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Synthetic Aperture Scatter Imaging
Qian Huang , Zhipeng Dong , Gregory Nero , Yuzuru Takashima , Timothy J. Schulz , Member, IEEE,

and David J. Brady , Fellow, IEEE

Abstract—Diffraction limits the minimum resolvable feature on
remotely observed targets to λRc/Ac, where λ is the operating
wavelength, Rc is the range to the target and Ac is the diameter
of the observing aperture. Resolution is often further reduced by
scatter or turbulence. Here we show that analysis of scattered co-
herent illumination can be used to achieve resolution proportional
to λRs/As, where Rs is the range between the scatterer and the
target and As is the diameter of the observed scatter. Theoretical
analysis suggests that this approach can yield resolution up to
1000× better than the diffraction limit. We present laboratory re-
sults demonstrating > 30× improvement over direct observation.
In field experiments, we use a 23.5 cm aperture telescope at 100 m
to resolve 27.78 µm features, improving on diffraction limited
resolution by > 10×. The combination of lab and field results
demonstrates the potential of scatter analysis to achieve multiple
order of magnitude improvements in resolution in applications
spanning microscopy and remote sensing.

Index Terms—Coherent imaging, non-line-of-sight imaging,
phase retrieval, super resolution.

I. INTRODUCTION

THE resolution of wave imaging systems is limited by the
collecting aperture. Lensing effects by materials in the

space between the object and imager may be used to increase
effective aperture size. This has most famously been used in
astronomical gravitational lenses, but related effects are ob-
served in the atmosphere [1], [2]. Coherent focusing through the
atmosphere, however, requires “lucky” conditions [3]. Here, we
propose and demonstrate order-of-magnitude improvements on
diffraction limited imaging using incoherent secondary scatter,
which requires only that such scatter exist. Secondary scatter
has previously been used to achieve super-resolution in radar
imaging [4], but to our knowledge has not previously been
demonstrated at optical frequencies. Previous optical studies
have gone beyond diffraction-limited resolution by character-
izing the transfer matrix of a disordered scattering medium [5],
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Fig. 1. System geometry for imaging from diffuse scatter. We can record
multiple observations of scatter on multiple scatterers, or by displacing a single
scatterer (e.g., moving the solid scatterer in the diagram to the position marked
in translucency.).

[6] but have not considered backprojection from a diffuse scatter
surface. The major difference between the work reported here
and radar imaging is that the amplitude and phase of the diffusely
scattered optical field is not directly observable. Similarly, the
difference between this work and multiple scatter imaging is
that here there is no need to characterize the scattering surface.
Rather, we apply phase retrieval to recover the field incident on
the scatter and then use the scattering plane as a remote synthetic
aperture.

As illustrated in Fig. 1, we seek to image an object at a range
Rc relative to the observing camera. If a diffraction-limited
camera directly observes the object, the minimum object feature
resolvable is ≈ Rcλ

Ac
, where Ac is the camera aperture and Rc

is the object range [7]. Alternatively, the camera may choose
to observe light scattered first by the object and then scattered
again by secondary objects. Observable scatter may arise from
air or water borne particles or from secondary reflections off
of intermediate surfaces. If the secondary scatter is specular, as
with a mirror or smooth surface, the effect is just to change the
imaging path. More commonly, the scatter is diffuse, in which
case a random phase is imposed on the scattered field. While
this means that phase sensitive or holographic detection of the
scattered field is unlikely to be useful, incoherent scattering is
essential to ensuring that the scattered field is observable at
the camera aperture (e.g., the scatterer radiates uniformly in
all directions). By measuring only the radiance of the scattered
signal one can apply phase retrieval algorithms to recover the
phase of the field prior to the scattering event.

