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Abstract. Reliable measurements of the three-dimensional
radial distribution function for cloud droplets are desired to
help characterize microphysical processes that depend on
local drop environment. Existing numerical techniques to
estimate this three-dimensional radial distribution function
are not well suited to in situ or laboratory data gathered
from a finite experimental domain. This paper introduces
and tests a new method designed to reliably estimate the
three-dimensional radial distribution function in contexts in
which (i) physical considerations prohibit the use of periodic
boundary conditions and (ii) particle positions are measured
inside a convex volume that may have a large aspect ratio.
The method is then utilized to measure the three-dimensional
radial distribution function from laboratory data taken in a
cloud chamber from the Holographic Detector for Clouds
(HOLODEC).

1 Introduction

Cloud droplet clustering is relevant to physical processes
like condensational growth (e.g., Srivastava, 1989; Kostin-
ski, 2009), growth by collision–coalescence (e.g., Xue et al.,
2008; Onishi et al., 2015), and radiative transfer through
clouds (e.g., Kostinski, 2001; Frankel et al., 2017). Conse-
quently, the magnitude of cloud droplet clustering in situ
and in the laboratory has been a subject of intense interest
for the last 25 years (see, e.g., Baker, 1992; Baumgardner
et al., 1993; Brenguier, 1993; Borrmann et al., 1993; Shaw
et al., 1998; Uhlig et al., 1998; Davis et al., 1999; Kostinski
and Jameson, 2000; Chaumat and Brenguier, 2001; Kostinski
and Shaw, 2001; Pinsky and Khain, 2001; Shaw et al., 2002;

Shaw, 2003; Marshak et al., 2005; Larsen, 2006; Lehmann
et al., 2007; Salazar et al., 2008; Saw et al., 2008; Small and
Chuang, 2008; Baker and Lawson, 2010; Siebert et al., 2010;
Bateson and Aliseda, 2012; Larsen, 2012; Saw et al., 2012b;
Beals et al., 2015; Siebert et al., 2015; O’Shea et al., 2016).

Most of the in situ studies cited above have utilized
airplane-mounted cloud probes that report cloud particle po-
sitions in a long, thin, pencil-beam-like volume. For exam-
ple, the sample volume of the forward scattering spectrom-
eter probe has a cross section of about 0.13 mm2 (Chaumat
and Brenguier, 2001). These very thin sample volumes have
required the majority of the above investigators to treat cloud
particle detections as one-dimensional transects through a
three-dimensional medium and appeal to isotropy and spatial
homogeneity to infer three-dimensional statistical properties
(see, e.g., Holtzer and Collins, 2002). Unfortunately, recent
work (Larsen et al., 2014) reveals that – even under isotropic
and homogeneous conditions – sampling requirements re-
quire far more data than initially suspected to reliably recre-
ate three-dimensional statistics from one-dimensional tran-
sects through a cloud.

The most direct and assumption-free way to detect cloud
particle clustering is with an instrument that is capable of
recording precise particle locations in all three spatial di-
mensions. This can be carried out with a holographic image
of a cloud volume. Some previous holographic studies that
explicitly examined three-dimensional cloud particle spatial
distributions have been published (see, e.g., Conway et al.,
1982; Kozikowsa et al., 1984; Brown, 1989; Borrmann et al.,
1993; Uhlig et al., 1998). These pioneering studies were of-
ten based on ground-based measurements, included just a
few holographic images, and resulted in somewhat conflict-
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ing findings. In most cases, the investigators in the above
studies argued that holographic imaging looks like a solid
approach to quantify cloud droplet clustering, but the exces-
sive labor required to reconstruct the particle positions from a
holographic image made the use of holographic instruments
impractical for a large-scale study at the time.

