= 0.

Here R(H) denotes the closure of R(H) in L2(D,C3).

4. Assume that there exists a constant γ0 > 0 such that =(q) ≥ γ0|q| almost ev-

erywhere in D. Then there exists γ1 > 0 such that =(Tf, f)L2(D) ≥ γ1||f ||2L2(D)

for all f ∈ L2(D,C3).

5. Define the operator T0 from L2(D,C3) to itself by T0f = (sign q)f for f ∈

L2(D,C3). Then T − T0 is compact in L2(D,C3).

6. Assume that there exists r > 0 such that

∣∣∣∣εr(x)− 1

2
(1− ri)

∣∣∣∣ ≥ √1 + r2

2
for almost all x ∈ D.

Choose t ∈ (0, 2π) such that cos t ≤ 1/
√

1 + r2. Then <[e−it T0] is coercive, i.e.,
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there exists c > 0 such that

<[e−it(T0f, f)L2(D)] ≥ c ||f ||2L2(D), f ∈ L2(D).

Lemma 3.2 Assume that the conditions of Assumption 1 hold and there exists a

constant γ0 > 0 such that =(q) ≥ γ0|q| almost everywhere in D. Then the middle

operator T : L2(D,C3) → L2(D,C3) which is defined in Lemma 3.1 satisfies the

coercivity condition, i.e., there exists a constant c > 0 such that

|(Tf, f)L2(D)| ≥ c||f ||2L2(D), for all f ∈ R(H) ⊂ L2(D,C3).

Proof. From previous lemma part 4, we can find a constant γ1 > 0 such that

=(Tf, f)L2(D) ≥ γ1||f ||2L2(D) for all f ∈ L2(D,C3).

Since R(H) ⊂ L2(D,C3), we can find a constant c > 0 such that

=(Tf, f)L2(D) ≥ c||f ||2L2(D) for all f ∈ R(H) ⊂ L2(D,C3).

Since |(Tf, f)L2(D)| ≥ =(Tf, f)L2(D), we have

|(Tf, f)L2(D)| ≥ c||f ||2L2(D) for all f ∈ R(H) ⊂ L2(D,C3). 2
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Lemma 3.3 Assume that the conditions of Assumption 1 hold and there exists

r > 0 such that

∣∣∣∣εr(x)− 1

2
(1− ri)

∣∣∣∣ ≥ √1 + r2

2
for almost all x ∈ D.

Furthermore, assume that k2 is not an interior transmission eigenvalue. Then the

middle operator T : L2(D,C3) → L2(D,C3) which is defined in Lemma 3.1 satisfies

the coercivity condition, i.e., there exists a constant c > 0 such that

|(Tf, f)L2(D)| > c||f ||2L2(D), for all f ∈ R(H).

Proof. Suppose to the contrary there is no c such that |(Tf, f)L2(D)| > c||f ||2L2(D)

for all f ∈ R(H). Then there exists a sequence {fj} ∈ R(H) such that

||fj||L2(D) = 1 and (Tfj, fj)L2(D) → 0 as j →∞.

Since the unit ball in L2(D) is weakly compact, there exists a subsequence {fj} which

converges weakly to some f ∈ R(H). From part 5 of Lemma 3.1 the operator T − T0

is compact, which implies that

(T − T0)fj → (T − T0)f in L2(D,C3).
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Thus

((T − T0)(f − fj), fj)L2(D) → 0 as j →∞.

Since T is linear, we can rewrite (Tf, fj)L2(D) as

(Tf, fj)L2(D) = (Tfj, fj)L2(D) + ((T − T0)(f − fj), fj)L2(D)

+T0(f − fj, f)L2(D) − (T0(f − fj), f − fj)L2(D)

The left hand side converges to (Tf, f)L2(D). The first three terms on the right hand

side converge to zero. Since by assumption =(εr) ≥ 0, q = 1− 1/εr = 1− εr/|εr|2, so

=(q) = = [εr/|εr|2]. Hence =(q) ≥ 0 and we deduce that =(T0(f−fj), f−fj)L2(D) ≥ 0.

From this fact and part 3 of Lemma 3.1, we have f = 0. Since from part 6 of Lemma

3.1, <[e−itT0] is coercive, we have

c||fj||2L2(D) ≤ <[e−it(T0fj, fj)L2(D)] ≤ |e−it(T0fj, fj)L2(D)|

= |(T0fj, fj)L2(D)| ≤ |((T0 − T )fj, fj)L2(D)|+ |(Tfj, fj)L2(D)|,

which tends to zero as j →∞. Therefore, f → 0 which contradicts to the assumption

that |fj||L2(D) = 1. 2

Theorem 3.4 (Theorem 5.11 of [37]) Assume that the conditions of Assumption

1 hold. Then z ∈ D if and only if φz ∈ R(H∗), where the adjoint H∗ : L2(D,C3) →
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L2
t (S2) of H is given by Lemma 3.1 (part 1) and φz is given by (3.14).

After these preparations we are able to give a characterization of the support D of q

where all of D is absorbing, i.e, =(εr) > 0 on D, and for more general case where only

parts of D may be absorbing, i.e., we allow quite general values of ε. For both cases

we will give a lower bound of the proposed indicator function for sampling points

inside the scatters.

We formulate and prove the first result of this chapter in which we treat the absorbing

medium.

Lemma 3.5 Consider the inverse scattering by an inhomogeneous medium. As-

sume that the conditions of Assumption 1 hold and there exists γ0 > 0 such that

=(ε0(x)) ≥ γ0 for almost all x ∈ D. Then z ∈ D if and only if

inf{|(Fψ, ψ)| : ψ ∈ Az} > 0.

Furthermore, for z ∈ D we have the estimate

inf{|(Fψ, ψ)| : ψ ∈ Az} ≥
c

||w(·, z)||2L2(D)

(3.17)

for some constant c > 0 which is independent of z. Here w is defined by (3.16).

Proof Since q = 1 − 1/εr = 1 − εr/|εr|2, =(q) = = [εr/|εr|2]. By our assumption
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on εr, we conclude =(q) = =(εr)/|εr|2 ≥ γ0/||εr||2∞. Hence the assumption of part 4 in

Lemma 3.1 is satisfied. By using Lemma 3.2, the middle operator T : L2(D,C3) →

L2(D,C3) satisfies the coercivity condition, i.e., there exists a constant c > 0 such

that

|(Tf, f)L2(D)| ≥ c||f ||2L2(D), for all f ∈ R(H) ⊂ L2(D,C3).

Let F be the far field operator, which is defined by (3.13), and H : L2
t (S2) →

L2(D,C3), which is defined in Lemma 3.1. Since Assumption 1 is satisfied, then

by using Lemma 3.1 (part 1), F has the factorization F = H∗TH.

Let w be defined by (3.16). Then by using Lemma 3.1 (part 2), w ∈ L2(D,C3) and

φz = H∗w, where φz is defined in (3.14). In Theorem 2.3, choose B∗ = H, A = T,

Y = L2
t (S2), and X = L2(D,C3). Then φz ∈ R(H∗) if and only if

inf{|(Fψ, ψ)| : ψ ∈ Az} > 0.

Furthermore, we have the estimate

inf{|(Fψ, ψ)| : ψ ∈ Az} ≥
c

||w(·, z)||2L2(D)

for some constant c > 0 which is independent of z. Now by using Theorem 3.4, z ∈ D

if and only if φz ∈ R(H∗). So z ∈ D if and only if

inf{|(Fψ, ψ)| : ψ ∈ Az} > 0

92



also for all z ∈ D, we have

inf{|(Fψ, ψ)| : ψ ∈ Az} ≥
c

||w(·, z)||2L2(D)

.

2

In the second situation we consider more general electric permittivities εr, where only

parts of D may be absorbing.

