
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Michigan Tech Publications, Part 2 

2024 

Radiation Force Modeling for a Wave Energy Converter Array Radiation Force Modeling for a Wave Energy Converter Array 

Salman Husain 
Michigan Technological University, shusain@mtu.edu 

Gordon Parker 
Michigan Technological University, ggparker@mtu.edu 

David Forehand 
The University of Edinburgh 

Enrico Anderlini 
University College London 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p2 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Husain, S., Parker, G., Forehand, D., & Anderlini, E. (2024). Radiation Force Modeling for a Wave Energy 
Converter Array. Energies, 17(1). http://doi.org/10.3390/en17010006 
Retrieved from: https://digitalcommons.mtu.edu/michigantech-p2/443 

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p2 

 Part of the Mechanical Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/michigantech-p2
https://digitalcommons.mtu.edu/michigantech-p2?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p2%2F443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p2%2F443&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.3390/en17010006
https://digitalcommons.mtu.edu/michigantech-p2?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p2%2F443&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p2%2F443&utm_medium=PDF&utm_campaign=PDFCoverPages


Citation: Husain, S.; Parker, G.G.;

Forehand, D.; Anderlini, E. Radiation

Force Modeling for a Wave Energy

Converter Array. Energies 2024, 17, 6.

https://doi.org/10.3390/en17010006

Academic Editor: Frede Blaabjerg

Received: 4 October 2023

Revised: 30 November 2023

Accepted: 14 December 2023

Published: 19 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Radiation Force Modeling for a Wave Energy Converter Array
Salman Husain 1 , Gordon G. Parker 1,* , David Forehand 2 and Enrico Anderlini 3

1 Mechanical Engineering—Engineering Mechanics, Michigan Technological University,
Houghton, MI 49931, USA; shusain@mtu.edu

2 School of Engineering, The University of Edinburgh, Edinburgh EH8 9YL, UK; d.forehand@ed.ac.uk
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Abstract: The motivation and focus of this work is to generate passive transfer function matrices that
model the radiation forces for an array of WECs. Multivariable control design is often based on linear
time-invariant (LTI) systems such as state-space or transfer function matrix models. The intended use
is for designing real-time control strategies where knowledge of the model’s poles and zeros is helpful.
This work presents a passivity-based approach to estimate radiation force transfer functions that
accurately replace the convolution operation in the Cummins equation while preserving the physical
properties of the radiation function. A two-stage numerical optimization approach is used, the first
stage uses readily available algorithms for fitting a radiation damping transfer function matrix to the
system’s radiation frequency response. The second stage enforces additional constraints on the form
of the transfer function matrix to increase its passivity index. After introducing the passivity-based
algorithm to estimate radiation force transfer functions for a single WEC, the algorithm was extended
to a WEC array. The proposed approach ensures a high degree of match with the radiation function
without degrading its passivity characteristics. The figures of merit that will be assessed are (i) the
accuracy of the LTI systems in approximating the radiation function, as measured by the normalized
root mean squared error (NRMSE), and (ii) the stability of the overall system, quantified by the input
passivity index, ν, of the radiation force transfer function matrix.

Keywords: ocean energy; radiation force; stability; passivity; positive-realness; marine structures;
Wave Energy Converters (WEC)

1. Introduction

Real-time motion control of a wave energy converter (WEC) requires a model that
captures the system’s hydrodynamic interactions. Time-domain dynamics for a marine
structure can be described using the Cummins equation [1,2]. A WEC array emanates a
radiation wave field when excited by an incoming wave field, resulting in radiation forces.
Modeling motion dynamics using the Cummins equation requires a convolution operation
to calculate the radiation forces. The convolution operation can be replaced by a linear
time-invariant (LTI) system [3]. However, estimating a numerically stable LTI system, that
can accurately replicate the radiation force convolution can be difficult [4]. The radiated
forces dissipate energy away from the system—a physical property that this work exploits
to estimate numerically stable LTI systems. LTI systems that represent dissipative systems,
that cannot generate energy, are characterized as passive systems [5]. The proposed LTI
system estimation algorithm requires the estimated LTI systems to be passive—thereby
imposing numerical stability and the physical properties of the radiation forces.

This work presents a time-domain modeling framework for hydrodynamically cou-
pled multibody dynamics in floating body clusters. The proposed algorithm can be used
for heterogeneous WEC arrays that may not have the same geometry. The transfer function
array models developed here are an important step towards designing motion control
strategies that can respond to changing ocean conditions in real time.
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1.1. Main Contributions of the Proposed Approach

This paper focuses on developing linear, passive models for the radiation force ef-
fects in WECs, that can be used for model-based control strategies. This approach can be
considered a frequency-domain method because the initial reference function is the radi-
ation function Hr(jω). This approach incorporates an optimization routine that enforces
the physical properties of the radiation function while minimizing the error between the
magnitudes and phases of the estimated transfer functions and the Hr(jω). The multi-
body dynamics involved in a multiple input multiple output (MIMO) system can be more
conveniently modeled using the estimation of transfer function arrays. This paper will
demonstrate a passivity-based estimation algorithm for G(s) that is applicable to MIMO
systems such as WEC arrays.

1.2. Overview of Frequency- and Time-Domain Estimation Methods

Duarte et al. present a thorough comparison of different approaches taken by re-
searchers over the years [6]. Their comparative review is expanded here with recent
developments since their publication. The main approaches for finding an approximate
replacement to the convolution-based calculation of the radiation force F⃗R(t) can be classi-
fied as:

• Frequency-domain methods, which use the radiation function Hr(jω) itself to estimate
state-space or transfer function models. The main routes taken are:

– Identifying continuous-time filter parameters from frequency response data [4,6–8];
– The moment matching method [9–12], including maintaining passivity.

• Time-domain methods, which numerically calculate the radiation IRF hr(t) and then
use the IRFs to estimate state-space or transfer function models. The main routes taken
for this approach are:

– Curve fitting methods based on least squares curve fitting of the IRFs [13,14];
– The realization theory method, which is based on Hankel singular value decompo-

sition (SVD) followed by order reduction strategies such as balanced-realization
order reduction.

1.3. Frequency-Domain Estimation Methods
1.3.1. Identifying Continuous-Time Filter Parameters from Frequency Response Data

Duarte et al. summarize the least-squares methods [6]. These methods minimize the
least-squares error between the radiation function and the estimated LTI system. Some of
these optimization-based approaches use the invfreqs() command in MATLAB. The invfreqs()
command is based on Gauss–Newton iterative search optimization. The estimation process
can be weighted or biased by incorporating a fitted polynomial using a weighting function.
Originally developed for ship motions, this approach was developed at Norges Teknisk-
Naturvitenskapelige Universitet—NTNU and is packaged as the Marine Systems Simulator
(MSS toolbox). The MSS toolbox is based on Taghipour et al., and Perez, T. and T. I.
Fossen [4,7].

The MSS toolbox has the FDI (frequency-domain identification) utility, approximating
LTI models using the frequency-dependent radiation function Hr(jω). The FDI utility
first filters out the frequencies with discontinuous points owing to numerical errors in
the hydrodynamic coefficients data from WAMIT or any other BEM solver. The process
also rejects zero frequency lines in the estimation process. The estimation process starts
from a second-order system, and then the order is increased to improve the match in the
frequency response of the estimated system and the radiation function Hr(jω). The package
then iteratively reduces the error between the radiation IRF, hr(t), and the approximated
transfer function. This step is followed by the MATLAB command ss() to generate a
state-space model.

