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Abstract 

Biologically-derived feedstocks are a highly desirable source of renewable transportation 
fuel. They can be grown renewably and can produce fuels similar in composition to 
conventional fossil fuels. They are also versatile and wide-ranging. Plant oils can produce 
renewable diesel and wood-based pyrolysis oils can be made into renewable gasoline. 
Catalytic hydrotreatment can be used to reduce the oxygen content of the oils and 
increase their viability as a “drop-in” transportation fuel, since they can then easily be 
blended with existing petroleum-based fuels. However, product distribution depends 
strongly on feedstock composition and processing parameters, especially temperature and 
type of catalyst. Current literature contains relatively little relevant information for 
predicting process-level data in a way that can be used for proper life cycle or techno-
economic assessment. For pyrolysis oil, the associated reaction pathways have been 
explored via experimental studies on model compounds in a bench scale hydrotreatment 
reactor. The reaction kinetics of each compound were studied as a function of 
temperature and catalyst. This experimental data is used to determine rate constants for a 
hybrid, lumped-parameter kinetic model of paradigm compounds and pyrolysis oil, which 
can be used to scale-up this process to simulate larger, pilot-scale reactors. For plant oils, 
some appropriate data was found in the literature and adapted for a preliminary model, 
while some experimental data was also collected using the same reactor constructed for 
the pyrolysis oil studies. With a systematic collection of kinetic data, hydrotreatment 
models can be developed that can predict important life cycle assessment inputs, such as 
hydrogen consumption, energy consumption and greenhouse gas production, which are 
necessary for regulatory and assessment purposes. As a demonstration of how this model 
can be incorporated into assessment tools, a technoeconomic analysis was performed on 
the hydrothermal liquefaction of lignin from a pulp mill, with some of the products sent 
to a refinery to create biofuel and some of the products used to create BTEX. The 
process-level model developed earlier was used to model hydrotreatment reactors used to 
generate commodity chemical co-products from phenolic compounds.  Overall, this 
process showed promise and, with improving separations technology, could be a valuable 
source of revenue for pulp mills and refiners. However, in order to be truly profitable, the 
minimum selling price of the biofuel would need to be between $3.52 and $3.96 per 
gallon.



1 
 

1. Introduction & Motivation 

Biofuels, such as plant oil, algal oil, waste cooking oils, pyrolysis oil, tall oils, and 

tallow, are attractive, renewable fuel sources because they can yield hydrocarbon 

products with chemical and physical properties similar to and compatible with traditional 

fossil fuels. This allows producers to blend the products with fossil fuels easily and take 

advantage of existing infrastructure. Because these biofuels are derived from renewable, 

abundant and more environmentally-friendly sources, significant research efforts have 

been focused on the optimal production of feedstocks and conversion method. Interest is 

especially high in areas that are relatively undeveloped in the fuels market. Relatively 

little focus, however, has been placed on treating these fuels after the initial conversion 

step. Due to the organic nature of these feedstocks, biofuels typically contain a high 

level of oxygen, even after conversion, making them incompatible with existing fuel. 

The presence of oxygen creates blending issues, lowers the heating value of the fuel and 

makes biofuels unstable in storage.[1,2] 

 

A similar issue arises with crude oil, which contains heavy metals, sulfur and nitrogen. 

In the petroleum industry, crude oil is catalytically hydrotreated using sulfided 

cobalt/molybdenum or nickel/molybdenum catalysts to remove these contaminants. A 

comparable approach can be taken by considering oxygen as a contaminant and 

hydrotreating the biofuels over a catalyst to remove the oxygen and produce a 

hydrocarbon product that can be blended in any proportion with existing fuel.  
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The pyrolysis of woody biomass can produce a bio-oil (also called pyrolysis oil) that is a 

complex mixture of oxygenated hydrocarbons, mostly C4 to C8.[3] Pyrolysis oil can 

include water, light acids, aldehydes, furans and phenolic compounds.[4] In its crude 

form, a high amount of oxygen, up to 40%, is retained in the fuel and can cause 

compatibility issues.[5] Oxygenated compounds also make the crude bio-oil viscous, 

corrosive, and can form waxy deposits during storage, as well as lowering the heating 

value of the oil as a fuel, which lowers its economic value and viability as a fuel 

source.[2] However, a significant portion of the bio-oil is within the desired range of 

hydrocarbons for gasoline and, with catalytic hydrotreatment, a hydrocarbon fuel that is 

fully compatible with petroleum-based gasoline can be produced.[6] An example of 

catalytic hydrotreatment of phenol on platinum on alumina is shown in Figure 1-1 

below. 

 

 

Figure 1-1. Catalytic hydrodeoyxgenation of phenol on platinum on alumina 
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Similarly, plant oils are composed of triglycerides: three long-chain fatty acids, with 

varying degrees of unsaturation, attached by a “backbone”. Fortunately, the fatty acids 

that comprise plant oils typically range from C8 to C22, primarily C16 and C18, ideal for 

the production of diesel and jet fuel.[2] Traditionally, once the backbone of the 

triglyceride is removed, usually in the form of glycerin, the plant oil undergoes 

transesterification, where it is transformed into a fatty acid methyl ester (FAME) or fatty 

acid ethyl ester (FAEE) fuel called “biodiesel”. However, biodiesel still contains oxygen 

and is not easily blendable with traditional diesel. Alternatively, fatty acids can instead 

undergo catalytic hydrotreatment, which yields a simple hydrocarbon fuel that can be 

blended in any proportion with diesel fuel. After the removal of the backbone in the 

form of propane, hydrotreatment in the form of hydrodeoxygenation, decarbonylation, 

and/or decarboxylation, along with secondary reactions, result in either long-chain or 

branched hydrocarbons that are identical to compounds frequently found in petroleum-

based diesel. 

 

While the catalytic hydrotreatment process has perhaps the most significant 

environmental impact of the entire process from biological feedstocks to fuel in terms of 

greenhouse gas (GHG) production, energy and hydrogen consumption, it is also the most 

poorly understood step in the process. Based on the current literature, there is little 

coherent data available on reaction kinetics that would allow for proper LCA or scaling 

up of a process.[7] Instead, most life cycle assessments rely on proprietary data from 
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industrial sources or make stoichiometric assumptions without considering process 

conditions and resulting selectivities. 

 

Considering the importance of the hydrotreatment step, it is surprising that there has 

been no systematic study of reaction kinetics and process-level analysis of important 

environmental assessment factors.[8] Kinetic studies of this process are necessary to 

understand these fundamental factors. Once the kinetics of the hydrotreatment reactor 

are understood, the process can be simulated using a kinetic reactor model, generating 

process-level details and allowing for easy scale-up of the process without expensive 

testing. The petroleum industry has used this approach with traditional crude oil, which 

differs even from location to location and can contain hundreds of components. Mapping 

every reaction pathway and obtaining all of the kinetic data for every one of those 

compounds is impractical, leading to lumped-parameter kinetic models. These lumped 

models group reaction pathways and/or compounds together. This vastly simplifies the 

models when predicting product compositions, yields, catalyst, energy, and hydrogen 

input, requiring a much smaller number of kinetic rate constants. By focusing only on 

observed compounds and not hypothesized intermediates, the reaction network can be 

further simplified and the number of initial tests can be significantly reduced. Instead of 

all possible components and reaction pathways of these biological oils, a small number 

of representative model compounds can be selected, and relevant experimental data can 

be collected on their lumped reaction pathways. With enough experimental data, a model 

can be constructed that can work with any inlet composition, including pure, individual 



5 
 

components, biological oil (of varying sources and composition), and even different 

blends of those oils. 

 

The overall goal of this project was to further the understanding of the catalytic 

hydrotreatment of alternative fuels through the development of a kinetic model to 

improve the hydrotreatment upgrading process.  The research was organized in the 

manner shown below: 

1. Literature Review – Plant & Pyrolysis Oils  (Chapters 2 & 3) 

2. Batch Reactor Studies – Pyrolysis Oils (Chapter 4) 

3. Differential Reactor Studies – Pyrolysis Oils (Chapter 5) 

4. Pilot Reactor Studies – Plant & Pyrolysis Oils (Chapters 2 & 5) 

5. Technoeconomic Assessment – HTL Oils (Chapter 6) 

 

However, four of the chapters in this dissertation are intended for publication. Therefore, 

this document is organized in the following manner: 

• Chapter 1: Introduction & Motivation 

• Chapter 2: Kinetic Modeling of the Hydrotreatment of Oleic Acid over a Pt/Al2O3 

Catalyst 

• Chapter 3: Catalytic Hydrotreatment of Pyrolysis Oil Literature Review 
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• Chapter 4: Catalytic Hydrotreatment of Pyrolysis Oil Model Compounds over 

Pt/Al2O3 and Pd/C: Part I: Batch Reactors 

• Chapter 5: Catalytic Hydrotreatment of Pyrolysis Oil Model Compounds over 

Pt/Al2O3 and Pd/C: Part II: Continuous Reactors 

• Chapter 6: Assessment of Hydrothermal Liquefaction Oil with Catalytic 

Upgrading for Renewable Fuel and Chemical Production 

• Chapter 7: Conclusions & Future Work 
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2. Kinetic Modeling of the Hydrotreatment of Oleic Acid over 

a Pt/Al2O3 Catalyst1 

2.1 Introduction 

Direct catalytic upgrading of plant oils to transportation fuels is straightforward 

compared to treating fossil fuels. Since the initial feedstock is less complex, sulfur 

content is low, and the presence of other catalyst poisons is rare.[1] Feedstocks for direct 

catalytic upgrading may originate from a variety of materials, including seed oils, tall oil 

from pulp processing, or even waste cooking oils.[2] However, such oils are highly 

oxygenated mixtures of triglycerides and fatty acids, making them unsuitable for 

replacing traditional fuels without an intermediate upgrading step. 

 

Recently, these oils have been reacted with alcohols in the presence of base catalysts to 

produce fatty acid methyl ether (FAME) biodiesel, which is typically blended with fossil 

fuels. Unfortunately, biodiesel can only be blended in limited amounts with pure 

hydrocarbon fuels, typically 5-20%, due to clogging issues in filters and poor cold flow 

properties caused by oxygen still present in the fuel.[1] Direct catalytic hydrotreatment of 

plant oils to paraffinic hydrocarbons is more attractive, since the process can yield 

products which are readily blended with petroleum-based fuels.[3] These hydrotreated 

                                                 
1 This work is in preparation for resubmission to Energy & Fuels, and is a collaboration with Dr. David 
Shonnard, J.C. Metsa, and Jennifer Robinson. 
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fuels are frequently referred to as hydrorenewable diesel (HRD) or green diesel, and can 

easily take advantage of existing infrastructure.[4] 

 

A key challenge in renewable fuel analysis is the lack of supporting process level 

data.[5,6] One of the most important and costly stages is the hydroprocessing upgrading 

step. There is a lack of knowledge of how process conditions and the molecular 

characteristics of plant oils can affect hydrogen and energy requirements for this step.[6] 

This results in dependence on empirical data. The models developed for analysis of the 

hydrotreatment of bio-oil feedstocks are largely based upon stoichiometric yields 

predicted via process simulators or other “black box” models, which can overpredict fuel 

production and performance by a large margin. Relevant reaction pathway data from the 

literature have been compiled and adapted to a multiphase reactor model, but insufficient 

experimental data was reported to fit the reactor model parameters. To fill this gap in 

data for model validation, we have conducted bench-scale studies on the hydrotreatment 

of oleic acid, a surrogate compound for plant oils, in a continuous trickle bed reactor. 

The result is a process-level model that more realistically predicts the product 

distribution, hydrogen consumption, GHG emissions, and energy requirements for the 

HDT of bio-oils. This process-level model may then be incorporated into an overall 

process simulation to provide a higher confidence technoeconomic analysis (TEA) or 

life cycle assessment (LCA) for a biomass-to-fuels facility. This paper provides a proof-

of-concept study for a specific feedstock and catalyst for a range of process conditions 
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that can be readily extended to other bio-oil feedstocks and catalyst given a limited 

preliminary analysis of the reaction kinetics. 

 

2.2 Literature Review 

A literature review was conducted to determine the state of research and find comparison 

points for the kinetic model. Studies on the rate kinetics of upgrading reactors were 

limited. Fortunately, limited relevant data on the hydrotreatment of triglycerides and 

fatty acids, specifically oleic acid, stearic acid, and similar compounds, were found. 

These results were used as the basis for our experiments and for comparison and 

validation of the model. 

 

Veriansyah et al. (2012) studied the conversion of soybean oil over a variety of 

supported metal catalysts.[7] Madsen et al. (2011) studied oleic acid and tripalmitin as 

model compounds for waste cooking fats and oils over platinum on alumina and nickel 

on alumina.[8]  Both theorized reaction networks for the conversion of triglycerides and 

fatty acids (FA) to hydrocarbons, which specify three different reaction pathways for 

fatty acids: decarbonylation (Eqn. 2-1), decarboxylation (Eqn. 2-2), and HDO (Eqn. 2-

3). While these networks are relatively generic, they can be used as the first steps 

towards a more detailed reaction network. 

 

Decarbonylation FA (n) + H2
  Paraffin (n - 1) + CO + H2O (Eqn. 2-1) 

Decarboxylation FA (n)  Paraffin (n - 1) + CO2 (Eqn. 2-2) 
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Hydrodeoxygenation FA (n) + 3 H2  Paraffin (n) + 2 H2O (Eqn. 2-3) 

*n = number of carbons 

 

Rozmyslowicz et al. (2010) explored the conversion of tall oil fatty acids (TOFA), 

specifically linoleic (C18, 2 unsaturated) and oleic acid (C18, 1 unsaturated), over 

palladium on mesoporous carbon (Pd/C). A preference for saturation reactions over 

HDO or DeCOx reactions was shown in a hydrogen-starved environment, where stearic 

acid (C18, fully saturated) was the primary product.[9] This allows the extension of the 

reaction network to include a triglyceride saturation reaction, a necessity since 

unsaturated fatty acids are primary components in many vegetable oils.[10] This is further 

supported by Immer et al. (2010), who looked at how hydrogen concentrations affected 

reaction rates and selectivity. It was shown that oleic acid decarboxylation was 

significantly slower in the absence of hydrogen, and therefore without the initial 

saturation reaction to stearic acid.[11] 

 

Snare et al. (2007) considered Pd/C for the HDT of ethyl stearate, a fatty acid ethyl ester 

(FAEE) which is commonly found in biodiesel. While upgrading biodiesel is outside the 

scope of this paper, stearic acid is one of the primary products in ethyl stearate’s HDT 

network and the reaction network for triglyceride HDT can be further extended here. 

Most importantly, an unsaturation reaction from n-heptadecane to olefins and a 

subsequent aromatization reaction can be added.[4] This paper also provides rate 

constants for a decarboxylation reaction (stearic acid to n-heptadecane), as well as the 

unsaturation and aromatization reactions. 
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Kumar et al. (2013) presents a reaction network for stearic acid over nickel catalysts on a 

variety of supports. Nickel catalysts are a more robust hydrogenation catalyst than 

platinum or palladium, however, they are not as effective. A dehydration reaction from 

an alcohol intermediate, octadecanol, to an olefin, octadecene, occurs over their catalyst 

set, which provides another possible pathway for the consumption of alcohol and the 

creation of olefins during hydrotreatment. Arrhenius rate constants, activation energies, 

and pre-exponential factors for their reaction network are also provided.[12] 

 

Finally, Vam (2013) describes a more complete reaction network for the HDT of stearic 

acid in the presence of hydrogen. Here, the optimal reaction conditions for production of 

paraffinic products were chosen to be Pd/C at 300°C and low H2 conditions. Rate 

kinetics were also studied as a function of temperature and other process conditions, and 

rate constants from this paper were adapted for the model.[13] Low hydrogen 

concentrations were selected based on Immer et al. (2010), who noted a significant 

decrease in conversion under pure hydrogen environments. This is most likely due to 

competitive adsorption on the surface of the catalyst between the fatty acid and the 

hydrogen.[11] Some hydrogen is necessary to maintain the activity of the catalyst.[11,14] 

 

2.3 Proposed Reaction Network 

2.3.1. Lumped Parameter Approach 
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The lumped parameter approach has long been used in the petroleum industry for HDT 

of crude oil feedstocks that often consist of hundreds of different compounds. Modeling 

each compound and all of its possible reactions and intermediates is not feasible. 

Essentially, compounds with similar characteristics, such as functional groups or 

hydrocarbon chain length, are assumed to behave similarly. For example, 

monounsaturated fatty acids would be grouped together, regardless of the length of the 

hydrocarbon chain or specific placement of the double bond, and assumed to follow the 

same reaction pathway, undergoing a saturation reaction to fully saturated fatty acids, 

another “lump”. This proven approach has been adapted in the model presented here for 

plant oils. This reduces the number of reactants and products to be modeled down to a 

manageable number. Since there are a relatively small number of fatty acids associated 

with plant oils, most of which vary only in degree of unsaturation and carbon chain 

length, they may reasonably be modeled in this fashion.[10] A set of ten reaction 

pathways has been selected from the literature, as discussed above, and are shown in 

Figure 2-1. It should be noted that not all reactions will be relevant for each catalyst, 

feedstock, or set of processing conditions. 
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Figure 2-1. Lumped reaction pathways included in model
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2.3.2. Reaction Network 

Based on these sources and using the lumped parameter approach, a proposed reaction 

network was created for use in the model, as shown in Figure 2-2. The initial feedstock 

is a plant oil containing unsaturated triglycerides, a molecule containing three fatty acids 

(with varying degrees of unsaturation) tied together by a glycol backbone. The 

triglyceride molecule then undergoes a propane production reaction, where the glycol 

backbone is removed as propane and three fatty acids are liberated. These fatty acids can 

undergo three possible reaction pathways: a hydrodeoxygenation reaction to a long-

chain alcohol, a decarboxylation reaction to a long-chain paraffin, or a decarbonylation 

reaction to a long-chain paraffin. The long-chain alcohols undergo either a 

hydrodeoxygenation reaction to paraffins or a dehydration reaction to olefins. The long-

chain paraffins are typically considered the desired fuel products of this process, but can 

undergo an unsaturation reaction, a cracking reaction, or an isomerization reaction, 

leading to other possible desired products. Olefins can also be a desired product, and can 

subsequently undergo a saturation reaction, an isomerization reaction, or an 

aromatization reaction. In Figure 2-2, the reactions for which literature with usable 

kinetic data was found are shown with normal lines. Reactions for which there was 

evidence, but no experimental rate data are shown with dashed lines. 
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Figure 2-2. Proposed reaction pathways for hydrotreatment of a triglyceride 

 

Most studies reported are in batch reactors at elevated pressures or continuous reactors 

near atmospheric pressure. Because of this gap in relevant data, a continuous reactor was 

constructed, as discussed below, to run at 5-8 bar and temperatures comparable to 

industrial reactors. 

 

2.4 Materials & Methods 

Oleic acid (99%, Alfa Aesar), n-dodecane (99+%, Alfa Aesar), and analytical standards 

were obtained commercially. Hydrogen and argon were purchased from American 
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Welding & Gas. As described in a previous study, the Pt/Al2O3 catalyst was synthesized 

via incipient wetness impregnation, using hexachloroplatinic acid and alumina (10-25 

mesh), and then reduced under hydrogen, resulting in a catalyst with 4.95% metal 

loading.[15] HDT was conducted in a trickle bed reactor system with a 20.3 mm inner 

diameter reactor bed. For each test, 4.65 g of catalyst was placed inside the reactor, held 

in place with a stainless steel mesh screen inside a catalyst bed. The reactor was then 

heated to the desired temperature with 5 mole % hydrogen flowing, with argon as a 

carrier gas at 0.5 L/min, controlled by a mass flow controller, to achieve a desired 

stoichiometric ratio. A system pressure of 6.7 bar was maintained to keep the principal 

reactants and products in the liquid phase, except for hydrogen and any gaseous 

byproducts formed. The reactor was heated using a Thermolyne F21100 tube furnace set 

at 250, 300, 350, or 375°C. Once the system reached steady state, liquid reactant and 

solvent were fed to the system at a flowrate of 0.5 mL/min using a custom high pressure 

liquid chromatography (HPLC) pump (Series I Plus, Supercritical Fluid Technologies). 

Liquid flowrates in the reactor were set to produce a packed bed residence time of 30 

seconds using liquid hourly space velocity (LHSV) calculations. The liquid feed was 5 

mole percent oleic acid in dodecane (0.22 mol/L). Dodecane was used as an inert solvent 

to control the reactor. Products were cooled and depressurized to atmospheric pressure 

downstream via a stainless steel shell and coil condenser and back-pressure regulator 

(Novaspect) before splitting in a gas-liquid separator. Gaseous products, excess 

hydrogen and argon were vented. A reactor schematic is shown in Figure 2-3. 
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Liquid products were collected for offline analysis. After heating the sample to 60°C for 

thirty minutes, 0.2 mL pyridine (>99.9%, Sigma-Aldrich) was added to 1 mL of sample. 

0.2 mL of this solution was then placed in the auto-sampler vial and 30 microliters of 

BSTFA (w/ 1% TCMS, Cerilliant) was added. The vials were then left overnight to fully 

derivatize and were analyzed the following day in a HP5890 GC/FID. LC/MS analysis 

was also performed to confirm the GC/FID analysis and product identities, using a 

Thermo Finnegan LCQ Advantage Ion-Trap. 

 

 

Figure 2-3. Reactor schematic for pilot-scale trickle bed reactor 

 

2.5 Experimental Results 
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Oleic acid conversion increased with increasing temperature, with a large jump in 

conversion from 350°C to 375°C, possibly indicating a shift in the dominant mechanism. 

Stearic acid, octadecanol, and heptadecanol were the primary products indicated by the 

GC/FID, with some minor peaks, which were tentatively identified using the LC/MS 

results. LC/MS analysis showed other fatty acids, such as linoleic acid, hydrocarbons, 

such as octadecane and heptadecane, and fatty acid methyl or ethyl esters (FAME or 

FAEE), such as methyl oleate. In the LC/MS results, shown in Table 2-1, heptadecanol 

concentration is less than 1% from 250°C to 350°C, but increases to almost 12% at 

375°C. This probably occurs via a decarbonylation reaction from stearic acid, which 

indicates a high activation energy for this particular reaction. The traces of FAME and 

FAEE compounds also indicate possible cracking in the system and subsequent 

esterification at 375°C, and to minimize this, the reactor was not operated over 375°C. 

Fully deoxygenated products, such as octadecane, are not observed until most of the 

oleic acid is consumed, indicating a suppression of oxygen removal reactions until the 

oleic acid is saturated. The products identified are consistent with the proposed reaction 

network and this mechanism is a starting point for a process-level kinetic model.  

 

These results are consistent with literature sources, where noble metal, alumina-

supported catalysts have a strong preference for decarboxylation and decarbonylation 

reactions. Gong et al. compared a bimetallic PtPd/Al2O3 catalyst and more traditional 

NiMo/Al2O3 catalysts, and showed a higher amount of DeCOx and DeCOn for the noble 

metal catalyst and a preference for the HDO pathway with the NiMo catalyst.[16] Hengst 
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et al. and Madsen et al. both observed heptadecane as a product of oleic acid HDT over 

noble metal catalysts supported on alumina.[17,18] 

 

Table 2-1. LC/MS Analysis Results 

 
 % Abundance 

Compound Formula blank 250°C 300°C 350°C 375°C 
Ethyl Oleate C20H38O2 0.01 0.02 0.02 0.02 1.71 
Methyl Oleate C19H36O2 0.01 0.00 0.01 0.01 0.96 
Stearic Acid C18H36O2 0.00 3.23 3.75 4.03 39.82 
Oleic Acid C18H34O2 99.83 96.42 95.94 94.25 39.50 
Linoleic Acid C18H32O2 0.07 0.03 0.03 0.04 4.08 
Octadecanol C18H38O 0.00 0.00 0.00 0.01 0.19 
Methyl Palmitoleate C17H32O2 0.01 0.00 0.00 0.00 0.69 
Heptadecanol C17H36O 0.05 0.21 0.24 0.96 11.73 
Octadecane C18H38 0.00 0.00 0.00 0.01 0.54 
Heptadecane C17H36 0.00 0.00 0.00 0.01 0.17 
*Exp m/z is the mass to charge ratio, and represents the molecular weight minus a 
hydrogen 

 

2.6 Process Modeling 

2.6.1. Background 

A realistic reactor model is necessary for optimizing and evaluating plant oil HDT. This 

model should be able to predict product composition, hydrogen input requirements, and 

energy needs for use in analyses, over a range of operating conditions and feed 

compositions. Such a model is essential, considering the complex behavior of multiphase 

catalytic reactors. Commercial programs, such as Aspen® or Unisim®, cannot perform 

the detailed analyses required for an in-depth, process level optimization or analysis. 

Such “black box” simulators cannot accurately account for multiphase conditions and 
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are not sensitive to the effect of reactor conditions on reaction pathways. At a minimum, 

a good model should incorporate the effects of the hydrogen/oil ratio, interphase mass 

transfer, temperature, residence time, intrinsic reaction kinetics, etc. and be able to 

predict process input requirements and product outputs. The model presented here 

focuses on the yield and selectivity of products, energy consumption, and total hydrogen 

demand. Additional factors, such as cooling water requirements, waste minimization, 

and recycling of excess hydrogen, could be included in later versions. 

 

2.6.2. Model Parameters 

The reactor model created for this exploratory study was generated in MathCAD®, and 

is a co-current, trickle-bed reactor with a gas phase consisting of hydrogen and an inert 

carrier gas, a liquid phase with the plant oil, triglycerides, or fatty acids, and a stationary 

solid phase of a catalyst. In almost every study found in the literature and in our 

experiments, multiphase reactors, either trickle-bed or slurry, were used. The type of 

reactor and process conditions used as an experimental test case were selected to 

accurately model a HDT reactor operating at parameters commonly cited in the literature 

as yielding a good conversion and selectivity for diesel. The basic model system is 

shown in Figure 2-4. 
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Figure 2-4. Model system of plug-flow trickle-bed reactor 

 

Some simplifying assumptions include no axial mixing, uniform radial concentrations, 

no resistance to mass transfer through the gas phase, isothermal operation, negligible 

pressure drop across the reactor, and constant gas phase volumetric flowrates. Products 

were assumed to stay in the liquid phase, except for any hydrogen, carbon dioxide, or 

carbon monoxide generated, which go into the vapor phase. The rate of mass transfer of 

hydrogen from the gas-liquid interface to the bulk liquid and mass transfer of both 

reactants from the bulk liquid to the catalyst surface were incorporated, but it was 

assumed that there were no mass transfer limitations within each phase. Empirically 

derived correlations for trickle-bed reactors may be used to determine the kLa and ksa 

values.[19,20] A liquid hold-up of 0.3 was also assumed, based on previous work done in a 

similar reactor.[20] The Henry’s Law constant for the partitioning of hydrogen (HH2) into 

the liquid organic phase can be found from the literature or determined experimentally. 