Lemma 3.6 Consider the inverse scattering by an inhomogeneous medium. As-

sume that the conditions of Assumption 1 hold and there exists r > 0 such that

∣∣∣∣εr − 1

2
(1− ri)

∣∣∣∣ ≥ √1 + r2

2
for almost all x ∈ D.

Furthermore, assume that k2 is not an interior transmission eigenvalue. Then z ∈ D

if and only if

inf{|(Fψ, ψ)| : ψ ∈ Az} > 0

Furthermore, for z ∈ D we have the estimate

inf{|(Fψ, ψ)| : ψ ∈ Az} ≥
c

||w(·, z)||2L2(D)

(3.18)

for some constant c > 0 which is independent of z. Here w is defined by (3.16).
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Proof By using Lemma 3.3, the middle operator T : L2(D,C3) → L2(D,C3)

satisfies the coercivity condition, i.e., there exists a constant c > 0 such

|(Tf, f)L2(D)| ≥ c||f ||2L2(D), for all f ∈ R(H) ⊂ L2(D,C3).

Let F be the far field operator defined by (3.13) and H : L2
t (S2)→ L2(D,C3), which

is defined in Lemma 3.1. Since Assumption 1 is satisfied, then by Lemma 3.1 (part

1), F has the factorization F = H∗TH.

Let w be defined by (3.16). Then by using Lemma 3.1 (part 2), w ∈ L2(D,C3) and

φz = H∗w, where φz is defined in (3.14). In Theorem 2.3, choose B∗ = H, A = T,

Y = L2
t (S2), and X = L2(D,C3). Then φz ∈ R(H∗) if and only if

inf{|(Fψ, ψ)| : ψ ∈ Az} > 0

Furthermore, we have the estimate

inf{|(Fψ, ψ)| : ψ ∈ Az} ≥
c

||w(·, z)||2L2(D)

for some constant c > 0 which is independent of z. Now by using Theorem 3.4, z ∈ D

if and only if φz ∈ R(H∗). So z ∈ D if and only if

inf{|(Fψ, ψ)| : ψ ∈ Az} > 0.
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also for all z ∈ D, we have

inf{|(Fψ, ψ)| : ψ ∈ Az} ≥
c

||w(·, z)||2L2(D)

. 2

The estimation (3.17) and (3.18) in Lemma 3.5 and Lemma 3.6 provides some insight

to our indicator Iz for sampling points z ∈ D.

Note that

γ := (φz, φz) =

∫
S2

|φz(x̂)|2ds =

∫
S2

k2|x̂× p|2|e−ikx̂·z|2ds

=

∫
S2

k2|x̂× p|2ds =
8

3
π k2||p||2.

(3.19)

This implies that ψz := φz/γ ∈ Az. By the linearity of the far field operator F and

using the estimate in (3.17) or the estimate in (3.18), we have

Iz = |(Fφz, φz)| = γ|(Fψz, φz)|

≥ γ inf {|(Fψ, ψ)| : ψ ∈ Az}

≥ cγ

||w(·, z)||2L2(D)

, z ∈ D,

for some constant c > 0 which is independent of z.

The main result is summarized by the following Theorem
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Theorem 3.7 Under the assumptions of Lemma 3.5 or Lemma 3.6, we have

Iz ≥
cγ

||w(·, z)||2L2(D)

, z ∈ D,

for some constant c > 0 independent of z. Here, γ is defined by (3.19).

This result characterizes the support D of q. Again D can be absorbing everywhere,

or only parts of D may be absorbing.

3.2.2 Resolution Analysis for the Sampling Points Outside

the Scatterer

In this subsection we study the behavior of Iz outside the scatterer. For the subsequent

analysis, we need the well known Funk-Hecke formula

∫
S2

e−ikz·x̂Y β
α (x̂)ds(x̂) = κα jα(k|z|)Y β

α (ẑ), (3.20)

where κα = 4π/iα and jα is the the Spherical Bessel functions of order α.

It is well known that the far field pattern for scattering problem (3.7) - (3.9) has the
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following form [17]

H∞(x̂, θ̂; p) = x̂ ×
∫
∂D

{
ik [ν(y)×Hs(y, θ̂; p)]

+

√
µ0

ε0
[ν(y)× curl Hs(y, θ̂; p)]× x̂

}
e−ikx̂·yds(y).

Inserting it into our indictor Inew, we get,

Iz := k2

∣∣∣∣ ∫
S2

∫
S2

∫
∂D

(θ̂ × p) ·
{
ik x̂× [ν(y)×Hs(y, θ̂)(x̂× p)] e−ikx̂·(y−z)

+

√
µ0

ε0
x̂× ([ν(y)× curl Hs(y, θ̂)(x̂×p)]× x̂) e−ikx̂·(y−z)

}
ds(y)ds(x̂) e−ikθ̂·zds(θ̂)

∣∣∣∣,
= k2

∣∣∣∣ ∫
S2

G(z, θ̂)e−ikθ̂·zds(θ̂)

∣∣∣∣
where

G(z, θ̂) := (θ̂ × p) ·
∫
S2

∫
∂D

{
ik x̂× [ν(y)×Hs(y, θ̂)(x̂× p)] e−ikx̂·(y−z)

+

√
µ0

ε0
x̂× ([ν(y)× curl Hs(y, θ̂)(x̂× p)]× x̂) e−ikx̂·(y−z)

}
ds(y)ds(x̂).

(3.21)

Since a× b× c = b(a · c)− c(a · b) for any vectors a, b and c, G(z, θ̂) can be written as

G(z, θ̂) = (θ̂ × p) ·
{
ik

∫
S2

∫
∂D

[
ν(y)(x̂ · Hs(y, θ̂)(x̂× p))
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− Hs(y, θ̂)(x̂× p)(x̂. ν(y)

]
e−ikx̂·(y−z) ds(y)ds(x̂)

+

√
µ0

ε0

∫
S2

∫
∂D

x̂×
[
curl Hs(y, θ̂)(x̂× p)(ν(y) · x̂)

−x̂ (ν(y) · curl Hs(y, θ̂)(x̂× p))
]
e−ikx̂·(y−z) ds(y)ds(x̂)

}
.

G(z, θ̂) can be written as

G(z, θ̂) = (θ̂ × p) ·
∫
∂D

{ik
∫
S2

ν(y)(x̂. Hs(y, θ̂)(x̂× p))e−ikx̂·(y−z) ds(x̂)

−ik
∫
S2

Hs(y, θ̂)(x̂× p)(x̂. ν(y)) e−ikx̂·(y−z) ds(x̂)

+

√
µ0

ε0

∫
S2

[x̂× curl Hs(y, θ̂)(x̂× p)(ν(y). x̂)] e−ikx̂·(y−z) ds(x̂)

−
√
µ0

ε0

∫
S2

[x̂× x̂(ν(y) · curl Hs(y, θ̂)(x̂× p))]e−ikx̂·(y−z) ds(x̂)}ds(y).

By using Funk-Hecke formula in (3.20), we get

G(z, θ̂) = (θ̂ × p) ·
∫
∂D

{ikκ2 ν(y)(
y − z
|y − z|

. Hs(y, θ̂)(
y − z
|y − z|

× p)) j2(k|y − z|)

− ikκ2 Hs(y, θ̂)(
y − z
|y − z|

× p)( y − z
|y − z|

. ν(y)) j2(k|y − z|)

+

√
µ0

ε0
κ3

y − z
|y − z|

× curl Hs(y, θ̂)(
y − z
|y − z|

× p)(ν(y) · y − z
|y − z|

) j3(k|y − z|)

−
√
µ0

ε0
κ3

y − z
|y − z|

× y − z
|y − z|

(ν(y) · curl Hs(y, θ̂)(
y − z
|y − z|

×p)) j3(k|y−z|)}ds(y).
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Figure 3.1: Decay behavior of Spherical Bessel function j2(x) in two di-
mensions.
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Figure 3.2: Decay behavior of Spherical Bessel function j3(x) in two di-
mensions.