Secondary scatter has previously been used in optical imaging
in the context of non-line of sight imagers [8], [9], [10]. Such sys-
tems use pulsed or multispectral illumination to image obscured
objects by range gating or synthetic wavelength holography [11].
Resolution is limited by pulse or spectral width and is several
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orders of magnitude worse than the direct view diffraction limit.
While one can imagine systems that combine nonline of sight
imaging and scatter, whether or not the observer has a direct line
of sight to the object is not material to the present study. The point
here is that the phase retrieval on the scattered field can create a
synthetic aperture with a greater angular extent than the direct
observation aperture, which in turn enables super resolution.

We represent the optical field scattered by the object as ψ(x).
The camera images |ψ|2, i.e., the radiant intensity of on the
surface of the scatterer. Note that while the scatter plane is
characterized by its own amplitude and phase reflectance, we
assume here that the amplitude is uniform and that the phase
is not material because only the irradiance is measured. To
backproject the scatter data into an image of the object we need
to recoverψ(x). Phase retrieval algorithms achieve this objective
by iteratively enforcing prior constraints on the field [12], [13],
[14]. Observation of the field under multiple transformation
states, for example using illumination diversity as in Fourier
ptychography, or by coding illumination or detection patterns
improves conditioning [15]. Here, in Fresnel-zone experiments
we capture multiple scatter planes and in Fraunhofer-zone ex-
periments we apply a support constraint on the reconstructed
image to enable phase retrieval.

Assuming that we are able to recover ψ on the surface of the
scatterer, the object is imaged by computational backpropaga-
tion. In practice, backpropagation is implemented as part of the
phase recovery process by iterating between scatter space and
object space. In this process, the minimum resolvable object
feature is λRs/As, where Rs is the range between the object
and the scattering plane and As is the cross-section (diameter)
of the scatter pattern. Comparing with the direct view minimum
resolvable object feature, we find the net resolution has improved
by the ratio

α =
AsRc
RsAc

. (1)

α may exceed one in diverse applications. For example, in
microscopy one may image scatter at a range comparable to
the camera range, but the size of the scatter may exceed the
camera aperture, in which caseα ≈ As

Ac
. Alternatively, in remote

sensing applications one is likely to find that Rc

Rs
� 1. Each of

these situations is demonstrated in experiments presented below.
The angular resolution of the camera determines the field of

view on the object. The maximum reconstructed field of view
(FOV) is equal to the ratio of the wavelength to the sampling
period on the scatter. Assuming that the camera is diffraction
limited this yields FOV = Ac

Rsc
, whereRsc is the range between

the camera and the scatter andAc is the camera aperture. Various
illumination, motion, and multiplane sampling strategies may
be imagined to increase this field of view. For example, camera
motion or a camera array could be used to synthesize a larger
aperture as discussed in [16]. Here, however, we limit our focus
to a simple demonstration using a single imaging aperture.

II. SYSTEM DESIGN

To demonstrate near-field imaging with Rs

Rc
≈ 1, we used a

laboratory system with planar objects and a white paper (HP

Fig. 2. System layout. From left to right are: a collimated illumination system
that produced a coherent planar wave, a transmissive planar target on the
translation stage, a camera and a paper screen. Distances were measured when
the target was at the home position (0 mm) on the stage.

Fig. 3. System geometry for remote sensing. A collimated beam illuminates
a transmitting planar object to produce a scatter. and the scatter falls on a white
screen. A telescope is used to capture the pattern on the screen and image it onto
a sensor.

Office20 8.5′ × 11′ printer paper) as a scatterer, as sketched
in Fig. 2. The illumination was a λ = 532 nm collimated
continuous-wave laser beam. This plane wave illuminated a
planar target mounted on a translation stage. When the stage is at
home position, the distance between the objects and the scatter
was Rs = 2654 mm, and the distance between the object and
the camera was Rc = 2518 mm. These distances are measured
by a laser range finder (RockSeed S2-50). We used a FLIR
BlackFly camera with a 12 mm F/1.6 Arducam lens and a
540× 720 CMOS sensor. The aperture Ac = 7.5 mm and the
pixel pitch Δpp = 6.9 μm. The camera was Rsc = 139 mm in
front of the screen such that each camera pixel corresponded
to ΔppRsc

F = 80 μm on the screen. We cropped the recorded
image a 460× 460 pixel region containing the scatter pattern.
The propagation can be regarded as incoherent, therefore we
used simple geometric analysis to project the camera image onto
screen coordinates. To aid in phase retrieval, we captured two
scatter planes when the target was at 0 mm (home position)
and 50 mm on the stage, corresponding to Rs = 2654 mm and
Rs = 2704 mm.