The estimation process then checks for unstable poles (poles in the right-hand plane
of the Laplace plane). If unstable poles are found, they are reflected about the imaginary
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axis by multiplying the positive real parts by −1, and the estimation process is reinitialized
with the reflected pole. The rejection of zero frequency points and ‘wild points’, and the
weighting process itself, risks losing the physical nuances of the marine system, especially
for multiple bodies in WEC arrays. The iterative increase in orders also risks the overes-
timating issue discussed by Perez and Fossen [7]. The process requires the user to pick a
frequency range to be used for estimation. As pointed out by Perez and Fossen, the matches
with this method work best for low frequency ranges, and it does not guarantee stability
and passivity [7]. Taghipour et al. also observe that the improper scaling of the input data
can result in numerical instability [4].

Forehand et al. also generate a transfer function and a state-space model, with the
added feature that their code package can be used for a WEC array [8]. They estimate the
transfer function using the invfreqs() command in MATLAB. They also minimize the root
mean square error between the frequency response of the estimated transfer function and
the frequency response of the radiation impedance function using the freqreqs() command in
MATLAB. These estimations are performed for different orders, and the estimated transfer
function with the least error is chosen. The order of the transfer function system is then
minimized further to estimate the state-space model. The stability and conditionality for
the estimated system are checked but not enforced in the estimation process.

1.3.2. The Moment Matching Method

Recently, some very promising developments have been made in frequency-domain
estimation methods. Faedo et al. at Maynooth University developed a novel approach
using moment matching to estimate LTI systems [9]. In this context, a moment refers to the
radiation function Hr(jω) at some specific frequency. The method uses a few points or
moments of the Hr(jω). Faedo et al. then used these estimated models to devise an energy
maximizing controller model [10]. They also extended this approach for a multiple-degrees-
of-freedom (MDOFs) problem [11].

The moment matching method shows good results, with very low normalized root
mean squared error (NRMSE) between body motions calculated using their estimated
system and those from the convolution [15–17]. However, this method relies on choosing
the moments correctly. In their case studies, Faedo et al. point out that the frequencies used
for the chosen moments correspond to the radiation function Hr(jω) peaks. However, this
becomes difficult to judge if the Hr(jω) has a multi-lobed frequency response, especially
for multibody MDOFs systems. Although regular geometries like spheres and cylinders
usually have a single-lobed Hr(jω), disparate marine structures or innovative WECs will
have multi-lobed Hr(jω), making it difficult to choose the moments, especially in situations
where coupled modes exist.

Similarly, WEC arrays, especially compact WEC arrays, are challenging systems for
a moment-matching-based method. When marine structures are in close proximity, such
as in a compact WEC array, the velocity field within the area occupied by the structures
is modified. This results in a trapping effect which introduces additional local minima in
the hydrodynamic coefficients. These trapping effects are extensively discussed in work
by Eatock Taylor et al. [12]. Wolgamot et al. also described the effect of trapping effects
in WEC arrays [18,19]. These phenomena show that each frequency is coded with critical
hydrodynamic information about the system. Faedo et al. remarked that an additional
constraint could introduce passivity to their optimization [9]. More recently, the same
authors have proposed a passivity preserving method [20]. In that work, Faedo et al.
introduced the conditions needed to guarantee passivity for a single body. In the numerical
example shown in that paper, the authors selected a new set of moments for a passive
model. This shows that the selection criteria for moments in an MDOFs and/or multiple
body system becomes difficult. The accuracy for coupled modes, whose radiation damping
characteristics usually have multiple local minima, can therefore be enforced only in a
limited bandwidth [21,22].
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1.4. Time-Domain Estimation Methods

Time-domain estimation methods are carried out in two stages: the numerical inte-
gration for the radiation IRF, hr(t), followed by estimating an LTI system based on this
radiation IRF, hr(t). The general approach for the numerical integration for the cosine
transform is to use either Euler integration or trapezoidal integration methods. For in-
stance, NEMOH, developed by LHEEA Centrale Nantes, uses Euler integration [13,14].
Whereas the WEC-Sim package, developed by the National Renewable Energy Laboratory
(NREL) and Sandia National Laboratories, uses the trapezoidal integration method by
calling the trapz() function in MATLAB [23]. Prony’s method can also be used to calculate
the radiation IRF hr(t) [24]. However, Prony’s method only works for single bodies. It does
not work for arrays because of the shape of the impulse response functions. WAMIT uses
a tool called the f 2t utility to output radiation IRFs using Filon’s trapezoidal numerical
integration (see chapter 13 of the WAMIT manual for a description of the f 2t utility) [23].
The f 2t description recognizes that the Fourier transform (and more specifically the cosine
transform for the radiation IRF) is more accurately calculated using Filon’s integration
method, especially for large values of the time variable.

The following two subsections describe the main approaches taken over the years
by researchers.

1.4.1. The Least Squares (LS) Curve Fitting Method

Yu and Falnes presented their, in some ways, pioneering work, outlining the different
ways the real-time convolution could be circumvented [3]. They proposed that the esti-
mated system may need a higher-order approach to describe the radiation IRF, hr(t). Yu
and Falnes used numerical integration to form companion form matrices for the radiation
and excitation forces. However, the stability and passivity properties of the estimated state-
space models were not considered. Taghipour et al. point out that the LS methods result
in LTI systems whose frequency responses have very poor matches with the respective
radiation function Hr(jω) [4].

Another notable example of an LS curve fitting model was presented by Alves et al. [25].
They used the MATLAB function prony to find a discrete transfer function. However, this
method does not ensure stability, especially for higher-order radiation functions [6].

1.4.2. The Realization Theory Method Using the SVD Hankel Decomposition

Unneland et al. and Kristiansen et al. performed a state-space realization using the
Markovian property of state-space models [26–28]. The MATLAB function imp2ss can be
used to perform the SVD Hankel decomposition. Additionally, Taghipour, Perez, and Fos-
sen showed that the overfitting could be mitigated by a balanced order reduction using the
balmr command in MATLAB [4,24]. This approach does not enforce stability or passivity,
although Taghipour et al. and Perez et al. recognize that the approximation process should
ideally result in a passive LTI system. Perez and Fossen point out that the realization theory
method does not necessarily satisfy the low-frequency asymptotic values and the relative
degree requirements of the radiation function Hr(jω) [4,24]. This approach has been widely
cited and was incorporated in the WEC-Sim package developed by Sandia National Labo-
ratories and the National Renewable Energy Laboratory (NREL) [23]. Subsequent reports
published by Sandia National Laboratories highlight the difficulty of ensuring stability
for a complete dynamics model that has the radiation force as the negative feedback [29].
However, this approach becomes difficult to implement for a multibody MDOFs system.

Lecuyer-Le Bris et al. also used SVD Hankel decomposition and demonstrated the
need for the numerical calculations of the radiation function to be zero at t ≤ 0, and of the
convergence to zero at t = ∞ [30]. They ensured that the radiation function was zero at
t ≤ 0 by incorporating the radiation function evaluated at t ≤ 0. They extrapolated their
radiation function coefficients to a frequency high enough that it converged to zero, thereby
mitigating the high-frequency numerical artifacts. They demonstrated their findings by
using a modified kernel of the radiation damping by comparing the effect of their mod-
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ified kernel on the response amplitude operators (RAOs) of the motion dynamics. They
concluded that their formulation ensured the radiation function was zero at t ≤ 0 and its
asymptotic convergence to zero at t = ∞. They asserted that their proposed kernel incor-
porated the passivity of the radiation function. From a system identification perspective,
the work by Lecuyer-Le Bris et al. also satisfies the properties listed in Section 3. In the
Laplace domain, their considerations ensure phase relationships at zero frequency and
describe the need for the estimated LTI systems to have a zero at the origin.

