
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2017

LOW-COST OPEN-SOURCE GMAW-BASED METAL 3-D PRINTING: LOW-COST OPEN-SOURCE GMAW-BASED METAL 3-D PRINTING:

MONITORING, SLICER, OPTIMIZATION, AND APPLICATIONS MONITORING, SLICER, OPTIMIZATION, AND APPLICATIONS

Yuenyong Nilsiam
Michigan Technological University, ynilsiam@mtu.edu

Copyright 2017 Yuenyong Nilsiam

Recommended Citation Recommended Citation
Nilsiam, Yuenyong, "LOW-COST OPEN-SOURCE GMAW-BASED METAL 3-D PRINTING: MONITORING,
SLICER, OPTIMIZATION, AND APPLICATIONS", Open Access Dissertation, Michigan Technological
University, 2017.
https://doi.org/10.37099/mtu.dc.etdr/368

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Other Computer Engineering Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/368
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.mtu.edu%2Fetdr%2F368&utm_medium=PDF&utm_campaign=PDFCoverPages

LOW-COST OPEN-SOURCE GMAW-BASED METAL 3-D PRINTING:

MONITORING, SLICER, OPTIMIZATION, AND APPLICATIONS

By

Yuenyong Nilsiam

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2017

© 2017 Yuenyong Nilsiam

This dissertation has been approved in partial fulfillment of the requirements for the

Degree of DOCTOR OF PHILOSOPHY in Computer Engineering.

Department of Electrical and Computer Engineering

 Dissertation Advisor: Dr. Joshua M Pearce

 Committee Member: Dr. Timothy C Havens

 Committee Member: Dr. John L Irwin

 Committee Member: Dr. Chee-Wooi Ten

 Department Chair: Dr. Daniel R Fuhrmann

iii

Table of Contents

List of Figures ... v

List of Tables .. vii

Preface.. viii

Acknowledgement ... ix

Abstract ... x

Chapter 1: Introduction ... 1

1.1 Motivation .. 1

1.2 Dissertation Outline.. 1

1.3 References .. 2

Chapter 2: Integrated Voltage—Current Monitoring and Control of Gas Metal Arc Weld

Magnetic Ball-Jointed Open Source 3-D Printer .. 3

2.1 Abstract .. 3

2.2 Introduction .. 3

2.3 Experimental Section ... 5

2.3.1 Electronics... 9

2.3.2 Algorithm .. 12

2.3.3 Printing of Test Specimens ... 13

2.4 Result and Discussion .. 14

2.5 Conclusion .. 17

2.6 References .. 19

Chapter 3: Slicer and Optimization for Open-source GMAW-based Metal 3-D Printing 22

3.1 Abstract .. 22

3.2 Introduction .. 22

3.3 Background .. 24

3.4 Methods .. 25

3.4.1 Open Source Cura ... 25

3.4.2 Altering Cura .. 27

3.4.3 GMAW 3-D Printing with MOSTMetalCura ... 30

3.5 Results and Discussion ... 33

iv

3.6 Conclusions .. 43

3.7 References .. 44

3.8 Pseudocode of the Core Functions of MOSTMetalCura 48

Chapter 4: Applications of Open Source GMAW-based Metal 3-D Printing 86

4.1 Abstract .. 86

4.2 Introduction .. 87

4.3 Materials and Methods ... 87

4.4 Results and Discussion ... 89

4.5 Conclusions .. 94

4.6 References .. 96

Chapter 5: Conclusions and Future Work ... 102

5.1 Overview .. 102

5.2 Conclusions .. 102

5.2.1 Integrated Voltage-Current Monitoring System 102

5.2.2 Slicer and Optimization for Open-Source GMAW-based Metal 3-D Printing

 102

5.2.3 Applications of Open-Source GMAW-based Metal 3-D Printing 103

5.3 Future Work ... 103

5.3.1 Integrated Voltage-Current Monitoring System 103

5.3.2 Slicer and Optimization for Open-Source GMAW-based Metal 3-D Printing

 104

5.3.3 Applications of Open-Source GMAW-based Metal 3-D Printing 104

Appendix ... 106

A CuraEngine information for Chapter 3 ... 106

v

List of Figures

Figure 2.1 Photograph of magnetic ball joint metal RepRap 3-D printer used in this study.

A Miller Spoolmate 100 weld gun supplied the feedstock material which was melted by a

Millermatic 190 gas metal arc welders (GMAW) (not shown). In the photograph the open

source Raspbery Pi and Arduino based electronics are visible on the right support

column... 7

Figure 2.2 Detail of carriage assembly and magnetic ball joint with sleeves on the open

source metal RepRap 3-D printer. The lead screw from the stepper motor driving that

carriage is also visible in the center of the image. .. 8

Figure 2.3 Installed current and voltage measurement circuit in the Millermatic 190 gas

metal arc welder with 3-D printed cover (white). ... 9

Figure 2.4 Screenshot of the interface for the open source Franklin software. 11

Figure 2.5 Layers Algorithm... 12

Figure 2.6 Alternating print paths viewed in the direction of the z-axis. 14

Figure 2.7 Example top surface of a 4943 printed specimen viewed in the direction of the

z-axis. .. 14

Figure 2.8 Average current (left) and average voltage (right) of all five aluminum alloys.

Error bars represent ±2 standard error (≈95% confidence)... 15

Figure 2.9 Average current (left) and voltage (right) of all five alloys on a per-layer basis.

Error bars represent ±2 standard error. ... 16

Figure 3.1 The architecture of Franklin and schematic of the workflow from users to the

printer. ... 25

Figure 3.2 The process flow of CuraEngine based on information from [37]. 26

Figure 3.3 A table 3-D model and its LayerParts in the first layer. 27

Figure 3.4 Concentric pattern of a layer of block (101.6 mm × 31.75 mm × 31.75 mm). 28

Figure 3.5 The wire feed rate for each scale setting. .. 31

Figure 3.6 a) 3-D model of block (grid lines are every 10mm) and b) a slice showing the

path for 3-D printing using MOSTMetalCura. ... 32

Figure 3.7 a) 3-D model of chisel (grid lines are every 10mm) and b) a slice showing the

path for 3-D printing using MOSTMetalCura. ... 32

Figure 3.8 a) 3-D model of gear (grid lines are every 10mm) and b) a slice showing the

path for 3-D printing using MOSTMetalCura. ... 33

vi

Figure 3.9 The result of printed gear (60 mm diameter) with 1 mm layer height. 35

Figure 3.10 The result of printed gear (60 mm diameter) with 2 mm layer height. 35

Figure 3.11 Poor surface quality after third layer of printing speed 10 mm/s on block

(101.6 mm × 31.75 mm). .. 36

Figure 3.12 3 layers of 3-D printed block (101.6 mm × 31.75 mm). 37

Figure 3.13 3 layers of 3-D printed chisel (140 mm × 20 mm × 20 mm). 37

Figure 3.14 3 layers of 3-D printed gear (60 mm diameter). .. 37

Figure 3.15 The finished 3-D printed gear (60 mm diameter) (5 layers). 38

Figure 3.16 The finished machined gear (60 mm diameter). .. 38

Figure 3.17 With optimal settings, brown oxide due to one side blocked shield gas (101.6

mm × 31.75 mm). ... 39

Figure 3.18 Thermal induced substrate deformation which is indicated by the angle

symbol (101.6 mm × 31.75 mm). ... 40

Figure 3.19 A beveled gear 3-D model with 30 degrees angle (grid lines are every

10mm), its generated path and metal 3-D printed. .. 42

Figure 3.20 A beveled gear 3-D model with 45 degrees angle (grid lines are every

10mm), its generated path and metal 3-D printed. .. 42

Figure 3.21 A beveled gear 3-D model (grid lines are every 10mm), its generated path

and metal 3-D printed. .. 43

Figure 4.1 A bracket and metal 3-D printer a) 3-D model, b) metal 3-D printed part on

substrate, where the substrate is a model for an existing part, and c) the set-up of open-

source GMAW-based metal 3-D printer ... 90

Figure 4.2 A hoe a) 3-D model of handle hold, b) metal 3-D printed part on substrate, and

c) finished hoe, cut and mounted to wooden handle ... 91

Figure 4.3. a) 3-D model, b) toolpath, and c) metal 3-D printed part on substrate 91

Figure 4.4. A horseshoe and CNC Router Parts a) 3-D model, b) metal 3-D printed part

on substrate, c) finished part, and d) a converted CNC Router Parts metal 3-D printer ... 92

Figure 4.5. An axe a) 3-D model, b) metal 3-D printed part on substrate, and c) finished

part .. 93

Figure A.1 Data flow map of the core functions of CuraEngine (part 1) 106

Figure A.2 Data flow map of the core functions of CuraEngine (part 2) 107

Figure A.3 Data flow map of the core functions of CuraEngine (part 3) 108

vii

List of Tables

Table 2.1 Aluminum Weld Alloys and their Major Alloying Elements [23,24]. 5

Table 2.2 Print Settings Utilized for Test Specimens. .. 14

Table 2.3 Electrical Resistivity of Common Aluminum Weld Alloys. 16

Table 4.1 Settings for open-source GMAW-based steel 3-D printing. 89

viii

Preface

This dissertation contains published, submitted, or work completed by the author of this

dissertation. The contributions of the author are detailed in the following paragraphs.

Chapter 2: Yuenyong Nilsiam, Amberlee Haselhuhn, Bas Wijnen, Paul Sanders, and

Joshua M. Pearce. Integrated Voltage—Current Monitoring and Control of Gas Metal Arc

Weld Magnetic Ball-Jointed Open Source 3-D Printer. Machines 3, no. 4 (2015): 339-351.

Y.N. wrote the algorithm, helped with data analysis and took the lead on writing, A.H.

performed the metal printing and analysis, B.W. wrote the firmware and assisted with

experiments, P.S. and J.M.P. formulated the project and assisted on the analysis. All

authors co-wrote and edited the manuscript.

Chapter 3: Yuenyong Nilsiam, Paul Sanders, and Joshua M. Pearce. Slicer and

Optimization for Open-source GMAW-based Metal 3-D Printing (to be published). Y.N.

customized the software, performed the metal 3-D printing, and optimized the settings. P.S.

and J.M.P. formulated the project and assisted on the analysis. All authors co-wrote and

edited the manuscript.

Chapter 4: Yuenyong Nilsiam, Paul Sanders, and Joshua M. Pearce. Applications of Open

Source GMAW-based Metal 3-D Printing (to be published). Y.N. designed or customized

the 3-D models, performed steel 3-D printing, and machining. P.S. and J.M.P. formulated

the project and assisted on the analysis. All authors co-wrote and edited the manuscript.

ix

Acknowledgement

I would like to express my special thanks to my advisor, Dr. Joshua M. Pearce for his

inspiration, encouragement, support, trust, patience, and guidance throughout the research.

I am really thankful for all of his time and effort he had put into being my advisor.

I would like to thank Dr. Timothy C. Havens, Dr. John L. Irwin, and Dr. Chee-Wooi Ten

for serving as my committee members.

I would also like to thank Dr. Paul G. Sanders who provided supports and suggestions

during the research and the helps for review the papers.

I am grateful for my family and my wife who is everything that I need. Without her, I

would not be able to come this far.

I would also like to express my gratitude and appreciation to Dr. Amberlee Haselhuhn, Dr.

Bas Wijnen, and Gerald Anzalone for their kindly helps and supports. Also, I would like

to thank all the members of the Michigan Tech’s Open Sustainability Technology lab for

their friendship and supports.

I am also thankful for the financial support from Royal Thai Scholarship and the John

Wesley James Jones Memorial Scholarship.

Finally, I would like to thank God and my brothers and sisters at Evangel Baptist Church

for their prayers and supports.

x

Abstract

Low-cost and open-source gas metal arc welding (GMAW)-based 3-D printing has been

demonstrated yet the electrical design and software was not developed enough to enable

wide-spread adoption. This thesis provides three novel technical improvements based on

the application of mechatronic and software theory that when combined demonstrate the

ability for distributed digital manufacturing at the small and medium enterprise scale of

steel and aluminum parts. First, low cost metal inert gas welders contain no power

monitoring needed to tune GMAW 3-D printers. To obtain this data about power and

energy usage during the printing, an integrated monitoring system was developed to

measure current (I) and voltage (V) in real-time. The new design of this monitoring system

integrates an open source microcontroller and free and open source software on the open-

source metal 3-D printer to record the data. Second, the primary obstacle to the diffusion

of this technology was that existing slicing software, which determines the toolpath of the

printhead was optimized for polymer 3-D printing and inappropriate for printed parts made

from metal due to their mechanical strength. Previous prints were accomplished by

manually designing the toolpath, which was not practical for real use by an extended

userbase. To overcome the problem, the free and open-source slicing software,

CuraEngine, was forked to MOSTMetalCura, which supports the needs of GMAW-based

metal 3-D printing. The optimized setting for wire feed rate is calculated by the new slicer

based on printing speed, bead width, layer height, and material diameter. Previous studies

have shown that GMAW-based metal 3-D printing is capable of fabricating parts with good

layer adhesion and porosity. However, this preliminary work lacked demonstrations of

real-world applications. Finally, in this work, the practical applications of open-source

GMAW-based metal 3-D printing are well demonstrated for both developing world and

developed world applications including: 1) fixing an existing part by adding on a 3-D metal

feature, 2) creating a product using the substrate as part of the component, 3) 3-D printing

useful objects in high resolution, 4) near net shape objects and 5) making an integrated

product using a combination of steel and polymer 3-D printing. The results prove that low-

cost and open-source GMAW-based metal 3-D printing is ready for distributed

manufacturing by SMEs and adequate for a wide range of applications.

1

Chapter 1: Introduction

1.1 Motivation

The targets of this research were to improve and optimize the process of the low-cost open-

source gas metal arc welding (GMAW) based metal 3-D printing (Anzalone, et al. 2013)

and to demonstrate its practical applications. To gain more insightful understanding of the

metal 3-D printing process, a system that can measure current (I) and voltage (V) of the

welder in real-time during the printing process was needed. The previous successful

printing of the low-cost GMAW-based metal 3-D printing was based on hand-writing G-

code which is not practical for wider adoption of the technology. Therefore, software was

needed to convert a 3-D model into G-code or so called a slicer was vital for the success

of this type of additive manufacturing. There was also a need for an optimization of settings

for the slicer and the welder including printing speed, bead width, layer height, filament

diameter, voltage, and wire feed speed in order to obtain useful parts. Many researchers

have investigated material and mechanical properties of GMAW 3-D printing, however;

they did not demonstrate significant real applications. Accordingly, this work utilized a

new slicer and optimization functions to fabricate useful products with GMAW-based

metal 3-D printing.

1.2 Dissertation Outline

The accomplished research will be in three main chapters (Chapters 2 to 4). First, Chapter

2 describes an open-source integrated system to record real-time current and voltage of the

welder used for the GMAW-based metal 3-D printer during the printing process and its

data analysis based on each selected alloy and layer number. Second, Chapter 3 presents

software for slicing 3-D model and optimization settings for open-source GMAW-based

metal 3-D printing. A customized version of the CuraEngine (Ultimaker 2017) named

MOSTMetalCura (MOST Metal Cura 2017) and its usage is explained in this Chapter. The

necessary settings for the slicer and the welder is also discussed here. Last, Chapter 4, then

demonstrates practical applications of the GMAW-based metal 3-D printing and discusses

the potential of the technology in the context of distributed manufacturing. Finally, Chapter

2

5 draws conclusions on all of the components of this thesis and provides guidance for future

work.

1.3 References

Anzalone, Gerald C, Chenlong Zhang, Bas Wijnen, Paul G Sanders, and Joshua M

Pearce. 2013. “A Low-Cost Open-Source Metal 3-D Printer.” IEEE Access 1:

803–10. doi:10.1109/ACCESS.2013.2293018.

Ultimaker. "Ultimaker/CuraEngine." GitHub. March 15, 2017. Accessed March 16, 2017.

https://github.com/Ultimaker/CuraEngine.

"MOST Metal Cura." MOST Metal Cura - Appropedia: The sustainability wiki. Accessed

March 16, 2017. http://www.appropedia.org/MOST_Metal_Cura.

3

Chapter 2: Integrated Voltage—Current Monitoring and

Control of Gas Metal Arc Weld Magnetic Ball-Jointed Open

Source 3-D Printer1

2.1 Abstract

To provide process optimization of metal fabricating self-replicating rapid prototyper

(RepRap) 3-D printers requires a low-cost sensor and data logger system to measure current

(I) and voltage (V) of the gas metal arc welders (GMAW). This paper builds on previous

open-source hardware development to provide a real-time measurement of welder I-V

where the measuring circuit is connected to two analog inputs of the Arduino that is used

to control the 3-D printer itself. Franklin firmware accessed through a web interface that is

used to control the printer allows storing the measured values and downloading those stored

readings to the user’s computer. To test this custom current and voltage monitoring device

this study reports on its use on an upgraded all metal RepRap during the printing of

aluminum alloy (ER1100, ER4043, ER4943, ER4047, and ER5356). The voltage and

current data were analyzed on a per alloy basis and also layer-by-layer in order to evaluate

the device’s efficacy as a monitoring device for 3-D printing and the results of the

integrated design are discussed.

2.2 Introduction

There has been a sustained technological development in the global community of makers

of low-cost self-replicating rapid prototypers, which started with polymer 3-D printers that

could fabricate approximately half of their components [1–3]. Today these RepRap

platforms have evolved to machines capable of manufacturing using subtractive [4,5] as

well as additive methods in a wide variety of polymers [5–7], composites [8], ceramics [9],

and metals [10–15]. Of perhaps the most widespread interest in industry is the potential for

a low-cost metal 3-D printer capable of printing both steel [10] and aluminum parts [11].

1 This chapter has been published as an article in Machines. Citation: Nilsiam Y, Haselhuhn A, Wijnen B,

Sanders P, & Pearce J (2015). Integrated Voltage—Current Monitoring and Control of Gas Metal Arc Weld

Magnetic Ball-Jointed Open Source 3-D Printer. Machines, 3(4):339–351. Available online 3 November

2015 http://dx.doi.org/10.3390/machines3040339.

4

These open source metal 3-D printers can be fabricated for as little as $1200 [10] using a

conventional metal inert gas (MIG) welder and controlled with open-source Arduino

electronic boards [16], which effectively cuts the costs of metal 3-D printing by two orders

of magnitude and make the technology far more accessible for a wide range of applications,

perhaps even those in the developing world [17–19]. The low-cost consumer-grade MIG

welders used for RepRap 3-D metal printing contain minimal controls. To provide process

optimization of these RepRap 3-D printers requires a low-cost sensor and data logger

system to measure current and voltage of the gas metal arc welders (GMAW) and previous

work has developed an open source method for real-time measurement of welder voltage

or current at the expense of adding another Arduino microcontroller to the system [20].

This data is critical for both gaining a fundamental understanding of the material processing

technique in order to begin to optimize deposition predictively, but also in process

monitoring is important for enabling feedback control and error detection.

In this study this extra cost is overcome as a new design is provided where the measurement

of the current and voltage is done by attaching a measuring circuit to two analog inputs of

the Arduino that is used to control the 3-D printer. The Franklin firmware, detailed

extensively in Wijnen et al. [21] continuously sends the data that it reads from those pins

to the host computer, which converts the raw ADC readings into voltage and current, and

allows storing them on the file system. The web interface that is used to control the printer

allows downloading those stored readings to the user’s computer. To test this custom

current and voltage monitoring device this study reports on its use on an upgraded all metal

RepRap during the printing of aluminum alloy mechanical test specimens [22]. Common

aluminum weld alloys include ER1100, ER4043, ER4047, and ER5356 (Table 2.1).

ER4943 is a new welding alloy that was designed to eliminate the need for chemical

dilution required for traditional weld alloys in order to obtain a quality weld [23]. Since

ER4943 does not require chemical dilution, it may serve as an ideal 3-D printing alloy.

Voltage and current were monitored during the printing of ER1100, ER4043, ER4943,

ER4047, and ER5356. The voltage and current data were analyzed to provide monitoring

on a per alloy basis and also layer-by-layer for 3-D printing metal process and property

optimization.

5

Table 2.1 Aluminum Weld Alloys and their Major Alloying Elements [23,24].

Alloy Main Alloying Element

ER1100 None; ≥99% Aluminum

ER4043 4.5%–6% Silicon

ER4943 5%–6% Silicon + 0.1%–0.5% Magnesium

ER4047 11%–13% Silicon

ER5356 4.5%–5.5% Magnesium

2.3 Experimental Section

A low-cost, open-source, metal 3-D printer and an open-source software tool chain were

used to print all test specimens. This metal 3-D printer utilized GMAW technology to weld

aluminum parts 3-dimensionally. A Miller Spoolmate 100 weld gun supplied the feedstock

material which was melted by a Millermatic 190 GMAW. The 3-D printer design described

by Anzalone, et al., [10] and Haselhuhn, et al. [11] was further refined to the new machine

design (Figure 2.1). It was originally inspired by a Rostock self-replicating rapid -

prototyper (RepRap) but was modified such that the weld gun print head remained

stationary while the print substrate build plate moved on a 3-axis stage [25]. Both the last

version [11] and this all-metal device have 304 mm long, 8 mm diameter guide rods on a

340 mm diameter circle. Following the Open Source Hardware Associations definition of

open hardware [26], the bill of materials and the open source blue prints for the magnetic

bearing-based 3-D printer are available in the Open Science Framework [27]. As can be

seen in Figure 1, the open-source controller and relay board are mounted to a leg with

polymer RepRap 3-D printed parts that electrically isolate the electronics from the frame

to minimize the potential of damaging electronics should the frame become electrified

during GMAW printing.

This original design has been further developed with the replacement of mechanical rotary

bearings with magnetic bearings to allow for an increased range of motion, smoother

motion, and a larger build volume (Figure 2.2). The range of motion in the x–y plane is

approximately 26 cm in each direction, 10 cm more than the previous version of the robot

with conventional tie rod ends. Motion in the z-direction is roughly equivalent between the

two machines at 76 mm. The modification also reduced backlash, but highlighted other

6

potential deficiencies in the design. The most notable of which is temporarily moving away

from true RepRap potential until the low-cost metal printing precision is improved. Thus,

this device should be viewed as a research 3-D printer, which in the future can be converted

back to a true RepRap.

Each magnetic ball joint consists of a 19.05 mm (3/4'') G25 chrome plated steel ball

bearing, a 19.05 mm (3/4'') diameter × 12.7 mm (1/2'') thick high-strength neodymium ring

magnet with countersinks accommodating #8 or #10 screws, and a 19.05 mm (3/4'') inner

diameter metal sleeve epoxied to the outside diameter of the magnet. The joint is effected

by the spherical ball bearing seating in the inner diameter of the ring magnet, where it is

held in place by magnetic force. The 19.05 mm (3/4'') id sleeve acts to provide additional

support in the magnet’s radial direction, reducing the potential for disengagement as the

end effector approaches the end of the printable radius when the tie rods approach a

horizontal orientation. A close-up of one of the carriages is shown in Figure 2.2, which

also shows the magnetic ball joints with sleeves. Earlier work found that in the absence of

these sleeves, joints were prone to disengage under high acceleration or as the end effector

approached the outer end of the printable radius, resulting in the entire end

effector/substrate assembly falling off the machine.

7

Figure 2.1 Photograph of magnetic ball joint metal RepRap 3-D printer used in this study.

A Miller Spoolmate 100 weld gun supplied the feedstock material which was melted by a

Millermatic 190 gas metal arc welders (GMAW) (not shown). In the photograph the open

source Raspbery Pi and Arduino based electronics are visible on the right support

column.

8

Figure 2.2 Detail of carriage assembly and magnetic ball joint with sleeves on the open

source metal RepRap 3-D printer. The lead screw from the stepper motor driving that

carriage is also visible in the center of the image.

As can be seen in Figure 2.1, there are 12 ball joints, one at each end of the six tie rods that

connect the end effector to the carriages. The six guide rods (precision-ground 8 mm

diameter A2 tool steel.) are grouped in pairs with each pair on 6 cm centers using a single

axis. The all-aluminum frame consists of a pair of circular ends cut from 10.16 mm (0.4'')

thick plate (alloy 1100). The upper plate allows the tie rods to pass through it to hold the

substrate. Vertical support legs are provided by three pieces of 25.4 mm × 76.2 mm (1'' ×

3'') rectangular aluminum tubing 400 mm long (6063 T52 aluminum), which prevent the

three stepper motors from becoming a path to ground should the frame become electrified

during welding.

Motion is provided by three stepper motors with integrated lead screw shafts. Lead screws

are four-start and have an 8 mm pitch. The stepper motors are 200 step bi-polar driven with

1/16 microstepping. The combination of lead screw and motor yields movement precision

in the z-direction (vertical) of 2.5 microns. Movement precision in the x–y plane is 4.6

micron in the center of the bed, and varies with the location of the end effector. Linear

bearings (LM8UU) ride on the guide rods and are clamped into a pair of 0.400'' aluminum

housings using bolts, forming carriages to which tie rods are connected. Tie rods are

constructed from 5/16'' rigid aluminum tubing. The end effector is triangular and

9

incorporates means for attaching a platform upon which insulation is mounted as seen in

Figure 2.1. The welding gun support is a welded “L” made with 9.525 mm × 76.2 mm (3/8''

× 3'') mild steel. The gun nozzle is held in place directly over the axial center of the robot

by a piece of 25.4 mm (1'') mild steel pipe having a set screw in one side to secure the

nozzle. The support can be moved vertically to set the location of the gun relative to the

substrate.

2.3.1 Electronics

The IV measurement board from [20] is connected to a power supply. It has three wires

which in the previous version were connected to an Arduino: the ground, and two analog

signals. In the new version, they need to be connected to the RAMPS board that is operating

the printer. The ground must again be shared with a ground pin on the RAMPS, and the

analog signals must be connected to any available analog inputs, such as A3 and A4. Those

three pins are all located on the AUX1 header [28]. For protection it is housed in a 3-D

printed polymer case [27] as shown in Figure2. 3.

Figure 2.3 Installed current and voltage measurement circuit in the Millermatic 190 gas

metal arc welder with 3-D printed cover (white).

In Franklin’s interface (Figure 2.4) all analog inputs are handled as if they are temperature

controls. Therefore, two new temperature controls must be added, and their pins must be

set to correspond to the analog pins receiving the IV measurements. Franklin can use

10

temperature controls to either use a thermistor or a linear relation between the ADC reading

and the reported value. β is a property of the thermistor and β needs to be set to NaN (which

is not a valid value for a thermistor), so a linear relation, bax , is used for its signal.

Setting a to 1 and b to 0 will output the analog reading in a range from 0 to 1024. To

make the output display voltage and current, a different value for a will be required, and

possibly for b as well. For the electronics that were used, the formulas for the conversion

from output voltage to measured values are as follows.

15/2000 inreal II

 (2.1)

 2636/27636 inreal VV (2.2)

where realI and realV are the values at the welder, in ampere and volt respectively, and inI

and inV are the values at the Arduino, both in volt.

0R needs to be set to the slope on the ADC reading. Using the fact that the maximum value

for the values at the Arduino is 5V and the maximum ADC value is 1024, this means for

I

651.0

01024

015/52000

dx

dy

 (2.3)

And for V

 0512.0
01024

02636/527636

dx

dy
 (2.4)

11

Figure 2.4 Screenshot of the interface for the open source Franklin software.

The firmware continuously sends the data that it reads from those pins to the host computer,

which converts the raw ADC readings into voltage and current using the given values for

a and b , and allows storing them on the file system. The web interface that is used to

control the printer allows downloading those stored readings to the individual user’s

computer.

Using the Arduino of the printer comes at the cost of sampling speed: the controller has

other tasks that take time, and the serial connection is also used for other traffic. A

dedicated controller for the readings, as was used in the previous version, can provide more

readings per second. The measurements presented here did not require the extra speed, so

this was sacrificed for the benefit of reduced hardware complexity and cost.

12

2.3.2 Algorithm

From the recorded data file, the timestamp in the first column is in a negative millisecond

format which is not intuitive. To convert the negative millisecond (milt) to the positive

second (sect) can be done using Equation (2.5) where 𝑁is the number of lines in the input

data file.

1,...,2,1,0

1000/)0()()(sec

Ni

titit milmil
 (2.5)

There can be two types of noise in the data: (1) zero-noise and (2) non-zero-noise. Zero-

noise is the zero values that occur during the layer that need to be replaced with a very

small value so the layer algorithm does not misinterpret them as the layer separation points

(In this experiment, 10−7 is used). Non-zero-noise is non-zero values that occur between

the layers that need to be replaced by 0. After that data is separated into layers of non-zero

data by the following concept (Figure 2.5). First, the logical operator “not equal” (~=) is

used to find non-zero data. Then the “diff” function is used to find the difference between

the current cell and the previous cell in each row of the result from the previous step.

Finally, the start index and the end index of each layer are found using “find” function

which find the positive value for the start index and the negative value for the end index.

Figure 2.5 Layers Algorithm.

13

The two standard error (2SE) of each layer is calculated in Equations (2.6)–(2.8) where d

is the data, μ is the mean or the average of the data layer length n, and SD is the standard

deviation.

n

i

id
n 1

1
 (2.6)

n

i

id
n

SD
1

2

1

1
 (2.7)

n

SD
SE

2
2 (2.8)

The average voltage and current for each layer were calculated on a per alloy basis.

2.3.3 Printing of Test Specimens

Standard 0.035 inch (0.89 mm) diameter ER1100 and ER4047 wire (AlcoTec , Traverse,

MI, USA) in addition to ER4043, ER4943, and ER5356 wire (Hobart) were used as

feedstock material to print test blocks on clean and degreased ASTM A36 low carbon steel

print substrates. The print test blocks were each 108 mm × 31.75 mm × 25.4 mm whereas

the print substrates were 127 mm × 127 mm × 6.35 mm in size. Low carbon steel was

utilized as a print substrate because this was shown in previous work to encourage a weak

interface between printed part and print substrate, thus allowing printed parts to be removed

with minimal energy [11,12]. Print settings and print path were the same for all alloys

(Table 2.2, Figure 2.6). Five blocks per alloy were printed (Figure 2.7). Voltage and current

data were collected for all specimens during each print cycle.

14

Table 2.2 Print Settings Utilized for Test Specimens.

Parameter Value

Welder Setting (unitless) 1

Wire Feed Rate (mm/s) 124.6

Print Speed (mm/s) 10

Wire Stick-Out (mm) 10

Shield Gas Flow Rate (L/s) 0.24

G-Code Layer Height (mm) 2.5

G-Code Lateral Bead Spacing (mm) 3.3

Pause After Each Layer (s) 60

Number of Print Layers 15

Figure 2.6 Alternating print paths viewed in the direction of the z-axis.

Figure 2.7 Example top surface of a 4943 printed specimen viewed in the direction of the

z-axis.

2.4 Result and Discussion

The currents, averaged from more than 200,000 data points, of ER1100, ER4043, and

ER4943 specimens were statistically equivalent and greater in value than that of ER4047

and ER5356 (Figure 2.8). By contrast, ER4047 exhibited the largest voltage on average,

followed by ER1100, and finally with ER4043, ER4943, and ER5356 exhibiting

statistically equivalent voltages.

15

Figure 2.8 Average current (left) and average voltage (right) of all five aluminum alloys.

Error bars represent ±2 standard error (≈95% confidence).

On a per-layer basis, there is a significant difference on average between the first layer and

subsequent print layers. The first print layer typically exhibited significantly lower current

and higher voltage compared with other print layers (Figure 2.9). Odd layers appeared to

exhibit lower current and voltage, compared with even layers although this trend was not

statistically significant; this may be due to differences in print paths (Figure 2.6). More

scatter in the current and voltage data, and thus more error, was observed for initial layers

as opposed to the final layers. This is because the initial weld is purposely poor to allow

for substrate release [10,11].

On a per-alloy basis, the differences may be explained by the electrical resistivity of each

alloy (Table 2.3). The commercially pure aluminum alloy, ER1100, had the smallest

electrical resistivity and it exhibited the highest voltages and currents. The three 4000 series

aluminum alloys, 4043, 4943, and 4047, all had very similar electrical resistivities and the

current-voltages they exhibited were all statistically equivalent and between those of 1100

and 5356. The 5356 aluminum-magnesium alloy had the largest electrical resistivity and

also exhibited the smallest currents and voltages. As electrical resistivity decreases,

electrical conductivity increases and more current can be supplied at a given voltage. Since

the welder control strategy is unknown, patterns in voltage variation cannot be fully

explained.

16

Figure 2.9 Average current (left) and voltage (right) of all five alloys on a per-layer

basis. Error bars represent ±2 standard error.

Table 2.3 Electrical Resistivity of Common Aluminum Weld Alloys.

Alloy Electrical Resistivity (× 10−6 Ω·cm)

1100 2.99

4043 4.16

4943 4.21

4047 4.31

5356 5.98

A difference in electrical resistivity may be insufficient to fully explain the differences in

weld currents and voltages between the five alloys studied. Specifically, the large

difference in 5356 values compared with the other four alloys does not follow the same

scaled difference in electrical resistivity. During welding it was observed that there was

more spatter of the 5356 alloy than of the other printed alloys. A contributing factor to the

spatter may have been wire and arc travel. The wire was sufficiently stiff such that, even

after traveling through the weld gun, the wire continued to curve in the direction it was

spooled. At sample edges, the curved wire compounded with arc travel to produce more

spatter and shorts in the arc. These electrical shorts were recorded as zero values by the

measurement device which would lower an average of the data.

The current and voltage of the first layer were different than subsequent layers due to

differences in substrate and print materials. The first weld layer attempted to weld the

aluminum print material to the low carbon steel substrate whereas all subsequent layers

directly welded aluminum to aluminum. Due to differences in the steel and aluminum

17

melting temperatures, there was insufficient arc energy to melt the steel. This resulted in

lack of penetration of aluminum into the steel substrate and lack of fusion to the surface of

the steel (which in beneficial in substrate release). When aluminum was printed on

aluminum, there was sufficient energy to melt the aluminum to provide weld penetration

and fusion.

A byproduct of printing aluminum on a steel substrate is a first layer with significant

topographical variation [10]. As subsequent layers are printed, the distance between the

first layer and the weld gun changes. As distance increases, the arc length also increases,

and this increases the voltage [29]. Longer arcs are less focused and can result in more

spatter of metal [29]. This erratic behavior of the arc thus translates to more scatter in the

data. As more layers are printed, the topography of the sample becomes more uniform,

stabilizing the arc length and behavior.

Both the specific results for the alloys presented here as well as the open-source integration

scheme provided under open hardware licenses here are applicable to other similar projects

such as wire + arc additive manufacturing (WAAM) for aluminum [30,31].

2.5 Conclusion

This paper has provided the new design for an integrated mechanically improved delta-

style GMAW 3-D printer with current and voltage measurement of welder without adding

an extra controller. The improved mechanical design increased the build radius by 10 cm

and improved print quality. In addition, by connecting the IV measuring board back to the

RAMPS board that is controlling the printer, the measurement can be recorded in real-time

through the RAMPS board. This new design helps reduce the cost and the complexity of

hardware. The measurement provides the current and voltage aspect for each type of alloy

during welding. The alloys were successfully monitored and had measurements consistent

with their electrical resistivities. The ability to monitor the voltage and current of GMAW

provides more data related to the energy input for modeling and printing process and

property optimization.

Acknowledgements

The authors would like to thank Anthony Pinar, James De Clerk, Jerry Anzalone and Tim

Havens for the help in the designs and technical support. The authors would like to

acknowledge helpful discussions with America Makes team members. The authors would

18

also like to acknowledge support and helpful discussions with C. Hsu and technical

assistance from the Miller Electric Manufacturing Company. This material is based on

research sponsored by Air Force Research Laboratory under agreement number FA8650-

12-2-7230. The U.S. Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation thereon. The views and

conclusions contained herein are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements, either expressed or implied,

of Air Force Research Laboratory or the U.S. Government.

19

2.6 References

1 Jones, R.; Haufe, P.; Sells, E.; Iravani, P.; Olliver, V.; Palmer, C.; Bowyer, A.

Reprap—The replicating rapid prototyper. Robotica 2011, 29, 177–191.

2 Sells, E.; Bailard, S.; Smith, Z.; Bowyer, A.; Olliver, V. Reprap: The replicating rapid

prototyper: Maximizing customizability by breeding the means of production. In

Handbook of Research in Mass Customization and Personalization; World Scientific:

Singapore, 2009.

3 Bowyer, A. 3D printing and humanity’s first imperfect replicator. 3D Print. Addit.

Manuf. 2014, 1, 4–5.

4 Kostakis, V.; Papachristou, M. Commons-based peer production and digital

fabrication: The case of a reprap-based, lego-built 3D printing-milling machine.

Telemat. Inform. 2014, 31, 434–443.

5 Corbett, J. Reprap Colour Mixing Project; Faculty of Engineering and Design, Final

Year MEng Project; Department of Mechanical Engineering, University of Bath: Bath,

UK, 2012.

6 Baechler, C.; DeVuono, M.; Pearce, J.M. Distributed recycling of waste polymer into

reprap feedstock. Rapid Prototyp. J. 2013, 19, 118–125.

7 Hunt, E.J.; Zhang, C.; Anzalone, N.; Pearce, J.M. Polymer recycling codes for

distributed manufacturing with 3-D printers. Resour. Conserv. Recycl. 2015, 97, 24–

30.

8 Leigh, S.J.; Bradley, R.J.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A. A simple, low-

cost conductive composite material for 3D printing of electronic sensors. PLoS ONE

2012, 7, e49365, doi:10.1371/journal.pone.0049365.

9 Anzalone, G.C.; Wijnen, B.; Pearce, J.M. Multi-material additive and subtractive

prosumer digital fabrication with a free and open-source convertible delta RepRap 3-

D printer. Rapid Prototyp. J. 2015, 21, 506–519.