As an example, Fig. 4(a) shows a 1951 USAF resolution chart,
the dimension of which was 5 mm × 4 mm. Fig. 4(b) and (c)
shows the scatter images at the two object ranges. Differences
between the two scatter images are illustrated in Fig. 4(d). The
cross section of the observed scatter field was As = 37 mm.
Based on the scatter geometry, the minimum resolvable feature
size for phase retrieval was Rsλ

As
= 38 μm. Since the camera

is also limited by the geometric aberration and pixel sampling
aside from diffraction, the minimum resolvable object feature
that each pixel corresponded to was RcΔpp

F = 1.45 mm. The
expected resolution improvement relative to the direct camera
view was, therefore, 38×.
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Fig. 4. The 1951 resolution chart used as the target for the laboratory experi-
ment is shown in (a). A camera captures the scattered light on the screen from the
target at two different target positions on the translation stage: (b) 0 mm position
and (c) 50 mm position. Both scattered images shown here in (b) and (c) have
beencropped and we are displaying the square-root of the captured image. The
normalized absolute difference between (b) and (c) is shown in (d), where whiter
regions indicate more deviation.

To demonstrate remote sensing with Rc

Rs
� 1, we set Rs =

3.5 m, Rc = 98 m measured by a Golf Rangefinder (Gogogo
Sport Vpro GS19 W),Ac = 0.235 m andAs = 0.275 m, corre-
sponding to α = 32.8. We used an OBIS LX laser with λ = 660
nm to illuminate a transmissive target. For simplicity of align-
ment and laser safety, the illumination source was less than a
meter from the target, and the range from the scattering plane
to the sensor was Rsc = 100 m. A schematic of the remote
sensing field experiment setup is shown in Fig. 3. The telescope
was a Celestron Model [CPC series] telescope at F/11 with an
Allied Vision Alvium 1800 U-1240 m camera equipped with
a Thorlabs 660 nm bandpass filter. Each pixel corresponded to
90.65 um on the target, but for this aperture size the diffraction
limited resolution is λRc/Ac = 275 μm. Due to aberrations and
air turbulence, the actual on-target resolution was≈ 1 mm. The
same type of planar objects and paper as in the near-field imaging
system was used.

III. METHODS

We designed a multiplane error-reduction phase retrieval (PR)
algorithm based on [17] to image the object given a set of scatter
images |ψ1|2 to |ψnp

|2 and associated distances z1 to znp
, and

for the application demonstrated in this paper, we captured the
scatters sequentially. The “scatter image” in this manuscript
refers to the irradiance signal from the target on the scatterer. The
amplitude and phase modulating properties of the screen aren’t
of importance to us. We simply directly image the irradiance
pattern from the screen onto our detector. To model this process,

consider the two-dimensional complex field right after the target
surface to be represented as f(x, y) and its Fourier transform as
f̂(u, v), where the vector (x, y) is a spatial coordinate and (u, v)
a spatial frequency. The propagated complex fieldψ(x, y) on the
screen surface a distance z to the target can be modeled by scalar
diffraction as

ψ(x, y) =

∫∫ ∞
−∞

f̂(u, v) exp

(
j2πz

√
1

λ2
− u2 − v2

)

× exp [j2π(ux+ vy)] du dv (2)

where
√
u2 + v2 < 1/λ for propagating waves. Note that one

can also calculate f fromψ and its Fourier transform ψ̂ by back-
propagation (z < 0). Hence, estimating the target f is equivalent
to estimating the phase of ψ. Phase retrieval can be achieved by
many different sampling and processing strategies [15], here
we apply an error-reduction algorithm in combination with
numerical diffraction between the object and multiple scatter
planes.