We note that G(z, θ̂) is a superposition of the Spherical Bessel functions j2 and j3.

As we see from Fig. 3.1 and Fig. 3.2, for large argument, these two functions decay

as the sampling points z goes away from the boundary ∂D. By Riemann-Lebesgue

Lemma, we obtain that

Inew(z)→ 0, as |z| → ∞.
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3.2.3 Stability Statement

We end this section by a stability statement, which shows that the lower bound of the

indicator function Iz is bounded above for all sampling points inside the scatterer.

Theorem 3.10 (Stability statement) Let D be a bounded domain in R3, and

denote by BC(D) the space of bounded continuous functions on D with sup norm.

Then

||Iz(·)||2BC(D) ≤ 4πγk2

∫
S2

∫
S2

|H∞(x̂, θ̂)(x̂× p)|2ds(x̂)ds(θ̂), (3.22)

where γ is given by (3.19).

Proof Using the Cauchy-Schwartz inequality, we find that, for all z ∈ D,

|Iz|2 =

∣∣∣∣ ∫
S2

k(θ̂ × p) e−ikθ̂·z
∫
S2

k H∞(x̂, θ̂)(x̂× p) eikx̂·zds(x̂)ds(θ̂)

∣∣∣∣2

≤
∫
S2

k2|θ̂×p|2|e−ikθ̂·z|2ds(θ̂)
∫
S2

∣∣∣∣ ∫
S2

k H∞(x̂, θ̂)(x̂×p) eikx̂·zds(x̂)

∣∣∣∣2ds(θ̂)
= γ

∫
S2

∣∣∣∣ ∫
S2

k H∞(x̂, θ̂)(x̂× p) eikx̂·zds(x̂)

∣∣∣∣2ds(θ̂)
≤ γ

∫
S2

∫
S2

k2|H∞(x̂, θ̂)(x̂× p)|2ds(x̂)

∫
S2

|eikx̂·z|2ds(x̂) ds(θ̂)

= γ

∫
S2

∫
S2

k2|H∞(x̂, θ̂)(x̂× p)|2ds(x̂)

∫
S2

1 ds(x̂) ds(θ̂)
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= 4π k2γ

∫
S2

∫
S2

|H∞(x̂, θ̂)(x̂× p)|2ds(x̂) ds(θ̂),

where we have used the fact that
∫
S2 1 ds(x̂) = 4π, for all x̂, θ̂ ∈ S2 and |eikx̂·z| =

|e−ikθ̂·z| = 1 for z ∈ D. 2
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Chapter 4

New Sampling Method for

Multifrequency Inverse Source

Problems with Sparse Far Field

Measurements

4.1 Introduction

Inverse source problems (ISPs) have attracted the attention of many researcher be-

cause of their applications, such as identification of pollution sources in the environ-

ment [22] [23], sound source localization [57], and determination of the source current
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distribution in the brain from boundary measurements [19].

In this chapter we propose a new sampling method for multifrequency inverse source

problems for time-harmonic acoustic waves with a finite set of far field data. The

method is based on the factorization method for multifrequency inverse source

problems with sparse far field measurements waves discussed by Griesmaier and

Scmiedecke in 2017 [31]. We approximate the position and the convex geometry

of the support of the source f of the time harmonic acoustic waves from the far field

data. In addition, we assume that far field measurements of the wave radiated by

a collection of compactly supported sources are available across a frequency band

(0, kmax) ⊆ R but only at a few ( finitely many) of linearly independent observation

directions

{θ1, . . . , θJ} = Θ ⊆ Sd−1,

where d = 2, 3 denotes the dimension.

The main feature of this method is that the indicator function is based on the inner

product and therefore the method is very simple to implement. With the help of the

factorization of the corresponding far field operator [31], a lower bound estimate will

be established for the sampling points inside the support of the source. Moreover,

we will show that the indicator function decays as the sampling point moves away

from the support of the source, and thus gives a characterization of the support of

the source.
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In order to reduce the number of sensor locations required to obtain a useful recon-

struction of the support of the sources [31], we develop a reconstruction method that

efficiently utilizes multifrequency information. Let k = w/c > 0 be the wave number

of a time harmonic wave where w > 0 and c > 0 denote the frequency and sound

speed, respectively. Let

D :=
M⋃
m=1

Dm ⊆ Rd

be an ensemble of finitely many well-separated bounded domains in Rd, d = 2, 3, i.e.,

Dj ∩ Dl = ∅ for j 6= l. Suppose f ∈ L∞(D) represent the acoustic source with

compact support in D. Then the time-harmonic wave u ∈ H1
loc(Rd) radiated by f

solves the Helmholtz equation

−∆u− k2u = f in Rd (4.1)

and satisfies the Sommerfeld radiation condition

lim
r−→∞

r
d−1

2

(∂u
∂r
− iku

)
= 0, r = |x|. (4.2)

Furthermore, u also satisfies the asymptotic behavior

u(x; k) = Ck
eik|x|

|x| d−1
2

u∞(θx; k) +O(|x|−
d+1

2 ), θx =
x

|x|
∈ Sd−1,
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as r = |x| −→ ∞, where Ck = eiπ/4/
√

8πk if d = 2 and Ck = k2/4π if d = 3, and the

far field pattern u∞(. ; k) is the far field radiated by f at wave number k given by

u∞(θx; k) =

∫
D

e−ikθx·y f(y) dy = f̂(kθx) θx ∈ Sd−1. (4.3)

We assume that the far field is observed at only a few observation directions

{θ1, . . . , θJ} := Θ ⊆ Sd−1, (4.4)

but across a whole band of wave numbers k ∈ (0, kmax) for some kmax > 0. Hence,

the measured data set is equivalent to

{
u∞(θj, k) | θj ∈ Θ, k ∈ (0, kmax)

}
. (4.5)

The inverse problem that we consider here is to deduce information on the location

of the support of the source f from these data. We remark that Sylvester [63] shows

the uniqueness of this inverse problem.

The convex hull of a subset Ω ⊆ Rd [31] is the intersection of all closed half spaces

Hs,θ := {x ∈ Rd | x · θ ≤ s}, θ ∈ Sd−1, s ∈ R,

106



which contain Ω, i.e,

ch(Ω) :=
⋂

θ∈Sd−1

{x ∈ Rd | x · θ ≤ sΩ(θ)},

where

sΩ(θ) := sup
x∈Ω

x · θ, θ ∈ Sd−1,

is the supporting function of Ω.

The θ-convex hull for a single direction θ ∈ Sd−1 is defined as

KsΩ(θ) := {x ∈ Rd | sΩ(−θ) ≤ x · θ ≤ sΩ(θ)},

which is the smallest strip (intersection of two parallel half spaces) with normals in

the directions ±θ that contains Ω.

The Θ-convex hull of Ω is defined as

KsΩ(Θ) :=
⋂
θ∈Θ

{x ∈ Rd | sΩ(−θ) ≤ x · θ ≤ sΩ(θ)},

Note that, for D =
⋃m=M
m=1 Dm, we have

M⋃
m=1

ch(Dm) ( KD(Θ) :=
⋂
θ∈Θ

M⋃
m=1

KsDm
(θ) ( ch(D).
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Figure 4.1: Example with two disjoint disks D1, D2. Left: ch(D1) ∪
ch(D2)(blue). Center: ∩θ∈S1(KSD1

(θ) ∪ KSD2
(θ))(blue). Right: ch(D1 ∪

D2)(blue).

Fig. 4.1 [31] shows the above inequality for the case when M = 2 and D1 and D2 are

two disjoint balls in Rd.

Recently, Griesmaier [31] shows that under certain conditions on the source f , the

middle set KsD(Θ) can be reconstructed by the data given in (4.5). We study the

behaviors of the indicator function for each single observation direction. Then we

combine them for all observation directions in Θ to give a fast and effect reconstruction

of KsD(Θ).