10 Anzalone, G.C.; Zhang, C.; Wijnen, B.; Sanders, P.G.; Pearce, J.M. A low-cost open-

source metal 3-D printer. IEEE Access 2013, 1, 803–810.

11 Haselhuhn, A.S.; Gooding, E.J.; Glover, A.G.; Anzalone, G.C.; Wijnen, B.; Sanders, P.G.;

Pearce, J.M. Substrate release mechanisms for gas metal arc weld 3D aluminum metal

printing. 3D Print. Addit. Manuf. 2014, 1, 204–209.

12 Haselhuhn, A.S.; Wijnen, B.; Anzalone, G.C.; Sanders, P.G.; Pearce, J.M. In situ

formation of substrate release mechanisms for gas metal arc weld metal 3-D printing.

J. Mater. Process. Technol. 2015, 226, 50–59.

13 Kading, B.; Kegley, M.; Delzer, T.; Straub, J.; Kerlin, S. Development of a Metal-

Printing 3D Printer at the University of North Dakota. In Proceedings of the University

20

of North Dakota School of Graduate Studies Scholarly Forum, Grand Forks, ND,

USA, 10–11 March 2015.

14 Torabi, P.; Petros, M.; Khoshnevis, B. Selective inhibition sintering: The process for

consumer metal additive manufacturing. 3D Print. Addit. Manuf. 2014, 1, 152–155.

15 Teles, G.; Duke, T.; Coleman, K.; Zhao, Y.; Kim, J.; Shafai, C.; Shafai, L. 3D metal-

plastic printer for fabrication of antennas on custom and flexible surfaces. University

of Manitoba: Winnipeg, MB, Canada, 2015.

16 Arduino. Available online: https://www.arduino.cc (accessed on 18 October 2014).

17 Pearce, J.M.; Blair, C.M.; Laciak, K.J.; Andrews, R.; Nosrat, A.; Zelenika-Zovko, I.

3-D printing of open source appropriate technologies for self-directed sustainable

development. J. Sustain. Dev. 2010, 3, 17–29.

18 Canessa, E.; Fonda, C.; Zennaro, M. Low-cost 3D printing for science, education and

sustainable development. The Abdus Salam International Centre for Theoretical

Physics (ICTP): Trieste, Italy, 2013; Volume 11.

19 Birtchnell, T.; Hoyle, W. 3D Printing for Development in the Global South: The 3D4D

Challenge; Palgrave Macmillan: London, UK, 2014.

20 Pinar, A.; Wijnen, B.; Anzalone, G.; Havens, T.; Sanders, P.; Pearce, J. Low-cost

open-source voltage and current monitor for gas metal arc weld 3D printing. J. Sens.

2015, 2015, 1–8.

21 Wijnen, B.; Anzalone, G.C.; Haselhuhn, A.S.; Sanders, P.G.; Pearce, J.M. Free and

Open Source Control Software for 3-D Motion and Processing. Available online:

https://github.com/mtu-most/franklin (accessed on 29 October 2015).

22 Haselhuhn, A.S.; Buhr, M.B.; Wijnen, B.; Wood, T.D.; Anzalone, G.C.; Sanders, P.G.;

Pearce, J.M. Structure-property relationships of common aluminum weld alloys

utilized as feedstock for gmaw-based metal 3-D printing. 2015, under review.

23 Anderson, B.E.; Hsu, C. Aluminum Alloy Welding Wire. U.S. Patent Application No.

13/023,158, 11 August 2011.

24 Dickerson, P.B. Welding of aluminum alloys. In ASM Handbook; ASM International:

Materials Park, OH, USA, 1993; Volume 6, pp. 722–739.

25 Rostock. Available online: http://reprap.org/wiki/Rostock (accessed on 23 October 2015).

26 Open Source Hardware Association. Open Source Hardware (OSHW) Statement of

Principles 1.0. Available online: http://www.oshwa.org/definition/ (accessed on 25

September 2015).

27 Magneto: Open Source Metal 3-D Printer. Open Science Framework. Available

online: https://osf.io/ytvgm/ (accessed on 25 September 2015).

28 Ramps. Available online: http://reprap.org/wiki/RAMPS_1.4 (accessed on 23 October

2015).

21

29 Mandal, N.R. Aluminum Welding; Narosa Publishing House: New Delhi, India, 2002.

30 Gu, J.L.; Ding, J.L.; Cong, B.Q.; Bai, J.; Gu, H.M.; Williams, S.W.; Zhai, Y.C. The

Influence of Wire Properties on the Quality and Performance of Wire + Arc Additive

Manufactured Aluminium Parts. Adv. Mater. Res. 2015, 1081, 210–214.

31 Ding, J.; Colegrove, P.; Martina, F.; Williams, S.; Wiktorowicz, R.; Palt, M.R.

Development of a laminar flow local shielding device for wire + arc additive

manufacture. J. Mater. Process. Technol. 2015, 226, 99–105.

22

Chapter 3: Slicer and Optimization for Open-source GMAW-

based Metal 3-D Printing2

3.1 Abstract

Low-cost gas metal arc welding (GMAW)-based 3-D printing has proven effective at

additive manufacturing steel and aluminum parts. Early success was based on hand-writing

G-code. To be functional for a wide array of users, software must be capable of slicing a

3-D model and generating G-code for the path of each layer automatically. In order for a

free slicer program to support the open-source metal 3-D printer, this paper reports on the

upgrading of the free and open source CuraEngine into MOSTMetalCura, which provides

the abilities to: i) change the perimeter metric from width to track count, ii) avoid

movement that overlaps previous weld beads, iii) have infill start immediately after the

perimeter finished and in the direction that eliminates translations, iv) add a variable pause

between layers to allow for substrate cooling, v) configure GPIO pins to turn on/off the

welder, and vi) set optimized wire feed speed and voltage of the welder based on printing

speed, layer height, filament diameter, and tool track width. The process for doing this and

the changes made are first detailed and then used to help optimize the function of the printer

for ER70S-6 steel. To find the optimized function based on volume of material, the line

width, layer height, and printing speed are varied to provide wire feed speed calculated by

MOSTMetalCura, then the settings are used to optimally print 3-D models. The results of

3-D printing three case study objects of increasing geometric complexity using the process

optimization are presented, which show resolution of 1mm bead widths.

3.2 Introduction

Additive manufacturing with 3-D printing has matured beyond simple rapid prototyping

[1-5] to small-batch production [6-8] and distributed manufacturing [9-13]. Some of the

most industrially interesting 3-D printing is that of metals, which include laser sintering

and melting [14-18] and electron beam melting [19-21]. These systems are mature and such

industrial-grade additive manufacturing machines can be prohibitively expensive (e.g. >

2 This chapter has been completed as an article to submit. Citation: Nilsiam Y, Sanders P, & Pearce J

(2017). Slicer and Optimization for Open-source GMAW-based Metal 3-D Printing.

23

US$500,000 - US$1.5 million), which is beyond the reach of consumers and small and

medium sized enterprises (SMEs) [22]. Recently progress has been made in upgrading the

popular open-source self-replicating rapid prototyper (RepRap) 3-D printer designs [23-

25] into a low-cost open-source metal 3-D printer [26]. This metal 3-D printer uses a low-

cost gas-metal arc welder as a fixed printer head and is controlled by an open-source

Arduino micro-controller [27,28]. Opposite the motion of most polymer 3-D printers where

the printer head moves, the stage of the metal 3-D printer holds a re-usable substrate and

moves during the printing [29,30]. The power of the welder can also be monitored with

open source hardware and software [31,32]. An open-source firmware called Franklin [33]

is used to control the metal 3-D printer by translating G-code into controlling signals. G-

code is a numerical control programming language that is commonly used for controlling

automated machine tools and it can be manually written or generated by slicer programs.

Low-cost GMAW-based 3-D printing has proven effective at both steel and aluminum [26,

34].

This early success was based largely on hand-coding G-code for relatively simple

geometries. To be functional for a wide array of users, a slicer software must be capable of

slicing a 3-D model into layers and then generating G-code for the path of each layer.

Expensive metal 3-D printing systems come with their own proprietary slicers.

Unfortunately, the free and open source slicers such as Cura [35] and Slic3r [36] are made

primarily for polymer based 3-D printing. In order for a slicer program to support the open-

source metal 3-D printer, some functions need to be added to existing polymer based slicers

including: i) the ability to change the perimeter metric from width of the perimeter to track

count because the line width is constant, ii) the ability to avoid movement that will run over

the previously laid weld bead (polymer printers can handle this contact but this is not

possible for metal as the solidified metal surface does not have the give of warm polymer

layer), iii) have infill starts immediately where the last segment of the perimeter finished

and in the direction that eliminates translations to reach previously unfilled areas, iv) add

an option to pause between layers to allow for substrate cooling and ability to set the pause

time, v) the capability to configure the General-Purpose Input/Output (GPIO) pins (to turn

on and off the welder), and vi) set the optimized wire feed speed and voltage of the welder

based on the printing speed, layer height, filament diameter, and the width tool track. To

provide this new functionality for open-source metal 3-D printing, the open source

CuraEngine [37], has been upgraded here to MOSTMetalCura. The process for doing this

and the changes made are first detailed and then used to enable better control over the

printer to help optimize the function of the printer for steel using printing speed, the wire

feed speed, and the voltage of the welder. The optimized function would result in an

accurately printed part with good observational resolution and surface quality. To find the

optimized function, the following experiments are done: the line width, layer height, and

printing speed are varied to provide wire feed speed calculated by the slicer

24

MOSTMetalCura, then the settings would be used to optimally print 3-D models. Other 3-

D printing quality factors are assessed for optimization of the slicing algorithm as well

including shield gas parameters, temperature and humidity. Even though, these factors are

not used directly by the slicer, they are crucial for metal 3-D printing. The 3-D printing

results of three case study objects of increasing geometric complexity are presented and

discussed.

3.3 Background

Today, metal 3-D printing is a popular topic, there is a rapid growth of journal papers about

metal 3-D printing in search results from Google Scholar [38]. Even with the high costs of

commercial metal 3-D printers and their maintenance, many companies still pay the price

due to their ability to perform rapid prototyping [38,39]. A low-cost open-source metal 3-

D printer will lower the barrier for the technology to be accessible to individuals and small

and medium enterprises (SMEs). This will allow more people to fabricate customized 3-D

objects and will be rapid growth and improvements by open-source communities around

the world. The metal 3-D printer RepRap [26] is open-source hardware inspired by the

Rostock, which is a Deltabot RepRap and is controlled by open-source software, Franklin

[33]. Franklin is the control system for the low-cost metal 3-D printer which contains two

parts. First, the firmware that controls the printer and exchanges information with the web-

based server on a host computer in the same network. Second, the web interface that

handles the G-code from a slicer then communicates with the Franklin Firmware, which

can control the motors, temperature, and GPIO pins (see Figure 3.1). One of the GPIO pins

is used in the low-cost metal 3-D printer to turn the welder on or off. Opposite from the

original RepRap printers, the metal 3-D printer has the welder as the printer head fixed in

a single position and the three-axis stage moving according to the printing path. Weld-

based 3-D printing is relatively inexpensive and produces good adhesion between layers

with low porosity, but there are constraints in resolution and surface quality [29]. To solve

the problem, gas metal arc welding (GMAW) is used for the low-cost metal 3-D printer.

25

Figure 3.1 The architecture of Franklin and schematic of the workflow from users to the

printer.

Cura, one of the most popular open source slicing programs, was developed by Daid

(David Braam) and was released on the AGPLv3 license. Two main components of Cura

are the GUI (Graphic User Interface) and the slicing engine called CuraEngine [40,41].

The GUI part is written in Python and features a 3-D model file viewer, the ability to send

a .STL file to CuraEngine as well as receive G-code from, and connecting with a 3-D

printer and sending the G-code to it. The CuraEngine is written in C++ and is the core for

the slicing process. Working directly with the CuraEngine also gives us the capability to

have more control over the slicing process through settings in the configuration file

(fdmprinter.json).

3.4 Methods

3.4.1 Open Source Cura

Open-source software, such as Cura, provides access to all the source code and the freedom

to modify it. However, often, as in this case, is only available with the limited technical

details and support. Cura has two main parts: 1) the GUI and 2) the slicing engine called

CuraEngine. The CuraEngine is written in C++ and can be used as a separate program that

26

handles slicing and generating G-code. The CuraEngine starting code was taken from

GitHub with the version number 15.06 [37]. In order to modify the source code, the

structure and the processes of the program need to be known and understood. The process

flow of the CuraEngine can be found in Figure 3.2.

Figure 3.2 The process flow of CuraEngine based on information from [37].

LayerParts are isolated parts in a layer. For example, a simple table with 4 legs is sliced

into layers. The lowest layer would have 4 parts in the layer (see Figure 3.3.). Skins are

areas that supposed to be fully filled with material. Usually the top and bottom of a model

would be fully filled. Infill are areas inside the model and either can be fully filled, partially

filled or left empty. However, in metal 3-D printing both skin and infill are always fully

filled.

27

Figure 3.3 A table 3-D model and its LayerParts in the first layer.

3.4.2 Altering Cura

Working directly with CuraEngine provides more control compared to using Cura because

more settings can changed via the configuration file, fdmprinter.json. First a setting called

machine_metal_printing is added to the configuration file. This setting is a boolean data

type. If it is set to true, then the generated G-code would be appropriate for the open-source

metal 3-D printer. If it is set to false, then the generated G-code would be the same as using

original CuraEngine without using other additional settings for MOST's metal 3-D printer.

A boolean member called isMetalPrinting is added to class gcodeExport in order to keep

the setting value of machine_metal_printing. Next, the perimeter metric can be changed

from width to track count as the width is not controllable as in FFF of polymers by changing

the setting named wall_line_count in the configuration file. This number would define how

many track count for the perimeter. To avoid running over the previous laid weld bead and

also to start the infill immediately after the last segment of the perimeter is done, the

parameters top_bottom_pattern and fill_pattern should be set to Concentric, so all printing

would be in concentric pattern (see Figure 3.4). The concentric pattern would make the

printing go around either form the outside to the inside or vice versa. The pattern is

switched and repeated every other layer.

28

Figure 3.4 Concentric pattern of a layer of block (101.6 mm × 31.75 mm × 31.75 mm).

Next, for a GMAW metal 3-D printer, the welder can be turned on or off via G-code, so

the settings machine_welder_on_gcode and machine_welder_off_gcode were added to the

configuration file. The data type of these settings is string and the value of each setting is

G-code commands to turn on and turn off welder through GPIO pin [33]. A default value

of machine_welder_on_gcode is G4 P0\nM42 P1 S1\n. G4 is G-code command for the

printer to be still doing nothing and P0 means for zero millisecond. \n is newline command.

M42 is switching general purpose I/O pin command and M42 P1 S1 means set pin 1 to

value 1 [42]. A default value of machine_welder_off_gocde is G4 P0\nM42 P1 S0\n and

can be interpreted in the same way as previous example. A boolean member called

isWelding is added to class gcodeExport to keep a status of the welder. Two string variables

are added to the class, welder_on to store setting value from machine_welder_on_gocde

and welder_off to store setting value from machine_welder_off_gcode. In function

writeMove() of gcodeExport class, if extrusion_mm3_per_mm is greater than 0.000001,

isMetalPrinting is true, and isWelding is not true, then the welder_on would be inserted

into the generated G-code. If extrusion_mm3_per_mm is lesser than 0.000001, then it is

only a traveling without printing and the welder_off would be inserted into the generated

G-code.

In order to set the values of welder_on and welder_off, two methods or functions called

setWelderOn() and setWelderOff() were added to gcodeExport class according to the

object-oriented programming concept. These methods would be the way to set the values

of the attributes of gcodeExport object or class. fffProcessor class reads values of

machine_welder_on_gcode and machine_welder_off_gocde from the configuration file

then assigns those values to the attributes welder_on and welder_off of gcodeExport class

29

through the methods, setWelderOn() and setWelderOff(). This is how objects interacts with

each other. In the same way, method setIsMetalPrinting() and setIsWelding() are for setting

values of isMetalPrinting and isWelding attributes. These methods are implemented in

gcodeExport.cpp. The initial value of isWelding attribute is set to false.

When a movement of the substrate is for traveling, not printing or welding, actually the

welder should be turned off. However, to avoid turning off and on the welder too often or

unnecessary, the setting named machine_min_dist_welder_off is added to the configuration

file. The data type of the setting is double type and the unit is in millimeter. If a traveling

distance is less than the setting value (10 millimeters by default), then it will travel without

turning the welder off. A double data type member called min_dist_welder_off is added to

gcodeExport class to store value from machine_min_dist_welder_off setting. In function

writeMove() of gocdeExport class, before welder_off willbe inserted into the generated G-

code, the travel distance has to be greater than min_dist_welder_off value. The method

setMinDistWelderOff() was added to gcodeExport class, so other classes can set the value

of attribute min_dist_welder_off.

The pause between layers for substrate cooling is added as an option in the configuration

file. The parameter named machine_layer_pause is a boolean data type. If it is set to true,

then the machine_layer_pause_gcode, machine_layer_pause_time, and

machine_layer_increase values would be inserted in a generated G-code between each

layer. The machine_layer_pause_gcode is added to the configuration file as well and

would be used only if the value of machine_layer_pause is true. In function writeGCode()

of fffProcessor class, if machine_layer_pause value is true, then at the end of each layer

the machine_welder_off_gocde and machine_layer_pause_gcode values would be added

to the generated G-code. A default value of machine_layer_pause_gocde is G4 P, of

machine_layer_pause_time is 60000, and of machine_layer_pause_increase is 20 which

tells the printer to do nothing for 60,000 milliseconds and increase this pause time by 20

percent every layer. Similarly, future work could utilize this flexibility in the code to use

IR sensor feedback to begin a new layer when the part has reached an acceptably low

temperature.

30

In addition, there are some functions (or options) that are not available for GMAW-based

3-D metal printers, so there is no need to include those G-code commands. In function

writeTemperatureCommand() of gcodeExport class, before inserting G-code commands

about extruder temperature, the checking of metal printing would be checked. If it is the

metal printing, then those extruder temperature G-code commands would not be inserted.

Finally, the version name string is defined in settings class at the top of the file. So it was

changed to MOSTMetalCura. In CmakeLists.txt, the name of the software and library links

are set in that file, so they were changed from CuraEngine to MOSTMetalCura. At the top

of a generated G-code file, this version text would be added as a comment. Likewise,

important information are added as comments after the version text which include line

width, layer height, printing speed, material diameter, material volume per second,

recommended voltage and wire feed speed for the welder (Millermatic 190 MIG welder).

This information was added in the function writeGCode() of fffProcessor class.

3.4.3 GMAW 3-D Printing with MOSTMetalCura

The new MOSTMetalCura slicing program is tested on a RepRap GMAW-based 3-D

printer previously described [32]. Based on the previous works [26,29], ER70S-6 steel

welding wire with 0.024 inches or 6 mm diameter was used in the experiment. The welder

was Millermatic 190 MIG welder. To optimize the wire feed speed, the expected and actual

volume of material are calculated, so that they are matched. The expected volume of steel

can be calculated in Equation (3.1) and the actual volume that coming out from the welder

is calculated by Equation (3.2).

 shwv PLL=E (3.1)

Where Ev is expected volume in cubic millimeters per second (mm3/s). Lw is the welding

bead width in mm, Lh is the height of each layer in mm, and Ps is the printing speed or the

movement speed of the substrate in mm per second in this case.

31

sawv

nns

w

aw

WC=A

)W(=W
)(

)(
=W

D
π=C

192.21619
20100

25.0202.3

2

2

 (3.2)

Where Caw is the cross-sectional area of the wire in square millimeters (mm2). Dw is the

diameter of the steel welding wire in mm. Ws is the actual wire feed speed in millimeters

per second (mm/s) and Wn is a unitless of the wire speed setting on the welder. Av is the

actual volume of steel wire from the welder in cubic millimeters per second (mm3/s).

According to Miller website [43], the wire feed speed is between 60 to 600 inches per

minute. On a scale from 10 to 100 of the wire speed setting, each for 10 seconds of running

and the measurement of the wire feed rate can be shown in Figure 3.5. The measurement

of the wire length at scale 10 is discarded because it is given the same speed as scale 20

and the speed is only changed after scale 20. Then the Ws is derived from the length values

in Table 3.1. The optimized wire feed speed is found if an expected volume equals to an

actual volume and the calculation is done by MOSTMetalCura.

Figure 3.5 The wire feed rate for each scale setting.

32

To test this approach the 3-D prints were made with the following 3-D models,

demonstrating increased geometric complexity of extruded shapes (see Figure 3.6-3.8).

The simple block (101.6 mm × 31.75 mm × 31.75 mm), chisel (140 mm × 20 mm × 20

mm) and gear (60 mm diameter × 10 mm) were used because their geometries do not

include any bridges or overhangs. All STL files for these 3-D models are available [44].

Figure 3.6 a) 3-D model of block (grid lines are every 10mm) and b) a slice showing the

path for 3-D printing using MOSTMetalCura.

Figure 3.7 a) 3-D model of chisel (grid lines are every 10mm) and b) a slice showing the

path for 3-D printing using MOSTMetalCura.

33

Figure 3.8 a) 3-D model of gear (grid lines are every 10mm) and b) a slice showing the

path for 3-D printing using MOSTMetalCura.

All experiments are conducted using Millimatic 190 MIG welder. The distance between

the nozzle and the substrate should be around 8 to 10 millimeters. The use of RC25 shield

gas, which is a mix of 25% carbon dioxide (CO2) and 75% argon (Ar), would be tested at

different level of pressures (20-60 CFH). Temperature and humidity would be measured

using digital temperature and humidity monitor (±0.05 Celsius and ±0.5 Percent) and

assessed. When the printing speed is set in the configuration file, then the wire feed speed

and voltage setting would be calculated and put in comment of a generated G-code file by

the MOSTMetalCura. The ER70S-6 steel welding wire with 0.024 inches or 6 millimeters

diameter is used in all experiments. According to preliminary experiments [45], the

recommended voltage setting for the welder is 5. The quality of the 3-D printed objects

was quantified with digital calipers (±0.1 mm).

3.5 Results and Discussion

The output of the slicer program is a G-code file. The header would contain important

information as in the following text:

;Generated with Cura_SteamEngine MOSTMetalCura

;//

;Infill line width: 0.98 mm.

;Layer height: 1 mm.

;Printing speed: 7 mm/s

34

;Material diameter: 0.6 mm.

;Expected Material: 6.86 mm3/s.

;//

;Recommended welder (Millermatic 190) settings

;Voltage setting: 5

;Wire speed: 19.61 - 21.61

;//

These are comments in the G-code file which gives information about line width, layer

height, printing speed, material diameter, expected material in mm3 per second, and the

recommended voltage and wire feed speed settings for the welder, specifically for

Millermatic 190 MIG welder.

The line width is set in the configuration file and is set close to one millimeter, but a little

smaller or a little bigger line width, ±0.02 range, might help fit all paths in one layer better.

The paths can be viewed by one of the G-code viewer, such as the open source CAMOtics

[46].

With the setting of 1 millimeter layer height, 0.98 millimeter bead width, and the printing

speed of 7 millimeters per second, the calculated wire feed scale is 25.3 mm/s. The printed

results of the gear model were poor (see Figure 3.9). The height of the printed dots was

measured by digital caliper to about 2 millimeters (±0.1). However, the diameter of the

printed gear was measured to about 60 millimeters as expected. According to these results,

the layer height was change to 2 millimeters and the rest of the parameters remain the same,

the new calculated wire feed scale was about 30 and the printed results were good as shown

in Figure 3.10.

35

Figure 3.9 The result of printed gear (60 mm diameter) with 1 mm layer height.

Figure 3.10 The result of printed gear (60 mm diameter) with 2 mm layer height.

A problem with higher speed is rough printed surface for higher layers. The printing speed

at 10 mm per second causes a surface non-uniformity after the third layer (see Figure 3.11).

Another problem is that it is not easy to set wire speed on the welder to suit every printing

speed. For example, if the printing speed is changed to 8 mm per second, then the wire

speed number would need to be around 34.1 which is hard to set it to be the same every

time because the wire feed speed setting on the welder does not provide scale details

between the tens (10-100). It should be noted that users can add a finer physical scale to

the welder to more accurately set the wire speed.

The default configuration of slicing for plastic 3-D printing is using Lines pattern which

would cause more turning off the welder and traveling in each layer for metal 3-D printing.

36

In the default slicing, there is no pause between layers, so the heat would be accumulated

as the printing is ongoing and that would cause an unexpected shape and poor quality of

surface.

Figure 3.11 Poor surface quality after third layer of printing speed 10 mm/s on block

(101.6 mm × 31.75 mm).

When the optimization of settings was found: a layer height of 2 millimeters, line width of

1 millimeter, printing speed of 7 millimeters per second, voltage setting of 5, and wire feed

scale of 30. The steel 3-D printed of a few layers of block, chisel and gear are shown in

Figure 3.12-3.14. The few layers of printed objects are shown here to demonstrate visual

beads/ line widths. The finished 3-D printed gear is shown in Figure 3.15 and the machined

gear is shown in Figure 3.16.

37

Figure 3.12 3 layers of 3-D printed block (101.6 mm × 31.75 mm).

Figure 3.13 3 layers of 3-D printed chisel (140 mm × 20 mm × 20 mm).

Figure 3.14 3 layers of 3-D printed gear (60 mm diameter).

38

Figure 3.15 The finished 3-D printed gear (60 mm diameter) (5 layers).

Figure 3.16 The finished machined gear (60 mm diameter).

From Figure 3.14 and 3.15, the surface of the printed part gets rougher as the layer number

is increased, because of the substrate effect. Specifically, any imperfection on the lower

layer will be continuously propagated in all the following layers often this imperfection is

aggravated. This still enables near net shape printing as seen in Figure 3.16, which shows

the gear after machining to be functional.

Several issues can arise in GMAW-based 3-D printing, which can be overcome with

understanding of the shield gas settings, printer geometries, and heat loss from the

substrates as shown below.

The shield gas flow rate was found to be optimized at 25 CFH (cubic foot per hour). If the

shield gas flow rate is too low it will affect the quality of welding bead and adhesion due

39

to not enough shield gas to cover the welding area from exposure to oxygen and nitrogen

in the air. On the other hand, too high shield gas flow rate will cause a rough surface of the

printed part because the melting metal can be blown away from the intended location [47].

The correct shield gas flow rate will help with spatter control, heat control, and adhesion

quality [48]. The weld gun needs to be perpendicular to the substrate, so the shield gas can

cover around the welding area. If the weld gun is inclined to one side of the nozzle, then

some of shield gas will be blocked by the nozzle and cause brown oxide problem on one

side of the printed part as shown in Figure 3.17. This error can be caused by the weight of

the cord that connected to the weld gun pulling the weld gun down to lean to one side of

the nozzle. In order to fix this problem, a mechanical support was added to hold the cord

of the weld gun or a more rigid gun holding assembly can be used.

Figure 3.17 With optimal settings, brown oxide due to one side blocked shield gas (101.6

mm × 31.75 mm).

Brown oxidation during the printing can also occur from high humidity printing

environments, leaking gas lines, or old gas tanks. Dehumidifcation of the printing room,

40

keep the room at certain and suitable temperature (25 degree Celsius), non-porous gas lines

and new RC25 gas tanks can reduce oxidation to next to nothing.

Substrate deformation can also be a problem if heat is built up during printing as shown in

Figure 3.18. When a substrate is bending during GMAW 3-D printing, it can deform the

printed part and in extreme cases destroy the print. To help reduce the heat from the

substrate, the aluminum plate (thickness of 0.249 inches or 6.325 mm) was place on the

cement board under the substrate. The results of experiments show that adding aluminum

plate helped reduce and eliminate substrate deformation. However, the larger the part being

printed, the longer the delay in-between layers to dissipate heat built up in the part from

GMAW deposition.

Figure 3.18 Thermal induced substrate deformation which is indicated by the angle

symbol (101.6 mm × 31.75 mm).

If the temperature of the part is too high during printing it will increase the surface

roughness of the next layer. As more layers are printed, the heat transfer from the printed

part will become slower, so the pause after the layer needs to be longer. The heat is trapped

in the center of the printed part, so the effectiveness of the aluminum plate is reduced. In

MOSTMetalCura, the pause time can be set in the configuration file, but the needed pause

time is variable and dependent on the size of a printed part and is not known for the first

time of printing and object. So the pause time between layers was set to 60 seconds in

MOSTMetalCura, then it was manually paused and resumed in Franklin between layers.

During the pause time, the nozzle can be checked and cleaned to make sure it is not clogged

with spatter that can block the shield gas.

41

According to the fact that the wire feed speed cannot be automatically controlled by the

metal 3-D printer due to the use of a low-cost welder, the fixed width tool track or fixed

bead width is used for metal 3-D printing. The change of the speed can change the width

of the bead, but the shape of the bead cannot be controlled to be repeatable. To be able to

print the wanted shape the bead width is minimized, which in these experiments was found

to be about 1 millimeter. However, the smaller the bead width the more tool tracks are

necessary to cover a given area. In addition, to increasing print time this also adds more

heat to the part during the welding process. Thus, printing large models is still challenging

due to the heat problem inside a printed part when the surface and volume ratio becomes

less and less as more layers added. A 3-D steel printed part keeps the heat inside itself and

slowly releases the heat. It is much slower compared to the heat release rate of the carbon

steel substrate that is on an aluminum plate. It takes about 5 minutes for a substrate to

release the heat, but it took about 20 minutes for a layer of the printed block to cool to

about 30oC. Future work could utilize an active cooling system to reduce the pause time

between layers and accelerate the part production process.

A complexity print geometry has a significant impact to the printing quality with GMAW

3-D printing. A 3-D model with a lot of small details, a lot of small different curves or

patterns in each layer or parts that smaller than 1 millimeter results in low quality of surface

and shape because the limitation of the smallest bead width is 1 millimeter. The diameter

of the welding wire (0.6 mm) limits the bead width as the welding is melting the wire on

to a substrate so there would always be some spreading out of that melting steel. The

smallest of good welding beads in experiments using the setup and materials described is

about 1 millimeter. For an overhang or a bridge in a model, a support can be added, but it

might require machining to remove the support or the use of different metals that can be

preferentially removed by a chemical or high temperature process. Thus, many of the free

and open-source 3-D models available on-line are not suitable for metal 3-D printing. The

size of the welding bead also causes the smoothness between layers is also deficient

resulting in a staircase effect would be seen on a printed part of complicated 3-D models

with a shallow slope of less than 45 degrees. For example, consider a beveled gear [49].

When printed at 30 degrees it has an obvious staircase effect and shape problem when it

42

was metal 3-D printed (see Figure 3.19). When the angle is changed to 45 degrees the stair

case effect is reduced but it still has a shape problem at the top part due to the gear teeth

being to small (see Figure 3.20). Both examples have gap problem on the surface because

the size of the models are not in full millimeter. However, the author provided an SCAD

file, that the user can edit to increase the size of the beveled gear and generate a new model

appropriate for GMAW metal 3-D printing. This can be seen in Figure 3.21. After the

beveled gear is printed, it would require more machining until the gear is appropriate to

use for a high tolerance application. Another option would be design your own 3-D model

for metal 3-D printing with an open-source software 3-D CAD modeler, such as

OpenSCAD [50]. The 3-D model for metal 3-D printing should be in full millimeter of

length and if there is a slope it should not be less than 45 degrees if this is possible option.

For an overhang or a bridge in a model, a support can be added, but it might require

machining to remove the support.

Figure 3.19 A beveled gear 3-D model with 30 degrees angle (grid lines are every

10mm), its generated path and metal 3-D printed.

Figure 3.20 A beveled gear 3-D model with 45 degrees angle (grid lines are every

10mm), its generated path and metal 3-D printed.

43

Figure 3.21 A beveled gear 3-D model (grid lines are every 10mm), its generated path

and metal 3-D printed.

For the future work, it would be great if the layer height of each layer can be reduced. One

option is to mill out the surplus layer height [51-55], which helps reduce the layer height

and also get rid of the rough surface which results in a better quality. However, this will

increase the printing time in total and create more waste. Methods to extract heat inside a

steel printed part during printing needs to be researched more in order to mitigate or solve

the problem. The most obvious solution to this problem is to use this technology

primarily for larger parts.

3.6 Conclusions

The open-source slicer software called MOSTMetalCura for metal 3-D printing has been

implemented successfully and reported in this paper. It was customized from the open-

source slicing engine named CuraEngine. Many customizable settings were added to the

new slicer to support the metal 3-D printing. The output G-code is specifically for the low-

cost open-source metal 3-D printer developed by MOST, however, it can be adjusted to

support other metal 3-D printers as well. The paper also reports how to optimize the

settings for the metal 3-D printing. The optimized settings for the low-cost open-source

metal 3-D printer are 7 millimeters per second printing speed, 2 millimeters of layer height,

about 1 millimeter of bead width, 5 of welding voltage setting, 28-31 on scale of wire feed

speed, and 25 CFH of RC25 shield gas. The result shows the high resolution of 3-D printed

steel simple gear.

44

3.7 References

1 Gebhardt, Andreas, (2003) Rapid Prototyping. Hanser, Munich.

2 Noorani R, (2006) Rapid prototyping: principles and applications. John Wiley &

Sons Incorporated.

3 Cooper K, (2001) Rapid prototyping technology: selection and application. CRC

press.

4 Islam MN, Pramanik A, Slamka S, (2016) Errors in different geometric aspects of

common engineering parts during rapid prototyping using a Z Corp 3D printer.

Progress in Additive Manufacturing, 1-9. doi: 10.1007/s40964-016-0006-7

5 Boparai KS, Singh R, Singh H (2016) Modeling and optimization of extrusion

process parameters for the development of Nylon6–Al–Al2O3 alternative FDM

filament. Progress in Additive Manufacturing, 1-14. doi: 10.1007/s40964-016-0011-

x

6 Bak D (2003) Rapid prototyping or rapid production? 3D printing processes move

industry towards the latter. Assembly Automation, 23(4), 340-345.

7 Petrick IJ, Simpson TW (2013) 3D printing disrupts manufacturing: how economies

of one create new rules of competition. Research-Technology Management, 56(6),

12-16.

8 Lasagni F, Vilanova J, Periñán A, Zorrilla A, Tudela S, Gómez-Molinero V (2016)

Getting confidence for flying additive manufactured hardware. Progress in Additive

Manufacturing, 1-11. doi: 10.1007/s40964-016-0014-7

9 Lipson H, Kurman M (2013) Fabricated: The new world of 3D printing. John Wiley

& Sons.

10 Wittbrodt BT, Glover AG, Laureto J, Anzalone GC, Oppliger D, Irwin JL, Pearce

JM (2013) Life-cycle economic analysis of distributed manufacturing with open-

source 3-D printers. Mechatronics, 23(6), 713-726.

11 Mota C (2011, November) The rise of personal fabrication. In Proceedings of the 8th

ACM conference on Creativity and cognition, 279-288. ACM.

12 Gwamuri J, Wittbrodt BT, Anzalone NC, Pearce JM (2014) Reversing the Trend of

Large Scale and Centralization in Manufacturing: The Case of Distributed

Manufacturing of Customizable 3-D-Printable Self-Adjustable Glasses. Challenges

in Sustainability, 2(1), 30-40.

13 King DL, Babasola A, Rozario J, Pearce JM (2014) Development of mobile solar

photovoltaic powered open-source 3-D printers for distributed customized

manufacturing in off-grid communities. Challenges in Sustainability, 2(1), 18-27.

14 Laeng J, Stewart JG, Liou FW (2000) Laser metal forming processes for rapid

prototyping-A review. International Journal of Production Research, 38(16), 3973-

3996.

15 Lewis GK, Schlienger E (2000) Practical considerations and capabilities for laser

assisted direct metal deposition. Materials & Design, 21(4), 417-423.

16 Santos EC, Shiomi M, Osakada K, Laoui T (2006) Rapid manufacturing of metal

components by laser forming. International Journal of Machine Tools and

Manufacture, 46(12), 1459-1468.

17 Delgado J, Ciurana J, Serenó L (2011) Comparison of forming manufacturing

45

processes and selective laser melting technology based on the mechanical properties

of products: In this work, the superior property of the selective laser melting

technology is presented by comparing four real parts manufactured using forming

processes and selective laser melting technology and analysed for tension,

compression and flexural. Virtual and Physical Prototyping, 6(3), 167-178.

18 Cooper F (2016) Sintering and additive manufacturing:“additive manufacturing and

the new paradigm for the jewellery manufacturer”. Progress in Additive

Manufacturing, 1-15. doi: 10.1007/s40964-015-0003-2

19 Heinl P, Rottmair A, Körner C, Singer RF (2007) Cellular titanium by selective

electron beam melting. Advanced Engineering Materials, 9(5), 360-364.

20 Gaytan SM, Murr LE, Medina F, Martinez E, Lopez MI, Wicker RB (2009)

Advanced metal powder based manufacturing of complex components by electron

beam melting. Materials technology, 24(3), 180-190.

21 Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Wicker

RB (2012) Metal fabrication by additive manufacturing using laser and electron

beam melting technologies. Journal of Materials Science & Technology, 28(1), 1-14.

22 Peels J (2014) Metal 3D printing: From lab to fab. Inside 3DP.

http://www.inside3dp.com/metal-3d-printing-lab-fab/. Accessed 23 May 2014

23 Sells E, Smith Z, Bailard S, Bowyer A, Olliver V (2009) RepRap: The Replicating

Rapid Prototyper: Maximizing Customizability by Breeding the Means of

Production. in F. T. Piller, M. M. Tseng (Eds.), Handbook of Research in Mass

Customization and Personalization: Strategies and concepts. World Scientific, 1:568-

580.

24 Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, Bowyer A (2011)

RepRap–the replicating rapid prototyper. Robotica, 29(01), 177-191.

