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Abstract

Testing of hypotheses about the population parameter is one of the most fundamental

tasks in the empirical sciences and is often conducted by using parametric tests (e.g.,

the t-test and F -test), in which they assume that the samples are from populations

that are normally distributed. When the normality assumption is violated, nonpara-

metric tests are employed as alternatives for making statistical inference. In recent

years, the Bayesian versions of parametric tests have been well studied in the litera-

ture, whereas in contrast, the Bayesian versions of nonparametric tests are quite scant

(for exception, [17]) in the literature, mainly due to the lack of sampling distribution

of data.

It is well known that like the frequentist counterparts, the Bayesian tests perform

well in practical applications, whereas unlike the frequentist ones, they are generally

fail to control the Type I error and can even result in different decisions from them.

To avoid these issues, we integrate the ideas of [17] and [2] and develop Bayes factor

tests for comparing the difference between the means among several populations,

which can not only control the Type I error, but also allow researchers to make the

identical decisions between frequentists and Bayesians on the basis of the observed

data. In addition, they depend on the data only through nonparametric statistics and

can thus be easily computed, so long as one has conducted the nonparametric tests.

More importantly, they can quantify evidence from empirical data favoring the null

hypothesis, and this property is not shared by the frequentist counterparts, which

lack the ability to quantify evidence favoring the null hypothesis in the case of failing

to reject the null hypothesis.
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Chapter 1

Introduction

Testing of hypotheses about a population parameter is one of the most fundamental

tasks in virtually most areas of scientific study, as it helps researchers answer practical

questions: Did the gasoline price increase by an average of only $0.10 per gallon last

year? Is there a difference in median yields per acre between two fertilizers A and

B of growing corn? Do the different types of diets appear to affect the amount of

iron present in the livers of white rates after feeding them one of the diets for a

certain period of time. There are always two hypotheses involved for these problems

at hand: one is the alternative hypothesis (H1), which represents the statement that

researchers would like to support, the other is the null hypothesis (H0), which is an

initial statement that researchers may specify according to their prior knowledge. For

instance, the hypotheses correspond to oil price example are: H0: the oil price has

not increased by $0.10 per gallon and H1: the oil price was increased by $0.10 per

gallon.
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The problem of hypothesis testing is usually covered in most elementary statistics

courses, and in particular, we were taught how to implement parametric tests in

making statistical inference, such as the t-test and the analysis of variance (ANOVA)

for comparing group means. A parametric test often requires certain assumptions of

the parameters of the population distribution. For instance, the t-test assumes the

samples to be drawn from normal populations, even though this assumption is seldom

met in practical applications, especially when the data exhibit heavy-tailed behavior.

When the normality assumption is violated and/or outliers are present, the power

of parametric tests can drop considerably, and thus nonparametric tests, free of the

distribution assumption of the data, are good alternative to parametric ones. For

instance, the Wilcoxon signed rank test is generally more powerful than the t-test for

comparing the difference between two population means for paired data, when the

data are asymmetric while heavy-tailed. More details about the implementation of

nonparametric statistics can be found in [1].

No matter whether we adopt the parametric or nonparametric testing procedures, the

common decision rule of these tests for rejecting or failing to reject H0 is based on the

p-value from a certain test statistic: we reject H0 if the p-value < α, say α = 5%, a

specified significance level. The advantage of this decision rule is its ability to control

the Type I error rate, whereas its drawback is that it provides little information about

the truth of H0 if it is not rejected. In addition, the p-value approach has a tendency

to overstate the evidence against H0, leading to instances where it has been banned

by [15]. This motivates researchers to consider Bayesian hypothesis testing as an

alternative to the p-value test, given that Bayesian procedures to model testing can

quantify evidence in favor of both hypotheses.
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Bayesian testing procedures are often conducted by comparing the posterior proba-

bility of each hypothesis. In this report, let p(Y | θj) and πj(θj) be the likelihood

function of Y and the prior for θj under Hj and let πj be the prior probability for

Hj satisfying π0 + π1 = 1 for j = 1, 2. In the absence of prior knowledge, the equal

prior probabilities can be assigned for both hypotheses (i.e., π0 = π1 = 1/2), the so-

called assumption of equipoise in this report. By using Bayes theorem, the posterior

probability of Hj is given by

P (Hj | Y ) =
πjmj(Y )

π0m0(Y ) + π1m1(Y )
, (1.1)

where mj(Y ) represents the marginal likelihood of Y given Hj, i.e.,

mj(Y ) =

∫
p(Y | θj)πj(θj) dθj . (1.2)

Note that the posterior probability of H1 can be rewritten in the form

P (H1 | Y ) = π1BF10

π0 + π1BF10
=

[
1 +

π0
π1

1

BF10

]−1

, (1.3)

where BF10 is the Bayes factor (BF) between hypotheses H1 to H0 given by

BF10 =
m1(Y )

m0(Y )
. (1.4)

One appearing property of the BF is that it represents the relative plausibility of

the observed data under two considered hypotheses. For example, BF10 = 10 means

that the data are 10 times as more likely to be generated under H1 than under H0.