 

23 
 

Incremental material balances can then be made in each phase with respect to either 

residence time (τ) or length (z) of the reactor. The only terms that differ are the reaction 

rate constants, which vary mostly with temperature and catalyst. This makes the model 

both flexible and robust. 

 

Material balances are derived for the two principal reactants, as shown in Table 2-2. 

These equations are generic; the model contains a separate incremental balance for each 

“lump” in the oil. This resulted in a set of ordinary differential equations to be solved 

simultaneously as an initial value problem. The solution to these equations, in terms of 

the concentration of each species as a function of residence time, is shown in the results. 

 

Table 2-2. Differential Reactor Equations & Associated Nomenclature 

𝐻𝐻2,𝑔𝑔𝑔𝑔𝑔𝑔:  −
𝑑𝑑𝐶𝐶𝐻𝐻2,𝐺𝐺

𝑑𝑑𝑑𝑑
− {𝑘𝑘𝐿𝐿𝐿𝐿}𝐻𝐻2�𝐻𝐻𝐻𝐻2𝐶𝐶𝐻𝐻2,𝐺𝐺 − 𝐶𝐶𝐻𝐻2,𝐿𝐿� = 0 (Eqn. 2-5) 

𝐻𝐻2, 𝑙𝑙𝑙𝑙𝑙𝑙. : −
𝑑𝑑𝐶𝐶𝐻𝐻2,𝐿𝐿

𝑑𝑑𝑑𝑑
+ {𝑘𝑘𝐿𝐿𝐿𝐿}𝐻𝐻2�𝐻𝐻𝐻𝐻2𝐶𝐶𝐻𝐻2,𝐺𝐺 − 𝐶𝐶𝐻𝐻2,𝐿𝐿� − {𝑘𝑘𝑆𝑆𝑆𝑆}𝐻𝐻2�𝐶𝐶𝐻𝐻2,𝐿𝐿 − 𝐶𝐶𝐻𝐻2,𝑆𝑆� = 0 (Eqn. 2-6) 

𝑜𝑜𝑜𝑜𝑜𝑜, 𝑙𝑙𝑙𝑙𝑙𝑙. : −
𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿
𝑑𝑑𝑑𝑑

− {𝑘𝑘𝐿𝐿𝐿𝐿}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿 − 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐺𝐺� − {𝑘𝑘𝑆𝑆𝑆𝑆}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆� = 0 (Eqn. 2-7) 

𝐻𝐻2, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: −
𝑑𝑑𝐶𝐶𝐻𝐻2,𝑆𝑆

𝑑𝑑𝑑𝑑
= {𝑘𝑘𝑆𝑆𝑆𝑆}𝐻𝐻2�𝐶𝐶𝐻𝐻2,𝐿𝐿 − 𝐶𝐶𝐻𝐻2,𝑆𝑆� −  �

𝜂𝜂𝑘𝑘𝑖𝑖𝐶𝐶𝐻𝐻2,𝑆𝑆
𝑚𝑚 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆𝑛𝑛

1 + 𝐾𝐾𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆𝑛𝑛
𝑖𝑖

 (Eqn. 2-8) 

𝑜𝑜𝑜𝑜𝑜𝑜, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: −
𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆
𝑑𝑑𝑑𝑑

= {𝑘𝑘𝑆𝑆𝑆𝑆}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆� −  �
𝜂𝜂𝑘𝑘𝑖𝑖𝐶𝐶𝐻𝐻2,𝑆𝑆

𝑚𝑚 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆𝑛𝑛

1 + 𝐾𝐾𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆𝑛𝑛
𝑖𝑖

 (Eqn. 2-9) 
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Table 2-3. Definitions & Values for Differential Equation Parameters 

Term Definition Source 

{kLa}i Mass transfer coefficient for gas-liquid (time-1) [18] 

{kca}i Mass transfer coefficient for liquid-surface of the catalyst (time-1) [18] 

KA Surface adsorption coefficient Fit 

CH2,G Concentration of hydrogen in the gas phase (gmols/volume) -- 

CH2,L Concentration of hydrogen in the liquid phase (gmols/volume) -- 

CH2,S Concentration of hydrogen in the solid phase (gmols/volume) -- 

Coil,L Concentration of bio-oil in the liquid phase (gmols/volume) -- 

Coil,S Concentration of bio-oil in the solid phase (gmols/volume) -- 

HC Henry’s Law constant, C* = Cg / H (mole/mole) [20] 

k Reaction rate constant (time-1) Fit 

τ Residence time (time) -- 

m, n Order of reaction Fit 

QG Gas volumetric flow rate (volume/time) -- 

QL Liquid volumetric flow rate (volume/time) -- 

Ac Column cross sectional area (area) -- 

η Catalyst effectiveness factor [19] 

 

The rate expressions for these paths can be simple power law expressions, or more 

complicated forms, such as Langmuir-Hinshelwood kinetics, as shown in Table 2-

3.[21,22,23] Based upon the observed oleic acid conversions, rate constants were fitted to 

each kinetic model. For this range of temperatures, apparent activation energies were 

determined: 51.2 kJ/mol for saturation, 34.2 kJ/mol for HDO, and 80.6 kJ/mol for 

decarbonylation. Regardless of the form of the rate expressions, the resulting set of 

equations may readily be solved simultaneously using integration methods such as 
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Runga-Kutta or commercial programs such as MatLab® or MathCAD®. The product 

composition may be fitted with the model to calculate rate constants for each reaction 

pathway. With these, the reactor performance for a wide range of plant oil feedstocks 

and their constituent fatty acids can be predicted. The model can also be used to scale up 

the process or examine the effect of changing process conditions without performing 

difficult pilot scale tests. 

 

2.6.3. Data Comparison to Model 

The data from the HDT of oleic acid over Pt/Al2O3 was incorporated into the kinetic 

model developed above. Table 2-3 shows the actual versus predicted conversions of 

oleic acid in the reactor using the fitted Arrhenius rate constants. All conversions 

predicted by the model are within 0.3% of the experimental values. 

 

Table 2-4. Data vs. Model Comparison for Conversion of Oleic Acid on Pt/Al2O3 

Temperature Data Model 

250°C 3.7% 3.8% 
300°C 7.9% 7.9% 
350°C 11.5% 11.6% 
375°C 56.7% 56.5% 

 

2.7 Model Test Cases 

2.7.1. Base Case 
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While rate constants and other parameters vary for different catalysts, feedstocks and 

reactor conditions, the basic model is suitable to extend and compare to literature values 

for hydrogen consumption. To best compare to literature values for hydrogen 

consumption, a test case was generated that assumes a feed of soybean oil, a common 

feedstock in industrial operations and literature. The liquid flowrate was set at 100 

mL/min, temperature was set at 300°C, and inlet hydrogen concentration was 5% 

volume with an overall gas flowrate of 10 L/min, giving a hydrogen to oil molar ratio of 

roughly 10 to 1. These conditions were selected based on literature, as discussed earlier, 

and yield a one minute liquid residence time in the reactor.[11,13] Rate constants for the 

reaction network shown in Figure 1 were adapted from experiments and  literature; the 

primary reaction kinetics observed in the pilot-scale reactor were used for most of the 

modeling, but secondary reaction kinetics such as cracking were adapted from literature 

sources. [4, 20, 21, 22] The results quantitatively describe what one would expect for the 

proposed reaction network and are shown in Figure 2-5. There is over 90% conversion, 

as expected, with approximately 97% selectivity for paraffinic hydrocarbons. A steady, 

monotonic decline in the concentration of the unsaturated triglyceride in the liquid phase 

(unsatTAGL) is seen, with a rapid propane production reaction matching its 

disappearance rate. Unsaturated triglyceride on the catalyst (unsatTAGC) as well as fatty 

acid (FA) concentration rise briefly, as most of the hydrogen present goes towards the 

propane production reaction, but after the first few seconds, the conversion of those 

compounds is instantaneous under the excess of hydrogen. Most importantly, perhaps, is 

the ratio between the competing HDO, DeCOx and DeCOn reactions. This can be 
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determined from the end concentrations of water, carbon dioxide (co2), and carbon 

monoxide (co), although it should be noted that the DeCOn reaction produces both water 

and carbon monoxide, and this is taken into account when calculating ratios. At 300°C, a 

preference for the DeCOx reaction can be seen, with some DeCOn and little HDO. To 

test the flexibility of the model, two sets of test cases were generated by changing 

temperature or hydrogen to oil ratios. 
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Figure 2-5. Basic test case product distribution and yield at 300°C, 10:1 hydrogen to oil 

ratio, 1 min residence time 

 

2.7.2. Temperature dependence 

The model was run at 250°C and 300°C to test the typical range of HDT reactors and at 

500°C to force cracking reactions to occur in the reactor, as a more extreme example of 

pathway shift. The results are shown in Figure 2-6. The lowest temperature, 250°C, 

shows a prevalence of DeCOx, almost no DeCOn and HDO. While there is about 90% 

overall conversion of the unsaturated triglycerides, the fatty acid concentration is slower 

to disappear than in the basic 300°C case shown earlier, and even the unsaturated 

triglycerides on the surface of the catalyst take a little longer to disappear. The basic case 

at 300°C is as described before, with a preference for DeCOx and 90% conversion of the 

triglycerides. The primary desired product in both of these cases are long chain paraffins, 

with propane, carbon dioxide, carbon monoxide, and water as byproducts. At 500°C, 

there is a strong preference for DeCOn and HDO with a low amount of DeCOx. This 

clearly demonstrates the shift in reaction pathway that can occur at different 

temperatures. This temperature case also exhibits cracking reactions in the system, 

which break down the long paraffins into shorter chains. This can be a desired reaction, 

depending on the targeted product, but it is important to carefully control the extent of 

cracking. These reaction pathway preferences are critical when optimizing reactor 

conditions for a particular product or determining hydrogen consumption for an LCA or 

TEA. At 250°C, hydrogen consumption is slightly higher than at 300°C, most likely due 
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to incomplete deoxygenation of some of the fatty acids, indicated by the presence of 

some alcohol in the system. At 500°C, however, the hydrogen consumption is even 

lower, since cracking reactions, which consume only one mole of hydrogen, begin to 

stifle other reactions, such as the propane production reaction, which consumes three 

moles of hydrogen. The results here are comparable to those seen in literature, as are the 

trends in pathway preference.[23,24,25] 



 

 
 

 

Figure 2-6. Effect of temperature on product distribution and yield at 1 minute residence time and 10:1 hydrogen to oil ratio. 

(a) 250°C, (b) 300°C, (c) 500°C. 
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2.7.3. Hydrogen to oil ratio dependence 

Figure 2-7 shows the effect of hydrogen to oil ratios on the product distribution and 

yields at 2:1 and 10:1 ratios. Reduction of the hydrogen ratio has a severe impact on 

overall conversion, with only 43% conversion at the lower ratio. The reactions are also 

forced along the DeCOx pathway, which does not consume hydrogen, while there are no 

DeCOn or HDO reactions at all. Unreacted, unsaturated triglycerides on the surface of 

the catalyst are also prevalent in the system. These are all indicators of a hydrogen-

starved environment. 

 

 

Figure 2-7. Effect of hydrogen to oil ratio on HDT product distribution at 60s residence 

time and 300°C. (a) ratio of 2:1, (b) ratio of 10:1 

 

 

 

2.7.4. Heating/cooling load 



 

32 
 

The model can be used to determine several process outcomes. The total energy required 

for the process is calculated via an energy balance based on feed conversion, product 

concentrations, molar flowrates of gas and liquid, and associated heats of formation. For 

an isothermal reactor, the heat removal (or addition) required, q, is determined from the 

model product distribution as follows. 

 

𝑞𝑞 =  𝑄𝑄𝐿𝐿 ∑𝑣𝑣𝑖𝑖𝐶𝐶𝑖𝑖∆𝐻𝐻𝑖𝑖      (Eqn. 2-10) 

 

Where QL is the liquid flowrate, νi is the stoichiometric coefficient, Ci is the product 

concentration, and ΔH is the heat of formation for each compound. From the basic test 

case above, the sum of the reactions was found to be mildly exothermic at 300°C, with 

about 0.92 kJ of cooling per liter of plant oil processed needed to maintain the reactor 

isothermally. A non-isothermal case could also be considered in future work, but 

represents a much more complicated set of calculations.[26] 

 

2.7.5. Hydrogen consumption 

Similarly, based upon the volumetric flowrates of hydrogen in the gas and liquid phases 

(assuming that hydrogen adsorbed on the catalyst stays in the reactor), the total 

consumption of hydrogen for the process is determined by a simple material balance 

across the reactor, as seen in Equation 11. The high cost and environmental impact of 

hydrogen makes the ability to predict this information a necessity. Certain reactions 

consume hydrogen (saturation, HDO), others are hydrogen-neutral (DeCOx), and some 
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reactions produce hydrogen (aromatization).[27] This model can account for pathway 

preference between these reactions based on process conditions. Consumption and 

production can be similarly measured for any of the species accounted for in the reaction 

pathways.   

 

𝑄𝑄𝐺𝐺 �𝐻𝐻2 𝑔𝑔𝑔𝑔𝑔𝑔(0) − 𝐻𝐻2 𝑔𝑔𝑔𝑔𝑔𝑔(𝑧𝑧)� − 𝑄𝑄𝐿𝐿 𝐻𝐻2 𝑙𝑙𝑙𝑙𝑙𝑙.(𝑧𝑧) = 𝐻𝐻2 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� 

(Eqn. 2-11) 

 

Regrettably, few systematic studies on hydrogen requirements for the hydroprocessing 

step were found in the literature. Most analyses rely on industrial pilot plant data, 

Aspen® or other “black box” simulations, or experiments performed using batch 

reactors, which cannot accurately reflect process conditions in commercial 

facilities.[28,29,30,31] Some, however, can be used to provide comparisons and validation 

for the model developed here. 

 

An LCA publication from Kalnes et al. (2007) provides a range of required hydrogen 

input for different plant oils that include varying degrees of unsaturation and 

hydrocarbon tail lengths.[31] The article describes the production of branched, paraffin-

rich diesel fuel using hydrodeoxygenation (HDO), decarboxylation (DeCOx), and 

isomerization reactions. Results were based on experimental conversions of different oils 

at a range of operating conditions. Depending on isomerization severity and extent of 

HDO versus DeCOx, the hydrogen input requirement ranged between 1.5 to 3.8 kg 
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hydrogen per 100 kg plant oil input. The report states that this range is due to different 

oil inputs as well as different operating conditions, and therefore differing ratios of 

DeCOx to HDO. Unfortunately, these conditions were not explicitly stated. Nonetheless, 

as a test of the model’s validity, the model was run using an unsaturated triglyceride at 

300°C over a noble metal catalyst under 5% hydrogen, as discussed earlier. To simulate 

literature sources, conditions were set to achieve total conversion with paraffins as the 

primary product. This yielded a hydrogen consumption of 3.8 kg H2 consumed per 100 

kg of unsaturated triglyceride fed into the reactor. While this is on the higher end of the 

values found in Kalnes et al. (2007), only one kind of oil (soybean oil) was modeled, 

rather than a range of feedstocks.[31] The test case also does not include any 

isomerization, which may have an effect on overall hydrogen use. 

 

Another report by Huo et al. (2008) considers the production of three types of renewable 

fuel from soybean oil: two different renewable diesels and one renewable gasoline. The 

major difference between the two renewable diesel fuels is the extent of HDO to 

DeCOx, as shown by different carbon dioxide output values. Only one type of renewable 

diesel showed propane production. The hydrogen input requirement was calculated as 

0.030 and 0.032 pounds of hydrogen per pound of final fuel product.[29] These values 

were derived from an Aspen® model that simulated conditions present in a UOP plant. 

Again, the final composition of the renewable diesels is not discussed, and neither are 

the processing conditions, making exact comparison difficult. At test case conditions, 

our model shows higher hydrogen consumption, with a value of 0.347 pounds of 



 

35 
 

hydrogen per pound of final fuel product. However, due to the lack of compositional 

data, the final fuel product was assumed as heptadecane for this calculation, which may 

or may not accurately reflect the per pound basis of the paper’s results, and the 

assumption of soybean oil as the initial feedstock may not be the best match for their 

calculations. 

 

2.8 Conclusions 

The lumped parameter, Langmuir-Hinshelwood model presented here is the simplest 

model that captures the details of the reaction kinetics, and when combined with a 

trickle-bed model, is able to robustly simulate a plant oil HDT reactor as a function of 

process conditions. It can predict hydrogen and energy consumption for a specific 

feedstock and set of operating conditions in a way that “black box” simulation programs 

such as Aspen® and Unisim® cannot. Given a relatively limited amount of data, it can 

accurately predict HDT product composition for a known feedstock and set of reactor 

conditions, as demonstrated using our test pilot data. Apparent activation energies were 

determined over this range of temperatures: 51.2 kJ/mol for saturation, 34.2 kJ/mol for 

HDO, and 80.5 kJ/mol for decarbonylation. This was then modeled and fit the 

experimental data well. For the test case of a triglyceride feedstock with three 

unsaturated double bonds at 300°C over a noble metal catalyst, the model predicts a 

hydrogen consumption of 3.8 kg per 100 kg oil feedstock, which shows good agreement 

with literature values.[29,31] A cooling load of 0.92 kJ per liter of plant oil was also 

calculated for the test case. Test cases were also run at 250°C and 500°C to demonstrate 



 

36 
 

the reaction pathway shifts from decarboxylation to decarbonylation and cracking. These 

outputs can be utilized in plant design, LCAs, TEAs, and other analyses of a particular 

feedstock or fuel product. The major obstacle to this model is the lack of necessary 

kinetic and reaction information. While there are many studies on the HDT of plant oils 

and their substituent compounds, there are few that consider the reaction kinetics in a 

way that can be used for modeling without expensive pilot-scale testing. To improve 

upon this model, further studies need to be conducted that determine the reaction 

kinetics of common triglycerides and fatty acids found in plant oils. The same modeling 

approach could also be used for other types of biologically derived feedstocks, including 

tall oils, pyrolysis oil, or even algal oil.[2] This process-level analysis could even be 

expanded to provide a set of detailed process design modules for a complete biorefinery 

design. 
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3. Catalytic Hydrotreatment of Pyrolysis Oil Literature 

Review 

 

Over 100 papers were reviewed to assess the state of research in this area. Unfortunately, 

few papers considered reaction kinetics in a way that could be used for proper 

sustainability assessments of the conversion of wood to renewable gasoline. Instead, 

background information was collected on research trends, such as reactor types, 

pressures, temperatures, catalysts used, and model compounds, and this information was 

used to direct the experimental research plan. Tabulated results are shown in Chapter 8.  

 

3.1 Pyrolysis Oil 

While there are many different feedstocks that can be used in pyrolysis, including old 

tires, plant residues, and algae, the research presented here focuses on woody feedstocks 

or lignocellulosic biomass, specifically debarked virgin wood.[1] While the same 

concepts can be applied to forest residues, and other wood byproducts, there are issues 

with ash content and other contaminants that were not within the scope of this project. 

Lignocellulosic biomass has three primary components: cellulose, hemicellulose, and 

lignin. Cellulose and hemicellulose are polysaccharides and decompose during pyrolysis 

in a predictable manner, over a definitive temperature range.[2] Lignin, however, is a 

heterogeneous biopolymer with three different “building blocks”: p-coumaryl alcohol, 

coniferyl alcohol, and sinapyl alcohol, which decompose across a wide range of 
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temperatures (100-900°C).[2,3] Product ratios and compositions can vary significantly 

depending on processing conditions and original feedstock. 

 

Pyrolysis is a thermochemical decomposition process that breaks substances down at a 

high heat in the absence of oxygen. There are two main types of pyrolysis: slow and fast, 

or flash, pyrolysis. Slow pyrolysis involves heating materials to high temperatures 

slowly, mostly to ensure the correct consistency and remove moisture. This process can 

be used to generate a type of coal, called bio-char, which is typically used to sequester 

carbon and remediate soil. Fast or flash pyrolysis is almost instantaneous, with a high 

heating rate and final temperatures that are usually over 500°C.[4] 

 

Pyrolysis releases a gaseous product, a solid char product, and a vapor that is condensed 

into a dark brown liquid, called bio-oil or pyrolysis oil. The exact composition of 

pyrolysis oil depends on a wide range of factors, especially original feedstock and 

pyrolysis conditions. However, pyrolysis oil is generally described as a complex mixture 

of oxygenated hydrocarbons that includes water, light acids, aldehydes, furans and 

phenolic compounds.[5] Most of these compounds are highly oxygenated and cause 

issues with viscosity and corrosiveness and are unstable in storage.[6,7] The pH of 

pyrolysis oil is typically 2-3, water content can range from 15-30%, which significantly 

lowers the heating value of pyrolysis oil as a fuel, and oxygen content can range from 

35-40%.[8] 
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The wide range of compounds in pyrolysis oil makes filtration and separation necessary 

before utilization as a fuel. Filtration simply separates out any char and large oligomers 

that remain in the oil. Separation typically separates out different soluble fractions using 

solvents. Unfortunately, the exact composition of any bio-oil has not yet been fully 

understood, even with multiple analytical techniques.[9] Instead, researchers in this area 

rely on grouping compounds, typically into chemical families that exhibit similar 

properties and, conveniently, have similar retention times when run through analytical 

equipment such as a GC/MS or HPLC.[9] Depending on the final purpose of the pyrolysis 

oil, different solvents and fractions are necessary. For the purpose of biofuel, monomers 

and dimers of the phenolic compounds that come from the breakdown of lignin are the 

desired component. These are large enough to be in the gasoline range for fuel, even 

with treatment to remove the oxygenated groups. Typically, these compounds separate 

into solvents like ether and dichloromethane.[9,10] 

 

3.2 Model Compounds 

Given the complex and largely unknown nature of pyrolysis oil, it is necessary to choose 

surrogate compounds to represent the desired phenolic fraction. By carefully selecting 

just a few model compounds, the major functional groups are represented and the 

thermodynamic properties of the pyrolysis oil can be approximated. Based on a review 

of the literature, anisole, m-cresol and guaiacol were chosen to represent the phenolic 

fraction, and furfural was chosen to represent the larger holocellulosic compounds. This 

suite of compounds are found, in varying percentages, in pyrolysis oil and can be used to 
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reasonably simulate the behavior of phenolic pyrolysis fractions during the 

hydrotreatment process.[11,12,13] Chemical structures for all of these compounds can be 

seen in Figure 3-1. 

 

 

Figure 3-1. Phenolic Model Compounds 

 

Anisole presents an ether bond that makes its properties somewhat different from regular 

phenolic compounds. In the presence of a catalyst and hydrogen, hydrodeoxygenation 

and saturation reactions occur that lead to the primary desired products, benzene and 

cyclohexane. Other products with less deoxygenation or with transalkylation were also 

observed, such as cresol isomers and phenol.[14,15,16,17] 

 

M-cresol has a phenol base, but also has a methyl group on the ring, which allows better 

investigation of cracking and rearrangement functionalities on the catalyst. Here, the 

final desired products are toluene and methylcyclohexane. However, significant amounts 

of transalkylation occur and different cresol isomers, phenol, and xylenol, which has two 

methyl groups on the ring, are common products as well.[18,19,20,21,22,23] 
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Guaiacol has two oxygenated groups, one methoxyl and one hydroxyl group. This 

provides insight into reaction preference for functional groups, as well as how the dual 

oxygenation affects the catalyst. Because both of the functional groups are oxygenated, 

the final desired products are once again benzene and 

cyclohexane.[15,20,24,25,26,27,28,29,30,31,32,33] However, the double oxygen groups can lead to 

re-polymerization of the compounds that then form coke on the catalyst.[34,35] Coke will 

rapidly clog the active sites on the catalyst and result in catalyst deactivation. The 

catalyst can be regenerated under high heat and hydrogen, but this is costly and requires 

the process to be shut down for at least a few hours. 

 

Phenol was used in later experiments, but was not seen in many literature sources, 

probably due to the fact that it is crystalline at room temperature. Most of the model 

compounds used in experiments are liquid at room temperature; these are simply easier 

to work with. Phenol, as the basic phenolic building block, has easily predictable 

behavior when hydrotreated.[49,57] 

 

Furfural is a carbohydrate-based component that comes from the holocellulosic 

compounds in pyrolysis oil. While the phenolic, lignin-based compounds are the target 

reactants, there is no clear fractionation method to selectively separate them out. 

Therefore, it is necessary to understand how the holocellulosic compounds will react 

under hydrotreatment as well. Furfural typically proceeds via a decarbonylation and 
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subsequent ring opening route or via a hydrogenation and subsequent 

hydrodeoxygenation route.[12] It is more difficult to remove the oxygen from the furfural 

compound because it is contained inside the ring. 

 

3.3 Catalytic Hydrotreatment 

Crude oil used in the petroleum industry contains sulfur, nitrogen and low levels of 

oxygen. These contaminants are removed in hydrotreatment fixed bed reactors at high 

temperatures and pressures under hydrogen, typically over a sulfided cobalt-

molybdenum (CoMo) or nickel-molybdenum (NiMo) catalyst supported on alumina. 

The remaining sulfur is removed in a stripper unit to prevent poisoning of the noble 

metal catalysts contained in reforming and isomerization units further down the line. 

 

A similar approach can be taken with removing the oxygen from pyrolysis oil. By 

running the oil through a hydrotreatment unit, oxygen is removed from the compounds 

and the thermal and physical properties of the product oil are brought closer to that of 

petroleum-based gasoline. The oil becomes less viscous and corrosive, the heating value 

increases, and the color even lightens from dark brown to yellow or even clear, if the 

hydrotreatment is carried to completion. 

 

When catalytically hydrotreating phenolic compounds on a commercial scale, a primary 

concern is hydrogen consumption. Reacting a compound like phenol, for example, can 
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use anywhere from one to four hydrogen molecules per phenol molecule, depending on 

the extent of reaction, as shown in Figure 3-2. 