Hence, we assume that the real part of a complex multiple of the sources is bounded

away from zero on their support, i.e., we assume that f ∈ L∞(D) is such that there

exist τ ∈ R and c0 > 0 such that <(eiτf(x)) ≥ c0 for almost every x ∈ D. We call

this a coercivity assumption on the sources.

First we propose an indicator function for a single observation direction in terms of

the far field data u∞(θj; k), measured in the observation directions θj. We will show,
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according to values of this indicator function, whether z lies in the strip KsD(θj)

or not. This can be used to determine the smallest union of strips (intersections

of parallel half spaces) with normals in the observation directions ±θj that contains

the support of the sources. The proposed indicator function for a single observation

direction θj is characterized by the following

Iθjz,ε :=

∣∣∣∣∣ 1

|Bε(z)|2

∫ kmax

0

∫ kmax

0

u∞(θj, t−s)
∫
Bε(z)

∫
Bε(z)

eiθj ·(ty−sx)dydx ds dt

∣∣∣∣∣, z ∈ Rd,

(4.6)

where Bε(z) denotes the ball of radius ε centered at z, and |Bε(z)| its volume. We

will discuss the theoretical foundation of the proposed reconstruction scheme shortly.

With the help of the inf-criterion characterization obtained by using the factorization

method, we will show, if z ∈
⋃M
m=1 int(KSDm

(θj)), then there exists ε > 0 such that

I
θj
z,ε > 0. We will give a lower bound for I

θj
z,ε for this case. If z /∈

⋃M
m=1 int(KSDm

(θj)),

then there exists ε0 > 0 such that the behavior of I
θj
z,ε decays and goes to 0 for any

0 < ε ≤ ε0. Here we use int(Ω) to denote the interior of Ω.

By combining this test for all observation directions {θ1, . . . , θJ} = Θ ⊆ Sd−1, we

introduce the following indicator

IΘ
z,ε :=

∑
θj∈Θ

∣∣∣∣∣ 1

|Bε(z)|2

∫ kmax

0

∫ kmax

0

u∞(θj, t− s)
∫
Bε(z)

∫
Bε(z)

eiθj ·(ty−sx)dydx ds dt

∣∣∣∣∣,
(4.7)
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where z ∈ Rd.

This indicator recovers a union of the intersections of all strips obtained for each pair

of observation directions ±θj. It gives a characterization of a subset of the Θ-convex

hull of the support D of the source in terms of the measured data (4.5).

4.2 Theoretical Foundation of the Proposed Sam-

pling Method

The aim of this section is to establish the mathematical basis of the sampling

method. We consider the case of the far field data u∞(θj; k), k ∈ (0, kmax) for

a single observation direction θj, 1 ≤ j ≤ J. Define the convolution operator

F θj : L2(0, kmax)→ L2(0, kmax) by

(F θjφ)(t) :=

∫ kmax

0

u∞(θj; t− s)φ(s)ds, t ∈ (0, kmax). (4.8)

For all sampling points z ∈ Rd and ε > 0, define a test function φ
θj
z,ε ∈ L2(0, kmax) by

φθjz,ε(t) :=
1

|Bε(z)|

∫
Bε(z)

e−itθj·ydy, t ∈ (0, kmax), (4.9)
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where again Bε(z) denotes the ball of radius ε centered at z, and |Bε(z)| its volume.

Then we may write our indicator function Iz(t) given in (4.6) in the simple form

Iθjz,ε :=
∣∣(φθjz,ε, F θjφθjz,ε)

∣∣, z ∈ Rd. (4.10)

Here, we denote by (· , ·) the inner product of L2(0, kmax).

For all z ∈ Rd and ε > 0, define Az ⊂ L2(0, kmax) by

Az,ε := {ψ ∈ L2(0, kmax) : (ψ, φθjz,ε) = 1},

where φ
θj
z,ε is the test function defined by (4.9). To establish a lower bound for our

indicator function for z ∈
⋃M
m=1 int(KSDm

(θj)), we need to use the following lemmas

in the factorization method for multifrequency inverse source problems with sparse

far field measurements discussed in [31].

Lemma 4.1 (Theorem 3.1 of [31]) Let F θj : L2(0, kmax)→ L2(0, kmax) be defined

by (4.8). Then F θj has the following factorization

F θj = LθjDTD(LθjD )∗,
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where the operator LθjD : L2(D)→ L2(0, kmax) is defined by

(LθjDψ)(t) :=

∫
D

e−itθj ·y ψ(y)dy, t ∈ (0, kmax).

Its adjoint (L
θj
D )∗ : L2(0, kmax)→ L2(D) is defined by

((L
θj
D )∗φ)(y) :=

∫ kmax

0

eisθj ·y φ(s)ds, y ∈ D,

The operator TD : L2(D) → L2(D) is a multiplication operator given by TDg = fg,

where f ∈ L∞(D) denotes the source radiating the far field u∞ as in (4.3).

The dependence of the range of the operator LθjD on the projection (θj · D)θj of

the domain D on the one-dimensional subspace of Rd spanned by the observation

directions ±θj is discussed in Lemma 3.3 of [31]. The next lemma characterizes the

projection (θj ·D)θj of the domain D on the one-dimensional subspace of Rd spanned

by the observation direction θj in terms of the range of the operator LθjD

Lemma 4.2 (Lemma 3.4 of [31]) Consider the test function defined in (4.9). For

any z ∈ Rd.

1. If θj · z ∈ θj ·D, then there exists ε > 0 such that φ
θj
z,ε ∈ R(L

θj
D ).
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2. For any ε > 0,

θj ·Bε(z)
⋂

θj ·D = ∅

implies that φ
θj
z,ε /∈ R(L

θj
D ).

Proof [31]

1. If θj · z ∈ θj ·D, then there exists y ∈ D such that θj · z = θj · y. Since D is

open, there exists ε > 0 such that Bε(y) ⊆ D. Hence, Bε(z) · θj = Bε(y) · θj. Define

wε = χBε(y), (4.11)

where χBε(y) denotes the characteristic function on Bε(y). Then we have

φθjz,ε = L
θj
D wε.

Therefore, φ
θj
z,ε ∈ R(L

θj
D ).

2. If θj ·Bε(z)
⋂
θj ·D = ∅, then Lemma 3.3 of [31] shows that

R(L
θj
Bε(z)

) ∩R(L
θj
D ) = {0}.

Since 0 6= φ
θj
z,ε = L

θj
Bε(z)

χBε(z) ∈ R(L
θj
Bε(z)

), this implies φ
θj
z,ε /∈ R(L

θj
D ). 2
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Lemma 4.3 Assume that there exists τ ∈ R and a constant c0 > 0 such that

<(eiτf(x)) ≥ c0 for almost every x ∈ D. Then the middle operator TD : L2(D) →

L2(D), which is defined in Lemma 4.1, satisfies the coercivity condition, i.e., there

exists a constant c > 0 such that

|〈g, TD g〉D| ≥ c||g||2L2(D) for all g ∈ L2(D).

Proof. Since <(eiτf(x)) ≥ c0, then

<(eiτ 〈 g, TD g 〉D) =

∫
D

<(eiτf(x))|g(x)|2 dx ≥ c0||g||2L2(D),

|〈 g, TD g〉D| = |eiτ | |〈g, TDg〉D| = |eiτ 〈g, TDg〉D|

≥ Re(eiτ 〈g, TD g〉D) ≥ c0||g||2L2(D). 2

By combining Theorem 3.6 and Theorem 3.7 in [31], we have the following lemma

Lemma 4.4 (Theorems 3.6 and 3.7 of [31]) Consider the test function φ
θj
z,ε,

which is defined in (4.9). For any z ∈ Rd, z ∈
⋃M
m=1 int(KSDm

(θj)) if and only if there

exists ε > 0 such that φ
θj
z,ε ∈ R(L

θj
D ).