We here refer the interested readers to [5] and [7] for a detailed interpretation of

3



the BF. As a Bayes test of decision making, the null hypothesis is rejected if the

BF (equivalently, the posterior probability of H1) exceeds a certain threshold, and

in general, we are more likely to choose H1 (H0) if BF10 > 1 (< 1). The value of

1 results in an optimal action to reject H0 under the zero-one loss function; see [9].

Here, the optimal decision means that the expected posterior loss of failing to reject

H0 exceeds the expected posterior loss of rejecting H0.

Unlike the p-value approach, the BF may fail to control the Type I error and result

in different decisions from the parametric and nonparametric tests. To remedy these

limitations, [6] followed the idea of a uniformly most powerful test of statistical hy-

potheses and proposed a uniformly most powerful Bayes test (for short, UMPBT),

which was obtained by maximizing the probability that the BF favoring H1 exceeds a

specified threshold. The UMPBT can lead to an identical decision with the frequen-

tist counterpart, whereas it only exists in a few testing scenarios. This motivates [2]

to consider a natural extension of the UMPBT, the so-called restricted most pow-

erful Bayes test (RMPBT), which is obtained by restricting the class of priors for

the unknown parameters under the alternative hypothesis to a certain parametric

class. They have shown that the RMPBT performs well for testing the regression

coefficients in linear models. More recently, [16] developed the Bayes t-tests based on

the RMPBT for testing the presence of correlations between two continuous random

variables. The developed Bayes t-tests depend simply on the t-statistics and can also

result in an identical decision with the t-tests on the basis of the observed data.

It is of particular note that the current literature mainly focuses on the implemen-

tation of the UMPBT for hypothesis testing in a parametric setting. To the best

of our knowledge, it is unclear whether the RMPBT can be generalized to develop
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efficient Bayesian testing approaches in a nonparametric setting. In this report, we

follow the seminal work of [17] and develop the BFs to model testing based on a

combined use of nonparametric statistics and the UMPBT. The developed Bayesian

tests enjoy various appealing properties: (i) they depend simply on the commonly

used nonparametric statistics and their associated quantiles of the nonparametric

statistics, (ii) they can be easily computed, so long as researchers are familiar with

the nonparametric paradigm, and more importantly, (iii) they can result in an iden-

tical conclusion with the associated nonparametric tests, which allows researchers to

interpret the results from both Bayesian and frequentist points of view.

This report is organized as follows. In Chapter 2, we briefly overview several com-

monly used nonparametric test statistics covered in most statistics courses. We derive

Bayesian nonparametric tests based on a combined use of nonparametric statistics and

the RMPBT, and we then discuss their corresponding properties in Chapter 3. We

evaluate the performance of the developed Bayesian tests through using simulations

and three real-data examples in Chapter 4. Concluding remarks are provided in

Chapter 5 with computer codes written in R [12] and mathematical derivations given

in the Appendix.
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Chapter 2

Frequentist nonparametric test

statistics

In this chapter, we overview several commonly used nonparametric tests, which are

treated as alternatives to their parametric analogs when the normality assumption of

the data appears to be violated. In Section 2.1, we discuss the Wilcoxon signed rank

test for one-sample and/or paired-sample problem. In Section 2.2, we provide the

Mann-Whitney-Wilcoxon test for two independent sample problem, and in Section

2.3, we consider the Kruskal-Wallis test for locations in several independent samples.
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2.1 The Wilcoxon signed rank test

Let (Xi, Yi) be a paired observation and Di = Xi − Yi for i = 1, · · · , n. In the one-

sample problem, Di’s can be viewed as observations in the sample. Suppose that all

Di’s are independent and identically distributed with a distribution function F (D | θ),
which is assumed to be symmetric with the unknown parameter θ. We wish to test

the hypothesis if the unknown parameter is θ0 = 0, that is,

H0 : θ = 0 versus H1 : θ �= 0. (2.1)

Note that in case of θ0 �= 0, we reparameterize each observation by using D̃i = Di−θ0.
To obtain the Wilcoxon signed rank test, we calculate the absolute values of the

differences, denoted by |D1|, · · · , |Dn|, and sort them in an ascending order. Let Ri

be the rank of |Di| for i = 1, · · · , n. The test statistic T is defined as the sum of the

positive signed ranks given by

T =
n∑

i=1

(
Ri where Di is positive

)
. (2.2)

We reject H0 at the level of α if T is less than its α/2 quantile (τα/2) or greater than

its 1−α/2 quantile (n(n+1)/2−τα/2) for the distribution of T under H0. The value of

τα/2 can be found in Table A12 of [1] or Table A.4 of [3]. It deserves mentioning that

T and τα/2 can also be easily calculated in R by using wilcox.test() and qsignrank()

functions, respectively; see [12].

When the sample size is large (n ≥ 20), T can be approximately normally distributed

8



with mean IE[T ] = n(n + 1)/4 and variance var(T ) = n(n + 1)(2n + 1)/24; see [3].

The standardized version of T , denoted by T ∗, is defined as

T ∗ =
T − n(n + 1)/4√
n(n + 1)(2n+ 1)/24

, (2.3)

which has limiting normal distributions under both null and alternative hypotheses.