Assuming in (2) f(x, y) is sampled on a Cartesian grid with
period δ and is zero-padded to have N samples in the x and y
dimensions, the diffracted field may be calculated by discrete
Fourier transforms (DFT) with the angular spectrum transfer
function [18]. The sampling periods for the DFT are Δx =
Δy = δ, and Δu = Δv = 1/(Nδ). Let [m,n] be a discrete
spatial coordinate and [p, q] be a discrete frequency coordinate,
all running from −N/2 to N/2. The diffracted field is

ψ[m,n] =

DFT−1
{

DFT {f [m,n]} exp
[
j2πz

√
1

λ2
− p2 + q2

(Nδ)2

]}
.

(3)

Assuming that the field is most tightly focused at the object,
the extent of the field expands on propagation. With a constant
space-bandwidth product, this means that the transverse spatial
frequencies of the field decrease on propagation (e.g., the field
blurs). When the field propagates forward (z > 0), the frequency
decreases by the rate proportional to 1/z. Once the Nyquist rate
of the field drops significantly below the sampling rate, the field
can be downsampled without incurring aliasing. Similarly, the
field during backward propagation (z < 0) can be upsampled
when appropriate. In light of this, we use a multistage angular
spectrum method (MASM) with bicubic down/up-sampling of
the field upon significant decreases/increases in the spatial band-
width. Here a “stage” refers to a single resampling behavior and
“multi” indicates resampling can happen more than once. The
field frequency of an object with diameter X can be approxi-
mated as X

λz in Fresnel zone. When the downsampling ratio is
2 in the forward propagation, for example, downsampling can be
triggered when X

λz � 1
2·(2δ) , where δ is the current grid period

and 1/(2δ) is the Nyquist frequency of the current grid. Let f be
sampled by the aforementioned grid and β (0 < β < 1) be the
ratio of downsampling, we have ψ[m′, n′] = MASM{f [m,n], z}
and f [m,n] = MASM−1{ψ[m′, n′], z}, where m′ and n′ runs
from −βN/2 to βN/2 and Δm′ = Δn′ = δ/β.
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Algorithm 1: Short-Range Phase Retrieval Algorithm.
Require:
np �number of planes
Ψ = {|ψ1[m

′, n′]|2, |ψ2[m
′, n′]|2, . . . , |ψnp

[m′, n′]|2}
�scatter images
Z = {z1, z2, . . . , znp

} �propagation distances
a, b �target size in pixels along m and n axes
ni �number of iterations

Main Code:
1: ϕ ∼ N (0,1 · 1T ) �sample from the standard normal

distribution
2: f [m,n]← MASM−1{|ψ1[m

′, n′]|ejϕ, z1} �initial
estimation of the target

3: i← 0
4: while i < ni do
5: c1, c2, . . . , cnp

← shuffle{1, 2, . . . , np}
6: for each ck do
7: f [m,n]← rect(m/a)rect(n/b)f [m,n] �support

constraint
8: ψ̃ck [m

′, n′]← MASM{f [m,n], zck} �forward
propagation

9: ψck [m
′, n′]← |ψck [m′, n′]|ejφ{ψ̃ck

[m′,n′]} �update
phase

10: f [m,n]← MASM−1{ψck [m′, n′], zck}
�backpropagation

11: end for
12: i← i+ 1
13: end while
14: return f [m,n]

MASM and its inverse lift the constraint that f and ψ share the
same sampling rate and enable propagation within our computa-
tional budget. In our experiments, δ was 10 μm and β was 0.25.
We applied MASM analysis in the short-range phase retrieval
algorithm shown in Algorithm 1, where | · | and φ(·) take the
amplitude and phase of a complex matrix elementwisely, 1 is
a column vector ∈ RβN of all 1 entries, and rect(x) is the
rectangle function

rect(x) =

⎧⎪⎨
⎪⎩
1, |x| < 1

2
1
2 , |x| = 1

2

0, otherwise

. (4)