 

OH

phenol benzene cyclohexane

+H2

-H2O

+3H2

 

Figure 3-2. First Possible Reaction Pathway for Hydrotreatment of Phenol 

 

However, the removal of the hydroxyl group is often difficult, as the carbon to oxygen 

bond off the aromatic ring is quite strong.[18] Instead, it is often necessary to saturate the 

ring prior to removal of the hydroxyl group, as shown in Figure 3-3. 

 

OH

phenol benzene cyclohexane

+H2

-H2O

+3H2

OH

 

Figure 3-3. Second Possible Reaction Pathway for Hydrotreatment of Phenol 
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The ability to predict this can be critical when commercializing this process and, because 

most hydrogen today is sourced from natural gas reforming, can also have a huge impact 

on the sustainability of the process. Different catalysts, reactor temperatures, and 

hydrogen to oil ratios can direct which pathway the process will take, what the final 

product composition will be, and how much hydrogen is consumed. 

 

3.4 Reactor Types 

Although continuous hydrotreatment reactors are standard in industry, most literature 

sources use batch reactors.[23,26,27,28,32,33,35,36,37,38,39,40,41] This is most likely because batch 

reactors allow laboratory scale equipment to reach the high pressures present in 

industrial equipment without presenting a costly safety hazard. While this can provide 

insight into reaction pathways and mechanisms at the elevated pressures, it does not 

provide a proper understanding of the reaction kinetics, mainly due to the start-up time 

necessary for the batch reactor to reach the set temperature and pressure once the 

reactants and catalyst are placed inside. 

 

The continuous flow reactor experiments conducted in literature are performed at lower 

pressures, sometimes even atmospheric, and, as a result, the reactants are often in the 

vapor phase. While the fixed bed design more accurately reflects industrial 

hydroprocessing units, mass transfer coefficients and limitations for vapor phase 

reactants will be different from the liquid phase reactants found in 

industry.[21,24,25,29,30,31,42,43,44] 
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3.5 Reactor Pressures & Temperatures 

Industrial hydrotreatment reactors for petroleum are typically fixed bed, continuous 

reactors between 50 and 100 bar and 300-400°C. Ideally, pyrolysis oil hydrotreatment 

reactors would be run at the same conditions so that co-processing pyrolysis oil and 

other more renewable fuels with crude oil would be possible.[45,46] 

 

Pressures in hydrotreatment reactors vary drastically across literature sources, but can be 

sorted into two general categories, high and low. Batch reactors can maintain a much 

higher pressure than laboratory scale continuous reactors, and experimental designs 

typically reflect this. Lower pressure reactors are run at near atmospheric pressures, and 

the model compounds are typically in the vapor phase.[29,30,31,36,44] Unfortunately, 

because of the difference between these operating conditions and those found in 

industry, mass transfer concerns cannot be properly accounted for. 

 

The main feature of higher pressure reactors is that the reactants are at liquid phase. 

While there is little or no vapor pressure data for common pyrolysis oil compounds at 

elevated temperatures, most reactants remain in the liquid phase when the pressure is 

over 4 or 5 bar. From that point, high pressures can range anywhere up to 200 

bar.[26,27,35,39,40,41] These pressures more accurately simulate industrial conditions, 

however, the highest pressure experiments are usually performed in batch reactors, 

which still do not accurately simulate the hydrotreatment reactors found in industry. 
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The typical temperature for a catalytic hydrotreatment reactor is between 250 and 400°C. 

Almost every source in literature uses temperatures in this range. Such temperatures are 

essentially necessary for hydrotreatment reactions and, as a result, literature sources 

match industrial conditions very closely. 

 

3.6 Hydrotreatment Catalysts 

Traditional petroleum hydroprocessing catalysts, specifically sulfided cobalt-

molybdenum (CoMo) or nickel-molybdenum (NiMo) on a support such as alumina, are a 

logical place to start, and there is a large amount of literature available. These catalysts 

are excellent for hydrotreatment of organic compounds and show promising results 

overall.[19,21,23,24,25,27,35,47,48] However, these catalysts require a small amount of sulfur to 

be present in the feed in order to remain active.[49,50] For petroleum, which has large 

amounts of sulfur in it already, there is always enough sulfur present to maintain catalyst 

activity. For biological feedstocks such as pyrolysis oil, however, there is little to no 

initial sulfur present, and the use of sulfided catalysts requires the addition of sulfur, 

usually in the form of hydrogen disulfide or dimethyl disulfide.[51] This sulfur can leach 

into the oil, contaminating it and forcing further treatment later in the process. While this 

limits the potential for processing pure pyrolysis oil with the sulfided catalyst, this line 

of research can be used to expand on co-processing pyrolysis oil with crude oil. 
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Due to the sulfur leaching issue, more recent research trends have been away from the 

traditional sulfided catalysts. Instead, acidic zeolite catalysts, noble metal or nickel 

catalysts, and bifunctional catalysts have gained popularity. Unfortunately, many of 

these catalysts can be poisoned very quickly by nitrogen- or sulfur-containing 

compounds and are therefore incompatible with petroleum feeds. 

 

Acidic catalysts, such as ZSM-5 and other zeolites, have cracking and isomerization 

functionalities. While they can readily remove oxygen, these catalysts also tend to crack 

carbons off of the primary chain and result in smaller molecular weight 

products.[41,42,52,53,54,55,56,57,58] 

 

Noble metal and nickel catalysts have a hydrogenation functionality, which can be used 

for hydrodeoxygenation, but also tends to saturate the aromatic carbon bonds.[28,40,59,60] 

Ring saturation is hydrogen intensive, and noble metals are expensive, even at only 1-

5% weight loading, making pilot or commercial scale use of noble metal catalysts costly 

and impractical. Instead, nickel catalysts have been suggested as substitutes. Nickel 

exhibits a similar hydrogenation functionality to noble metals. As with the noble metal 

catalysts, the primary function is to saturate or reduce the ring.[26]  

 

The optimal catalyst depends on the desired product. For producing biofuels from 

renewable feedstocks, there is a need for both the acidic and hydrogenation 

functionalities, leading to the rise in popularity of bifunctional catalysts. These catalysts 
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are typically a hydrogenation metal or bimetallic catalyst on an acidic ceramic support. 

When used in hydrotreating, they still have a tendency to saturate the aromatic ring, but 

will also remove oxygenated groups without breaking the 

ring.[15,22,29,30,31,32,33,36,40,43,44,59,61,62,63] 

 

In order to fully investigate the range of catalysts, all types except for the sulfided 

catalysts were investigated. A representative catalyst from each type was selected: ZSM-

5, an acidic zeolite catalyst, palladium on carbon (Pd/C), a noble metal hydrogenation 

catalyst, and platinum on alumina (Pt/Al2O3). 
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4. Catalytic Hydrotreatment of Pyrolysis Oil Model 

Compounds over Pt/Al2O3 and Pd/C 

Part I: Batch Reactors2 

4.1 Introduction 

Biofuels are attractive renewable fuel sources because they can yield products similar to 

petroleum-based fuels. Because these fuels are derived from renewable and more eco-

friendly feedstocks, significant efforts have been focused on researching optimal 

feedstocks and conversion methods.[1] Relatively little focus, however, has been placed 

on treating these fuels after the initial conversion step. Due to the biological nature of the 

feedstocks, biofuels usually contain oxygen, making them incompatible with petroleum-

based fuel.[2] The high oxygenation of the biofuels creates miscibility issues, lowers the 

heating value, and makes them unstable in storage.[3,4] The pyrolysis of woody biomass 

produces pyrolysis oil, which is a highly complex mixture of oxygenated 

hydrocarbons.[5] Pyrolysis oil can include water, acids, aldehydes, furans and phenolic 

compounds, but exact composition varies drastically, based on original feedstock 

species, growing location and conditions, and conversion method.[6] In its crude form, a 

high amount of oxygen is retained in the oil, up to 40%.[7] Similar issues arise with crude 

oil, which contains heavy metals, sulfur, nitrogen, and oxygen. In a petroleum refinery, 

crude oil is hydrotreated, typically using sulfided cobalt/molybdenum (CoMo) or 

                                                 
2 This work has been submitted to Industrial & Engineering Chemistry Research, and is a collaboration 
with Dr. Louise Olsson and Muhammad Abdus Salam. 
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nickel/molybdenum (NiMo) catalysts, to remove contaminants.[8] A comparable 

approach can be taken with biofuels to remove oxygen and produce a pure hydrocarbon 

product that can be blended in any proportion with traditional fuel. A significant portion 

of pyrolysis oil is within the desired range of hydrocarbons (C6-C8) for gasoline and, 

with catalytic hydrotreatment (HDT), a hydrocarbon fuel that is fully compatible with 

petroleum-based gasoline can be produced.[9] 

 

While catalytic hydrotreatment has perhaps the most significant environmental impact of 

the entire process from biological feedstocks to fuel in terms of greenhouse gas (GHG) 

production, energy and hydrogen consumption, it is also the most poorly understood step 

in the process.[10] Based on current literature, there is little appropriate data available on 

reaction kinetics that would allow for proper life cycle assessment or scaling up of a 

process.[11,12] Instead, most life cycle assessments rely on proprietary data from industrial 

sources or make stoichiometric assumptions without considering process conditions and 

resulting pathway selectivities. 

 

Once the reaction kinetics are understood, the process can be simulated using a reactor 

model, generating process-level details and allowing for simple scale-up of the process 

without expensive testing. The petroleum industry has used this approach with 

traditional crude oil, which differs from location to location and can contain hundreds of 

components. Mapping every kinetic pathway and obtaining data for every one of the 

compounds present is impractical, leading to lumped parameter models, which group 
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reaction pathways and/or compounds together. This streamlines modeling when 

predicting product compositions, yields, optimal catalyst, and energy and hydrogen 

input, and requires a more reasonable number of parameters. By focusing only on 

observed compounds and not hypothetical intermediates, the reaction network can be 

further simplified. With enough experimental data, a model can be constructed for any 

known inlet composition, including individual components, oil (of varying sources and 

composition), and even different blends of those oils. This model should yield accurate 

predictions for life cycle and techno-economic assessments, which will further the 

development of the technology and allow for faster screening of potential feedstocks. 

 

4.2 Materials & Methods 

Anisole, m-cresol, phenol, and n-dodecane (all 99+%) were obtained from Sigma 

Aldrich. Dodecane was used as an inert solvent for the phenolic compounds to limit the 

exothermic reactions and enable better quantification of the results. Palladium on carbon 

(Pd/C, powder, 5% metal loading) and platinum on alumina (Pt/Al2O3, powder, 5% 

metal loading) catalysts were also obtained from Sigma Aldrich, with particle sizes of 

roughly 1 micron, which were reduced in the Parr reactor for six hours under 10 bar 

hydrogen at 300°C. HDT studies were conducted in a batch slurry reactor system (Parr 

4848B) with a maximum volume of 150 mL, as shown in Figure 4-1. Prior to each test, 

120 mL solution of 5 mole percent model compound in dodecane were loaded into the 

reactor, along with 500 mg of catalyst. A baffle was inserted to ensure turbulent flow, 

and the reactor was sealed. After flushing with nitrogen, 10 bar of hydrogen was 
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maintained while the reactor achieved the set temperature (250, 300, or 350°C). The 

hydrogen pressure was then increased to 50 bar. A high pressure, pure hydrogen 

environment with high conversions was used to simulate commercial reactor conditions 

and product composition. Once the desired pressure and temperature were reached, time 

was set as 0 hours and an initial sample was taken. A sample was taken once every hour 

for four hours. Unfortunately, because the reactor could not be heated instantaneously, 

there is a pre-heating period prior to sampling during which some amount of conversion 

occurs. The reactor was stirred at 1000 rpm throughout the start-up and reaction times. 

The reactor was re-pressurized with hydrogen as necessary to compensate for any losses 

during sampling. Liquid samples were analyzed using a GC/MS-FID (Agilent 5977A 

MSD & Agilent 7890B GC), with calibrations performed on both for all observed 

compounds. 
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Figure 4-1. Parr Batch Reactor Photograph and Diagram 

 

In previous work, we have studied relevant hydrotreatment mechanisms and pathways in 

a continuous micro-reactor system at low conversions.[13] As a result, for this study, 

anisole, m-cresol and phenol (shown in Figure 4-2) were chosen as model compounds 

for the lignin fraction of pyrolysis oil, which is 10-25% of crude pyrolysis oil, depending 

on specific feedstock.[14] They represent a variety of phenolic groups commonly found in 

pyrolysis oil, including methoxyl, methyl, and hydroxyl groups. The majority of the 

experiments were performed using Pt/Al2O3, but a set of tests was performed with Pd/C 

to examine differences due to catalyst functionality. Two dosages (200 and 500 mg) of 

Pt/Al2O3 catalyst were used to test for any mass transfer limitations. 

 

OHOCH3 OH

anisole m-cresol phenol  

Figure 4-2. Pyrolysis Oil Lignin Fraction Model Compounds 

 

4.3 Results 

The analytical results were converted to absolute concentrations, and all analysis was 

performed accordingly. The reaction products and intermediates were used to propose a 
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simple reaction network. The rate constants for this network were then fitted to the 

experimental data, as discussed in the next section. 

 

4.3.1. Individual Surrogate Compounds 

For anisole, an increase in conversion and a pathway shift from ring saturation to 

demethylation were evident with increasing temperature. At 250°C, there was 57.7% 

conversion of anisole, with a pathway preference for ring saturation leading to 

methoxycyclohexane. At 300°C, there was 76.7% conversion, and a higher preference 

for the initial demethylation reaction that generates phenol from anisole. At 350°C, as 

shown in Figure 4-3, 99.0% conversion was attained, and the pathway almost completely 

shifted to the initial demethylation reaction. There was also more conversion of 

oxygenated intermediates to cyclohexane at the higher temperature. Four replicate 

experiments were performed with anisole at 300°C. After normalizing the results to the 

0th hour concentration of the original data set, standard deviations were calculated for 

each compound at each sampling time. The average standard deviation was 0.02 mol/L, 

approximately ±5% of the starting concentration. These results were quite similar to 

previous studies for anisole HDO over more traditional hydrotreatment catalysts, which 

yielded cyclohexane with phenol as the primary intermediate.[15] 
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Figure 4-3. Anisole on Pt/Al2O3 results – Concentration vs. Time at 350°C 

 

With m-cresol, there appears to be just one pathway, where m-cresol is 

hydrodeoxygenated to toluene, and then the ring is saturated to methylcyclohexane. 

There appears to be a significant conversion of m-cresol prior to the first sampling while 

the reactor is coming to temperature, yielding variability in overall conversion over four 

hours. At 250°C, the slowest reaction rate is seen, even though conversion prior to 

sampling is high. Due to the high initial conversion, however, complete conversion is 

achieved by the end of the four hour reaction period. At 300°C, there is no conversion 

prior to sampling, and the first conversion is noted after one hour. Once the reactions are 

initiated, the reaction rate is higher than at 250°C, but conversion of m-cresol is still only 

about 78% at the end of four hours. At 350°C (Figure 4-4), the highest reaction rate is 

observed, and 93% conversion of m-cresol is achieved by the end of the test, although 

there is less conversion prior to sampling than at 250°C. It is worth noting that toluene 

concentrations are consistently low over the entire four hours at all temperatures, 
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indicating either a rapid conversion of toluene to methylcyclohexane or an equilibrium 

between those species.[16] At 250°C, the concentration of toluene is ~5%, at 300°C, it is 

~3%, and at 350°C, concentration is ~1% throughout the four hours. The concentration 

of toluene in the system is temperature dependent, but may also depend on hydrogen 

pressure or catalyst type. Another study, where the HDO of 4-methylphenol (p-cresol) 

over a sulfided molybdenum catalyst at 28 bar was examined, resulting in an almost 50% 

conversion to toluene after 5 hours at 350°C and almost 60% conversion to toluene at 

330°C.[17] 

 

 

Figure 4-4. M-Cresol on Pt/Al2O3 results – Concentration vs. Time at 350°C 

 

With phenol, we see a similar pathway as with anisole, where phenol is converted 

directly to cyclohexane. At 250°C, there is an hour long delay before conversion begins, 

but than a reasonable reaction rate and total conversion, ending at 79.5%. At 300°C, 

there is total conversion by the end and a 49.5% startup period conversion. At 350°C, 
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shown in Figure 4-5, there seems to be some suppression of the reactions; conversion is 

only at 71% by the end of the reaction period. However, the reaction rate for pure phenol 

at 350°C is almost the same as the phenol intermediate in the anisole reaction, once the 

consumption of anisole is complete. Based upon these results, the hydrodeoxygenation 

and ring saturation occur so rapidly that no intermediates are observed. A previous study 

with a similar system using petroluem hydrotreatment catalysts showed that phenol 

primarily forms cyclohexane in HDO systems, without any primary intermediates.[18]   

 

 

Figure 4-5. Phenol on Pt/Al2O3 results – Concentration vs. Time at 350°C 

 

4.3.2. Catalyst Dosage Experiments 

A set of trials were also performed using a smaller 200 mg dosage of the Pt/Al2O3 

catalyst to investigate the effect of catalyst loading in the system, while all other reactor 

conditions were kept the same. As with the 500 mg tests, the preferred reaction pathway 

shifted from an initial ring saturation reaction to an initial demethylation reaction with 
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increasing temperature. At 250°C, the difference in total conversion of anisole between 

the two catalyst dosages was statistically insignificant. However, at 300°C, the four hour 

conversion over 500 mg was 76.7% versus 66.0% over 200 mg, and at 350°C, shown in 

Figure 4-6, conversion of anisole on 500 mg was 99.0% versus 88.8% over 200 mg. 

Although one might expect to have a linear relationship between conversion and catalyst 

mass, the results show that the change in conversion is not proportional to the catalyst 

mass. This may be due to mass transfer limitations or a more complex surface reaction 

order than we have assumed. Moreover, for a first order reaction in a batch reactor, 

Vdc/dt=-kcW. Solving this results in X=1-exp(-kWt/V). For low conversions, this will 

appear linear, but not for the higher conversions that we have used in this study. 

 

 

Figure 4-6. Anisole on 200 mg Pt/Al2O3 results – Concentration vs. Time at 350°C 

 

To examine the role of mass transfer in the system, the inverse reaction rate was graphed 

versus the inverse catalyst mass, as shown in Equation 4-1 and Figure 4-7. In Equation 
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4-1, CH2 is the concentration of hydrogen in the system, which was constant throughout 

the experiments, rA is the rate of reaction for anisole, kH2aH2 is the mass transfer 

resistance term for hydrogen across the gas-liquid interface, kcac is the mass transfer 

resistance term for the catalyst surface, and mcatalyst is the mass of the catalyst in the 

system. In Figure 4-7, the slope of the line is the inverse of kcac, and the intercept is the 

inverse of kH2aH2. Although only two catalyst dosages were used, a clear trend can be 

observed at the higher temperatures. If reaction rate is proportional to catalyst mass, the 

intercept of this plot should be zero, but since it is not, this is indicative of external mass 

transfer limitations. Based on the graph, however, the mass transfer limitation from the 

catalyst surface is significantly larger than the hydrogen mass transfer limitation. 

 

𝐶𝐶𝐻𝐻2
−𝑟𝑟𝐴𝐴

=  1
𝑘𝑘𝐻𝐻2𝑎𝑎𝐻𝐻2

+  � 1
𝑘𝑘𝑐𝑐𝑎𝑎𝑐𝑐

� 1
𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

      Equation 4-1 
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Figure 4-7. Mass transfer effects between 200 and 500 mg of Pt/Al2O3 for anisole at 

350°C 

 

4.3.3. Pd/C Catalyst Experiments 

Pd/C is another common catalyst studied in the literature. Here, the noble metal catalyst 

provides a saturation functionality, without the cracking ability of the acidic alumina 

support. The Pd/C catalyzed reaction exhibited an initial saturation to 

methoxycyclohexane with subsequent methanol abstraction to cyclohexane. In 

comparison, Pt/Al2O3 has either an initial saturation step or an initial demethylation step. 

At 250°C, cyclohexane decreases with time and methoxycyclohexane is the primary 

product; this may indicate a reattachment of the methoxyl group to the cyclohexane ring 

in the lower temperature environment. At 350°C, there is a more rapid decline of anisole 

and the methoxycyclohexane intermediate than at 300°C. There is a 70% conversion of 

anisole at 300°C and nearly 100% conversion at 350°C. Some methoxycyclohexane is 

produced during the first hour of the process at 300°C; however, at 350°C, as shown in 

Figure 4-8, cyclohexane production dominates the entire four hour reaction period. 
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Figure 4-8. Anisole on Pd/C results – Concentration vs. Time at 350°C 

 

4.3.4. Blended Model Compound Experiments 

With the 50 mole percent anisole and 50 mole percent m-cresol mixture, at 250°C, 

demethylation appears to be the primary initial reaction. Since both anisole and m-cresol 

are converted to phenol this way, it is the primary product formed for the first two hours. 

Methylcyclohexane concentration decreases during this period, and then both 

methylcyclohexane and methoxycyclohexane production increase. Although anisole 

concentration drops from 50% to roughly 15% by the end of the pre-heating period, it 

remains relatively constant throughout the sampling period, reaching roughly 10% by 

the end of four hours. This behavior is not seen at higher temperatures. At 300°C, both 

anisole and m-cresol concentrations decrease steadily with time. The phenol 

intermediate also declines, while the methylcyclohexane concentration increases rapidly 

until the last hour, when phenol production increases again. Methoxycyclohexane 

persists at low levels (3-6%) throughout the four hours. As seen in Figure 4-9, at 350°C, 
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there is rapid production of methoxycyclohexane and methylcyclohexane, with 

decreasing anisole, m-cresol, and phenol concentrations. Conversion is nearly complete 

after three hours, while at the other temperatures, there are still secondary reactions in 

the last hour. 

 

 

Figure 4-9. Anisole & M-Cresol Blend on Pt/Al2O3 results – Concentration vs. Time at 

350°C 

 

With the 50 mole percent anisole and 50 mole percent phenol blend, the presence of 

phenol seems to suppress the production of methoxycyclohexane and create another 

pathway via ring saturation to cyclohexanol. At 250°C, cyclohexanol production is the 

predominant reaction throughout the four hours, and appears to consume any phenol 

formed in the process; it is only after the anisole concentration has dropped below 30% 

that cyclohexane and methoxycyclohexane production increases. At 300°C, 

cyclohexanol and anisole concentrations decrease rapidly, methoxycyclohexane peaks 
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and then drops off quickly, and cyclohexane production dominates the process. As 

shown in Figure 4-10, at 350°C, there is no cyclohexanol detected during the four hour 

sampling period; indicating that it may have been consumed during the pre-heating 

period, that the higher temperature suppresses cyclohexanol production, or that the 

higher temperature greatly increases the conversion rate of cyclohexanol. Anisole, 

phenol, and methoxycyclohexane all decline quickly during the sampling period, and 

conversion to cyclohexane is complete by the end of the four hour sampling period. 

 

 

Figure 4-10. Anisole & Phenol Blend on Pt/Al2O3 results – Concentration vs. Time at 

350°C 

 

4.3.5. Lumped Parameter Reaction Network 

Based on the results, a simple reaction network may be proposed for the HDT of the 

paradigm compounds over Pt/Al2O3 under an excess of hydrogen (Figure 4-11). This 

network is based only on the observed species, without any hypothetical reaction 
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intermediates included. A lumped parameter approach was taken, instead of considering 

each compound and reaction separately. For example, the ring saturation rate constants 

for the reactions of toluene, anisole, and phenol are assumed to be the same. This is 

reflected in the reaction network and later in the modeling section of this paper. 

 

 

Figure 4-11. Proposed reaction pathways for hydrotreatment of anisole 

 

4.4 Reaction Kinetics & Model 
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There are two distinct model types in literature for pyrolysis oil hydrotreatment: pseudo-

first order and surface adsorption models. While pseudo-first order models are more 

simplistic, they are typically used to model flow reactors at atmospheric or low 

pressures.[19, 20] Surface adsorption models are typically used to model batch systems at 

elevated pressures.[21, 22] However, it should be noted that papers with kinetic models and 

parameter calculations are extremely limited. The objective of the work here is therefore 

to test both models for a higher pressure system. 

 

4.4.1. Power Law Model 

Using this reaction network, a simple second order surface reaction model was initially 

proposed. Due to the small particle size of the catalyst (less than 1 micron) and high 

mixing rates inside the reactor, the catalyst was assumed to be well-dispersed without 

liquid-to-catalyst surface mass transfer limitations. The correlations for mass transfer 

across the liquid-to-gas interface in a slurry reactor were taken from Fogler.[23] We also 

assumed no pore diffusion within the catalyst, η = 1, with all reactions occurring at the 

surface. Isothermal and isobaric operation were assumed, since the reactor had a heating 

jacket and was re-pressurized to compensate for any pressure losses during sampling. 

Based on these assumptions, transient material balances were developed for each species 

and in each phase. Samples of these material balances are shown in Equations 2 through 

7, with nomenclature outlined in Table 4-1. 