1.5. Article Organization

The rest of the paper is organized as follows. Section 2 describes the pertinent equa-
tions of motion and develops a time-domain model for a WEC. Section 3 introduces the
need for passivity in estimated LTI systems and outlines the physical properties of the
radiation function that the LTI system is supposed to emulate. Section 4 outlines the algo-
rithm for the proposed approach. The efficacy of the proposed approach is demonstrated
using some examples in Section 5. The estimated system’s accuracy is quantified in terms
of its frequency response function (FRF) and passivity using the input passivity index
(ν). Section 6 describes the motion simulation using the estimated transfer functions and
compares its performance to direct convolution. Following this, Section 7 analyzes the
results and discusses the observations. Finally, Section 8 presents the overall conclusions.

2. Equations of Motion and Development of a Time-Domain Model

This paper focuses on developing linear, stable models for the radiation force effects
in single and multiple floating marine structures, such as wave energy converter (WEC)
arrays, that can be used for model-based control strategies. The viscous drag forces can
be ignored for the compact and sparse arrays analyzed in this work as they are small
compared to radiation damping [31]. The equations of motion shown here can be used for
both hydrodynamically coupled and uncoupled arrays. A WEC array is hydrodynamically
coupled when the motion of a WEC is affected by the motion of other WECs in the array.
An array can be considered hydrodynamically uncoupled when its members are far enough
apart to have minimal mode-couplings, the motion of any WEC in the array is independent
of the motion of any other WEC.

The motion of WECs is commonly described by Equation (1), which is the Cummins
equation [1,2]. The viscous drag forces can be ignored for large marine structures as they are
small compared to radiation damping [2].

(M + a∞ )⃗q̈(t) +
∫ t

0
hr(t − τ)⃗q̇(τ)dτ + Kq⃗(t) = Q⃗(t) (1)

where the q⃗(t) are generalized motion coordinates, and the coefficient of ⃗̈q(t) is the sum-
mation of the inertia of the system and the asymptotic added mass. That is, for an n
degrees-of-freedom system, M ∈ Rnxn is the inertia matrix, and a∞ ∈ Rnxn is the added
mass matrix at infinite frequency. The second term is the convolution operation needed
to calculate the radiation force, F⃗R(t). Also, K ∈ Rnxn is the hydrostatic and gravitational
stiffness matrix, and the Q⃗(t) contains the Froude–Krylov, diffraction, PTO, and friction
generalized forces. For a rigid body moving in six DOFs (degrees of freedom), the q⃗(t) are
surge, sway, heave, roll, pitch, and yaw modes, and the matrices M, a∞, hr(t), and K are
6 × 6 matrices. For multiple bodies forming an array of N rigid bodies, each moving in six
DOFs, these matrices become 6N × 6N matrices, and the off-diagonal terms contain the
appropriate coupling terms.

The linear assumptions entail that the incoming waves have small amplitude and
steepness and that the body motions are also small. For the dynamics model discussed in
later sections, it is assumed that no PTO or control forces are acting on the system, so the
right-hand side of Equation (1), Q⃗(t), will be replaced with just the excitation force, F⃗exc(t),
for the remainder of this paper. Note, in this section the excitation force coefficients and
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the radiation function are represented as Hexc(jω) and Hr(jω) to emphasize that they are
complex functions.

The excitation force is the input to the system, as shown in Equation (2). The excitation
force impulse response function (IRF) is expressed as Equation (3). Therefore, the convo-
lution in Equation (2) models the excitation force acting on the system for a known wave
elevation time history η, as shown in Equation (4). The excitation force can be calculated
in advance without affecting the real-time dynamic model because the excitation force
depends on the incoming wave profile. However, for irregular wave inputs, with wave
profiles changing in real time, prediction of the incoming wave profile becomes critical.

F⃗exc(t) =
∫ ∞

−∞

[
hexc(τ)η(t − τ)

]
dτ (2)

where
hexc(t) =

1
2π

∫ ∞

−∞

[
Hexc(jω)ejωt

]
dω (3)

and
η(t) =

1
2π

∫ ∞

−∞

[
η(jω)ejωt

]
dω (4)

The second term in Equation (1), together with the a∞ ¨⃗q(t) term, corresponds to the
radiation force. This term is the convolution of the radiation force IRF with the body’s
velocity. This follows from defining the radiation FRF Hr(jω), using the hydrodynamic
radiation effects of the body, i.e., added mass a(ω) and radiation damping b(ω), which
are obtained using numerical solvers like WAMIT. The radiation FRF can therefore be
expressed as

Hr(jω) = [jωã(ω) + b(ω)], (5)

where ã(ω) = a(ω)− a∞(ω), such that the asymptotic added mass that converges to a con-
stant a∞ at higher frequencies is subtracted from the radiation function Hr(jω) and added
to the inertia matrix M, as shown in Equation (1). The inverse Fourier transform of Hr(jω)
in Equation (5) results in the radiation IRF, as shown in Equation (6):

hr(t) =
1

2π

∫ ∞

−∞

[
Hr(jω)ejωt

]
dω (6)

which becomes

hr(t) =
1

2π

∫ ∞

−∞

[
[jωã(ω) + b(ω)](cos(ωt) + j sin(ωt))

]
dω (7)

Note, the radiation function Hr(jω) itself is a complex function; however, the corre-
sponding IRF is a real function. This is physically justified by associating the added mass
with local, evanescent, and non-propagating modes, represented by the imaginary part of
the complex radiation function; while the radiation damping part propagates with the real
part such that the radiation force, F⃗r(t), is a causal real force experienced in the vicinity.
This can be shown mathematically by observing that sine is an odd function, while cosine
is an even function, and that both the ã(ω) and b(ω) are even functions [2]. Therefore, the
imaginary part of Equation (7) is an odd function, thus vanishes, while the real part, being
an even function, is twice its value when the lower limit is zero and the upper limit is ∞.
Changing the lower limit of Equation (7) to zero and doubling the real part gives

hr(t) =
1

2π

∫ ∞

−∞

[
b(ω) cos(ωt)− ωã(ω) sin(ωt)

]
dω (8)

The Kramers–Kronig relations relate the added mass a(ω) and radiation damping
b(ω). The Ogilvie equations use the Kramers–Kronig relations to simplify (8) such that
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hr(t) can be expressed as either a cosine transform of the radiation damping FRF b(ω) or
the sine transform of the FRF of the added mass a(ω) [32].

hr(t) =
2
π

∫ ∞

0

[
b(ω) cos(ωt)

]
dω

= − 2
π

∫ ∞

0

[
ωã(ω) sin(ωt)

]
dω

(9)

Therefore, the radiation IRF is real-valued and causal. Motion-dynamics modeling of a
marine structure requires the convolution of Equation (9) with the body velocity to calculate
the radiation force in real time. Physically, this means the body will only experience the
radiation force after a wave has hit it, and the body generates a radiation field around it
that, in turn, becomes the radiation force experienced by the body. The expression for the
radiation force in the time domain can, therefore, be expressed as

F⃗R(t) = a∞ ¨⃗q(t) +
∫ t

0

[
hr(t − τ)⃗q̇(τ)

]
dτ (10)

such that hr(τ) = 0, for τ < 0 . When numerically integrating Equation (10), the limits of
the integral can go from the max(0, t − td) to t, where td is the duration of the radiation IRF
(i.e., the radiation IRF is zero for t > td).