Fortunately, both computational and measurement hard-
ware capabilities, as well as analysis methods, have improved
immensely over the last decade, finally bringing holography
to a fully digital state that allows for data collection and pro-
cessing over entire field projects (e.g., Fugal and Shaw, 2009;
Beals et al., 2015; O’Shea et al., 2016; Glienke et al., 2017;
Schlenczek et al., 2017). For example, the ability to analyze
three-dimensional clustering in digital holograms has already
been used to identify and eliminate particle shattering effects
(e.g Fugal and Shaw, 2009; Jackson et al., 2014; O’Shea
et al., 2016) or to identify regions of strong entrainment and
inhomogeneous mixing (Beals et al., 2015). These new holo-
graphic instruments should also allow for direct characteri-
zation of cloud droplet clustering in three dimensions while
obtaining sufficient data to yield unambiguous results.

There are many different mathematical tools utilized to
characterize the droplet clustering among cloud droplets,
each with their own strengths and weaknesses (see, e.g.,
Baker, 1992; Kostinski and Jameson, 2000; Shaw et al.,
2002; Shaw, 2003; Marshak et al., 2005; Baker and Law-
son, 2010; Larsen, 2012; Monchaux et al., 2012). Although
arguments can be made for any number of these tools, this
study focuses on the radial distribution function (rdf or g(r))
because (i) it is a direct scale-localized measure of deviation
from perfect spatial randomness, (ii) it is directly related to
variances and means through the correlation–fluctuation the-
orem, (iii) many numerical and theoretical discussions about
particle clustering are explicitly presented in terms of the ra-
dial distribution function (see, e.g., Balkovsky et al., 2001;
Holtzer and Collins, 2002; Collins and Keswani, 2004; Chun
et al., 2005; Salazar et al., 2008; Saw et al., 2008; Zaichik
and Alipchenkov, 2009; Monchaux et al., 2012; Saw et al.,
2012a; Larsen et al., 2014), and (iv) most other common
methods of characterizing cloud droplet clustering can be
derived from or quantitatively related to a measurement of
the radial distribution function (Landau and Lifshitz, 1980;
Kostinski and Jameson, 2000; Shaw et al., 2002; Larsen,
2006, 2012).

Although calculation of the three-dimensional radial dis-
tribution function from experimentally measured particle po-
sition data should be possible, properly accounting for the ef-
fects of the edges of the measurement volume can be tricky
(Ripley, 1982). (This is in contrast to the much more straight-
forward calculation of the radial distribution function in nu-
merical simulation domains with periodic boundary condi-
tions, e.g., Reade and Collins, 2000; Wang et al., 2000.) The
most commonly utilized method does not make optimal use
of the available data and is unable to estimate the radial dis-
tribution function at spatial scales larger than approximately

one-half the smallest length scale defining the measurement
volume L. The new method developed in this paper removes
both of these limitations.

The remainder of this paper (i) reintroduces the radial dis-
tribution function, (ii) presents the methods typically used to
estimate the radial distribution function in different experi-
mental and numerical contexts, (iii) outlines the challenges in
utilizing these existing methods for experimental data from
modern digital holographic images, (iv) presents and tests
a new numerical method to calculate the radial distribution
function under realistic experimental conditions, and (v) ap-
plies this method to real data taken by a digital holographic
instrument in a cloud chamber.

2 Introduction to the radial distribution function

The radial distribution function is one of the most widely
used approaches for characterizing particle clustering in tur-
bulent flows (Monchaux et al., 2012), and is also currently
widely used in a variety of other fields including stochastic
geometry (e.g., Stoyan et al., 1995), astrophysics (e.g., Mar-
tinez and Saar, 2001), granular media (e.g., Lee and Seong,
2016), crystallography (e.g., Cherkas and Cherkas, 2016),
and plasma physics (e.g., Erimbetova et al., 2013). The ideas
behind its use go back at least a century (e.g., Ornstein and
Zernike, 1914), and its wide use permits a large number of
different conceptual and notational conventions.