25 Bowyer A (2014) 3D printing and humanity's first imperfect replicator. 3D printing

and additive manufacturing, 1(1), 4-5.

26 Anzalone GC, Zhang C, Wijnen B, Sanders PG, Pearce JM (2013) A low-cost open-

source metal 3-D printer. IEEE Access, 1, 803-810.

27 Banzi M, Shiloh M (2014) Getting Started with Arduino: The Open Source

Electronics Prototyping Platform. Maker Media, Inc..

28 Arduino - Home (2015) https://www.arduino.cc/. Accessed 1 November 2015

29 Haselhuhn AS, Gooding EJ, Glover AG, Anzalone GC, Wijnen B, Sanders PG,

Pearce JM (2014) Substrate release mechanisms for gas metal arc weld 3D

aluminum metal printing. 3D Printing and Additive Manufacturing, 1(4), 204-209.

30 Haselhuhn AS, Wijnen B, Anzalone GC, Sanders PG, Pearce JM (2015) In situ

formation of substrate release mechanisms for gas metal arc weld metal 3-D printing.

Journal of Materials Processing Technology, 226, 50-59.

31 Pinar A, Wijnen B, Anzalone GC, Havens TC, Sanders PG, Pearce JM (2015) Low-

cost open-source voltage and current monitor for gas metal arc weld 3D printing.

Journal of Sensors. doi:10.1155/2015/876714

32 Nilsiam Y, Haselhuhn A, Wijnen B, Sanders P, Pearce JM (2015) Integrated

Voltage—Current Monitoring and Control of Gas Metal Arc Weld Magnetic Ball-

Jointed Open Source 3-D Printer. Machines, 3(4), 339-351.

33 Wijnen B, Anzalone GC, Haselhuhn AS, Sanders PG, Pearce JM (2016) Free and

open-source control software for 3-D motion and processing. Journal of Open

46

Research Software, 4(1).

34 Haselhuhn AS, Buhr MW, Wijnen B, Sanders PG, Pearce JM (2016) Structure-

property relationships of common aluminum weld alloys utilized as feedstock for

GMAW-based 3-D metal printing. Materials Science and Engineering: A, 673, 511-

523.

35 Cura 3D Printing Slicing Software (2015) https://ultimaker.com/en/products/cura-

software. Accessed 1 November 2015

36 Slic3r (2015) http://slic3r.org/. Accessed 1 November 2015

37 Ultimaker/CuraEngine (2015) https://github.com/Ultimaker/CuraEngine. Accessed 1

November 2015

38 Laplume AO, Petersen B, Pearce JM (2016) Global value chains from a 3D printing

perspective. Journal of International Business Studies. doi:10.1057/jibs.2015.47

39 Berman B (2012) 3-D printing: The new industrial revolution. Business horizons,

55(2), 155-162. https://doi.org/10.1016/j.bushor.2011.11.003

40 Cura - RepRapWiki (2016) http://reprap.org/wiki/Cura. Accessed 4 March 2016

41 daid/Cura (2016) https://github.com/daid/Cura. Accessed 4 March 2016

42 G-code - RepRapWiki (2015) http://reprap.org/wiki/G-code. Accessed 12 October

2015

43 Miller MIG Welders - MIG Welding and GMAW Welding Machines - MillerWelds

(2015) https://www.millerwelds.com/equipment/welders/mig-gmaw/millermatic-

190-mig-welder-m00487. Accessed 18 October 2015.

44 MOST metal slicing examples https://osf.io/6u5sp/ Accessed 26 January 2017.

45 Clark, R., Lund, P., Sanders, P., Pearce, JM. Weld bead performance metrics for arc

weld-based additive manufacturing of ER70S-2 steel and 316L stainless steel (to be

published).

46 CAMotics (2015) http://camotics.org/. Accessed 5 December 2015

47 Lancaster JF (1984) The physics of welding. Physics in technology, 15(2), 73.

48 Suban M, Tušek J (2001) Dependence of melting rate in MIG/MAG welding on the

type of shielding gas used. Journal of Materials Processing Technology, 119(1), 185-

192.

49 Thornburg, D. (2014). https://www.youmagine.com/designs/beveled-gear. Accessed

20 September 2016

50 OpenSCAD (2016) http://www.openscad.org/. Accessed 4 March 2016

51 Choi DS, Lee SH, Shin BS, Whang KH, Song YA, Park SH, Jee HS (2001)

Development of a direct metal freeform fabrication technique using CO 2 laser

welding and milling technology. Journal of Materials Processing Technology,

113(1), 273-279.

52 Xiong X, Haiou Z, Guilan W (2008) A new method of direct metal prototyping:

hybrid plasma deposition and milling. Rapid Prototyping Journal, 14(1), 53-56.

53 Krassenstein B (2014) VDK6000, Incredible 6-axis Metal 3D Printer, Milling

Machine, Laser Scanner Unveiled. https://3dprint.com/10079/vdk6000-robotic-work-

environment/. Accessed 14 November 2016

54 Anderton J (2014) 3D Printing and 5-Axis Machining Combined in One Machine

ENGINEERING.com.

http://www.engineering.com/AdvancedManufacturing/ArticleID/8778/3D-Printing-

and-5-Axis-Machining-Combined-in-One-Machine.aspx. Accessed 14 November

47

2016

55 Sodick Inc (2016) One-Process Metal 3D printing & milling machine - Today's

Motor Vehicles. http://www.todaysmotorvehicles.com/product/sodick-3d-print-

milling-machine-092916/.

48

3.8 Pseudocode of the Core Functions of MOSTMetalCura

FUNCTION main

 IF machine is Linux or Mac THEN

Lower the process priority on Linux and Mac machine

 ENDIF

 Display copyright information

 FOR each input argument from command line

 IF argument start with ‘-‘ THEN

 IF argument is “--connect” THEN

 Connect to command socket

 ELSE

 SWITCH argument of

 ‘h’: Print usage information

 ‘j’: Load JSON configuration file

 ‘p’: Enable progress logging

‘o’: Set target or output file

‘s’: Save next argument as setting

default: Unknow option

 ENDSWITCH

 ENDIF

 ELSE

 file = 3-D model file name

49

 ENDIF

IF file is existed THEN

 CALL fffProcessor.processFIles to process the file

ENDIF

CALL fffProcessor.finalize to add end.gcode and report statistics

RETURN 0

ENDFUNCTION

FUNCTION fffProcessor.processFiles

 CALL modelFile.loadMeshFromFile to load 3-D model file as mesh file

 CALL fffProcessor.processModel

ENDFUNCTION

FUNCTION fffProcessor.processModel

CALL fffProcessor.preSetup to set up extrusion offset, code for switch extruder,

filament diameter, G-code format, retraction amount

 CALL fffProcessor.prepareModel to slice model into layerparts

 CALL fffProcessor.processSliceData to generate insets, supports, skins, skirt, raft

 CALL fffProcessor.writeGCode

ENDFUNCTION

FUNCTION fffProcessor.preSetup

50

 Set machine extruder offset

 Set code for before and after switch extruder

 Set filament diameter

 Set G-code flavor format

 Set retraction amount

ENDFUNCTION

FUNCTION fffProcessor.prepareModel

 Create slicer object to slice model, Slicer::Slicer

 CALL layerPart.createlayerParts to create layerParts

ENDFUNCTION

FUNCTION Slicer::Slicer

 Find all segment in each layer, face and mesh points

 CALL SlicerLayer::makePolygons to generate polygons for each layer

ENDFUNCTION

FUNCTION SlicerLayer::makePolygons

 Generate polygons from face and mesh

 Connecting any open polygons

 Link up all the missing ends

 Close the gaps

51

 Remove the tiny polygons or still open polygons

 Optimize the polygons by removing unnecessary points

 CALL polygonOptimizer.optimizePolygons

ENDFUNCTION

FUNCTION layerPart.createLayerParts

 CALL layerPart.createlayerWithParts

ENDFUNCTION

FUNCTION layerPart.createLayerWithParts

 Split polygons in to part or island

 Store all parts

ENDFUNCTION

FUNCTION fffProcessor.processSliceData

 Generate insets or perimeters by CALL inset.generateInsets

 Generate support area

 Generate skins by CALL skin.generateSkins

 Combine all layerparts by CALL skin.combineSparseLayers

 Generate skirt

 Generate raft

ENDFUNCTION

52

FUNCTION inset.generateInsets

 Create inset for each layerpart, inset width is wall line width

 Remove parts with no inset because they are too small

ENDFUNCTION

FUNCTION skin.generateSkins

 CALL skin.generateSkinAreas to generate skin

 CALL skin.generateSkinInsets to generate inset for each skin

ENDFUNCTION

FUNCTION skin.generateSkinAreas

 Generate skin by union all polygons in the layer

ENDFUNCTION

FUNCTION skin.generateSkinInsets

 Generate insets for skin

ENDFUNCTION

FUNCTION skin.combineSparseLayers

 Combine all parts together for the layer, 100% filled

ENDFUNCTION

53

FUNCTION fffProcessor.writeGCode

 Reset total print time and filament

 Setup retraction parameters

 IF RepRap style G-code THEN

 Write bed temperature command G-code

 Write temperature command for material

 Write start G-code

 IF metal 3-D printing THEN

 Load welder on G-code

 Load welder off G-code

 Set minimum distance welder off

 Initiate welding status to false

 ENDIF

Write comment for software version, printing line width, layer height,

printing speed, material diameter

Calculate wire feed speed based on line width, layer height, print speed,

material diameter.

Write comment for voltage setting on the welder

Write comment for recommend wire feed speed range

IF raft is true THEN

Load configures for the raft, speed, line width, layer height, material

flow

54

Generate raft and its path

Write G-code for raft

ENDIF

 ENDIF

 Load pause time between layer setting

 Load increase time for each layer setting

 Load move up height at the end of each layer setting

 Load welder off G-code setting

 Load layer pause Boolean setting

 FOR each layer

 Load layer height setting

 Load skirt setting, speed, line width, material flow, thickness

 Load support setting, speed, line width, material flow, thickness

 FOR each mesh

Load mesh inset setting, line width, speed, material flow, layer

height

Load mesh skin setting, line width, speed, material flow, layer

height

Load mesh infill setting, line width, speed, material flow, layer

height

 ENDFOR

 Write comment for layer number

 Create GCodePlanner object

55

 Set z value for the object

 Reset the start position

 IF layer number == 0 THEN

 IF skirt size > 0 THEN

 Add travel to print skirt at the closest point

 Add polygons to the object to print

 ENDIF

 ENDIF

 IF print support first THEN

 Add support to the object to print

 ENDIF

CALL fffProcessor.calculateMeshOrder to sort the meshes, start from the

closest mesh to the extruder

FOR each mesh in the sorted meshes

 CALL fffProcessor.addMeshLayerToGCode

ENDFOR

IF not print support first THEN

 CALL fffProcessor.addSupportToGCode

ENDIF

Force minimum layer time

Set fan speed

IF layer pause is true THEN

56

 Write G-code to turn off welder

 Write G-code to move the print head up

 Calculate the pause time

 Write G-code to set the pause time

 Set welding status to false

ENDIF

 ENDFOR

 Write G-code retraction

 Write G-code fan command

ENDFUNCTION

FUNCTION fffProcessor.calculateMeshOrder

 Add closest meshes first then the next closest

ENDFUNCTION

FUNCTION fffProcessor.addMeshLayerToGCode

 Create partOrderOptimization object

 FOR each layerpart

 Add layerpart to the object by CALL partOrderOptimizer.addPlygon

 ENDFOR

 CALL partOrderOptimizer.optimize to optimize part order

 FOR each layerpart

57

 Set fill angle

 IF infill line distance > 0 THEN

 SWITCH fill pattern

 Fill_Grid: CALL infill.generateGridInfill

 CALL gcodePlanner.addLinesByOptimizer

 Fill_Lines: CALL infill.generateLineInfill

 CALL gcodePlanner.addLinesByOptimizer

 Fill_Triangles: CALL infill.generateTriangleInfill

 CALL gcodePlanner.addLinesByOptimizer

 Fill_Concentric: CALL infill.generateConcentricInfill

 CALL gcodePlanner.addPolygonsByOptimizer

 Fill_ZigZag: CALL infill.generateZigZagInfill

 CALL gcodePlanner.addPolygonsByOptimizer

 Default: break

 ENDSWITCH

 CALL fffProcessor.sendPolygons

 ENDIF

IF infill line distance > 0 and layer part outline size > 0 THEN

 Combine infill and top/bottom skin together

 SWITCH fill pattern

 Fill_Grid: CALL infill.generateGridInfill

 CALL gcodePlanner.addLinesByOptimizer

58

 Fill_Lines: CALL infill.generateLineInfill

 CALL gcodePlanner.addLinesByOptimizer

 Fill_Triangles: CALL infill.generateTriangleInfill

 CALL gcodePlanner.addLinesByOptimizer

 Fill_Concentric: CALL infill.generateConcentricInfill

 CALL gcodePlanner.addPolygonsByOptimizer

 Fill_ZigZag: CALL infill.generateZigZagInfill

 CALL gcodePlanner.addPolygonsByOptimizer

 Default: break

 ENDSWITCH

 CALL fffProcessor.sendPolygons

 ENDIF

 CALL gcodePlanner.addPolygonsByOptimizer

 CALL gcodePlanner.addLinesByOptimizer

 IF wall line count > 0 THEN

 FOR each inset

 IF inset == 0 THEN

CALL gcodePlanner.addPolygonsByOptimizer with

inset0

 ELSE

CALL gcodePlanner.addPolygonByOptimizer with

insetX

 ENDIF

59

 ENDFOR

 ENDIF

 FOR each layerpart in skin

 SWITCH top and bottom pattern

 Fill_Lines:

 FOR each inset in layerpart

 gcodePlanner.addPlygonsByOptimizaer

 infill.generateLineInfill

 ENDFOR

 Fill_Concentric:

 infill.generateConcentricInfillDense

 default: break

 ENDSWITCH

 ENDFOR

 IF fill perimeter gaps != “Nowhere” THEN

 CALL infill.generateLineInfill to fill the gap

 ENDIF

 CALL gcodePlanner.addPolygonsByOptimizer

 CALL gcodePlanner.addLinesByOptimizer

 Check to make sure that the nozzle is inside comb boundary

 ENDFOR

60

ENDFUNCTION

FUNCTION partOrderOptimizer.addPolygon

 Add polygon to the vector

ENDFUNCTION

FUNCTION partOrderOptimizer.optimize

 FOR each polygon

 Find the closest point to start in each polygon

 ENDFOR

 FOR each polygon

 Find the closest polygon to continue

 ENDFOR

 FOR each polygon

CALL partOrderOptimizer.getClosestPointInPlolygon to find starting point

in each polygon

 ENDFOR

ENDFUNCTION

FUNCTION infill.generateGridInfill

 CALL infill.generateLineInfill

 CALL infill.generateLineInfill with rotation of 90 degree

61

ENDFUNCTION

FUNCTION gcodePlanner.addLinesByOptimizer

 CALL LineOrderOptimizer to set start point

 FOR each polygon

 CALL LineOrderOptimizer.addPolygon

 ENDFOR

 FOR each polygon

 CALL gcodePlanner.addPolygon to add optimized polygon

 ENDFOR

ENDFUNCTION

FUNCTION infill.generateLineInfill

 FOR each polygon

 FOR each point in polygon

 Find the next point in scanline

 ENDFOR

 ENDFOR

 CALL infill.addLineInfill to fill the polygon

ENDFUNCTION

FUNCTION infill.generateTriangleInfill

62

 CALL infill.generateLineInfill

 CALL infill.generateLineInfill with rotation of 60 degree

 CALL infill.generateLineInfill with rotation of 120 degree

ENDFUNCTION

FUNCTION infill.generateConcentricInfill

 WHILE outline.size > 0

 FOR each outline

 Add outline to plolygon

 ENDFOR

 ENDWHILE

ENDFUNCTION

FUNCTION gcodePlanner.addPolygonsByOptimizer

 Create PathOrderOptimizer object

 FOR each polygon

 CALL pathOrderOptimizer.addPolygon

 ENDFOR

 CALL pathOrderOptimizer.optimize

 FOR each polygon

 CALL gcodePlanner.addPolygon

 ENDFOR

63

ENDFUNCTION

FUNCTION infill.generateZigZagInfill

 IF endPieces THEN

 Return infill.generateZigZagInfill_endPieces

 ELSE

 Return infill.generateZigZagInfill_noEndPieces

 ENDIF

ENDFUNCTION

FUNCTION partOrderOptimizer.getClosestPointInPlolygon

 FOR each point in polygon

 Find the closest point based on orientation

 ENDFOR

ENDFUNCTION

FUNCTION LineOrderOptimizer.addPolygon

 Add polygon to the object

ENDFUNCTION

FUNCTION gcodePlanner.addPolygon

 FOR each point in the polygon

64

 CALL gcodePlanner.addExtrusionMove

 ENDFOR

ENDFUNCTION

FUNCTION infill.addLineInfill

 FOR each line

 Add line to fill the polygon

 ENDFOR

ENDFUNCTION

FUNCTION gcodePlanner.addExtrusionMove

 CALL gcodePlanner.getLatestPathWithConfig

 Set the last positon

ENDFUNCTION

FUNCTION gcodePlanner.getLatestPathWithConfig

 IF path size > 0 THEN

 Return the last path

 ENDIF

 Create GCodePath object and set value

 Return the object

ENDFUNCTION

65

FUNCTION infill.generateZigZagInfill_endPieces

 Add line to fill polygon

 Connect lines

 CALL infill.addLineInfill

ENDFUNCTION

FUNCTION infill.generateZigZagInfill_noEndPieces

 Add line to fill polygon

 Connect lines

 CALL infill.addLineInfill

ENDFUNCTION

FUNCTION infill.generateConcentricInfillDense

 WHILE polygon size > 0

 FOR each polygon

 Add polygon to result

 ENDFOR

 CALL polygonUtils.offsetExtrusionWidth

 Next polygon

 ENDWHILE

ENDFUNCTION

66

FUNCTION fffProcessor.addSupportToGCode

 Generate support

 CALL pathOrderOptimizer.islandOrderOptimizer

 IF support line distance > 0 THEN

 SWITCH support pattern

 Fill_Grid:

 IF support line distance > extrusion width * 4 THEN

 CALL infill.generateGridInfill

 ELSE

 CALL infill.generateLineInfill

 ENDIF

 Fill_Lines:

 IF layer number == 0 THEN

 CALL infill.generateGridInfill

 ELSE

 CALL infill.gemerateLineInfill

 ENDIF

 Fill_ZigZag:

 IF layer number == 0 THEN

 CALL infill.generateGridInfill

 ELSE

 CALL infill.gemerateZigZagInfill

67

 ENDIF

 ENDSWITCH

 ENDIF

ENDFUNCTION

FUNCTION polygonOptimizer.optimizePolygons

 FOR each polygon

 CALL polygonOptimizer.optimizePolygon

 ENDFOR

ENDFUNCTION

FUNCTION polygonUtils.offsetExtrusionWidth

 Distance negative for inward, positive otherwise

 Add distance to polygon offset

ENDFUNCTION

FUNCTION polygonOptimizer.optimizePolygon

 FOR each point in polygon

 Remove point that too shorts

 ENDFOR

ENDFUNCTION

68

FUNCTION fffProcessor.finalize

 Load end G-code

CALL gcodeExport.finalize passing end G-code

ENDFUNCTION

FUNCTION gcodeExport.finalize

 Turn off the fan

 Set Z

 gcodeExport.writeMove to move print head away from the printed part

 gcodeExport.writeCode to write the end G-code

ENDFUNCTION

FUNCTION gcodeExport.writeMove

 Get extrusion amount

 IF flavor == GCODE_FLAVOR_BFB

 Calculate speed

 Calculate rpm

 Calculate mm per rpm

 IF rpm >0 THEN

 Calculate extrusion amount

 ELSE

69

 Retraction

 ENDIF

 ELSE

IF extrusion mm3 per mm > 0.000001 THEN

 IF metal printing THEN

 IF not welding THEN

 Write G-code welder on

 Set welding status to true

 ENDIF

 ENDIF

 Calculate extrusion amount

 Write G1 to output

 ELSE

 Travel only

 IF metal printing THEN

 IF welding is true and distance > min distance THEN

 Set welding status to false

 Write G-code to turn off the welder

 ENDIF

 ENDIF

 ENDIF

 IF current speed != speed THEN

70

 Update current speed with speed

 ENDIF

 Write output G-code

 Update current position

 Update start positon

 Calculate the time left

 ENDIF

ENDFUNCTION

FUNCTION gcodeExport.writeCode

 Wirte G-code to file

ENDFUNCTION

FUNCTION gcodeExport.setWelderOn

 Load welder on G-code

ENDFUNCTION

FUNCTION gcodeExport.setWelderOff

 Load welder off G-cdoe

ENDFUNCTION

FUNCTION gcodeExport.setMinDistWelderOff

71

 Load minimum distance welder off

ENDFUNCTION

FUNCTION gcodeExport.setIsMetalPrinting

 Set metal printing Boolean

ENDFUNCTION

FUNCTION gcodeExport.setIsWelding

 Set welding status

ENDFUNCTION

FUNCTION gcodePlanner.writeGCode

 FOR every path

 Change extruder

 Set last configuration

 Load speed setting

 gcodeExport.writeMove

 ENDFOR

 Update the total print time

 IF print head need lifted and there is extra time THEN

 gcodeExport.writeMove to move the print head up

 ENDIF

72

ENDFUNCTION

FUNCTION gcodePlanner.addTravel

 Create a pathOrderOptimizer object

 Add travel destination point to the object

ENDFUNCTION

FUNCTION gcodePlanner.moveInsideCombBoundary

 Check that the last position is inside the boundary then return

 IF last position is not inside the boundary THEN

 gcodePlanner.addTravel to move the nozzle inside the boundary

 gcodePlanner.forceNewpathStart

 ENDIF

ENDFUNCTION

FUNCTION gcodePlanner.forceNewpathStart

 IF path size > 0 THEN

 Set the current path done to be true

 ENDIF

ENDFUNCTION

FUNCTION fffProcessor.setTargetFile

73

 IF output file is already open THEN

 gcodeExport.setOutputStream with filename from the input argument

 ENDIF

ENDFUNCTION

FUNCTION fffProcessor.setTargetStream

 gcodeExport.setOutputStream with the variable name

ENDFUNCTION

FUNCTION LineOrderOptimizer.optimize

 FOR each polygon

 Find the closest point to initial starting point in each polygon

 ENDFOR

 FOR each polygon

 FOR each line in polygon

 LineOrderOptimizer.checkIfLineIsBest

 ENDFOR

 IF no best single line found THEN

 Skip to next line

 ENDIF

 IF best single line found THEN

 Add the line to the polygon order

74

 ENDIF

 ENDFOR

 FOR each polygon in polygon order

 Find the best starting point (minimum distance) in each polygon

 ENDFOR

ENDFUNCTION

FUNCTION LineOrderOptimizer.checkIfLineIsBest

 IF distance to the first point is better THEN

 Start fill polygon from the first point

 ENDIF

 IF distance to the second point is better THEN

 Strat fill polygon from the second point

 ENDIF

ENDFUNCTION

FUNCTION skin.generateSparse

 FOR each layerpart

 Create Polygons object as sparse

 Add layerpart inset to the sparse

 ENDFOR

ENDFUNCTION

75

FUNCTION skin.generatePerimeterGaps

 FOR each layerpart

IF down skin count and up skin count > 0 and layer number > down skin

count and Layer number < layer size – up skin count THEN

 Remove gaps inside the print

ENDIF

Remove small area gaps

 ENDFOR

ENDFUNCTION

FUNCTION mesh.addFace

 IF two vertices are the same THEN

 Return, there is no face

 ENDIF

 Create MeshFace object

 Add the three vertices to the MeshFace object

 Add the faces to vertices as well

ENDFUNCTION

FUNCTION mesh.clear

 Clear the relationship between faces and vertices

76

ENDFUNCTION

FUNCTION mesh.finish

 FOR each face

 Store other three faces that connected to the face

 ENDFOR

ENDFUNCTION

FUNCTION mesh.min

 Return the minimum point in the vertices

ENDFUNCTION

FUNCTION mesh.max

 Return the maximum point in the vertices

ENDFUNCTION

FUNCTION mesh.findIndexOfVertex

 FOR each point in vertex map

 Return the index of the vertex

 ENDFOR

ENDFUNCTION

FUNCTION mesh.getFaceIdxWithPoints

77

 Find the faces that connected to the point

 Return error if no connected face is found

 If only one face connected, then return the face

 If more than two faces connected, then return the counter-clockwise face.

ENDFUNCTION

FUNCTION settingRegistry.loadJSON

 Create rapidjson document object

 Open the specified file

 Check if there is any error, return otherwise continue

 Load all the settings and add them to category

ENDFUNCTION

FUNCTION SettingsBase.setSetting

 IF setting is already existed THEN

 Set new value to the setting

 ELSE

 Warning that it is unregister setting

 Set new value to the setting

 ENDIF

ENDFUNCTION

78

FUNCTION SettingsBase.getSettingString

 IF the key of the setting is found THEN

 Return the value of the setting

 ENDIF

 IF the key is the existed key THEN

 Load the default value and return

 ELSE

 Return empty string with error message

 ENDIF

ENDFUNCTION

FUNCTION SettingsBase.getSettingAsIndex

 Convert the value setting to integer and return

ENDFUNCTION

FUNCTION SettingsBase.getSettingAsCount

 Convert the value setting to integer and return

ENDFUNCTION

FUNCTION SettingsBase.getSettingInMicrons

 Convert the setting to float and multiple 1000 then return

ENDFUNCTION

79

FUNCTION SettingsBase.getSettingInAngleRadians

 Convert the setting to float and divided by 180.0 then time PI value and return

ENDFUNCTION

FUNCTION SettingsBase.getSettingBoolean

 Convert value “on”, “yes”, “true” or “True” to true and return

 Return true if value is other number than zero

ENDFUNCTION

FUNCTION SettingsBase.getSettingInDegreeCelsius

 Return converted value as float

ENDFUNCTION

FUNCTION SettingsBase.getSettingInMilimetersPerSecond

 Return the maximum between 1 and the value

ENDFUNCTION

FUNCTION SettingsBase.getSettingInPercentage

 Return the maximum between 0 and the value

ENDFUNCTION

80

FUNCTION SettingsBase.getSettingInSeconds

 Return the maximum between 0 and the value

ENDFUNCTION

FUNCTION SettingsBase.getSettingAsGCodeFlavor

 IF value == “RepRap” THEN

 Return GCODE_FLAVOR_REPRAP

 ELSEIF value == “UltiGCode” THEN

 Return GCODE_FLAVOR_ULTIGCODE

 ELSEIF value == “Makerbot” THEN

 Return GCODE_FLAVOR_MAKERBOT

 ELSEIF value == “BFB” THEN

 Return GCODE_FLAVOR_BFB

 ELSEIF value == “MACH3” THEN

 Return GCODE_FLAVOR_MACH3

 ELSEIF value == “RepRap (Volumatric)” THEN

 Return GCODE_FLAVOR_REPRAP_VOLYMATRIC

 ENDIF

 Return GCODE_FLAVOR_REPRAP

ENDFUNCTION

FUNCTION SettingsBase.getsettingAsFillMethod

81

 IF value == “Lines” THEN

 Return Fill_Lines

 ELSEIF value == “Grid” THEN

 Return Fill_Grid

 ELSEIF value == “Triangles” THEN

 Return Fill_Triangles

 ELSEIF value == “Concentric” THEN

 Return Fill_Concentric

 ELSEIF value == “ZigZag” THEN

 Return Fill_ZigZag

 ENDIF

 Return Fill_None

ENDFUNCTION

FUNCTION SettingsBase.getSettingAsPlatformAdhesion

 IF value == “Brim” THEN

 Return Adhesion_Brim

 ENDIF

 IF value == “Raft” THEN

 Return Adhesion_Raft

 ENDIF

 Return Adhesion_None

82

ENDFUNCTION

FUNCTION SettingsBase.getSettingAsSupportType

 IF value == “Everywhere” THEN

 Return Support_Everywhere

 ENDIF

 IF value == “Touching Buildplace” THEN

 Return Support_PlatformOnly

 ENDIF

 Return Support_None

ENDFUNCTION

FUNCTION modelFile.loadModelSTL_ascii

 Open ASCII mode STL file

 WHILE not the end of line

 Extract three vertices

 Add them to mesh’s face

 ENDWHILE

 Finish the mesh

 Return

ENDFUNCTION

83

FUNCTION modelFile.loadModelSTL_binary

 Open the binary mode STL file

 Skip the header

 Read the face count

 FOR each face

 Extract the three vertices

 Add them to mesh’s face

 ENDFOR

 Finish the mesh

 Return

ENDFUNCTION

FUNCTION modelFile.loadModelSTL

 Open model file

 Read first line of the file

 IF first line is “solid” THEN

 CALL modelFile.loadModelSTL_ascii

 IF mesh’s face size < 1 THEN

 Clear mesh

 CALL modelFile.loadModelSTL_binary

 Return

 ENDIF

84

 ENDIF

 Return modelFile.loadModelSTL_binary

ENDFUNCTION

FUNCTION modelFile.loadMeshFromFile

 IF extension of file is “.stl or “.STL” THEN

 Return modelFile.loadModelSTL to the passing object

 ENDIF

ENDFUNCTION

FUNCTION gocdeExport.getFilamentArea

 R is Radius of filament which is half of diameter

 Filament area is PI*r*r

 Return filament area

ENDFUNCTION

FUNCTION gcodeExport.getExtrusionAmountMM3

 IF it is volumetric THEN

 Return extrusion amount

 ELSE

 Return extrusion amount * gcodeExport.getFilamentArea

 ENDIF

85

ENDFUNCTION

FUNCTION gcodeExport.writeComment

 Add input string to the output stream

ENDFUNCTION

FUNCTION gcodeExport.writeLayerComment

 Add layer number to the output stream

ENDFUNCTION

FUNCTION gcodeExport.writeLine

 Add line of string to the output stream

ENDFUNCTION

86

Chapter 4: Applications of Open Source GMAW-based Metal

3-D Printing3

4.1 Abstract

The metal 3-D printing market is currently dominated by high-end applications, which

make it is inaccessible for small and medium enterprises (SMEs), fablabs, and individual

makers who are interested in the ability to prototype and make final products in metal using

additive manufacturing technology. Recent progress on the open source self-Replicating

Rapid-prototyper (RepRap) project led to a low-cost open-source metal 3-D printers using

gas metal arc welding (GMAW) based print head. This reduced the cost of metal 3-D

printers into the range of desktop prosumer polymer fused filament fabrication printers.

Consequent research established good material properties of metal 3-D printed parts with

readily-available weld filler wire, reusable substrates, thermal and stress, toolpath

planning, bead-width control, mechanical properties, and support for overhangs. This

previous works showed that GMAW-based metal 3-D printing has a good adhesion

between layers and is not porous inside the printed parts, but it did not proceed far enough

to demonstrate applications. In this study the utility of the GMAW approach to 3-D printing

is investigated using a low-cost open-source metal 3-D printer and a converted Computer

Numerical Control (CNC) router machine to make useful parts over a range of applications

including: 1) fixing an existing part by adding on a 3-D metal feature, 2) creating a product

using the substrate as part of the component, 3) 3-D printing in high resolution of useful

objects, 4) near net objects and 5) making an integrated product using a combination of

steel and polymer 3-D printing. The results show that GMAW based 3-D printing is capable

of distributed manufacturing useful products by SMEs for a wide variety of applications.

3 This chapter has been completed as an article to submit. Citation: Nilsiam Y, Sanders P, & Pearce J

(2017). Applications of Open Source GMAW-based Metal 3-D Printing.

87

4.2 Introduction

Most of the metal 3-D printers available on the market are for high-end applications, which

require expensive equipment and use relatively dangerous fine metal powders [1]. Due to

the cost and the complicity of the technology, it is inaccessible for small and medium

enterprises (SMEs), fablabs, and individual makers who are interested in the ability to

prototype and make final products in metal using additive manufacturing technology.

Following the tradition of the self-Replicating Rapid-prototyper (RepRap) [2-4], a low-

cost open-source metal 3-D printers was developed with a gas metal arc welding (GMAW)

based print head, which radically reduces the costs of metal 3-D printers to less than $1,200

[5]. The open source metal 3-D printer uses readily available weld filler wire as the filament

and the initial designs have been improved upon with integrated monitoring [6] of the

welding system [7]. In addition, recent work has shown approaches to reuse substrates

which help to reduce costs, energy, time and the environment impact of manufacturing [8-

9]. This previous works showed that GMAW-based metal 3-D printing has a good adhesion

between layers and is not porous inside the printed parts, but it did not proceed far enough

to demonstrate its applications, e.g. only test cubes and dog bones were printed for

mechanical testing. Many studies have been done on 3-D weld deposit based process [10-

13] and investigated thermal properties and stresses [14-17], toolpath planning [18-21],

bead-width control [22-23], mechanical properties [24-25], and support for overhangs [26].

In this paper the utility of the GMAW approach to 3-D printing will be investigated using

a low-cost open-source metal 3-D printer and a converted Computer Numerical Control

(CNC) router machine to make useful parts over a range of applications including 1) fixing

an existing part by adding on a 3-D metal feature, 2) creating a product using the substrate

as part of the component, 3) 3-D printing in high resolution of useful objects, 4) near net

objects and 5) making an integrated product using a combination of steel and polymer 3-D

printing.

4.3 Materials and Methods

The design of the low-cost open-source metal 3-D printer [5, 7] is inspired by the Rostock

style delta RepRap [27]. However, it uses a stage printing setup allowing for stationary

heavy toolheads [28-29] while automatically controlling movement of a substrate with 3-

axis control under a fixed perpendicular weld gun printer head (Figure 4.1c). The motions

are managed by an Arduino-based microcontroller and the free and open source 3-D motion

control software called Franklin [30]. Franklin also controls the welder (e.g. on for printing

and off for traveling). A Millermatic 190 welder, ER70S-6 steel wire and shield gas of

RC25 (75% Ar and 25% CO2) was used for the experiments. Printing is performed on a re-

useable substrate of low carbon steel with dimensions of 127 x 127 x 6 mm. The stage that

88

holds a substrate is covered with cement board and then an aluminum plate (Figure 4.1c)

to accelerate the transfer out a heat from a substrate and a printed part.

For a 3-D model larger than 127 mm in any dimension, a CNC Router Parts machine was

adapted as a GMAW 3-D printer [31]. In Figure 4.4d, a Benchtop PRO CNC Machine Kit

is used in this research [32]. The work area is 25” × 25” and the Z clearance is 7”. The

resolution or repeatability is ± 0.001” or ± 0.0254 mm. With the capable of 3D motion

managed by the control unit, CNC machine is almost ready for metal 3-D printing. The

Millermatic 190 GMAW is used for the filament deposition tool. The weld gun is mounted

to the tool holder of the machine as the printer head and modified to accept a control signal.

The control unit is modified to add output signal wires to the weld gun connection to turn

the welder on and off. Substrates of the same material with dimensions of 254 x 254 x 6

mm were then used. The aluminum plate with the same size of the substrate is placed under

the substrate. Here also the substrate is held down at four corners during the printing and

the moving weld gun is mounted to the tool holder. The welder and the shield gas are the

same as in the delta printer above. The packaged Mach3 CNC [33] software was used to

communicate to the control unit via an Ethernet cable.

MOSTMetalCura [34] is a customized version of CuraEngine for metal 3-D printing. It

slices a 3-D model into 2-D layers and generates toolpaths for each layer. The produced

toolpaths are recorded as G-Code. Franklin and Mach3 use G-Code instructions to control

the movements of the printers. MOSTMetalCura has added the abilities to turn on and turn

off the welder through G-Code, to keep the status of printing or welding, to set how long

to pause between layers for the printed part to cool down, and to recommend the wire feed

speed setting on the welder (specific for Millermatic 190, for other welders an equation for

wire feed speed in MOSTMetalCura would need to be edited). The important settings for

MOSTMetalCura are infill line width or bead width, layer height, printing speed, and

material diameter.

From a 3-D model, which can be downloaded from free design repositories or created by

open-source CAD software (e.g., OpenSCAD [35]), MOSTMetalCura generates a G-Code

file from the 3-D model. The settings for open-source GMAW-based metal 3-D printing is

shown in Table 4.1. Connecting to Franklin through a browser via web service, Franklin

loads the G-Code file and verifies instructions inside the file. When the printing is started

by the user, Franklin translates each G-Code instruction and controls the stepper motors on

the MOST’s open-source 3-D metal printer to move the substrate as commanded. On the

CNC converted printer, Mach3 is acting in similar way to Franklin, excepting that the

substrate is stationary and the weld gun is moving as directed by the G-Code. The printing

is continued with pausing between layers until the whole model is printed.

89

Table 4.1 Settings for open-source GMAW-based steel 3-D printing.

Settings Value (unit)

Voltage on the welder 5 (unitless)

Wire feed rate on the welder 30 (unitless)

Distance between nozzle and substrate 8 (mm)

Wire sticking out from contact tip 5 (mm)

Printing speed 7 (mm/s)

Layer height 2 (mm)

Line or bead width (±0.03) ~1 (mm)

Shield gas 25 (CFH)

4.4 Results and Discussion

Applications of GMAW-based metal 3-D printing are successfully demonstrated by the

following printed parts as seen in Figure 4.1-4.5. Parts and products, which would be of

interest to SMEs or those in developing regions are focused on here because of the low-

cost of the system. The bracket, the hoe, and the chisel were printed on the open-source

delta-style metal 3-D printer and the horseshoe and the axe head were printed on the CNC

machine. The handle of the axe was polymer 3-D printed on a larger CNC machine [36]

converted to use Franklin. These 3-D models as STL files can be found at

https://osf.io/bbbtd [37].