 

−𝑑𝑑𝐶𝐶𝐻𝐻2,𝐺𝐺
𝑑𝑑𝑑𝑑

− {𝑘𝑘𝐿𝐿𝐿𝐿}𝐻𝐻2�𝐻𝐻𝐻𝐻2𝐶𝐶𝐻𝐻2,𝐺𝐺 − 𝐶𝐶𝐻𝐻2,𝐿𝐿� = 0     Equation 4-2 
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−𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐺𝐺
𝑑𝑑𝑑𝑑

+ {𝑘𝑘𝐿𝐿𝐿𝐿}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝐻𝐻2,𝐿𝐿 − 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐺𝐺� = 0     Equation 4-3 

−𝑑𝑑𝐶𝐶𝐻𝐻2,𝐿𝐿
𝑑𝑑𝑑𝑑

+ {𝑘𝑘𝐿𝐿𝐿𝐿}𝐻𝐻2�𝐻𝐻𝐻𝐻2𝐶𝐶𝐻𝐻2,𝐺𝐺 − 𝐶𝐶𝐻𝐻2,𝐿𝐿� − {𝑘𝑘𝑆𝑆𝑆𝑆}𝐻𝐻2�𝐶𝐶𝐻𝐻2,𝐿𝐿 − 𝐶𝐶𝐻𝐻2,𝑆𝑆� = 0 Equation 4-4 

−𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿
𝑑𝑑𝑑𝑑

− {𝑘𝑘𝐿𝐿𝐿𝐿}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿 − 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐺𝐺� − {𝑘𝑘𝑆𝑆𝑆𝑆}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆� = 0 Equation 4-5 

−𝑑𝑑𝐶𝐶𝐻𝐻2,𝑆𝑆
𝑑𝑑𝑑𝑑

= {𝑘𝑘𝑆𝑆𝑆𝑆}𝐻𝐻2�𝐶𝐶𝐻𝐻2,𝐿𝐿 − 𝐶𝐶𝐻𝐻2,𝑆𝑆� −  ∑ 𝜂𝜂𝑘𝑘𝑖𝑖𝐶𝐶𝐻𝐻2,𝑆𝑆
𝑚𝑚 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆𝑛𝑛

𝑖𝑖    Equation 4-6 

−𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆
𝑑𝑑𝑑𝑑

= {𝑘𝑘𝑆𝑆𝑆𝑆}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆� −  ∑ 𝜂𝜂𝑘𝑘𝑖𝑖𝐶𝐶𝐻𝐻2,𝑆𝑆
𝑚𝑚 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆𝑛𝑛

𝑖𝑖    Equation 4-7 

 

Table 4-1. Nomenclature for Equations 4-2 through 4-7 

Nomenclature:  

{kLa}i Mass transfer coefficient for gas-liquid (time-1) 

{kca}i Mass transfer coefficient for liquid-surface of the catalyst (time-1) 

CH2,G Concentration of hydrogen in the gas phase (gmols/volume) 

CH2,L Concentration of hydrogen in the liquid phase (gmols/volume) 

CH2,S Concentration of hydrogen in the solid phase (gmols/volume) 

Coil,L Concentration of bio-oil in the liquid phase (gmols/volume) 

Coil,S Concentration of bio-oil in the solid phase (gmols/volume) 

HC Henry’s Law constant, C* = Cg / H (mole/mole) 

ki Reaction rate constant (time-1) 

z Length of the reactor (length) 

m, n Order of reaction 

QG Gas volumetric flow rate (volume/time) 
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QL Liquid volumetric flow rate (volume/time) 

Ac Column cross sectional area (area) 

η Catalyst effectiveness factor 

 

The reaction network was computationally fitted to the experimental data, and pseudo-

first order rate constants (constant H2 concentration) were generated for each reaction, 

temperature, and catalyst. These rate constants were graphed as Arrhenius plots, with 

activation energies and pre-exponential factors calculated for each reaction in the 

system. The power law model was compared to the data; an example of which is shown 

in Figure 4-12. While the trends are similar, the statistical fit of the curves was far from 

satisfactory, with correlation coefficients of only 0.44 to 0.89, and a more realistic 

model, such as a Langmuir-Hinshelwood model, including competitive adsorption 

effects might be preferable. 
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Figure 4-12. Anisole on Pt/Al2O3 model (dashed) vs. data (solid) comparison at 350°C 

for power law kinetic model 

 

4.4.2. Surface Adsorption Kinetic Model 

Further data analysis indicated that the data could not be modeled using a simple integral 

order reaction model, and therefore, a simple Langmuir-Hinshelwood model was 

created. Retaining the other assumptions from the previous model, a surface adsorption 

term (KC for the hydrocarbons was added to account for competition for available 

surface sites. Material balances were accordingly modified to a Langmuir-Hinshelwood 

form, as shown in Equation 4-8. It is important to note that the hydrogen concentration is 

implicitly included in the rate constants, ki. Since hydrogen was maintained in a large 

excess in the system and pressure was constant throughout the reaction period, hydrogen 

concentration is considered constant and can be lumped into the rate constants. 

 

−𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆
𝑑𝑑𝑑𝑑

= {𝑘𝑘𝑆𝑆𝑆𝑆}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆� −  
∑ 𝜂𝜂𝑘𝑘𝑖𝑖𝐶𝐶𝐻𝐻2,𝑆𝑆

𝑚𝑚
𝑖𝑖 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆

𝑛𝑛

1+∑𝐾𝐾𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆
𝑛𝑛     Equation 4-8 

 

4.4.3. Coking Analysis 

Elemental analysis was performed on three spent Pt/Al2O3 catalyst samples from tests 

run at 350°C, with results shown in Table 4-2. Only small amounts of coke were 

observed for all of the model compounds; moreover similar amounts were found for the 

three model compounds. Although some differences were found between the samples, 
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where phenol had the highest amount present as well as the highest C/H ratio. Based on 

these results, coking was neglected in the modelling of this system; however, a coking 

term could be included if necessary. 

 

Table 4-2. Elemental analysis of spent catalyst on three samples from 350°C tests 

Spent Catalyst Carbon (mass %) Hydrogen (mass %) C/H ratio 

Anisole 1.38 0.36 3.83 

m-Cresol 1.48 0.37 4.00 

Phenol 1.53 0.36 4.25 

 

 

4.4.4. Parameter Fitting 

This new Langmuir-Hinshelwood model was fitted to the experimental data, and 

pseudo-first order surface rate constants were calculated and fitted to an Arrhenius plot, 

with the pre-exponential factors and activation energies determined for each reaction. An 

Arrhenius plot for anisole over Pt/Al2O3 is shown in Figure 4-13, with a summary of the 

Arrhenius parameters shown in Table 4-3. 
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Figure 4-13. Arrhenius plot example for anisole on Pt/Al2O3 

 

Table 4-3. Activation energies and pre-exponential factors for hydrotreatment rate 

constants, ki 

Model 

Compound Catalyst Reaction 

Activation 

Energy (EA, 

kJ/mol) 

Pre-Exponential Factor 

(A0) 

Anisole Pt/Al2O3 Demethylation (k1) 72.14 1.24x106 

Anisole Pt/Al2O3 Ring Saturation (k2) 79.77 7.01x105 

Anisole Pt/Al2O3 HDO (k3) 78.79 5.64x106 

M-Cresol Pt/Al2O3 Ring Saturation (k2) 76.32 6.9x107 

M-Cresol Pt/Al2O3 HDO (k3) 65.01 6.07x105 

Phenol Pt/Al2O3 Ring Saturation + HDO (k4) 59.51 8.58x105 

 

4.4.5. Model Fitting 
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The model as compared to the experimental data yielded a statistically better fit than the 

simple power law model, although there are still some deviations at the longest time of 

four hours. The statistical fit of this model was significantly better than the power law 

model, with correlation coefficients from 0.80 to 0.98 for every temperature and every 

model compound. An example of this Langmuir-Hinshelwood model is shown in 

Equations 4-9 through 4-12 and Figure 4-14 for anisole on Pt/Al2O3 at 350°C. 

 

Equation 4-9 (Anisole Concentration over Time) 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐴𝐴(𝑡𝑡) =  

−(𝑘𝑘1 + 𝑘𝑘2)𝐴𝐴(𝑡𝑡)𝐻𝐻(𝑡𝑡)
1 + 𝐾𝐾𝐶𝐶𝐴𝐴(𝑡𝑡)

 

Equation 4-10 (Phenol Concentration over Time) 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑃𝑃(𝑡𝑡) =  

𝑘𝑘1𝐴𝐴(𝑡𝑡)𝐻𝐻(𝑡𝑡) − 𝑘𝑘4𝑃𝑃(𝑡𝑡)𝐻𝐻(𝑡𝑡)
1 + 𝐾𝐾𝐶𝐶𝐴𝐴(𝑡𝑡)

 

Equation 4-11 (Methoxycyclohexane Concentration over Time) 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) =  

𝑘𝑘2𝐴𝐴(𝑡𝑡)𝐻𝐻(𝑡𝑡) + 𝑘𝑘3𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)𝐻𝐻(𝑡𝑡)
1 + 𝐾𝐾𝐶𝐶𝐴𝐴(𝑡𝑡)

 

Equation 4-12 (Cyclohexane Concentration over Time) 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐶𝐶(𝑡𝑡) =  

𝑘𝑘3𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)𝐻𝐻(𝑡𝑡) + 𝑘𝑘4𝑃𝑃(𝑡𝑡)𝐻𝐻(𝑡𝑡)
1 + 𝐾𝐾𝐶𝐶𝐴𝐴(𝑡𝑡)
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Figure 4-14. Anisole on Pt/Al2O3 model (dashed line with * in the legend) vs. data 

(solid line) comparison at 350°C for surface adsorption kinetic model 

 

Figure 4-15 shows the same model at 300°C. Once again, the overall fit is excellent, but 

some deviation begins to occur towards the end of the residence time, possibly due to 

catalyst deactivation or coking of the active sites. 
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Figure 4-15. Anisole on Pt/Al2O3 model (dashed line with * in the legend) vs. data 

(solid line) comparison at 300°C for surface adsorption kinetic model 

 

Figure 4-16 shows the model comparison to data for m-cresol at 350°C. Unfortunately, 

the overall fit for m-cresol is not as good as with anisole. The model seems unable to 

properly capture the initial delay in the reaction and instead smooths the curve for all 

temperatures with this model compound. However, the model seems able to predict the 

end behavior of the system, as the final composition at four hours is more accurate than 

with anisole. 

 

 

Figure 4-16. M-Cresol on Pt/Al2O3 model (dashed line with * in the legend) vs. data 

(solid line) comparison at 350°C for surface adsorption kinetic model 

 

Figure 4-17 shows the model comparison to data for phenol. Again, there is less data 

available and the model still seems unable to predict one point of the reaction data, at 
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three hours in this case. Instead, it smooths the curve to reach a reasonably accurate final 

product composition.   

 

 

Figure 4-17. Phenol on Pt/Al2O3 model (dashed line with * in the legend) vs. data (solid 

line) comparison at 350°C for surface adsorption kinetic model 

 

4.4.6. Model Validation 

Figures 4-18, 4-19, and 4-20 show the same Langmuir-Hinshelwood model compared to 

separate experimental data sets run at 350°C. In Figure 4-18, the model is fit to another 

anisole data set. The overall fit at the beginning and the end of the residence time is 

excellent, except for some deviation at 2 hours. Figure 4-19 shows the model in 

comparison to m-cresol data from another data set. Once again, the fit is excellent, with 

slight deviation at the intermediate residence times of one and two hours. Figure 4-20 

shows the model for phenol compared to data from another separate run. The model 

corresponds well with the data, with slight deviation at 1 and 2 hours residence time, but 
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an excellent fit for the final concentration. Any deviation is caused by the way the model 

smooths the concentration curve over the total residence time to achieve the final 

product composition. 

 

 

Figure 4-18. Anisole on Pt/Al2O3 model (dashed line with * in the legend) vs. data 

(solid line) comparison with new data set at 350°C for surface adsorption kinetic model 
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Figure 4-19. M-Cresol on Pt/Al2O3 model (dashed line with * in the legend) vs. data 

(solid line) comparison with new data set at 350°C for surface adsorption kinetic model 

 

 

Figure 4-20. Phenol on Pt/Al2O3 model (dashed line with * in the legend) vs. data (solid 

line) comparison at 350°C for surface adsorption kinetic model 

 

The model was also tested against the blended experimental data. The adsorption 

coefficients were combined into the model using Equation 4-13. Unfortunately, the 

model did not fit the data well. The correlation coefficients for the anisole and m-cresol 

blend were between 0.43 and 0.79. The correlation coefficients for the anisole and 

phenol blend were between 0.48 and 0.71. Clearly, there are other factors that need to be 

included in the model, such as coking or secondary reactions. The anisole and m-cresol 

blend, for example, only had methylcyclohexane in the product, even though there is 

demethylation observed in the reactor. 
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Equation 4-13 (Generic Equation for CI) 

𝑑𝑑𝐶𝐶𝐼𝐼
𝑑𝑑𝑑𝑑

=  
𝑘𝑘1𝐶𝐶𝐻𝐻2𝐶𝐶𝐼𝐼

1 + 𝐾𝐾𝐼𝐼𝐶𝐶𝐼𝐼 + 𝐾𝐾𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼
 

 

4.5 Conclusions 

Pyrolysis oil model compounds were hydrotreated in a Parr batch reactor over Pt/Al2O3 

and Pd/C catalysts. Three compounds with representative functional groups for the 

lignin-based fraction of pyrolysis oil were used: anisole, m-cresol, and phenol. Reactor 

temperatures (250-350°C) and a pressure (50 bar) similar to those in industrial 

processing were used. A residence time of 4 hours was sufficient to obtain high yields of 

deoxygenated products. The Pt/Al2O3 catalyst promoted two basic reactions: 

hydrogenation (ring saturation) and removal of the pendant groups. For anisole, the 

pathway shifted from a ring saturation reaction at the lowest temperature to 

demethylation at the highest temperatures, although the ultimate product was 

cyclohexane for both. For m-cresol, an initial hydrodeoxygenation reaction was followed 

almost immediately by ring saturation to methylcyclohexane. With phenol, cyclohexane 

is the principle product, indicating ring saturation and hydrodeoxygenation, possibly via 

a cyclohexanol intermediate (not observed). Tests with anisole conducted over less 

catalyst led to lower conversions. Analysis of the liquid-to-catalyst surface mass transfer 

indicated that it could affect the reaction rate, while the gas-to-liquid interface mass 

transfer was negligible. The mass transfer coefficients for gas-to-liquid and liquid-to-

catalyst are included in the kinetic model. The Pd/C catalyst HDO tests with anisole 
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primarily showed ring saturation, with no deoxygenation occurring until after the 

aromatic ring was fully saturated. Two blends of the model compounds (anisole/m-

cresol and anisole/phenol) were tested over Pt/Al2O3 to investigate competitive 

adsorption or other interactions. While no new reactions were observed, some 

competition for surface sites was reflected in the absorption term of the LH model. The 

weak interaction between model compounds provides evidence that the lumped 

parameter approach is appropriate for the pyrolysis oil hydrotreatment model. 

 

The initial model applied a simple second order power law to the data, but the fit was 

unsatisfactory. It was determined that this was due to competitive surface adsorption 

effects on the reaction rate, therefore, a simple Langmuir-Hinshelwood model with 

adsorption terms for the hydrocarbons was used to more accurately represent the data. 

Arrhenius parameters and activation energies for the reaction rate constants and 

adsorption constants were fit to the data for each compound. The activation energies 

ranged from 50 to 80 kJ/mol for the HDO reactions. The model was subsequently 

validated using an independent data set and fit the data well, with correlation coefficients 

from 0.80 to 0.98 for all model compounds and all temperatures. This simple Langmuir-

Hinshelwood model can represent the kinetics for hydrotreatment of pyrolysis model 

compounds over Pt/Al2O3 as a function of inlet composition and process conditions. The 

model’s ability to predict shifts in the reaction pathway is crucial for optimizing process 

conditions for a desired product composition and for analyzing the associated energy and 

hydrogen consumption. The model can be used to assess processing conditions and 
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catalysts for scale-up, and to aid in life cycle assessment. An accurate techno-economic 

assessment for a given pyrolysis oil feedstock to produce a desired reactor product 

composition requires a process-level reactor model of the type developed here.  



 

95 
 

4.6 References 

[1]  Bridgwater and G. Peacocke, "Fast pyrolysis processes for biomass," Renewable 

and Sustainable Energy Reviews, vol. 4, pp. 1-73, 2000. 

[2]  G. W. Huber, S. Iborra, and A. Corma, "Synthesis of transportation fuels from 

biomass: chemistry, catalysts, and engineering," Chemical Reviews, vol. 106, pp. 

4044-4098, 2006. 

[3]  Bridgwater, Anthony V. "Review of fast pyrolysis of biomass and product 

upgrading." Biomass and bioenergy 38 (2012): 68-94. 

[4]  E. Furimsky, "Hydroprocessing challenges in biofuels production," Catalysis 

Today, 2013. 

[5]  J. Adjaye and N. Bakhshi, "Catalytic conversion of a biomass-derived oil to fuels 

and chemicals I: model compound studies and reaction pathways," Biomass and 

Bioenergy, vol. 8, pp. 131-149, 1995. 

[6]  Evans, R. J. and T. A. Milne (1987). "Molecular characterization of the pyrolysis 

of biomass." Energy & Fuels 1(2): 123-137. 

[7]  Zhang, Qi, et al. "Review of biomass pyrolysis oil properties and upgrading 

research." Energy conversion and management 48.1 (2007): 87-92. 

[8]  Elliott, D. C. (2007). "Historical developments in hydroprocessing bio-oils." 

Energy & Fuels 21(3): 1792-1815. 

[9]  Asphaug, S., Catalytic Hydrodeoxygenation of Bio-oils with Supported MoP-

Catalysts. 2013. 

[10]   



 

96 
 

[11]  Furimsky, E. (2000). "Catalytic hydrodeoxygenation." Applied Catalysis 

A: General 199(2): 147-190. 

[12]  Kalnes, T., T. Marker, and D.R. Shonnard, Green diesel: a second 

generation biofuel. International Journal of Chemical Reactor Engineering, 2007. 

5(1). 

[13]  Mortensen, P. M., et al. (2011). "A review of catalytic upgrading of bio-oil 

to engine fuels." Applied Catalysis A: General 407(1–2): 1-19. 

[14]  L. Funkenbusch and M. Mullins, "Modeling Differential Catalytic 

Hydrotreatment of Surrogate Compounds for Pyrolysis Oil (2016 Annual 

Meeting)," in American Institute of Chemical Engineers, 2016. [Online]. 

Available: https://aiche.confex.com/aiche/2016/webprogram/Paper460758.html. 

[15]  Yang, H., et al. (2007). "Characteristics of hemicellulose, cellulose and 

lignin pyrolysis." Fuel 86(12): 1781-1788. 

[16]  S. J. Hurff and M. T. Klein, "Reaction pathway analysis of thermal and 

catalytic lignin fragmentation by use of model compounds," Industrial & 

engineering chemistry fundamentals, vol. 22, pp. 426-430, 1983. 

[17]  Schildhauer, T., E. Newson, and S. Müller, The equilibrium constant for 

the methylcyclohexane–toluene system. Journal of Catalysis, 2001. 198(2): p. 355-

358. 

[18]  Y. Yang, H. a. Luo, G. Tong, K. J. Smith, and C. T. Tye, 

"Hydrodeoxygenation of Phenolic Model Compounds over MoS2 Catalysts with 



 

97 
 

Different Structures," Chinese Journal of Chemical Engineering, vol. 16, pp. 733-

739, 2008. 

[19]  E.-M. Ryymin, M. L. Honkela, T.-R. Viljava, and A. O. I. Krause, 

"Competitive reactions and mechanisms in the simultaneous HDO of phenol and 

methyl heptanoate over sulphided NiMo/γ-Al2O3," Applied Catalysis A: General, 

vol. 389, pp. 114-121, 2010. 

[20]  T. Nimmanwudipong, R. C. Runnebaum, S. E. Ebeler, D. E. Block, and B. 

C. Gates, "Upgrading of Lignin-Derived Compounds: Reactions of Eugenol 

Catalyzed by HY Zeolite and by Pt/γ-Al2O3," Catalysis letters, vol. 142, pp. 151-

160, 2012. 

[21]  R. C. Runnebaum, R. J. Lobo-Lapidus, T. Nimmanwudipong, D. E. Block, 

and B. C. Gates, "Conversion of anisole catalyzed by platinum supported on 

alumina: The reaction network," Energy & fuels, vol. 25, pp. 4776-4785, 2011. 

[22]  Centeno, E. Laurent, and B. Delmon, "Influence of the Support of CoMo 

Sulfide Catalysts and of the Addition of Potassium and Platinum on the Catalytic 

Performances for the Hydrodeoxygenation of Carbonyl, Carboxyl, and Guaiacol-

Type Molecules," Journal of Catalysis, vol. 154, pp. 288-298, 7// 1995. 

[23]  Gevert, J. Otterstedt, and F. Massoth, "Kinetics of the HDO of methyl-

substituted phenols," Applied catalysis, vol. 31, pp. 119-131, 1987. 

[24]  Fogler, H.S., Elements of Chemical Reaction Engineering. 1992: Prentice-

Hall. 

 
  



 

98 
 

5. Catalytic Hydrotreatment of Pyrolysis Oil Model 

Compounds over Pt/Al2O3 and Pd/C 

Part II: Continuous Reactors3 

 

5.1  Introduction 

Recently, substantial effort has been dedicated to biomass conversion research.[1] 

Biomass is an appealing alternative source for petroleum-based fuels and products, since 

it can be grown on a renewable time scale and is theoretically carbon-neutral. Pyrolysis 

oil, generated from woody biomass, is a complex mixture of oxygenated 

hydrocarbons.[2] Composition can vary, depending on source and processing methods, 

however, pyrolysis oil is generally composed of water, furans, phenolics, and other 

organic compounds.[3] Due to the high level of oxygenation (up to 40%) and high water 

content, crude pyrolysis oil tends to be highly corrosive, has low heating values when 

compared to traditional petroleum-based fuels, and is incompatible with existing 

infrastructure.[4,5,6,7] The petroleum industry experiences comparable contamination 

issues with crude oil, which can contain heavy metals, sulfur, nitrogen, and even some 

oxygen. Petroleum refineries catalytically hydrotreat their crude feed, typically using 

sulfided nickel/molybdenum (NiMo) or cobalt/molybdenum (CoMo) catalysts.[8] 

Catalytic hydrotreatment can also be used to treat pyrolysis oil and produce a 

                                                 
3 This article is in preparation for submission to Industrial & Engineering Chemistry Research. 
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hydrocarbon mixture similar to gasoline that can be used as “drop-in” transportation 

fuel.[9] 

 

Although the hydrotreatment step is the most costly, it is also the most poorly 

understood, in terms of its environmental and economic impacts.[10] Based on the 

literature, there is little data available on reaction kinetics of this process that would 

permit proper life cycle assessment (LCA) or techno-economic assessment (TEA).[11,12] 

Instead, such assessments must rely on proprietary data from industry sources or make 

broad, stoichiometric assumptions without considering specific process conditions and 

resulting pathway selectivities. However, once suitable experimental data has been 

collected and the reaction kinetics are properly understood, a kinetic model that can 

generate process-level details for simpler assessment and scaling of the process. 

 

In this study, a lumped parameter model is used, which combines reaction pathways 

and/or reactants together. This approach has also been taken by the petroleum industry, 

where crude oil composition can include hundreds of components and vary drastically 

based on its source. Generating reaction data for each possible compound and 

accounting for all of their interactions is impractical, and the lumped parameter approach 

can streamline modeling to a more reasonable number of parameters. By focusing only 

on observed products and not hypothetical intermediates, the modeling can be further 

simplified, and experimental data can be collected to properly construct a reaction 

network and kinetic model. In this study, reaction pathways for pyrolysis oil model 
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compounds were studied in a continuous packed bed reactor over both Pd/C and 

Pt/Al2O3. Reactor temperature, catalyst, and residence time were varied, and kinetic rate 

constants were determined for each lumped reaction. This model is able to take a given 

feed composition and reactor conditions and accurately predict final product 

composition, yields and selectivities, optimal catalyst for a particular feed or product, 

and energy/hydrogen input required for input into an LCA or TEA. 

 

5.2 Materials & Methods 

The commercial catalysts, all model compounds, and analytical standards were obtained 

from Alfa Aesar or Sigma Aldrich. The differential reactor was a packed bed continuous 

reactor, constructed using a custom HPLC pump (Supercritical Fluid Technologies), two 

mass flow controllers (Omega), a tube furnace (Thermolyne), a coil condenser with a 

cold water shell constructed by the department machinist, and a back-pressure regulator 

(Novaspect). The reactor bed was ½” O.D. stainless steel. The tubing throughout the rest 

of the system was ¼” O.D. stainless steel. A simplified diagram is shown in Figure 5-1. 

 

Prior to each test, 5% molar solutions of the model compound in dodecane were 

measured out. Anisole, guaiacol, m-cresol, and phenol were selected as model 

compounds for the lignin fraction of pyrolysis oil. They offer a range of functional 

groups commonly found in pyrolysis oil, and have the aromatic ring structure that is 

common among lignin-based compounds, as discussed in the previous part of this study. 

Guaiacol was chosen to supplement the suite of compounds for the second part of this 
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study for its dual oxygenated groups. Dodecane was used as a fully saturated, inert 

solvent to maintain control of the reactions. Two noble metal catalysts were tested: 

palladium on carbon (Pd/C) and platinum on alumina (Pt/Al2O3), both with 5% metal 

loading and 1 micron particle diameter. 500 mg of catalyst was loaded into the reactor 

with plugs of glass wool to hold the catalyst bed in place. The reactor was maintained at 

100 psi (6.7 bar), with 5% hydrogen in argon gas at 0.5 L/min, and 250, 300 or 350°C. 

Once the system reached steady state, the liquid feed was pumped into the system at 0.5 

mL/min. This resulted in a liquid contact time of 10 seconds for the bench-scale reactor. 

The liquid product was collected at the end, while any excess gas and gaseous 

byproducts were vented through the hood. Liquid samples were analyzed using a 

GC/MS (Thermo Scientific) and a GC/FID (HP).  

 

The pilot reactor bed was 1” O.D. (0.8” I.D.) Inconel alloy. A diagram of both reactors 

can be seen in Figure 1. For the pilot tests, a catalyst bed made from stainless steel 

tubing and mesh was inserted into the reactor and held 4.65 g of the synthesized catalyst. 

A liquid contact time of 30 seconds was established for the pilot-scale reactor. The 

materials for catalyst synthesis were also acquired from Sigma. The synthesized catalyst 

was generated using the incipient wetness impregnation method, where 

hexachloroplatinic acid in water was dripped into a bed of activated alumina pellets 

(Alcoa, 10-25 mesh). The catalyst was dried in a muffle furnace at 95°C for 12 hours 

before being calcined at 550°C for 2 hours. The catalyst was then cooled, and the 

process repeated until the catalyst stopped absorbing platinum solution. The resulting 
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catalyst was then reduced in the reactor catalyst bed for 6 hours at 500°C under 

hydrogen. This process yielded a granular Pt/Al2O3 catalyst with a metal loading of 

4.95% 
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Figure 5-1. Differential Reactor and Pilot-Scale Packed Bed Reactor Diagram 

 

5.3 Results 

5.3.1. Differential Reactor Experiments 
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For the anisole differential reactor tests with Pd/C, conversion of anisole rose with 

increasing temperature, from 34% at 250°C to 61% at 350°C. Due to the short residence 

time, however, only an initial ring saturation reaction of anisole to methoxycyclohexane 

was observed. With Pt/Al2O3, overall conversion of anisole was significantly lower, 

ranging from 3% at 250°C up to 7% at 350°C. However, the reaction pathway was the 

same, with a ring saturation reaction to methoxycyclohexane. 