3. Passivity Properties of the Radiation Function, Hr(jω), Radiation IRF, hr(t),
and Estimated LTI System, G(s)

In its simplest high-level form, the Cummins equation is analogous to a mass–spring–
damper system, where the hydrostatic forces act as a spring force while the radiation forces
contribute to the damping force and the overall inertia of the system. Equation (11) shows
the equation of motion for such a 1-DOF system:

m0z̈ + k0z +
∫ t

0
g(t − τ)ż(τ)dτ = fext (11)

where m0 represents the system’s effective inertia, z represents motion in some arbitrary
mode, k0 the hydrostatic stiffness, followed by the convolution integral used to calculate
the radiation forces, in which g(t − τ) is the impulse response function of the wave field
radiated by the system. The right-hand side of the equation encapsulates all external forces,
such as the power take-off (PTO) forces and the excitation forces. The focus of this work
is identifying a linear time-invariant system that can replicate the convolution integral
needed to calculate the radiation forces. This equivalent LTI system is represented hereafter
as the transfer function G(s), where s = jω. The Laplace transform of Equation (11) is

Z(s)
(
m0s2 + k0 + sG(s)

)
= Fext(s) (12)

In Equation (12), and the block diagram shown in Figure 1, the WEC is represented
as 1

m0s2+k0
, and is the plant of the system composed of a mass–spring system, such that

m0 represents the mass of the simplified WEC model and k0 is the hydrostatic coefficient.
The radiation forces serve as the negative feedback to the system, and are represented as
G(s). The external forces, shown as Fext(s), represent the excitation forces composed of
the incident Froude–Krylov forces and the diffraction forces that serve as the input to the
system, and the WEC’s velocity is the output. The computation of the radiation forces
requires the convolution of the body’s velocity and the radiation force impulse response
function (IRF).

The radiation force is causal and needs the body’s velocity information in real time for
the convolution. The radiation force in the time domain is calculated using the frequency-
domain hydrodynamic coefficients, solved using a boundary element method (BEM)
solver, such as commercial software packages like Wave Analysis MIT (WAMIT v7.4).
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The frequency-domain hydrodynamic coefficients are then used to calculate an IRF. Con-
volving the IRFs with the buoy velocity gives the radiation force in real time. This convo-
lution operation makes model-based motion control difficult because motion control of a
dynamic system requires the knowledge of its poles and zeros [4,24].

Fext(s)
1

mos
2+ko

G(s)

+

−

ż

Figure 1. A simplified, high-level block diagram representation of the Cummins equations, where
1

m0s2+k0
represents the WEC as the system’s plant, and G(s) represents the radiation damping force.

This work circumvents the convolution operation by proposing an algorithm to gen-
erate a transfer function between the radiation force and body velocity. Modeling the
dynamics using a linear time-invariant (LTI) model provides the knowledge of the sys-
tem’s dynamical characteristics and facilitates various motion-control strategies based on
the system’s motion dynamics. Note that the model-based control schemes, whether for
analysis or implementation, often rely on reduced-order models, which further necessitate
system identification of the radiation forces. For instance, model-predictive control (MPC)
of a WEC array is computed based on running an optimization problem at each control
update step.

The motion dynamics matrices need to encapsulate all possible mode couplings.
A time-domain model of a multibody system is a multiple input multiple output (MIMO)
system. Estimating a linear time-invariant (LTI) MIMO system is challenging in terms of
accuracy and stability. The estimated radiation force transfer function array (hereafter G(s))
has to ensure the stability of the closed-loop multibody dynamics system. The G(s) is in the
negative feedback of the overall dynamics model. A passivity-based estimation algorithm
for G(s) can, therefore, ensure the stability of the overall dynamics model. A passivity-
based approach also ensures fidelity to the physical system because radiation forces are
dissipative in nature. The Nyquist stability criteria used for single input single output
(SISO) systems can be extended to a multiple intput multiple output (MIMO) system by
assessing the input passivity index (ν) of G(s).

The properties of radiation effects are encapsulated in the radiation function Hr(jω);
therefore, the estimated LTI system, G(s), should preserve the physical phenomenon being
approximated. The boundary conditions of the radiation function Hr(jω), and its time-
domain counterpart radiation IRF, hr(t), are summarized in Table 1. Table 1 is similar to
the properties discussed by Duarte et al. and Perez and Fossen [6,33].

Table 1. Properties of the radiation function Hr(jω), radiation IRF, hr(t), and estimated LTI system,
G(s); see [6,33].

Property Implications

1. limω→0Hr(jω) = 0 There are zeros at s = 0

2. limω→∞ Hr(jω) = 0 Strictly proper

3. limt→0+ hr(t) ̸= 0 Relative degree 1

4. limt→∞hr(t) = 0 Bounded input bounded output (BIBO) stability

5. The mapping, ẋ → F⃗R(t) is passive Hr(jω), therefore, G(s) is positive real (PR)

In Table 1, properties 1, 2, and 3 are a consequence of the Riemann–Lebesgue lemma,
while the BIBO stability condition in property 4 establishes the input–output stability of
the convolution for radiation forces [4,33].
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Property 5 in Table 1 entails the dissipativity property of the radiation function
Hr(jω), since it starts as 0 and then converges to 0 since the radiation forces are dissi-
pative. The Ogilvie equations indicate that the radiation IRF, hr(t), can be calculated using
the radiation damping coefficients b(ω) [32]. The b(ω) also starts from 0 and converges
to 0 since the hydrodynamic theory dictates that the b(ω)> 0, ∀ω. It can be therefore said
that the radiation forces are passive, since radiation forces are dissipative and they generate
no energy. For linear systems, the passivity property is equivalent to positive realness [4,5].

The estimated transfer functions are used to calculate the radiation force and are used
in the negative feedback of the complete dynamic system. A challenging property of linear
systems is that even if a system such as a transfer function is stable on its own when used in
the closed loop of the complete system, it can result in making the overall system unstable.
Therefore, system stability can be assessed by looking into its passivity property. Passivity
implies that the physical system does not generate energy and can only store or dissipate
energy. Therefore, the estimated transfer function array should be passive, i.e., positive real.
This stability criterion has been recognized by various researchers, such as in [4,6,14,24,27].

The passivity condition essentially requires that the estimated LTI system, G(s), or the
radiation force transfer function array, populated by transfer functions between body
velocity and radiation force, F⃗R(t), is positive semi-definite, which implies that the real part
of the transfer function array is positive. Formally, the passivity condition for a transfer
function array, which is a multiple input multiple output (MIMO) system, can be stated as
discussed by Khalil [5].

Lemma 1. Let G(s) be a p × p proper rational transfer function matrix, and suppose det[G(s) +
G(−s)T ] is not identically zero. Then, G(s) is strictly positive real if and only if:

1. G(s) is Hurwitz; that is, the poles of G(s) have negative real parts;
2. G(s) + G(−s)T is positive definite for all ω ∈ R;
3. Either G(∞) + G(∞)T is positive definite; or it is positive semi-definite and the terms

limω→∞ω2MT [G(jω) + G(−jω)T ]M are positive definite for any p× (p− q) full-rank ma-
trix M, such that the term MT [G(∞) + G(∞)T ]M = 0, where q = rank[G(∞) + G(∞)T ].
Additionally, if G(∞) + G(∞)T = 0, then M = I, which is the case for radiation damping.

The passivity of the estimated radiation transfer functions using the input passivity
index, ν, is such that ν = 1

2 minωλmin(G(jω) + G(−jω)), where λmin are the minimum
eigenvalues of the magnitude of (G(jω) + G(−jω)). For SISO LTI systems, the input pas-
sivity index corresponds to the horizontal distance of the Nyquist plot from the imaginary
axis, or in other words, the real part of the Nyquist plot, since for a SISO LTI system,
(G(jω) + G(−jω)) results in 2Re(G(jω)), making ν = Re(G(jω)). Note, the passivity
corresponds to the Nyquist criterion for feedback systems, requiring the phase of the LTI
system in question to be within [−π/2,+π/2] rad.