Lemma 4.5 Consider the inverse source problem defined in (4.1)- (4.2). Assume
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that there exists τ ∈ R and a constant c0 > 0 such that <(eiτf(x)) ≥ c0 for almost

all x ∈ D. For any z ∈ Rd, z ∈
⋃M
m=1 int(KSDm

(θj)) if and only if there exists ε > 0

such that

inf{|(ψ, F θjψ)| : ψ ∈ Az,ε} > 0.

Furthermore, for z ∈
⋃M
m=1 int(KSDm

{±θj}) we have the estimate

inf{|((ψ, F θjψ)| : ψ ∈ Az,ε} ≥
c

||wε||2L2(D)

(4.12)

for some constant c > 0 independent of z. Here wε is defined by (4.11).

Proof. By using Lemma 4.1, F θj has the factorization

F θj = LθjDTD(LθjD )∗,

where L
θj
D , TD and (L

θj
D )∗ are defined in Lemma 4.1. Since there there exits τ ∈ R

and a constant c0 > 0 such that <(eiτf(x)) ≥ c0 for almost all x ∈ D, then by using

Lemma 4.3, there exists a constant c > 0 with

|(g, TD g)D| ≥ c||g||2L2(D) for all g ∈ L2(D).

In Theorem 2.3, choose B = L
θj
D , A = TD, Y = L2(0, kmax), and X = L2(D). Then
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for some ε > 0, φ
θj
z,ε ∈ R(L

θj
D ) if and only if

inf{|(ψ, F θjψ)| : ψ ∈ Az,ε} > 0.

Furthermore, for φ
θj
z,ε ∈ R(L

θj
D ), we have the estimate

inf{|(ψ, F θjψ)| : ψ ∈ Az,ε} ≥
c

||wε||2L2(D)

for some constant c > 0 independent of z. By using Lemma 4.4, z ∈⋃M
m=1 int(KSDm

(θj)) if and only if there exists ε > 0 such that φ
θj
z,ε ∈ R(L

θj
D ). There-

fore, z ∈
⋃M
m=1 int(KSDm

(θj)) if and only if

inf{|(ψ, F θjψ)| : ψ ∈ Az,ε} > 0.

Furthermore, for z ∈
⋃M
m=1 int(KSDm

(θj)), we have the estimate

inf{|(ψ, F θjψ)| : ψ ∈ Az,ε} ≥
c

||wε||2L2(D)

. 2

A straightforward calculation shows that

(φθjz,ε, φ
θj
z,ε) =

∫ kmax

0

∣∣φθjz,ε∣∣2ds =
1

|Bε(z)|2

∫ kmax

0

∫
Bε(z)

∫
Bε(z)

1 dy dw ds = kmax. (4.13)
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This implies that ψz,ε := φ
θj
z,ε/kmax ∈ Az,ε. By the linearity of the far field operator

F θj and using the estimate (4.12), we have

Iθjz,ε = |(φθjz,ε, F θjφθjz,ε)|

= kmax |(φθjz,ε, F θjψz,ε, )|

≥ kmax inf { |(ψ, F θjψ)| : ψ ∈ Az,ε}

≥ c kmax
||wε||2L2(D)

for some constant c > 0 which is independent of z.

The main result is summarized in the following Theorem

Theorem 4.6 Under the assumptions of Lemma 4.5,

if z ∈
⋃M
m=1 int(KSDm

(θj)), then there exists ε > 0 such that

Iθjz,ε ≥
c kmax
||wε||2L2(D)

for some constant c > 0 which is independent of z. Here wε is defined by (4.11).

Now, we move on to study the behavior of the indicator function given in (4.6) for a

single observation direction {θj} as the sampling points z move away from the strip

KSDm
(θj). Let ε in (4.6) go to zero. Then we can rewrite the indicator function in
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(4.6) as

Iθjz =

∣∣∣∣∣
∫ kmax

0

∫ kmax

0

u∞(θj, t− s)ei(t−s)θj ·zdsdt

∣∣∣∣∣.

By making the substitution k = t− s, η = t+ s, the indicator can be written as

Iθjz = kmax

∣∣∣∣∣
∫ kmax

0

u∞(θj, k)eikθj ·zdk

∣∣∣∣∣.
Recall from (4.3) that the far field pattern has the following representation

u∞(θj, k) =

∫
D

e−ikθj · y f(y)dy, θj ∈ Θ, k ∈ (0, kmax).

Substituting this into the indicator I
θj
z we get

Iθjz = kmax

∣∣∣∣∣
∫ kmax

0

∫
D

e−ikθj · y f(y)dyeikθj ·zdk

∣∣∣∣∣
= kmax

∣∣∣∣∣
∫
D

∫ kmax

0

eikθj ·(z−y)dk f(y)dy

∣∣∣∣∣
= kmax

∣∣∣∣∣
∫
D

eikmaxθj ·(z−y) − 1

θj · (z − y)
f(y)dy

∣∣∣∣∣.
We observe that the indicator I

θj
z decays as 1/θj · (z − y) as the sampling point z

moves away from the strip KSDm
(θj).

If we take Θ = Sd−1 and let ε goes to zero then the indicator given in (4.7) can be
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written as

IΘ
z =

∣∣∣∣∣
∫ kmax

0

∫ kmax

0

∫
Sd−1

u∞(θ, t− s) ei(t−s)θ. zdθ dt ds

∣∣∣∣∣, z ∈ Rd, θ ∈ Sn−1.

By making the substitution k = t− s, η = t+ s, such an indicator can be written in

the form

IΘ
z = kmax

∣∣∣∣∣
∫ kmax

0

∫
Sd−1

u∞(θ, k) eikθ·zdθ dk

∣∣∣∣∣, z ∈ Rd.

Substituting the far field u∞(Θ; k), which is defined in (4.3), into IΘ
z , yields

IΘ
z = kmax

∣∣∣∣∣
∫ kmax

0

∫
Sd−1

∫
D

e−ikθ·y f(y)dy eikθ·zdθ dk

∣∣∣∣∣
= kmax

∣∣∣∣∣
∫ kmax

0

∫
D

∫
Sd−1

e−ikθ·y eikθ·zdθ f(y)dydk

∣∣∣∣∣
= kmax

∣∣∣∣∣
∫ kmax

0

∫
D

∫
Sd−1

e−ikθ·(y−z) dθ f(y)dydk

∣∣∣∣∣
= kmax

∣∣∣∣∣
∫ kmax

0

µ

∫
D

f0(k|y − z|)f(y) dy ds

∣∣∣∣∣,

where

µ =


2π , d = 2;

4π , d = 3.

and f0(t) =


J0(t) , d = 2;

j0(t) , d = 3,
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with J0 and j0 being the Bessel functions and Spherical Bessel functions of order zero,

respectively.

This means that IΘ
z is a superposition of the Bessel functions f0. For large argu-

ments, we have the following asymptotic formulas for the Bessel and spherical Bessel

functions

j0(t) =
sin t

t

{
1 +O

(1

t

)}
, as t→∞,

J0(t) =
sin t+ cos t√

πt

{
1 +O

(1

t

)}
, as t→∞.

See Fig. 2.7 and 2.8 for the behavior of these four functions. This further implies

that IΘ
z decays as the sampling points z goes away from the boundary ∂D. Therefore,

IΘ
z goes to zero as z goes far away from the boundary ∂D.

4.3 Numerical Implementation

Now we present some numerical examples of the new sampling method in two di-

mensions. The synthetic data is computed by solving the forward problem using the

Lippmann-Schwinger equation, i.e., (4.3). Let D be the compact support of f . We

generate a triangular mesh T with the mesh size h ≈ 0.01. For the direction θ and
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fixed k, the far-field pattern is approximated by

u∞(θ; k) ≈
∑
T∈T

e−ikθ·yT f(yT )|T |, (4.14)

where T ∈ T is a triangle, yT is the center of T , and |T | denotes the area of T .