 

With guaiacol in the bench-scale reactor, conversion over Pd/C went from 12% at 250°C 

to 56% at 350°C. Again, deoxygenation was not complete by the end; only partial 

deoxygenation of guaiacol to phenol was observed. However, it should be noted that, 

unlike with the other model compounds, guaiacol has two oxygenated groups attached to 

the ring. This seems to cause guaiacol to lose its methoxyl group, instead of undergoing 

a ring saturation reaction like the other model compounds with only one oxygenated 

group attached to the ring. For the experiments run over Pt/Al2O3, conversion was only 

slightly lower than with the Pd/C tests, ranging from 6% at 250°C up to 48% at 350°C. 

The same reaction pathway leading to phenol was observed. 

 

As with anisole, the Pd/C bench-scale reactor tests with m-cresol yielded only the ring 

saturation reaction to convert m-cresol to methylcyclohexanol. At 250°C, conversion of 

m-cresol was 29%; at 350°C, it reached 59%. For Pt/Al2O3, a different reaction pathway 

was observed - a demethylation reaction to phenol, rather than a ring saturation to 
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methylcyclohexanol. However, the reaction seemed to be suppressed until 350°C. 

Conversion jumped from 3% at 250°C to 46% at 350°C. 

 

The Pd/C bench-scale reactor tests using phenol yielded ring saturation reactions to 

cyclohexanol. Conversions for phenol were much lower than for the other model 

compounds, ranging from 10% at 250°C up to 30% at 350°C. With Pt/Al2O3, once again, 

phenol conversion was lower than other model compounds, and lower than with Pd/C. 

The same ring saturation reaction pathway was observed, however. Conversion to 

cyclohexanol ranged from 2% at 250°C up to 7% at 350°C. 

 

Using the bench-scale experimental results, a preliminary reaction network was 

hypothesized. The only difference seen between the two catalysts was with m-cresol, all 

other model compounds yielded the same pathway for both catalysts. This network is 

only based on observed compounds, with no hypothetical intermediates included, and 

takes a lumped parameter approach. 

 

5.3.2. Pilot-Scale Experiments 

Based on the bench-scale reactor results discussed earlier, only Pt/Al2O3 was selected for 

synthesis and further testing in the pilot-scale reactor. The extra cracking functionality is 

desirable for deoxygenating phenolic compounds. A Pt/Al2O3 catalyst with 5% metal 

loading was synthesized, as discussed earlier. These results will be used to test the 

kinetic model and rate constants generated from the differential reactor tests. 
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Anisole initially reacted to form phenol via a demethylation reaction, followed by a ring 

saturation and hydrodeoxygenation reaction to cyclohexane. Cyclohexanol or any other 

intermediates were not observed. Conversion started at 74% at 250°C and increased to 

97% at 350°C. It is interesting, however, to see that there was no methoxycyclohexane 

observed, indicating a different reaction pathway. This may be a function of the longer 

residence time in the reactor. 

 

For guaiacol, conversion is quite low, perhaps due to the double oxygenated group, 

ranging from 17% at 250°C to 28% at 350°C. Guaiacol follows the route seen with the 

bench-scale reactor, with an initial methanol abstraction reaction to phenol, and a 

subsequent ring saturation and hydrodeoxygenation reaction to cyclohexane. Again, no 

cyclohexanol or other intermediate is seen between phenol and cyclohexane. 

 

With m-cresol in the pilot reactor, conversion was high, ranging from 30% at 250°C to 

94.5% at 350°C. The same reaction pathway was seen as with the Pt/Al2O3 differential 

reactor experiments with an initial demethylation reaction to phenol. However, in the 

pilot reactor, the reaction pathway achieved full deoxygenation with conversion of 

phenol to cyclohexane. Once again, no intermediates between phenol and cyclohexane 

were seen. 
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Based on the results for guaiacol and m-cresol, compounds with two pendant groups do 

not undergo ring saturation until one of the pendant groups has been removed with a 

Pt/Al2O3 catalysts. The Pd/C in the differential reactor, however, exhibited a ring 

saturation functionality for m-cresol. This indicates that the forced removal of a pendant 

group prior to ring saturation is due to the alumina functionality. 

 

For phenol, conversion remained at roughly 50% across all temperatures, ranging from 

49% at 250°C to 52% at 350°C. Phenol converts directly to cyclohexane, with no 

observed intermediates. As with the bench-scale tests, phenol has a lower conversion 

than the other model compounds. All of the model compounds seem to follow the same 

pathway through phenol as a reaction intermediate in the pilot scale reactor, followed by 

ring saturation and hydrodeoyxgenation to cyclohexane.  

 

Based on only observed compounds in the data from both sets of experiments, a reaction 

network was hypothesized, as shown in Figure 5-2. Compounds noted with an asterisk 

are intermediates observed in the differential reactor but not the pilot reactor. 
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Figure 5-2. Lumped Reaction Network 

 

5.4 Reaction Kinetics & Model 

5.4.1. Model Assumptions 

Based on the reaction network shown in Figure 5-2, the Langmuir-Hinshelwood kinetic 

model developed in the previous part of this study was adapted for this system.[13] The 

catalyst was assumed to be uniformly coated. Liquid-gas interface mass transfer 

correlations and internal pore diffusion factors were adapted from Fogler and Kindt.[14,15] 

Isothermal and isobaric operation were assumed inside the reactor bed. Differential 
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material balances were performed on each of the species, as shown in Equations 5-1 

through 5-6. Nomenclature is shown in Table 5-1. 

 

−𝑑𝑑𝐶𝐶𝐻𝐻2,𝐺𝐺
𝑑𝑑𝑑𝑑

− {𝑘𝑘𝐿𝐿𝐿𝐿}𝐻𝐻2�𝐻𝐻𝐻𝐻2𝐶𝐶𝐻𝐻2,𝐺𝐺 − 𝐶𝐶𝐻𝐻2,𝐿𝐿� = 0     Equation 5-1 

−𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐺𝐺
𝑑𝑑𝑑𝑑

+ {𝑘𝑘𝐿𝐿𝐿𝐿}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝐻𝐻2,𝐿𝐿 − 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐺𝐺� = 0     Equation 5-2 

−𝑑𝑑𝐶𝐶𝐻𝐻2,𝐿𝐿
𝑑𝑑𝑑𝑑

+ {𝑘𝑘𝐿𝐿𝐿𝐿}𝐻𝐻2�𝐻𝐻𝐻𝐻2𝐶𝐶𝐻𝐻2,𝐺𝐺 − 𝐶𝐶𝐻𝐻2,𝐿𝐿� − {𝑘𝑘𝑆𝑆𝑆𝑆}𝐻𝐻2�𝐶𝐶𝐻𝐻2,𝐿𝐿 − 𝐶𝐶𝐻𝐻2,𝑆𝑆� = 0 Equation 5-3 

−𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿
𝑑𝑑𝑑𝑑

− {𝑘𝑘𝐿𝐿𝐿𝐿}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿 − 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐺𝐺� − {𝑘𝑘𝑆𝑆𝑆𝑆}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆� = 0 Equation 5-4 

−𝑑𝑑𝐶𝐶𝐻𝐻2,𝑆𝑆
𝑑𝑑𝑑𝑑

= {𝑘𝑘𝑆𝑆𝑆𝑆}𝐻𝐻2�𝐶𝐶𝐻𝐻2,𝐿𝐿 − 𝐶𝐶𝐻𝐻2,𝑆𝑆� −  
∑ 𝜂𝜂𝑘𝑘𝑖𝑖𝐶𝐶𝐻𝐻2,𝑆𝑆

𝑚𝑚 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆
𝑛𝑛

𝑖𝑖

1+∑𝐾𝐾𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆
𝑛𝑛     Equation 5-5 

−𝑑𝑑𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆
𝑑𝑑𝑑𝑑

= {𝑘𝑘𝑆𝑆𝑆𝑆}𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝐿𝐿 − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆� −  
∑ 𝜂𝜂𝑘𝑘𝑖𝑖𝐶𝐶𝐻𝐻2,𝑆𝑆

𝑚𝑚 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆
𝑛𝑛

𝑖𝑖

1+∑𝐾𝐾𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜,𝑆𝑆
𝑛𝑛     Equation 5-6 

 

Table 5-1. Nomenclature for Equations 5-1 through 5-6 

Nomenclature:  

{kLa}i Mass transfer coefficient for gas-liquid interface (time-1) 

{kca}i Mass transfer coefficient for liquid-surface of the catalyst (time-1) 

CH2,G Concentration of hydrogen in the gas phase (gmols/volume) 

CH2,L Concentration of hydrogen in the liquid phase (gmols/volume) 

CH2,S Concentration of hydrogen in the solid phase (gmols/volume) 

Coil,L Concentration of bio-oil in the liquid phase (gmols/volume) 



 

109 
 

Coil,S Concentration of bio-oil in the solid phase (gmols/volume) 

HC Henry’s Law constant, C* = Cg / H (mole/mole) 

ki Reaction rate constant (time-1) 

KC Surface adsorption constant 

τ Residence time (time) 

m, n Order of reaction 

QG Gas volumetric flow rate (volume/time) 

QL Liquid volumetric flow rate (volume/time) 

Ac Column cross sectional area (area) 

η Catalyst effectiveness factor 

 

5.4.2. Rate Kinetics 

Because different catalysts were used, kinetic rate data for each reactor needed to be fit 

to the model. For the differential reactor, intrinsic activation energies and pre-

exponential factors were calculated and are shown in Table 5-2. For the pilot-scale 

reactor, apparent activation energies and pre-exponential factors were found and are 

shown in Table 5-3. Because two different catalysts were used, some differences in their 

functionality and activity was expected. While both are bifunctional catalysts, the pilot-

scale reactor had a more active alumina substrate, whereas the differential reactor was 

more strongly affected by the platinum loading. The alumina support of the pilot-scale 

catalyst is highly activated alumina, and this causes a change in the dominant 

functionality which can be seen in the spontaneous shift from phenol to cyclohexane, 

with no intermediates observed. The activated nature of the support may also lower the 

activation energies of certain reactions in the pilot-scale reactor. The size of the catalyst 
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(powder vs. pellet) also affects mass transfer within the reactor bed, and can affect 

reaction rates. The powdered catalyst used in the differential reactor was chosen to 

eliminate internal mass transfer limitations and minimize external mass transfer 

limitations. This, along with the low conversions targeted by tuning the residence time, 

allowed the determination of intrinsic reaction rates and intrinsic activation energies. 

The small particle size also presented the platinum hydrogenation as the dominant 

functionality. On the other hand, the pellet catalyst used in the pilot scale reactor 

presents both internal and external mass transfer limitations. As a result, only apparent 

activation energies can be calculated, which are lower than the intrinsic activation 

energies.  

 

Table 5-2. Intrinsic activation energies and pre-exponential factors for hydrotreatment in 

the differential reactor 

Catalyst Reaction Activation Energy 
(EA) 

Pre-exponential factor 
(A0) 

Pt/Al2O3 Ring Saturation 37.1 kJ/mol 8.5 x 101 

Pt/Al2O3 Methanol Abstraction 71.7 kJ/mol 7.8 x 105 

Pt/Al2O3 Demethylation 91.7 kJ/mol 4.6 x 107 

 

Table 5-3. Apparent activation energies and pre-exponential factors for hydrotreatment 

in the pilot-scale reactor 

Catalyst Reaction Activation Energy 
(EA) 

Pre-exponential factor 
(A0) 

Pt/Al2O3 Demethylation 64.9 kJ/mol 4.2 x 104 
Pt/Al2O3 Ring Sat. & HDO 43.4 kJ/mol 3.2 x 105 
Pt/Al2O3 Methanol Abstraction 51.9 kJ/mol 8.3 x 101 
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5.4.3. Model Comparison to Results 

The differential reactor kinetics were used to model the differential reactor, and the pilot 

reactor kinetics were used to model the pilot-scale reactor. The differential reactor model 

results are shown in Table 5-4 and the pilot-scale model results are shown in Table 5-5, 

and all conversions are matched within 1% accuracy. This indicates that the process-

level, LH model discussed in the previous study and this study are valid, when using the 

kinetic data for the relevant catalyst and reactor conditions. 

 

Table 5-4. Data vs. Model Comparison for Conversion of Anisole on Pt/Al2O3 in 

Differential Reactor 

Temperature Data Model 

250°C 3.2% 3.8% 
300°C 4.8% 5.3% 
350°C 6.7% 7.1% 

 

Table 5-5. Data vs. Model Comparison for Conversion of Anisole on Pt/Al2O3 in Pilot 

Reactor 

Temperature Data Model 

250°C 74.2% 75.1% 
300°C 91.1% 91.6% 
350°C 96.9% 96.8% 

 

5.5 Conclusions 
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In the previous part of this study, a batch reactor was used to hydrotreat pyrolysis oil 

model compounds. Here, a continuous packed bed reactor was designed to model a 

reactor similar to what is used in industry. Initially, a differential reactor was constructed 

to investigate the intrinsic reaction kinetics of the system; this reactor was deliberately 

designed to achieve low conversions. Four model compounds were used in this study: 

anisole, m-cresol, phenol, and guaiacol. Guaiacol was added to the previous batch 

reactor set to explore the effects of two oxygenated groups on the aromatic ring. Two 

different catalysts were tested over three different temperatures: Pd/C, a simple noble 

metal catalyst, and Pt/Al2O3, a noble metal catalyst with an acidic support. The reactor 

bed was scaled up to pilot scale, with high conversions and catalyst with a pellet support 

instead of a powdered substrate, and a similar suite of experiments were run to generate 

kinetic data for a different catalyst and set of reactor conditions. The pilot-scale reactor 

targeted higher conversions using the same process conditions as the differential reactor 

in a larger reactor bed and with more catalyst. Each set of experiments were fit to the LH 

model developed in the previous study, and then the models were compared to the 

pertinent reactor.[13] The model provided an excellent fit (within 1%) to the data for both 

reactors. However, in order to use this process-level model, appropriate rate information 

must be taken for the specific catalyst and reactor conditions. The model can then be 

used to estimate final product composition, hydrogen consumption, and heating/cooling 

requirements for the reactor given an initial feedstock and a small number of preliminary 

tests with the catalyst and reactor conditions. This type of model is useful in rapidly 

assessing processing conditions and catalysts prior to an expensive scale-up and to aid in 
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life cycle and techno-economic assessments, which require process-level models in order 

to properly analyze a given feedstock or process. 
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6. Assessment of Hydrothermal Liquefaction Oil with 

Catalytic Upgrading for Renewable Fuel and Chemical 

Production4 

 

6.1 Introduction 

Since the early 1900’s, researchers have shown that renewable petroleum substitutes 

could be derived from pulp and paper biomass. Early “recipes” for hydrothermal 

liquefaction and processing of wood and lignin wastes are found as early as 1902.[1] In 

1934, Ernst Berl discussed the dissolution of agricultural wastes in water with alkali salts 

at elevated temperatures to produce a crude bio-oil with a high heating value, and yields 

as high as 60 wt%.[2] Since then, perhaps thousands of papers and reviews have been 

published on the topic.[3,4] The majority of experimental papers are batch studies based 

on mixing various ingredients in a pressurized vessel and “cooking” until done. 

Continuous catalytic near-critical water (NCW) processes were developed over two 

decades ago by Kjeld Andersen in Germany and by Erik Sogaard at Aalborg University 

in Denmark for processing anaerobic digested sewage sludge and agricultural wastes.[5] 

These processes share similarities to other hydrothermal processes but have the potential 

to create lower oxygen oils, especially with the use of proton donors such as hydrogen or 

alcohols in solution. Further development of the catalytic NCW process for biomass 

                                                 
4 This article is an invited submission to WIREs Energy & Environment for November 2017, and is a 
collaboration with Dr. Lennart Vamling, Tallal Belkheiri, Nattapol Srettiwat, Dr. Olumide Winjobi, Dr. 
David R. Shonnard, and Dr. Tony N. Rogers. 
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feedstocks has been carried out by a Danish company, CatLiq®, which was recently 

purchased by a Turkish company in 2010.[6] The research at Chalmers is characterized 

by its emphasis on using lignin as a feedstock and a close relationship with Valmet, the 

leading supplier of process technology to the pulp and paper industry. Compared to most 

biomass, lignin has a low hydrogen and high phenolic content, making its 

depolymerization chemistry significantly different from other mixed biomass, 

agricultural, or cellulosic feedstocks. 

 

Previous studies have performed a TEA for the upgrading of fast pyrolysis oil of corn 

stover to transportation fuels.[7] The proposed basis for this study is the conversion of 

lignin or black liquor from wood pulping mills to bio-oil, since these are often 

considered wastes or byproducts in pulp making. Lignin availability has greatly 

increased due to energy efficiency measures in Kraft pulp mills, which allows separation 

of 25 to 40 wt% of the lignin in black liquor without disturbing pulp production.[8] 

Removing the lignin in the black liquor can reduce recovery boiler bottlenecks and can 

be converted to bio-oil while increasing the pulp mill capacity. The recovered lignin has 

a very low ash content (<1 wt%), and the resulting oil has few solids from this source. 

The lignin sulfur content is also low (<3 wt%), and the corresponding NCW bio-oil 

product has <0.5 wt% sulfur; the difference is sequestered to the aqueous phase as 

sulfates. However, lignin has a lower hydrogen content than other cellulose-based feeds, 

making it difficult to obtain high oil yields. Therefore, the addition of hydrogen donor 

compounds to the process may be beneficial. Using lignin/black liquor as a bio-oil 
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source does not increase production demand for woody feedstocks or compete with food 

production, and the infrastructure already exists for collection and recovery of a large 

feedstock supply.   

 

Supercritical water is an excellent processing fluid for lignin. Due to its strong solvating 

properties, low dielectric constant, weaker hydrogen bonds, and high isothermal 

compressibility, it is a suitable medium for biomass dissolution and degradation 

reactions. A potential drawback is that, at supercritical conditions, alkali salt catalysts 

have very low solubility in water. Therefore, NCW is preferable, since the catalyst salts 

are soluble and the water retains properties close to those of supercritical water. NCW 

has been shown to promote the degradation of lignin material into phenolic 

compounds.[9] NCW acts as an effective solvent for biomass dissolution.[10,11,12] Other 

authors have demonstrated the conversion of lignin without catalysts in super-critical 

water (400–600°C), but reported that the yield of phenolic compounds is low.[13,14,15] 

Pińkowska et al. and Yong et al. have demonstrated lignin depolymerization in both sub- 

and supercritical water for a range of temperatures from 473K to 663K.[16,17] Many other 

authors have used strong bases as a catalyst to degrade lignin in NCW, but high yields of 

heavy fractions and char were still obtained.[18,19,20,21] Most of these lignin 

depolymerization studies had low liquid product yields and significant carbon char 

residues due to re-polymerization reactions of the decomposed fragments.[22,23] Research 

on the influence of solvent, catalyst and operating parameters has been done to optimize 
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the yield of liquid products, but further study of the chemical mechanisms for oxygen 

removal and char formation are needed.[17,18,24] 

 

6.1.1 Process Chemistry 

Lignin is a complex high molecular weight compound with a random structure 

consisting of several monomeric compounds. Some of the most common monomers are 

alkyl phenolic compounds which are well suited for upgrading to alkyl benzenes, as 

shown in Figure 6-1. 

 

 

Figure 6-1. Alkyl phenolic compounds 

 

An example lignin fragment is shown in Figure 6-2. The chemical mechanisms in the 

NCW liquefaction of lignin to yield phenolics include hydrolysis and cleavage of the β-

O-4 ether bond and Cα–Cβ aliphatic bonds, which are shown in Figure 6-2, as well as 

demethoxylation (DMO) and decarboxylation (DCO) of the pendant groups. Alkylation 

and condensation reactions may also occur in competition with these main reactions. The 

aromatic rings of lignin are not very reactive during the hydrothermal reactions, 

evidenced by the fact that phenolic monomers and dimers are obtained via cleavage of 

the ether and aliphatic carbon bonds at relatively low temperatures and short reaction 

Paracoumaryl alcohol                   Coniferyl alcohol                  Sinapyl alcohol      
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times. Higher temperatures favor DMO/DCO and alkylation of phenolic compounds, 

producing various alkyl phenols including guaiacol. These aliphatic side chains are very 

reactive and undergo condensation reactions with each other forming char, tar, and 

suspended solid products. To moderate these condensation reactions, end-capping agents 

or hydrogen donors may be added, including phenol, methanol, ethanol, or tetralin, and 

have proven effective in reducing solids formation.[25] This is an indication that additives 

may affect reactive sites, thus effectively terminating re-polymerization. 

 

 

Figure 6-2. Example of lignin structure and bond cleavage 

 

Oxygen heteroatom removal occurs most readily by dehydration or by decarboxylation. 

In some cases, this may also be achieved via demethoxylation. Even with an excess of 

water, dehydration reactions may occur at elevated temperatures and pressures over the 

certain catalyst.[26] Promotion of the DCO reactions are attractive since they decrease the 
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oxygen content of the feedstock, while increasing the H:C ratio. However, removal of 

carbon via these reactions lowers the final fuel product energy content. Fatty acids 

contain both hydroxyl and carboxylic acid groups, and a decarbonylation pathway can 

also occur.[27] Supplementing the HTL reaction with a hydrogen source and removing 

oxygen as H2O yields more bio-oil per biomass input, with some of the fuel’s energy 

content coming from the additional hydrogen. The DCO and DMO reactions in 

hydrothermal processing can be suppressed or enhanced by selection of an appropriate 

catalyst. Goudriaan (1990) as well as Boocock (1985) have shown that under 

liquefaction conditions (300°C to 350°C in NCW), most of the oxygen in lignin is 

removed as carbon dioxide, and the balance remaining organically bound in the liquid 

phase.[28,29] Although the mechanism of this process is unclear, it most probably occurs 

via formation of oxalate or formate intermediates. There is continuing research on the 

influence of solvent, catalyst and operating parameters to optimize the yields and 

composition of the liquid products; but elucidation of the chemical mechanisms would 

greatly enhance this process. 

 

In a typical NCW process, dry lignin recovered via evaporation is mixed with water at a 

high pH (using K2CO3 or KOH) to facilitate the depolymerization. The depolymerization 

involves several chemical mechanisms which depend upon the solution, hydrogen donor 

compounds present, or the alkali salt catalyst used. The depolymerization is often 

supported by a heterogeneous catalyst compatible with water under high pressure and at 

high pH such as ZrO2. Depolymerization reactions are fast, but to prevent re-
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polymerization, an end-capping agent can be added to the feed. Since phenol and 

phenol-like compounds are depolymerization products, some of this demand may be met 

via recovery and recirculation of the process water containing these compounds. 

 

6.1.2 Homogeneous alkali catalysts 

Strong alkali salts are commonly used both as Kraft pulping agents and as HTL catalysts. 

The consensus of HTL catalyst reviews indicate that the reactivity of the alkalis may be 

generally ranked as K2CO3 > Na2CO3 > KOH > NaOH. Strong bases, such as KOH and 

NaOH, are often used for lignin fragmentation; however, potassium carbonate can 

promote similar reactions at more moderate pH’s (8 to 9.5). The product water stream 

maintains a pH about one unit lower than the feed. The HTL product composition is 

quite sensitive to the concentration of salts used. Belkheiri et al. found that with K2CO3 

of 3 to 4 wt%, excellent depolymerization is obtained, but further increasing the salt 

concentration to 6 and 10 wt%, enhanced condensation and re-polymerization.[30] As a 

side benefit, carbon dioxide produced via decarboxylation is rapidly converted to 

carbonates during the process, generating little or no greenhouse gases. 

 

6.1.3 Heterogeneous HTL catalysts 

The heterogeneous catalysts for lignin and lignocellulose depolymerization fall into two 

groups: supported transitional metal catalysts and metal oxide/mixed metal oxide 

catalysts. The mechanisms by which these work are quite different. Supported transition 

metals promote hydrolysis and hydrogenolysis, and at higher temperatures and 
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pressures, reforming reactions may occur. The solid catalysts must be compatible with 

alkali ions (Na+, K+) or they may negatively affect performance. Lignin obtained from 

Kraft pulping has a significant sulfur content, which will poison transition metal 

catalysts. The proper catalyst should be stable in a high temperature alkali solution, be 

sulfur resistant, and have low coking potential. Considerations for heterogeneous HTL 

catalyst selection include: 

 

Metal oxide catalysts which promote oxygen removal via dehydration, DCO, and DMO 

reactions have been used for lignin and lignocellulosic depolymerization. The metal 

oxide that meet this requirement are period 4 and 5 transition metal oxides. Among the 

most active reported in the literature are oxides of chromium (CrO), manganese dioxide 

(MnO2), Fe2O3, Y2O3, zirconia (ZrO2), which are all mild Lewis acids. Studies are also 

reported with molybdenum oxides, vanadium oxides, and zinc oxide with limited 

success. Reports of mixed metal oxides (e.g. CrO/ZrO2, MnO2/Al2O3, and yttria-

stabilized ZrO2) used to promote the desired reactions are also found.[31] 

 

Transition metal catalysts, alone or on a support, have been tested for lignin and 

lignocellulosic depolymerization. Heterogeneous catalysts to aid in the depolymerization 

have been extensively reviewed.[32] Yan et. al. found that Pd/C catalyst cleave the C–O 

bonds without disrupting the C–C yielding guaiacyl propane, syringyl propane, guaiacyl 

propanol, and syringyl propanol.[33] Ideally, an HTL catalyst would cleave the bond 

between the lignin’s phenolic structural units without damaging the benzene ring or the 
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pendant alkyl group, while also inhibiting condensation, but no such catalyst has been 

demonstrated. Work on catalytic HTL in NCW by Elliott and co-workers, have 

employed numerous catalysts including ruthenium, rhodium, and nickel on stable 

supports such as zirconia, titania, γ-alumina, and carbon.[34] 

 

Interaction of the catalysts with end-capping agents and hydrogen donor compounds is 

important in preventing repolymerization. In their absence, heterogeneous catalysts may 

be heavily coked in less than an hour of operation, rendering them ineffective in the 

depolymerization process. Hydrogen donor solvents have been investigated for the 

conversion of lignin. Belkheiri et al. examined the effect of methanol and phenol 

together with K2CO3 and zirconia on the conversion of Kraft lignin into bio-oil in 

NCW.[35] Those results showed that while methanol may serve as a hydrogen donor, 

phenol had a much greater effect in improving oil yields. Since phenol and phenol-like 

compounds are products of the depolymerization, some demand could be met via 

recovery and recirculation of phenol. Addition of 1 wt% of phenol reduced solids 

production by over 50%, and a combined addition of methanol plus phenol by over 70%.  