1. The system can be used for fixing or printing onto an existing part. A bracket is an

example used here where it was printed on the substrate as an existing part. Then

some holes can be drilled or printed on the open end of the bracket, so another part

can be attached and secured with bolts and nuts. This can be utilized in fixing

broken equipment. A different design of a bracket can optimize its strength,

stiffness, size, and weight. For example, General Electric (GE) held a contest for

such a bracket design for jet engine in 2013 [38]. Similar bracket fixes can be useful

for a wide range of applications including solar photovoltaic racking [39].

90

Figure 4.1 A bracket and metal 3-D printer a) 3-D model, b) metal 3-D printed

part on substrate, where the substrate is a model for an existing part, and c) the

set-up of open-source GMAW-based metal 3-D printer

2. The system can be used to create a product using metal 3-D printing and a substrate

as an integral part of the product. For example, a hoe can be made by 3-D printing

a cylinder on the substrate (Figure 4.2b). Then the substrate is cut into a shape of a

hoe and sharpened on the edge opposite the printed cylinder (Figure 4.2c). A wood

or a polymer 3-D printed stick can be used as a handle for the hoe. Being able to

manufacture such a product in an isolated rural community can be considered

appropriate technology and can foster sustainable development [40-41]. The ability

to manufacture metal objects significantly expands the utility of 3-D printing for

small farmers in the developing world [42].

91

Figure 4.2 A hoe a) 3-D model of handle hold, b) metal 3-D printed part on

substrate, and c) finished hoe, cut and mounted to wooden handle

3. The system is capable of higher resolution that previous attempts at GMAW-3-D

printing [5]. A high resolution chisel model (Figure 4.3a) is used to demonstrate

this capability. The printed part is ready to use with a minimal machining (Figure

4.3c). A model with small details can be printed as long as they are not smaller than

1 mm.

Figure 4.3. a) 3-D model, b) toolpath, and c) metal 3-D printed part on substrate

92

4. Near-net shape objects can be fabricated with the system. An example of this is a

horseshoe (Figure 4.4), which needs to be customized for specific horses, so it is

suitable to be metal 3-D printed. The printed part is near-net shape, so it needs finish

machining. This technique can be applied in similar situations that require a custom

part. For example, in the design of open source scientific equipment [43-45] a

custom size of a ring support or a vial holder for a hot plate can be easily designed

and printed.

Figure 4.4. A horseshoe and CNC Router Parts a) 3-D model, b) metal 3-D

printed part on substrate, c) finished part, and d) a converted CNC Router Parts

metal 3-D printer

5. Finally, fully functional integrated products can be fabricated using a combination

of metal and polymer 3-D printing. Here, an axe head was 3-D printed in steel

(Figure 4.5) and a handle was 3-D printed in polymer. A combination process like

this can be used to remotely manufacture similar open source instruments such as

a hammer or other hand tools [46-47].

93

Figure 4.5. An axe a) 3-D model, b) metal 3-D printed part on substrate, c)

finished part, and d) integrated product of metal and polymer 3-D printing

From the results, it is clear that GMAW-based metal 3-D printing can be applied to many

real-life problems. First, the technique can be used to repair or add functionality to an

existing steel product. As in the case with the bracket the settings can be adapted to leave

the part on the substrate of an existing part. Thus if, for example, a bracket were to break

off a tractor part, the tractor could be repaired by replacing the broken bracket on the main

component or a new bracket to be added to a part to improve the mechanical assembly of

the assembly. There are many applications for this functionality, which include; repairing

damaged parts [48-50] and customizing or adding on an existing object [51]. This is

particularly important in the field in isolated regions (e.g. for development or military

personnel).

A close application to this functionality is to use the substrate and a 3-D printed design to

create a new product as is shown with the hoe (Figure 4.2). The printed metal has a good

adhesion to the substrate, so they became as one part. This kind of application is useful

whenever the end product can be primarily manufactured from a plate of steel. Although

the entire hoe could have been printed without using the steel substrate, the manufacturing

time is reduced considerably (roughly two hours) by incorporating the substrate. Other

applications of this method include similar products, such as a rake, a flag pole stand, a

flute stand, etc.

As can be seen in Figure 4.3 the process is capable of printing in relatively high resolution

for the cost of the process – down to 1 mm lines. This functionality is useful for making

high detail steel parts such as a gear.

94

The most useful current application of open source GMAW-based 3-D printing, however,

is to manufacture near net shape objects. This is demonstrated in Figure 4.4 with the

horseshoe. The near net shape is seen in many industries and has many applications. For

example, in the auto industry, when a needed part is no longer available or short supply,

the part can be 3-D printed [52-54].

The combination of metal and polymer 3-D printing as shown in Figure 4.5 can be applied

to produce many things that need both metal and plastic. Many tools have metal part with

plastic handles, such as screwdriver, knife, gardening tools, etc.

Many 3-D models that are available but commonly printed only in plastic would have

improved performance if metal printing technology such as this were employed. However,

as the resolution of printing is constant at 1 mm if there are details in a 3-D model that

smaller than that they will be lost. So only near-net shape functionality is available for the

majority of readily available 3-D models. The smaller details would need to be post

machined to the print. A 3-D model that is not in full millimeter in any dimension will also

result in a little bit smaller or bigger printed part (e.g. 0.5 mm designed wall will result in

1mm print). If there is an angle less than 45 degree of z-axis in a 3-D model, the staircase

effect will appear at the angle in the model.

A big 3-D model with a lot of area to be filled will result in a long pause time between

layers to let the printed layer to cool down before printing the next layer. Otherwise, the

heat inside the printed layers can cause defective surfaces for the next layer. If a model can

be hollow, it will reduce the pause time by half. For example, the axe head would require

30 minutes of pause time between layers if it were 100% filled, but it is hollow so only 15

minutes needed.

The CNC machine in this experiment does not have a consistency of moving speed between

moving along x- or y-axis and moving diagonal. When moving along x- or y- axis, it has a

little faster speed than moving diagonal, which caused a rougher surface and layer height

is higher. To avoid the different speed, a 3-D model can be rotated or using a shape (e.g.,

cylinder) that requires diagonal moving.

For the future work, the finer resolution would provide the ability to achieve a detail of

smaller than 1 mm and the thinner layer height would diminish the staircase effect. A better

method to release the heat from the printed part, such as a water-cooled chill plate, would

cut down the waiting time between layers.

4.5 Conclusions

This paper has successfully shown applications of open-source GMAW-based metal 3-D

printing. The results show that GMAW based 3-D printing is capable of distributed

95

manufacturing useful products by SMEs for a wide variety of applications. Metal products

and parts can be designed and created using this technology and the low-cost and open-

source makes it available to everyone. This also gives user the flexibility to customize the

hardware and software for other uses.

96

4.6 References

1 Wohlers TT and Caffrey T. Wohlers report 2015: 3D printing and additive

manufacturing state of the industry annual worldwide progress report. Wohlers

Associates. 2015.

2 Sells E, Smith Z, Bailard S, et al. RepRap: The Replicating Rapid Prototyper:

Maximizing Customizability by Breeding the Means of Production. In Piller, F. T.,

Tseng, M. M. (Eds.). Handbook of Research in Mass Customization and

Personalization: Strategies and concepts. World Scientific 2010;1:568-580.

3 Jones R, Haufe P, Sells E, et al. RepRap – the replicating rapid prototype. Robotica

2011;29(1):177-191.

4 Bowyer A. 3D printing and humanity's first imperfect replicator. 3D printing and

additive manufacturing 2014;1(1):4-5.

5 Anzalone G, Zhang C, Wijnen B, et al. A Low-Cost Open-Source Metal 3-D Printer.

IEEE Access 2013;1:803-810. https://doi.org/10.1109/ACCESS.2013.2293018

6 Pinar A, Wijnen B, Anzalone GC, et al. Low-cost open-source voltage and current

monitor for gas metal arc weld 3D printing. Journal of Sensors 2015. 876714,

https://doi.org/10.1155/2015/876714

7 Nilsiam, Y., Haselhuhn, A., Wijnen, B., Sanders, P. and Pearce, J.M., 2015.

Integrated Voltage—Current Monitoring and Control of Gas Metal Arc Weld

Magnetic Ball-Jointed Open Source 3-D Printer. Machines, 3(4), pp.339-351.

8 Haselhuhn A, Gooding E, Glover A, et al. Substrate Release Mechanisms for Gas

Metal Arc Weld 3D Aluminum Metal Printing. 3D Printing and Additive

Manufacturing 2014;1(4):204-209. https://doi.org/10.1089/3dp.2014.0015

9 Haselhuhn A, Wijnen B, Anzalone G, et al. In situ formation of substrate release

mechanisms for gas metal arc weld metal 3-D printing. Journal of Materials

Processing Technology 2015;226:50-59.

https://doi.org/10.1016/j.jmatprotec.2015.06.038

97

10 Zhang YM, Chen Y, LI P, et al. Weld deposition-based rapid prototyping: a

preliminary study. Journal of Materials Processing Technology 2003;135:347–357.

11 Song YA, Park S, Choi D, Jee H. 3D welding and milling: Part I–a direct approach

for freeform fabrication of metallic prototypes. International Journal of Machine

Tools and Manufacture 2005 Jul 31;45(9):1057-62.

12 Song YA, Park S, Chae SW. 3D welding and milling: part II—optimization of the

3D welding process using an experimental design approach. International Journal of

Machine Tools and Manufacture 2005 Jul 31;45(9):1063-9.

13 Ding D, Pan Z, Cuiuri D, Li H. Wire-feed additive manufacturing of metal

components: technologies, developments and future interests. The International

Journal of Advanced Manufacturing Technology 2015 Oct 1;81(1-4):465-81.

14 Spencer J, Dickens P, and Wykes C. Rapid prototyping of metal parts by three-

dimensional welding. Proceedings of the Institution of Mechanical Engineers 1998;

212(3):175-182.

15 Kwak YM, Doumanidis CC. Geometry regulation of material deposition in near-net

shape manufacturing by thermally scanned welding. Journal of Manufacturing

Processes 2002 Jan 1;4(1):28-41.

16 Zhao H and Zhang G. A 3D dynamic analysis of thermal behavior during single-pass

multi-layer weld-based rapid prototyping. Journal of Materials Processing

Technology 2011;211:488-495.

17 Zhang G, Yin Z, and Wu L. Effects of Interpass Idle Time on Thermal Stresses in

Multipass Multilayer Weld-Based Rapid Prototyping. Journal of Manufacturing

Science and Engineering 2013;135.

18 Dwivedi R, and Kovacevic R. Automated torch path planning using polygon

subdivision for solid freeform fabrication based on welding. Journal of

Manufacturing Systems 2004;23(4):278-91.

19 Ding D, Pan ZS, Cuiuri D, Li H. A tool-path generation strategy for wire and arc

98

additive manufacturing. The international journal of advanced manufacturing

technology 2014 Jul 1;73(1-4):173-83.

20 Ding D, Pan Z, Cuiuri D, Li H. A multi-bead overlapping model for robotic wire and

arc additive manufacturing (WAAM). Robotics and Computer-Integrated

Manufacturing 2015 Feb 28;31:101-10.

21 Ding D, Pan Z, Cuiuri D, Li H. A practical path planning methodology for wire and

arc additive manufacturing of thin-walled structures. Robotics and Computer-

Integrated Manufacturing 2015 Aug 31;34:8-19.

22 Xiong J, Zhang G, Qiu Z, Li Y. Vision-sensing and bead width control of a single-

bead multi-layer part: material and energy savings in GMAW-based rapid

manufacturing. Journal of Cleaner Production 2013 Feb 28;41:82-8.

23 Xiong J, Zhang G, Gao H, Wu L. Modeling of bead section profile and overlapping

beads with experimental validation for robotic GMAW-based rapid manufacturing.

Robotics and Computer-Integrated Manufacturing 2013 Apr 30;29(2):417-23.

24 Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc

additive layer manufacturing process on large multi-layer parts. Computational

Materials Science 2011 Dec 31;50(12):3315-22.

25 Hildreth OJ, Nassar AR, Chasse KR, et al. Dissolvable Metal Supports for 3D Direct

Metal Printing. 3D Printing and Additive Manufacturing 2016 Jun 1;3(2):90-7.

26 Das S, Bourell DL, Babu SS. Metallic materials for 3D printing. MRS Bulletin 2016

Oct;41(10):729-41.

27 RepRap. Rostock. http://reprap.org/wiki/Rostock. Last accessed date 2017 Mar 2.

28 Anzalone GC, Wijnen B and Pearce JM. Multi-material additive and subtractive

prosumer digital fabrication with a free and open-source convertible delta RepRap 3-

D printer. Rapid Prototyping Journal 2015;21(5):506-519.

29 Zhang C, Wijnen B and Pearce JM. Open-source 3-D platform for low-cost scientific

instrument ecosystem. Journal of laboratory automation 2016;21(4):517-525.

99

30 Wijnen B, Anzalone GC, Haselhuhn AS, Sanders PG, Pearce JM. Free and open-

source control software for 3-D motion and processing. Journal of Open Research

Software 2016 Jan 27;4(1).

31 Pearce JM and Nilsiam Y. CNC Router Parts metal 3D printer.

http://www.appropedia.org/CNC_Router_Parts_metal_3D_printer. Last accessed

date 2017 Mar 13.

32 CNCRouterParts. Benchtop PRO CNC Machine Kit.

http://www.cncrouterparts.com/benchtop-pro-cnc-machine-kit-p-314.html. Last

accessed date 2017 Mar 14.

33 Newfrangled Solutions. Mach3. http://www.machsupport.com/software/mach3. Last

accessed date 2017 Mar 13.

34 Nilsiam Y, Sanders P, and Pearce J. Slicer and Optimization for Open-Source

GMAW-based Metal 3-D Printing. to be published (2017).

35 OpenSCAD. http://www.openscad.org. Last accessed date 2017 Mar 6.

36 Chandra H, Skalsky N, Laureto J, et al. Large Form Factor Open Source FFF-based

3-D Printer for Fabrication of Multi-Cubic Meter Models. to be published (2017).

37 Nilsiam Y and Pearce JM. MOST Metal Application Models. https://osf.io/bbbtd/.

Last accessed date 2017 Mar 14.

38 GrabCAD. GE jet engine bracket challenge. https://grabcad.com/challenges/ge-jet-

engine-bracket-challenge. Last accessed date 2017 Mar 14.

39 Wittbrodt B and Pearce JM. 3-D printing solar photovoltaic racking in developing

world. Energy for Sustainable Development 2017;36:1-5.

40 Hazeltine B and Bull C. Appropriate Technology; Tools, Choices, and Implications.

Academic Press, Inc. 1998.

41 Smith A. Transforming technological regimes for sustainable development: a role for

Appropriate Technology niches?. University of Sussex, SPRU. 2002.

42 Pearce JM. Applications of open source 3-D printing on small farms. Organic

Farming 2015;1(1): 19-35.

100

43 Pearce J.M. Building research equipment with free, open-source hardware. Science

2012;337(6100):1303-1304.

44 Pearce, Open-Source Lab: How to Build Your Own Hardware and Reduce Research

Costs, Elsevier, 2014.

45 Baden T, Chagas AM, Gage G, et al. Open Labware: 3-D printing your own lab

equipment. PLoS Biol 2015;13(3):1002086.

46 Pearce JM, Blair CM, Laciak KJ, et al. 3-D printing of open source appropriate

technologies for self-directed sustainable development. Journal of Sustainable

Development 2010;3(4):17.

47 Heyer S and Seliger G. Open manufacturing for value creation cycles. In Design for

Innovative Value Towards a Sustainable Society. Springer Netherlands 2012;110-

115

48 Optomec. Components Repair. https://www.optomec.com/3d-printed-metals/lens-

core-applications/component-repair/. Last accessed date 2017 Mar 14.

49 Kira. BeAM repairs more than 800 aerospace parts with industrial metal 3D printers.

http://www.3ders.org/articles/20160204-beam-repairs-more-than-800-aerospace-

parts-with-industrial-metal-3d-printers.html. Last accessed date 2017 Mar 14.

50 Langnau L. Using 3D printing to repair metal parts.

http://www.makepartsfast.com/using-3d-printing-repair-metal-parts/. Last accessed

date 2017 Mar 14.

51 Matisons M. Sustainable 3D Printing Methods Add to or Subtract from Existing

Objects. https://3dprint.com/105562/3d-print-for-existing-objects/. Last accessed

date 2017 Mar 14.

52 Norfolk M. Maintenance and Repair – 3D Printing Metal parts. Fabrisonic.

http://fabrisonic.com/maintenance-repair-3d-printing-metal-parts/. Last accessed date

2017 Mar 14.

53 Leno J. Jay Leno’s 3D Printer Replaces Rusty Old Parts. Popular mechanics

101

http://www.popularmechanics.com/cars/a4354/4320759/. Last accessed date 2017

Mar 14.

54 Petrova M. Your car's parts could one day be made by a 3D printer. PC World.

http://www.pcworld.com/article/3159056/hardware/your-cars-parts-could-one-day-

be-made-by-a-printer.html . Last accessed date 2017 Mar 14.

102

Chapter 5: Conclusions and Future Work

5.1 Overview

The work in this dissertation has shown the development of open-source toolchains and

the applications of open-source GMAW-based metal 3-D printing. The integrated voltage-

current monitoring system provides more data about energy usage and how it affects to the

printing. The MOSTMetalCura gives the capability to generate G-code from a 3-D model

instead of manual input. The slicer also provides the optimization wire feed rate setting for

the welder based on other settings. Finally, the applicability of open-source GMAW-based

metal 3-D printing demonstrates the usefulness in a wide range of industries. Overall, the

completed work helps improve the process and utility of the open-source GMAW-based

metal 3-D printing. The low-cost and open-source of the technology made it accessible to

all who want to use it or customize it for improvement and for other uses.

5.2 Conclusions

5.2.1 Integrated Voltage-Current Monitoring System

 The design of system reduces the need of an additional controller board which

efficiently utilizes the existing software and hardware.

 The design also cuts down the cost and the complication of electric equipment.

 The voltage and current data was logged in real-time as raw measurement and need

to be processed.

 The open-source script for data processing was developed to clean noise and to

calculate the two standard error, average voltage, and average current for each layer

and per alloy.

 The system provides more data for optimization purpose.

5.2.2 Slicer and Optimization for Open-Source GMAW-based Metal 3-D Printing

 The concentric pattern is chosen to avoid overrun the previous welded bead.

 The ability to add G-code that pauses the printing between layers and be able to set

how long it is and even increase the time as the layers are higher was added.

103

 The capability to config which GPIO pins to be used for turning on/off the welder.

 Based on printing speed, layer height, wire diameter, and bead width, the optimized

wire feed rate setting is calculated by the MOSTMetalCura.

 The result demonstrates that the calculated setting is optimized for the open-source

GMAW-based metal 3-D printing with a resolution of 1 millimeter.

5.2.3 Applications of Open-Source GMAW-based Metal 3-D Printing

 GMAW-based metal 3-D printing has been studied by many researchers and the

results indicated that the printed parts by the technique are good in both material

and mechanical properties.

 The existing CNC Router Parts was converted to a metal 3-D printer by adding the

welder to it and the ability for the control unit of the machine to control the welder

to be on/off.

 Metal 3-D printing can be applied to print on the existing part in order for fixing or

customizing purpose.

 A product can be created from a merger of a substrate and metal 3-D printing.

 A combination of polymer and metal 3-D printing can be used to produced many

useful products.

 The ability to print near net shape objects reduces material waste if the object was

made by subtractive manufacturing.

 The results demonstrate that it can be applied to a wide range of applications and it

is ready for distributed manufacturing.

5.3 Future Work

5.3.1 Integrated Voltage-Current Monitoring System

 The data should be used for feedback control in the real-time. Franklin would need

to be customized to send control signal to the welder based on the current and

voltage data. However, the welder need to be controllable by electric signal.

 From the real-time measurement of current and voltage, using those data to

automatically adjust the printing speed in order to achieve the optimal settings.

104

 A model for calculating energy usage based on the current and voltage data should

be developed.

 There should be a further study about the relationship between printing pattern and

energy consuming.

5.3.2 Slicer and Optimization for Open-Source GMAW-based Metal 3-D Printing

 MOSTMetalCura is currently a command-line control software. To make it more

user friendly, a graphical user interface can be implemented or open-source Cura

software can be customized to support metal 3-D printing.

 Bead width is manually adjusted so that the model is filled evenly. This might be

able to be dynamically adapted based on the dimension of the model.

 Toolpath planning for a complex geometry should be adjusted to suit metal 3-D

printing. There is a lot of stops and travelling if the model has holes inside.

 With sensor to measure the temperature of the printed part, thermal model of 3-D

printed part should be created to optimize the pause time between layers. The

thermocouple or infrared (IR) sensor could be used to measure the temperature at

the surface of the printed part then using the thermal model to predict the heat in

the part.

 Thermal control during printing should be developed for a better quality finished

surface and cooling system during pausing time between layers would help cut

down a lot of waiting time.

 Another option to mitigate the surface roughness is using milling between layers

which is not hard to do on the CNC Router Parts system.

5.3.3 Applications of Open-Source GMAW-based Metal 3-D Printing

 There is limited open-source 3-D models for metal printing. A community website

to share 3-D models and designs should be started. The collaboration would bring

more applications of the technology.

 To print a model with small details, the finer printing resolution is needed. The

experiments with different welders and smaller weld wire would need to be

105

conducted for optimizing the print. If smaller weld wire does not exist, then it

should be developed to suit metal 3-D printing in size and material properties.

 The current CNC Router Parts setup has different moving velocity between moving

by one and two motors. This can be hardware or software problem. Franklin, free

and open-source software, should be tried to control the machine for testing.

106

Appendix

A CuraEngine information for Chapter 3

A.1 Data flow map of the core functions of CuraEngine

Figure A.1 Data flow map of the core functions of CuraEngine (part 1)

107

Figure A.2 Data flow map of the core functions of CuraEngine (part 2)

108

Figure A.3 Data flow map of the core functions of CuraEngine (part 3)

109

A.2 Source code of the core functions of CuraEngine

#CMakeLists.txt

project(MOSTMetalCura)

cmake_minimum_required(VERSION 2.8.12)

find_package(Arcus REQUIRED)

if(NOT ${CMAKE_VERSION} VERSION_LESS 3.1)

 set(CMAKE_CXX_STANDARD 11)

else()

 set(CMAKE_CXX_FLAGS "-std=c++11")

endif()

Add warnings

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall")

if(NOT APPLE AND NOT WIN32)

 set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -static-libstdc++")

elseif(APPLE)

 set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")

endif()

include_directories(${CMAKE_CURRENT_BINARY_DIR} libs)

add_library(clipper STATIC libs/clipper/clipper.cpp)

set(engine_SRCS

 src/bridge.cpp

 src/comb.cpp

 src/commandSocket.cpp

 src/gcodeExport.cpp

 src/gcodePlanner.cpp

 src/infill.cpp

 src/inset.cpp

 src/layerPart.cpp

 src/main.cpp

 src/mesh.cpp

 src/multiVolumes.cpp

 src/pathOrderOptimizer.cpp

 src/polygonOptimizer.cpp

 src/raft.cpp

 src/settingRegistry.cpp

 src/settings.cpp

 src/skin.cpp

 src/skirt.cpp

 src/slicer.cpp

 src/support.cpp

 src/timeEstimate.cpp

 src/Weaver.cpp

 src/Wireframe2gcode.cpp

 src/modelFile/modelFile.cpp

 src/utils/gettime.cpp

110

 src/utils/logoutput.cpp

 src/utils/polygonUtils.cpp

)

protobuf_generate_cpp(engine_PB_SRCS engine_PB_HEADERS Cura.proto)

add_executable(MOSTMetalCura ${engine_SRCS} ${engine_PB_SRCS})

target_link_libraries(MOSTMetalCura clipper Arcus)

add_executable(Test src/test.cpp)

target_link_libraries(Test clipper)

if (UNIX)

 target_link_libraries(MOSTMetalCura pthread)

endif()

include(GNUInstallDirs)

install(TARGETS MOSTMetalCura DESTINATION ${CMAKE_INSTALL_BINDIR})

111

fdmprinter.json

{

 "visible": false,

 "machine_settings": {

 "machine_start_gcode": {

 "default": ";mm units\nG21\n;Feed per minute mode\nG94 \n;Absolute Distance

mode\nG90\n"

 },

 "machine_end_gcode": {

 "default": ""

 },

 "machine_metal_printing": { "default": true },

 "machine_welder_on_gcode": {

 "default": ";Turn welder on\nG4 P.001\nM101\n"

 },

 "machine_welder_off_gcode": {

 "default": ";Turn welder off\nG4 P.001\nM102\n"

 },

 "machine_min_dist_welder_off": {

 "unit": "mm",

 "default": 5.0

 },

 "machine_up_layer_end": {

 "unit": "mm",

 "default": 10.0

 },

 "machine_layer_pause": { "default": true },

 "machine_layer_pause_gcode": { "default": ";Layer pause\nG4 P" },

 "machine_layer_pause_time": { "description": "millisecond for franklin, second for

cnc", "default": 300 },

 "machine_layer_pause_increase": { "default": 0 },

 "meshfix_union_all_remove_holes": {"default": false},

 "meshfix_union_all":{"default": false},

 "machine_width": { "default": 230 },

 "machine_depth": { "default": 225 },

 "machine_height": { "default": 205 },

 "machine_heated_bed": { "default": false },

 "machine_center_is_zero": { "default": false },

 "machine_nozzle_size": { "default": 2.5 },

 "machine_head_shape_min_x": { "default": 40 },

 "machine_head_shape_min_y": { "default": 10 },

 "machine_head_shape_max_x": { "default": 60 },

 "machine_head_shape_max_y": { "default": 30 },

 "machine_nozzle_gantry_distance": { "default": 55 },

 "machine_nozzle_offset_x_1": { "default": 18.0 },

 "machine_nozzle_offset_y_1": { "default": 0.0 },

112

 "machine_gcode_flavor": { "default": "RepRap" },

 "machine_disallowed_areas": { "default": [

 [[-115.0, 112.5], [-82.0, 112.5], [-84.0, 104.5], [-115.0, 104.5]],

 [[115.0, 112.5], [115.0, 104.5], [110.0, 104.5], [108.0, 112.5]],

 [[-115.0, -112.5], [-115.0, -104.5], [-84.0, -104.5], [-82.0, -112.5]],

 [[115.0, -112.5], [108.0, -112.5], [110.0, -104.5], [115.0, -104.5]]

]},

 "machine_platform_offset": { "default": [9.0, 0.0, 0.0] },

 "machine_nozzle_tip_outer_diameter": { "default": 1.0 },

 "machine_nozzle_head_distance": { "default": 3.0 },

 "machine_nozzle_expansion_angle": { "default": 45 }

 },

 "categories": {

 "resolution": {

 "label": "Quality",

 "visible": true,

 "icon": "category_quality",

 "settings": {

 "layer_height": {

 "label": "Layer Height",

 "description": "The height of each layer, in mm. Normal quality prints are

0.1mm, high quality is 0.06mm. You can go up to 0.25mm with an Ultimaker for very

fast prints at low quality. For most purposes, layer heights between 0.1 and 0.2mm give a

good tradeoff of speed and surface finish.",

 "unit": "mm",

 "type": "float",

 "default": 2.00,

 "min_value": 0.06,

 "max_value": 2.0,

 "always_visible": true,

 "children": {

 "layer_height_0": {

 "label": "Initial Layer Thickness",

 "description": "The layer thickness of the bottom layer. A thicker

bottom layer makes sticking to the bed easier.",

 "unit": "mm",

 "type": "float",

 "default": 2.00,

 "min_value": 0.06,

 "max_value": 2.0,

 "visible": false

 }

 }

 },

 "shell_thickness": {

113

 "label": "Shell Thickness",

 "description": "The thickness of the outside shell in the horizontal and

vertical direction. This is used in combination with the nozzle size to define the number

of perimeter lines and the thickness of those perimeter lines. This is also used to define

the number of solid top and bottom layers.",

 "unit": "mm",

 "type": "float",

 "default": 2.0,

 "min_value": 0.0,

 "max_value": 5.0,

 "children": {

 "wall_thickness": {

 "label": "Wall Thickness",

 "description": "The thickness of the outside walls in the horizontal

direction. This is used in combination with the nozzle size to define the number of

perimeter lines and the thickness of those perimeter lines.",

 "unit": "mm",

 "default": 0.99,

 "min_value": 0.0,

 "max_value": 5.0,

 "min_value_warning": 0.4,

 "max_value_warning": 2.0,

 "type": "float",

 "visible": false,

 "children": {

 "wall_line_count": {

 "label": "Wall Line Count",

 "description": "Number of shell lines. This these lines are called

perimeter lines in other tools and impact the strength and structural integrity of your

print.",

 "default": 100,

 "type": "int",

 "visible": false,

 "inherit_function": "max(1, (int(parent_value /

(machine_nozzle_size - 0.0001) + 1) if (parent_value / max(1, int(parent_value /

(machine_nozzle_size - 0.0001))) > machine_nozzle_size) * 1.5 else int(parent_value /

(machine_nozzle_size - 0.0001))))"

 },

 "wall_line_width": {

 "label": "Wall Line Width",

 "description": "Width of a single shell line. Each line of the shell

will be printed with this width in mind.",

 "unit": "mm",

 "default": 0.99,

 "type": "float",

 "visible": false,

114

 "inherit_function": "max(machine_nozzle_size, (parent_value /

(int(parent_value / (machine_nozzle_size - 0.0001) + 1))) if (parent_value /

(int(parent_value / (machine_nozzle_size - 0.0001))) > machine_nozzle_size * 1.5) else

(parent_value / int(parent_value / (machine_nozzle_size - 0.0001))))",

 "children": {

 "wall_line_width_0": {

 "label": "First Wall Line Width",

 "description": "Width of the outermost shell line. By printing

a thinner outermost wall line you can print higher details with a larger nozzle.",

 "unit": "mm",

 "default": 0.99,

 "type": "float",

 "visible": false

 },

 "wall_line_width_x": {

 "label": "Other Walls Line Width",

 "description": "Width of a single shell line for all shell lines

except the outermost one.",

 "unit": "mm",

 "default": 0.99,

 "type": "float",

 "visible": false

 },

 "skirt_line_width": {

 "label": "Skirt line width",

 "description": "Width of a single skirt line.",

 "unit": "mm",

 "default": 0.99,

 "type": "float",

 "visible": false

 },

 "skin_line_width": {

 "label": "Top/bottom line width",

 "description": "Width of a single top/bottom printed line.

Which are used to fill up the top/bottom areas of a print.",

 "unit": "mm",

 "default": 0.99,

 "type": "float",

 "visible": false

 },

 "infill_line_width": {

 "label": "Infill line width",

 "description": "Width of the inner infill printed lines.",

 "unit": "mm",

 "default": 0.99,

 "type": "float",

115

 "visible": false

 },

 "support_line_width": {

 "label": "Support line width",

 "description": "Width of the printed support structures lines.",

 "unit": "mm",

 "default": 0.99,

 "type": "float",

 "visible": false

 }

 }

 }

 }

 },

 "alternate_extra_perimeter": {

 "label": "Alternate Extra Wall",

 "description": "Make an extra wall at every second layer, so that infill

will be caught between an extra wall above and one below. This results in a better

cohesion between infill and walls, but might have an impact on the surface quality.",

 "type": "boolean",

 "default": false,

 "visible": false

 },

 "top_bottom_thickness": {

 "label": "Bottom/Top Thickness",

 "description": "This controls the thickness of the bottom and top layers,

the amount of solid layers put down is calculated by the layer thickness and this value.

Having this value a multiple of the layer thickness makes sense. And keep it near your

wall thickness to make an evenly strong part.",

 "unit": "mm",

 "default": 2.0,

 "min_value": 0.0,

 "max_value": 5.0,

 "min_value_warning": 0.4,

 "max_value_warning": 1.0,

 "type": "float",

 "visible": false,

 "children": {

 "top_thickness": {

 "label": "Top Thickness",

 "description": "This controls the thickness of the top layers. The

number of solid layers printed is calculated from the layer thickness and this value.

Having this value be a multiple of the layer thickness makes sense. And keep it nearto

your wall thickness to make an evenly strong part.",

 "unit": "mm",

 "default": 2.0,

116

 "type": "float",

 "visible": false,

 "children": {

 "top_layers": {

 "label": "Top Layers",

 "description": "This controls the amount of top layers.",

 "default": 100,

 "type": "int",

 "visible": false,

 "inherit_function": "math.ceil(parent_value / layer_height)"

 }

 }

 },

 "bottom_thickness": {

 "label": "Bottom Thickness",

 "description": "This controls the thickness of the bottom layers.

The number of solid layers printed is calculated from the layer thickness and this value.

Having this value be a multiple of the layer thickness makes sense. And keep it near to

your wall thickness to make an evenly strong part.",

 "unit": "mm",

 "default": 2.0,

 "type": "float",

 "visible": false,

 "children": {

 "bottom_layers": {

 "label": "Bottom Layers",

 "description": "This controls the amount of bottom layers.",

 "default": 100,

 "type": "int",

 "visible": false,

 "inherit_function": "math.ceil(parent_value / layer_height)"

 }

 }

 }

 }

 }

 }

 },

 "wall_overlap_avoid_enabled": {

 "label": "Avoid Overlapping Walls",

 "description": "Remove parts of a wall which share an overlap which would

result in overextrusion in some places. These overlaps occur in thin pieces in a model and

sharp corners.",

 "type": "boolean",

 "default": true,

117

 "visible": false

 },

 "fill_perimeter_gaps":{

 "label": "Fill Gaps Between Walls",

 "description": "Fill the gaps created by walls where they would otherwise be

overlapping. This will also fill thin walls. Optionally only the gaps occurring within the

top and bottom skin can be filled.",

 "type": "enum",

 "options": [

 "Nowhere",

 "Everywhere",

 "Skin"

],

 "default": "Nowhere",

 "visible": false,

 "active_if": {

 "setting": "wall_overlap_avoid_enabled",

 "value": true

 }

 },

 "top_bottom_pattern": {

 "label": "Bottom/Top Pattern",

 "description": "Pattern of the top/bottom solid fill. This normally is done

with lines to get the best possible finish, but in some cases a concentric fill gives a nicer

end result.",

 "type": "enum",

 "options": [

 "Lines",

 "Concentric"

],

 "default": "Concentric",

 "visible": false

 },

 "skin_outline_count": {

 "label": "Skin Perimeter Line Count",

 "description": "Number of lines around skin regions. Using one or two skin

perimeter lines can greatly improve on roofs which would start in the middle of infill

cells.",

 "default": 20,

 "type": "int",

 "visible": false,

 "active_if": {

 "setting": "top_bottom_pattern",

 "value": "Lines"

 }

 },

118

 "xy_offset": {

 "label": "Horizontal expansion",

 "description": "Amount of offset applied all polygons in each layer. Positive

values can compensate for too big holes; negative values can compensate for too small

holes.",

 "unit": "mm",

 "type": "float",

 "default": 0.0,

 "visible": false

 }

 }

 },

 "material": {

 "label": "Material",

 "visible": true,

 "icon": "category_material",

 "settings": {

 "material_print_temperature": {

 "label": "Printing Temperature",

 "description": "The temperature used for printing. Set at 0 to pre-heat

yourself. For PLA a value of 210C is usually used.\nFor ABS a value of 230C or higher

is required.",

 "unit": "°C",

 "type": "float",

 "default": 0,

 "min_value": 10,

 "max_value": 340

 },

 "material_bed_temperature": {

 "label": "Bed Temperature",

 "description": "The temperature used for the heated printer bed. Set at 0 to

pre-heat it yourself.",

 "unit": "°C",

 "type": "float",

 "default": 0,

 "min_value": 0,

 "max_value": 340

 },

 "material_diameter": {

 "label": "Diameter",

 "description": "The diameter of your filament needs to be measured as

accurately as possible.\nIf you cannot measure this value you will have to calibrate it, a

higher number means less extrusion, a smaller number generates more extrusion.",

 "unit": "mm",

119

 "type": "float",

 "default": 0.6,

 "min_value": 0.4,

 "max_value": 5.0

 },

 "material_flow": {

 "label": "Flow",

 "description": "Flow compensation: the amount of material extruded is

multiplied by this value.",

 "unit": "%",

 "default": 100.0,

 "type": "float",

 "min_value": 5.0,

 "max_value": 300.0

 },

 "retraction_enable": {

 "label": "Enable Retraction",

 "description": "Retract the filament when the nozzle is moving over a non-

printed area. Details about the retraction can be configured in the advanced tab.",

 "type": "boolean",

 "default": false,

 "children": {

 "retraction_speed": {

 "label": "Retraction Speed",

 "description": "The speed at which the filament is retracted. A higher

retraction speed works better, but a very high retraction speed can lead to filament

grinding.",

 "unit": "mm/s",

 "type": "float",

 "default": 20.0,

 "visible": false,

 "inherit": false,

 "children": {

 "retraction_retract_speed": {

 "label": "Retraction Retract Speed",

 "description": "The speed at which the filament is retracted. A

higher retraction speed works better, but a very high retraction speed can lead to filament

grinding.",

 "unit": "mm/s",

 "type": "float",

 "default": 20.0,

 "visible": false

 },

 "retraction_prime_speed": {

120

 "label": "Retraction Prime Speed",

 "description": "The speed at which the filament is pushed back

after retraction.",

 "unit": "mm/s",

 "type": "float",

 "default": 20.0,

 "visible": false

 }

 }

 },

 "retraction_amount": {

 "label": "Retraction Distance",

 "description": "The amount of retraction: Set at 0 for no retraction at

all,4 defalut. A value of 4.5mm seems to generate good results for 3mm filament in

Bowden-tube fed printers.",

 "unit": "mm",

 "type": "float",

 "default": 0.0,

 "visible": false,

 "inherit": false

 },

 "retraction_min_travel": {

 "label": "Retraction Minimum Travel",

 "description": "The minimum distance of travel needed for a retraction

to happen at all. This helps ensure you do not get a lot of retractions in a small area.",

 "unit": "mm",

 "type": "float",

 "default": 1.5,

 "visible": false,

 "inherit": false

 },

 "retraction_combing": {

 "label": "Enable Combing",

 "description": "Combing keeps the head within the interior of the print

whenever possible when traveling from one part of the print to another, and does not use

retraction. If combing is disabled the printer head moves straight from the start point to

the end point and it will always retract.",

 "type": "boolean",

 "default": false,

 "visible": false,

 "inherit": false

 },

 "retraction_count_max": {

 "label": "Maximal Retraction Count",

 "description": "This settings limits the number of retractions occuring

within the Minimal Extrusion Distance Window. Further retractions within this window

121

will be ignored. This avoids retracting repeatedly on the same piece of filament as that

can flatten the filament and cause grinding issues.",

 "default": 6,

 "type": "int",

 "visible": false,

 "inherit": false

 },

 "retraction_extrusion_window": {

 "label": "Minimal Extrusion Distance Window",

 "description": "The window in which the Maximal Retraction Count is

enforced. This window should be approximately the size of the Retraction distance, so

that effectively the number of times a retraction passes the same patch of material is

limited.",

 "unit": "mm",

 "type": "float",

 "default": 0.5,

 "visible": false,

 "inherit_function": "retraction_amount"

 },

 "retraction_hop": {

 "label": "Z Hop when Retracting",

 "description": "Whenever a retraction is done, the head is lifted by this

amount to travel over the print. A value of 0.075 works well. This feature has a lot of

positive effect on delta towers.",

 "unit": "mm",

 "type": "float",

 "default": 0.0,

 "visible": false,

 "inherit": false

 }

 }

 }

 }

 },

 "speed": {

 "label": "Speed",

 "visible": true,

 "icon": "category_speed",

 "settings": {

 "speed_print": {

 "label": "Print Speed",

 "description": "The speed at which printing happens. A well-adjusted

Ultimaker can reach 150mm/s, but for good quality prints you will want to print slower.