This limiting property plays a key role in deriving the BF for testing the hypotheses

in (2.1) using nonparametric statistics studied by [17].

2.2 The Mann-Whitney-Wilcoxon test

Let X = (x1, · · · , xn1)
′ and Y = (y1, · · · , yn2)

′ be two data vectors from two popu-

lations: the first sample comes from a control group having a distribution function

F , and the second from a treatment group with a distribution function G. Without

loss of generality, we assume n1 ≤ n2. Suppose also that a location-shift model for G,

such that G(t) = F (t − θ) for some θ ∈ R. After an appropriate reparametrization

mentioned above, we are interested in testing

H0 : θ = 0 versus H1 : θ �= 0. (2.4)

For the calculation of the Mann-Whitney-Wilcoxon test, we combine samples of X

and Y and calculate the rank of Xj in the combined sample, denoted by Sj for

9



j = 1, · · · , n1. The test statistic W is given by

W =

n1∑
j=1

Sj. (2.5)

We reject H0 at the level of α if W is less than its α/2 quantile (ωα/2) or greater than

its 1−α/2 quantile (n1(n1+n2 +1)/2−ωα/2) of W under H0. The value of ωα/2 can

be found from Table A7 of [1] when n1 ≤ 20 and n2 ≤ 20 or can be approximated by

a standard normal quantile given in Table A1 of [1] for larger sample sizes. Similar

to the Wilcoxon signed rank test, W and ωα/2 can be easily calculated in R by using

wilcox.test() and qsignrank() functions, respectively.

When the sample sizes are large, T can be approximately normally distributed with

mean IE[W ] = n1(n1 + n2 + 1)/2 and variance var(W ) = n1n2(n1 + n2 + 1)/12. The

standardized version of W , denoted by W ∗ is defined as

W ∗ =
T − n1(n1 + n2 + 1)/2√
n1n2(n1 + n2 + 1)/12

, (2.6)

which has limiting normal distributions under both null and alternative hypotheses;

see [3].

2.3 The Kruskal-Wallis test

The Mann-Whitney-Wilcoxon test is often employed to test difference of two indepen-

dent samples, and later on, [8] extended this test for analyzing k(≥ 3) independent
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samples. Suppose that the data consist of k independent random samples of different

sample sizes. Let Xi = (Xi1, · · · , Xini
) be the ith sample of size ni drawn from a

distribution function F (x− θi), where θi represents the median of the ith population

for i = 1, · · · , k. We are interested in testing

H0 : θ1 = · · · = θk versus H1 : θi �= θj, for some 1 ≤ i, j ≤ k. (2.7)

Let R(Xij) be the rank of Xij and Ri be the sum of the ranks assigned to the ith

sample for i = 1, · · · , k. The Kruskal-Wallis test statistic U is defined as

U =
12

n(n + 1)

k∑
i=1

ni

(
Ri

ni
− n+ 1

2

)2

, (2.8)

where n =
∑k

i=1 ni is the total sample size. We reject H0 at the level of α if U is

greater than its 1 − α quantile (να) from the null distribution of U . The value of να

can be found in [4] and [11]. In the large sample approximation, the approximate

quantile can be obtained by the quantile of the central chi-square distribution with

k−1 degrees of freedom. This is because when H0 is true, the test statistic U follows

an asymptotic chi-square distribution with k−1 degrees of freedom, denoted by χ2
k−1,

as ni →∞ simultaneously for i = 1, · · · , k. Under H1, the limiting distribution of U

has a non-central χ2 distribution with k − 1 degrees of freedom, denoted by χ2
k−1(ρ),

where

ρ = 12

{∫ ∞

−∞
f 2(x) dx

}2 k∑
i=1

ai(Δi −Δ),

11



where f(·) is the probability density function of F , ai = ni/n, and Δ =
∑k

i=1 aiΔi.

The limiting distributions of U under both hypotheses paly an important role in

developing the Bayes factor test to model hypotheses in (2.7) based on the Kruskal-

Wallis test.
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Chapter 3

Bayesian hypothesis testing

In this chapter, we overview the Bayes factors using nonparametric statistics of [17]

(Section 3.1) and restricted most powerful Bayes test of [2] (Section 3.2). In Section

3.3, we combine ideas of these two procedures and develop alterative Bayesian testing

procedures using nonparametric statistics in Chapter 2.