For all examples, for θj ∈ Θ, we assume to have multiple frequency far field data

u∞(θj; kn), n = 1, . . . N,

where N = 20, kmin = 0.5, kmax = 20 such that

kn := (n− 0.5)∆k, ∆k :=
kmax
N

.

Since the test function φ
θj
z in (4.9) is continuous, we choose ε to be 0, we discretize

φ
θj
z by the test vector

φθjz := [e−it0θj ·z, . . . e−itN−1θj ·z]T ∈ CN , z ∈ Rd. (4.15)

We assume that ∆k ≤ π
R
, where R is the radius of the smallest ball centered at the

origin that contains the support of the source f. So no two points in the region of

interest BR(0) share the same test vector φ
θj
z .
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Assume that the sampling domain is S := [−4, 4]×[−4, 4]. Each direction is uniformly

divided into 80 intervals and we end up with 812 sampling points uniformly distributed

in S. We denote by Z the set of all sampling points.

4.3.1 One Observation Direction

First we consider the case for a single observation direction θj. From Theorem 4.6, the

the far field data u∞(θj, k), k ∈ (0, kmax), for a single observation directions θj ∈ Θ

uniquely determine the smallest union of strips perpendicular to ±θj that contains

all sources.

Corollary 4.7 Under the assumption of Theorem 4.6, we have, for any z ∈ Rd,

1. If z ∈
⋃M
m=1 int(KSDm

(θj)), then there exists ε > 0 and c > 0 such that I
θj
z,ε ≥

c kmax
||wε||2

L2(D)

> 0.

2. If z /∈
⋃M
m=1 int(KSDm

(θj)), then there exists ε0 > 0 such that I
θj
z,ε goes to zero for

any 0 < ε ≤ ε0.

From Corollary 4.7 we expect that the value of the indicator function I
θj
z,ε defined in

(4.6) is much larger for z ∈
⋃M
m=1 int(KSDm

(θj)) than for z 6∈
⋃M
m=1 int(KSDm

(θj)).

We normalize the indicator function, i.e., the plot is for Iθz/M(Iθz ) where M(Iθz ) the
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Figure 4.2: Indicators of different observation directions for one object.
Top Left: θ = −π/4. Top Right: θ = 0. Bottom Left: θ = π/8. Bottom
Right: θ = π/2.

largest element of Iθz , z ∈ Z. Let f = 5 and assume that the support of f is a

rectangle given by (1, 2)× (1, 1.6). In Fig. 4.2, we plot the indicators for four different

observation directions−π/4, 0, π/8 and π/2. The picture clearly shows that the source

lies in a strip, which is perpendicular to the observation direction.

In Fig. 4.3, we show the results when the support of source has two components.

One is a rectangle given by (1, 1.6)× (1, 1.4). The other one is a disc with radius 0.2
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Figure 4.3: Indicators of different observation directions for two objects.
Top Left: θ = −π/4. Top Right: θ = 0. Bottom Left: θ = π/8. Bottom
Right: θ = π/2.

centered at (−0.5,−0.5). For different observation directions, strips containing the

objects are constructed effectively.

4.3.2 Two Observation Directions

Now we consider two observation directions: θ1 = 0 and θ2 = π/2. We compute the

indicators and superimpose them in one picture. Since the observation directions are
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Figure 4.4: θ = π/2 and θ = 0. Left: Single object; Right: Two objects.

perpendicular to each other, the strips are perpendicular to each other in Fig. 4.4.

For both one object and two objects, we see that intersection of the strips contains

the support of f .

4.3.3 Multiple Observation Directions

Combining the characterization of the support of the source from Theorem 4.6 and

Corollary 4.7 for all available receiver directions θ1, . . . , θj ∈ Θ, we obtain the

following result

Corollary 4.8 Under the assumption of Theorem 4.6, we have for any z ∈ Rd,

1. If z ∈
⋂J
j=1

⋃M
m=1 int(KSDm

(θj)), then there exists ε > 0 such that Iz,ε > 0, for

any 1 ≤ j ≤ J.
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Figure 4.5: Reconstruction using multiple observation directions when f =
5. Left: single object. Right: Two objects.

2. If z /∈
⋂J
j=1

⋃M
m=1 int(KSDm

(θj)), then there exists 1 ≤ j ≤ J, and ε0 > 0 such

that Iz,ε goes to zero for any 0 < ε ≤ ε0.

Corollary 4.8 gives a rigorous characterization of a subset of the Θ−convex hull

of the support D of the source. For the numerical implantation of Corollary 4.8,

we compute the corresponding indicator function I
θj
z for each observation direction

θj, j = 1, . . . J. We expect that the value of Iz defined in (4.7) is much larger for

z ∈
⋂J
j=1

⋃M
m=1 int(KSDm

(θj)) than for z /∈
⋂J
j=1

⋃M
m=1 int(KSDm

(θj)). Hence, the

plot Iz for any z ∈ BR(0) should yield a visualization of
⋂J
j=1

⋃M
m=1 int(KSDm

(θj)).

We use N = 20 observation directions θj, j = 1, . . . , 20 such that θj = −π/2 + jπ/N .

We superimpose the indicators and show the results in Fig. 4.5. The locations and

sizes of support of f are reconstructed correctly.
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Figure 4.6: Reconstructions using multiple observation directions when
f(x, y) = x2 − y2 + 5. Left: single object. Right: Two objects.

Next, we choose f(x, y) = x2 − y2 + 5, a function depending on the locations but

independent of the wave number k. The reconstruction is shown in Fig. 4.6. Finally,

we assume that f depends on k as well. Let

f1(x, y; k) = k2(x2 − y2 + 5),

and

f2(x, y; k) = eik(x cos 3π/2+y sin 3π/2)(x2 − y2 + 5).

The reconstructions are shown in Fig. 4.7. Note that this case is not covered by the

theory.
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Figure 4.7: Reconstructions of sources depending on wavenumber k. Top:
f1(x, y; k) = k2(x2 − y2 + 5). Top Left: one object. Top Right: two objects.
Bottom: f2(x, y; k) = eik(x cos 3π/2+y sin 3π/2)(x2 − y2 + 5). Bottom Left: one
object. Bottom Right: two objects.

4.3.4 Extended objects

The sizes of supports of f in the above examples are small compared with the wave-

lengths used. The smallest wavelength is λmin = 2π/10 ≈ 0.628. In Fig. 4.8, we show
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Figure 4.8: Reconstructions of larger objects when f(x, y) = 5. Left:
triangle. Right: thin bar.

the reconstructions of larger objects. One is an equilateral triangle with vertices

(−2, 0), (1, 0), (−1/2, 3/2
√

3− 1).

The second one is a thin slab given by (−2, 2) × (0, 0.1). The results indicate that

shorter wavelength could lead to better reconstruction.
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Chapter 5

Conclusions

5.1 Summary and Conclusions

In this thesis, we developed two new sampling methods for two inverse scattering

problems.

We first generalized the indicator method in [45], which is discussed in Chapter 2, and

proposed a new direct sampling method for inverse electromagnetic scattering prob-

lems in an inhomogeneous isotropic medium in R3 using the far field measurements.

We considered two cases of the contrasts. First case, when all of D is absorbing.

Second case, we considered the more general case whene only parts of D may be

absorbing. In this method we proposed an indicator function which is big when the
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sampling point lies inside the scatterer and when the sampling point moves away

from the boundary of the scatterer the value of the indicator function decays and

goes to zero. The main feature of this method is that the indicator function is based

on the inner product, and therefore the method is very simple to implement. With

the help of the factorization of the corresponding far field operator, a lower bound

established for sampling points inside the scatterers. Furthermore, we showed that

the indicator function decays like Bessel function as the sampling point moves away

from the boundary of the scatterers. Moreover, we showed that the proposed method

is stable with respect to noises in the data.