Printing speed depends on a lot of factors, so you will need to experiment with optimal

settings for this.",

 "unit": "mm/s",

122

 "type": "float",

 "default": 7.0,

 "children": {

 "speed_infill": {

 "label": "Infill Speed",

 "description": "The speed at which infill parts are printed. Printing the

infill faster can greatly reduce printing time, but this can negatively affect print quality.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false

 },

 "speed_wall": {

 "label": "Shell Speed",

 "description": "The speed at which shell is printed. Printing the outer

shell at a lower speed improves the final skin quality.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false,

 "children": {

 "speed_wall_0": {

 "label": "Outer Shell Speed",

 "description": "The speed at which outer shell is printed. Printing

the outer shell at a lower speed improves the final skin quality. However, having a large

difference between the inner shell speed and the outer shell speed will effect quality in a

negative way.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false

 },

 "speed_wall_x": {

 "label": "Inner Shell Speed",

 "description": "The speed at which all inner shells are printed.

Printing the inner shell fasster than the outer shell will reduce printing time. It is good to

set this in between the outer shell speed and the infill speed.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false

 }

 }

 },

123

 "speed_topbottom": {

 "label": "Top/Bottom Speed",

 "description": "Speed at which top/bottom parts are printed. Printing the

top/bottom faster can greatly reduce printing time, but this can negatively affect print

quality.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false

 },

 "speed_support": {

 "label": "Support Speed",

 "description": "The speed at which exterior support is printed. Printing

exterior supports at higher speeds can greatly improve printing time. And the surface

quality of exterior support is usually not important, so higher speeds can be used.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false,

 "inherit_function": "speed_wall_0"

 }

 }

 },

 "speed_travel": {

 "label": "Travel Speed",

 "description": "The speed at which travel moves are done. A well-built

Ultimaker can reach speeds of 250mm/s. But some machines might have misaligned

layers then.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0

 },

 "speed_layer_0": {

 "label": "Bottom Layer Speed",

 "description": "The print speed for the bottom layer: You want to print the

first layer slower so it sticks to the printer bed better.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false,

 "children": {

 "skirt_speed": {

 "label": "Skirt Speed",

124

 "description": "The speed at which the skirt and brim are printed.

Normally this is done at the initial layer speed. But sometimes you want to print the skirt

at a different speed.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false

 }

 }

 },

 "speed_slowdown_layers": {

 "label": "Amount of Slower Layers",

 "description": "The first few layers are printed slower then the rest of the

object, this to get better adhesion to the printer bed and improve the overall success rate

of prints. The speed is gradually increased over these layers. 4 layers of speed-up is

generally right for most materials and printers.",

 "type": "int",

 "default": 0,

 "visible": false

 }

 }

 },

 "infill": {

 "label": "Infill",

 "visible": true,

 "icon": "category_infill",

 "settings": {

 "fill_sparse_density": {

 "label": "Infill Density",

 "description": "This controls how densely filled the insides of your print will

be. For a solid part use 100%, for an hollow part use 0%. A value around 20% is usually

enough. This won't affect the outside of the print and only adjusts how strong the part

becomes.",

 "unit": "%",

 "type": "float",

 "default": 100.0,

 "children": {

 "fill_pattern": {

 "label": "Infill Pattern",

 "description": "Cura defaults to switching between grid and line infill.

But with this setting visible you can control this yourself. The line infill swaps direction

on alternate layers of infill, while the grid prints the full cross-hatching on each layer of

infill.",

 "type": "enum",

 "visible": false,

125

 "options": [

 "Grid",

 "Lines",

 "Concentric",

 "ZigZag"

],

 "default": "Concentric",

 "inherit_function": "'Lines' if parent_value > 25 else 'Grid'"

 },

 "infill_line_distance": {

 "label": "Line distance",

 "description": "Distance between the

printed infill lines.",

 "unit": "mm",

 "type": "float",

 "default": 0.0,

 "visible": false,

 "inherit_function":

"(infill_line_width * 100) / parent_value"

 }

 }

 },

 "fill_overlap": {

 "label": "Infill Overlap",

 "description": "The amount of overlap between the infill and the walls. A

slight overlap allows the walls to connect firmly to the infill.",

 "unit": "%",

 "type": "float",

 "default": 0.0,

 "visible": false

 },

 "fill_sparse_thickness": {

 "label": "Infill Thickness",

 "description": "The thickness of the sparse infill. This is rounded to a

multiple of the layerheight and used to print the sparse-infill in fewer, thicker layers to

save printing time.",

 "unit": "mm",

 "type": "float",

 "default": 2.0,

 "visible": false,

 "children": {

 "fill_sparse_combine": {

 "label": "Infill Layers",

 "description": "Amount of layers that are combined together to form

sparse infill.",

126

 "type": "int",

 "default": 0,

 "visible": false,

 "inherit_function": "math.floor((parent_value + 0.001) / layer_height)"

 }

 }

 }

 }

 },

 "cooling": {

 "label": "Cooling",

 "visible": true,

 "icon": "category_cool",

 "settings": {

 "cool_fan_enabled": {

 "label": "Enable Cooling Fan",

 "description": "Enable the cooling fan during the print. The extra cooling

from the cooling fan helps parts with small cross sections that print each layer quickly.",

 "type": "boolean",

 "default": false,

 "children": {

 "cool_fan_speed": {

 "label": "Fan Speed",

 "description": "Fan speed used for the print cooling fan on the printer

head.,100 default",

 "unit": "%",

 "type": "float",

 "default": 0.0,

 "visible": false,

 "inherit_function": "100.0 if parent_value else 0.0",

 "children": {

 "cool_fan_speed_min": {

 "label": "Minimum Fan Speed",

 "description": "Normally the fan runs at the minimum fan speed. If

the layer is slowed down due to minimum layer time, the fan speed adjusts between

minimum and maximum fan speed.",

 "unit": "%",

 "type": "float",

 "default": 0.0,

 "visible": false

 },

 "cool_fan_speed_max": {

 "label": "Maximum Fan Speed",

127

 "description": "Normally the fan runs at the minimum fan speed. If

the layer is slowed down due to minimum layer time, the fan speed adjusts between

minimum and maximum fan speed.",

 "unit": "%",

 "type": "float",

 "default": 0.0,

 "visible": false

 }

 }

 }

 }

 },

 "cool_fan_full_at_height": {

 "label": "Fan Full on at Height",

 "description": "The height at which the fan is turned on completely. For the

layers below this the fan speed is scaled linearly with the fan off for the first layer.",

 "unit": "mm",

 "type": "float",

 "default": 0.5,

 "visible": false,

 "children": {

 "cool_fan_full_layer": {

 "label": "Fan Full on at Layer",

 "description": "The layer number at which the fan is turned on

completely. For the layers below this the fan speed is scaled linearly with the fan off for

the first layer.",

 "type": "int",

 "default": 0,

 "visible": false,

 "inherit_function": "int((parent_value - layer_height_0 + 0.001) /

layer_height)"

 }

 }

 },

 "cool_min_layer_time": {

 "label": "Minimal Layer Time",

 "description": "The minimum time spent in a layer: Gives the layer time to

cool down before the next one is put on top. If a layer would print in less time, then the

printer will slow down to make sure it has spent at least this many seconds printing the

layer.",

 "unit": "sec",

 "type": "float",

 "default": 5.0,

 "visible": false

 },

128

 "cool_min_layer_time_fan_speed_max": {

 "label": "Minimal Layer Time Full Fan Speed",

 "description": "The minimum time spent in a layer which will cause the fan

to be at minmum speed. The fan speed increases linearly from maximal fan speed for

layers taking minimal layer time to minimal fan speed for layers taking the time specified

here.",

 "unit": "sec",

 "type": "float",

 "default": 10.0,

 "visible": false

 },

 "cool_min_speed": {

 "label": "Minimum Speed",

 "description": "The minimum layer time can cause the print to slow down so

much it starts to droop. The minimum feedrate protects against this. Even if a print gets

slowed down it will never be slower than this minimum speed.",

 "unit": "mm/s",

 "type": "float",

 "default": 10.0,

 "visible": false

 },

 "cool_lift_head": {

 "label": "Lift Head",

 "description": "Lift the head away from the print if the minimum speed is hit

because of cool slowdown, and wait the extra time away from the print surface until the

minimum layer time is used up.",

 "type": "boolean",

 "default": false,

 "visible": false

 }

 }

 },

 "support": {

 "label": "Support",

 "visible": true,

 "icon": "category_support",

 "settings": {

 "support_enable": {

 "label": "Enable Support",

 "description": "Enable exterior support structures. This will build up

supporting structures below the model to prevent the model from sagging or printing in

mid air.",

 "type": "boolean",

 "default": false

 },

 "support_type": {

129

 "label": "Placement",

 "description": "Where to place support structures. The placement can be

restricted such that the support structures won't rest on the model, which could otherwise

cause scarring.",

 "type": "enum",

 "options": [

 "Touching Buildplate",

 "Everywhere"

],

 "default": "Touching Buildplate",

 "visible": true,

 "inherit_function": "'Everywhere' if support_enable else 'None'",

 "active_if": {

 "setting": "support_enable",

 "value": true

 }

 },

 "support_angle": {

 "label": "Overhang Angle",

 "description": "The maximum angle of overhangs for which support will be

added. With 0 degrees being horizontal, and 90 degrees being vertical.",

 "unit": "°",

 "type": "float",

 "default": 60.0,

 "visible": false,

 "active_if": {

 "setting": "support_enable",

 "value": true

 }

 },

 "support_xy_distance": {

 "label": "X/Y Distance",

 "description": "Distance of the support structure from the print, in the X/Y

directions. 0.7mm typically gives a nice distance from the print so the support does not

stick to the surface.",

 "unit": "mm",

 "type": "float",

 "default": 0.7,

 "visible": false,

 "active_if": {

 "setting": "support_enable",

 "value": true

 }

 },

 "support_z_distance": {

 "label": "Z Distance",

130

 "description": "Distance from the top/bottom of the support to the print. A

small gap here makes it easier to remove the support but makes the print a bit uglier.

0.15mm allows for easier separation of the support structure.",

 "unit": "mm",

 "type": "float",

 "default": 0.15,

 "visible": false,

 "active_if": {

 "setting": "support_enable",

 "value": true

 },

 "children": {

 "support_top_distance": {

 "label": "Top Distance",

 "description": "Distance from the top of the support to the print.",

 "unit": "mm",

 "default": 0.15,

 "type": "float",

 "visible": false

 },

 "support_bottom_distance": {

 "label": "Bottom Distance",

 "description": "Distance from the print to the bottom of the support.",

 "unit": "mm",

 "default": 0.15,

 "type": "float",

 "visible": false

 }

 }

 },

 "support_bottom_stair_step_height": {

 "label": "Stair Step Height",

 "description": "The height of the steps of the stair-like bottom of support

resting on the model. Small steps can cause the support to be hard to remove from the top

of the model.",

 "unit": "mm",

 "type": "float",

 "default": 0.5,

 "visible": false,

 "active_if": {

 "setting": "support_type",

 "value": "Everywhere"

 }

 },

 "support_join_distance": {

131

 "label": "Join Distance",

 "description": "The maximum distance between support blocks, in the X/Y

directions, such that the blocks will merge into a single block.",

 "unit": "mm",

 "type": "float",

 "default": 0.7,

 "visible": false

 },

 "support_area_smoothing": {

 "label": "Area Smoothing",

 "description": "Maximal distance in the X/Y directions of a line segment

which is to be smoothed out. Ragged lines are introduced by the join distance and support

bridge, which cause the machine to resonate. Smoothing the support areas won't cause

them to break with the constraints, except it might change the overhang.",

 "unit": "mm",

 "type": "float",

 "default": 0.6,

 "visible": false

 },

 "support_use_towers": {

 "label": "Use towers.",

 "description": "Use specialized towers to support tiny overhang areas. These

towers have a larger diameter than the region they support. Near the overhang the towers'

diameter decreases, forming a roof.",

 "type": "boolean",

 "default": true,

 "visible": true

 },

 "support_minimal_diameter": {

 "label": "Minimal Diameter",

 "description": "Maximal diameter in the X/Y directions of a small area

which is to be supported by a specialized support tower. ",

 "unit": "mm",

 "type": "float",

 "default": 1.0,

 "visible": false,

 "active_if": {

 "setting": "support_use_towers",

 "value": true

 }

 },

 "support_tower_diameter": {

 "label": "Tower Diameter",

 "description": "The diameter of a special tower. ",

 "unit": "mm",

 "type": "float",

132

 "default": 1.0,

 "visible": false,

 "active_if": {

 "setting": "support_use_towers",

 "value": true

 }

 },

 "support_tower_roof_angle": {

 "label": "Tower Roof Angle",

 "description": "The angle of the rooftop of a tower. Larger angles mean more

pointy towers. ",

 "unit": "°",

 "type": "int",

 "default": 65,

 "visible": false,

 "active_if": {

 "setting": "support_use_towers",

 "value": true

 }

 },

 "support_pattern": {

 "label": "Pattern",

 "description": "Cura supports 3 distinct types of support structure. First is a

grid based support structure which is quite solid and can be removed as 1 piece. The

second is a line based support structure which has to be peeled off line by line. The third

is a structure in between the other two; it consists of lines which are connected in an

accordeon fashion.",

 "type": "enum",

 "options": [

 "Grid",

 "Lines",

 "ZigZag"

],

 "default": "ZigZag",

 "visible": true,

 "active_if": {

 "setting": "support_enable",

 "value": true

 }

 },

 "support_connect_zigzags": {

 "label": "Connect ZigZags",

 "description": "Connect the ZigZags. Makes them harder to remove, but

prevents stringing of disconnected zigzags.",

 "type": "boolean",

 "default": true,

133

 "visible": false,

 "active_if": {

 "setting": "support_pattern",

 "value": "ZigZag"

 }

 },

 "support_fill_rate": {

 "label": "Fill Amount",

 "description": "The amount of infill structure in the support, less infill gives

weaker support which is easier to remove.",

 "unit": "%",

 "type": "float",

 "default": 20,

 "visible": false,

 "active_if": {

 "setting": "support_enable",

 "value": true

 },

 "children": {

 "support_line_distance": {

 "label": "Line distance",

 "description": "Distance between the

printed support lines.",

 "unit": "mm",

 "type": "float",

 "default": 2.66,

 "visible": false,

 "active_if": {

 "setting": "support_enable",

 "value": true

 },

 "inherit_function":

"(support_line_width * 100) / parent_value"

 }

 }

 }

 }

 },

 "platform_adhesion": {

 "label": "Platform Adhesion",

 "visible": true,

 "icon": "category_adhesion",

 "settings": {

 "adhesion_type": {

 "label": "Type",

134

 "description": "Different options that help in preventing corners from lifting

due to warping. Brim adds a single-layer-thick flat area around your object which is easy

to cut off afterwards, and it is the recommended option. Raft adds a thick grid below the

object and a thin interface between this and your object. (Note that enabling the brim or

raft disables the skirt.)",

 "type": "enum",

 "options": [

 "None",

 "Brim",

 "Raft"

],

 "default": "None"

 },

 "skirt_line_count": {

 "label": "Skirt Line Count",

 "description": "The skirt is a line drawn around the first layer of the. This

helps to prime your extruder, and to see if the object fits on your platform. Setting this to

0 will disable the skirt. Multiple skirt lines can help to prime your extruder better for

small objects.",

 "type": "int",

 "default": 0,

 "active_if": {

 "setting": "adhesion_type",

 "value": "None"

 }

 },

 "skirt_gap": {

 "label": "Skirt Distance",

 "description": "The horizontal distance between the skirt and the first layer

of the print.\nThis is the minimum distance, multiple skirt lines will extend outwards

from this distance.",

 "unit": "mm",

 "type": "float",

 "default": 6.0,

 "active_if": {

 "setting": "adhesion_type",

 "value": "None"

 }

 },

 "skirt_minimal_length": {

 "label": "Skirt Minimum Length",

 "description": "The minimum length of the skirt. If this minimum length is

not reached, more skirt lines will be added to reach this minimum length. Note: If the line

count is set to 0 this is ignored.",

 "unit": "mm",

 "type": "float",

135

 "default": 150,

 "active_if": {

 "setting": "adhesion_type",

 "value": "None"

 }

 },

 "brim_line_count": {

 "label": "Brim Line Count",

 "description": "The amount of lines used for a brim: More lines means a

larger brim which sticks better, but this also makes your effective print area smaller.",

 "type": "int",

 "default": 20,

 "active_if": {

 "setting": "adhesion_type",

 "value": "Brim"

 }

 },

 "raft_margin": {

 "label": "Raft Extra Margin",

 "description": "If the raft is enabled, this is the extra raft area around the

object which is also given a raft. Increasing this margin will create a stronger raft while

using more material and leaving less area for your print.",

 "unit": "mm",

 "type": "float",

 "default": 5.0,

 "active_if": {

 "setting": "adhesion_type",

 "value": "Raft"

 }

 },

 "raft_line_spacing": {

 "label": "Raft Line Spacing",

 "description": "The distance between the raft lines. The first 2 layers of the

raft have this amount of spacing between the raft lines.",

 "unit": "mm",

 "type": "float",

 "default": 1.0,

 "active_if": {

 "setting": "adhesion_type",

 "value": "Raft"

 }

 },

 "raft_base_thickness": {

 "label": "Raft Base Thickness",

 "description": "Layer thickness of the first raft layer. This should be a thick

layer which sticks firmly to the printer bed.",

136

 "unit": "mm",

 "type": "float",

 "default": 0.3,

 "active_if": {

 "setting": "adhesion_type",

 "value": "Raft"

 }

 },

 "raft_base_linewidth": {

 "label": "Raft Base Line Width",

 "description": "Width of the lines in the first raft layer. These should be thick

lines to assist in bed adhesion.",

 "unit": "mm",

 "type": "float",

 "default": 0.7,

 "active_if": {

 "setting": "adhesion_type",

 "value": "Raft"

 }

 },

 "raft_base_speed": {

 "label": "Raft Base Print Speed",

 "description": "The speed at which the first raft layer is printed. This should

be printed quite slowly, as the amount of material coming out of the nozzle is quite

high.",

 "unit": "mm/s",

 "type": "float",

 "default": 15.0,

 "active_if": {

 "setting": "adhesion_type",

 "value": "Raft"

 }

 },

 "raft_interface_thickness": {

 "label": "Raft Interface Thickness",

 "description": "Thickness of the 2nd raft layer.",

 "unit": "mm",

 "type": "float",

 "default": 0.2,

 "active_if": {

 "setting": "adhesion_type",

 "value": "Raft"

 }

 },

 "raft_interface_linewidth": {

 "label": "Raft Interface Line Width",

137

 "description": "Width of the 2nd raft layer lines. These lines should be

thinner than the first layer, but strong enough to attach the object to.",

 "unit": "mm",

 "type": "float",

 "default": 0.2,

 "active_if": {

 "setting": "adhesion_type",

 "value": "Raft"

 }

 },

 "raft_airgap": {

 "label": "Raft Air-gap",

 "description": "The gap between the final raft layer and the first layer of the

object. Only the first layer is raised by this amount to lower the bonding between the raft

layer and the object. Makes it easier to peel off the raft.",

 "unit": "mm",

 "type": "float",

 "default": 0.22,

 "active_if": {

 "setting": "adhesion_type",

 "value": "Raft"

 }

 },

 "raft_surface_layers": {

 "label": "Raft Surface Layers",

 "description": "The number of surface layers on top of the 2nd raft layer.

These are fully filled layers that the object sits on. 2 layers usually works fine.",

 "type": "int",

 "default": 2,

 "active_if": {

 "setting": "adhesion_type",

 "value": "Raft"

 }

 }

 }

 },

 "blackmagic": {

 "label": "Fixes",

 "visible": true,

 "icon": "category_fixes",

 "settings": {

 "magic_spiralize": {

 "label": "Spiralize the Outer Contour",

 "description": "Spiralize smooths out the Z move of the outer edge. This will

create a steady Z increase over the whole print. This feature turns a solid object into a

138

single walled print with a solid bottom. This feature used to be called ‘Joris’ in older

versions.",

 "type": "boolean",

 "default": true,

 "visible": false

 },

 "wireframe_enabled": {

 "label": "Wireframe Printing",

 "description": "Print only the outside surface with a sparse webbed structure,

printing 'in thin air'. This is realized by horizontally printing the contours of the model at

given Z intervals which are connected via upward and diagonally downward lines.",

 "type": "boolean",

 "default": false,

 "visible": false

 },

 "wireframe_printspeed": {

 "label": "Printing speed",

 "description": "Speed at which the nozzle moves when extruding material.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 },

 "children": {

 "wireframe_printspeed_bottom": {

 "label": "Bottom printing speed",

 "description": "Speed of printing the first layer, which is the only layer

touching the bluidplatform.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false,

 "inherit":true

 },

 "wireframe_printspeed_up": {

 "label": "Upward printing speed",

 "description": "Speed of printing a line upward 'in thin air'.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false,

 "inherit":true

 },

139

 "wireframe_printspeed_down": {

 "label": "Downward printing speed",

 "description": "Speed of printing a line diagonally downward.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false,

 "inherit":true

 },

 "wireframe_printspeed_flat": {

 "label": "Horizontal printing speed",

 "description": "Speed of printing the horizontal contours of the object.",

 "unit": "mm/s",

 "type": "float",

 "default": 7.0,

 "visible": false,

 "inherit":true

 }

 }

 },

 "wireframe_flow": {

 "label": "Flow",

 "description": "Flow compensation: the amount of material extruded is

multiplied by this value.",

 "unit": "%",

 "default": 100.0,

 "type": "float",

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 },

 "children": {

 "wireframe_flow_connection": {

 "label": "Connection flow",

 "description": "Flow compensation when going up or down.",

 "unit": "%",

 "default": 100.0,

 "type": "float",

 "visible": false

 },

 "wireframe_flow_flat": {

 "label": "Flat flow",

 "description": "Flow compensation when printing flat lines.",

 "unit": "%",

 "default": 100.0,

140

 "type": "float",

 "visible": false

 }

 }

 },

 "wireframe_top_delay": {

 "label": "Top delay",

 "description": "Delay time after an upward move, so that the upward line can

harden.",

 "unit": "sec",

 "type": "float",

 "default": 0.0,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_bottom_delay": {

 "label": "Bottom delay",

 "description": "Delay time after a downward move.",

 "unit": "sec",

 "type": "float",

 "default": 0.0,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_flat_delay": {

 "label": "Flat delay",

 "description": "Delay time between two horizontal segments. Introducing

such a delay can cause better adhesion to previous layers at the connection points, while

too large delay times cause sagging.",

 "unit": "sec",

 "type": "float",

 "default": 0.1,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_up_half_speed": {

 "label": "Ease upward",

141

 "description": "Distance of an upward move which is extruded with half

speed.\nThis can cause better adhesion to previous layers, while not heating the material

in those layers too much.",

 "type": "float",

 "unit": "mm",

 "default": 0.3,

 "visible": false

 },

 "wireframe_top_jump": {

 "label": "Knot size",

 "description": "Creates a small knot at the top of an upward line, so that the

consecutive horizontal layer has a better chance to connect to it.",

 "type": "float",

 "unit": "mm",

 "default": 0.6,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_fall_down": {

 "label": "Fall down",

 "description": "Distance with which the material falls down after an upward

extrusion. This distance is compensated for.",

 "type": "float",

 "unit": "mm",

 "default": 0.5,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_drag_along": {

 "label": "Drag along",

 "description": "Distance with which the material of an upward extrusion is

dragged along with the diagonally downward extrusion. This distance is compensated

for.",

 "type": "float",

 "unit": "mm",

 "default": 0.6,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

142

 }

 },

 "wireframe_strategy": {

 "label": "Strategy",

 "description": "Strategy for making sure two consecutive layers connect at

each connection point. Retraction lets the upward lines harden in the right position, but

may cause filament grinding. A knot can be made at the end of an upward line to

heighten the chance of connecting to it and to let the line cool; however it may require

slow printing speeds. Another strategy is to compensate for the sagging of the top of an

upward line; however, the lines won't always fall down as predicted.",

 "type": "enum",

 "options": [

 "Compensate",

 "Knot",

 "Retract"

],

 "default": "Compensate",

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_straight_before_down": {

 "label": "Straighten downward lines",

 "description": "Percentage of a diagonally downward line which is covered

by a horizontal line piece. This can prevent sagging of the top most point of upward

lines.",

 "type": "float",

 "unit": "%",

 "default": 20.0,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_roof_fall_down": {

 "label": "Roof fall down",

 "description": "The distance which horizontal roof lines printed 'in thin air'

fall down when being printed. This distance is compensated for.",

 "type": "float",

 "unit": "mm",

 "default": 2.0,

 "visible": false,

 "active_if": {

143

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_roof_drag_along": {

 "label": "Roof drag along",

 "description": "The distance of the end piece of an inward line which gets

dragged along when going back to the outer outline of the roof. This distance is

compensated for.",

 "type": "float",

 "unit": "mm",

 "default": 0.8,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_roof_outer_delay": {

 "label": "Roof outer delay",

 "description": "Time spent at the outer perimeters of hole which is to become

a roof. Larger times can ensure a better connection.",

 "type": "boolean",

 "unit": "sec",

 "type": "float",

 "default": 0.2,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_height": {

 "label": "Connection height.",

 "description": "The height of the upward and diagonally downward lines

between two horizontal parts.",

 "type": "float",

 "unit": "mm",

 "default": 3.0,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 },

 "wireframe_roof_inset": {

144

 "label": "Roof inset distance",

 "description": "The distance covered when making a connection from a roof

outline inward.",

 "type": "float",

 "unit": "mm",

 "default": 3.0,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 },

 "inherit_function": "wireframe_height"

 },

 "wireframe_nozzle_clearance": {

 "label": "Nozzle clearance",

 "description": "Distance between the nozzle and horizontally downward

lines. Larger clearance results in diagonally downward lines with a less steep angle,

which in turn results in less upward connections with the next layer.",

 "type": "float",

 "unit": "mm",

 "default": 1.0,

 "visible": false,

 "active_if": {

 "setting": "wireframe",

 "value": true

 }

 }

 }

 }

 }

}

145

//fffProcessor.h

#ifndef FFF_PROCESSOR_H

#define FFF_PROCESSOR_H

//#define M_PI 3.14159265358979323846 /* pi */

#include <algorithm>

#include <sstream>

#include <fstream>

#include "utils/gettime.h"

#include "utils/logoutput.h"

#include "sliceDataStorage.h"

#include "modelFile/modelFile.h"

#include "slicer.h"

#include "support.h"

#include "multiVolumes.h"

#include "layerPart.h"

#include "inset.h"

#include "skirt.h"

#include "raft.h"

#include "skin.h"

#include "infill.h"

#include "bridge.h"

#include "pathOrderOptimizer.h"

#include "gcodePlanner.h"

#include "gcodeExport.h"

#include "commandSocket.h"

#include "Weaver.h"

#include "Wireframe2gcode.h"

#include "utils/polygonUtils.h"

//@ std::setprecision

#include <iomanip>

namespace cura {

//FusedFilamentFabrication processor.

class fffProcessor : public SettingsBase

{

private:

 int maxObjectHeight;

 int fileNr; //!< used for sequential printing of objects

 GCodeExport gcode;

 TimeKeeper timeKeeper;

 CommandSocket* commandSocket;

 std::ofstream output_file;

146

public:

 fffProcessor()

 {

 fileNr = 1;

 maxObjectHeight = 0;

 commandSocket = NULL;

 }

 void resetFileNumber()

 {

 fileNr = 1;

 }

 void setCommandSocket(CommandSocket* socket)

 {

 commandSocket = socket;

 }

 void sendPolygons(PolygonType type, int layer_nr, Polygons& polygons, int

line_width)

 {

 if (commandSocket)

 commandSocket->sendPolygons(type, layer_nr, polygons, line_width);

 }

 bool setTargetFile(const char* filename)

 {

 output_file.open(filename);

 if (output_file.is_open())

 {

 gcode.setOutputStream(&output_file);

 return true;

 }

 return false;

 }

 void setTargetStream(std::ostream* stream)

 {

 gcode.setOutputStream(stream);

 }

 bool processFiles(const std::vector<std::string> &files)

 {

 timeKeeper.restart();

 PrintObject* model = nullptr;

147

 model = new PrintObject(this);

 for(std::string filename : files)

 {

 log("Loading %s from disk...\n", filename.c_str());

 FMatrix3x3 matrix;

 if (!loadMeshFromFile(model, filename.c_str(), matrix))

 {

 logError("Failed to load model: %s\n", filename.c_str());

 return false;

 }

 }

 model->finalize();

 log("Loaded from disk in %5.3fs\n", timeKeeper.restart());

 return processModel(model);

 }

 bool processModel(PrintObject* model)

 {

 timeKeeper.restart();

 if (!model)

 return false;

 TimeKeeper timeKeeperTotal;

 if (model->getSettingBoolean("wireframe_enabled"))

 {

 log("starting Neith Weaver...\n");

 Weaver w(this);

 w.weave(model, commandSocket);

 log("starting Neith Gcode generation...\n");

 preSetup();

 Wireframe2gcode gcoder(w, gcode, this);

 gcoder.writeGCode(commandSocket, maxObjectHeight);

 log("finished Neith Gcode generation...\n");

 } else

 {

 SliceDataStorage storage;

 preSetup();

 if (!prepareModel(storage, model))

 return false;

148

 processSliceData(storage);

 writeGCode(storage);

 std::cerr << "machine_gcode_flavor = " << model-

>getSettingString("machine_gcode_flavor") << std::endl;

 std::cerr << "machine_gcode_flavor = " << model-

>getSettingAsGCodeFlavor("machine_gcode_flavor") << std::endl;

 }

 logProgress("process", 1, 1);//Report the GUI that a file has been fully processed.

 log("Total time elapsed %5.2fs.\n", timeKeeperTotal.restart());

 return true;

 }

 void finalize()

 {

 gcode.finalize(maxObjectHeight,

getSettingInMillimetersPerSecond("speed_travel"),

getSettingString("machine_end_gcode").c_str());

 for(int e=0; e<MAX_EXTRUDERS; e++)

 gcode.writeTemperatureCommand(e, 0, false);

 }

 double getTotalFilamentUsed(int e)

 {

 return gcode.getTotalFilamentUsed(e);

 }

 double getTotalPrintTime()

 {

 return gcode.getTotalPrintTime();

 }

private:

 void preSetup()

 {

 for(unsigned int n=1; n<MAX_EXTRUDERS;n++)

 {

 std::ostringstream stream;

 stream << "machine_extruder_offset" << n;

 if (hasSetting(stream.str() + "_x") || hasSetting(stream.str() + "_y"))

 gcode.setExtruderOffset(n, Point(getSettingInMicrons(stream.str() + "_x"),

getSettingInMicrons(stream.str() + "_y")));

149

 }

 for(unsigned int n=0; n<MAX_EXTRUDERS;n++)

 {

 std::ostringstream stream;

 stream << n;

 if (hasSetting("machine_pre_extruder_switch_code" + stream.str()) ||

hasSetting("machine_post_extruder_switch_code" + stream.str()))

 gcode.setSwitchExtruderCode(n,

getSettingString("machine_pre_extruder_switch_code" + stream.str()),

getSettingString("machine_post_extruder_switch_code" + stream.str()));

 gcode.setFilamentDiameter(n, getSettingInMicrons("material_diameter")); //

TODO: separate for each nozzle!

 }

 gcode.setFlavor(getSettingAsGCodeFlavor("machine_gcode_flavor"));

gcode.setRetractionSettings(getSettingInMicrons("machine_switch_extruder_retraction_

amount"),

getSettingInMillimetersPerSecond("material_switch_extruder_retraction_speed"),

getSettingInMillimetersPerSecond("material_switch_extruder_prime_speed"),

getSettingInMicrons("retraction_extrusion_window"),

getSettingAsCount("retraction_count_max"));

 }

 bool prepareModel(SliceDataStorage& storage, PrintObject* object) /// slices the

model

 {

 storage.model_min = object->min();

 storage.model_max = object->max();

 storage.model_size = storage.model_max - storage.model_min;

 log("Slicing model...\n");

 int initial_layer_thickness = object->getSettingInMicrons("layer_height_0");

 int layer_thickness = object->getSettingInMicrons("layer_height");

 if (object->getSettingAsPlatformAdhesion("adhesion_type") == Adhesion_Raft)

 {

 initial_layer_thickness = layer_thickness;

 }

 int initial_slice_z = (initial_layer_thickness - layer_thickness / 2);

 int layer_count = (storage.model_max.z - initial_slice_z) / layer_thickness + 1;

 std::vector<Slicer*> slicerList;

 for(Mesh& mesh : object->meshes)

 {

150

 Slicer* slicer = new Slicer(&mesh, initial_slice_z, layer_thickness, layer_count,

mesh.getSettingBoolean("meshfix_keep_open_polygons"),

mesh.getSettingBoolean("meshfix_extensive_stitching"));

 slicerList.push_back(slicer);

 /*

 for(SlicerLayer& layer : slicer->layers)

 {

 //Reporting the outline here slows down the engine quite a bit, so only do so

when debugging.