Classical control methods such as the Nyquist plot can be used to assess the robustness
of stability and passivity. However, assessing stability through a passivity-index-based
approach, as proposed here, has certain advantages, including:

1. Satisfying robust stability criteria such as L2 stability, and more generally, dissipativity;
2. Using passivity ensures mapping the estimated LTI system to the physical properties

of the system being modeled;
3. Passivity-based stability analysis can be extended to a MIMO system, such as a multiple-

degrees-of-freedom (MDOFs) analysis of a single-body or multiple-body arrays.

Note, the evaluation of stability is based on a real quantity—the input passivity index.
Interestingly, the analytic property of the radiation function is preserved when using the
passivity-index-based system estimation because the estimation method matches both the
magnitude and phase of the radiation function. The estimated system does eventually
converge because a passive system is also dissipative, thereby preserving the analytic
property of the radiation function [34,35]. There is, however, a trade-off between the
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stability of the estimated models and their fidelity to the physical system. While estimating,
it must be kept in mind that, in general, increasing the order of the estimated model may
result in a better fit but sacrifice passivity (and thus, stability) and also risk overfitting.
Overfitting results in the estimated system having high-frequency poles (typically higher
than 10 rad/s) that do not correspond to the actual physical system because marine systems
are relatively very slow (typically operate within 0 to 4 rad/s). On the contrary, reducing
the order of the estimated system will enhance passivity but sacrifice fidelity to the physical
system being estimated.

It is proposed that the passivity property can be checked for, and the orders of the
estimated transfer functions can be chosen through iterations, as discussed in [4,24]. Many
researchers, therefore, start with the smallest order possible, i.e., relative degree 1, and then
increase the order while checking for model fidelity and passivity [4,24]. The current
state-of-the-art methods, therefore, check for passivity but do not enforce or guarantee the
passivity in the estimated transfer functions [4,9,20,24].

4. The Algorithm

This section will describe the proposed algorithm and the scaling scheme that can
be used to generalize the estimated transfer function, so that it can be scaled up or down
corresponding to the body geometry as long as its dimensions maintain geometric similarity,
i.e., have the same ratios with respect to each other. The radiation force estimation strategy
follows three stages:

1. Generation of a reference for the radiation transfer function;
2. Iteration to obtain a low-order, accurate, and passive transfer function;
3. Final tuning to ensure minimum phase, such that at least one zero of the estimated

radiation transfer function is at the origin (i.e., s = 0 is a zero).

4.1. Generation of a Reference for the Radiation Transfer Function

For the frequency-domain approach, the radiation function Hr(jω) is generated using
WAMIT, as shown in Equation (5). This function is then used as the reference function
for the iterative estimation of radiation transfer functions. Since the radiation function is
dissipative, it asymptotically approaches zero. In the discussion that follows, the frequency
at which the radiation function is less than 5% of its maximum ( f0 rad/s is greater than the
frequency at the maximum) will be referred to as f0 rad/s.

4.2. Iterative Estimation of Radiation Transfer Functions

This stage corresponds to the iterative loop initialized with N0 poles in Figure 2.
The initial number of poles, N0, is the highest order desired by the user. The algorithm
then iteratively decreases the number of poles—balancing the trade-offs between stability
and accuracy because it can be observed empirically that estimated systems with a higher
number of poles sacrifice stability for accuracy, and vice-versa. The estimation process is
performed using the tfest() command in MATLAB. This function uses iterative optimization
to curve-fit either impulse response data or frequency response data. The function has
options that let the user enforce Hurwitz stability. This is achieved by reflecting poles
estimated in the right-hand plane about the imaginary axis and starting the estimating
optimization again. The estimated transfer function is then further refined using non-linear
search optimization to obtain the best possible fit. The tfest() command by default estimates
a strictly − proper transfer function. The estimation process is carried out for each mode
combination, resulting in a transfer function array, G(s). For MDOFs systems such as
WEC arrays, mode couplings include both intra-body and inter-body interactions, while for
single-body MDOFs systems, mode couplings include implying intra-body mode couplings.
When estimating transfer function matrices, G(s), the input passivity index (ν) characteris-
tics correspond to the positive definiteness of the transfer function matrix. The matrix of
magnitudes of each individual transfer function in G(s) can be seen as a Toeplitz matrix. It
was observed that the ν of the entire transfer function matrix could be enhanced if the ν



Energies 2024, 17, 6 11 of 23

of the Toeplitz matrices making up the transfer function array increased [36]. Therefore,
iterating on the order of the individual transfer functions in G(s) to achieve more positive
ν for each transfer function helps in estimating more positive ν for the transfer function
array G(s).

INITIALIZE OPTIMIZATION ROUTINE

COST FUNCTION:

MINIMIZE ERROR IN MAGNITUDE AND PHASE BETWEEN
FREQUENCY RESPONSE OF ESTIMATED TF, AND HR(ω).
CONSTRAINTS:

• THE ESTIMATED TRANSFER FUNCTION IS MINIMUM
PHASE, AND HAS A ZERO AT ORIGIN,

• ALL OTHER AFOREMENTIONED CONDITIONS.

DEFINE INITIAL CONDITIONS FOR ITERATIVE tfest()

INITIALIZE ESTIMATION ITERATIONS WITH N = N0 POLES.
SUBJECT TO CONDITIONS:

• INPUT PASSIVITY INDEX IS POSITIVE IN THE OPERATIONAL FREQUENCY BANDWIDTH,
ν > 0,

• MAXIMUM MAGNITUDE OF POLES AND ZEROS IS LESS THAN 2f0 rad/s,

• FREQUENCY RESPONSE OF THE ESTIMATED TRANSFER FUNCTION MATCHES THE HR(ω)
BY MORE THAN 90 % IN THE OPERATIONAL FREQUENCY BANDWIDTH.

INITIALIZE tfest(), SUCH THAT,

• INITIAL CONDITIONS FOR THE ESTIMATED TRANSFER FUNCTION IS ZERO,

• HURWITZ STABILITY CONDITION IS ENFORCED

GENERATE RADIATION FUNCTION,
Hr(jω) = [jωã(ω) + b(ω)], (Eq. 6)

START

YES

CONDITIONS
SATISFIED?

N = N − 1

NO

N > 3?

CONDITIONS, AND
CONSTRAINTS

SATISFIED?

NO

YES

SUCCESS = 1

END

SUCCESS = 0

NO

YES

Figure 2. Algorithm for the estimation of radiation transfer function array G(s).

The iterative estimation process using the tfest() command is initiated with the highest
expected order, N0. At each iteration, the tfest() command estimates a transfer function
array G(s). This G(s) should then satisfy the following criteria:

1. G(s) is bandwidth-limited passive, such that the input passivity index is positive
(ν > 0) for a defined frequency bandwidth;

2. G(s) has accurate frequency response, such that the percentage f it between the
frequency response of G(s) and the radiation function Hr(jω) is greater than 90% for
a defined frequency bandwidth;
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3. Finally, G(s) should not have pole frequencies higher than 2 f0 rad/s in the Laplace
domain. This is necessary to avoid overfitting and avoiding poles that do not corre-
spond to the physical phenomenon G(s) is supposed to replicate. This upper bound
was empirically set to about two times the frequency at which the radiation function
converges to 0.

If the estimation process fails to find a G(s) that satisfies these three criteria, the algo-
rithm re-iterates by reducing the expected order by one. This iterative process is deemed to
fail if the estimated order has to be reduced below the third order. Note, that regardless of
the initial reference function being the radiation IRF, hr(t), or the radiation function Hr(jω),
the iterative process compares the frequency response of G(s) with the radiation function
Hr(jω), ensuring fidelity with the hydrodynamics radiation damping data.