3.1 Bayesian modeling test statistics

Yuan and Johnson [17] developed Bayesian hypothesis tests using nonparametric

statistics. In particular, they obtained the BFs based on the sampling distribu-

tions of nonparametric statistics, which can be grouped into normal and chi-square

distributions, respectively.
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For the one- and two-sample testing problems given by (2.1) and (2.4), respectively,

[17] adopted the Pitman translation alternative [13] to the alternative hypothesis H1,

leading to the following hypotheses of form

H0 : θ = θ0 versus H1 : θ = θ0 +
Δ√
n
, (3.1)

where θ0 = 0 and Δ is the non-centrality parameter distinguishing the null and

alternative hypotheses. Note that the standardized Wilcoxon signed rank test (T ∗)

and the Mann-Whitney-Wilcoxon test (W ∗) have limiting normal distributions under

the null and alternative hypotheses, which can be represented as

H0 : S
∗ ∼ N

(
0, 1

)
and H1 : S

∗ ∼ N
(
cΔ, 1

)
, (3.2)

where c represents the efficacy of the test S∗ (T ∗ or W ∗). Yuan and Johnson [17]

specified a normal prior distribution for Δ given by

Δ ∼ N(0, κ2), (3.3)

where κ is a hyperparameter that needs to be prespecified. The Bayes factor in (1.4)

under the specified prior can be simplified as

BF10 = (1 + g)−1/2 exp

(
T ∗2

2

g

1 + g

)
, (3.4)

where g = (cκ)2. Yuan and Johnson [17] determined the value of g by finding an

upper bound of the Bayes factor in (3.4) over the parameter g ∈ (0,∞).

14



For k-sample testing problem in (2.7), Yuan and Johnson [17] adopted the Pitman

translation alternative and obtained the sequence of the local alternatives given by

H0 : θ = θ0 versus H1 : θ �= θ0 +
Δi√
n
, i = 1, · · · , k, (3.5)

where θ0 = 0, Δi is not all equal for i = 1, · · · , k, and n =
∑k

i=1 ni. The Kruskal-

Wallis test U has limiting chi-squared distributions under the null and alternative

hypotheses, which are given by

H0 : U ∼ χ2
k−1 and H1 : U ∼ χ2

k−1(ρ).

Yuan and Johnson [17] specified a multivariate normal distribution for ΔΔΔ =

(Δ1, · · · ,Δk)
′ given by

ΔΔΔ ∼ Nk

(
0k, c(R

′R)−1
)
,

where c is a scaling constant and R is a nonsingular k × k matrix satisfying

P′QP = R′

⎡
⎢⎣Ik−1 0

0′ 0

⎤
⎥⎦R

with

P = Ik −

⎡
⎢⎢⎢⎢⎣
a1 . . . ak
...

...

a1 . . . ak

⎤
⎥⎥⎥⎥⎦ and Q =

⎡
⎢⎢⎢⎢⎣
a1 0 0

0
. . . 0

0 0 ak

⎤
⎥⎥⎥⎥⎦ .

We here refer the interested readers to [17] in detail. The Bayes factor in (1.4) under

15



the specified prior is given by

BF10 = (1 + g)−(k−1)/2 exp

{
U

2

g

1 + g

}
, (3.6)

where g = 12c
(∫

f 2(x) dx
)2
. Again, [17] determined the value of g by finding an

upper bound of this Bayes factor over the parameter g ∈ (0,∞).

It deserves mentioning that the Bayes factors in (3.4) and (3.6) depend on the data

only through the associated nonparametric test statistics and can thus be easily im-

plemented, so long as one has performed nonparametric tests. We observe that they

depend on the choice of g, in which [17] determined this value by finding an upper

bound of the Bayes factor. Even though the Bayes factors based on this choice of

g have been shown to perform well in practical applications, they lack of ability to

make the identical decisions between Bayesians and frequentists on the basis of the

observed data.

In this report, we adopt an alternative way to determine the value of g by matching

the rejection regions of both Bayesian and nonparametric testing procedures; see, for

example, [6], [2], [16], among others. One appealing property of fixing the value of g

in this manner allows researchers to make the identical decisions between two different

testing procedures and interpret the results from both Bayesian and frequentist points

of view.
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3.2 Restricted most powerful Bayes tests

Goddard and Johnson [2] followed the idea of uniformly most powerful Bayes test

[6] and developed a restricted most powerful Bayes test (RMPBT), which has been

shown to perform well for testing the regression coefficients in the context of normal

linear models. They restricted the class of the alternative hypotheses into the form of

Zellner’s g-prior [18] and obtained the Bayes factor having the same rejection region

as the frequentist F -test, provided that its evidence threshold is determined by the

significance level of the F -test. They formally defined a RMPBT for hypothesis

testing in linear models as follows.

Definition 1 Let θ be the parameter of interest. A π-restricted most powerful

Bayesian test with its evidence threshold δ > 0 in favor of H1 : θ ∼ π(θ | ψ1)

against a fixed null hypothesis H0 about θ, is a Bayesian hypothesis test, denoted by

π-RMPBT(δ), where the Bayes factor for hypothesis testing satisfies

Pθt

[
BF10 > δ

] ≥ Pθt

[
BF20 > δ

]
,

for all possible values of the data generating parameter θt and all alternative hypothe-

ses H2 : θ ∼ π(θ | ψ2), where π(·) is a density function parameterized by ψ, and

ψ1, ψ2 ∈ ψ.
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The π-RMPBT(δ) is a Bayes test for which the alternative hypothesis is restricted

to a class of priors on θ so as to maximize the probability of rejecting H0, when the

Bayes factor exceeds δ over all possible values of ψ and θt. An attractive property

of this test is that its rejection region can be coincident with that of the frequentist

test, provided that δ is determined by the significance level of the associated test.