As the second contribution, we proposed a new sampling method for multifrequency

inverse source problem for time-harmonic acoustic waves using a finite set of far field

data. The method is based on the factorization method for multifrequency inverse

source problems with sparse far field measurements. The main feature of this method

is that the indicator function is based on the inner product, and therefore the method

is very simple to implement. We have developed a non-iterative reconstruction scheme

of factorization-type to locate the support of the sources and studied the behavior of

the indicator function, which gives a characterization of the support of the source.

The method produces a union of convex polygons with normals in the observation di-

rections that approximates the positions and the convex hull of well-separated source

components.
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5.2 Future Work

Based on the work accomplished in this thesis, we provide below a number of possible

future works:

1. Study the orthogonality sampling [56] for the detection of the location and

shape of objects from the far field pattern of scattered electromagnetic waves.

2. Study the theoretical foundation of the orthogonality sampling [56]. The theory

of the orthogonality sampling is only partially resolved and the relation between

indicator functions proposed in [56] and the shape of the scatterer is open and

needs further investigation.

3. Study a factorization method for multifrequency inverse source problem for

time-harmonic electromagnetic waves with a limited set of far field data.

4. Generalize the method proposed in Chapter 4 to the case of multifrequency

inverse source problem for time-harmonic electromagnetic waves with a limited

set of far field data.

133



References

[1] Ammari, Habib and Kang, Hyeonbae. Reconstruction of small inhomogeneities

from boundary measurements. Springer, 2004.

[2] Ammari, Habib and Kang, Hyeonbae. Polarization and moment tensors: with

applications to inverse problems and effective medium theory. Springer Science

& Business Media, vol. 162, 2007.

[3] Andrica, Dorin and Piticari, Mihai. An extension of the Riemann-Lebesgue

lemma and some applications. Proc. International Conf. on Theory and Appli-

cations of Mathematics and Informatics, vol. 54, no. 8, 26-39, 2014.

[4] Arens, Tilo. Why linear sampling works. Inverse problems, vol. 20, no. 1, 163-173,

2004.

[5] Bektas, H Onder and Ozdemir, Ozgur. Direct sampling method for monostatic

radar imaging. Electromagnetic Theory (EMTS), 2016 URSI International Sym-

posium, 152-154, 2016.

134



[6] Cakoni, Fioralba and Colton, David. Qualitative methods in inverse scattering

theory: An introduction. Springer-Verlag, Berlin, 2006.

[7] Cakoni, Fioralba, Colton, David, Monk, Peter and Sun, Jiguang. The inverse

electromagnetic scattering problem for anisotropic media. Inverse Problems, vol.

26, no. 4, 045011, 2010.

[8] Cakoni, Fioralba, Colton, David and Monk, Peter. The linear sampling method

in inverse electromagnetic scattering. SAIM, 2011.

[9] Cakoni, Fioralba, Di Cristo, Michele and Sun, Jiguang. A multistep reciprocity

gap functional method for the inverse problem in a multilayered medium. Complex

Var. Elliptic Equ., vol. 57, no. 2-4, 261-276. 2012.

[10] Cheney, Margaret. The linear sampling method and the MUSIC algorithm. In-

verse problems, vol. 17, no. 4, 591, 2001.

[11] Cheney, Margaret. Ammari, Habib and Iakovleva, Ekaterina and Lesselier, Do-

minique. Multiscale Modeling & Simulation, vol. 3, no. 3, 597-628, 2005.

[12] Colton, David, Coyle, Joe and Monk, Peter. Recent developments in inverse

acoustic scattering theory. SIAM Rev. vol. 42, no. 3, 369-414, 2000.

[13] Colton, David, Haddar, Houssem and Piana, Michele. The linear sampling

method in inverse electromagnetic scattering theory. Inverse Problems, vol. 19,

no. 6, 105-137, 2003.

135



[14] Colton, David and Kirsch, Andreas. A simple method for solving inverse scat-

tering problems in the resonance region. Inverse problems, vol. 12, no. 4, 383,

1996.

[15] Colton, David and Kress, Rainer. Inverse acoustic and electromagnetic scattering

theory. Applied Mathematical Sciences, Berlin: Springer-Verlag, 1998.

[16] Colton, David and Kress, Rainer. Integral equation methods in scattering theory.

SIAM, 2013.

[17] Colton, David and Kress, Rainer. Inverse acoustic and electromagnetic scattering

theory. Third edition. Applied Mathematical Sciences, vol. 93, Springer, New

York, 2013.

[18] Colton, David, Monk, Peter and Sun, Jiguang. Analytical and computational

methods for transmission eigenvalues. Inverse Problems 26 (2010), no. 4, 045011.

[19] Dassios, George. Electric and magnetic activity of the brain in spherical and

ellipsoidal geometry. Mathematical Modeling in Biomedical Imaging, Springer,

133-202, 2009.

[20] Devaney, Anthony J. Super-resolution Processing of Multi-static Data Using

Time Reversal and MUSIC. preprint, Northeastern University, 2000.

[21] Di Cristo, Michele and Sun, Jiguang. An inverse scattering problem for a partially

coated buried obstacle. Inverse Problems., vol. 22, no. 6, 2331-2350, 2006.

136



[22] El Badia, Abdellatif and Ha-Duong, Tuong. An inverse source problem in poten-

tial analysis. Inverse Problems, vol. 16, no. 3, 651-663, 2000.

[23] El Badia, Abdellatif and Ha-Duong, Tuong. On an inverse source problem for

the heat equation. Application to a pollution detection problem. Journal of inverse

and ill-posed problems, vol. 10, no. 6, 585-599, 2002.

[24] Gilbarg, D and Trudinger, N. S. Partial Differential Equations of Second Order

Springer-Verlag. Heidelberg-Berlin, 1983.

[25] Gockenbach, Mark S. Understanding and implementing the finite element

method. Society for Industrial and Applied Mathematics . (SIAM), Philadelphia,

PA, 2006.

[26] Gockenbach, Mark S. and Symes, William W. Duality for inverse problems in

wave propagation. Large-scale optimization with applications, Part I (Minneapo-

lis, MN, 1995). IMA Vol. Math. Appl., vol. 92, Springer, New York, 37-61, 1997.

[27] Griesmaier, Roland. Reciprocity gap MUSIC imaging for an inverse scattering

problem in two-layered media. Inverse Problems, vol. 3, no. 3, 389-403, 2009.

[28] Griesmaier, Roland. Multi-frequency orthogonality sampling for inverse obstacle

scattering problems. Inverse Problems, vol. 27, no. 8, 085005, 23, 2011.

[29] Griesmaier, Roland. Thorsten Inverse source problems for the Helmholtz equation

137



and the windowed Fourier transform. SIAM J. Sci. Comput., vol. 34, no. 3,

A1544-A1562, 2012.

[30] Griesmaier, Roland and Schmiedecke, Christian. A multifrequency MUSIC algo-

rithm for locating small inhomogeneities in inverse scattering. Inverse problems,

vol. 33, no. 3, 035015, 2017.

[31] Griesmaier, Roland and Schmiedecke, Christian. A factorization method for mul-

tifrequency inverse source problems with sparse far field measurements. SIAM J.

Imaging Sci., vol. 10, no. 4, 2119-2139, 2017.

[32] Ito, Kazufumi, Jin, Bangti and Zou, Jun. A direct sampling method to an inverse

medium scattering problem. Inverse Problems, vol. 28, no. 2, 025003, 2012.

[33] Ito, Kazufumi and Jin, Bangti and Zou, Jun. A direct sampling method for in-

verse electromagnetic medium scattering. Inverse problems, vol. 29, no. 9, 095018,

2013.