4.3. Final Optimization Routine

The estimated G(s) from the previous step serves as a very good initial guess for
the final optimization. The estimated G(s) from the iterative tfest() routine has very high
accuracy and positive input passivity index ν. However, the G(s) estimated from the
iterative routine in the previous step often generates transfer functions that do not have
a zero at the origin. The G(s) is then subjected to optimization to enhance the accuracy
and passivity index characteristics while ensuring that the properties listed in Table 1 are
exhibited by the estimated transfer function array G(s).

The final optimization is set up so that the cost function is a weighted function formed
by the sum of the absolute squared difference between the frequency response magnitude
and phase of the transfer function array G(s) and the radiation function Hr(jω), such that

J = α ∑
(
|Hr(jω)| − |G(jω)|

)2

+ β ∑
(
∠(Hr(jω))−∠(G(jω))

)2

, (13)

where J is the cost function to be minimized by optimization, α is the weight for the
magnitude difference, and β is the weight for the phase difference. The weights of the
cost function are so chosen that both phase and magnitude of the optimized G(s) are more
accurately matched with the radiation function Hr(jω). Additionally, the frequency range
over which the optimization is performed can also be chosen such that the accuracy and
passivity characteristics are further improved.

The optimization is further subject to constraints such that the estimated G(s) satisfies
the properties laid out in Table 1 and meets the following criteria:

1. G(s) must be minimum-phase and have a zero at the origin;
2. G(s) must be strictly proper, i.e., has a relative degree of 1;
3. The input passivity index is positive, such that ν > 0, for a defined frequency band-

width;
4. All poles are less than 2 f0 rad/s;
5. The accuracy of the optimized G(s) exceeds 90% for a defined frequency bandwidth.

Figure 3 shows the effect of optimization on the estimated G(s) for the case of a
single heaving cylinder with a radius of 1 m and draft of 1 m. It can be observed that the
optimized G(s) has resolved the non-minimum-phase issue in the G(s) before optimization.
The zero-at-the-origin constraint helped in significantly enhancing the accuracy of the
optimized G(s) with respect to Hr(jω) at low frequencies. The optimized G(s) satisfied
the properties listed in Table 1 for the frequency bandwidth in which hydrodynamic data
were available.

The final optimization ensured that the G(s) had a minimum phase. This also helped
increase the input passivity index ν, as shall be demonstrated in the case studies in Section 5.
As shown in Figure 2, should the optimization fail in satisfying all of the aforementioned
conditions, further iteration is performed by reducing the initial estimation order. Further
refinement is subject to the empirical inverse relationship between the accuracy and the
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stability such that an increase in the accuracy typically decreases the passivity index and
vice versa.
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Figure 3. Comparison of the estimated G(s) before and after the final optimization. Notice that
in (a) the phase of the estimated transfer function did not have an initial phase of 90◦ before the
optimization. (b) Shows the difference in magnitude and phase due to the optimization.

4.4. Scaling Scheme

Scalability of the estimated transfer functions is desirable for consistency in modeling
the WECs at prototype scale and deployment scale. The algorithm can be scaled up or down
by first normalizing the estimated transfer function using wave frequency, water density,
and the characteristic length, and then performing Froude scaling using the characteristic
length for wave frequency and the pertinent hydrodynamic coefficients. The normalizing
scheme for the added mass, radiation damping, and the wave frequency can be expressed
as [37]

āi,j(ω) =
ai,j(ω)

ρgLk ; b̄i,j(ω) =
bi,j(ω)

ρgωLk ;

where,

k = 3 for (i, j = 1, 2, 3)

k = 4 for (i = 1, 2, 3, j = 4, 5, 6) or (i = 1, 2, 3, j = 4, 5, 6)

k = 5 for (i, j = 4, 5, 6) (14)

Consider a system with a characteristic length L = L0 and radiation function Hr0(jω0),
and another system with a characteristic length L = L1 and radiation function Hr1(jω1),
where ω0 represents the frequency at L0 scale, and ω1 represents the frequency at L1 scale.
The radiation function as shown in Equation (5), Hr(jω) = [jωã(ω) + b(ω)], for Hr0(jω0)
and Hr1(jω1), can be expressed in terms of the normalized hydrodynamic coefficients
shown in Equation (14), such that

Hr0(jω0) = [jāi,j(ω0) + b̄i,j(ω0)]ω0ρgLk
0; Hr1(jω1) = [jāi,j(ω1) + b̄i,j(ω1)]ω1ρgLk

1 (15)

Note, Froude-scaling the characteristic length of the system also scales its frequency,

such that ω1 = ω0

(
L1
L0

)− 1
2

. Then, these radiation functions can be related using the ratio

of the two characteristic lengths Lsc =
L1
L0

, such that
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Hr1(jω1) = Hr0(jω0)L

(
k− 1

2

)
sc (16)

while all other physical parameters will be scaled using Froude-scaling. Therefore, the esti-
mated transfer functions can be scaled as

G1(s) = G0(s)L

(
k− 1

2

)
sc (17)

5. Case Studies

The proposed algorithm is demonstrated using a single cylindrical buoy and a nine-
buoy WEC array. The cylindrical WEC buoy represents a prototype that can be tested at
a typical wave-tank facility. The incoming waves were set parallel to the +x-direction.
An axisymmetric body makes for a good candidate for a simpler hydrodynamic analysis.
This section compares the accuracy and passivity characteristics of the estimated transfer
function’s frequency response function (FRF). Falnes et al. and Folley used the non-
dimensionalized hydrodynamic coefficients while discussing the radiation FRF and IRF
characteristics [31,38]. The cylindrical WEC discussed here was modeled as a cylinder of
radius 1 m and draft 1 m, such that the radius to draft ratio was unity. Therefore, for a cylinder
of similar radius-to-draft ratio, the estimated transfer function can be scaled by a factor of
Lk− 1

2 if the characteristic length for the cylinder of radius 1 m and draft 1 m is set to unity.
For a single WEC, the estimation process generates a 6 × 6 transfer function matrix

G(s), whose diagonal elements correspond to self-interacting modes and off-diagonal
elements correspond to coupled modes. This work shows the heave mode only, but similar
analyses can be carried out for other modes and mode couplings. For the single WEC
case, the proposed algorithm is demonstrated using a frequency-domain route and two
time-domain routes (see Section 4.1). Henceforth, the estimated transfer function matrix
will be denoted by GHr (s). The accuracy of the estimated transfer function matrix, G(s), is
demonstrated by comparing its FRF with the radiation function Hr(ω) matrix constructed
purely with the heave modes and their couplings. The passivity characteristics are quantified
using the input passivity index ν, such that ν = 1

2 minωλmin(G(jω) + G(−jω)), where λmin
are the minimum eigenvalues of (G(jω) + G(−jω)). The accuracy of the FRF is assessed
using the normalized root mean square error (NRMSE) fitness percentage, such that

NRMSE(%) = 100 ×
(

1 − ||y − ŷ||
||y − mean(y)||

)
, (18)

where y is the validation data, which is the magnitude of the radiation function Hr(jω),
while ŷ is the FRF of the G(s) being assessed.

5.1. A Single WEC

The single WEC was modeled as a cylinder of radius of 1 m and draft of 1 m, such
that the radius-to-draft ratio is unity. The algorithm was initiated with N0 = 10 poles
(see Section 4.2 and Figure 2). The higher-order transfer functions had high accuracy but
did not satisfy the passivity requirements, while the converse was true for lower-order
transfer functions. The final estimated transfer functions had satisfactory accuracy and
had a positive input passivity index, ν, for the frequency bandwidth in which radiation
damping data from WAMIT were greater than 0.