Goddard and Johnson [2] developed the Bayes factor based on the RMPBT for testing

the regression coefficients in linear models. Later on, [16] developed the Bayes factors

based on the RMPBT for testing the presence of correlations between two continuous

random variables. We observe that these Bayesian tests are developed through a

combined use of the RMPBT and parametric testing procedures. To the best of our

knowledge, Bayesian tests based on a combined use of the RMPBT and nonparametric

tests have not yet been studied in the literature.

3.3 The developed Bayes factors

In this section, we obtain Bayesian tests by determining the value of g through max-

imizing the probability that the BF exceeds a specified threshold. This is achieved

by letting the rejection regions of Bayesian tests and α-sized nonparametric tests be

coincident (see Appendix B in detail). In particular, by integrating the ideas from

[17] and [2], we obtain the Bayes factors using three nonparametric test statistics in

Section 2, which are summarized in the following theorem with proofs given in the

Appendix B.
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Theorem 1 (i) For one-sample or paired-samples problem, the Bayes factor based

on the Wilcoxon signed rank test is given by

BF10 =
1

|τ ∗α/2|
exp

(
T ∗2

2

τ ∗2α/2 − 1

τ ∗2α/2

)
, (3.7)

where τ ∗α/2 the standardized critical value of τα/2 given by

τ ∗α/2 =
τα/2 − n(n+ 1)/4√
n(n + 1)(2n+ 1)/24

. (3.8)

The corresponding evidence threshold δτ is given by

δτ =
1

|τ ∗α/2|
exp

(
τ ∗α/2 − 1

2

)
. (3.9)

(ii) For two independent sample problem, the Bayes factor based on the Mann-

Whitney-Wilcoxon test is given by

BF10 =
1

|ω∗
α/2|

exp

(
W ∗2

2

ω∗2
α/2 − 1

ω∗2
α/2

)
, (3.10)

where ω∗
α/2 is the standardized critical value of ωα/2 given by.

ω∗
α/2 =

ωα/2 − n1(n1 + n2 + 1)/2√
n1n2(n1 + n2 + 1)/12

. (3.11)
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The corresponding evidence threshold δω is given by

δω =
1

|ω∗
α/2|

exp

(
ω∗2
α/2 − 1

2

)
. (3.12)

(iii) For k (≥ 3) independent sample problems, the Bayes factor based on the

Kruskal-Wallis test is given by

BF10 =

(
να

k − 1

)−(k−1)/2

exp

(
U

2

να − (k − 1)

να

)
, (3.13)

where να is the 1 − α quantile of the null distribution defined in Section 2.3.

The corresponding evidence threshold δν is given by

δv =

(
να
k − 1

)−(k−1)/2

exp

(
να − k + 1

2

)
. (3.14)

This theorem justifies that there is a close relationship between the Bayesian and

frequentist nonparametric methods. In addition, we observe that these Bayes factors

with their evidence thresholds depend only on nonparametric statistics with their as-

sociated critical values and that they can be easily computed by just adding one more

step after one has performed the hypothesis testing using nonparametric statistics.

For decision making, the Bayes factor greater than its corresponding evidence thresh-

old indicates that H0 is rejected and its value smaller than the evidence threshold

indicates that we fail to reject H0.

20



This theorem also shows that the Bayesian and frequentist nonparametric testing

procedures can result in an identical decision when we match their rejection regions.

This property allows researchers to simultaneously report the conclusions from both

Bayesian and frequentist points of view, and more importantly they can quantify

evidence in favor of both H0 and H1 in terms of the Bayes factors and the posterior

probability in (1.3).

We observe that like the nonparametric test, the evidence threshold of the Bayesian

approach depends on the specified significance level α. As an illustration, we consider

the evidence threshold δτ in (3.9), since other evidence thresholds behave similarly.

It can be seen from Figure 3.1 that δ is a decreasing convex function of α and that we

need to choose δτ to be larger than 1 to achieve its agreement with the nonparametric

test at the α (≤ 0.10) level of significance.
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Figure 3.1: The relationship between the evidence threshold δτ and the
significance level α when n = 50.
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Chapter 4

Numerical studies

In this chapter, we examine the performance of both Bayesian and frequentist non-

parametric methods using simulated data in Section 4.1 and three real-data examples

in Section 4.2.

4.1 Simulation studies

We employ simulated data to assess the agreement between the Bayesian and fre-

quentist nonparametric methods. For illustrative purposes, we here only illustrate

the agreement between the Bayes factor in (3.7) and the Wilcoxon signed rank test in

(2.2), since similar conclusions can be achieved for other two Bayes factors in Theorem

1 and are thus omitted for simplicity.
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First, n random variables are generated from the normal distribution with mean μ

and standard deviation σ = 1, where μ ranges from −4 to 4 in increments of 0.01.

For each value of μ, we generate 10,000 simulated datasets with n = 10 (small) and

n = 100 (moderate), respectively. The decision criterion is that we select H1 if the

Bayes factor is larger than its evidence threshold δ, and H0, otherwise. We consider

two different choices of δ: (i) δ = 1 from [7] and (ii) δ = δτ determined by (3.9), which

can control the Type I error at a specified significant level, say α = 5%. The relative

frequencies of rejecting H0 are depicted in Figure 4.1 for two different choices of δ .