Here, we draw on the introduction given in Landau and
Lifshitz (1980), which introduces a similar quantity (the
pair correlation function) in terms of the spatial correlation
of density fluctuations (Sect. 116 in Landau and Lifshitz
(1980)). Let two small disjoint volumes dV1 and dV2 be sep-
arated in a statistically homogeneous domain in which the
mean number density of particles is given by n=N/V . The
volumes are small enough that detection of more than one
particle in dV is vanishingly small. If the spatial separation
between the centers of dV1 and dV2 is r , then the probability
that both volumes contain a particle can be written as

p(1,2)(r)= (n dV1)(n dV2)g(r), (1)

where g(r) is the radial distribution function. For per-
fectly random media with no spatial correlations, p(1,2)(r)=
(n)2dV1dV2 and thus g(r)= 1∀r . If mutual detection in dV1
and dV2 is impossible at separation r◦ (due to, say, excluded
volume effects) then g(r◦)= 0. If g(r) exceeds unity, this in-
dicates that there is an enhanced probability of particle sepa-
ration at scale r .

3 Computing the radial distribution function

In contexts in which the spatial coordinates of each member
of a population of particles are resolved, the radial distribu-
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tion function at scale r◦ can be computed via calculation of

g(r)= (2)
observed number of particle pair centers separated by (r◦ − δr < r < r◦ + δr)

number of expected particle pair centers separated by (r◦ − δr < r < r◦ + δr)in a Poisson distribution
,

where the Poisson distribution has the same total number of
particles and volume as the observed system. This can be
rewritten algorithmically in any number of dimensions (Saw
et al., 2012a) as

g(r)=

N∑
i=1

ψi(r)/N

(N − 1)
(

dVr
V

) , (3)

whereψi(r) is a count of the number of particles having their
centers a distance between r − δr and r + δr from the center
of the ith particle in the measurement volume, N is the to-
tal number of particles in the measurement volume, V is the
measurement volume, and dVr is the volume of the general-
ized n-dimensional shell between radii r − δr and r + δr .

3.1 Computing the radial distribution function in one
dimension

Calculation of g(r) (or its related quantity, the pair-
correlation function η(r)≡ g(r)−1) has been frequently per-
formed on in situ cloud particle data. Typically, a time series
of particle detections is converted to spatial positions along
a line utilizing the Taylor frozen-field hypothesis (Saw et al.,
2012b). Then, Eq. (3) is modified to

g1-D (r◦)=
Np (r◦)[

Nin (r◦)+
1
2Nex (r◦)

]
2(δr)(N − 1)/L

, (4)

where detected particle centers are located between 0 and
L, Np(r◦) is the number of observed particle centers sepa-
rated by r − δr < r◦ < r + δr , Nin(r◦) is the number of ob-
served particles detected between r◦ and L− r◦, and Nex(r◦)

is the number of observed particles detected between 0 and
r◦ plus the number of observed particles detected between
L− r◦ and L. The factor of 1/2 multiplied by Nex(r◦) is suf-
ficient to account for the edges of the sample volume in the
one-dimensional case. Since typically r◦� L, this is often
simplified to

g1-D (r◦)≈
Np (r◦)

2N (N − 1)(δr)/L
. (5)

The above formula has been used in most previous exper-
imental studies computing the radial distribution functions
for cloud droplets. In principle, this result can then be used
to estimate the three-dimensional radial distribution function
following the method outlined in Holtzer and Collins (2002),
though the assumptions of statistical homogeneity over the
tens to hundreds of kilometers required for obtaining a sta-
tistically significant result may be questionable (Larsen et al.,
2014).

Figure 1. A two-dimensional cartoon of the different ways of tra-
ditionally dealing with domain edges when computing the radial
distribution function. Panel (a) shows approaches related to a peri-
odic boundary condition approach, whereas (b) illustrates a guard
area approach.