 //sendPolygons("outline", layer_nr, layer.z, layer.polygonList);

 //sendPolygons("openoutline", layer_nr, layer.openPolygonList);

 }

 */

 }

 if (false) { // remove empty first layers

 int n_empty_first_layers = 0;

 for (int layer_idx = 0; layer_idx < layer_count; layer_idx++)

 {

 bool layer_is_empty = true;

 for (Slicer* slicer : slicerList)

 {

 if (slicer->layers[layer_idx].polygonList.size() > 0)

 {

 layer_is_empty = false;

 break;

 }

 }

 if (layer_is_empty)

 {

 n_empty_first_layers++;

 } else

 {

 break;

 }

 }

 if (n_empty_first_layers > 0)

 {

 for (Slicer* slicer : slicerList)

 {

 std::vector<SlicerLayer>& layers = slicer->layers;

 layers.erase(layers.begin(), layers.begin() + n_empty_first_layers);

 for (SlicerLayer& layer : layers)

 {

151

 layer.z -= n_empty_first_layers * layer_thickness;

 }

 }

 layer_count -= n_empty_first_layers;

 }

 }

 log("Layer count: %i\n", layer_count);

 log("Sliced model in %5.3fs\n", timeKeeper.restart());

 object->clear();///Clear the mesh data, it is no longer needed after this point, and it

saves a lot of memory.

 log("Generating layer parts...\n");

 storage.meshes.reserve(slicerList.size());

 for(unsigned int meshIdx=0; meshIdx < slicerList.size(); meshIdx++)

 {

 storage.meshes.emplace_back(&object->meshes[meshIdx]);

 SliceMeshStorage& meshStorage = storage.meshes[meshIdx];

 createLayerParts(meshStorage, slicerList[meshIdx], meshStorage.settings-

>getSettingBoolean("meshfix_union_all"), meshStorage.settings-

>getSettingBoolean("meshfix_union_all_remove_holes"));

 //@createLayerParts(meshStorage, slicerList[meshIdx], true,

meshStorage.settings->getSettingBoolean("meshfix_union_all_remove_holes"));

 delete slicerList[meshIdx];

 bool has_raft = meshStorage.settings-

>getSettingAsPlatformAdhesion("adhesion_type") == Adhesion_Raft;

 for(unsigned int layer_nr=0; layer_nr<meshStorage.layers.size(); layer_nr++)

 {

 //Add the raft offset to each layer.

 if (has_raft)

 {

 meshStorage.layers[layer_nr].printZ +=

 meshStorage.settings->getSettingInMicrons("raft_base_thickness")

 + meshStorage.settings->getSettingInMicrons("raft_interface_thickness")

 + meshStorage.settings->getSettingAsCount("raft_surface_layers") *

getSettingInMicrons("layer_height") //raft_surface_thickness")

 + meshStorage.settings->getSettingInMicrons("raft_airgap")

 - initial_slice_z;

 }

 else

 {

 meshStorage.layers[layer_nr].printZ +=

 meshStorage.settings->getSettingInMicrons("layer_height_0")

 - initial_slice_z;

152

 }

 }

 }

 log("Generated layer parts in %5.3fs\n", timeKeeper.restart());

 log("Finished prepareModel.\n");

 return true;

 }

 void processSliceData(SliceDataStorage& storage)

 {

 if (commandSocket)

 commandSocket->beginSendSlicedObject();

 // const

 unsigned int totalLayers = storage.meshes[0].layers.size();

 //carveMultipleVolumes(storage.meshes);

 generateMultipleVolumesOverlap(storage.meshes,

getSettingInMicrons("multiple_mesh_overlap"));

 //dumpLayerparts(storage, "c:/models/output.html");

 if (getSettingBoolean("magic_polygon_mode"))

 {

 for(unsigned int layer_nr=0; layer_nr<totalLayers; layer_nr++)

 {

 for(SliceMeshStorage& mesh : storage.meshes)

 {

 SliceLayer* layer = &mesh.layers[layer_nr];

 for(SliceLayerPart& part : layer->parts)

 {

 sendPolygons(Inset0Type, layer_nr, part.outline, mesh.settings-

>getSettingInMicrons("wall_line_width_x"));

 }

 }

 }

 return;

 }

 for(unsigned int layer_nr=0; layer_nr<totalLayers; layer_nr++)

 {

 for(SliceMeshStorage& mesh : storage.meshes)

 {

 if(commandSocket)

 {

 int initial_layer_thickness = mesh.settings-

>getSettingInMicrons("layer_height_0");

153

 int layer_thickness = mesh.settings->getSettingInMicrons("layer_height");

 if (mesh.settings->getSettingAsPlatformAdhesion("adhesion_type") ==

Adhesion_Raft)

 {

 initial_layer_thickness = layer_thickness;

 }

 commandSocket->sendLayerInfo(layer_nr, mesh.layers[layer_nr].printZ,

layer_nr == 0 ? initial_layer_thickness : layer_thickness);

 }

 int insetCount = mesh.settings->getSettingAsCount("wall_line_count");

 if (mesh.settings->getSettingBoolean("magic_spiralize") &&

static_cast<int>(layer_nr) < mesh.settings->getSettingAsCount("bottom_layers") &&

layer_nr % 2 == 1)//Add extra insets every 2 layers when spiralizing, this makes bottoms

of cups watertight.

 insetCount += 5;

 SliceLayer* layer = &mesh.layers[layer_nr];

 int wall_line_width_0 = mesh.settings-

>getSettingInMicrons("wall_line_width_0");

 int wall_line_width_x = mesh.settings-

>getSettingInMicrons("wall_line_width_x");

 int inset_count = insetCount;

 if (mesh.settings->getSettingBoolean("alternate_extra_perimeter"))

 inset_count += layer_nr % 2;

 generateInsets(layer, wall_line_width_0, wall_line_width_x, inset_count,

mesh.settings->getSettingBoolean("wall_overlap_avoid_enabled"));

 for(unsigned int partNr=0; partNr<layer->parts.size(); partNr++)

 {

 if (layer->parts[partNr].insets.size() > 0)

 {

 sendPolygons(Inset0Type, layer_nr, layer->parts[partNr].insets[0],

wall_line_width_x);

 for(unsigned int inset=1; inset<layer->parts[partNr].insets.size(); inset++)

 sendPolygons(InsetXType, layer_nr, layer->parts[partNr].insets[inset],

wall_line_width_x);

 }

 }

 }

 logProgress("inset",layer_nr+1,totalLayers);

 if (commandSocket) commandSocket->sendProgress(1.0/3.0 * float(layer_nr) /

float(totalLayers));

 }

 { // remove empty first layers

 int n_empty_first_layers = 0;

154

 for (unsigned int layer_idx = 0; layer_idx < totalLayers; layer_idx++)

 {

 bool layer_is_empty = true;

 for (SliceMeshStorage& mesh : storage.meshes)

 {

 if (mesh.layers[layer_idx].parts.size() > 0)

 {

 layer_is_empty = false;

 break;

 }

 }

 if (layer_is_empty)

 {

 n_empty_first_layers++;

 } else

 {

 break;

 }

 }

 if (n_empty_first_layers > 0)

 {

 log("Removing %d layers because they are empty\n", n_empty_first_layers);

 for (SliceMeshStorage& mesh : storage.meshes)

 {

 std::vector<SliceLayer>& layers = mesh.layers;

 layers.erase(layers.begin(), layers.begin() + n_empty_first_layers);

 for (SliceLayer& layer : layers)

 {

 layer.printZ -= n_empty_first_layers *

getSettingInMicrons("layer_height");

 }

 }

 totalLayers -= n_empty_first_layers;

 }

 }

 if (totalLayers < 1)

 {

 log("Stopping process because there are no layers.\n");

 return;

 }

 if (getSettingBoolean("ooze_shield_enabled"))

 {

 for(unsigned int layer_nr=0; layer_nr<totalLayers; layer_nr++)

155

 {

 Polygons oozeShield;

 for(SliceMeshStorage& mesh : storage.meshes)

 {

 for(SliceLayerPart& part : mesh.layers[layer_nr].parts)

 {

 oozeShield =

oozeShield.unionPolygons(part.outline.offset(MM2INT(2.0))); // TODO: put hard coded

value in a variable with an explanatory name (and make var a parameter, and perhaps

even a setting?)

 }

 }

 storage.oozeShield.push_back(oozeShield);

 }

 for(unsigned int layer_nr=0; layer_nr<totalLayers; layer_nr++)

 storage.oozeShield[layer_nr] = storage.oozeShield[layer_nr].offset(-

MM2INT(1.0)).offset(MM2INT(1.0)); // TODO: put hard coded value in a variable with

an explanatory name (and make var a parameter, and perhaps even a setting?)

 int offsetAngle = tan(getSettingInAngleRadians("ooze_shield_angle")) *

getSettingInMicrons("layer_height");//Allow for a 60deg angle in the oozeShield.

 for(unsigned int layer_nr=1; layer_nr<totalLayers; layer_nr++)

 storage.oozeShield[layer_nr] =

storage.oozeShield[layer_nr].unionPolygons(storage.oozeShield[layer_nr-1].offset(-

offsetAngle));

 for(unsigned int layer_nr=totalLayers-1; layer_nr>0; layer_nr--)

 storage.oozeShield[layer_nr-1] = storage.oozeShield[layer_nr-

1].unionPolygons(storage.oozeShield[layer_nr].offset(-offsetAngle));

 }

 log("Generated inset in %5.3fs\n", timeKeeper.restart());

 log("Generating support areas...\n");

 for(SliceMeshStorage& mesh : storage.meshes)

 {

 generateSupportAreas(storage, &mesh, totalLayers);

 }

 log("Generated support areas in %5.3fs\n", timeKeeper.restart());

 for(unsigned int layer_nr=0; layer_nr<totalLayers; layer_nr++)

 {

 if (!getSettingBoolean("magic_spiralize") || static_cast<int>(layer_nr) <

getSettingAsCount("bottom_layers")) //Only generate up/downskin and infill for the

first X layers when spiralize is choosen.

 {

 for(SliceMeshStorage& mesh : storage.meshes)

 {

156

 int extrusionWidth = mesh.settings-

>getSettingInMicrons("wall_line_width_x");

 generateSkins(layer_nr, mesh, extrusionWidth, mesh.settings-

>getSettingAsCount("bottom_layers"), mesh.settings->getSettingAsCount("top_layers"),

mesh.settings->getSettingAsCount("skin_outline_count"), mesh.settings-

>getSettingBoolean("wall_overlap_avoid_enabled"));

 if (mesh.settings->getSettingInMicrons("infill_line_distance") > 0)

 {

 int infill_skin_overlap = 0;

 if (mesh.settings->getSettingInMicrons("infill_line_distance") >

mesh.settings->getSettingInMicrons("infill_line_width") + 10)

 {

 infill_skin_overlap = extrusionWidth / 2;

 }

 generateSparse(layer_nr, mesh, extrusionWidth, infill_skin_overlap);

 if (mesh.settings->getSettingString("fill_perimeter_gaps") == "Skin")

 {

 generatePerimeterGaps(layer_nr, mesh, extrusionWidth, mesh.settings-

>getSettingAsCount("bottom_layers"), mesh.settings-

>getSettingAsCount("top_layers"));

 }

 else if (mesh.settings->getSettingString("fill_perimeter_gaps") ==

"Everywhere")

 {

 generatePerimeterGaps(layer_nr, mesh, extrusionWidth, 0, 0);

 }

 }

 SliceLayer& layer = mesh.layers[layer_nr];

 for(SliceLayerPart& part : layer.parts)

 {

 for (SkinPart& skin_part : part.skin_parts)

 {

 sendPolygons(SkinType, layer_nr, skin_part.outline, extrusionWidth);

 }

 }

 }

 }

 logProgress("skin", layer_nr+1, totalLayers);

 if (commandSocket) commandSocket->sendProgress(1.0/3.0 + 1.0/3.0 *

float(layer_nr) / float(totalLayers));

 }

 for(unsigned int layer_nr=totalLayers-1; layer_nr>0; layer_nr--)

 {

 for(SliceMeshStorage& mesh : storage.meshes)

157

 combineSparseLayers(layer_nr, mesh, mesh.settings-

>getSettingAsCount("fill_sparse_combine"));

 }

 log("Generated up/down skin in %5.3fs\n", timeKeeper.restart());

 if (getSettingInMicrons("wipe_tower_distance") > 0 &&

getSettingInMicrons("wipe_tower_size") > 0)

 {

 PolygonRef p = storage.wipeTower.newPoly();

 int tower_size = getSettingInMicrons("wipe_tower_size");

 int tower_distance = getSettingInMicrons("wipe_tower_distance");

 p.add(Point(storage.model_min.x - tower_distance, storage.model_max.y +

tower_distance));

 p.add(Point(storage.model_min.x - tower_distance, storage.model_max.y +

tower_distance + tower_size));

 p.add(Point(storage.model_min.x - tower_distance - tower_size,

storage.model_max.y + tower_distance + tower_size));

 p.add(Point(storage.model_min.x - tower_distance - tower_size,

storage.model_max.y + tower_distance));

 storage.wipePoint = Point(storage.model_min.x - tower_distance - tower_size / 2,

storage.model_max.y + tower_distance + tower_size / 2);

 }

 int adhesion_line_width = 0;

 switch(getSettingAsPlatformAdhesion("adhesion_type"))

 {

 case Adhesion_None:

 adhesion_line_width = getSettingInMicrons("skirt_line_width");

 generateSkirt(storage, getSettingInMicrons("skirt_gap"), adhesion_line_width,

getSettingAsCount("skirt_line_count"), getSettingInMicrons("skirt_minimal_length"));

 break;

 case Adhesion_Brim:

 adhesion_line_width = getSettingInMicrons("skirt_line_width");

 generateSkirt(storage, 0, adhesion_line_width,

getSettingAsCount("brim_line_count"), getSettingInMicrons("skirt_minimal_length"));

 break;

 case Adhesion_Raft:

 generateRaft(storage, getSettingInMicrons("raft_margin"));

 break;

 }

 sendPolygons(SkirtType, 0, storage.skirt, adhesion_line_width);

 }

 void writeGCode(SliceDataStorage& storage)

158

 {

 gcode.resetTotalPrintTimeAndFilament();

 if (commandSocket)

 commandSocket->beginGCode();

 //Setup the retraction parameters.

 storage.retraction_config.amount =

INT2MM(getSettingInMicrons("retraction_amount"));

 storage.retraction_config.primeAmount =

INT2MM(getSettingInMicrons("retraction_extra_prime_amount"));

 storage.retraction_config.speed =

getSettingInMillimetersPerSecond("retraction_retract_speed");

 storage.retraction_config.primeSpeed =

getSettingInMillimetersPerSecond("retraction_prime_speed");

 storage.retraction_config.zHop = getSettingInMicrons("retraction_hop");

 for(SliceMeshStorage& mesh : storage.meshes)

 {

 mesh.retraction_config.amount = INT2MM(mesh.settings-

>getSettingInMicrons("retraction_amount"));

 mesh.retraction_config.primeAmount = INT2MM(mesh.settings-

>getSettingInMicrons("retraction_extra_prime_amount"));

 mesh.retraction_config.speed = mesh.settings-

>getSettingInMillimetersPerSecond("retraction_retract_speed");

 mesh.retraction_config.primeSpeed = mesh.settings-

>getSettingInMillimetersPerSecond("retraction_prime_speed");

 mesh.retraction_config.zHop = mesh.settings-

>getSettingInMicrons("retraction_hop");

 }

 if (fileNr == 1)

 {

 if (gcode.getFlavor() != GCODE_FLAVOR_ULTIGCODE)

 {//@ RepRap

 if (hasSetting("material_bed_temperature") &&

getSettingInDegreeCelsius("material_bed_temperature") > 0)

gcode.writeBedTemperatureCommand(getSettingInDegreeCelsius("material_bed_temper

ature"), true);

 for(SliceMeshStorage& mesh : storage.meshes)

 if (mesh.settings->hasSetting("material_print_temperature") &&

mesh.settings->getSettingInDegreeCelsius("material_print_temperature") > 0)

 gcode.writeTemperatureCommand(mesh.settings-

>getSettingAsIndex("extruder_nr"), mesh.settings-

>getSettingInDegreeCelsius("material_print_temperature"));

159

 for(SliceMeshStorage& mesh : storage.meshes)

 if (mesh.settings->hasSetting("material_print_temperature") &&

mesh.settings->getSettingInDegreeCelsius("material_print_temperature") > 0)

 gcode.writeTemperatureCommand(mesh.settings-

>getSettingAsIndex("extruder_nr"), mesh.settings-

>getSettingInDegreeCelsius("material_print_temperature"), true);

 gcode.writeCode(getSettingString("machine_start_gcode").c_str());

 //@ set welder_on and welder_off gcode string if metal printing

 if (getSettingBoolean("machine_metal_printing")){

 gcode.setIsMetalPrinting(getSettingBoolean("machine_metal_printing"));

 gcode.setWelderOn(getSettingString("machine_welder_on_gcode"));

 gcode.setWelderOff(getSettingString("machine_welder_off_gcode"));

gcode.setMinDistWelderOff(getSettingInMillimetersPerSecond("machine_min_dist_wel

der_off"));

 gcode.setIsWelding(false); //@ initial that welding is on or not

 }

 }

 gcode.writeComment("Generated with Cura_SteamEngine " VERSION);

 //@ add line_width and layer_height to the gcode output

 gcode.writeComment("//");

 std::string tempString;

 tempString = getSettingString("skin_line_width");

 gcode.writeComment("Line width: " + tempString + " mm.");

 tempString = getSettingString("layer_height");

 gcode.writeComment("Layer height: " + tempString + " mm.");

 tempString = getSettingString("speed_print");

 gcode.writeComment("Printing speed: " + tempString + " mm/s");

 tempString = getSettingString("material_diameter");

 gcode.writeComment("Material diameter: " + tempString + " mm.");

 double lineWidth = INT2MM(getSettingInMicrons("infill_line_width"));

 double layerHeight = INT2MM(getSettingInMicrons("layer_height"));

 double speedPrint = INT2MM(getSettingInMicrons("speed_print"));

 double expectedMM3PerSec = lineWidth * layerHeight * speedPrint;

 double materialDiameter = INT2MM(getSettingInMicrons("material_diameter"));

 double crossSectionalArea =

M_PI*(materialDiameter/2.0)*(materialDiameter/2.0);

 double wireSpeed;

 double wireMMPerSec;

 for(int i=1;i<=100;i++){

 //@ this equation only for Millermatic 190

 //@ wireMMPerSec = 0.0254 * (0.45*i/100.0+20.5) * i/100.0;

 wireMMPerSec = (2.216*i)-19;

 if ((crossSectionalArea*wireMMPerSec) < expectedMM3PerSec){

 wireSpeed = i;

160

 }

 else {

 break;

 }

 }

 //@ expected material in volume

 std::ostringstream expVolume;

 expVolume << expectedMM3PerSec;

 gcode.writeComment("Expected Material: " + expVolume.str() + " mm3/s.");

 gcode.writeComment("//");

 gcode.writeComment("Recommended welder (Millermatic 190) settings");

 gcode.writeComment("Voltage setting: 5");

 if (wireSpeed >=10)

 {

 std::ostringstream tempStr;

 tempStr << (wireSpeed - 2.0) << " - " << (wireSpeed + 2.0);

 gcode.writeComment("Wire speed: " + tempStr.str());

 }

 else

 {

 gcode.writeComment("Wire speed: <10 (Cannot be set!)");

 }

 gcode.writeComment("//\n");

 if (gcode.getFlavor() == GCODE_FLAVOR_BFB)

 {

 gcode.writeComment("enable auto-retraction");

 std::ostringstream tmp;

 tmp << "M227 S" << (getSettingInMicrons("retraction_amount") * 2560 /

1000) << " P" << (getSettingInMicrons("retraction_amount") * 2560 / 1000);

 gcode.writeLine(tmp.str().c_str());

 }

 }

 else

 {

 gcode.writeFanCommand(0);

 gcode.resetExtrusionValue();

 gcode.setZ(maxObjectHeight + 5000);

 gcode.writeMove(gcode.getPositionXY(),

getSettingInMillimetersPerSecond("speed_travel"), 0);

 gcode.writeMove(Point(storage.model_min.x, storage.model_min.y),

getSettingInMillimetersPerSecond("speed_travel"), 0);

 }

 fileNr++;

 unsigned int totalLayers = storage.meshes[0].layers.size();

161

 //gcode.writeComment("Layer count: %d", totalLayers);

 bool has_raft = getSettingAsPlatformAdhesion("adhesion_type") ==

Adhesion_Raft;

 if (has_raft)

 {

 //printf("!!enter has_raft"); //@ for

test.

 GCodePathConfig raft_base_config(&storage.retraction_config, "SUPPORT");

raft_base_config.setSpeed(getSettingInMillimetersPerSecond("raft_base_speed"));

 raft_base_config.setLineWidth(getSettingInMicrons("raft_base_linewidth"));

 raft_base_config.setLayerHeight(getSettingInMicrons("raft_base_thickness"));

 raft_base_config.setFlow(getSettingInPercentage("material_flow"));

 GCodePathConfig raft_interface_config(&storage.retraction_config,

"SUPPORT");

raft_interface_config.setSpeed(getSettingInMillimetersPerSecond("raft_base_speed"));

 raft_interface_config.setLineWidth(getSettingInMicrons("raft_base_linewidth"));

raft_interface_config.setLayerHeight(getSettingInMicrons("raft_base_thickness"));

 raft_interface_config.setFlow(getSettingInPercentage("material_flow"));

 GCodePathConfig raft_surface_config(&storage.retraction_config, "SUPPORT");

raft_surface_config.setSpeed(getSettingInMillimetersPerSecond("raft_base_speed"));

 raft_surface_config.setLineWidth(getSettingInMicrons("raft_base_linewidth"));

 raft_surface_config.setLayerHeight(getSettingInMicrons("raft_base_thickness"));

 raft_surface_config.setFlow(getSettingInPercentage("material_flow"));

 {

 gcode.writeLayerComment(-3);

 gcode.writeComment("RAFT");

 GCodePlanner gcodeLayer(gcode, &storage.retraction_config,

getSettingInMillimetersPerSecond("speed_travel"),

getSettingInMicrons("retraction_min_travel"));

 if (getSettingAsIndex("support_extruder_nr") > 0)

 gcodeLayer.setExtruder(getSettingAsIndex("support_extruder_nr"));

 gcode.setZ(getSettingInMicrons("raft_base_thickness"));

 gcodeLayer.addPolygonsByOptimizer(storage.raftOutline, &raft_base_config);

 Polygons raftLines;

 int offset_from_poly_outline = 0;

 generateLineInfill(storage.raftOutline, offset_from_poly_outline, raftLines,

getSettingInMicrons("raft_base_linewidth"), getSettingInMicrons("raft_line_spacing"),

getSettingInPercentage("fill_overlap"), 0);

 gcodeLayer.addLinesByOptimizer(raftLines, &raft_base_config);

162

 gcode.writeFanCommand(getSettingInPercentage("cool_fan_speed_max"));

 gcodeLayer.writeGCode(false, getSettingInMicrons("raft_base_thickness"));

 }

 {

 gcode.writeLayerComment(-2);

 gcode.writeComment("RAFT");

 GCodePlanner gcodeLayer(gcode, &storage.retraction_config,

getSettingInMillimetersPerSecond("speed_travel"),

getSettingInMicrons("retraction_min_travel"));

 gcode.setZ(getSettingInMicrons("raft_base_thickness") +

getSettingInMicrons("raft_interface_thickness"));

 Polygons raftLines;

 int offset_from_poly_outline = 0;

 int raft_interface_line_width = getSettingInMicrons("wall_line_width_x"); //

getSettingInMicrons("raft_interface_line_width")

 int raft_interface_line_spacing = getSettingInMicrons("raft_line_spacing"); //

getSettingInMicrons("raft_interface_line_spacing")

 generateLineInfill(storage.raftOutline, offset_from_poly_outline, raftLines,

raft_interface_line_width, raft_interface_line_spacing,

getSettingInPercentage("fill_overlap"), getSettingAsCount("raft_surface_layers") > 0 ?

45 : 90);

 gcodeLayer.addLinesByOptimizer(raftLines, &raft_interface_config);

 gcodeLayer.writeGCode(false,

getSettingInMicrons("raft_interface_thickness"));

 }

 for (int raftSurfaceLayer=1;

raftSurfaceLayer<=getSettingAsCount("raft_surface_layers"); raftSurfaceLayer++)

 {

 gcode.writeLayerComment(-1);

 gcode.writeComment("RAFT");

 int raft_surface_thickness = getSettingInMicrons("layer_height"); //

getSettingInMicrons("raft_surface_thickness")

 GCodePlanner gcodeLayer(gcode, &storage.retraction_config,

getSettingInMillimetersPerSecond("speed_travel"),

getSettingInMicrons("retraction_min_travel"));

 gcode.setZ(getSettingInMicrons("raft_base_thickness") +

getSettingInMicrons("raft_interface_thickness") +

raft_surface_thickness*raftSurfaceLayer);

 Polygons raftLines;

 int offset_from_poly_outline = 0;

163

 int raft_surface_line_width = getSettingInMicrons("wall_line_width_0"); //

getSettingInMicrons("raft_surface_line_width")

 int raft_surface_line_spacing = raft_surface_line_width; //

getSettingInMicrons("raft_surface_line_spacing")

 generateLineInfill(storage.raftOutline, offset_from_poly_outline, raftLines,

raft_surface_line_width, raft_surface_line_spacing,

getSettingInPercentage("fill_overlap"), (raftSurfaceLayer % 2 == 0)? 0 : 90);

 gcodeLayer.addLinesByOptimizer(raftLines, &raft_surface_config);

 gcodeLayer.writeGCode(false,

getSettingInMicrons("raft_interface_thickness"));

 }

 }

 //@ add vairables for pause time between layers

 double pauseTime = INT2MM(getSettingInMicrons("machine_layer_pause_time"));

 double pauseIncrease =

INT2MM(getSettingInMicrons("machine_layer_pause_increase"));

 std::string pauseGcode = getSettingString("machine_layer_pause_gcode");

 //@ add variable for move the printer head up at the end of each layer

 double upLayerEnd = INT2MM(getSettingInMicrons("machine_up_layer_end"));

 //@ welder off gcode

 std::string welderOffGCode = getSettingString("machine_welder_off_gcode");

 //@ boolean layer pause

 bool layerPause = getSettingBoolean("machine_layer_pause");

 for(unsigned int layer_nr=0; layer_nr<totalLayers; layer_nr++)

 {

 logProgress("export", layer_nr+1, totalLayers);

 if (commandSocket) commandSocket->sendProgress(2.0/3.0 + 1.0/3.0 *

float(layer_nr) / float(totalLayers));

 int layer_thickness = getSettingInMicrons("layer_height");

 if (layer_nr == 0 && !has_raft)

 {

 layer_thickness = getSettingInMicrons("layer_height_0");

 }

 storage.skirt_config.setSpeed(getSettingInMillimetersPerSecond("skirt_speed"));

 storage.skirt_config.setLineWidth(getSettingInMicrons("skirt_line_width"));

 storage.skirt_config.setFlow(getSettingInPercentage("material_flow"));

 storage.skirt_config.setLayerHeight(layer_thickness);

storage.support_config.setLineWidth(getSettingInMicrons("support_line_width"));

storage.support_config.setSpeed(getSettingInMillimetersPerSecond("speed_support"));

164

 storage.support_config.setFlow(getSettingInPercentage("material_flow"));

 storage.support_config.setLayerHeight(layer_thickness);

 for(SliceMeshStorage& mesh : storage.meshes)

 {

 mesh.inset0_config.setLineWidth(mesh.settings-

>getSettingInMicrons("wall_line_width_0"));

 mesh.inset0_config.setSpeed(mesh.settings-

>getSettingInMillimetersPerSecond("speed_wall_0"));

 mesh.inset0_config.setFlow(mesh.settings-

>getSettingInPercentage("material_flow"));

 mesh.inset0_config.setLayerHeight(layer_thickness);

 mesh.insetX_config.setLineWidth(mesh.settings-

>getSettingInMicrons("wall_line_width_x"));

 mesh.insetX_config.setSpeed(mesh.settings-

>getSettingInMillimetersPerSecond("speed_wall_x"));

 mesh.insetX_config.setFlow(mesh.settings-

>getSettingInPercentage("material_flow"));

 mesh.insetX_config.setLayerHeight(layer_thickness);

 mesh.skin_config.setLineWidth(mesh.settings-

>getSettingInMicrons("skin_line_width"));

 mesh.skin_config.setSpeed(mesh.settings-

>getSettingInMillimetersPerSecond("speed_topbottom"));

 mesh.skin_config.setFlow(mesh.settings-

>getSettingInPercentage("material_flow"));

 mesh.skin_config.setLayerHeight(layer_thickness);

 for(unsigned int idx=0; idx<MAX_SPARSE_COMBINE; idx++)

 {

 mesh.infill_config[idx].setLineWidth(mesh.settings-

>getSettingInMicrons("infill_line_width") * (idx + 1));

 mesh.infill_config[idx].setSpeed(mesh.settings-

>getSettingInMillimetersPerSecond("speed_infill"));

 mesh.infill_config[idx].setFlow(mesh.settings-

>getSettingInPercentage("material_flow"));

 mesh.infill_config[idx].setLayerHeight(layer_thickness);

 }

 }

 int initial_speedup_layers = getSettingAsCount("speed_slowdown_layers");

 if (static_cast<int>(layer_nr) < initial_speedup_layers)

 {

 int initial_layer_speed = getSettingInMillimetersPerSecond("speed_layer_0");

 storage.support_config.smoothSpeed(initial_layer_speed, layer_nr,

initial_speedup_layers);

165

 for(SliceMeshStorage& mesh : storage.meshes)

 {

 mesh.inset0_config.smoothSpeed(initial_layer_speed, layer_nr,

initial_speedup_layers);

 mesh.insetX_config.smoothSpeed(initial_layer_speed, layer_nr,

initial_speedup_layers);

 mesh.skin_config.smoothSpeed(initial_layer_speed, layer_nr,

initial_speedup_layers);

 for(unsigned int idx=0; idx<MAX_SPARSE_COMBINE; idx++)

 {

 mesh.infill_config[idx].smoothSpeed(initial_layer_speed, layer_nr,

initial_speedup_layers);

 }

 }

 }

 //@ start layer

 gcode.writeLayerComment(layer_nr);

 GCodePlanner gcodeLayer(gcode, &storage.retraction_config,

getSettingInMillimetersPerSecond("speed_travel"),

getSettingInMicrons("retraction_min_travel"));

 int z = storage.meshes[0].layers[layer_nr].printZ;

 gcode.setZ(z);

 gcode.resetStartPosition();

 if (layer_nr == 0)

 {

 if (storage.skirt.size() > 0)

 gcodeLayer.addTravel(storage.skirt[storage.skirt.size()-

1].closestPointTo(gcode.getPositionXY()));

 gcodeLayer.addPolygonsByOptimizer(storage.skirt, &storage.skirt_config);

 }

 bool printSupportFirst = (storage.support.generated &&

getSettingAsIndex("support_extruder_nr") > 0 &&

getSettingAsIndex("support_extruder_nr") == gcodeLayer.getExtruder());

 if (printSupportFirst)

 addSupportToGCode(storage, gcodeLayer, layer_nr);

 if (storage.oozeShield.size() > 0)

 {

 //printf("!!enter storage oozeShield

size > 0"); //@ for test.

 gcodeLayer.setAlwaysRetract(true);

166

 gcodeLayer.addPolygonsByOptimizer(storage.oozeShield[layer_nr],

&storage.skirt_config);

 gcodeLayer.setAlwaysRetract(!getSettingBoolean("retraction_combing"));

 }

 //Figure out in which order to print the meshes, do this by looking at the current

extruder and preferer the meshes that use that extruder.

 std::vector<SliceMeshStorage*> mesh_order = calculateMeshOrder(storage,

gcodeLayer.getExtruder());

 for(SliceMeshStorage* mesh : mesh_order)

 {

 addMeshLayerToGCode(storage, mesh, gcodeLayer, layer_nr);

 }

 if (!printSupportFirst)

 addSupportToGCode(storage, gcodeLayer, layer_nr);

 { //Finish the layer by applying speed corrections for minimal layer times and

determine the fanSpeed

 double travelTime;

 double extrudeTime;

 gcodeLayer.getTimes(travelTime, extrudeTime);

gcodeLayer.forceMinimalLayerTime(getSettingInSeconds("cool_min_layer_time"),

getSettingInMillimetersPerSecond("cool_min_speed"), travelTime, extrudeTime);

 // interpolate fan speed (for cool_fan_full_layer and for

cool_min_layer_time_fan_speed_max)

 int fanSpeed = getSettingInPercentage("cool_fan_speed_min");

 double totalLayerTime = travelTime + extrudeTime;

 if (totalLayerTime < getSettingInSeconds("cool_min_layer_time"))

 {

 fanSpeed = getSettingInPercentage("cool_fan_speed_max");

 }

 else if (totalLayerTime <

getSettingInSeconds("cool_min_layer_time_fan_speed_max"))

 {

 // when forceMinimalLayerTime didn't change the extrusionSpeedFactor, we

adjust the fan speed

 double minTime = (getSettingInSeconds("cool_min_layer_time"));

 double maxTime =

(getSettingInSeconds("cool_min_layer_time_fan_speed_max"));

 int fanSpeedMin = getSettingInPercentage("cool_fan_speed_min");

 int fanSpeedMax = getSettingInPercentage("cool_fan_speed_max");

 fanSpeed = fanSpeedMax - (fanSpeedMax-fanSpeedMin) * (totalLayerTime

- minTime) / (maxTime - minTime);

 }

167

 if (static_cast<int>(layer_nr) < getSettingAsCount("cool_fan_full_layer"))

 {

 //Slow down the fan on the layers below the [cool_fan_full_layer], where

layer 0 is speed 0.

 fanSpeed = fanSpeed * layer_nr / getSettingAsCount("cool_fan_full_layer");

 }

 gcode.writeFanCommand(fanSpeed);

 }

 //@ start write GCode for each layer

 gcodeLayer.writeGCode(getSettingBoolean("cool_lift_head"), layer_nr > 0 ||

getSettingAsPlatformAdhesion("adhesion_type") == Adhesion_Raft?

getSettingInMicrons("layer_height") : getSettingInMicrons("layer_height_0"));

 if (commandSocket)

 commandSocket->sendGCodeLayer();

 //@ add pause to each layer

 if (layerPause){

 //@ turn off the welder

 //gcode.writeCode(getSettingString("machine_welder_off_gcode").c_str());

 gcode.writeCode(welderOffGCode.c_str());

 //@ move printer head up in mm unit

 std::string tempUpLayerEnd;

 std::ostringstream tempUp;

 double upZ = INT2MM(gcode.getPositionZ()) + upLayerEnd;

 //tempUp.precision(3);

 tempUp << std::fixed << std::setprecision(3) << ";Move print head up\nG0 Z"

<< upZ << "\n";

 tempUpLayerEnd = tempUp.str();

 gcode.writeCode(tempUpLayerEnd.c_str());

 //@ pause the pringting

 std::string tempGcode;

 double tempPauseTime;

 std::ostringstream temp;

 tempPauseTime = pauseTime + (pauseTime*(pauseIncrease/100)*layer_nr);

 temp << (int)tempPauseTime << "\n";

 tempGcode = pauseGcode + temp.str();

 gcode.writeCode(tempGcode.c_str());

 //@ set that the welder is off

 gcode.setIsWelding(false);

 }

 }//@ end for each layer

 gcode.writeRetraction(&storage.retraction_config, true);

 log("Wrote layers in %5.2fs.\n", timeKeeper.restart());

 gcode.writeFanCommand(0);

168

 //Store the object height for when we are printing multiple objects, as we need to

clear every one of them when moving to the next position.

 maxObjectHeight = std::max(maxObjectHeight, storage.model_max.z);

 if (commandSocket)

 {

 finalize();

 commandSocket->sendGCodeLayer();

 commandSocket->endSendSlicedObject();

 if (gcode.getFlavor() == GCODE_FLAVOR_ULTIGCODE)

 {

 std::ostringstream prefix;

 prefix << ";FLAVOR:UltiGCode\n";

 prefix << ";TIME:" << int(gcode.getTotalPrintTime()) << "\n";

 prefix << ";MATERIAL:" << int(gcode.getTotalFilamentUsed(0)) << "\n";

 prefix << ";MATERIAL2:" << int(gcode.getTotalFilamentUsed(1)) << "\n";

 commandSocket->sendGCodePrefix(prefix.str());

 }

 }

 }

 std::vector<SliceMeshStorage*> calculateMeshOrder(SliceDataStorage& storage, int

current_extruder)

 {

 std::vector<SliceMeshStorage*> ret;

 std::vector<SliceMeshStorage*> add_list;

 for(SliceMeshStorage& mesh : storage.meshes)

 add_list.push_back(&mesh);

 int add_extruder_nr = current_extruder;

 while(add_list.size() > 0)

 {

 for(unsigned int idx=0; idx<add_list.size(); idx++)

 {

 if (add_list[idx]->settings->getSettingAsIndex("extruder_nr") ==

add_extruder_nr)

 {

 ret.push_back(add_list[idx]);

 add_list.erase(add_list.begin() + idx);

 idx--;

 }

 }

 if (add_list.size() > 0)

 add_extruder_nr = add_list[0]->settings->getSettingAsIndex("extruder_nr");

 }

 return ret;

169

 }

 //Add a single layer from a single mesh-volume to the GCode

 void addMeshLayerToGCode(SliceDataStorage& storage, SliceMeshStorage* mesh,

GCodePlanner& gcodeLayer, int layer_nr)

 {

 //printf("!!enter

addMeshLayerToGCode function"); //@ for test.

 int prevExtruder = gcodeLayer.getExtruder();

 bool extruder_changed = gcodeLayer.setExtruder(mesh->settings-

>getSettingAsIndex("extruder_nr"));

 if (extruder_changed)

 addWipeTower(storage, gcodeLayer, layer_nr, prevExtruder);

 SliceLayer* layer = &mesh->layers[layer_nr];

 if (getSettingBoolean("magic_polygon_mode"))

 {

 //printf("!!enter

magic_polygon_mode"); //@ for test.

 Polygons polygons;

 for(unsigned int partNr=0; partNr<layer->parts.size(); partNr++)

 {

 for(unsigned int n=0; n<layer->parts[partNr].outline.size(); n++)

 {

 for(unsigned int m=1; m<layer->parts[partNr].outline[n].size(); m++)

 {

 Polygon p;

 p.add(layer->parts[partNr].outline[n][m-1]);

 p.add(layer->parts[partNr].outline[n][m]);

 polygons.add(p);

 }

 if (layer->parts[partNr].outline[n].size() > 0)

 {

 Polygon p;

 p.add(layer->parts[partNr].outline[n][layer-

>parts[partNr].outline[n].size()-1]);

 p.add(layer->parts[partNr].outline[n][0]);

 polygons.add(p);

 }

 }

 }

 for(unsigned int n=0; n<layer->openLines.size(); n++)

 {

 for(unsigned int m=1; m<layer->openLines[n].size(); m++)

170

 {

 Polygon p;

 p.add(layer->openLines[n][m-1]);

 p.add(layer->openLines[n][m]);

 polygons.add(p);

 }

 }

 if (mesh->settings->getSettingBoolean("magic_spiralize"))

 mesh->inset0_config.spiralize = true;

 gcodeLayer.addPolygonsByOptimizer(polygons, &mesh->inset0_config);

 return;

 }

 PathOrderOptimizer partOrderOptimizer(gcode.getStartPositionXY());

 for(unsigned int partNr=0; partNr<layer->parts.size(); partNr++)

 {

 partOrderOptimizer.addPolygon(layer->parts[partNr].insets[0][0]);

 }

 partOrderOptimizer.optimize();

 for(unsigned int partCounter=0; partCounter<partOrderOptimizer.polyOrder.size();

partCounter++)

 {

 SliceLayerPart* part = &layer-

>parts[partOrderOptimizer.polyOrder[partCounter]];

 if (getSettingBoolean("retraction_combing"))

 gcodeLayer.setCombBoundary(&part->combBoundery);

 else

 gcodeLayer.setAlwaysRetract(true);

 int fillAngle = 45;

 if (layer_nr & 1)

 fillAngle += 90;

 int extrusionWidth = getSettingInMicrons("infill_line_width");

 //Add thicker (multiple layers) sparse infill.

 int sparse_infill_line_distance = getSettingInMicrons("infill_line_distance");

 double infill_overlap = getSettingInPercentage("fill_overlap");

 if (sparse_infill_line_distance > 0)

 {

 //printf("!!enter

spare_infill_line_distance greater than zero"); //@ for test.