Rather than providing exhaustive conclusions from Figure 4.1, we only highlight some

most important findings. (i) Like its nonparametric counterpart, the Bayes factor in

(3.7) with δτ in (3.9) is able to control the Type I error for the given value of α. For

instance, when n = 10, the frequency of rejecting H0 is 0.05 when we choose α = 0.05,

leading to δτ = 2.529; (ii) as the sample size increases, the Type I error rate of the

Bayes factor in (3.7) still remains a constant, mainly because we fix the Type I error

of the test to be α = 5%, and (iii) when the sample size is large, the Bayes factor

with δτ in (3.9) behave similarly to the one with δτ = 1. This behavior occurs the

value of δ decreases to its limit 1 shown in Figure 3.1, as the sample size increases.

4.2 Real data applications

We here apply the developed Bayes factors in Theorem 1 to three real-data examples.

The first is about the paired-sample problem, the second about two independent

samples, and the third about three or more independent samples.
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Figure 4.1: The relative frequency of rejection of H0 under the Bayes
factors with two different choices of δ and the Wilcoxon signed rank test
(left figures); the relationship between the Bayesian and nonparametric tests
(right figures) when α = 0.05.

Example 1 The depression data set from [10] is available from the R ACSWR pack-

age, created by [14]. The purpose of this data is to investigate changes to Hamilton

depression scale Factor IV measurements. The data consist of nine patients with anx-

iety or depression before and after tranquilizer therapy. We are interested in testing

if there exists a treatment effect for reducing symptoms of depression. The Wilcoxon

signed rank test is T = 5 with the two-sided p-value of 0.03906, and thus we reject
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the null hypothesis of no treatment effect at a α = 5% significance level.

We calculate the Bayes factor BF10 in (3.7) and the evidence threshold δτ in (3.9)

corresponding to the Wilcoxon signed rank test. By using equation in (3.8) with

n = 9 and T = 5, we have T ∗ = −2.073221. Thus, by plugging T ∗ = −2.073221
and τ ∗α/2 = −1.954751 into two functions, we obtain that BF10 = 2.500316 and δτ =

2.096488, indicating that the data are about 2.50 times more likely to be generated

under H1 than under H0 and H0 should be rejected, since BF10 > δτ . In addition, by

using equation in (1.3) with the assumption of equipoise, the posterior probability of

H1 is 0.7143115, or equivalently, the posterior probability of H0 is 1 − 0.7143115 =

0.2856885.

Example 2 The blood pressure data consist of the blood pressure measure-

ments for 21 African-American men: ten of the men took calcium supple-

ments and 11 took placebos. The data can be found via the link http :

//lib.stat.cmu.edu/DASL/Datafiles/Calcium.html. In this study, the researchers

are interested in testing if blood pressure can be reduced by increasing calcium intake.

The Mann-Whitney-Wilcoxon test isW = 124.5 with the two-sided p-value of 0.3228,

and thus, we fail to reject H0 of no treatment effect at the α = 5% significance level.

By plugging W ∗ = 1.021059 and ω∗
α/2 = −1.971701 into the Bayes factor BF10 in

(3.10) and the evidence threshold δω in (3.12), we obtain that BF10 = 0.74699 and

δω = 2.148791, indicating that the data are about 0.75 times more likely to be gen-

erated under H1 than under H0 and that we fail to reject H0 since BF10 < δω,

corresponding to the 5% Mann-Whitney-Wilcoxon test. Under the assumption of

equipoise, the posterior probability of H1 is 0.42759, or equivalently, the posterior
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Method
1 2 3 4
83 91 101 78
91 90 100 82
94 81 91 81
89 83 93 77
89 84 96 79
96 83 95 81
91 88 94 80
92 91 81
90 89

84

Table 4.1
The growing corn data set from Example 4.3.1 of [1].

probability of H0 is 1− 0.42759 = 0.5724131.

Example 3 The growing corn data set from [1] is to investigate whether there exists

a difference in yields per acre among four different methods of growing corn. The data

is given in Table 4.1. The value of the Kruskal-Wallis test in (2.8) for this dataset

is U = 25.464 with the two-sided p-value of 1.141e − 05, which clearly leads to the

rejection of the null hypothesis at the 5% significance level. We may thus conclude

that some methods of growing corn tend to furnish higher yields than others.

By plugging U = 25.62884, να = 7.548731 from [11] into the Bayes factor in (3.13)

and the evidence threshold δν in (3.12), we obtain that BF10 = 565.4317 and δν =

2.435653, indicating that the data are about 565 times more likely to be generated

under H1 than under H0 and that we choose H1 since BF10 > δν , corresponding to the

5% Kruskal-Wallis test. Under the assumption of equipoise, the posterior probability

of H1 is 0.9982346, and the posterior probability of H0 is 1− 0.9981448 = 0.0017654.
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Chapter 5

Concluding remarks

Based on a combined use of the testing procedures from [17] and [2], we obtained

the Bayes factor tests for comparing the difference between the means among two

or more populations. The proposed Bayes factors will not only have closed-form

expressions in terms of the associated nonparametric statistics and their associated

critical values under the null hypothesis, but also justify that there exists a close

relationship between the Bayesian and frequentist nonparametric testing procedures.