3.2 Computing the radial distribution function in
multiple dimensions with periodic boundary
conditions

The three-dimensional radial distribution function can be ex-
plicitly computed for cloud droplets in drop-resolving direct
numerical simulations. In this context, g(r) can be directly
evaluated from Eq. (3) without any modification. The factor
that allows computation of the radial distribution function in
these scenarios is that the numerical simulations utilize peri-
odic boundary conditions – which extend to the computation
of the radial distribution function itself.

When searching for another cloud droplet separated by
scale r◦− δr < r < r◦+ δr , any part of the “search domain”
outside of the simulation volume can be wrapped back
around through the other side of the computational domain.
Since the underlying simulation typically applies this same
wrapping boundary condition to resolve particle–fluid and
particle–particle interactions, it is consistent with the physics
of the simulation to search for particle pairs across the bound-
aries as well.

A cartoon of this process (shown in two dimensions) can
be viewed in Fig. 1a. Some of the circular shell surrounding
the particle in the lower left leaves the measurement volume
(blue portion). When the data come from a direct numeri-
cal simulation, there are no issues in wrapping this volume
around to the upper left and lower right corners (to the or-
ange regions), in this case finding an additional particle pair
in the upper left. In an actual experiment, however, it is a mis-
take to argue that the particle in the lower left is correlated to
the particle in the upper left at a length scale of r since they
are in fundamentally different parts of the flow (i.e., any cor-
relation that does exist is for length scale equal to the non-
periodic distance among the particles usually much greater
than r).

www.atmos-meas-tech.net/11/4261/2018/ Atmos. Meas. Tech., 11, 4261–4272, 2018
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3.3 Computing the radial distribution function in
multiple dimensions without periodic boundary
conditions

Unfortunately, the technique described in Fig. 1a is not ap-
propriate for most experimental contexts; detected particles
on opposite sides of the sample volume do not “know” about
each other in the same way that simulations applying peri-
odic boundary conditions do.

The simplest possible solution, albeit the most drastic, in
trying to estimate the radial distribution function for finite
experimental volumes is to ignore these edge effects entirely.
For the cartoon in Fig. 1a, this would be to merely count the
one particle detected in the yellow ring and do nothing to ac-
count for the blue area at all. Unfortunately, this will cause
a computational estimate of g(r) to artificially deviate from
unity; actual cloud droplets may exist in the blue area and
need to be counted in order to prevent artificial underestima-
tion of ψi(r) and therefore underestimation of g(r).

Much like in the one-dimensional case, the effects of the
edges sometimes can be small enough to make this a mi-
nor concern. When the scale of interest r◦ is much less than
the smallest dimension of the sample volume (L), relatively
few particles inside the sample volume will have their n-
dimensional spherical shells exit the interior of the measure-
ment volume. Unfortunately, however, (i) experimental con-
ditions for cloud droplets will require estimation of g(r◦) for
r◦ approaching L in order to maximize the evaluated range
of r , and (ii) the problem becomes more prevalent in higher
dimensions and in larger aspect ratios since a larger fraction
of the measurement volume is found close to the boundaries.

As noted earlier, this is a problem that has received atten-
tion for at least 35 years (Ripley, 1982). Perhaps the most
common way to deal with these finite-volume effects is de-
scribed as “minus sampling” on p. 133 of Stoyan et al. (1995)
and illustrated in Fig. 1b. Briefly, one defines a “guard area”
within but along the outermost edges of the sampling vol-
ume. Particles inside this guard area are not considered part
of the actual sample volume V , but are used to find pairs
for particles within the central (non-guard) part of the mea-
surement volume. For example, the particle in the center of
the red circle in Fig. 1b would count three particles between
r−δr and r+δr , despite having only two particle pairs within
the white region.

Note that R can be either fixed or change with the scale of
interest (set R = r◦ when computing g(r◦).). The guard area
approach does give an unbiased estimator for g(r), but makes
sub-optimal use of the data. Two particles within the sample
volume could be separated by scale r◦−δr < r < r◦+δr but
end up not contributing to the observation, due to the fact that
both particles would be in the guard area. Many of the data
are lost when using such approaches.

