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Abstract: We consider the inverse scattering problem to reconstruct an obstacle using partial far-field
data due to one incident wave. A simple indicator function, which is negative inside the obstacle
and positive outside of it, is constructed and then learned using a deep neural network (DNN). The
method is easy to implement and effective as demonstrated by numerical examples. Rather than
developing sophisticated network structures for the classical inverse operators, we reformulate the
inverse problem as a suitable operator such that standard DNNs can learn it well. The idea of the
DNN-oriented indicator method can be generalized to treat other partial data inverse problems.

Keywords: inverse obstacle scattering; deep neural network; partial data; indicator function

MSC: 65N21; 78A46

1. Introduction

Inverse scattering problems arise in many areas such as medical imaging and seismic
detection. The scattering from obstacles leads to exterior boundary value problems for the
Helmholtz equation. The two-dimensional case is derived from the scattering from finitely
long cylinders, and more importantly, it can serve as a model case for testing numerical
approximation schemes in direct and inverse scattering [1]. In this paper, we consider the
inverse problem to reconstruct an obstacle, given partial far-field data in R2.

Let D ⊂ R2 be a bounded domain with a C2-boundary ∂D. Denoting by ui(x) the
incident plane wave, the direct scattering problem for a sound-soft obstacle is to find the
scattered field us such that

∆us + k2us = 0, in R2 \ D,
us = −ui, on ∂D,
lim
r→∞

√
r
(

∂us

∂r − ikus
)
= 0, r = |x|,

(1)

where k > 0 is the wavenumber. It is well known that us has an asymptotic expansion

us(x) =
eikr
√

r

{
u∞(x̂) +O

(
1
r

)}
as r := |x| → ∞

uniformly in all directions x̂ = x/|x|. The function u∞(x̂) defined on S := {x̂ ∈ R2; |x̂| = 1} is
the far-field pattern of us for D due to the incident field ui. The inverse problem of interest is
to reconstruct D from n far-field patterns u∞(x̂1), u∞(x̂2), . . . , u∞(x̂n) for one incident wave.
Note that the unique determination of D using the far-field pattern due to one incident
wave is an open problem.
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Classical inverse scattering methods to reconstruct an obstacle mainly fall into two groups.
The first group is the optimization methods to minimize certain cost functions [2,3]. These
methods usually solve a number of direct scattering problems and work well when proper
initial guesses are available. The second group is the sampling methods, e.g., the linear
sampling method, the extended sampling method, the orthogonality method, the reverse
time migration, and the direct sampling method [4–8]. These methods often construct some
indicator functions based on the analysis of the partial differential equations to determine if
a sampling point is inside or outside the obstacle. In contrast to the optimization methods,
the sampling methods do not need initial guesses and forward solvers but usually provide
less information of the unknown obstacle.

Although successful for many cases, classical methods have difficulties for problems
with partial data. For example, the linear sampling method cannot obtain a reasonable
reconstruction if the data are collected on a small aperture. Recently, there has been
an increasing interest in solving inverse problems using deep neural networks (DNNs).
Various DNNs have been proposed to reconstruct the obstacle from the scattered field [9–12].
Although the deep learning methods can process partial data, the performance is highly
problem-dependent and the network structures are often sophisticated. Combinations
of deep learning and sampling methods for the inverse scattering problems have also
been investigated recently [13–16]. These methods usually construct a DNN to learn the
reconstruction of some sampling method.

In this paper, we propose a DNN-oriented indicator method. The idea is to design an
indicator function which is simple enough for standard DNNs to learn it effectively. We
borrow from the sampling methods the concept of the indicator. What sets our method
apart from the sampling methods is that the indicator is defined as a signed distance
function other than using the inner product related to Green’s function or solving the linear
ill-posed integral equations. The indicator is then learned by a DNN with partial scattering
data as input. This DNN-oriented indicator method inherits the advantage of deep learning
methods by compensating for partial information through empirical data. Meanwhile,
it retains the simplicity and flexibility of sampling methods. Numerical experiments
demonstrate its effectiveness for obstacle reconstructions with a few far-field data due to
one incident wave. Note that the idea is to find a formulation for the inverse problem that
is easy to learn instead of the design of sophisticated neural networks (see [17]).