From a practical point of view, they can be easily calculated by one step further,

so long as one has performed the corresponding nonparametric tests for the testing

problem at hand. In addition, like the nonparametric counterparts, they are able to

control the Type I error and also allow researchers to make the identical decisions

between frequentists and Bayesians. More importantly, they can quantify evidence

from empirical data in favor of H0, and this property is not shared by the frequentist

counterparts, which lack this ability when we fail to reject H0.
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It is noteworthy that this report mainly focuses on the agreement between Bayesian

and nonparametric testing procedures for the location parameters. Given that the

Pearson correlation coefficient is a commonly used criterion to measure the strength

of a linear relationship between two quantitative variables, [16] recently studied the

agreement between Bayesian and freqeuent t-test procedures for the presence of cor-

relations and partial correlations. In an ongoing project, we study the relationship

between Bayesian and nonparametric testing (e.g., Kendall’s τ) procedures for testing

the dependence of two variables, which are currently under investigation and will be

reported elsewhere.
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Appendix A

Sample Code

A.1 SimulationCode.R

# R codes for Figure 4.1 when n = 10

n = 10

alpha = 0.05

iter = 10000

mu = seq(-4, 4, by = 0.1)

Rep = length(mu)

Avg_rej = matrix(0, ncol = 3, nrow = Rep)

result = matrix(0, ncol = 3, nrow = iter)

for (j in 1:Rep) {

for (i in 1:iter) {

x = rnorm(n, mu[j], 1)

test = wilcox.test (x, exact = T)

# calculate T^ast
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Tast = (test$statistic - n * (n + 1)/4)/sqrt(n *←↩
(n + 1) * (2 *

n + 1)/24)

# calculate tau

tau_1_orig = qsignrank (alpha/2, n, lower.tail = ←↩
TRUE , log.p = FALSE)

tau_2_orig = qsignrank (1 - alpha/2, n, lower.←↩
tail = TRUE , log.p = FALSE)

tau_orig = tau_1_orig * (Tast <= 0) + tau_2_orig←↩
* (Tast > 0)

tau = (tau_orig - n * (n + 1)/4)/sqrt(n * (n + ←↩
1) * (2 * n + 1)/24)

# The proposed Bayes factor

BF = 1/abs(tau) * exp(Tast ^2/2 * (tau^2 - 1)/tau←↩
^2)

delta = 1/abs(tau) * exp((tau^2 - 1)/2)

# The previous Bayes factor

BF_tilde = 1/abs(Tast) * exp(-(1 - Tast ^2)/2)

result[i, ] = c(1 * (BF > delta), 1 * (BF > 1), ←↩
1 * (test$p.value <

0.05))

}

Avg_rej[j, ] = c(colMeans (result))

}

# Upper left of Figure 1

plot(mu , Avg_rej[, 1], lwd = 2, xlab = expression (mu), ←↩
ylab = expression (paste("Proportion of rejecting ",

H[0])), type = "l", main = "n = 10")

lines(mu , Avg_rej[, 2], lwd = 2, col = 2, lty = 2)

lines(mu , Avg_rej[, 3], lwd = 2, col = 3, lty = 3)

abline(h = 0.05, lty = 4, col = 4, lwd = 2)
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legend (-4.3, 0.4, c(expression (paste(BF[10], " with ", ←↩
delta , " =", delta[tau])),

expression (paste(BF[10], " with ", delta , " = 1")),←↩
"Nonparametric test "),

col = 1:3, lwd = 2, lty = 1:3)

text (-3, 0.07, label = expression (paste(alpha , " = 0.05"←↩
)))

# Upper right of Figure 1

plot(Avg_rej[, 1], Avg_rej[, 3], lwd = 2, xlab = ←↩
expression (paste(BF[10],

" with ", delta , " =", delta[tau])), ylab = "The ←↩
Wilcoxon signed rank test",

main = "n=10")

abline(c(0, 1), lwd = 2, col = 2)

A.2 Example1Code.R

# Example 1

# Attache the depression data

library (ACSWR)

attach(depression )

data(depression )

X = depression $X

Y = depression $Y

n = length(X)

# The Wilcoxon signed rank test

(test = wilcox.test(Y, X, paired = TRUE , exact = T))
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T_ast = (test$statistic - n * (n + 1)/4)/sqrt(n * (n + ←↩
1) * (2 * n + 1)/24)

alpha = 0.05

tau = qsignrank (alpha/2, n, lower.tail = TRUE , log.p = ←↩
FALSE)

tau_ast = (tau - n * (n + 1)/4)/sqrt(n * (n + 1) * (2 * ←↩
n + 1)/24)