5.1.1. Comparison of Frequency Response of Estimated Transfer Functions

Figure 4 shows the comparison of the frequency response characteristics of GHr (s).
Notice that the estimated transfer function is minimum-phase. The phase plot shows that
the phase for the transfer functions stays between ±π/2, which suggests positive realness
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and passivity. This corresponds to the Nyquist plot being in the right-hand plane for a
SISO system. The FRF of the estimated transfer functions is compared to the Hr(ω). Also,
the estimated transfer function has its phase plot between ±π/2 rad. The NRMSE fit
percentage as a function of frequency was calculated by comparing the radiation function
Hr(ω) and the FRF of GHr (s).
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Figure 4. (a) Shows the comparison of magnitude and phase of Hr(ω) with the GHr (s). (b) Shows
the normalized root mean square error (NRMSE) fit.

5.1.2. Comparison of Input Passivity Index of Estimated Transfer Functions

Figure 5 shows that the estimated transfer functions have a positive input passivity
index between 0 and 5 rad/s. Therefore, the estimated transfer functions will have passivity
for the frequency bandwidths where ν is positive. Since this work is only using the heave
mode, the transfer function system is a single transfer function corresponding to that mode,
and therefore, the input passivity index reduces to the FRF of the corresponding estimated
G(s). In other words, ν = 1

2 minωλmin(G(jω) + G(−jω)) = 1
2 (2G(jω)) for SISO LTI

systems. Note that for multi-mode analyses such as MDOFs systems or multibody systems,
the transfer function system will be a MIMO transfer function matrix and, therefore, will
not reduce to G(s). As discussed in Section 3, stability analyses can also be performed using
the Nyquist criterion; however, it is limited to SISO systems. As described in Section 4,
the final optimization routine ensured that the estimated transfer function had a positive
input passivity index in the operational bandwidth, had high accuracy with respect to
the corresponding radiation function, and had a zero at the origin (see Table 1). The input
passivity index analyses shown here make the stability analyses simpler, especially for
MDOFs and multibody systems, as shown in the following subsection.
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Figure 5. Comparison of input passivity index, ν, for GHr (s) for a cylinder with a radius of 1 m and
draft of 1 m in heave mode.
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5.2. A Homogeneous WEC Array of CorPower Devices

The algorithm will now be demonstrated using a homogeneous array comprised
of nine CorPower devices laid out in a square array of three rows and three columns
(see Figure 6). The CorPower is a heaving point absorber device being developed by the
Swedish company CorPower Ocean and its device specifications can be found at [39].
The device can be described as a combination of three shapes: a cylinder of diameter 8.4 m
and height 4.6 m over an inverted-truncated cone with top radius 8.4 m, bottom radius
1.25 m, and height 5.08 m. The third and bottom-most part of the device extends as a
cylinder of radius 1.25 m for a length of 7.32 m. The draft of the device is 14.5 m.

Figure 6. The spatial layout of the homogeneous WEC array. The unidirectional wave field shown
represents the PM spectrum used in the analysis of this array.

This homogeneous WEC array was designed to represent a realistic deployable com-
pact array. The distance between any two neighboring bodies was 100 m along the X and Y
directions. The hydrodynamics were calculated assuming plane-progressive waves propa-
gating along the positive X-axis. Figure 6 shows the homogeneous WEC array’s spatial
layout. For a WEC array, the self-interacting modes and their mutual couplings result in
a 6N × 6N radiation function matrix (where N = 9 for the current array). For this work,
only the heave modes and their mutual couplings are considered, such that the radiation
function matrix was an N × N matrix.

5.3. Passivity Index, ν, for the Homogeneous WEC Array

The WECs in the homogeneous array had a much higher volume (16 times that of the
cylinder in the previous case), and the WECs in the array interacted with each other such
that the motion of one WEC affected another due to hydrodynamic coupling. The multiple
peaks in the passivity index of the homogeneous array in Figure 7 indicate hydrodynamic
couplings in the system.

Figure 7. Passivity index, ν, as a function of wave frequency for the homogeneous WEC array.
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It can be observed in Figure 7 that the optimized transfer function matrix represented
by Gopt(s) shows an increase in the input passivity index, especially at lower frequencies.
The optimization also ensured that the phase at 0 rad/s was 90◦ for all transfer functions in
the transfer function matrix. Note, a phase of 90◦ at 0 rad/s indicates a zero at the origin. All
estimated transfer functions matched with the corresponding reference radiation function
by more than 90 % in terms of NRMSE error defined in the previous case. The asymptotic
convergence to zero indicates that the estimated transfer function matrix represents a
dissipative system. The input passivity index characteristics shown can be used to inform
WEC array design and optimize a control strategy that can maximize the energy extracted.
The properties mentioned in Table 1 were, therefore, achieved by the proposed system
identification algorithm.

6. Motion Simulations

A motion simulation model was created based on the Cummins equation discussed
in Section 2. Only the heave mode is presented here, such that the generalized motion
coordinates q⃗(t) can be replaced by heave displacements, x⃗(t). Also, the generalized
external forces Q⃗(t) can be replaced by the excitation force, F⃗exc(t), and control force, F⃗c(t).

Rewriting the Cummins equation (1) gives

⃗̈x(t) =
1

M + a∞

[
F⃗exc(t) + F⃗c(t)− F⃗R(t)− Kx⃗(t)

]
(19)

The incoming wave elevation profile was calculated using the Pierson–Moskowitz
(PM) spectrum, that uses an energy distribution as a function of frequency [40]. It is defined
as [23,40]

SPM( f ) =
Hm0

2

4
(
1.057 fp

)4 f−5 exp

[
−5

4

(
fp

f

)4
]

(20)

whose coefficients in general form are

Aws =
Hm0

2

4
(
1.057 fp

)4 ≈ 5
16

Hm0
2 fp

4 ≈ Bws

4
Hm0

2

Bws =
(
1.057 fp

)4 ≈ 5
4

fp
4

(21)

where Hm0 is the significant wave height, fp is the peak wave frequency (=1/Tp), and f
is the wave frequency, while the coefficients Aws and Bws vary depending on the wave
spectrum, which in this case, define the spectrum to represent the Pierson–Moskowitz
(PM) spectrum.

In recent years, WEC motion simulations have been increasingly modeled using WEC-
Sim, an open-source MATLAB Simulink based simulation software [23]. WEC-Sim uses
customized Simulink blocks and the multi-physics capabilities of the Simscape. In the
results that follow, the motion simulations were verified against a WEC-Sim model that
used the convolution integral to calculate the radiation forces.

6.1. The Single-Cylinder Case

The dynamics equation shown in (19) is used to simulate the complete dynamics
model in the time domain. The complete dynamics model was set up in MATLAB-Simulink.
The hydrodynamic coefficients were calculated for a water depth of 100 m. The excitation
force was calculated offline prior to the simulations. The cylinder was approached by a
regular wave of amplitude 0.25 m and wave period 6.22 s. For these motion simulations,
no control force was applied, and the cylindrical body only experienced the excitation force
as an input.

Figure 8 shows the heave motion characteristics for a time period of 100 s. The simula-
tion was first run with the radiation force calculated using direct convolution and then by
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using the estimated transfer functions. These body-motion simulations were performed
in Simulink.
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Figure 8. The top figure shows the body motion in heave mode for the cylinder with a radius of 1 m
and draft of 1 m (small buoy) when the radiation force is calculated using GHr (s), compared to the
body motion in heave mode when the radiation force is calculated using the convolution. The bottom
figure shows the overall NRMSE match expressed as a fitness percentage in the legend of the upper
plot, while the lower plot shows the root mean squared error (RMSE) as a function of time.

The simulations were run for only the heave mode but can be easily run for any other
mode or mode combination, using the appropriate estimated transfer function matrices.
Figure 8 shows the heave motion for a single regular wave. The models can be easily used
for irregular waves if the excitation force inputs can be calculated in advance.