 

Cellulose or hemicellulose derivatives may also prevent char formation. Zhu et al. found 

that addition of xylan/xylose to lignin reduced char formation in HTL studies, and the 

bio-oil composition is enhanced.[36] Although, these may add more oxygen to the final 

oil, it may also reduce the total char and tar formed in the process, and raise oil yields. 
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The direct use of black liquor, which contains hemicellulose and some residual cellulose 

compounds, might have similar benefits in the depolymerization process. 

 

6.2 Materials & Methods 

For our analysis of the viability of the lignin HTL to fuel/BTEX system, we focus on 

three key unit operations which have the greatest degree of technical uncertainty. We 

have used empirically-derived, process-level models for the reactor stages which have 

the greatest impact and the highest uncertainty in ASPEN simulations. For these two 

processes (the HTL reactor and the hydrotreatment reactors), we use these 

experimentally-based models to derive the material and energy balances, and integrate 

the resulting inputs and outputs into an overall process simulation using ASPEN; for the 

phenolics separation and extraction, we use only an ASPEN model with the process 

inputs defined by experiments on the HTL pilot plant and the UNIFAC LLE model to 

estimate the outlet steam composition, which is shown in red in the simplified block 

diagram in Figure 6-3. We describe in detail these three key units below. 
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Figure 6-3. Simplified Block Diagram 

 

6.2.1 HTL reactor design and operation 

Catalytic NCW depolymerization can convert lignin into a low oxygen content crude 

bio-oil with a high stability product which is easy to store and transport. The underlying 

principle is to use the solvating power of NCW along with alkali salt catalysts to 

depolymerize the larger molecules associated with biomass and produce a bio-oil 

product, which may be further processed to produce transportation fuels. Unlike 

pyrolysis or gasification, the production of gaseous byproducts is minimal (<2 wt%), and 

the NCW process has higher liquid yields and lower oxygen content (<15 wt%) than 

pyrolysis oil (>30 wt%). The homogeneous alkali catalysts and most of the monomeric 

phenolic compounds remain in the aqueous phase and may be recovered or recycled. The 

heterogeneous catalyst performance eventually decreases due to char formation, but the 

energy content of the char may be recovered during regeneration in steam or air and 

reused for process heat. Unlike gasification or pyrolysis technologies, which work best 
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with dry feeds, the NCW process works well with raw, high moisture content feeds, 

making it ideal for recovered lignin or black liquor from a pulping process. If the oxygen 

content of the bio-oil is low enough (<10 wt%), it may be co-processed in the 

hydrotreatment reactor at existing refineries to produce a gasoline or diesel fuel 

blends.[37] 

 

Although the design and equipment for the HTL process is fairly advanced, a clearer 

understanding of the chemistry is needed. Since the NCW process is intended for bulk 

production, only continuous reactors have a clear advantage for up-scaling. In our NCW 

process, a solid catalyst is used, which is most easily handled in a Plug Flow Reactor 

(PFR). Chalmers uses a hybrid reactor which is a PFR with internal recirculation, 

meaning that a pump is used instead of the stirrer in a CSTR.[25] This adds additional 

flexibility, since different recirculation ratios (RR) can be used, and the PFR/recycle 

design is best for maximizing targeted intermediate reaction products by finding an 

optimal RR.[38] For lignin, a RR of 4 to 5 reduced char and solids formation by more 

than 50% over lower (<2) or higher ratios (>10); in addition, 27% higher oil yields, and 

a lower average MW distribution (5 kDa vs 9 kDa) were obtained. An equally important 

design parameter is the average residence time, and recent findings indicate that it should 

be possible to decrease this further, increasing the process thoroughput. 

 

6.2.2 Product separation and extraction 
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One of the major aspects of HTL processing of biomass is that a significant percentage 

of the organics produced are water soluble, and could be recovered and hydrotreated to 

improve the process efficiency and economics. The HTL reactor effluent yields a two-

phase bio-oil/water mixture with some char and solid particles. Separation of the 

oil/water/solids is readily accomplished using existing technology (e.g. Alfa Laval 3-

phase centrifuges), yielding an oil product with <1% water and solids.[39] The water-rich 

phase contains 10 to 30 wt% soluble monomers depending upon the process 

conditions.[25] A portion of this stream may be recycled to the reactor providing capping 

compounds to the process, or it can be extracted using liquid-liquid extraction (LLE) to 

recover the phenolic monomers for further processing. Standard LLE equipment can be 

used, but sizing and staging the LLE equipment required is problematic due to a lack of 

the appropriate thermodynamic partitioning data. ASPEN can calculate the component 

activity coefficients, but some of the appropriate chemical groups for UNIFAC 

calculations are not available. 

 

6.2.3 Hydrotreatment/hydrodeoxygenation of products 

The NCW bio-oil has a greatly reduced oxygen content and thus may require less 

hydrogen for catalytic upgrading than pyrolysis oil or similar potential feedstocks. The 

Swedish refiner Preem has suggested that a product oil containing less than 10% oxygen 

could be blended with crude oil and directly added to their renewables HDT unit, 

allowing integration into existing production and distribution systems.[37] Using both the 

phenolic monomers, the HDT reaction kinetics and products yield/selectivity have been 
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determined as a function of process variables including reactant concentration, 

temperature, hydrogen pressure, residence time, feedstock type, and catalyst type. The 

viability of producing BTEX products from the recovered phenolic monomers using an 

HDO processes has been evaluated in the Michigan Tech pilot unit, and necessary 

modifications to the production process identified. These experimental and modeling 

results have been used in a process-level model for the design of larger scale reactors, 

and incorporated into ASPEN simulations to facilitate the integrated process assessment 

work.[40,41] 

 

6.2.4 Model synthesis 

A process-level, experimentally-based model for the catalytic NCW reactor, including 

the feedstock, products, process conditions and operation has been developed by 

Chalmers University. The LLE step has been modeled in ASPEN, and catalytic 

treatability studies of the bio-oil to fuel and the phenolic stream to BTEX compounds 

has been modeled via both data-based process-level models and ASPEN.[40,42,43] This 

forms the basis for a techno-economic analysis (TEA) of a lignin-to-fuel process with 

co-production of commodity chemicals using a model with a higher degree of certainty 

than possible by using a process simulator alone. To move realistically evaluated 

equipment size, hydrogen and energy usage, and obtain more accurate cost estimates, the 

kinetics of the key reactions and separation steps were included in the model. 

 

6.2.5 Proposed route and feedstock selection  
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The goal of this study is to evaluate the technoeconomic aspects of the production of 

hydrocarbon products and transportation fuels via HTL of excess lignin available from 

modern pulp mills as the principal feedstock. Pilot scale facilities have demonstrated an 

impressive yield of bio-oil ranging from 69 to 88 wt% on a dry lignin basis, 

corresponding to between 140 and 175 gallons of bio-oil per ton of dry lignin.[44] Since 

the current value of excess lignin in the pulp mill is based upon its use as an auxiliary 

fuel or waste material, the cost of the feedstock per gallon of bio-oil is low compared to 

specifically cultivated biomass feedstocks. Since the aqueous phase from HTL is rich in 

phenolic compounds, production of chemical co-products, such as benzene, toluene, 

ethylbenzene, and xylenes (BTEX), also could provide additional revenues for the pulp 

and paper industry. We have performed economic estimates on this technology for 

energy usage, capital, and operating costs to produce drop-in transportation fuels and a 

BTEX co-product. Three different technology scenarios are examined: 1) A baseline 

case utilizing existing commercial-level process targets, 2) a second case, based upon the 

best proven laboratory-scale results for feedstock to oil conversion, and finally, 3) a 

target level of performance needed to reach the implementation level desired by 

industry.[37] Estimates of selling price per gasoline gallon equivalent (GGE) are made via 

TEA models. Target performance metrics also include reductions in greenhouse gas 

emissions compared to fossil gasoline, to qualify the fuel as an advanced biofuel 

according to U.S. EPA regulations. The performance relative to EU sustainability criteria 

(50% reduction by 2017 and 60% by 2018) are also included. The major assumptions in 

the analysis of these three scenarios include: 
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1. Integration with pulp mill lignin feedstocks: By using lignin or black liquor, a 

significant supply of biomass feedstocks becomes available. Materials that are 

now waste or byproducts in pulp and paper processing might be used for fuel or 

chemical production, enhancing the profitability of that industry. By integrating 

fuel production processes directly into the existing pulp mills for raw materials, 

major cost improvements can be achieved. The lignin raw material for the 

process is already being collected and pre-processed within the pulp mill, 

eliminating the logistics development for collection and processing required by 

other feedstocks. A typical Swedish pulp mill (e.g. Södra Cell Värö pulp mill in 

Sweden) produces ~125,000 metric tons of recoverable excess lignin per year, 

and this serves as the basis for our study.[8] 

2. Integration with existing refinery facilities: To use crude bio-oil as a feedstock in 

the hydrotreatment reactor of a traditional refinery, the oxygen content must be 

low enough for use with existing catalysts and process conditions. Currently the 

lowest oxygen levels achieved in HTL are around 13 wt%. Although it is 

possible to use at those levels, refiners would prefer a feed with <10 wt% oxygen 

to reduce hydrogen usage and prevent catalyst coking.[37] During their NCW 

process development, the Chalmers team attained levels <15 wt% oxygen, very 

close to desired levels.[25] Under optimal conditions, oxygen levels as low as 10 

wt% are stoichiometrically possible.[37] This is a key variable in the study, thus 

three scenarios for oxygen content are explored. A baseline case at 16 wt% 
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oxygen, the state-of-the-art research results (13 wt%), and a projected 2020 target 

technology goal of 10 wt% oxygen as desired by Preem.[37] 

3. Suppression of char and tar formation: By optimizing the process conditions and 

additives, researchers have steadily reduced the char content (solids) from 15 

wt% to 12 wt%. Although char may be separated and burned as an auxiliary fuel, 

it also reduces the yield of bio-oil and aqueous hydrocarbons, and fouls 

equipment and catalysts. The three scenarios also include levels of char 

formation, including the current pilot-scale level (15 wt%), the best current 

research results (12 wt%), and a 2020 target projection of 8 wt% char. 

4. Improved utilization of aqueous phenolic byproducts: Since up to 30 wt% of the 

total organics (e.g. phenolics) produced in the HTL process remain dissolved in 

the aqueous phase, the co-production of significant quantities of BTEX solvents 

from this stream becomes attractive. A BTEX co-product significantly impacts 

process viability and production costs. Separation schemes for aqueous phenolics 

have been explored in other contexts, but no technology is proven for this 

application.[45] Distillation is energy intensive, and the phenolic recovery is poor. 

LLE is less energy intensive, and the extraction solvent may be recycled. 

Recycling of end-capping agents and phenolic monomers back to the HTL 

reactor to reduce solids and improve oil yields is also assumed. Therefore, the 

base technology for phenolic separations is liquid-liquid extraction with methyl 

isobutyl ketone (MIBK) or ethyl acetate (EA), and with partial phenolic recycle 

(recycle ratio of 4) back to the HTL reactor. 
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Figure 6-4 shows the proposed base process for converting excess lignin directly from a 

standard Kraft process pulp mill into transportation fuels and BTEX compounds. The 

wet lignin feed may be supplied from the excess black liquor or from a lignin separation 

process, such as the LignoBoost® process. The effluent from the NCW reactor is 

separated by an Alfa-Laval three-phase centrifuge into suspended solids, oil-rich, and 

water-rich phases. The bio-oil may be used directly as a co-feed to a refinery 

hydrotreatment unit for fuel production, while the water-rich stream is partially recycled 

or sent to a phenolics extraction unit to recover BTEX precursors. Monomeric phenolic 

compounds preferentially partition into water at high pH (>8), with over 90% being 

partitioned at pH’s above 11. To effectively concentrate the aqueous phenolic stream, the 

pH must be lowered (~7) and extracted using standard LLE equipment.[45] Since MIBK 

is much more volatile than the phenolics, the extractant/phenolic stream can be readily 

separated via simple distillation. The concentrated phenolic stream may then be fed into 

a hydrodeoxygenation (HDO) reactor for conversion to BTEX compounds, or partially 

recycled as an end-capping agent to the HDT reactor. Further purification/separation via 

distillation may follow. In this study, the evaluation focuses on three unit operations 

(red) in the flow diagram. A process-level, experimentally-based model for the catalytic 

NCW reactor, including the feedstock, products, process conditions and operation has 

been developed by the Chalmers team.  The LLE step has been modeled in ASPEN, and 

catalytic treatability studies of the bio-oil to fuel and the phenolic stream to BTEX 
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compounds has been modeled via both data-based process-level models and 

ASPEN.[40,42,43] 

 

This study integrates laboratory data and models to develop more accurate process 

simulations and flowsheet analyses for a commercial-scale NCW lignin-based biofuels 

and BTEX production system. The flowsheet includes operations from lignin 

preprocessing through the final catalytic upgrading step. The primary objective is to 

translate research advances into economic performance metrics and life cycle 

environmental impacts throughout the project as formative and summative assessments. 

The process TEA explores fossil energy input requirements for process heat and power 

demands and in scenarios will investigate technological improvements in the HTL, 

separations and upgrading areas. Process stream compositions and yields are 

incorporated from the laboratory research conducted by the authors for each of the 

studied unit operations, replacing initial baseline default data with experimentally-

validated data where possible. This was based on already-developed Aspen flowsheets 

for a full pyrolysis conversion process simulation as described in Winjobi et al..[40] The 

flowsheet analysis determines energy demands for all flowsheet unit operations using 

heat capacities, temperature changes in process streams, product and co-product yields, 

stream compositions, and heats of reaction calculated using heats of formation for 

components in process streams.



 

 
 

 

Figure 6-4. Integrated pulp mill to refinery process 
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6.2.6 Analysis for environmental impact 

As the concentration of CO2 in the atmosphere passes 400 ppm from a pre-industrial 

level of 285 ppm, low carbon energy technologies are urgently needed to bring climate 

change under control. Capping global GHG emissions at the current level for 50 years 

will ensure that CO2 levels in the atmosphere remain below 550 ppm by 2060 and avoid 

the worst effects of manmade climate change. Renewable and sustainable biomass-based 

substitutes for liquid transportation fossil fuels, such as waste lignin from the pulp 

industry, will help achieve this goal. The proposed assessments in this project will 

provide important feedback to the research teams on techno-economic and 

environmental life cycle performance, and help guide research and inform decision 

makers in industry and government about the sustainability of the proposed fuels and 

chemicals produced.   

 

6.3 Technoeconomic Assessments 

The objective of this study was to conduct formative and summative TEAs on the 

conversion of lignin to two main products: drop-in fuel blends from NCW bio-oil and 

BTEX compounds from the aqueous phenolic stream. The minimum selling price of 

both products is determined using a discounted cash flow rate of return analysis by 

setting the net present value to zero as outlined in the study by Winjobi et al.[40] Updates 

were made to the baseline models using experimental data to define key scenarios for 

comparison within the NCW conversion platform. This TEA employs literature and 
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vendor quotes for equipment, and uses Peters and Timmerhaus investment, installation, 

and scale-up factors to estimate total project costs.[46] Equipment costs from previous 

years were escalated to base year 2016 using the Chemical Engineering Plant Cost Index 

(CEPCI), which is provided monthly by the journal Chemical Engineering.[47] Employee 

costs are estimated using data from Peters et al. and wage rates from the Bureau of Labor 

and Statistics for the U.S. analyses and comparable sources in Sweden.[46,48] These initial 

TEA modeling results illustrate preliminary estimates for key cost factors and can help 

guide future research with an eye towards reducing key cost factors where possible. The 

process model inputs for heat, power, and other process needs flow into the Aspen 

simulations where appropriate, and also inform our choices for the TEA modeling 

efforts. 

 

6.3.1 Near-critical water hydrothermal liquefaction reactor 

The success of this process is based mainly upon the NCW reactor and the assumptions 

made on the process. Table 6-1 displays the operating conditions of the NCW reactor. 

The reactor is run at 350°C and 25 MPa, with a recycle ratio of 3 – 6. The residence time 

decreases across the scenarios from 11 minutes in the first scenario to 3 minutes in the 

third scenario. A K2CO3 or KOH catalyst is used, with the amount of catalyst increasing 

from 0.5 kg catalyst in the first two scenarios to 1 kg catalyst in the third scenario, which 

contributes to the decreased residence time. The desired mass of product also increases 

from 88 wt% of the total product in the first scenario to 90 wt% in the last two scenarios. 

Table 6-2 shows the input from the pulp mill, which will be used for all three scenarios, 
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and the outputs from the process, based on the three different scenarios. The input 

stream is assumed to be the lignin feed from the pulp mill, water, added catalysts (alkali 

salts), and end-capping agents. The effluent compositions for the first and second 

scenarios have been verified via experimental studies at Chalmers.[30] The third scenario 

is an optimal case based on the minimum oxygen content, product distribution, and 

solids content targets proposed by refiners.[37] The primary differences are the oxygen 

and char content, which decrease with each improved scenario. The input stream has a 

carbon to oxygen ratio (C/O) of 3.4 and a carbon to hydrogen ratio (C/H) of 1.0. The 

output bio-oil stream has an increasing C/O ratio of 6.2 in the first scenario to 10.4 in the 

third scenario, and a decreasing C/H ratio of 1.0 in the first scenario to 0.7 in the third 

scenario. The increasing C/O ratio indicates increased oxygen removal across the three 

scenarios, while the decreasing C/H ratio indicates a higher percentage of desired 

products (alkylphenols). Oxygen removal is due to the formation of carbonates and small 

organics, such as acetic acid and lighter aldehydes, in the aqueous phase. The 

mechanism for this removal is unclear, although it is most likely through the oxalate 

cycle. The aqueous stream shows a decrease in phenol over the three scenarios, as well 

as an increase in alkylphenols. The other aromatic compounds remain relatively stable 

across the scenarios. The percentage of phenolic monomers in the organics of the 

aqueous phase increases across the three scenarios from 56% to 64%, which improves 

the economic viability of BTEX production.  

 



 

139 
 

The process economics for the near-critical water hydrothermal liquefaction reactor, 

including capital and operating costs, are based upon a methodology found in Knorr et 

al.[49] In the Knorr study, five reactor cases were investigated for a hydrothermal 

liquefaction reactor, and factored in heat integration, stream viscosities, and cost 

minimization. All cases utilized a feed rate of 2000 dry metric tons of wood chips per 

day, with critical or near-critical water as a solvent, which results in a 15 wt% dry solids 

feed entering the HTL reactor. For the reactors presented, no catalyst was used, which 

differs from the reactor studied at Chalmers, but an alkali carbonate reagent was used to 

maintain a pH of seven or larger. For this TEA, Knorr’s Case A was chosen as a model, 

where the recycle stream is at the reactor temperature (350°C in this case) and is used to 

provide indirect heating to the feed stream, which enters the reactor at 250°C. Knorr et 

al. state that this design requires a large recycle ratio (77.5%) to maintain a feed 

temperature of 250°C, which also causes an increase in the overall residence time. The 

high solids content also requires recycle pumps capable of handling up to 15% wt% dry 

solids. Material balances and solubility limits were modeled using AspenPlus, with a key 

assumption that the thermal properties of the stream were best modeled using a 

thermodynamic package for water. [49] 

 

Table 6-1. NCW reactor operating conditions[30] 

Temperature 350°C 

Pressure 25 MPa 

Residence time 11 min 6 min 3 min 
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Recycle ratio 3 to 6 

Alkali salt catalysts K2CO3 or KOH 

Amount of alkali catalyst required per amount of 
reactant 0.1 kg catalyst / kg lignin feed 

Solid catalyst substrate 0.5 kg catalyst 1 kg catalyst 

Mass flow of feed/mass of catalyst 5 kg / hr / kg catalyst 

Mass of desired product/Mass of total product (wt%) 88% 90% 90% 

Mass of reactant feed/total influent mass (wt %) 5.50% 



 

 
 

Table 6-2. NCW reactor inputs and outputs[30] 

Unit Operation Material Streams In:   Unit Operation Material Streams Out: 

Influent mass flow rate of dry lignin feedstock kg/hr 17k  Effluent mass flow rates (bio-oil) kg/hr 10k 10.5k 10.8k 
 Elemental composition of lignin feed     Elemental composition of bio-oil output[44] 

 Carbon wt.% 65.6%   Carbon wt.% 75.0% 76.0% 78.0% 

 Hydrogen wt.% 5.7%   Hydrogen wt.% 6.0% 8.0% 9.0% 

 Oxygen wt.% 26.0%   Oxygen wt.% 16.0% 13.0% <10.0% 

 Sulfur wt.% 1.9%   Sulfur wt.% 0.5% 0.5% 0.5% 

 Inorganic wt.% 0.8%   Inorganic wt.% 2.5% 2.5% 2.5% 

      *Phenolic groups shown in Table 6-5 

 Component composition      

 Lignin wt.% 5.5%  Effluent mass flow rates (aq. 
organics) kg/hr 4.7k 4.8k 5.0k 

 Potassium carbonate wt.% 1.6%   Phenolic monomers in organics (aqueous phase) 
 Potassium hydroxide wt.% 0.4%   Anisoles  wt.% 3.7% 4.0% 4.0% 

 Phenol wt.% 4.0%   Phenol wt.% 32.1% 28.0% 24.0% 

 Water wt.% 88.5%   Alkylphenols wt.% 6.6% 12.0% 18.0% 

      Guaiacols wt.% 1.9% 1.5% 1.5% 

      Catechols wt.% 4.0% 5.0% 5.0% 

      Cresols wt.% 5.0% 6.0% 7.0% 

      Other wt.% 3.0% 4.0% 4.0% 
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6.3.2 Centrifuge 

Alfa-Laval centrifuges are a well-developed technology that will be used, in this process, 

to separate the effluent from the NCW reactor. The three-phase centrifuge will separate 

the effluent into a bio-oil stream, which will be hydrodeoxygenated to produce fuel, an 

aqueous phase, which will first undergo liquid-liquid extraction, and then can either be 

recycled back into the NCW reactor or hydrodeoyxgenated to produce BTEX 

compounds, and a solids phase that will remove the char from the system. The char can 

be burned for heat somewhere else in the process. The separation efficiencies assumed 

here are found in the Alfa-Laval catalogue.[50] 

 

6.3.3 LLE Separation Process 

The feed to the LLE unit (LLE1) is the aqueous phase of the NCW effluent, described in 

Table 1, after being separated via Alfa-Laval centrifuge. In the NCW process, almost 

90% of the feed is water, which needs to be recovered or recycled. Separating and 

recovering the organics in the aqueous phase, either to recycle back into the reactor or to 

generate BTEX compounds as a co-product, is a crucial part of the process. Table 6-3 

depicts the inputs and outputs for the liquid-liquid extraction process. The input streams 

are the extractant (MIBK or ethyl acetate) and the aqueous phase of the NCW reactor, 

after separation by the Alfa-Laval centrifuge, across the three scenarios. The primary 

differences between the scenarios are the decreasing phenol content, the increasing 

alkylphenol content, and the total percentage of phenolics increases. For the effluent, the 

primary effect of the process is to remove the water. The water phase is recycled back 
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into the NCW reactor, with trace amounts of phenolics. Across the three scenarios, the 

effluent has decreasing oxygen content, starting with a C/O ratio of 6.8 in the first 

scenario and increasing to 8.8 in the third scenario. While the increase in specific 

compounds’ concentrations is due to the removal of the water, the thermodynamics of 

the extraction are selective for some compounds. For example, guaiacols, actually 

decrease with the improving scenarios from 2.3% to 1.0%, indicating that they leave 

with the water upon extraction. These effluent compositions are based on work by 

Nattapol, and are modeled using ASPEN Plus.[42] The ASPEN Plus model designed for 

this process utilizes the Predictive Soave-Redlich-Kwong (PSRK) equation of state and 

the UNIFAC activity model. The PSRK equation of state is used for polar systems with 

no electrolyte components at high temperatures and pressures. Unfortunately, ASPEN 

Plus, does not include specific UNIFAC groups for phenolics, so the values for those 

groups were estimated. 



 

 
 

Table 6-3. LLE inputs and outputs 

Unit Operation Material Streams In:  Unit Operation Material Streams Out: 

Influent mass flowrate (Organics) kg/hr 4.7k 4.8k 5.0k Effluent mass flowrate 
(Phenolics) kg/hr 2.6k 2.7k 2.8k 

 Aqueous organic phase from centrifuge (% of total organics)  Elemental composition of product stream 

 Anisole wt.% 3.7% 4.0% 4.0%  Carbon wt.% 76.0% 78.0% 79.0% 
 Phenol wt.% 32.1% 28.0% 24.0%  Hydrogen wt.% 8.0% 8.0% 9.0% 
 Alkylphenols wt.% 6.6% 12.0% 18.0%  Oxygen wt.% 15.0% 13.0% 12.0% 
 Guaiacols wt.% 1.9% 1.5% 1.5%  Sulfur wt.% 0.0% 0.0% 0.0% 
 Cresols wt.% 5.0% 6.0% 7.0%  Inorganic wt.% 1.0% 1.0% 1.0% 
 Catechols wt.% 4.0% 5.0% 5.0%       
 Other wt.% 3.0% 4.0% 4.0%  Phenolics from LLE (wt%) [42] 
 Total phenolics wt.% 56.0% 61.0% 64.0%  Anisole wt.% 7.0% 7.0% 8.0% 

       Phenol wt.% 61.0% 52.0% 45.0% 

       Alkylphenols wt.% 12.5% 21.0% 28.0% 

       Guaiacols wt.% 2.3% 2.0% 1.0% 

       Cresols wt.% 9.0% 10.0% 10.0% 

       Catechols wt.% 7.0% 7.0% 7.0% 

       Other wt.% 1.0% 1.0% 1.0% 

       Total phenolics wt.% 100.0% 100.0% 100.0% 
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6.3.4 HDO1 Reactor 

The HDO1 reactor input stream comes from the LLE unit, and is composed of phenolic 

compounds, diluted to 5% molar in dodecane, an inert solvent that will help in controlling 

the reactor. The reactor is operated at 300°C and 7 MPa over a noble metal catalyst, such 

as Pd/C or Pt/Al2O3, with a 3 minute residence time. The gas was 5% hydrogen mixed 

with an inert carrier gas. The inputs and outputs are shown in Table 6-4. The primary 

goal of this reactor is to hydrodeoxygenate the phenolics and convert them to BTEX or 

cyclic hydrocarbon compounds, and for this reactor, deoxygenation was complete by the 

end of the residence time. The HDO1 reactor is simulated using a process-level model 

and an ASPEN Plus simulation developed in previous work for a catalytic 

hydrodeoxygenation system for wood-based pyrolysis oil.[40,51] Across the three 

scenarios, the total BTEX in the products increased from 60% to 65%, with saturated 

cyclic hydrocarbon products decreasing from 16% to 11%. The water and other products 

remain constant, as they are not affected by any process improvements. With the 

assumptions in this study, the primary products were the BTEX compounds, but the 

process or reactor operating conditions could be altered to produce a biofuel blending 

stream instead, depending on market demand.  