The rest of this paper is organized as follows. In Section 2, the DNN-oriented indicator
method is proposed, and the data structure is specified. In Section 3, numerical experiments
are carried out to demonstrate the performance of the proposed method. Conclusions are
given in Section 4.

2. Dnn-Oriented Indicator Method

We propose a DNN-oriented indicator method for the inverse obstacle scattering
problem in R2. The framework can be directly applied to other inverse problems and
extended to R3. For an obstacle D, we define a signed distance function

d∂D(z) =


− inf

x∈∂D
|x − z|, z ∈ D,

0, z ∈ ∂D,
inf

x∈∂D
|x − z|, z ∈ R2 \ D.

(2)

It is clear that d∂D is a continuous function with respect to z and can be used to
reconstruct the obstacle since

∂D = {z ∈ R2; d∂D(z) = 0}, D = {z ∈ R2; d∂D(z) < 0}.

Let u∞ = [u∞(x̂1), u∞(x̂2), . . . , u∞(x̂n)] be the vector of far-field data due to one
incident wave in n observation directions. Let Ω be a (large) domain, known as a prior,
containing D. For a point z ∈ Ω, we define the indicator function as
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I(u∞, z) := d∂D(z). (3)

Our goal is to design a DNN to learn I(u∞, z) for input (u∞, z). More specifically, we
expect to build a neural network Ĩ : R2n+2 → R to approximate the indicator function I.
The input of Ĩ is a vector in R2n+2 consisting of the real and imaginary parts of u∞ and the
coordinates of a point z ∈ Ω. The output is the corresponding signed distance. Assume
that there are L hidden layers for Ĩ. Each hidden layer is defined as

hl(y
l
out) = σ(bl + W l yl

in), l = 1, . . . , L, (4)

where yl
in and yl

out are the input and output vectors of the lth layer, respectively, W l is the
output weight matrix, and bl is the bias vector. The non-linear function σ(·) is the rectified
linear unit (ReLU) defined as σ(y) = max(0, y). The input layer with output weight matrix
W0 and bias vector b0 is connected to the first hidden layer.

A set of N data is used to train the fully connected network Ĩ. The set of parameters is
denoted by Θ = {b0, b1, . . . , bL, M0, M1, . . . , ML} and is updated by the backpropagation
algorithm, minimizing the half quadratic error of the predicted responses between the set
of training mapped measurements d̃j, j = 1, . . . , N, and exact values dj, j = 1, . . . , N. The
loss function is the half mean-squared error given by

L(Θ) =
1
2
(dj − d̃j)

2. (5)

The algorithm for the DNN-oriented indicator method is illustrated in Algorithm 1. It
contains an offline phase and an online phase. In the offline phase, the training data are
used to learn the network parameters. Then, the network Ĩ is used in the online phase to
output the indicator for each z ∈ Ω. Using the same notation Ĩ for the function produced
by the trained network Ĩ, Ĩ(u∞, z) < 0 indicates that z ∈ D, whereas Ĩ(u∞, z) > 0 indicates
that z ∈ R2 \ D. The approximate support of D can be reconstructed accordingly.

Algorithm 1 DNN-oriented indicator method.

offline phase

1: Generate far-field vectors u(j1)
∞ , j1 = 1, . . . , J1 for random objects D(j1) in Ω

2: Generate points z(j2) :=
(

z(j2)
1 , z(j2)

2

)
, j2 = 1, . . . , J2 for Ω

3: Collect training data y(j1,j2)
in :=

[
ℜu(j1)

∞ ,ℑu(j1)
∞ , z(j2)

1 , z(j2)
2

]
and y(j1,j2)

out := d
∂D(j1)

(
z(j2)

)
4: Construct the DNN Ĩ

5: Train Ĩ using
{

y(j1,j2)
in , y(j1,j2)

out

}
, j1 = 1, . . . , J1, j2 = 1, . . . , J2

online phase
6: Measure far-field data u∞ for unknow object D
7: Generate a set T of uniformly distributed points for any subset of Ω which contains D
8: For each z = (z1, z2) ∈ T, use [ℜu∞,ℑu∞, z1, z2] as the input for Ĩ to predict the

indicator Ĩ(u∞, z)
9: Approximate D using {z| Ĩ(u∞, z) ≤ 0}

Remark 1. Other indicator functions, e.g., the characteristic function for D, can be used and have
similar performance. The advantage of the indicator function (3) is that it provides information on
the distance of a point to the boundary of the obstacle.