# Calculate BF and delta_tau

BF = 1/abs(tau_ast) * exp(T_ast^2/2 * (tau_ast^2 - 1)/←↩
tau_ast ^2)

delta = 1/abs(tau_ast) * exp((tau_ast^2 - 1)/2)

list(BF = BF , delta = delta)

A.3 Example2Code.R

# Example 2

x = c(7, -4, 18, 17, -3, -5, 1, 10, 11, -2)

y = c(-1, 12, -1, -3, 3, -5, 5, 2, -11, -1, -3)

n1 = length(x)

n2 = length(y)

# The Mann -Whitney -Wilcoxon test

W = sum((rank(c(x, y))[1:n1]))

# calculate T^ast
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W_ast = (W - n1 * (n2 + n1 + 1)/2)/sqrt(n2 * n1 * (n2 + ←↩
n1 + 1)/12)

# The value of 82 was from Table A12 of Conover (1999)

omega_ast = (82 - n1 * (n2 + n1 + 1)/2)/sqrt(n2 * n1 * (←↩
n2 + n1 + 1)/12)

# Calculate BF and delta_omega

BF = 1/abs(omega_ast) * exp(W_ast^2/2 * (omega_ast^2 - ←↩
1)/omega_ast^2)

delta = 1/abs(omega_ast) * exp(( omega_ast^2 - 1)/2)

list(BF = BF , delta = delta)

A.4 Example3Code.R

# Example 3

m1 = c(83, 91, 94, 89, 89, 96, 91, 92, 90)

m2 = c(91, 90, 81, 83, 84, 83, 88, 91, 89, 84)

m3 = c(101, 100, 91, 93, 96, 95, 94)

m4 = c(78, 82, 81, 77, 79, 81, 80, 81)

# The Kruskal -Wallis test

type <- c(rep(1, times = 9), rep(2, times = 10), rep(3, ←↩
times = 7), rep(4,

times = 8))

gross = c(m1 , m2 , m3 , m4)

test = kruskal.test(gross ~ type)

U = test$statistic

k = 4

nu_alpha = 7.548731 #from Meyer and Seaman (2013)
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# we can use chi -square approximation alpha = 0.05 nu_←↩
alpha =

# qchisq(1-alpha , df=k-1) Calculate BF and nu_tau

BF = exp(-(k - 1)/2 * log(nu_alpha/(k - 1)) + U/2 * (nu_←↩
alpha - k + 1)/nu_alpha)

delta = exp(-(k - 1)/2 * log(nu_alpha/(k - 1)) + (nu_←↩
alpha - k + 1)/2)

list(BF = BF , delta = delta)
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Appendix B

Appendix B: Deviations of BF10

and δτ given by (3.7) and (3.9)

In this Appendix, we only provide the proof for part (i), since the proofs for others

are exactly the same and are thus omitted here for simplicity. It can be seen from

[17] that under the limiting distributions of T in (3.2) and the proposed prior in (3.3),

the Bayes factor for comparing two competing models in (3.1) is given by

BF10 = (1 + g)−1/2 exp

{
T ∗2

2

g

1 + g

}
. (B.1)
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Simple algebra shows that the probability of the Bayes factor in (B.1) exceeding the

evidence threshold δ can be rewritten as

Pθ

(
BF10 > δτ

)
= Pθ

(
T ∗2 > 2

1 + g

g
log

[
δτ (1 + g)1/2

])
.

The maximum of this probability can be achieved by minimizing the term

1+g
g

log
[
δτ (1 + g)1/2

]
with respect to g ∈ (0, ∞). By taking derivative of this term

with respect to g and then setting it equal to 0, we obtain that

δτ = (1 + g)−1/2 exp(g/2). (B.2)

In order to match the rejection regions between Bayesian and frequentist nonpara-

metric testing procedures, we reexpress the inequality of BF10 > δτ as

(1 + g)−1/2 exp

{
T ∗2

2

g

1 + g

}
> δτ

⇒ T ∗2 > 2
1 + g

g
log

[
δτ (1 + g)1/2

]
.

This shows that by using the Bayes factor for decision making, we reject the null

hypothesis if T ∗ > κ or T ∗ < −κ, where

κ =

{
2
1 + g

g
log

[
δ(1 + g)1/2

]}1/2

.

Also, the rejection region of the standardized nonparametric statistic T ∗ is defined as

{
Y : T ∗ < −|τ ∗α/2| or T ∗ > |τ ∗α/2|

}
,
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where τ ∗α/2 is defined in Section 2.1. Note that the Bayesian and frequentist tests can

make an identical decision if we match their rejection regions by

τ ∗α/2 = −κ or
n(n+ 1)

2
− τ ∗α/2 = κ. (B.3)

By solving two equations in (B.2) and (B.3) with respect to δ and g, we obtain that

ĝ = τ ∗2α/2 − 1. We also obtain that δτ = |τ ∗α/2|−1 exp
[
(τ ∗2α/2 − 1)/2

]
. By replacing g in

(B.1) with τ 2α/2 − 1, we have

BF10 =
1

|τα/2| exp
{
T ∗2

2

τ 2α/2 − 1

τ 2α/2

}
.

This completed the proof of Theorem 1 (i).
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