 

 

 

 

 



 

 
 

Table 6-4. HDO1 inputs and outputs 

Unit Operation Material Streams In:  Unit Operation Material Streams Out: 

Influent mass flow rates kg/hr 
2.6k 2.7k 2.8k 

Effluent mass flow 
rates 

kg/hr 
1.9k 2.0k 2.1k 

 Phenolics from LLE (wt%) [42]  
Effluent composition from HDO2 unit (wt%) [40] 

 Anisole wt.% 7.0% 7.0% 8.0%  Benzene wt.% 62.5% 60.0% 60.0% 
 Phenol wt.% 61.0% 52.0% 45.0%  Cyclohexane wt.% 16.25% 13.75% 11.25% 
 Alkylphenols wt.% 12.5% 21.0% 28.0%  Toluene wt.% 11.25% 13.75% 15.0% 
 Guaiacols wt.% 2.3% 2.0% 1.0%  Methylcyclohexane wt.% 2.5% 1.25% 1.250% 
 Cresols wt.% 9.0% 10.0% 10.0%  Ethylbenzene wt.% 1.25% 5.0% 7.5% 
 

Catechols 
wt.% 

7.0% 7.0% 7%  Ethylcyclohexane wt. 
% 1.25% 1.25% 1.25% 

 
Other wt.% 1.0% 1.0% 1%  Other wt.% 5.0% 5.0% 3.75%  
           

       Total BTEX (wt%) wt.% 75.0% 62.0% 82.50% 
       Saturated products wt.% 20.0% 14.0% 13.75% 
       Other wt.% 5.0% 5.0% 3.75% 
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6.3.5 HDO2 Reactor  

The upgrade of the bio-oil to hydrocarbon biofuel is modeled in a two-step pathway, an 

initial stabilization step followed by a final hydrotreatment step.[51] The upgrade of the 

bio-oil to a hydrocarbon biofuel is modeled utilizing reaction pathways suggested in the 

literature for conversion of the representative compounds in the bio-oil to 

hydrocarbons.[51,52,53,54,55,56,57] In this study, aldehydes and ketones are modeled to be 

converted to alcohols in the stabilization step as suggested by Vispute et al. while other 

representative compounds in the bio-oil pass through the stabilization step unchanged.[51] 

The final conversion of the unreacted bio-oil representative compounds and the 

intermediate alcohols from the stabilization step to hydrocarbons then takes place in the 

final hydrotreatment step. The reaction pathway for acetol, one of the representative bio-

oil compound in this study is shown in Figure 6-5. The hydrodeoxygenation reaction 

converts acetol to propylene glycol in the stabilization unit while the intermediate 

product, propylene glycol is converted to propane in the hydrotreater. Representative 

bio-oil compounds containing aromatic rings are modeled to yield two final hydrocarbon 

products, a fully deoxygenated aromatic hydrocarbon and a fully saturated aliphatic 

compound in a 0.45 to 0.55 ratio. 
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Figure 6-5. Upgrade of acetol to propane 

 

 

Figure 6-6. Upgrade of catechol to benzene and cyclohexane in the hydrotreater 

 

As shown in Figure 6-6, the representative bio-oil compound catechol is modeled to only 

react with hydrogen in the hydrotreater to produce benzene and cyclohexane. In general, 

the major reaction pathway for the upgrade of bio-oil in this study was assumed to be 

through hydrodeoxygenation. Reactions such as decarbonylation, decarboxylation are 

also assumed to take place to produce intermediates that were subsequently converted to 

a hydrocarbon through hydrodeoxygenation. 

 

Based on the described modeling approach, the hydrogen required to convert each 

representative compound to a hydrocarbon can be evaluated based on the weight fraction 

for each of the representative compounds in the bio-oil. The yield of hydrocarbon 

produced from the upgrade of the representative compound is also evaluated. The 

amount of the different hydrocarbon compounds in the final upgraded hydrocarbon 
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biofuel is subsequently evaluated. The hydrogen required for the upgrade step is 

estimated as the sum of the hydrogen needed for each representative compound.  

 

The upgrade of bio-oil to a hydrocarbon biofuel is then modeled in Aspen Plus using a 

yield reactor. The yield factors required for modeling this reactor are evaluated by 

calculating the weight fraction of the compounds from the upgrade step based on our 

modeling approach. The product from the upgrade step includes the hydrocarbons 

formed for the hydrodeoxygenation reaction of the representative compounds as well as 

products such as water formed from these reactions. The operating conditions of 1200 

psia, 140°C and 200 psia, 410°C utilized for the stabilization and hydrotreatment steps 

respectively in this study were obtained from literature.[52] The inputs and outputs for 

this reactor are shown in Table 6-5. 

 

While this reactor was modeled and factored into this analysis, a more feasible economic 

scenario would include an “over the fence” arrangement, where the bio-oil from the 

NCW reactor, after separation in the Alfa-Laval centrifuge, would be shipped to a 

nearby refinery. The bio-oil would then be blended with the crude petroleum feed for 

hydrotreatment and further processing. However, in order to be acceptable to refiners, 

the oil would need an oxygen content of 10 wt% or less, which is therefore the target for 

the third scenario. 

 



 

 
 

Table 6-5. HDO2 inputs and outputs 

Unit Operation Material Streams In:  Unit Operation Material Streams Out: 

Influent mass flow rates kg/hr 
10k 10.5k 10.8k 

Effluent mass flow 
rates 

kg/hr 
7.3k 7.9k 8.4k 

 Bio-Oil Composition (wt%)  Effluent composition from HDO2 unit (wt%) [40] 

 Anisoles wt.% 5.2% 6.2% 7.0%  Cyclohexane wt.% 12.3% 11.1% 9.9% 
 Phenol wt.% 12.8% 11.4% 10.0%  Benzene wt.% 10.0% 9.1% 8.1% 
 Alkylphenols wt.% 5.8% 7.8% 9.8%  Alkylcyclohexanes wt.% 3.2% 4.3% 5.4% 
 Guaiacols wt.% 2.0% 1.0% 0.3%  Alkylbenzenes wt.% 2.6% 3.5% 4.4% 
 Catechols wt.% 0.4% 0.6% 0.7%  Other wt.% 1.8% 1.0% 0.2% 
 Other wt.% 1.8% 1.0% 0.2%       
 Total wt% of phenolic monomers wt.% 28.0% 28.0% 28.0%       
 *Remaining 72% is dimers, etc. that cannot be analyzed using GC/MS. 

Average MW of the bio-oil heavy fraction is 16-25 kDa.[30] 
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6.4 Results & Discussion 

This process was put through a profitability analysis, using Aspen software to estimate 

equipment costs and investment factors from Peters & Timmerhaus for operating 

costs.[46] Installation factors were also taken from Peters & Timmerhaus. The plant in 

Scenario 1 is based on the current state of technology, while Scenarios 2 and 3 assume 

technological improvements in the process. The plant is assumed to have an equivalent 

capacity factor of 89%, which is 325 days of online time. The cost of dry lignin was 

given by Verso Paper as $0.03/lb, or $60/metric ton.[59] There is no delivery cost, as the 

process includes a feed directly from the feed mill. The cost of electricity was assumed 

to be $0.07/kWh. Working capital is set as 15% of the fixed capital investment. Labor 

and maintenance are set as 2.3% of the total operating cost. The federal tax return and 

depreciation are calculated using the IRS MACRS and declining balance method, 

respectively. Because the location of the plant has not been determined, state tax is not 

included in our calculations. 

 

In Table 6-6, a summary of the technoeconomic assessments for each scenario can be 

seen. The lignin feed is the same for each case and is based on a standard Swedish pulp 

mill production of 400 dry metric tons per day. The raw lignin feedstock costs $8.58 

million per year.[59] However, the actual cost of lignin may be higher; it can be burned 

for fuel in the pulp mill or repurposed some other way, which might give it a higher 

value than used here. Scenario 1 is the basic case, which utilizes the current level of 

technology. The total biofuel yield in this case is 520 L/dry metric ton, while the BTEX 
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product yield is 134 L/dry metric ton. This results in annual production of 65 million 

L/yr and 16.8 million L/yr, respectively. Six thousand metric tons of carbon black can 

also be recovered from the process, and can be repurposed or burned in the plant for 

energy. The amount of carbon char decreases across the scenarios as the NCW reactor 

improves down to 2500 metric tons per year in Scenario 3, but this co-product was not 

credited anywhere in the economics for any scenario. A carbon conversion of 70% is 

achieved, by taking carbon in the product over carbon in the feed, and less than 1 g CO2 

equivalent/MJ are produced from the HTL reactor. The HTL equipment and operating 

costs listed are mostly from Knorr et al., Peters, and actual market costs.[46,49] Equipment 

costs are based on vendor quotes, while capital costs were adjusted using the Plant Cost 

Index.[49] Operating costs include fixed costs, such as employee salaries, and variable 

costs, such as utilities.[49] The net biofuel production cost is $0.41/L. Scenario 2 is based 

on optimal laboratory results, and sees a slight increase in the overall efficiency of the 

process, as well as the net cost. There is a biofuel production of 68 million L/yr, and an 

accompanying 17.4 million L/yr of BTEX produced. Scenario 2 results in a 74% carbon 

conversion; this improvement is caused by improving the NCW reactor conditions to 

decrease the solids yield and increasing separation efficiency in the LLE unit. The net 

cost for the biofuel in Scenario 2 is $0.43/L. The final scenario is based on target goals 

and projected technology improvements. These changes result in a total production of 70 

million L/yr of biofuel and 18 million L/yr of BTEX products. A carbon conversion of 

78% is achieved, a significant increase in recovery. The net biofuel production cost for 

Scenario 3 is $0.44/L. Across the three scenarios, there is an increase in production. 
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There is also a slight increase in the net cost per liter of biofuel, but this is accompanied 

by a decrease in the C/O ratio, an increase in the C/H ratio of the biofuel, and an increase 

in the amount of fuel processed and BTEX products produced alongside the fuel. The 

major cost improvements for these scenarios are due to the integration of the fuel 

production processes directly into the existing pulp mills for raw materials and refineries 

for fuel production. Figure 7 shows a column plot of the costs in millions of dollars, split 

into each section of the process for all three scenarios. The bulk of the installed capital 

costs are due to the hydrothermal liquefaction reactor and hydrodeoxygenation reactors. 

The installed capital costs also increase from $114 million to $124 million across the 

three scenarios. Net operating costs also increased from $18 million in Scenario 1 to $22 

million in Scenario 3, due to increased utility and material demand. The amount of 

hydrogen necessary in the HDO reactors, for example, increases with the increased flow 

rates of both the aqueous phase and the bio-oil phase caused by improvements in NCW 

reactor operation. Based on this technoeconomic analysis, the minimum selling price 

(MSP) of the biofuel must be between $3.52 to $3.86 dollars per gallon, assuming the 

current BTEX value of $1 per liter. On the other hand, given the current diesel price of 

$2.88 per gallon, the MSP of BTEX must be between $1.65 and $2.00 per liter.[60]
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Table 6-6. Summary results table 

Process Details and Costs 

Feedstock Type Lignin 

Scenario 1 Scenario 2 Scenario 3 
Envisioned Commercial Feed Rate (dry 
metric ton/day) Basis: standard pulp mill 
(1million metric ton pulp/year), e.g. Södra 
Cell Värö pulp mill, Sweden [8] 

400 

Biofuel Yield (L/dry metric ton) [diesel 
blend] [44]  520 564 600 

BioProduct Yield (L/dry metric ton) 
[BTEX] [42]  134 140 145 

Annual Biofuel Production  65 M L/year 68 M L/year 70 M L/year 
Annual BioProduct Production  16.8 M L/year 17.4 M L/year 18 M L/year 

Recovered suspended carbon black  6000 metric ton/year 4000 metric 
ton/year 

2500 metric 
ton/year 

Carbon Conversion (%) (Products/feed)  70% 74% 78% 
Lifecycle GHG emissions (only HTL)  <1 g CO2 eq./MJ <1 g CO2 eq./MJ <1 g CO2 eq./MJ 

Equipment Costs (2013$) [49] Description Installed Capital Cost (million $) 

Feedstock Storage and Handling (from pulp 
mill) 

Pumps, tanks, 
mixing, heat 
exchangers 

6.60 6.60 6.60 

Biomass Deconstruction (recirculating PFR-
HTL) 

Pumps, pressure 
vessel, controls 47.60 49.98 51.87 

Conversion – HDT reactor system [37] 
Add to existing 
refinery as petrol 
replacement 

1.00 1.05 1.09 

Phenolic Recovery and Upgrading (LLE 
system) [42] 

Alfa-Laval 
centrifuge, 3 stage 
LLE 

10.73 11.27 11.69 
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Wastewater Treatment (>95% recycle)[46] Small blowdown to 
pulp mill 2.00 2.10 2.18 

Product and Feed Chemical Storage [46] 
Alkali, capping 
agents, extracted 
phenols 

3.40 3.57 3.70 

HDO reactor for phenolics [40] HP trickle bed 
system, pumps 37.25 39.11 40.59 

Heat integration across pulp mill [46] Pumps, heat 
exchangers, piping 5.30 5.44 5.56 

Total Installed Capital (million$)  113.88 119.44 123.87 

Total Installed Capital per Annual Liters  1.75 1.75 1.76 

Operating Costs (2013$) [49] Description $Million/yr 

Feedstock Storage and Handling Bio-oil storage and 
Shipping 5.12 5.55 5.91 

Additional hydrogen for 
HDT/HDO reactors[40] 

Makeup for additional 
renewable feed & BTEX 1.8 1.95 2.08 

Alkali (800 kg.hr @ $240 metric ton) as 
catalyst. 95% recycled° 

Option for BL 
alkali usage direct 
from pulp mill 

1.44 1.56 1.66 

Operating Costs (2013$) for LLE system 
[42,46] 

Includes utilities of 
$8.23 million/yr 
for base case 

16.75 18.17 19.33 

Make-up LLE extractant, e.g. MIBK or EA° 
Extractant recycled 
(~0.9% loss or 
33760 ton/yr) 

1.13 1.23 1.30 

Capping agents (1 wt% of total dry feed)° Make-up solvents 
($1000/metric ton) 1.25 1.36 1.44 

Waste Disposal [46] Liquid purge to 
pulp mill 0.5 0.54 0.58 
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Process Steam [42] 
Depolymerization 
integrated into pulp 
mill 

3.27 3.55 3.77 

Electricity  ($0.07 kWh) [46] Depolymerization, 
HDO, LLE 1.14 1.24 1.32 

Labor and Maintenance [46] Depolymerization, 
HDO, LLE 2.5 2.71 2.88 

Total Operating Costs All units 34.9 37.9 40.3 

Co-product Credits BTEX compounds 
at ~$1/L 16.8 17.4 18 

Net Operating Costs  18.1 20.5 22.3 
Net Biofuel Production Costs ($/Liters)  $0.28 $0.30 $0.32 

° Actual Market Costs 
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Figure 6-7 shows a column plot of the installed capital costs for each scenario, divided 

into different sections of the plant. The HTL and the HDO reactors are the primary 

contributors to capital costs in all cases. Pulp mill and refinery costs are relatively low, 

since the operations are being integrated into existing mills and refineries. The total 

installed capital costs increase slightly across the three scenarios from $114 million to 

$123 million. This increase is due to increasing equipment sizes as the overall carbon 

conversion increases from 70% to 78%. 

 

 

Figure 6-7. Column plot of installed capital costs 

 

0

20

40

60

80

100

120

140

Scenario 1 Scenario 2 Scenario 3

$M
M

Installed Capital Costs

Pulp Mill / Refinery Integration HTL Reactors LLE HDO Reactors Chemical Storage



 

158 
 

Figure 6-8 shows a similar column plot for the net operating costs across the three 

scenarios. Here, the LLE operation is the most significant cost. Pulp mill and refinery 

costs are also a significant fraction, specifically the bio-oil storage and shipping. The 

total operating costs increase from $34.9 million per year in Scenario 1 to $40.2 million 

per year in Scenario 3, again, due to the increased carbon conversion. However, with a 

co-product credit earned from BTEX generation, these costs drop from $18.1 million per 

year in Scenario 1 to $22.3 million per year in Scenario 3. It should be noted, however, 

that Scenario 3 is a hypothetical, and there may be diminishing returns for increased 

cost. At some point, any more carbon conversion might cost so much that it outweighs 

the revenue increase. 
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Figure 6-8. Column plot of operating costs 
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manner, we have economic and environmental assessments that reflect sustainability 

information on the same optimal commercial development scenarios. These cradle-to-

grave LCA studies will highlight environmental hotspots in the pathways and inform the 

direction of project research to address causes of high impact. The LCA studies will be 

conducted using framework and methodology following the ISO 14044:2006 

standards.[ISO Standards] Pathway analyses will begin with lignin as a low-value material 

obtained from industrial processes in the forest products industry. Inputs to the LCA will 

be obtained from several sources including technical reports, peer-reviewed publications, 

and Aspen process simulations. Co-product allocation will be handled in accord with 

different regulatory requirements in the U.S. (system expansion) and EU (energy 

allocation). Inventories of environmental releases and resource consumption will be 

derived from the US LCI and from the ecoinvent™ database for the U.S. and EU-based 

studies, respectively. Impacts to be assessed will be global warming potential (IPCC 

2013 100a method) and fossil energy demand. Energy return on energy invested will be 

determined. The LCA software tool SimaPro will be employed. Initial LCA modeling 

illustrates areas of large environmental impact in the overall process. The process model 

inputs for heat, power, and other process needs flow into the updated LCA models. 

 

6.6 Conclusions 

This technoeconomic analysis examined the production of biofuels with co-production 

of BTEX compounds via hydrothermal liquefaction of lignin from a pulp mill and 
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subsequent hydrotreatment of the products. This analysis considers a hydrothermal 

liquefaction process tied into the end of a pulp mill to use the lignin byproduct. This 

presents attractive commercial scenarios which could include collaboration between the 

pulp mill and the refinery, where bio-oil and possibly the BTEX co-product are shipped 

to the refinery and then blended with their crude oil. Tall oils and other pulp mill 

byproducts are already being utilized in a similar fashion, with similar transport 

scenarios as well. This allows the raw bio-oils to be directly incorporated into the 

refinery stream prior to hydrotreatment. This is attractive because it prevents green-field 

scenarios in either case. 

 

Three scenarios were explored: the current level of technology available for 

commercialization, the state of the art level of research case, and an optimized, 

hypothetical case based upon the oxygen content and product composition goals defined 

by refiners.[37] Based on this analysis, the biofuel product costs $0.28-$0.32 per liter to 

produce, which includes a co-product credit from the BTEX, but not including installed 

equipment costs. The first scenario has $113.8 million in equipment costs and $34.9 

million per year in total operating costs. A co-product credit of $16.8 million per year 

offsets the operating costs, for a net cost of $18.1 million per year to produce 65 million 

liters of biofuel and 16.8 million liters of BTEX per year. This scenario has a 70% 

carbon conversion, calculated by the moles of carbon in the product divided by the 

carbon in the lignin feed. Scenario 2 has $119.1 million in installed capital costs and 

$37.8 million per year in operating costs. The 17.4 million liters of BTEX produced 
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results in a co-product credit of $17.4 million per year. There are 68 million liters of 

biofuel produced per year, at a final cost of $0.30 per liter. This scenario had a carbon 

conversion of 74%. Finally, the third scenario had installed capital costs of $123.3 

million and operating costs of $40.2 million per year. The co-product credit for this 

scenario is $18 million per year, for 18 million liters of BTEX produced per year. With 

70 million liters of biofuel produced per year, the net cost per liter of biofuel is $0.32. 

The carbon conversion for this ideal scenario is 78%. Based on these results, the MSP of 

the biofuel is between $3.52 and $3.86 per gallon, and the MSP of BTEX is between 

$1.65 and $2.00 per liter. 

 

Equipment and operating costs are based on current commercial plants and technology 

levels. The cost increase is tied to an increasing carbon conversion, from 70% in the first 

scenario up to 78% in the third scenario. The C/O and C/H ratios also improve from the 

first scenario to the third scenario, indicating an improvement in the final product quality 

as well. This improved recovery is tied to improving technology across the board, and 

therefore increases costs as well as the amount of extractant, hydrogen, etc. that are 

consumed by the process. 

 

In this study, we examined the viability of producing BTEX as a co-product via 

separation and treatment of the aqueous organics. Our analysis shows that the 

hydrotreatment of phenolics to BTEX represents a significant fraction of the equipment 

cost. The liquid-liquid extraction step presents the most significant technological 
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challenge, as well as the highest annual operating costs. This technology needs further 

development; separation efficiencies need to be increased and the modeling also requires 

improvement. Overall, lignin and hydrothermal liquefaction show promise, as a potential 

biofuel feedstock and conversion process. Although BTEX is worth more than fuel, the 

technology is not advanced enough to produce BTEX without significant extra costs. 

Although overall carbon conversion is increased, the current state of the technology 

makes the incremental cost higher than the returns generated by the BTEX co-product.  
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7. Conclusions and Future Work 

7.1 Conclusions 

7.1.1 Plant Oils 

A lumped parameter, Langmuir-Hinshelwood model was developed to model a 

multicomponent, multiphase, continuous reactor for the hydrotreatment of plant oils to 

produce renewable diesel fuel over a range of process conditions. Oleic acid, a common 

fatty acid found in plant oils, was used as a model compound over a Pt/Al2O3 catalyst, 

and Arrhenius rate constants were calculated using experimental data over the 

temperature range examined (250-375°C). The reactor was run under 6.7 bar of pressure, 

with argon and 5% hydrogen. The utility of this model was demonstrated by running a 

test case to match literature sources’ hydrogen consumption and final product 

composition.  The model also successfully predicts pathway shifts across a range of 

temperatures. With a small amount of experimental data and preliminary testing, this 

process-level model for plant oil hydrotreatment can predict product composition, 

hydrogen and energy consumption for a specific feedstock and set of reactor operating 

conditions in a way that commercial “black box” simulation programs, such as Aspen® 

and Unisim®, cannot. These predictions can be used to help design production facilities 

and perform analyses of a specific product composition target or biomass feedstock.  

 

7.1.2 Pyrolysis Oils - Batch 
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The Langmuir-Hinshelwood model was adapted for the hydrotreatment of pyrolysis oil 

model compounds in a Parr batch reactor at Chalmers University. Experiments were run 

for four hours over a range of temperatures (250-350°C), at 50 bar of hydrogen, two 

different catalysts (Pt/Al2O3 and Pd/C), and with three common pyrolysis oil model 

compounds (anisole, m-cresol, and phenol). This study also considered two blends of 

model compounds; no interactions were seen between the compounds, therefore, the 

lumped parameter approach was deemed valid. Arrhenius rate constants were calculated 

using experimental data. When compared to an independent data set, the model fit the 

data with correlation coefficients ranging from 0.80 to 0.98. Once again, the model’s 

ability to predict pathway shifts based on process conditions, especially temperature, is 

crucial for assessing the sustainability of the process, or for optimizing the reactor 

conditions.  

 

7.1.3 Pyrolysis Oil - Continuous 

In this part of the study, a continuous packed bed reactor was used in order to continue 

the earlier batch reactor work while also moving closer to reactors used in industry. 

First, a differential reactor was built in order to examine the intrinsic reaction kinetics of 

the system at low conversions and residence times. Powdered Pd/C and Pt/Al2O3 were 

tested as potential catalysts for this system. A pilot scale reactor was then constructed, 

with high conversions and a pellet Pt/Al2O3 catalyst. A similar suite of experiments was 

run with the pilot reactor to study rate kinetics in a more realistic system that included 

mass transfer limitations. Each reactor’s data was fit to the Langmuir-Hinshelwood 



 

174 
 

model discussed in the previous chapter. When compared to the data, the model fit well 

(within 1%) for both reactors. However, this study demonstrated the need to perform a 

small set of experiments for each reactor of interest. Given a small set of preliminary 

experiments, however, this process-level model can be used to quickly and 

inexpensively analyze reactor conditions and catalysts for life cycle and technoeconomic 

assessments. 

 

7.1.4 TEA 

The technoeconomic analysis presented in this chapter studied the production of 

transportation fuel and commodity chemicals from the hydrothermal liquefaction and 

subsequent hydrotreatment of lignin, a byproduct from pulping processes. We 

considered a lignin depolymerization process in near-critical water, with a lignin 

feedstock directly from a pulp mill. Three scenarios were generated: a current 

technology level, a cutting edge technology level, and an idealized third case based on 

oxygen content goals set by refiners. Carbon conversion ranged from 70% in the first 

scenario to 78% in the third scenario. Equipment and operating costs were calculated for 

all three scenarios, using current commercial plants and technology levels, and were 

based on a production from 65 million liters to 70 million liters of biofuel produced per 

year. A per liter cost of $0.28 to $0.32 were calculated; this cost includes the commodity 

chemical co-product credit. The cost increase is due to the increasing carbon recovery, 

based on C/O and C/H ratios. As a result of the improved product quality, costs increase 

as the amount of consumables (extractant, catalyst, hydrogen, etc.) rises. Because this 
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process would be tied into the end of a pulp mill and, ideally, would have an “over the 

fence” arrangement with a refinery to process the bio-oil product, it presents an 

attractive commercial prospect, as green-field scenarios are avoided for both parties. In 

our study, however, the bio-oil hydrotreatment has been included in the cost analyses 

and, along with the phenolics hydrotreatment reactor, present a significant fraction of the 

installed equipment cost. The liquid-liquid extraction step has the highest annual 

operating costs of the process. The LLE technology also needs further research and 

development to increase separation efficiencies. Overall, however, this process shows 

promise as a source for biofuel and as a potential revenue source for pulp mills and 

refineries. 