The algorithm started with random initialization of f , and
improved the estimate recursively. Here we assigned a random
phaseϕ to one of the amplitude measurements, |ψ1| for example,
and backpropagated it to derive our first estimate of f . For one
plane ck which was selected randomly, the estimate of f was
made to conform to a support constraint based on the knowledge
of the object’s spatial information, inspired by [19]. Support
was limited to a rectangular region consisting of a pixels in
m direction and b pixels in n direction. The restrained field
was propagated a distance zck forward. The propagated field
ψck kept the phase but replaced its amplitude with the known
measurement. Then the new field propagated inversely, yielding

a new estimate of f . Once all the planes were visited, one
iteration was finished and the estimate of f would be the start
point of the next until the maximum number of iterations was
reached. The above process can be regarded as improved fusion
of parallel and successive algorithms in [20]. Empirically it
reduces noise and converges fast.

Due to the ambiguity of the phase retrieval algorithm [21],
the true field f , f with a constant phase shift and f ∗ reflected
about the origin are all acceptable solutions. We removed this
ambiguity by requiring f to be real and nonnegative based on
the knowledge the objects under test are approximate amplitude
masks. Hence we enforced this phase constraint in the exper-
iments on top of the support constraint by setting f [m,n]←
rect(m/a)rect(n/b)|f [m,n]|.

However, the phase modulation is introduced inevitably to
real objects with thickness, thus causing artifacts in PR recon-
struction. To relax the phase constraint, we reconsider phase
retrieval as an optimization problem

f ∗[m,n] = arg minf

np∑
i=0

∥∥∥|ψi[m′, n′]|
− |MASM {f [m,n], zi} |

∥∥∥
p

(5)

where ‖ · ‖p is the notation of lp-norm. In contrast to the PR
algorithm that performs alternating projections, the alternative
approach plugs in a regularizer and imposes a soft penalty
on f that deviates from priors, which is in the plug-and-play
(PnP) framework. Let us denote the regularizer as R(·) and the
weighted parameter μ, (5) is reformulated as follows:

f ∗[m,n] = arg minf

np∑
i=0

∥∥∥|ψi [m′, n′] |
− |MASM {f [m,n], zi} |

∥∥∥
p
+ μR(f [m,n]). (6)

Inspired by RED [22], here we combine a denoiser with finite
support as our priors. R(·) becomes

R[f [m,n]] = |f [m,n]|T
{
|f [m,n]|

−D {|rect(m/a)rect(n/b)f [m,n]|}
}

(7)

where D(·) is a denoiser. The constraint pushes the amplitude
of f to be compact and noise-free. In our PnP phase retrieval
algorithm, we applied a benchmark neural denoising algorithm
DnCNN [23] following prDeep [24]. We used FASTA [25]
solver. In practice, we initialized FASTA with the result we
got from our PR algorithm and iterated FASTA nF times while
keeping other default parameters.

When the propagation distance is far greater than the object
size, we may pack (2) into a concise form:

ψ(x′, y′) =
ej

2πz
λ ej

π
λz (x

′2+y′2)

jλz

×
∫∫ ∞
−∞

f(x, y) exp

[
−j 2π

λz
(xx′ + yy′)

]
dx dy (8)
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Algorithm 2: Long-Range Phase Retrieval Algorithm.
Require:
|ψ[m′, n′]|2 �scatter image
z �propagation distance
a, b �target size in pixels along m and n axes
ni �number of iterations