 //Print the thicker sparse lines first. (double or more layer thickness, infill

combined with previous layers)

171

 for(unsigned int n=1; n<part->sparse_outline.size(); n++)

 {

 Polygons fillPolygons;

 switch(getSettingAsFillMethod("fill_pattern"))

 {

 case Fill_Grid:

 generateGridInfill(part->sparse_outline[n], 0, fillPolygons,

extrusionWidth, sparse_infill_line_distance * 2, infill_overlap, fillAngle);

 gcodeLayer.addLinesByOptimizer(fillPolygons, &mesh-

>infill_config[n]);

 break;

 case Fill_Lines:

 generateLineInfill(part->sparse_outline[n], 0, fillPolygons,

extrusionWidth, sparse_infill_line_distance, infill_overlap, fillAngle);

 gcodeLayer.addLinesByOptimizer(fillPolygons, &mesh-

>infill_config[n]);

 break;

 case Fill_Triangles:

 generateTriangleInfill(part->sparse_outline[n], 0, fillPolygons,

extrusionWidth, sparse_infill_line_distance * 3, infill_overlap, 0);

 gcodeLayer.addLinesByOptimizer(fillPolygons, &mesh-

>infill_config[n]);

 break;

 case Fill_Concentric:

 generateConcentricInfill(part->sparse_outline[n], fillPolygons,

sparse_infill_line_distance);

 gcodeLayer.addPolygonsByOptimizer(fillPolygons, &mesh-

>infill_config[n]);

 break;

 case Fill_ZigZag:

 generateZigZagInfill(part->sparse_outline[n], fillPolygons,

extrusionWidth, sparse_infill_line_distance, infill_overlap, fillAngle, false, false);

 gcodeLayer.addPolygonsByOptimizer(fillPolygons, &mesh-

>infill_config[n]);

 break;

 default:

 logError("fill_pattern has unknown value.\n");

 break;

 }

 sendPolygons(InfillType, layer_nr, fillPolygons, extrusionWidth);

 }

 }

 //Combine the 1 layer thick infill with the top/bottom skin and print that as one

thing.

 Polygons infillPolygons;

172

 Polygons infillLines;

 if (sparse_infill_line_distance > 0 && part->sparse_outline.size() > 0)

 {

 //printf("!!enter infillPolygons");

//@ for test.

 switch(getSettingAsFillMethod("fill_pattern"))

 {

 case Fill_Grid:

 generateGridInfill(part->sparse_outline[0], 0, infillLines, extrusionWidth,

sparse_infill_line_distance * 2, infill_overlap, fillAngle);

 break;

 case Fill_Lines:

 generateLineInfill(part->sparse_outline[0], 0, infillLines, extrusionWidth,

sparse_infill_line_distance, infill_overlap, fillAngle);

 break;

 case Fill_Triangles:

 generateTriangleInfill(part->sparse_outline[0], 0, infillLines,

extrusionWidth, sparse_infill_line_distance * 3, infill_overlap, 0);

 break;

 case Fill_Concentric:

 generateConcentricInfill(part->sparse_outline[0], infillPolygons,

sparse_infill_line_distance);

 break;

 case Fill_ZigZag:

 generateZigZagInfill(part->sparse_outline[0], infillLines, extrusionWidth,

sparse_infill_line_distance, infill_overlap, fillAngle, false, false);

 break;

 default:

 logError("fill_pattern has unknown value.\n");

 break;

 }

 }

 gcodeLayer.addPolygonsByOptimizer(infillPolygons, &mesh->infill_config[0]);

 gcodeLayer.addLinesByOptimizer(infillLines, &mesh->infill_config[0]);

 sendPolygons(InfillType, layer_nr, infillLines, extrusionWidth);

 if (getSettingAsCount("wall_line_count") > 0)

 {

 if (getSettingBoolean("magic_spiralize"))

 {

 //printf("!!enter

magic_spiralize"); //@ for test.

 if (static_cast<int>(layer_nr) >= getSettingAsCount("bottom_layers"))

 mesh->inset0_config.spiralize = true;

173

 if (static_cast<int>(layer_nr) == getSettingAsCount("bottom_layers") &&

part->insets.size() > 0)

 gcodeLayer.addPolygonsByOptimizer(part->insets[0], &mesh-

>insetX_config);

 }

 for(int insetNr=part->insets.size()-1; insetNr>-1; insetNr--)

 {

 if (insetNr == 0)

 gcodeLayer.addPolygonsByOptimizer(part->insets[insetNr], &mesh-

>inset0_config);

 else

 gcodeLayer.addPolygonsByOptimizer(part->insets[insetNr], &mesh-

>insetX_config);

 }

 }

 Polygons skinPolygons;

 Polygons skinLines;

 for(SkinPart& skin_part : part->skin_parts)

 {

 int bridge = -1;

 if (layer_nr > 0)

 bridge = bridgeAngle(skin_part.outline, &mesh->layers[layer_nr-1]);

 if (bridge > -1)

 {

 generateLineInfill(skin_part.outline, 0, skinLines, extrusionWidth,

extrusionWidth, infill_overlap, bridge);

 }else{

 switch(getSettingAsFillMethod("top_bottom_pattern"))

 {

 case Fill_Lines:

 for (Polygons& skin_perimeter : skin_part.insets)

 {

 gcodeLayer.addPolygonsByOptimizer(skin_perimeter, &mesh-

>skin_config); // add polygons to gcode in inward order

 }

 if (skin_part.insets.size() > 0)

 {

 generateLineInfill(skin_part.insets.back(), -extrusionWidth/2,

skinLines, extrusionWidth, extrusionWidth, infill_overlap, fillAngle);

 if (getSettingString("fill_perimeter_gaps") != "Nowhere")

 {

 generateLineInfill(skin_part.perimeterGaps, 0, skinLines,

extrusionWidth, extrusionWidth, 0, fillAngle);

 }

 }

174

 else

 {

 generateLineInfill(skin_part.outline, 0, skinLines, extrusionWidth,

extrusionWidth, infill_overlap, fillAngle);

 }

 break;

 case Fill_Concentric:

 {

 //printf("!!enter

skinPolygons Fill_Concentric"); //@ for test.

 Polygons in_outline;

 offsetSafe(skin_part.outline, -extrusionWidth/2, extrusionWidth,

in_outline, getSettingBoolean("wall_overlap_avoid_enabled"));

 if (getSettingString("fill_perimeter_gaps") != "Nowhere")

 {

 generateConcentricInfillDense(in_outline, skinPolygons, &part-

>perimeterGaps, extrusionWidth, getSettingBoolean("wall_overlap_avoid_enabled"));

 }

 }

 break;

 default:

 logError("Unknown fill method for skin\n");

 break;

 }

 }

 }

 // handle gaps between perimeters etc.

 if (getSettingString("fill_perimeter_gaps") != "Nowhere")

 {

 generateLineInfill(part->perimeterGaps, 0, skinLines, extrusionWidth,

extrusionWidth, 0, fillAngle);

 }

 gcodeLayer.addPolygonsByOptimizer(skinPolygons, &mesh->skin_config);

 gcodeLayer.addLinesByOptimizer(skinLines, &mesh->skin_config);

 sendPolygons(SkinType, layer_nr, skinLines, extrusionWidth);

 //After a layer part, make sure the nozzle is inside the comb boundary, so we do

not retract on the perimeter.

 if (!getSettingBoolean("magic_spiralize") || static_cast<int>(layer_nr) <

getSettingAsCount("bottom_layers"))

 gcodeLayer.moveInsideCombBoundary(extrusionWidth * 2);

 }

175

 gcodeLayer.setCombBoundary(nullptr);

 }

 void addSupportToGCode(SliceDataStorage& storage, GCodePlanner& gcodeLayer,

int layer_nr)

 {

 if (!storage.support.generated)

 return;

 if (getSettingAsIndex("support_extruder_nr") > -1)

 {

 int prevExtruder = gcodeLayer.getExtruder();

 if (gcodeLayer.setExtruder(getSettingAsIndex("support_extruder_nr")))

 addWipeTower(storage, gcodeLayer, layer_nr, prevExtruder);

 }

 Polygons support;

 if (storage.support.generated)

 support = storage.support.supportAreasPerLayer[layer_nr];

 sendPolygons(SupportType, layer_nr, support,

getSettingInMicrons("wall_line_width_x"));

 std::vector<Polygons> supportIslands = support.splitIntoParts();

 PathOrderOptimizer islandOrderOptimizer(gcode.getPositionXY());

 for(unsigned int n=0; n<supportIslands.size(); n++)

 {

 islandOrderOptimizer.addPolygon(supportIslands[n][0]);

 }

 islandOrderOptimizer.optimize();

 for(unsigned int n=0; n<supportIslands.size(); n++)

 {

 Polygons& island = supportIslands[islandOrderOptimizer.polyOrder[n]];

 Polygons supportLines;

 int support_line_distance = getSettingInMicrons("support_line_distance");

 double infill_overlap = getSettingInPercentage("fill_overlap");

 if (support_line_distance > 0)

 {

 int extrusionWidth = getSettingInMicrons("wall_line_width_x");

 switch(getSettingAsFillMethod("support_pattern"))

 {

 case Fill_Grid:

 {

 int offset_from_outline = 0;

176

 if (support_line_distance > extrusionWidth * 4)

 {

 generateGridInfill(island, offset_from_outline, supportLines,

extrusionWidth, support_line_distance*2, infill_overlap, 0);

 }else{

 generateLineInfill(island, offset_from_outline, supportLines,

extrusionWidth, support_line_distance, infill_overlap, (layer_nr & 1) ? 0 : 90);

 }

 }

 break;

 case Fill_Lines:

 {

 int offset_from_outline = 0;

 if (layer_nr == 0)

 {

 generateGridInfill(island, offset_from_outline, supportLines,

extrusionWidth, support_line_distance, infill_overlap + 150, 0);

 }else{

 generateLineInfill(island, offset_from_outline, supportLines,

extrusionWidth, support_line_distance, infill_overlap, 0);

 }

 }

 break;

 case Fill_ZigZag:

 {

 int offset_from_outline = 0;

 if (layer_nr == 0)

 {

 generateGridInfill(island, offset_from_outline, supportLines,

extrusionWidth, support_line_distance, infill_overlap + 150, 0);

 }else{

 generateZigZagInfill(island, supportLines, extrusionWidth,

support_line_distance, infill_overlap, 0, getSettingBoolean("support_connect_zigzags"),

true);

 }

 }

 break;

 default:

 logError("Unknown fill method for support\n");

 break;

 }

 }

 gcodeLayer.forceRetract();

 if (getSettingBoolean("retraction_combing"))

 gcodeLayer.setCombBoundary(&island);

177

 if (getSettingAsFillMethod("support_pattern") == Fill_Grid || (

getSettingAsFillMethod("support_pattern") == Fill_ZigZag && layer_nr == 0))

 gcodeLayer.addPolygonsByOptimizer(island, &storage.support_config);

 gcodeLayer.addLinesByOptimizer(supportLines, &storage.support_config);

 gcodeLayer.setCombBoundary(nullptr);

 sendPolygons(SupportInfillType, layer_nr, supportLines,

getSettingInMicrons("wall_line_width_x"));

 }

 }

 void addWipeTower(SliceDataStorage& storage, GCodePlanner& gcodeLayer, int

layer_nr, int prevExtruder)

 {

 if (getSettingInMicrons("wipe_tower_size") < 1)

 return;

 int64_t offset = -getSettingInMicrons("wall_line_width_x");

 if (layer_nr > 0)

 offset *= 2;

 //If we changed extruder, print the wipe/prime tower for this nozzle;

 std::vector<Polygons> insets;

 if ((layer_nr % 2) == 1)

 insets.push_back(storage.wipeTower.offset(offset / 2));

 else

 insets.push_back(storage.wipeTower);

 while(true)

 {

 Polygons new_inset = insets[insets.size() - 1].offset(offset);

 if (new_inset.size() < 1)

 break;

 insets.push_back(new_inset);

 }

 for(unsigned int n=0; n<insets.size(); n++)

 {

 gcodeLayer.addPolygonsByOptimizer(insets[insets.size() - 1 - n],

&storage.meshes[0].insetX_config);

 }

 //Make sure we wipe the old extruder on the wipe tower.

 gcodeLayer.addTravel(storage.wipePoint - gcode.getExtruderOffset(prevExtruder) +

gcode.getExtruderOffset(gcodeLayer.getExtruder()));

 }

};

178

}//namespace cura

#endif//FFF_PROCESSOR_H

179

//gcodeExport.cpp

/**Yuenyong Nilsiam based on */

/** Copyright (C) 2013 David Braam - Released under terms of the AGPLv3 License */

#include <stdarg.h>

#include <iomanip>

#include "gcodeExport.h"

#include "utils/logoutput.h"

namespace cura {

GCodeExport::GCodeExport()

: output_stream(&std::cout), currentPosition(0,0,0),

startPosition(INT32_MIN,INT32_MIN,0)

{

 extrusion_amount = 0;

 retraction_extrusion_window = 0.0;

 extruderSwitchRetraction = 14.5;

 current_extruder = 0;

 currentFanSpeed = -1;

 totalPrintTime = 0.0;

 for(unsigned int e=0; e<MAX_EXTRUDERS; e++)

 {

 totalFilament[e] = 0.0;

 currentTemperature[e] = 0;

 filament_diameter[e] = 0;

 }

 currentSpeed = 1;

 retractionPrimeSpeed = 1;

 isRetracted = false;

 isZHopped = false;

 setFlavor(GCODE_FLAVOR_REPRAP);

 memset(extruderOffset, 0, sizeof(extruderOffset));

}

GCodeExport::~GCodeExport()

{

}

void GCodeExport::setOutputStream(std::ostream* stream)

{

 output_stream = stream;

 *output_stream << std::fixed;

}

180

void GCodeExport::setExtruderOffset(int id, Point p)

{

 extruderOffset[id] = p;

}

Point GCodeExport::getExtruderOffset(int id)

{

 return extruderOffset[id];

}

void GCodeExport::setSwitchExtruderCode(int id, std::string preSwitchExtruderCode,

std::string postSwitchExtruderCode)

{

 this->preSwitchExtruderCode[id] = preSwitchExtruderCode;

 this->postSwitchExtruderCode[id] = postSwitchExtruderCode;

}

void GCodeExport::setFlavor(EGCodeFlavor flavor)

{

 this->flavor = flavor;

 if (flavor == GCODE_FLAVOR_MACH3)

 for(int n=0; n<MAX_EXTRUDERS; n++)

 extruderCharacter[n] = 'A' + n;

 else

 for(int n=0; n<MAX_EXTRUDERS; n++)

 extruderCharacter[n] = 'E';

 if (flavor == GCODE_FLAVOR_ULTIGCODE || flavor ==

GCODE_FLAVOR_REPRAP_VOLUMATRIC)

 {

 is_volumatric = true;

 }

 else

 {

 is_volumatric = false;

 }

}

EGCodeFlavor GCodeExport::getFlavor()

{

 return this->flavor;

}

void GCodeExport::setRetractionSettings(int extruderSwitchRetraction, int

extruderSwitchRetractionSpeed, int extruderSwitchPrimeSpeed, int

retraction_extrusion_window, int retraction_count_max)

181

{

 this->extruderSwitchRetraction = INT2MM(extruderSwitchRetraction);

 this->extruderSwitchRetractionSpeed = extruderSwitchRetractionSpeed;

 this->extruderSwitchPrimeSpeed = extruderSwitchPrimeSpeed;

 this->retraction_extrusion_window = INT2MM(retraction_extrusion_window);

 this->retraction_count_max = retraction_count_max;

}

void GCodeExport::setZ(int z)

{

 this->zPos = z;

}

Point3 GCodeExport::getPosition()

{

 return currentPosition;

}

Point GCodeExport::getPositionXY()

{

 return Point(currentPosition.x, currentPosition.y);

}

int GCodeExport::getPositionZ()

{

 return currentPosition.z;

}

void GCodeExport::resetStartPosition()

{

 startPosition.x = INT32_MIN;

 startPosition.y = INT32_MIN;

}

Point GCodeExport::getStartPositionXY()

{

 return Point(startPosition.x, startPosition.y);

}

int GCodeExport::getExtruderNr()

{

 return current_extruder;

}

double GCodeExport::getFilamentArea(unsigned int extruder)

{

 double r = INT2MM(filament_diameter[extruder]) / 2.0;

182

 double filament_area = M_PI * r * r;

 return filament_area;

}

void GCodeExport::setFilamentDiameter(unsigned int n, int diameter)

{

 filament_diameter[n] = diameter;

}

double GCodeExport::getExtrusionAmountMM3(unsigned int extruder)

{

 if (is_volumatric)

 {

 return extrusion_amount;

 }

 else

 {

 return extrusion_amount * getFilamentArea(extruder);

 }

}

double GCodeExport::getTotalFilamentUsed(int e)

{

 if (e == current_extruder)

 return totalFilament[e] + getExtrusionAmountMM3(e);

 return totalFilament[e];

}

double GCodeExport::getTotalPrintTime()

{

 return totalPrintTime;

}

void GCodeExport::resetTotalPrintTimeAndFilament()

{

 totalPrintTime = 0;

 for(unsigned int e=0; e<MAX_EXTRUDERS; e++)

 {

 totalFilament[e] = 0.0;

 currentTemperature[e] = 0;

 }

 extrusion_amount = 0.0;

 estimateCalculator.reset();

}

void GCodeExport::updateTotalPrintTime()

183

{

 totalPrintTime += estimateCalculator.calculate();

 estimateCalculator.reset();

}

void GCodeExport::writeComment(std::string comment)

{

 *output_stream << ";" << comment << "\n";

}

void GCodeExport::writeTypeComment(const char* type)

{

 *output_stream << ";TYPE:" << type << "\n";

}

void GCodeExport::writeLayerComment(int layer_nr)

{

 *output_stream << ";LAYER:" << layer_nr << "\n";

}

void GCodeExport::writeLine(const char* line)

{

 *output_stream << line << "\n";

}

void GCodeExport::resetExtrusionValue()

{

 if (extrusion_amount != 0.0 && flavor != GCODE_FLAVOR_MAKERBOT &&

flavor != GCODE_FLAVOR_BFB)

 {

 *output_stream << "G92 " << extruderCharacter[current_extruder] << "0\n";

 totalFilament[current_extruder] += getExtrusionAmountMM3(current_extruder);

 for (unsigned int i = 0; i < extrusion_amount_at_previous_n_retractions.size(); i++)

 extrusion_amount_at_previous_n_retractions[i] -= extrusion_amount;

 extrusion_amount = 0.0;

 }

}

void GCodeExport::writeDelay(double timeAmount)

{

 *output_stream << "G4 P" << int(timeAmount * 1000) << "\n";

 totalPrintTime += timeAmount;

}

void GCodeExport::writeMove(Point p, int speed, double extrusion_mm3_per_mm)

{

 writeMove(p.X, p.Y, zPos, speed, extrusion_mm3_per_mm);

184

}

void GCodeExport::writeMove(Point3 p, int speed, double extrusion_mm3_per_mm)

{

 writeMove(p.x, p.y, p.z, speed, extrusion_mm3_per_mm);

}

void GCodeExport::writeMove(int x, int y, int z, int speed, double

extrusion_mm3_per_mm)

{

 if (currentPosition.x == x && currentPosition.y == y && currentPosition.z == z)

 return;

 double extrusion_per_mm = extrusion_mm3_per_mm;

 if (!is_volumatric)

 {

 extrusion_per_mm = extrusion_mm3_per_mm / getFilamentArea(current_extruder);

 }

 if (flavor == GCODE_FLAVOR_BFB)

 {

 //For Bits From Bytes machines, we need to handle this completely differently. As

they do not use E values but RPM values.

 float fspeed = speed * 60;

 float rpm = extrusion_per_mm * speed * 60;

 const float mm_per_rpm = 4.0; //All BFB machines have 4mm per RPM extrusion.

 rpm /= mm_per_rpm;

 if (rpm > 0)

 {

 if (isRetracted)

 {

 if (currentSpeed != int(rpm * 10))

 {

 //fprintf(f, "; %f e-per-mm %d mm-width %d mm/s\n", extrusion_per_mm,

lineWidth, speed);

 //fprintf(f, "M108 S%0.1f\r\n", rpm); //M108 set extruder speed

 *output_stream << "M108 S" << std::setprecision(1) << rpm << "\r\n";

 currentSpeed = int(rpm * 10);

 }

 //Add M101 or M201 to enable the proper extruder.

 *output_stream << "M" << int((current_extruder + 1) * 100 + 1) << "\r\n";

 isRetracted = false;

 }

 //Fix the speed by the actual RPM we are asking, because of rounding errors we

cannot get all RPM values, but we have a lot more resolution in the feedrate value.

 // (Trick copied from KISSlicer, thanks Jonathan)

 fspeed *= (rpm / (roundf(rpm * 100) / 100));

185

 //Increase the extrusion amount to calculate the amount of filament used.

 Point3 diff = Point3(x,y,z) - getPosition();

 extrusion_amount += extrusion_per_mm * diff.vSizeMM();

 }else{

 //If we are not extruding, check if we still need to disable the extruder. This

causes a retraction due to auto-retraction.

 if (!isRetracted)

 {

 *output_stream << "M103\r\n";

 isRetracted = true;

 }

 }

 *output_stream << std::setprecision(3) << "G1 X" << INT2MM(x -

extruderOffset[current_extruder].X) << " Y" << INT2MM(y -

extruderOffset[current_extruder].Y) << " Z" << INT2MM(z) << std::setprecision(1) << "

F" << fspeed << "\r\n";

 }else{

 //Normal E handling. //@ RepRap

 //@ move this diff outside so able to use it in else for G0

 Point3 diff = Point3(x,y,z) - getPosition();

 //@ t_tmp for temporary calculation time

 //@ double t_tmp;

 if (extrusion_mm3_per_mm > 0.000001)

 {

 //@ Point3 diff = Point3(x,y,z) - getPosition();

 if (isZHopped > 0)

 {

 *output_stream << std::setprecision(3) << "G1 Z" <<

INT2MM(currentPosition.z) << "\n";

 isZHopped = false;

 }

 if (isRetracted)

 {

 if (flavor == GCODE_FLAVOR_ULTIGCODE || flavor ==

GCODE_FLAVOR_REPRAP_VOLUMATRIC)

 {

 *output_stream << "G11\n";

 //Assume default UM2 retraction settings.

estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x),

INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount), 25.0);

 }else{

186

 *output_stream << "G1 F" << (retractionPrimeSpeed * 60) << " " <<

extruderCharacter[current_extruder] << std::setprecision(5) << extrusion_amount <<

"\n";

 currentSpeed = retractionPrimeSpeed;

estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x),

INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount),

currentSpeed);

 }

 if (getExtrusionAmountMM3(current_extruder) > 10000.0) //According to

https://github.com/Ultimaker/CuraEngine/issues/14 having more then 21m of extrusion

causes inaccuracies. So reset it every 10m, just to be sure.

 resetExtrusionValue(); //

 isRetracted = false;

 }

 //@ if isMetalPrinting then cal time and new speed

 if (isMetalPrinting)

 {

 //@t_tmp = (extrusion_per_mm * diff.vSizeMM())/(double)speed;

 //@speed = (int)(diff.vSizeMM()/t_tmp); //@ cal new speed

 if (!isWelding)

 {

 isWelding = true;

 *output_stream << welder_on;

 }

 }

 extrusion_amount += extrusion_per_mm * diff.vSizeMM();

 *output_stream << "G1"; //@ to print

 }else{//@ only moving

 //@ if it is metal printing

 if (isMetalPrinting)

 {

 //@ check with min_dist_welder_off

 if (isWelding && diff.vSizeMM() > min_dist_welder_off){

 isWelding = false;

 *output_stream << welder_off;

 }

 }

 *output_stream << "G0"; //@ to move

 }

 if (currentSpeed != speed)

 {

 *output_stream << " F" << (speed * 60); //@feedrate per minute

187

 currentSpeed = speed;

 }

 *output_stream << std::setprecision(3) << " X" << INT2MM(x -

extruderOffset[current_extruder].X) << " Y" << INT2MM(y -

extruderOffset[current_extruder].Y);

 if (z != currentPosition.z)

 *output_stream << " Z" << INT2MM(z);

 if (!isMetalPrinting)

 {

 if (extrusion_mm3_per_mm > 0.000001)

 *output_stream << " " << extruderCharacter[current_extruder] <<

std::setprecision(5) << extrusion_amount;

 }

 *output_stream << "\n";

 }

 currentPosition = Point3(x, y, z);

 startPosition = currentPosition;

estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x),

INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount), speed);

}

void GCodeExport::writeRetraction(RetractionConfig* config, bool force)

{

 if (flavor == GCODE_FLAVOR_BFB)//BitsFromBytes does automatic retraction.

 return;

 if (isRetracted)

 return;

 if (config->amount <= 0)

 return;

 if (!force && retraction_count_max > 0 &&

int(extrusion_amount_at_previous_n_retractions.size()) == retraction_count_max - 1

 && extrusion_amount < extrusion_amount_at_previous_n_retractions.back() +

retraction_extrusion_window)

 return;

 if (config->primeAmount > 0)

 extrusion_amount += config->primeAmount;

 retractionPrimeSpeed = config->primeSpeed;

 if (flavor == GCODE_FLAVOR_ULTIGCODE || flavor ==

GCODE_FLAVOR_REPRAP_VOLUMATRIC)

188

 {

 *output_stream << "G10\n";

 //Assume default UM2 retraction settings.

 double retraction_distance = 4.5;

estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x),

INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount -

retraction_distance), 25); // TODO: hardcoded values!

 }else{

 *output_stream << "G1 F" << (config->speed * 60) << " " <<

extruderCharacter[current_extruder] << std::setprecision(5) << extrusion_amount -

config->amount << "\n";

 currentSpeed = config->speed;

estimateCalculator.plan(TimeEstimateCalculator::Position(INT2MM(currentPosition.x),

INT2MM(currentPosition.y), INT2MM(currentPosition.z), extrusion_amount - config-

>amount), currentSpeed);

 }

 if (config->zHop > 0)

 {

 *output_stream << std::setprecision(3) << "G1 Z" << INT2MM(currentPosition.z +

config->zHop) << "\n";

 isZHopped = true;

 }

 extrusion_amount_at_previous_n_retractions.push_front(extrusion_amount);

 if (int(extrusion_amount_at_previous_n_retractions.size()) == retraction_count_max)

 {

 extrusion_amount_at_previous_n_retractions.pop_back();

 }

 isRetracted = true;

}

void GCodeExport::switchExtruder(int newExtruder)

{

 if (current_extruder == newExtruder)

 return;

 if (flavor == GCODE_FLAVOR_BFB)

 {

 if (!isRetracted)

 *output_stream << "M103\r\n";

 isRetracted = true;

 return;

 }

189

 resetExtrusionValue();

 if (flavor == GCODE_FLAVOR_ULTIGCODE || flavor ==

GCODE_FLAVOR_REPRAP_VOLUMATRIC)

 {

 *output_stream << "G10 S1\n";

 }else{

 *output_stream << "G1 F" << (extruderSwitchRetractionSpeed * 60) << " " <<

extruderCharacter[current_extruder] << std::setprecision(5) << (extrusion_amount -

extruderSwitchRetraction) << "\n";

 currentSpeed = extruderSwitchRetractionSpeed;

 }

 current_extruder = newExtruder;

 if (flavor == GCODE_FLAVOR_MACH3)

 resetExtrusionValue();

 isRetracted = true;

 writeCode(preSwitchExtruderCode[current_extruder].c_str());

 if (flavor == GCODE_FLAVOR_MAKERBOT)

 *output_stream << "M135 T" << current_extruder << "\n";

 else

 *output_stream << "T" << current_extruder << "\n";

 writeCode(postSwitchExtruderCode[current_extruder].c_str());

 //Change the Z position so it gets re-writting again. We do not know if the switch code

modified the Z position.

 currentPosition.z += 1;

}

void GCodeExport::writeCode(const char* str)

{

 *output_stream << str;

 if (flavor == GCODE_FLAVOR_BFB)

 *output_stream << "\r\n";

 else

 *output_stream << "\n";

}

void GCodeExport::writeFanCommand(int speed)

{

 if (currentFanSpeed == speed)

 return;

 if (speed > 0)

 {

 if (flavor == GCODE_FLAVOR_MAKERBOT)

 *output_stream << "M126 T0\n"; //value = speed * 255 / 100 // Makerbot cannot

set fan speed...;

190

 else

 *output_stream << "M106 S" << (speed * 255 / 100) << "\n";

 }

 else

 {

 if (flavor == GCODE_FLAVOR_MAKERBOT)

 *output_stream << "M127 T0\n";

 else

 *output_stream << "M107\n";

 }

 currentFanSpeed = speed;

}

void GCodeExport::writeTemperatureCommand(int extruder, int temperature, bool wait)

{

 if (!isMetalPrinting){

 if (!wait && currentTemperature[extruder] == temperature)

 return;

 if (wait){

 *output_stream << "M109";//@ remove set extruder temperature and wait

 }

 else{

 *output_stream << "M104";//@ remove set extruder temperature

 }

 if (extruder != current_extruder)

 *output_stream << " T" << extruder;//@

 *output_stream << " S" << temperature << "\n";//@

 }

 currentTemperature[extruder] = temperature;

}

void GCodeExport::writeBedTemperatureCommand(int temperature, bool wait)

{

 if (wait)

 *output_stream << "M190 S";

 else

 *output_stream << "M140 S";

 *output_stream << temperature << "\n";

}

void GCodeExport::finalize(int maxObjectHeight, int moveSpeed, const char* endCode)

{

 std::cerr << "maxObjectHeight : " << maxObjectHeight << std::endl;

 writeFanCommand(0);

191

 setZ(maxObjectHeight + 5000);

 writeMove(Point3(0,0,maxObjectHeight + 5000) + getPositionXY(), moveSpeed, 0);

 writeCode(endCode);

 log("Print time: %d\n", int(getTotalPrintTime()));

 log("Filament: %d\n", int(getTotalFilamentUsed(0)));

 for(int n=1; n<MAX_EXTRUDERS; n++)

 if (getTotalFilamentUsed(n) > 0)

 log("Filament%d: %d\n", n + 1, int(getTotalFilamentUsed(n)));

 output_stream->flush();

}

//@ set welder_on GCode

void GCodeExport::setWelderOn(std::string welder_on_gcode)

{

 welder_on = welder_on_gcode;

}

//@ set welder_off GCode

void GCodeExport::setWelderOff(std::string welder_off_gcode)

{

 welder_off = welder_off_gcode;

}

//@ set Minimum Distance to move with welder off

void GCodeExport::setMinDistWelderOff(double machine_min_dist_welder_off)

{

 min_dist_welder_off = machine_min_dist_welder_off;

}

//@ set metal printing boolean

void GCodeExport::setIsMetalPrinting(bool machine_metal_printing){

 isMetalPrinting = machine_metal_printing;

}

//@ set is welding

void GCodeExport::setIsWelding(bool is_welding){

 isWelding = is_welding;

}

}//namespace cura

192

//gcodeExport.h

/**Yuenyong Nilsiam based on */

/** Copyright (C) 2013 David Braam - Released under terms of the AGPLv3 License */

#ifndef GCODEEXPORT_H

#define GCODEEXPORT_H

#include <stdio.h>

#include <deque> // for extrusionAmountAtPreviousRetractions

#include "settings.h"

#include "utils/intpoint.h"

#include "timeEstimate.h"

namespace cura {

class RetractionConfig

{

public:

 double amount; //!< The amount

 int speed;

 int primeSpeed;

 double primeAmount;

 int zHop;

};

//The GCodePathConfig is the configuration for moves/extrusion actions. This defines at

which width the line is printed and at which speed.

class GCodePathConfig

{

private:

 int speed;

 int line_width;

 int flow;

 int layer_thickness;

 double extrusion_mm3_per_mm;

public:

 const char* name;

 bool spiralize;

 RetractionConfig* retraction_config;

 GCodePathConfig() : speed(0), line_width(0), extrusion_mm3_per_mm(0.0),

name(nullptr), spiralize(false), retraction_config(nullptr) {}

 GCodePathConfig(RetractionConfig* retraction_config, const char* name) : speed(0),

line_width(0), extrusion_mm3_per_mm(0.0), name(name), spiralize(false),

retraction_config(retraction_config) {}

193

 void setSpeed(int speed)

 {

 this->speed = speed;

 }

 void setLineWidth(int line_width)

 {

 this->line_width = line_width;

 calculateExtrusion();

 }

 void setLayerHeight(int layer_height)

 {

 this->layer_thickness = layer_height;

 calculateExtrusion();

 }

 void setFlow(int flow)

 {

 this->flow = flow;

 calculateExtrusion();

 }

 void smoothSpeed(int min_speed, int layer_nr, int max_speed_layer)

 {

 speed = (speed*layer_nr)/max_speed_layer + (min_speed*(max_speed_layer-

layer_nr)/max_speed_layer);

 }

 double getExtrusionMM3perMM()

 {

 return extrusion_mm3_per_mm;

 }

 int getSpeed()

 {

 return speed;

 }

 int getLineWidth()

 {

 return line_width;

 }

private:

 void calculateExtrusion()

194

 {

 extrusion_mm3_per_mm = INT2MM(line_width) * INT2MM(layer_thickness) *

double(flow) / 100.0;

 }

};

//The GCodeExport class writes the actual GCode. This is the only class that knows how

GCode looks and feels.