Remark 2. The set Ω in the offline phase and online phase can be different, which allows addi-
tional flexibility.
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3. Numerical Experiments

We present some numerical examples to demonstrate the proposed DNN-oriented
indicator method. All the experiments are conducted on a laptop with an Intel(R) Core(TM)
i7-10510U CPU @ 1.80 GHz (up to 2.30 GHz) and 16 GB of RAM.

The wave number is k = 1, and the incident plane wave is ui(x) = eikx·d with
d = (1, 0). The training data are generated using a boundary integral method for (1) [1].
The observation data u∞ = [u∞(x̂1), u∞(x̂2), . . . , u∞(x̂6)] contain the far-field patterns of
6 observation directions

x̂j = (cos θj, sin θj), θj ∈ [0, π/2], j = 1, . . . , 6

uniformly distributed on one-quarter of the unit circle.
For the offline phase, we use J1 = 1600 random obstacles D(j1), j1 = 1, . . . , J1, which

are star-shaped domains [18]:

ρ(θ)
(

cos θ, sin θ
)
+ (c1, c2), θ ∈ [0, 2π), (6)

where

ρ(θ) = a0

{
1 +

1
2M

M

∑
m=1

(
am cos(mθ) + bm sin(mθ)

)}
. (7)

In the experiments, M = 5 and the coefficients a0 ∈ [0.5, 1.5], am, bm ∈ [−1, 1], c1, c2 ∈ [−2, 2]
are uniformly distributed random numbers. We use J2 = 51 × 51 points uniformly dis-
tributed in the region Ω = [−5, 5] × [−5, 5]. The training data consist of u(j1)

∞ for each
obstacle D(j1) and each sampling point z(j2) as input and the signed distance function at
z(j2) for D(j1) as output. The size of the training set is N = J1 × J2.

The neural network is fully connected feed-forward with L + 2 layers and the num-
bers of nodes in each layer are 14, Nh, . . . , Nh, 1, respectively, where the number of hid-
den layers L and the number of neurons in each hidden layer Nh are chosen using
the rule of thumb [19] and a trial-and-error method. The network is trained for up to
5.5 × 104 iterations using a mini-batch size of 300 and 4 epochs. We normalize the input per
feature to zero mean and standard deviation one, and use the adaptive moment estimation
(Adam) with an initial learning rate of 0.01, gradually reducing the learning rate by a factor
of 0.1 every 3 epochs. When L = 2 and Nh = 20, the training duration is approximately
13 min and 57 s, while the testing duration is less than 1 s.

To evaluate the effectiveness of the DNN Ĩ, we generate a test set of size N∗ = 1
4 J1 × J2.

The following relative error for the test set is used:

ϵ =
1

N∗

1
4 J1

∑
j1=1

J2

∑
j2=1

∣∣∣I(u(j1)
∞ , z(j2)

)
− Ĩ

(
u(j1)

∞ , z(j2)
)∣∣∣∣∣∣I(u(j1)

∞ , z(j2)
)∣∣∣ .

We test the network with different L and Nh and show the relative errors utilizing
noiseless far-field data and far-field data with 5% random noises in Table 1. For each L, the
upper row is for the noiseless data and the lower row is for noisy data. Since the errors are
smaller for L = 2 and Nh = 20, we use them for Ĩ in the online phase.

Remark 3. The results indicate that the inverse operator only needs a simple network with reason-
ably small L and Nh. More sophisticated networks negatively affect the performance.

Remark 4. The complexity of the neural network depends on various elements, including the
number and locations of far-field data, the wavenumber k, etc. One would expect different Nh and L
for different settings.
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Table 1. Relative errors for DNNs with different L and Nh.