Main Code:
1: ϕ ∼ N (0,1 · 1T ) �sample from the standard normal

distribution
2: f [m,n]← FP−1{|ψ[m′, n′]|ejϕ, z} �initial estimation

of the target
3: i← 0
4: while i < ni do
5: f [m,n]← rect(m/a)rect(n/b)f [m,n] �support

constraint
6: ψ̃[m′, n′]← FP{f [m,n], z} �forward multistage

propagation
7: ψ[m′, n′]← |ψ[m′, n′]|ejφ{ψ̃[m′,n′]} �update phase

estimation
8: f [m,n]← FP−1{ψ[m′, n′], z} �backward multistage

propagation
9: i← i+ 1

10: end while
11: return f [m,n]

which is known as Fraunhofer Approximation. The term inside
the integral is the Fourier transform of the signal f(x, y). This
equation basically reveals the diffracted field is the Fourier
transform of the original signal up to a scale. To be considered
as far field [21], z should satisfy

z >
2X2

λ
(9)

where X is the diameter of the object. If the diameter X =
200 μm and the wavelength λ = 0.66 μm, for example, z should
be larger than 0.12 m.

Following the naming convention of the short ranging method,
the discrete version of propagation can be written as

ψ [m′, n′] =
ej

2πz
λ ej

π
λz (m

′2+n′2)

jλz

× DFT {f [m,n]}|m′= λz
m ,n′= λz

n
. (10)

We use FP to represent the above forward Fraunhofer propaga-
tion. FP naturally integrates an adaptive sampling rate, which
considerably reduces the computation cost.

The long-range phase retrieval algorithm follows Algo-
rithm 1, except MASM and MASM−1 are replaced by FP and
FP−1, respectively. The multiplane setting may no longer be
necessary as zs within the Fraunhofer regime only contribute to
scaling. Thus, the algorithm can be concluded as Algorithm 2.
The support and phase constraints were also enforced to resolve
ambiguity.

Fig. 5. Reconstruction of 1951 USAF resolution test chart. Reconstructions
from Fig. 4 data. Elements 1 to 4 of group 3 in the red blocks were magnified
and displayed at right.

IV. RESULTS

Results from both the laboratory and field experiments which
were discussed in the System Design section are presented here.
The error-reduction-based phase retrieval (PR) method which
was discussed in the Methods section is used to reconstruct the
targets of interest from the captured scatter images.

The aforementioned resolution chart was used as the target
to analyze the resolution of the near-field imaging system. We
set the number of planes np = 2 and the number of iterations
ni = 500. The support constraints a and b for this and the
following experiments were set to focus tightly on the object.
As illustrated in Fig. 5, the reconstructed image resolved up to
the 4th element of group 3 (11.31 lp/mm). This is equivalent
to 44.2 mm minimal resolvable object feature. Note that the
application of support constraint is crucial to the reconstruction
quality as we observed the reconstruction without support con-
straint was unrecognizable. The same conclusion applies to all
the following experiments. As the PR algorithm heavily used
MASM and its inverse, we parallelized convolutions and Fourier
transforms on our GPU by using the PyTorch library. Compared
with the runtime on a 2.2 GHz AMD EPYC 7552 CPU, MASM
and MASM−1 with regard to the experimental Rs run 6× faster
on an NVIDIA Tesla V100S GPU. In this lab experiment, the
total running time is about one hour on an NVIDIA Tesla V100S
GPU.

To analyze system performance for diverse objects, we printed
additional targets on plastic transparency film. Three targets with
text “A”, “OSC’,’ and “UoA” were 3 ∼ 5mm in height and 4 ∼ 7
mm in width and printed clear against the black background.
Each target was cropped and mounted on a microscope slide.
Fig. 6 shows one of the targets and its scatter image.

We reconstructed each target from two of its associated scatter
images. The estimate of each target converged in 200 iterations.
Due to inhomogeneity in the plastic films, the outputs from
the PR algorithm were not as sharp as for the chrome on the
glass resolution target. We refined the phase retrieval results
using our PnP algorithm. We chose l2-norm as the data fidelity
term and set the weight of the regularization term to 0.1. The
number of iteration nF of PnP solver FASTA [25] was 50.
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Fig. 6. Object A and its scatter. Target “A” and its scatter images when the
target was at the home position. A: Target “A”. B: Scatter of “A” at home position.
(a) Target “A”. (b) Scatter image (0 mm).