// Any customizations on GCodes flavors are done in this class.

class GCodeExport

{

private:

 std::ostream* output_stream;

 double extrusion_amount; // in mm or mm^3

 double extruderSwitchRetraction;

 int extruderSwitchRetractionSpeed;

 int extruderSwitchPrimeSpeed;

 double retraction_extrusion_window;

 int retraction_count_max;

 std::deque<double> extrusion_amount_at_previous_n_retractions; // in mm or mm^3

 Point3 currentPosition;

 Point3 startPosition;

 Point extruderOffset[MAX_EXTRUDERS];

 char extruderCharacter[MAX_EXTRUDERS];

 int currentTemperature[MAX_EXTRUDERS];

 int currentSpeed;

 int zPos;

 bool isRetracted;

 bool isZHopped;

 int retractionPrimeSpeed;

 int current_extruder;

 int currentFanSpeed;

 EGCodeFlavor flavor;

 std::string preSwitchExtruderCode[MAX_EXTRUDERS];

 std::string postSwitchExtruderCode[MAX_EXTRUDERS];

 double totalFilament[MAX_EXTRUDERS]; // in mm^3

 double filament_diameter[MAX_EXTRUDERS]; // in mm^3

 double totalPrintTime;

 TimeEstimateCalculator estimateCalculator;

 bool is_volumatric;

 //std::string welder_on = "G4 P0\nM42 P0 S1\n";//@ GCode to turn welder on

 //std::string welder_off = "G4 P0\nM42 P0 S0\n";//@ Gcode to turn welder off

 std::string welder_on;//@ GCode to turn welder on

 std::string welder_off;//@ GCode to turn welder off

195

 double min_dist_welder_off; //@ minimum distance to move with welder off, unit mm

 bool isWelding; //@ true = welder is on, false = welder is off

 bool isMetalPrinting; //@ true = metal printing, false = not metal printing

public:

 GCodeExport();

 ~GCodeExport();

 void setOutputStream(std::ostream* stream);

 void setExtruderOffset(int id, Point p);

 Point getExtruderOffset(int id);

 void setSwitchExtruderCode(int id, std::string preSwitchExtruderCode, std::string

postSwitchExtruderCode);

 void setFlavor(EGCodeFlavor flavor);

 EGCodeFlavor getFlavor();

 void setRetractionSettings(int extruderSwitchRetraction, int

extruderSwitchRetractionSpeed, int extruderSwitchPrimeSpeed, int

minimalExtrusionBeforeRetraction, int retraction_count_max);

 void setZ(int z);

 Point3 getPosition();

 Point getPositionXY();

 void resetStartPosition();

 Point getStartPositionXY();

 int getPositionZ();

 int getExtruderNr();

 void setFilamentDiameter(unsigned int n, int diameter);

 double getFilamentArea(unsigned int extruder);

 double getExtrusionAmountMM3(unsigned int extruder);

 double getTotalFilamentUsed(int e);

 double getTotalPrintTime();

 void updateTotalPrintTime();

 void resetTotalPrintTimeAndFilament();

196

 void writeComment(std::string comment);

 void writeTypeComment(const char* type);

 void writeLayerComment(int layer_nr);

 void writeLine(const char* line);

 void resetExtrusionValue();

 void writeDelay(double timeAmount);

 void writeMove(Point p, int speed, double extrusion_per_mm);

 void writeMove(Point3 p, int speed, double extrusion_per_mm);

private:

 void writeMove(int x, int y, int z, int speed, double extrusion_per_mm);

public:

 void writeRetraction(RetractionConfig* config, bool force=false);

 void switchExtruder(int newExtruder);

 void writeCode(const char* str);

 void writeFanCommand(int speed);

 void writeTemperatureCommand(int extruder, int temperature, bool wait = false);

 void writeBedTemperatureCommand(int temperature, bool wait = false);

 void finalize(int maxObjectHeight, int moveSpeed, const char* endCode);

 void setWelderOn(std::string welder_on_gcode);

 void setWelderOff(std::string welder_off_gcode);

 void setMinDistWelderOff(double machine_min_dist_welder_off);

 void setIsMetalPrinting(bool machine_metal_printing);

 void setIsWelding(bool is_welding);

};

}

#endif//GCODEEXPORT_H

197

//gcodePlanner.cpp

#include "gcodePlanner.h"

#include "pathOrderOptimizer.h"

namespace cura {

GCodePath* GCodePlanner::getLatestPathWithConfig(GCodePathConfig* config)

{

 if (paths.size() > 0 && paths[paths.size()-1].config == config && !paths[paths.size()-

1].done)

 return &paths[paths.size()-1];

 paths.push_back(GCodePath());

 GCodePath* ret = &paths[paths.size()-1];

 ret->retract = false;

 ret->config = config;

 ret->extruder = currentExtruder;

 ret->done = false;

 return ret;

}

void GCodePlanner::forceNewPathStart()

{

 if (paths.size() > 0)

 paths[paths.size()-1].done = true;

}

GCodePlanner::GCodePlanner(GCodeExport& gcode, RetractionConfig*

retraction_config, int travelSpeed, int retractionMinimalDistance)

: gcode(gcode), travelConfig(retraction_config, "MOVE")

{

 lastPosition = gcode.getPositionXY();

 travelConfig.setSpeed(travelSpeed);

 comb = nullptr;

 extrudeSpeedFactor = 100;

 travelSpeedFactor = 100;

 extraTime = 0.0;

 totalPrintTime = 0.0;

 forceRetraction = false;

 alwaysRetract = false;

 currentExtruder = gcode.getExtruderNr();

 this->retractionMinimalDistance = retractionMinimalDistance;

}

GCodePlanner::~GCodePlanner()

{

 if (comb)

 delete comb;

198

}

void GCodePlanner::addTravel(Point p)

{

 GCodePath* path = getLatestPathWithConfig(&travelConfig);

 if (forceRetraction)

 {

 if (!shorterThen(lastPosition - p, retractionMinimalDistance))

 {

 path->retract = true;

 }

 forceRetraction = false;

 }else if (comb != nullptr)

 {

 std::vector<Point> pointList;

 if (comb->calc(lastPosition, p, pointList))

 {

 for(unsigned int n=0; n<pointList.size(); n++)

 {

 path->points.push_back(pointList[n]);

 }

 }else{

 if (!shorterThen(lastPosition - p, retractionMinimalDistance))

 path->retract = true;

 }

 }else if (alwaysRetract)

 {

 if (!shorterThen(lastPosition - p, retractionMinimalDistance))

 path->retract = true;

 }

 path->points.push_back(p);

 lastPosition = p;

}

void GCodePlanner::addExtrusionMove(Point p, GCodePathConfig* config)

{

 getLatestPathWithConfig(config)->points.push_back(p);

 lastPosition = p;

}

void GCodePlanner::moveInsideCombBoundary(int distance)

{

 //printf("!!enter

moveInsideCombBoundary"); //@ for test.

 if (!comb || comb->inside(lastPosition)) return;

 Point p = lastPosition;

199

 if (comb->moveInside(&p, distance))

 {

 //Move inside again, so we move out of tight 90deg corners

 comb->moveInside(&p, distance);

 if (comb->inside(p))

 {

 addTravel(p);

 //Make sure the that any retraction happens after this move, not before it by

starting a new move path.

 forceNewPathStart();

 }

 }

}

void GCodePlanner::addPolygon(PolygonRef polygon, int startIdx, GCodePathConfig*

config)

{

 Point p0 = polygon[startIdx];

 addTravel(p0);

 for(unsigned int i=1; i<polygon.size(); i++)

 {

 Point p1 = polygon[(startIdx + i) % polygon.size()];

 addExtrusionMove(p1, config);

 p0 = p1;

 }

 if (polygon.size() > 2)

 addExtrusionMove(polygon[startIdx], config);

}

void GCodePlanner::addPolygonsByOptimizer(Polygons& polygons, GCodePathConfig*

config)

{

 //log("addPolygonsByOptimizer");

 PathOrderOptimizer orderOptimizer(lastPosition);

 for(unsigned int i=0;i<polygons.size();i++)

 orderOptimizer.addPolygon(polygons[i]);

 orderOptimizer.optimize();

 for(unsigned int i=0;i<orderOptimizer.polyOrder.size();i++)

 {

 int nr = orderOptimizer.polyOrder[i];

 addPolygon(polygons[nr], orderOptimizer.polyStart[nr], config);

 }

}

void GCodePlanner::addLinesByOptimizer(Polygons& polygons, GCodePathConfig*

config)

{

200

 LineOrderOptimizer orderOptimizer(lastPosition);

 for(unsigned int i=0;i<polygons.size();i++)

 orderOptimizer.addPolygon(polygons[i]);

 orderOptimizer.optimize();

 for(unsigned int i=0;i<orderOptimizer.polyOrder.size();i++)

 {

 int nr = orderOptimizer.polyOrder[i];

 addPolygon(polygons[nr], orderOptimizer.polyStart[nr], config);

 }

}

void GCodePlanner::forceMinimalLayerTime(double minTime, int minimalSpeed,

double travelTime, double extrudeTime)

{

 double totalTime = travelTime + extrudeTime;

 if (totalTime < minTime && extrudeTime > 0.0)

 {

 double minExtrudeTime = minTime - travelTime;

 if (minExtrudeTime < 1)

 minExtrudeTime = 1;

 double factor = extrudeTime / minExtrudeTime;

 for(unsigned int n=0; n<paths.size(); n++)

 {

 GCodePath* path = &paths[n];

 if (path->config->getExtrusionMM3perMM() == 0)

 continue;

 int speed = path->config->getSpeed() * factor;

 if (speed < minimalSpeed)

 factor = double(minimalSpeed) / double(path->config->getSpeed());

 }

 //Only slow down with the minimal time if that will be slower then a factor already

set. First layer slowdown also sets the speed factor.

 if (factor * 100 < getExtrudeSpeedFactor())

 setExtrudeSpeedFactor(factor * 100);

 else

 factor = getExtrudeSpeedFactor() / 100.0;

 if (minTime - (extrudeTime / factor) - travelTime > 0.1)

 {

 this->extraTime = minTime - (extrudeTime / factor) - travelTime;

 }

 this->totalPrintTime = (extrudeTime / factor) + travelTime;

 }else{

 this->totalPrintTime = totalTime;

 }

201

}

void GCodePlanner::getTimes(double& travelTime, double& extrudeTime)

{

 travelTime = 0.0;

 extrudeTime = 0.0;

 Point p0 = gcode.getPositionXY();

 for(unsigned int n=0; n<paths.size(); n++)

 {

 GCodePath* path = &paths[n];

 for(unsigned int i=0; i<path->points.size(); i++)

 {

 double thisTime = vSizeMM(p0 - path->points[i]) / double(path->config-

>getSpeed());

 if (path->config->getExtrusionMM3perMM() != 0)

 extrudeTime += thisTime;

 else

 travelTime += thisTime;

 p0 = path->points[i];

 }

 }

}

void GCodePlanner::writeGCode(bool liftHeadIfNeeded, int layerThickness)

{

 GCodePathConfig* lastConfig = nullptr;

 int extruder = gcode.getExtruderNr();

 for(unsigned int n=0; n<paths.size(); n++)

 {

 GCodePath* path = &paths[n];

 if (extruder != path->extruder)

 {

 extruder = path->extruder;

 gcode.switchExtruder(extruder);

 }else if (path->retract)

 {

 gcode.writeRetraction(path->config->retraction_config);

 }

 if (path->config != &travelConfig && lastConfig != path->config)

 {

 //printf("!!enter writeTypecomment

in WriteGCode\n"); //@ for test.

 gcode.writeTypeComment(path->config->name);

 lastConfig = path->config;

 }

202

 int speed = path->config->getSpeed();

 if (path->config->getExtrusionMM3perMM() != 0)// Only apply the

extrudeSpeedFactor to extrusion moves

 speed = speed * extrudeSpeedFactor / 100;

 else

 speed = speed * travelSpeedFactor / 100;

 if (path->points.size() == 1 && path->config != &travelConfig &&

shorterThen(gcode.getPositionXY() - path->points[0], path->config->getLineWidth() *

2))

 {

 //Check for lots of small moves and combine them into one large line

 Point p0 = path->points[0];

 unsigned int i = n + 1;

 while(i < paths.size() && paths[i].points.size() == 1 && shorterThen(p0 -

paths[i].points[0], path->config->getLineWidth() * 2))

 {

 p0 = paths[i].points[0];

 i ++;

 }

 if (paths[i-1].config == &travelConfig)

 i --;

 if (i > n + 2)

 {

 p0 = gcode.getPositionXY();

 for(unsigned int x=n; x<i-1; x+=2)

 {

 int64_t new_width = vSize(p0 - paths[x].points[0]); // = old_length

 Point newPoint = (paths[x].points[0] + paths[x+1].points[0]) / 2;

 int64_t old_width = path->config->getLineWidth();

 if (old_width > 0)

 {

 if (new_width > 0)

 gcode.writeMove(newPoint, speed * old_width / new_width, path-

>config->getExtrusionMM3perMM() * new_width / old_width);

 else

 gcode.writeMove(newPoint, speed, path->config-

>getExtrusionMM3perMM());

 }

 p0 = paths[x+1].points[0];

 }

 gcode.writeMove(paths[i-1].points[0], speed, path->config-

>getExtrusionMM3perMM());

 n = i - 1;

 continue;

203

 }

 }

 bool spiralize = path->config->spiralize;

 if (spiralize)

 {

 //Check if we are the last spiralize path in the list, if not, do not spiralize.

 for(unsigned int m=n+1; m<paths.size(); m++)

 {

 if (paths[m].config->spiralize)

 spiralize = false;

 }

 }

 if (spiralize)

 {

 //If we need to spiralize then raise the head slowly by 1 layer as this path

progresses.

 float totalLength = 0.0;

 int z = gcode.getPositionZ();

 Point p0 = gcode.getPositionXY();

 for(unsigned int i=0; i<path->points.size(); i++)

 {

 Point p1 = path->points[i];

 totalLength += vSizeMM(p0 - p1);

 p0 = p1;

 }

 float length = 0.0;

 p0 = gcode.getPositionXY();

 for(unsigned int i=0; i<path->points.size(); i++)

 {

 Point p1 = path->points[i];

 length += vSizeMM(p0 - p1);

 p0 = p1;

 gcode.setZ(z + layerThickness * length / totalLength);

 gcode.writeMove(path->points[i], speed, path->config-

>getExtrusionMM3perMM());

 }

 }else{

 for(unsigned int i=0; i<path->points.size(); i++)

 {

 gcode.writeMove(path->points[i], speed, path->config-

>getExtrusionMM3perMM());

 }

 }

 }

204

 gcode.updateTotalPrintTime();

 if (liftHeadIfNeeded && extraTime > 0.0)

 {

 gcode.writeComment("Small layer, adding delay");

 if (lastConfig)

 gcode.writeRetraction(lastConfig->retraction_config, true);

 gcode.setZ(gcode.getPositionZ() + MM2INT(3.0));

 gcode.writeMove(gcode.getPositionXY(), travelConfig.getSpeed(), 0);

 gcode.writeMove(gcode.getPositionXY() - Point(-MM2INT(20.0), 0),

travelConfig.getSpeed(), 0);

 gcode.writeDelay(extraTime);

 }

}

}//namespace cura

205

//gcodePlanner.h

#ifndef GCODE_PLANNER_H

#define GCODE_PLANNER_H

#include <vector>

#include "gcodeExport.h"

#include "comb.h"

#include "utils/polygon.h"

#include "utils/logoutput.h"

namespace cura

{

class GCodePath

{

public:

 GCodePathConfig* config;

 bool retract;

 int extruder;

 std::vector<Point> points;

 bool done;//Path is finished, no more moves should be added, and a new path should

be started instead of any appending done to this one.

};

//The GCodePlanner class stores multiple moves that are planned.

// It facilitates the combing to keep the head inside the print.

// It also keeps track of the print time estimate for this planning so speed adjustments can

be made for the minimal-layer-time.

class GCodePlanner

{

private:

 GCodeExport& gcode;

 Point lastPosition;

 std::vector<GCodePath> paths;

 Comb* comb;

 GCodePathConfig travelConfig;

 int extrudeSpeedFactor;

 int travelSpeedFactor;

 int currentExtruder;

 int retractionMinimalDistance;

 bool forceRetraction;

 bool alwaysRetract;

 double extraTime;

206

 double totalPrintTime;

private:

 GCodePath* getLatestPathWithConfig(GCodePathConfig* config);

 void forceNewPathStart();

public:

 GCodePlanner(GCodeExport& gcode, RetractionConfig* retraction_config, int

travelSpeed, int retractionMinimalDistance);

 ~GCodePlanner();

 bool setExtruder(int extruder)

 {

 if (extruder == currentExtruder)

 return false;

 currentExtruder = extruder;

 return true;

 }

 int getExtruder()

 {

 return currentExtruder;

 }

 void setCombBoundary(Polygons* polygons)

 {

 if (comb)

 delete comb;

 if (polygons)

 comb = new Comb(*polygons);

 else

 comb = nullptr;

 }

 void setAlwaysRetract(bool alwaysRetract)

 {

 this->alwaysRetract = alwaysRetract;

 }

 void forceRetract()

 {

 forceRetraction = true;

 }

 void setExtrudeSpeedFactor(int speedFactor)

 {

 if (speedFactor < 1) speedFactor = 1;

207

 this->extrudeSpeedFactor = speedFactor;

 }

 int getExtrudeSpeedFactor()

 {

 return this->extrudeSpeedFactor;

 }

 void setTravelSpeedFactor(int speedFactor)

 {

 if (speedFactor < 1) speedFactor = 1;

 this->travelSpeedFactor = speedFactor;

 }

 int getTravelSpeedFactor()

 {

 return this->travelSpeedFactor;

 }

 void addTravel(Point p);

 void addExtrusionMove(Point p, GCodePathConfig* config);

 void moveInsideCombBoundary(int distance);

 void addPolygon(PolygonRef polygon, int startIdx, GCodePathConfig* config);

 void addPolygonsByOptimizer(Polygons& polygons, GCodePathConfig* config);

 void addLinesByOptimizer(Polygons& polygons, GCodePathConfig* config);

 void forceMinimalLayerTime(double minTime, int minimalSpeed, double travelTime,

double extrusionTime);

 void getTimes(double& travelTime, double& extrudeTime);

 void writeGCode(bool liftHeadIfNeeded, int layerThickness);

};

}//namespace cura

#endif//GCODE_PLANNER_H

208

//mesh.cpp

#include "mesh.h"

#include "utils/logoutput.h"

const int vertex_meld_distance = MM2INT(0.03);

static inline uint32_t pointHash(Point3& p)

{

 return ((p.x + vertex_meld_distance/2) / vertex_meld_distance) ^ (((p.y +

vertex_meld_distance/2) / vertex_meld_distance) << 10) ^ (((p.z +

vertex_meld_distance/2) / vertex_meld_distance) << 20);

}

Mesh::Mesh(SettingsBase* parent)

: SettingsBase(parent)

{

}

void Mesh::addFace(Point3& v0, Point3& v1, Point3& v2)

{

 int vi0 = findIndexOfVertex(v0);

 int vi1 = findIndexOfVertex(v1);

 int vi2 = findIndexOfVertex(v2);

 if (vi0 == vi1 || vi1 == vi2 || vi0 == vi2) return; // the face has two vertices which get

assigned the same location. Don't add the face.

 int idx = faces.size(); // index of face to be added

 faces.emplace_back();

 MeshFace& face = faces[idx];

 face.vertex_index[0] = vi0;

 face.vertex_index[1] = vi1;

 face.vertex_index[2] = vi2;

 vertices[face.vertex_index[0]].connected_faces.push_back(idx);

 vertices[face.vertex_index[1]].connected_faces.push_back(idx);

 vertices[face.vertex_index[2]].connected_faces.push_back(idx);

}

void Mesh::clear()

{

 faces.clear();

 vertices.clear();

 vertex_hash_map.clear();

}

void Mesh::finish()

{

209

 // Finish up the mesh, clear the vertex_hash_map, as it's no longer needed from this

point on and uses quite a bit of memory.

 vertex_hash_map.clear();

 // For each face, store which other face is connected with it.

 for(unsigned int i=0; i<faces.size(); i++)

 {

 MeshFace& face = faces[i];

 face.connected_face_index[0] = getFaceIdxWithPoints(face.vertex_index[0],

face.vertex_index[1], i); // faces are connected via the outside

 face.connected_face_index[1] = getFaceIdxWithPoints(face.vertex_index[1],

face.vertex_index[2], i);

 face.connected_face_index[2] = getFaceIdxWithPoints(face.vertex_index[2],

face.vertex_index[0], i);

 }

}

Point3 Mesh::min()

{

 if (vertices.size() < 1)

 return Point3(0, 0, 0);

 Point3 ret = vertices[0].p;

 for(unsigned int i=0; i<vertices.size(); i++)

 {

 ret.x = std::min(ret.x, vertices[i].p.x);

 ret.y = std::min(ret.y, vertices[i].p.y);

 ret.z = std::min(ret.z, vertices[i].p.z);

 }

 return ret;

}

Point3 Mesh::max()

{

 if (vertices.size() < 1)

 return Point3(0, 0, 0);

 Point3 ret = vertices[0].p;

 for(unsigned int i=0; i<vertices.size(); i++)

 {

 ret.x = std::max(ret.x, vertices[i].p.x);

 ret.y = std::max(ret.y, vertices[i].p.y);

 ret.z = std::max(ret.z, vertices[i].p.z);

 }

 return ret;

}

int Mesh::findIndexOfVertex(Point3& v)

{

210

 uint32_t hash = pointHash(v);

 for(unsigned int idx = 0; idx < vertex_hash_map[hash].size(); idx++)

 {

 if ((vertices[vertex_hash_map[hash][idx]].p - v).testLength(vertex_meld_distance))

 {

 return vertex_hash_map[hash][idx];

 }

 }

 vertex_hash_map[hash].push_back(vertices.size());

 vertices.emplace_back(v);

 return vertices.size() - 1;

}

/*!

Returns the index of the 'other' face connected to the edge between vertices with indices

idx0 and idx1.

In case more than two faces are connected via the same edge, the next face in a counter-

clockwise ordering (looking from idx1 to idx0) is returned.

\cond DOXYGEN_EXCLUDE

 [NON-RENDERED COMENTS]

 For two faces abc and abd with normals n and m, we have that:

 \f{eqnarray*}{

 n &=& \frac{ab \times ac}{\|ab \times ac\|} \\

 m &=& \frac{ab \times ad}{\|ab \times ad\|} \\

 n \times m &=& \|n\| \cdot \|m\| \mathbf{p} \sin \alpha \\

 && (\mathbf{p} \perp n \wedge \mathbf{p} \perp m) \\

 \sin \alpha &=& \|n \times m \|

 &=& \left\| \frac{(ab \times ac) \times (ab \times ad)}{\|ab \times ac\| \cdot \|ab \times

ad\|} \right\| \\

 &=& \left\| \frac{ (ab \cdot (ac \times ad)) ab }{\|ab \times ac\| \cdot \|ab \times ad\|}

\right\| \\

 &=& \frac{ (ab \cdot (ac \times ad)) \left\| ab \right\| }{\|ab\| \|ac\| \sin bac \cdot \|ab\|

\|ad\| \sin bad} \\

 &=& \frac{ ab \cdot (ac \times ad) }{\|ab\| \|ac\| \|ad\| \sin bac \sin bad} \\

 \f}}

\endcond

See <a href="http://stackoverflow.com/questions/14066933/direct-way-of-computing-

clockwise-angle-between-2-vectors">Direct way of computing clockwise angle between

2 vectors

*/

int Mesh::getFaceIdxWithPoints(int idx0, int idx1, int notFaceIdx)

211

{

 std::vector<int> candidateFaces; // in case more than two faces meet at an edge,

multiple candidates are generated

 int notFaceVertexIdx = -1; // index of the third vertex of the face corresponding to

notFaceIdx

 for(int f : vertices[idx0].connected_faces) // search through all faces connected to the

first vertex and find those that are also connected to the second

 {

 if (f == notFaceIdx)

 {

 for (int i = 0; i<3; i++) // find the vertex which is not idx0 or idx1

 if (faces[f].vertex_index[i] != idx0 && faces[f].vertex_index[i] != idx1)

 notFaceVertexIdx = faces[f].vertex_index[i];

 continue;

 }

 if (faces[f].vertex_index[0] == idx1 // && faces[f].vertex_index[1] == idx0 // next

face should have the right direction!

 || faces[f].vertex_index[1] == idx1 // && faces[f].vertex_index[2] == idx0

 || faces[f].vertex_index[2] == idx1 // && faces[f].vertex_index[0] == idx0

) candidateFaces.push_back(f);

 }

 if (candidateFaces.size() == 0) { cura::logError("Couldn't find face connected to face

%i.\n", notFaceIdx); return -1; }

 if (candidateFaces.size() == 1) { return candidateFaces[0]; }

 if (notFaceVertexIdx < 0) { cura::logError("Couldn't find third point on face %i.\n",

notFaceIdx); return -1; }

 if (candidateFaces.size() % 2 == 0) cura::log("Warning! Edge with uneven number of

faces connecting it!(%i)\n", candidateFaces.size()+1);

 FPoint3 vn = vertices[idx1].p - vertices[idx0].p;

 FPoint3 n = vn / vn.vSize(); // the normal of the plane in which all normals of faces

connected to the edge lie => the normalized normal

 FPoint3 v0 = vertices[idx1].p - vertices[idx0].p;

// the normals below are abnormally directed! : these normals all point counterclockwise

(viewed from idx1 to idx0) from the face, irrespective of the direction of the face.

 FPoint3 n0 = FPoint3(vertices[notFaceVertexIdx].p - vertices[idx0].p).cross(v0);

 if (n0.vSize() <= 0) cura::log("Warning! Face %i has zero area!", notFaceIdx);

 double smallestAngle = 1000; // more then 2 PI (impossible angle)

212

 int bestIdx = -1;

 for (int candidateFace : candidateFaces)

 {

 int candidateVertex;

 {// find third vertex belonging to the face (besides idx0 and idx1)

 for (candidateVertex = 0; candidateVertex<3; candidateVertex++)

 if (faces[candidateFace].vertex_index[candidateVertex] != idx0 &&

faces[candidateFace].vertex_index[candidateVertex] != idx1)

 break;

 }

 FPoint3 v1 = vertices[candidateVertex].p -vertices[idx0].p;

 FPoint3 n1 = v1.cross(v0);

 double dot = n0 * n1;

 double det = n * n0.cross(n1);

 double angle = std::atan2(det, dot);

 if (angle < 0) angle += 2*M_PI; // 0 <= angle < 2* M_PI

 if (angle == 0)

 {

 cura::log("Warning! Overlapping faces: face %i and face %i.\n", notFaceIdx,

candidateFace);

 std::cerr<< n.vSize() <<"; "<<n1.vSize()<<";"<<n0.vSize() <<std::endl;

 }

 if (angle < smallestAngle)

 {

 smallestAngle = angle;

 bestIdx = candidateFace;

 }

 }

 if (bestIdx < 0) cura::logError("Couldn't find face connected to face %i.\n",

notFaceIdx);

 return bestIdx;

}

213

//mesh.h

#ifndef MESH_H

#define MESH_H

#include "settings.h"

/*!

Vertex type to be used in a Mesh.

Keeps track of which faces connect to it.

*/

class MeshVertex

{

public:

 Point3 p; //!< location of the vertex

 std::vector<uint32_t> connected_faces; //!< list of the indices of connected faces

 MeshVertex(Point3 p) : p(p) {} //!< doesn't set connected_faces

};

/*! A MeshFace is a 3 dimensional model triangle with 3 points. These points are already

converted to integers

A face has 3 connected faces, corresponding to its 3 edges.

Note that a correct model may have more than 2 faces connected via a single edge!

In such a case the face_index stored in connected_face_index is the one connected via the

outside; see ASCII art below:

: horizontal slice through vertical edge connected to four faces :

\verbatim

[inside] x|

 x| <--+--- faces which contain each other in their connected_face_index fiels

 xxxxxxx| \|/

 -------+-------

 ^ |xxxxxxx

 +-->|x

 | |x [inside]

 |

 faces which contain each other in their connected_face_index fiels

\endverbatim

*/

class MeshFace

{

public:

214

 int vertex_index[3] = {-1}; //!< counter-clockwise ordering

 int connected_face_index[3]; //!< same ordering as vertex_index (connected_face 0 is

connected via vertex 0 and 1, etc.)

};

/*!

A Mesh is the most basic representation of a 3D model. It contains all the faces as

MeshFaces.

See MeshFace for the specifics of how/when faces are connected.

*/

class Mesh : public SettingsBase // inherits settings

{

 //! The vertex_hash_map stores a index reference of each vertex for the hash of that

location. Allows for quick retrieval of points with the same location.

 std::map<uint32_t, std::vector<uint32_t> > vertex_hash_map;

public:

 std::vector<MeshVertex> vertices;//!< list of all vertices in the mesh

 std::vector<MeshFace> faces; //!< list of all faces in the mesh

 Mesh(SettingsBase* parent); //!< initializes the settings

 void addFace(Point3& v0, Point3& v1, Point3& v2); //!< add a face to the mesh

without settings it's connected_faces.

 void clear(); //!< clears all data

 void finish(); //!< complete the model : set the connected_face_index fields of the

faces.

 Point3 min(); //!< min (in x,y and z) vertex of the bounding box

 Point3 max(); //!< max (in x,y and z) vertex of the bounding box

private:

 int findIndexOfVertex(Point3& v); //!< find index of vertex close to the given point, or

create a new vertex and return its index.

 /*!

 Get the index of the face connected to the face with index \p notFaceIdx, via vertices \p

idx0 and \p idx1.

 In case multiple faces connect with the same edge, return the next counter-clockwise

face when viewing from \p idx1 to \p idx0.

 */

 int getFaceIdxWithPoints(int idx0, int idx1, int notFaceIdx);

};

#endif//MESH_H

215

//settings.cpp

#include <cctype>

#include <fstream>

#include <stdio.h>

#include <sstream> // ostringstream

#include "utils/logoutput.h"

#include "settings.h"

#include "settingRegistry.h"

//c++11 no longer defines M_PI, so add our own constant.

#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif

SettingsBase::SettingsBase()

: parent(NULL)

{

}

SettingsBase::SettingsBase(SettingsBase* parent)

: parent(parent)

{

}

void SettingsBase::setSetting(std::string key, std::string value)

{

 if (SettingRegistry::getInstance()->settingExists(key))

 {

 setting_values[key] = value;

 }

 else

 {

 cura::logError("Warning: setting an unregistered setting %s\n", key.c_str());

 setting_values[key] = value; // Handy when programmers are in the process of

introducing a new setting

 }

}

std::string SettingsBase::getSettingString(std::string key)

{

 if (setting_values.find(key) != setting_values.end())

 {

 return setting_values[key];

 }

 if (parent)

216

 {

 return parent->getSettingString(key);

 }

 if (SettingRegistry::getInstance()->settingExists(key))

 {

 setting_values[key] = SettingRegistry::getInstance()->getSettingConfig(key)-

>getDefaultValue();

 cura::logError("Using default for: %s = %s\n", key.c_str(),

setting_values[key].c_str());

 }

 else

 {

 setting_values[key] = "";

 cura::logError("Unregistered setting %s\n", key.c_str());

 }

 return setting_values[key];

}

bool SettingsBase::hasSetting(std::string key)

{

 if (setting_values.find(key) != setting_values.end())

 {

 return true;

 }

 if (parent)

 {

 return parent->hasSetting(key);

 }

 return false;

}

int SettingsBase::getSettingAsIndex(std::string key)

{

 std::string value = getSettingString(key);

 return atoi(value.c_str());

}

int SettingsBase::getSettingAsCount(std::string key)

{

 std::string value = getSettingString(key);

 return atoi(value.c_str());

}

int SettingsBase::getSettingInMicrons(std::string key)

217

{

 std::string value = getSettingString(key);

 return atof(value.c_str()) * 1000.0;

}

double SettingsBase::getSettingInAngleRadians(std::string key)

{

 std::string value = getSettingString(key);

 return atof(value.c_str()) / 180.0 * M_PI;

}

bool SettingsBase::getSettingBoolean(std::string key)

{

 std::string value = getSettingString(key);

 if (value == "on")

 return true;

 if (value == "yes")

 return true;

 if (value == "true" or value == "True") //Python uses "True"

 return true;

 return atoi(value.c_str()) != 0;

}

double SettingsBase::getSettingInDegreeCelsius(std::string key)

{

 std::string value = getSettingString(key);

 return atof(value.c_str());

}

double SettingsBase::getSettingInMillimetersPerSecond(std::string key)

{

 std::string value = getSettingString(key);

 return std::max(1.0, atof(value.c_str()));

}

double SettingsBase::getSettingInPercentage(std::string key)

{

 std::string value = getSettingString(key);

 return std::max(0.0, atof(value.c_str()));

}

double SettingsBase::getSettingInSeconds(std::string key)

{

 std::string value = getSettingString(key);

 return std::max(0.0, atof(value.c_str()));

}

218

EGCodeFlavor SettingsBase::getSettingAsGCodeFlavor(std::string key)

{

 std::string value = getSettingString(key);

 if (value == "RepRap")

 return GCODE_FLAVOR_REPRAP;

 else if (value == "UltiGCode")

 return GCODE_FLAVOR_ULTIGCODE;

 else if (value == "Makerbot")

 return GCODE_FLAVOR_MAKERBOT;

 else if (value == "BFB")

 return GCODE_FLAVOR_BFB;

 else if (value == "MACH3")

 return GCODE_FLAVOR_MACH3;

 else if (value == "RepRap (Volumatric)")

 return GCODE_FLAVOR_REPRAP_VOLUMATRIC;

 return GCODE_FLAVOR_REPRAP;

}

EFillMethod SettingsBase::getSettingAsFillMethod(std::string key)

{

 std::string value = getSettingString(key);

 if (value == "Lines")

 return Fill_Lines;

 if (value == "Grid")

 return Fill_Grid;

 if (value == "Triangles")

 return Fill_Triangles;

 if (value == "Concentric")

 return Fill_Concentric;

 if (value == "ZigZag")

 return Fill_ZigZag;

 return Fill_None;

}

EPlatformAdhesion SettingsBase::getSettingAsPlatformAdhesion(std::string key)

{

 std::string value = getSettingString(key);

 if (value == "Brim")

 return Adhesion_Brim;

 if (value == "Raft")

 return Adhesion_Raft;

 return Adhesion_None;

}

ESupportType SettingsBase::getSettingAsSupportType(std::string key)

219

{

 std::string value = getSettingString(key);

 if (value == "Everywhere")

 return Support_Everywhere;

 if (value == "Touching Buildplate")

 return Support_PlatformOnly;

 return Support_None;

}

220

//settings.h

#ifndef SETTINGS_H

#define SETTINGS_H

#include <vector>

#include <map>

#include "utils/floatpoint.h"

#ifndef VERSION

#define VERSION "MOSTMetalCura"

#endif

/*!

 * Different flavors of GCode. Some machines require different types of GCode.

 * The GCode flavor definition handles this as a big setting to make major or minor

modifications to the GCode.

 */

enum EGCodeFlavor

{

/**

 * RepRap flavored GCode is Marlin/Sprinter/Repetier based GCode.

 * This is the most commonly used GCode set.

 * G0 for moves, G1 for extrusion.

 * E values give mm of filament extrusion.

 * Retraction is done on E values with G1. Start/end code is added.

 * M106 Sxxx and M107 are used to turn the fan on/off.

 **/

 GCODE_FLAVOR_REPRAP = 0,

/**

 * UltiGCode flavored is Marlin based GCode.

 * UltiGCode uses less settings on the slicer and puts more settings in the firmware. This

makes for more hardware/material independed GCode.

 * G0 for moves, G1 for extrusion.

 * E values give mm^3 of filament extrusion. Ignores the filament diameter setting.

 * Retraction is done with G10 and G11. Retraction settings are ignored. G10 S1 is used

for multi-extruder switch retraction.

 * Start/end code is not added.

 * M106 Sxxx and M107 are used to turn the fan on/off.

 **/

 GCODE_FLAVOR_ULTIGCODE = 1,

/**

 * Makerbot flavored GCode.

 * Looks a lot like RepRap GCode with a few changes. Requires MakerWare to convert

to X3G files.

 * Heating needs to be done with M104 Sxxx T0

221

 * No G21 or G90

 * Fan ON is M126 T0 (No fan strength control?)

 * Fan OFF is M127 T0

 * Homing is done with G162 X Y F2000

 **/

 GCODE_FLAVOR_MAKERBOT = 2,

/**

 * Bits From Bytes GCode.

 * BFB machines use RPM instead of E. Which is coupled to the F instead of

independed. (M108 S[deciRPM])

 * Need X,Y,Z,F on every line.

 * Needs extruder ON/OFF (M101, M103), has auto-retrection (M227 S[2560*mm]

P[2560*mm])

 **/

 GCODE_FLAVOR_BFB = 3,

/**

 * MACH3 GCode

 * MACH3 is CNC control software, which expects A/B/C/D for extruders, instead of E.

 **/

 GCODE_FLAVOR_MACH3 = 4,

/**

 * RepRap volumatric flavored GCode is Marlin based GCode.

 * Volumatric uses less settings on the slicer and puts more settings in the firmware. This

makes for more hardware/material independed GCode.

 * G0 for moves, G1 for extrusion.

 * E values give mm^3 of filament extrusion. Ignores the filament diameter setting.

 * Retraction is done with G10 and G11. Retraction settings are ignored. G10 S1 is used

for multi-extruder switch retraction.

 * M106 Sxxx and M107 are used to turn the fan on/off.

 **/

 GCODE_FLAVOR_REPRAP_VOLUMATRIC = 5,

};

/*!

 * In Cura different infill methods are available.

 * This enum defines which fill patterns are available to get a uniform naming troughout

the engine.

 * The different methods are used for top/bottom, support and sparse infill.

 */

enum EFillMethod

{

 Fill_Lines,

 Fill_Grid,

 Fill_Triangles,

222

 Fill_Concentric,

 Fill_ZigZag,

 Fill_None

};

/*!

 * Type of platform adheasion

 */

enum EPlatformAdhesion

{

 Adhesion_None,

 Adhesion_Brim,

 Adhesion_Raft

};

/*!

 * Type of support material to generate

 */

enum ESupportType

{

 Support_None,

 Support_PlatformOnly,

 Support_Everywhere

};

#define MAX_EXTRUDERS 16

//Maximum number of sparse layers that can be combined into a single sparse extrusion.

#define MAX_SPARSE_COMBINE 8

/*!

 * Base class for every object that can hold settings.

 * The SettingBase object can hold multiple key-value pairs that define settings.

 * The settings that are set on a SettingBase are checked against the SettingRegistry to

ensure keys are valid.

 * Different conversion functions are available for settings to increase code clarity and in

the future make

 * unit conversions possible.

 */

class SettingsBase

{

private:

 std::map<std::string, std::string> setting_values;

 SettingsBase* parent;

public:

 SettingsBase();

223

 SettingsBase(SettingsBase* parent);

 bool hasSetting(std::string key);

 void setSetting(std::string key, std::string value);

 std::string getSettingString(std::string key);

 int getSettingAsIndex(std::string key);

 int getSettingAsCount(std::string key);

 double getSettingInAngleRadians(std::string key);

 int getSettingInMicrons(std::string key);

 bool getSettingBoolean(std::string key);

 double getSettingInDegreeCelsius(std::string key);

 double getSettingInMillimetersPerSecond(std::string key);

 double getSettingInPercentage(std::string key);

 double getSettingInSeconds(std::string key);

 EGCodeFlavor getSettingAsGCodeFlavor(std::string key);

 EFillMethod getSettingAsFillMethod(std::string key);

 EPlatformAdhesion getSettingAsPlatformAdhesion(std::string key);

 ESupportType getSettingAsSupportType(std::string key);

};

#endif//SETTINGS_

	LOW-COST OPEN-SOURCE GMAW-BASED METAL 3-D PRINTING: MONITORING, SLICER, OPTIMIZATION, AND APPLICATIONS
	Recommended Citation

	Table of Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgement
	Abstract
	Chapter 1: Introduction
	1.1 Motivation
	1.2 Dissertation Outline
	1.3 References

	Chapter 2: Integrated Voltage—Current Monitoring and Control of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer
	2.1 Abstract
	2.2 Introduction
	2.3 Experimental Section
	2.3.1 Electronics
	2.3.2 Algorithm
	2.3.3 Printing of Test Specimens

	2.4 Result and Discussion
	2.5 Conclusion
	2.6 References

	Chapter 3: Slicer and Optimization for Open-source GMAW-based Metal 3-D Printing
	3.1 Abstract
	3.2 Introduction
	3.3 Background
	3.4 Methods
	3.4.1 Open Source Cura
	3.4.2 Altering Cura
	3.4.3 GMAW 3-D Printing with MOSTMetalCura

	3.5 Results and Discussion
	3.6 Conclusions
	3.7 References
	3.8 Pseudocode of the Core Functions of MOSTMetalCura

	Chapter 4: Applications of Open Source GMAW-based Metal 3-D Printing
	4.1 Abstract
	4.2 Introduction
	4.3 Materials and Methods
	4.4 Results and Discussion
	4.5 Conclusions
	4.6 References

	Chapter 5: Conclusions and Future Work
	5.1 Overview
	5.2 Conclusions
	5.2.1 Integrated Voltage-Current Monitoring System
	5.2.2 Slicer and Optimization for Open-Source GMAW-based Metal 3-D Printing
	5.2.3 Applications of Open-Source GMAW-based Metal 3-D Printing

	5.3 Future Work
	5.3.1 Integrated Voltage-Current Monitoring System
	5.3.2 Slicer and Optimization for Open-Source GMAW-based Metal 3-D Printing
	5.3.3 Applications of Open-Source GMAW-based Metal 3-D Printing

	A CuraEngine information for Chapter 3