 

7.1.5 Overall Conclusions 

Beginning with the batch reactor and moving to the continuous reactor, a Langmuir-

Hinshelwood model has been developed to simulate the hydrotreatment of various 

biological oils. This model can accurately predict product distributions and selectivities, 

greenhouse gas emissions, heating or cooling load, and hydrogen consumption for a 

given input and set of reactor conditions. The major obstacle to this model is the lack of 

necessary kinetic rate information. This data must be collected for a specific catalyst in a 

continuous system large enough to test apparent activation energies, rather than the 

intrinsic rate kinetics seen in a smaller reactor where mass transfer limitations cannot be 

properly modeled. Although many hydrotreatment studies have been performed, both on 

plant and pyrolysis oil, there are very few studies that can be translated into rate kinetics 
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for this type of process-level model. Instead, studies need to be performed on the system 

of interest to tune and optimize the process conditions for a particular feedstock or 

product composition, or to improve sustainability. With only a few experimental tests, 

the hydrotreatment of many biological feedstocks can be modeled, including plant oils, 

pyrolysis oil, tall oil and algal oils. This process-level modeling can be incorporated into 

a complete biorefinery design or assessment of an entire process, as demonstrated in the 

techno-economic analysis in Chapter 6. 

 

7.2 Recommendations for Future Work 

The catalysts studied in this work are standard catalysts used in hydrotreatment. Ideally, 

however, novel catalysts designed especially for hydrodeoxygenation of biological 

feedstocks could be developed. These catalysts would need to be resistant to poisoning 

from water and minerals (ash) in the feedstock and coking. Optimal catalysts would also 

exhibit high activity for hydrodeoxygenation, without saturating the ring of the aromatic 

compound. For example, there has been promising work on supported pseudomorphic 

overlayer catalysts. Currently, this work has only been performed in the vapor phase, in 

small (<10 mm diameter) continuous reactors at near-atmospheric pressures, or small 

batch reactors.[1,2,3,4,5] Ideally, studies would be performed on a larger scale and at higher 

pressures, to more accurately approximate industrial hydrotreatment conditions. There is 

also some interest in reactions other than hydrotreatment. Condensation and dehydration 

reactions, for example, have been of some interest to produce various compounds from 

biological oils.[6] 
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A major barrier to this work is the separation and extraction efficiencies of the biological 

oils. Pyrolysis oil and hydrothermal liquefaction oil, for example, contain significant 

amounts of water that must be removed prior to hydrotreatment, as water is a serious 

catalyt poison. Separation technologies are costly, as discussed in Chapter 6, and the 

thermodynamics of the process are not well understood or modeled in commercial 

simulators. Improvements to this technology would be greatly beneficial. Another option 

is a stabilization step prior to hydrotreating, which would be at milder temperatures and 

with a less vulnerable catalyst; this approach is seen in the biofuel hydrotreatment 

reactor in Chapter 6.  

 

An integrated biorefinery design can improve the feasibility of biological feedstocks for 

transportation fuel. Integration benefits both the supplier, who can dispose of process 

byproducts and generate revenue, and the refiner, who can blend the biofuels into their 

existing streams and improve their process sustainability. The kinetic model developed 

in this work can be used to help design and assess these biorefineries. It would also be 

advantageous to develop a specialized catalyst to handle blends of petroleum and bio-

oils. Conventional petroleum catalysts are sulfided and require the presence of some 

sulfur in the reactor to maintain activity. Noble metal catalysts typically seen in bio-oil 

research are easily poisoned by sulfur and are too expensive to use at the scale necessary 

in industrial refiners. Some combination of the two would be ideal, and the novel 

catalyst research mentioned earlier shows promise.  
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8. Supplemental Information 

8.1 Tabulated Pyrolysis Oil Literature Review 

Table 8-1. Reactor Conditions & Type 

Temperature (°C) Pressure Reactor Type Reference 

350 1 atm batch [1] 

300 4 MPa continuous [2,3] 

320 17 MPa batch [4] 

400 7 MPa batch [5] 

260-300 7 MPa batch [6] 

300 2.85 MPa continuous [7] 

300 0.14 MPa continuous [8,9,10,11] 

250 6-9 MPa batch [12] 

300 20 MPa batch [13] 

240 4 MPa batch [14] 

400 1 atm continuous [15] 

 

Table 8-2. Model Compounds 

Model Compound Reference 

Guaiacol [2,3] 
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Guaiacol [4] 

Guaiacol [5] 

M-Cresol [16] 

Guaiacol [17] 

Cresol, Xylenol [18] 

Guaiacol [19] 

Phenol [20] 

Cresol, phenol, guaiacol, eugenol [21] 

2-methyltetrahydrofuran [22] 

Phenolic dimers [23] 

Guaiacol [6] 

Cresol, Xylenol [7] 

M-Cresol [24] 

Guaiacol [8,9,11] 

Eugenol [10] 

Anisole [25] 

Guaiacol, Anisole, Methylanisole, Cyclohexanone [26] 

Phenol, Methyl heptanoate [12] 

Phenol [27] 

Phenol, cresol, guaiacol [28] 

Anisole [29] 
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Phenol in water [30] 

Guaiacol [14] 

 

Table 8-3. Catalyst & Catalyst Types 

Catalyst / Catalyst Type Reference 

HZSM5 [31] 

bimetallic [1,32] 

Sulfided CoMo [33] 

Sulfided CoMo [2,3] 

Nickel-based [4] 

Sulfided CoMo [5] 

Sulfided CoMo [18] 

Noble metal on support [19] 

ZSM5 [34] 

CoMo, NiMo, sulfided [6] 

NiFe [35] 

Ni/ZSM5 [36] 

Sulfided CoMo [7] 

Pt/SiO2 [24] 

Pt/Al2O3 [8,9] 

Pt/MgO [11] 
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HY zeolite [10] 

Pt/Al2O3 [26] 

Zeolites [37] 

Ni-Mo-B [38] 

Co-Mo-B [39] 

Ru/Al2O3, Ru/C [13,27] 

sulfided Mo [28] 

Ni on varying supports [29] 

Ni/HZSM5 [40] 

Ni and NiCu on ZrO2-SiO2 [14,30] 

Raney Ni (hydrogenation) & Nafion SiO2 (Bronsted acid) [41] 

Metal Phosphides [42] 

Noble metal catalysts [43] 

Ni/HZSM5 [44] 

Ni/HZSM5, Ni/Al2O3-HZSM5 [45] 

Pt/H-Beta [15] 
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This section contains the GC/FID data from the oleic acid experiments with Pt/Al2O3. 

They depict the output composition of the pilot scale reactor at each temperature, after 

normalizing to account for the solvent, and the resulting concentration used in the kinetic 

modeling. The LC/MS data was already displayed in Chapter 2 and is not shown here. 

Table 8-4. Oleic Acid Data for Pt/Al2O3 at 250°C 

Residence Time (min) Compound Normalized Fraction C (mol/L) 

20.8 heptadecanol 0.0122 0.0027 

21.35 octadecanol 0.0057 0.0012 

21.95 oleic acid 0.9632 0.2082 

22.05 stearic acid 0.0188 0.0041 

 

Table 8-5. Oleic Acid Data for Pt/Al2O3 at 300°C 

Residence Time (min) Compound Normalized Fraction C (mol/L) 

20.8 heptadecanol 0.0425 0.0091 

21.35 octadecanol 0.0079 0.0017 

21.95 oleic acid 0.9208 0.1991 

22.05 stearic acid 0.0287 0.0062 
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Table 8-6. Oleic Acid Data for Pt/Al2O3 at 350°C 

Residence Time (min) Compound Normalized Fraction C (mol/L) 

20.8 heptadecanol 0.0600 0.0130 

21.35 octadecanol 0.0448 0.0096 

21.95 oleic acid 0.8846 0.1912 

22.05 stearic acid 0.0107 0.0023 

 

Table 8-7. Oleic Acid Data for Pt/Al2O3 at 375°C 

Residence Time (min) Compound Normalized Fraction C (mol/L) 

20.8 heptadecanol 0.1286 0.0278 

21.35 octadecanol 0.0020 0.0004 

21.95 oleic acid 0.4329 0.0936 

22.05 stearic acid 0.4364 0.0943 

 

8.3 Pyrolysis Oil Data – Batch 

For the sake of brevity, only certain graphs/results were included in Chapter 4. The 

supplemental data presented here is the all of the data discussed. This data was taken 

using a GC/MSD, with calibration standards also taken in order to quantify the data. 
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8.3.1 Anisole on 500 mg Pt/Al2O3 

 

Figure 8-1. Batch Data for Anisole on 500 mg Pt/Al2O3 at 250°C 

 

 

Figure 8-2. Batch Data for Anisole on 500 mg Pt/Al2O3 at 300°C 
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Figure 8-3. Batch Data for Anisole on 500 mg Pt/Al2O3 at 350°C 

 

8.3.2 M-Cresol on 500 mg Pt/Al2O3 

 

Figure 8-4. Batch Data for M-Cresol on 500 mg Pt/Al2O3 at 250°C 
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Figure 8-5. Batch Data for M-Cresol on 500 mg Pt/Al2O3 at 300°C 

 

 

Figure 8-6. Batch Data for M-Cresol on 500 mg Pt/Al2O3 at 350°C 
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Figure 8-7. Batch Data for Phenol on 500 mg Pt/Al2O3 at 250°C 

 

 

Figure 8-8. Batch Data for Phenol on 500 mg Pt/Al2O3 at 300°C 
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Figure 8-9. Batch Data for Phenol on 500 mg Pt/Al2O3 at 350°C 

 

8.3.4 Anisole on 200 mg Pt/Al2O3 

 

Figure 8-10. Batch Data for Anisole on 200 mg Pt/Al2O3 at 250°C 
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Figure 8-11. Batch Data for Anisole on 200 mg Pt/Al2O3 at 300°C 

 

 

Figure 8-12. Batch Data for Anisole on 200 mg Pt/Al2O3 at 350°C 
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Figure 8-13. Batch Data for Anisole on 500 mg Pd/C at 250°C 

 

 

Figure 8-14. Batch Data for Anisole on 500 mg Pd/C at 300°C 
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Figure 8-15. Batch Data for Anisole on 500 mg Pd/C at 350°C 

 

8.3.6 Anisole & M-Cresol on 500 mg Pt/Al2O3 

 

Figure 8-16. Batch Data for Anisole & M-Cresol Blend on 500 mg Pt/Al2O3 at 250°C 
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Figure 8-17. Batch Data for Anisole & M-Cresol Blend on 500 mg Pt/Al2O3 at 300°C 

 

 

Figure 8-18. Batch Data for Anisole & M-Cresol Blend on 500 mg Pt/Al2O3 at 350°C 
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Figure 8-19. Batch Data for Anisole & Phenol Blend on 500 mg Pt/Al2O3 at 250°C 

 

 

Figure 8-20. Batch Data for Anisole & Phenol Blend on 500 mg Pt/Al2O3 at 300°C 
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Figure 8-21. Batch Data for Anisole & Phenol Blend on 500 mg Pt/Al2O3 at 350°C 

 

8.4 Pyrolysis Oil Data – Neat 

The results presented in this section are from our initial experiments using pure model 

compounds in the differential reactor. While there are normalized fractions shown 

below, the results from this set of experiments are not reliably quantified and were not fit 

to the kinetic model. 

 

8.4.1 Pd/C Results 

8.4.1.1 Anisole 

Table 8-8. Neat Anisole Data for Pd/C at 250°C 
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2.23 benzene 0.0086 

2.30 cyclohexene 0.0084 

2.93 cyclohexanol 0.1076 

3.10 anisole 0.8182 

3.34 xylenol 0.0098 

3.48 cresol 0.0473 

 

Table 8-9. Neat Anisole Data for Pd/C at 300°C 

Peak Compound Normalized Fraction 

2.23 benzene 0.0049 

2.30 cyclohexene 0.0106 

2.93 cyclohexanol 0.0284 

3.10 anisole 0.8981 

3.23 phenol 0.0162 

3.35 xylenol 0.0101 

3.48 cresol 0.0262 

 

Table 8-10. Neat Anisole Data for Pd/C at 350°C 

Peak Compound Normalized Fraction 

2.23 benzene 0.0190 
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2.3 cyclohexene 0.0170 

2.93 cyclohexanol 0.0077 

3.10 anisole 0.8953 

3.23 phenol 0.0318 

3.35 xylenol 0.0027 

3.48 cresol 0.0145 

 

8.4.1.2 Furfural 

Table 8-11. Neat Furfural Data for Pd/C at 250°C 

Peak Compound Normalized Fraction 

2.90 furfural 1.0000 

 

Table 8-12. Neat Furfural Data for Pd/C at 300°C 

Peak Compound Normalized Fraction 

2.90 furfural 0.9755 

2.98 furylmethanol 0.0143 

3.08 tetrahydrofurfuryl alcohol 0.0064 

3.50 bifuran 0.0039 
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Table 8-13. Neat Furfural Data for Pd/C at 350°C 

Peak Compound Normalized Fraction 

2.39 tetrahydrofuran 0.0040 

2.90 furfural 0.9761 

2.98 furylmethanol 0.0199 

 

8.4.1.3 Guaiacol 

Table 8-14. Neat Guaiacol Data for Pd/C at 250°C 

Peak Compound Normalized Fraction 

3.26 phenol 0.0060 

3.48 m-cresol 0.0092 

3.56 p-cresol 0.0110 

3.60 guaiacol 0.9738 

 

Table 8-15. Neat Guaiacol Data for Pd/C at 300°C 

Peak Compound Normalized Fraction 

3.26 phenol 0.0079 

3.60 guaiacol 0.9921 
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Table 8-16. Neat Guaiacol Data for Pd/C at 350°C 

Peak Compound Normalized Fraction 

3.26 phenol 0.0081 

3.60 guaiacol 0.9919 

 

8.4.1.4 M-Cresol 

Table 8-17. Neat M-Cresol Data for Pd/C at 250°C 

Peak Compound Normalized Fraction 

3.28 methylcyclohexanone 0.1169 

3.57 m-cresol 0.8831 

 

Table 8-18. Neat M-Cresol Data for Pd/C at 300°C 

Peak Compound Normalized Fraction 

3.28 methylcyclohexanone 0.0608 

3.57 m-cresol 0.9392 

 

Table 8-19. Neat M-Cresol Data for Pd/C at 350°C 

Peak Compound Normalized Fraction 

3.28 methylcyclohexanone 0.1484 
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3.57 m-cresol 0.8516 

 

8.4.2 Pt/Al2O3 Results 

8.4.2.1 Anisole 

Table 8-20. Neat Anisole Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

2.23 benzene 0.0028 

3.10 anisole 0.9893 

3.36 methylanisole 0.0079 

 

Table 8-21. Neat Anisole Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

2.23 benzene 0.0354 

2.30 cyclohexene 0.0077 

3.04 cyclohexanone 0.1073 

3.10 anisole 0.8210 

3.23 phenol 0.0287 

 



 

208 
 

Table 8-22. Neat Anisole Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

3.10 anisole 0.9849 

3.27 benzyl alcohol 0.0072 

3.38 methylanisole 0.0079 

 

8.4.2.2 Furfural 

Table 8-23. Neat Furfural Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

2.90 furfural 0.9859 

3.11 furyl methyl ketone 0.0118 

3.47 bifuran 0.0024 

 

Table 8-24. Neat Furfural Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

2.90 furfural 0.9980 

3.11 furyl methyl ketone 0.0010 

3.47 bifuran 0.0010 
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Table 8-25. Neat Furfural Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

2.90 furfural 0.9925 

3.11 furyl methyl ketone 0.0049 

3.42 bifuran 0.0026 

 

8.4.2.3 Guaiacol 

Table 8-26. Neat Guaiacol Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

3.10 anisole 0.0119 

3.58 cresol 0.0030 

3.60 guaiacol 0.9852 

 

Table 8-27. Neat Guaiacol Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

3.26 phenol 0.0066 

3.60 guaiacol 0.9934 
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Table 8-28. Neat Guaiacol Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

3.10 anisole 0.0570 

3.60 guaiacol 0.9430 

 

8.4.2.4 M-Cresol 

Table 8-29. Neat M-Cresol Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

3.18 methylcyclohexanol 0.0069 

3.21 methylcyclohexanone 0.0045 

3.50 m-cresol 0.9887 

 

Table 8-30. Neat M-Cresol Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

3.18 methylcyclohexanol 0.0107 

3.21 methylcyclohexanone 0.0052 

3.50 m-cresol 0.9841 
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Table 8-31. Neat M-Cresol Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

3.10 anisole 0.0134 

3.57 m-cresol 0.9866 

 

8.4.3 ZSM-5 Results 

8.4.3.1 Anisole 

Table 8-32. Neat Anisole Data for ZSM-5 at 250°C 

Peak Compound Normalized Fraction 

3.10 anisole 0.9890 

3.48 cresol 0.0110 

 

Table 8-33. Neat Anisole Data for ZSM-5 at 300°C 

Peak Compound Normalized Fraction 

2.30 cyclohexene 0.0050 

3.06 cyclohexanone 0.5500 

3.10 anisole 0.7205 

3.23 phenol 0.0542 

3.35 xylenol 0.0610 
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3.48 cresol 0.0360 

3.58 trimethylphenol 0.0062 

 

Table 8-34. Neat Anisole Data for ZSM-5 at 350°C 

Peak Compound Normalized Fraction 

2.30 cyclohexene 0.0111 

3.10 anisole 0.7053 

3.23 phenol 0.0819 

3.35 xylenol 0.1257 

3.48 cresol 0.0672 

3.58 trimethylphenol 0.0089 

 

8.4.3.2 Furfural 

Table 8-35. Neat Furfural Data for ZSM-5 at 250°C 

Peak Compound Normalized Fraction 

2.90 furfural 0.9974 

3.45 bifuran 0.0026 
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Table 8-36. Neat Furfural Data for ZSM-5 at 300°C 

Peak Compound Normalized Fraction 

2.90 furfural 0.9826 

3.11 furyl methyl ketone 0.0110 

3.50 bifuran 0.0064 

 

Table 8-37. Neat Furfural Data for ZSM-5 at 350°C 

Peak Compound Normalized Fraction 

2.90 furfural 0.9880 

3.11 furyl methyl ketone 0.0072 

3.50 bifuran 0.0048 

 

8.4.3.3 Guaiacol 

Table 8-38. Neat Guaiacol Data for ZSM-5 at 250°C 

Peak Compound Normalized Fraction 

3.26 phenol 0.0043 

3.48 m-cresol 0.0561 

3.60 guaiacol 0.9397 
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Table 8-39. Neat Guaiacol Data for ZSM-5 at 300°C 

Peak Compound Normalized Fraction 

3.26 phenol 0.0038 

3.48 m-cresol 0.0147 

3.56 guaiacol 0.9815 

 

Table 8-40. Neat Guaiacol Data for ZSM-5 at 350°C 

Peak Compound Normalized Fraction 

3.26 phenol 0.0081 

3.60 guaiacol 0.9919 

 

8.4.3.4 M-Cresol 

Table 8-41. Neat M-Cresol Data for ZSM-5 at 250°C 

Peak Compound Normalized Fraction 

3.10 anisole 0.0107 

3.57 m-cresol 0.9893 

 

Table 8-42. Neat M-Cresol Data for ZSM-5 at 300°C 

Peak Compound Normalized Fraction 
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3.10 anisole 0.0506 

3.47 o-cresol 0.0066 

3.57 m-cresol 0.9427 

 

Table 8-43. Neat M-Cresol Data for ZSM-5 at 350°C 

Peak Compound Normalized Fraction 

3.10 anisole 0.0056 

3.47 o-cresol 0.0071 

3.57 m-cresol 0.9874 

 

8.5 Pyrolysis Oil Data – Differential 

The data in this section is from sets of experiments run in the differential reactor, using 

5% (molar) model compound in dodecane. These were analyzed in the GC/FID, which 

was calibrated for proper quantification. The GC/MS was used to confirm peak 

identification, but was not used to quantify the data. Only the GC/FID data is presented 

here. 

 

8.5.1 Pd/C 

8.5.1.1 Anisole 
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Table 8-44. Differential Anisole Data for Pd/C at 250°C 

Peak Compound Normalized Fraction 

4.21 methoxycyclohexane 0.1393 

5.25 anisole 0.8607 

 

Table 8-45. Differential Anisole Data for Pd/C at 300°C 

Peak Compound Normalized Fraction 

4.21 methoxycyclohexane 0.2236 

5.25 anisole 0.7764 

 

Table 8-46. Differential Anisole Data for Pd/C at 350°C 

Peak Compound Normalized Fraction 

4.21 methoxycyclohexane 0.3350 

5.25 anisole 0.6650 

 

8.5.1.2 Guaiacol 

Table 8-47. Differential Guaiacol Data for Pd/C at 250°C 

Peak Compound Normalized Fraction 

6.70 phenol 0.1171 
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8.30 guaiacol 0.8829 

 

Table 8-48. Differential Guaiacol Data for Pd/C at 300°C 

Peak Compound Normalized Fraction 

6.70 phenol 0.4052 

8.30 guaiacol 0.5948 

 

Table 8-49. Differential Guaiacol Data for Pd/C at 350°C 

Peak Compound Normalized Fraction 

6.70 phenol 0.5560 

8.30 guaiacol 0.4440 

 

8.5.1.3 M-Cresol 

Table 8-50. Differential M-Cresol Data for Pd/C at 250°C 

Peak Compound Normalized Fraction 

5.70 methylcyclohexanol 0.2925 

8.40 m-cresol 0.7075 
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Table 8-51. Differential M-Cresol Data for Pd/C at 300°C 

Peak Compound Normalized Fraction 

5.70 methylcyclohexanol 0.5263 

8.40 m-cresol 0.4737 

 

Table 8-52. Differential M-Cresol Data for Pd/C at 350°C 

Peak Compound Normalized Fraction 

5.70 methylcyclohexanol 0.5939 

8.40 m-cresol 0.4061 

 

8.5.1.4 Phenol 

Table 8-53. Differential Phenol Data for Pd/C at 250°C 

Peak Compound Normalized Fraction 

4.60 cyclohexanol 0.1045 

6.90 phenol 0.8955 

 

Table 8-54. Differential Phenol Data for Pd/C at 300°C 

Peak Compound Normalized Fraction 

4.60 cyclohexanol 0.1215 



 

219 
 

6.90 phenol 0.8785 

 

Table 8-55. Differential Phenol Data for Pd/C at 350°C 

Peak Compound Normalized Fraction 

4.60 cyclohexanol 0.3028 

6.90 phenol 0.6972 

 

8.5.2 Pt/Al2O3 

8.5.2.1 Anisole 

Table 8-56. Differential Anisole Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

4.21 methoxycyclohexane 0.0316 

5.25 anisole 0.9684 

 

Table 8-57. Differential Anisole Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

4.21 methoxycyclohexane 0.0050 

5.25 anisole 0.9950 
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Table 8-58. Differential Anisole Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

4.21 methoxycyclohexane 0.0072 

5.25 anisole 0.9928 

 

8.5.2.2 Guaiacol 

Table 8- 59. Differential Guaiacol Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

6.70 phenol 0.0607 

8.30 guaiacol 0.9393 

 

Table 8-60. Differential Guaiacol Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

6.70 phenol 0.1707 

8.30 guaiacol 0.8293 

 

Table 8-61. Differential Guaiacol Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

6.70 phenol 0.4749 
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8.30 guaiacol 0.5251 

 

8.5.2.3 M-Cresol 

Table 8-62. Differential M-Cresol Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

6.70 phenol 0.0245 

8.40 m-cresol 0.9755 

        
        

Table 8-63. Differential M-Cresol Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

6.70 phenol 0.0252 

8.40 m-cresol 0.9748 

 

Table 8-64. Differential M-Cresol Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

6.70 phenol 0.4436 

8.40 m-cresol 0.5564 

 

8.5.2.4 Phenol 
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Table 8-65. Differential Phenol Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

4.60 cyclohexanol 0.0183 

6.90 phenol 0.9817 

 

Table 8-66. Differential Phenol Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

4.60 cyclohexanol 0.0313 

6.90 phenol 0.9687 

 

Table 8-67. Differential Phenol Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

4.60 cyclohexanol 0.0721 

6.90 phenol 0.9279 

 

8.6 Pyrolysis Oil Data – Pilot 

This is the data from the pilot scale tests. These were continuous experiments using 5% 

(molar) model compound in dodecane over Pt/Al2O3 only. As with the differential 
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results in section 8.4, only the GC/FID data was used for quantification and is shown 

here. 

8.6.1 Anisole 

Table 8-68. Pilot Anisole Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.7125 

5.20 anisole 0.2576 

6.80 phenol 0.0299 

 

Table 8-69. Pilot Anisole Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.8899 

5.20 anisole 0.0886 

6.80 phenol 0.0215 

 

Table 8-70. Pilot Anisole Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.9070 

5.20 anisole 0.0312 
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6.80 phenol 0.0618 

 

8.6.2 Guaiacol 

Table 8-71. Pilot Guaiacol Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.0078 

6.80 phenol 0.0898 

8.41 guaiacol 0.8324 

     
 

Table 8-72. Pilot Guaiacol Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.1750 

6.80 phenol 0.0128 

8.41 guaiacol 0.8122 

 

Table 8-73. Pilot Guaiacol Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.0829 
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6.80 phenol 0.1948 

8.41 guaiacol 0.7222 

 

8.6.3 M-Cresol 

Table 8-74. Pilot M-Cresol Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.2765 

6.80 phenol 0.0228 

8.60 m-cresol 0.7007 

 

Table 8-75. Pilot M-Cresol Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.6768 

6.80 phenol 0.0253 

8.60 m-cresol 0.2980 

 

Table 8-76. Pilot M-Cresol Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.8054 
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6.80 phenol 0.1396 

8.60 m-cresol 0.0550 

 

8.6.4 Phenol 

Table 8-77. Pilot Phenol Data for Pt/Al2O3 at 250°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.4875 

6.80 phenol 0.5125 

 

Table 8-78. Pilot Phenol Data for Pt/Al2O3 at 300°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.5095 

6.80 phenol 0.4905 

 

Table 8-79. Pilot Phenol Data for Pt/Al2O3 at 350°C 

Peak Compound Normalized Fraction 

1.95 cyclohexane 0.5194 

6.80 phenol 0.4806 
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