Fig. 7. Lab result. Comparisons between our reconstruction by PR results (row
2, 3) and direct views (row 4) of 4 targets (1951 USAF resolution test chart, “A”,
“OSC”, and “UoA” in row 1 sequentially). Images were cropped to highlight the
regions of interest and rescaled for better alignment to display. The actual size
of each target is labeled, which also applies to its reconstruction and direct view.
The object pixel pitch of the reconstructions is 10 µm, while of direct views was
1.42 mm. As illustrated in the direct view data, each object occupied only a few
pixels when observed by the camera.

With the assistance of the PnP algorithm, however, artifacts
were drastically reduced. Comparisons in Fig. 7 between di-
rect views and reconstruction results from our phase retrieval
algorithms demonstrate significant improvements in resolution.
From calibration we measured that each pixel of the direct view
corresponded to 1.42 mm on the target at the home position,
indicating the net resolution in practice was improved by the
ratio α = 1.42 mm

44.2 um ≈ 32.
For longer-range demonstrations, field experiments were per-

formed on a cool morning (about 12 degrees Celsius) in predawn
hours to minimize turbulence. The distance from the target to
the screen was large enough to be in the Fraunhofer diffraction
region for the object size. We recorded only one scatter image
since the only difference between the scatters from different lo-
cations in the Fraunhofer diffraction region on a translation stage
would be a scaling factor of the diffraction pattern. Therefore,
no significant phase information is to be gained by taking more
than one image.

Fig. 8. Field experiment reconstruction result. Far field experiment result with
two different objects: horizontal (H) bars with 27.78 µm spacing and a group of
horizontal and vertical (HV) bars with 39.37 µm spacing (row 1). Direct View
images (row 2) were taken 98 m away from the objects, and the scatters (row 3)
were the raw data from the telescope imaging system. The results (row 4) were
reconstructed by the long-range phase retrieval algorithm [26].

The transmissive target was a 1963 A resolution test chart.
We masked the test chart to only illuminate regions of interest.
Fig. 8 summarizes the field results. The object images were
taken with a microscope, the direct view images were taken
by back-illuminating the targets and directly observing them
from the range Rc = 98 meters, the scatter images were taken
of the scattered light at a range Rsc = 100 meters, and the
reconstruction results were generated from their associated
scatter images. As detailed in the methods section, we again
applied error-reduction phase retrieval and backpropagation to
reconstruct the image, in which case we used a support constraint
on the object rather than multiple planes. ni was set to 1000.
It took less than 8 seconds for the reconstructions to converge
on an NVIDIA Tesla V100S. H row represents only horizontal
bars that are 27.78 μm in height each separated by 27.78 μm
spaced in the vertical direction, and HV row represents a group of
horizontal and vertical bars with line spacing of 39.37 μm. This
demonstrates that at a range of 100 m we can resolve features of
a target that are 27.78 μm in size using our technique, which is
10× improvement relative to the diffraction limit (275 μm) and
≈ 36× improvement relative to the actual direct view (1 mm).
The achieved angular resolution was 0.28 microradians.

Reconstruction quality depends on the input to the phase
retrieval algorithm. We have the option to feed the algorithm
with the captured irradiance image directly, or with the square
root of this captured image. Ideally, the input to the algorithm is
the diffracted field, which is best represented by the square root
of the irradiance. However, we observed that the reconstruction
result is better if we use the irradiance as the input of the
algorithm shown in Fig. 9. We believe this is because taking
the square root of the irradiance amplifies noise. Environmental
conditions like ambient light may contribute to the signal in an
undesired way. A solution to this problem would be to use a
narrower band filter to reject as much ambient light as possible.