Note that in Figure 8, at the beginning of the time history, the motion simulation shows
some fluctuating behavior. The transient behavior seen at the start of the top figures in
Figure 8 is physical and not numerical. It is the result of the buoys being released from rest
at t = 0, while the fluctuating behavior seen at the start of the bottom figure in Figure 8
is numerical. This fluctuating behavior can be mitigated by using a ramp function, as is
performed in the WEC simulator package WEC-Sim [23]. However, such pre-processing or
truncation was not used here to show the initial transient behavior. The overall NRMSE
matches for all estimated transfer functions and the agreement approaches 99% if the initial
40 s of the data is truncated. Note that the dynamics model shown here used a linearized
model, but the analyses shown here can be easily adapted for a model that uses non-linear
Froude–Krylov forces as the external forces acting on the body.

6.2. The Homogeneous WEC Array Case

A transfer function matrix G(s) was formed using the body-only heave modes and
the inter-body heave mode couplings. The dynamics equation of motion in (19) was used
to simulate the complete dynamics model in the time-domain using MATLAB-Simulink.
The excitation force was calculated offline to the simulation. Figure 9 shows the heave
motion characteristics such that the simulation was first run by calculating the radiation
force using real-time convolution and then run again by calculating the radiation force
using the estimated transfer function matrix. These simulations were run for only the heave
mode but can be easily run for any other mode or mode combination, using the appropriate
estimated transfer function matrices.

The percentages shown in Figure 9 are the NRMSE fit percentage between the body
motion when the radiation force is calculated using the estimated transfer function arrays,
compared to the body motion when the radiation force is calculated using the convolution of
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radiation IRF, hr(t), and body velocity. As discussed for the single-cylinder case, an initial
transient in the time histories for the WEC array buoys was observed. For this case,
a ramp function was used to mitigate this initial transient. The accuracy percentages in
Figure 9 show the comparison between 10 s and 50 s. Note that the WEC array modeled
here did not incorporate the contributions of non-heave modes to heave time histories
due to hydrodynamic coupling. A more realistic WEC array model would include the
contributions of the support structure and moorings that would maintain the WEC array
layout. This would further introduce forces and couplings of the dynamics modes of
WEC buoys.

Figure 9. Heave displacements of the 9-body WEC array when FR(t) is calculated using estimated
transfer function array, compared with displacements when FR(t) is calculated using direct con-
volution. The homogeneous WEC array was simulated with irregular waves modeled using the
Pierson–Moskowitz spectrum, with a significant wave height Hs = 1 m and a significant wave period
of Ts = 8 s.

7. Discussion

The frequency domain was used to estimate transfer functions between body velocity
and radiation forces. Frequency-domain estimation methods are the most direct route
to generate the desired time-domain models. Marine systems operate at relatively low-
frequency bandwidths. For instance, JONSWAP and Bretschneider wave spectra have most
of their energy concentrated between 0 and 1.5 rad/s [1,2,31]. Due to the relatively slow
nature of marine dynamics and very narrow bandwidth of marine systems, the FRF of a
marine system encapsulates critical information about the said marine system’s dynamics at
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each data point in the FRF. Direct estimation methods, like the frequency-domain estimation
method shown here, can reduce the potential numerical artifacts that multi-stage time-
domain estimation methods may have due to truncation and round-off errors. The proposed
algorithm can achieve highly accurate transfer functions using the direct estimation or
frequency-domain route despite its sensitivity, while having a positive input passivity
index across most of the operational bandwidth.

As discussed in Section 4.2, the proposed algorithm tries to strike a balance between
the accuracy of the estimated transfer function and its passivity characteristics by iterating
upon the order of the estimated transfer function system. Empirically, increasing the
order of the estimated transfer function system increases its accuracy while decreasing its
passivity and vice versa.

The estimated models were assessed based on two metrics; firstly, how well the esti-
mated models replicated the FRF of the radiation functions, and secondly, how well was the
body motion replicated when the radiation force was calculated using the estimated models
as opposed to calculating the radiation force using the convolution approach. Significantly,
the estimated LTI systems presented here did not have high-frequency poles, despite being
high-order systems. Low-order estimation methods compromise the fidelity of fit in favor
of stability and robustness, resulting in underfitting, as was the case in [4,24]. Conversely,
high-order estimation methods compromise guaranteeing stability and robustness be-
cause they have poles faster than the physical system’s properties due to overfitting [4,24].
The proposed estimation algorithm succeeded in preventing underfitting and overfitting
while guaranteeing Hurwitz stability and ensuring passivity. Although Taghipour et al.
observed that the body motions tend to be less sensitive to the otherwise sensitive LTI
system estimation process [4], an effective and optimal motion-control design requires
that the model-based controller be based on the physical phenomenon’s most accurate
representation. Therefore, sacrificing accuracy in favor of passivity should be assessed
based on the particular case being considered.

The case studies that are shown here demonstrate that the proposed algorithm can
model accurate and stable motion-dynamics models of MDOFs marine systems with
various degrees of hydrodynamic coupling. The off-diagonal terms representing the coupled
modes of the radiation function are highly oscillating but have relatively low magnitudes.
These terms were modeled with relatively higher-order transfer functions due to the sensitivity
of the coupled modes. Their low magnitude and highly oscillatory behavior make the transfer
function estimation more challenging. It could be argued that the low magnitude and highly
oscillatory behavior of these terms is non-physical and due to numerical issues in the calculation
of the hydrodynamic coefficients corresponding to the inter-body hydrodynamic couplings.

The motion time histories from the models using the convolution-based radiation
forces were used as the reference for the time-domain performance of the models using the
estimated transfer function array to calculate the radiation force. Ultimately, the body mo-
tion characteristics should replicate the motion characteristics calculated using Cummins’
equation. As shown in Section 6, all cases resulted in very accurate motion characteristics
while staying stable. A numerically stable time-domain model that can be analyzed in the
Laplace domain using the estimated LTI systems can eventually be used to investigate the
multibody dynamics of more complicated models with the necessary control.

8. Conclusions

The real-time convolution operation needed to calculate radiation forces can be circum-
vented using estimated LTI systems. Motion control of floating marine structures requires
the Cummins equation to be modified such that the radiation force is calculated using an
LTI system. This work presents an algorithm to calculate radiation forces experienced by
floating marine structures using an LTI system. The proposed algorithm enforces the stabil-
ity of the complete dynamics model by ensuring the passivity of the estimated LTI system.
The passivity of estimated transfer functions and the complete dynamics model is assessed
using the input passivity index. The passivity-based proposed algorithm facilitates motion
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control analyses of floating marine structures. The passivity criteria are more stringent than
mere gain margin criteria by ensuring the stability of the complete dynamic models. Also,
the passivity-based approach, unlike the Nyquist-plot-based approach, can be extended to
MDOFs systems with multiple modes and bodies. The modeling architecture presented
here can serve as a base dynamics model for marine hydrokinetics simulations. Such a
base model can then integrate and compute control forces for a model-based controller
deployed on sea-worthy devices.

Although closely related, both stability and hydrodynamic couplings can be char-
acterized using the passivity index. Not only does the passivity index ensure numerical
stability, but it also indicates the degree of stability quantified as the input passivity index.
Motion simulations further confirmed that the estimated transfer function array could
replace the convolution operation for MDOFs floating marine structures. Further work
on passivity-based control can be explored. The passivity-based time-domain methods
presented here can help develop a robust model-based framework for motion control
and establishment of marine energy grids, especially for power management and power
control. For the hydrodynamically coupled MDOFs systems, the input passivity index is
an important criterion for model robustness and can be a crucial design parameter guiding
the WEC array layout design, motion modeling, and control.
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