Nh = 10 Nh = 15 Nh = 20 Nh = 25 Nh = 30

L = 2 19.008% 16.066% 12.940% 13.791% 16.091%
21.669% 18.409% 15.531% 16.580% 18.883%

L = 3 15.048% 13.823% 14.245% 13.808% 13.390%
16.959% 16.047% 16.157% 15.932% 16.101%

L = 4 14.937% 14.791% 15.854% 15.464% 14.348%
17.522% 16.680% 18.546% 18.369% 17.822%

To visualize the reconstructions, we use three obstacles: a triangle with boundary
given by

(1 + 0.15 cos 3t)
(

cos θ, sin θ
)
+ (−2, 1), θ ∈ [0, 2π),

a peanut with boundary given by

1.5
√

cos2 θ + 0.25 sin2 θ
(

cos θ, sin θ
)
+ (1, 2), θ ∈ [0, 2π),

a kite with boundary given by(
0.75 sin t, 0.5 cos t + 0.325 cos 2t − 0.325

)
+

(
− 2,−1

)
, t ∈ [0, 2π),

and a square whose vertices are

(1, 0.5), (2.5,−1), (1,−2.5), (−0.5,−1).

Let the uniformly distributed point set T for Ω be

T := {(−5 + 0.1m,−5 + 0.1n), m, n = 0, 1, . . . , 100}. (8)

For each z ∈ T, the trained DNN is used to predict Ĩ(u∞, z). We plot the contours for
Ĩ(u∞, z) with respect to z ∈ T, and obtain the reconstructions by finding all z ∈ T such that
Ĩ(u∞, z) ≤ 0.

For the triangle obstacle, Figure 1 shows the contour plot of the indicator function
Ĩ(u∞, ·) using 6 far-field data with 5% random noise, and the reconstruction of D formed
by points z ∈ T satisfying Ĩ(u∞, z) ≤ 0. Similar results for the peanut, kite and square are
shown in Figures 2–4, respectively. The location and size of the obstacle can be reconstructed
well, taking the amount of data used into account.

0

1

2

3

4

5

6

7

Figure 1. The true triangle is the red line. (Left): contour plot of Ĩ. (Right): reconstruction D.
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4

5

6
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Figure 2. The true peanut is the red line. (Left): contour plot of Ĩ. (Right): reconstruction D.
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4
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7
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Figure 3. The true kite is the red line. (Left): contour plot of Ĩ. (Right): reconstruction D.

0

1

2

3

4

5

6

7

Figure 4. The true square is the red line. (Left): contour plot of Ĩ. (Right): reconstruction D.

4. Conclusions

We consider the reconstruction of a sound-soft obstacle using only a few far-field data
due to a single incident wave. In addition to the inherent nonlinearity and ill-posedness of
inverse problems, the presence of partial data introduces additional challenges for classical
methods. In this paper, we propose a simple and novel DNN-oriented indicator method
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for this inverse problem, utilizing an indicator function to determine whether any chosen
sample point is inside the scatterer, thus identifying the scatterer. What distinguishes this
method from existing sampling methods is that our indicator function no longer relies on
solving integrals or integral equations. Instead, it is defined as a signed distance function
approximated using standard deep neural networks.

Rather than developing sophisticated networks, we focus on the formulation of suit-
able inverse operators and data structures such that standard DNNs can be employed.
This method maintains the simplicity and flexibility of using indicators in reconstructing
scatterers. In comparison to the existing sampling methods, it leverages the advantages
of deep learning methods by compensating for insufficient known information through
empirical data, allowing it to work effectively even with limited far-field data. Numeri-
cal experiments demonstrate that the location and size of the obstacle are reconstructed
effectively. Such a reconstruction can serve as a starting point for other methods.

Since the performance of a DNN is highly dependent on the training data, data tailored
for single scatterers in the numerical implementation can only train a deep neural network
suitable for the reconstruction of single scatterers. In the future, we plan to introduce
training data for multiple scatterers and extend the idea of the DNN-oriented indicator
method to other inverse problems involving partial data.

Author Contributions: Methodology, J.L. and J.S.; software, Y.L. and X.Y.; data curation, Y.L. and X.Y.;
writing—original draft preparation, Y.L. and X.Y.; writing—review and editing, J.L. and J.S.; project
administration, J.S.; funding acquisition, J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by NSFC grant number 11801218.
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