V. DISCUSSION

As we have seen, phase retrieval on diffuse scatter can be used
to improve imager resolution by more than an order of magnitude
over direct view performance. Of course, the critical question is
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Fig. 9. Field experiment reconstruction result with irradiance input. Re-
constructions for horizontal bars and horizontal with vertical bars with their
irradiances as the input of a phase retrieval algorithm. (a) Horizontal bars.
(b) Horizontal with vertical bars.

how large can the improvement factor be? To answer this ques-
tion, we consider the scatter signal generated by object features at
the resolution limit. An object feature of cross-section δ reflects
radiant power Pδ2, where P is the power density illuminating
the object. The fraction of this power collected by the camera
is σ A2

c

4πR2
sc

, where σ is the fraction of the radiant power that is
scattered andRsc is the range between the scattering surface and
the camera. As discussed above, the feature size is related toAs
by δ ≈ λRs/As. Assuming that a detectable feature must deliver

Np photons to the camera, one findsAs ≤ λRsAc

2Rsc

√
σTP
πNp

, where

T is the exposure time.
To get an idea of the limits of this relationship, one might

assume that the illuminating power density is limited by diffrac-
tion from the observing aperture, i.e., P = LA2

c

λ2R2
C

, where L

is the power of the illuminating source. In this case As ≤
RsA

2
c

2RscRc

√
σTL
πNp

. Substitution in (1) yields the resolution improve-

ment factor

α ≤ Ac
2Rsc

√
σTL

πNp
(11)

α separates into two interesting factors, (1) the field of view of
the camera on the scatter,Ac/Rsc, and (2) the inverse root of the
quantum efficiency for collection of illuminating photons. Since

one generally expects that Ac

Rsc
� 1,α > 1 requires

√
σTL
πNp
� 1.

We explored the relationship between the reconstruction reso-
lution and the exposure in simulation. Fig. 10 shows simulations
with the addition of Poisson noise for various exposure levels.
The exposure level is listed in photons per pixel in the diffracted
field, but the intensity is not uniformly distributed in this field
so the expected flux at important features will greatly exceed 1
photon. At high flux levels α may be limited by the observed
aperture, but as illustrated in 10(a) and (b) as flux drops the ef-
fective aperture will drop below the value defined by the camera
field of regard. Equation (11) suggests that resolution should fall
in proportion to the square root of the flux. Fig. 10(a) and (c)
are roughly consistent with this prediction with a reduction from
≈ 10 line pairs per millimeter (lp/mm) in (c) to ≈ 4 lp/mm (a)
for a 10× reduction in flux.

The fact that the illumination flux, TL, must greatly exceed
the minimum detectable flux, Np, in order for scatter imaging

to achieve an advantage is not surprising. The factor σ A2
c

4πR2
sc

reflects the loss in quantum efficiency of scatter imaging relative

Fig. 10. Exposure comparison. Simulated reconstruction vs. exposure. Cap-
tions represent the average photons per pixel of the scatter images. (a) 0.01
photons per pixel. (b) 0.02 photons per pixel. (c) 0.1 photons per pixel. (d) 1
photons per pixel.

to a coherent aperture at the same location, this factor might
easily be< 10−7. However, using coherent illumination it is not
unreasonable to illuminate targets with flux that will overcome
this loss. Since TL may exceed 1020 photons and Np might be

as little as 105, it is not unreasonable to imagine
√

σTL
πNp
≈ 107,

which leads to diverse situations with α� 1. For example, if
the laser power is 1 KW and the observation time is 0.1 seconds,
TL ≈ 1021. With this flux and illuminating a target at a range
of 10 Km with an observing aperture of 10 cm and a scatter
efficiency of σ = 0.1, α might exceed 1000.

While the experimental results presented here rely on phase
retrieval from planar scattering, one expects similar analysis
from scatter generated over a volume will also be effective.
While such analysis involves more sophisticated tomographic
field reconstruction, it does not impact spatial resolution analy-
sis. This suggests that phase retrieval on coherent scatter will be
useful in any imaging system where such scatter is observed.
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