[34] Kirsch, Andreas. Factorization of the far-field operator for the inhomogeneous

medium case and an application in inverse scattering theory. Inverse problems,

vol. 15, no. 2, 413, 1999.

[35] Kirsch, Andreas. The MUSIC-algorithm and the factorization method in inverse

scattering theory for inhomogeneous media. Inverse problems, vol. 18, no. 4, 1025,

2002.

138



[36] Kirsch, Andreas. Characterization of the shape of a scattering obstacle using the

spectral data of the far field operator. Inverse Problems, vol. 14, no. 6, 1489-1512,

2012.

[37] Kirsch, Andreas and Grinberg, Natalia. The factorization method for inverse

problems. Oxford University Press, vol. 36, 2008.

[38] Li, Jingzhi and Liu, Hongyu and Shang, Zaijiu and Sun, Hongpeng. Two single-

shot methods for locating multiple electromagnetic scatterers. SIAM Journal on

Applied Mathematics, vol. 73, no. 4, 1721-1746, 2013.

[39] Li, Jingzhi and Liu, Hongyu and Zou, Jun. Locating multiple multiscale acoustic

scatterers. Multiscale Modeling & Simulation, vol. 12, no. 3, 927-952, 2014.

[40] Li, Jingzhi and Zou, Jun. A direct sampling method for inverse scattering using

far-field data. preprint, 2012.

[41] Liu, Keji and Zou, Jun. A multilevel sampling algorithm for locating inhomoge-

neous media. Inverse problems, vol. 29, no. 9, 095003, 2013.

[42] Liao, Wenjing. MUSIC for multidimensional spectral estimation: stability and

super-resolution. IEEE transactions on signal processing, vol. 63, no. 23, 6395-

6406, 2015.

139



[43] Liao, Wenjing and Fannjiang, Albert. MUSIC for single-snapshot spectral esti-

mation: Stability and super-resolution. Applied and Computational Harmonic

Analysis, vol. 40, no. 1, 33-67, 2016.

[44] Liu, Xiaodong. The factorization method for cavities. Inverse Problems, vol. 30,

no. 1, 015006, 2014.

[45] Liu, Xiaodong. A Fast and Robust Sampling Method for Shape Reconstruction in

Inverse Acoustic Scattering Problems. Inverse Problems, 2016.

[46] Liu, Xiaodong and Sun, Jiguang. Reconstruction of Neumann eigenvalues and

support of sound hard obstacles. Inverse Problems, vol. 30, no. 6, 17, 065011,

2014.

[47] Liu, Xiaodong and Zhang, Bo. Direct and inverse obstacle scattering problems

in a piecewise homogeneous medium. SIAM J. Appl. Math., vol. 70, no. 8, 3105-

3120, 2010.

[48] Li, Yuan and Yao, Ming Chen and Wang, Chun Mei and Zhang, Fa Yong. A

sampling method to an inverse scattering problem for stationary Schrödinger

equation. Applied Mechanics and Materials, vol. 275, 1585-1589, 2013.

[49] Monk, Peter and Sun, Jiguang. Inverse scattering using finite elements and gap

reciprocity. Inverse Problems, vol. 1, no. 4, 643-660, 2007.

140



[50] Nakamura, Gen and Potthast, Roland. Inverse Modeling: An introduction to the

theory and methods of inverse problems and data. IOP Publishing, Bristol, 2015.

[51] Nowak, Bogdan and Trybulec, Andrzej. Hahn-Banach theorem. Journal of For-

malized Mathematics, vol. 5, no. 199, 1993.

[52] Potts, Daniel and Tasche, Manfred. Parameter estimation for multivariate expo-

nential sums. Electron. Trans. Numer., vol. 40, 204-224, 2013.

[53] Potthast, Roland. A ‘range test’ for determining scatterers with unknown physical

properties. Inverse Problems, vol. 19, no. 3, 533-547, 2003.

[54] Potthast, Roland. A survey on sampling and probe methods for inverse problems.

Inverse Problems, vol. 22, no. 2, 2006.

[55] Potthast, Roland. Acoustic Tomography by Orthogonality Sampling, Institute of

Acoustics Spring Conference. Reading, UK, 2008.

[56] Potthast, Roland. A study on orthogonality sampling. Inverse Problems, vol. 26,

no. 7, 074015, 2010.

[57] Schuhmacher, Andreas and Hald, Jørgen and Rasmussen, Karsten Bo and

Hansen, Per Christian. Sound source reconstruction using inverse boundary el-

ement calculations. The Journal of the Acoustical Society of America, vol. 113,

no. 1, 114-127, 2003.

[58] Someda, Carlo G. Electromagnetic waves. CRC Press, 2006.

141



[59] Song, Rencheng and Zhong, Yu and Chen, Xudong. A multi-dimensional sam-

pling method for locating small scatterers. Inverse Problems, vol. 28, no. 11,

115004, 2012.

[60] Sun, Jiguang. Estimation of transmission eigenvalues and the index of refraction

from Cauchy data. Inverse Problems., vol. 27, no. 1, 11, 2011.

[61] Sun, Jiguang. An eigenvalue method using multiple frequency data for inverse

scattering problems. Inverse Problems., vol. 28, no. 2, 15, 025012, 2012.

[62] Sun, Jiguang and Xu, Liwei. Computation of Maxwell’s transmission eigenvalues

and its applications in inverse medium problems. Inverse Problems., vol. 29, no.

10, 10, 104013, 2013.

[63] Sylvester, John and Kelly, James. A scattering support for broadband sparse far

field measurements. Inverse Problems, vol. 21, no. 2, 759, 2005.

[64] Uhlmann, Gunther. Inside out: inverse problems and applications. Cambridge

University Press, vol. 47, 2003.

[65] Weerasinghe, Natasha. Study of a Direct Sampling Method for the Inverse

Medium Scattering Problem. Master report, 2014.

[66] Zeng, Fang and Cakoni, Fioralba and Sun, Jiguang. An inverse electromagnetic

scattering problem for a cavity. Inverse Problems, vol. 27, no. 12, 17, 125002,

2011.

142


	DIRECT SAMPLING METHODS FOR INVERSE SCATTERING PROBLEMS
	Recommended Citation

	Contents
	List of Figures
	Acknowledgments
	Abstract
	Introduction
	MUSIC Algorithm 
	Introduction
	 The Use of MUSIC in Inverse Scattering Theory

	Linear Sampling Method
	Factorization Method
	A Direct Sampling Method for Inverse Scattering Problems
	Introduction
	 A Direct Sampling Method to an Inverse Medium Scattering Problem 


	Direct Sampling Methods for Shape Reconstruction in Inverse Acoustic Scattering Problems
	Orthogonality Sampling Method
	Orthogonality Sampling
	Numerical Study of the Indicator Functions

	A Direct Sampling Method for Shape Reconstruction in Inverse Acoustic Scattering Problems
	 Introduction
	Theoretical Foundation of the Proposed Sampling Method
	Resolution analysis for the sampling points inside the scatterer
	Resolution analysis for the sampling points outside the scatterer
	Stability statement 

	The Relation Between Inew and [MD]


	New Sampling Method for Shape Reconstruction in Inverse Electromagnetic Scattering Problems
	 Introduction
	Theoretical Foundation of the Proposed Sampling Method
	Resolution Analysis for the Sampling Points Inside the Scatterer
	Resolution Analysis for the Sampling Points Outside the Scatterer
	Stability Statement


	 New Sampling Method for Multifrequency Inverse Source Problems with Sparse Far Field Measurements
	 Introduction
	Theoretical Foundation of the Proposed Sampling Method
	Numerical Implementation 
	One Observation Direction
	Two Observation Directions
	Multiple Observation Directions
	Extended objects


	 Conclusions 
	Summary and Conclusions 
	Future Work

	References