Figure 2 shows another cartoon that demonstrates how
limiting the guard area approach can be in different contexts.
Here, R = r is only slightly smaller than L/2. The “inner”

Figure 2. Another cartoon of the guard area technique used to es-
timate the radial distribution function. Note that the fraction of the
particles contributing to the sum in Eq. (3) decreases as the aspect
ratio increases, and no estimate of the radial distribution function
can be made for any distance larger than half the shortest dimension
of the sample volume (when r ≥ L/2, no “inner” region remains).

particles that contribute to the sum in Eq. (3) are only the
five particles shown inside the central white rectangle. This
problem is even worse in 3-D, and the aspect ratio shown
here is not unrealistic.

The guard area approach is a valid approach for finite-
volume cloud measurements, but it imposes a trade-off: ei-
ther most of the volume can be used, but with severely lim-
ited maximum r , or the available sample volume is severely
reduced in order to accommodate a maximum r that is of the
same order as the sample volume linear dimensions. Typi-
cally as large a range of r as possible is desired (e.g., in or-
der to have enough scale range to reliably identify power-law
exponents), but the associated reduction in available sample
volume makes the method quite susceptible to sampling fluc-
tuations. In realistic scenarios in which the entire measure-
ment volume contains only a few hundred to a few thousand
particles, sampling considerations make use of the guard area
technique prohibitively limiting.

Here, we introduce an alternative edge-correction strategy
inspired by Ripley (1976, 1977) that we call the “effective
volume” radial distribution function method. This approach
does not rely on the use of a guard area and allows all re-
tained particles to contribute to the computation of the radial
distribution function. We start from a refined expression for
the radial distribution function for length scale rj :

g(rj )=

N∑
i=1

ψi(rj )/N

(N − 1)
(

dVri,j
V

) . (6)

This is very similar to Eq. (3), except we have made the
computationally motivated step of discretizing the set of dis-
tances rj and defined a quantity dVri,j , which is defined as
the portion of the volume with a radius between rj − (δr)j
and rj + (δr)j centered on the ith particle that resides within
the measurement volume V . (For example, in Fig. 1a, dVri,j
for the highlighted particle would be calculated as that area
corresponding to the yellow region.) This depends not only
on rj and (δr)j but also on the position of the ith particle.
Thus, within this method, the denominator is not a constant
and must be explicitly calculated particle by particle.

The challenging part of the method is to find dVri,j ; all
other parts of the numerical method are the same as have

Atmos. Meas. Tech., 11, 4261–4272, 2018 www.atmos-meas-tech.net/11/4261/2018/
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been used elsewhere. Although potentially inelegant, dVri,j
can be found for a wide variety of measurement geometries
by generating a measurement geometry-dependent look-up
table. This can be accomplished by computing values of
dVri,j in a dense grid of possible positions of each detected
particle and at each desired distance rj . Since for convex vol-
umes it is empirically found that dVri,j is relatively smooth
over the measurement domain, one can then assign dVri,j for
the ith particle at the j th radial distance by utilizing the look-
up-table-stored grid point closest to the actual particle posi-
tion.

There are multiple ways to generate the proposed look-up
table. In this study, we have populated the interior of the mea-
surement volume with a regular dense grid with grid spacing
s. Then, for each grid point and for each scale of interest rj ,
the number of other grid points contained in a shell with in-
ner and outer radii rj−(δr)j and rj+(δr)j are counted. This
is then compared to the number of grid points that would be
contained in a shell of the same volume within an infinite grid
with the same grid spacing s. The ratio of these two counts
is then multiplied by the true volume of the shell dVj to give
dVri,j . This method allows for reliable estimation of dVri,j
without having to mathematically calculate the quantity an-
alytically, which would require rather lengthy treatments of
possible boundary–shell intersection geometries (especially
in three dimensions).

Conceptually, the algorithm uses the ith term in the sum
in Eq. (6) to find an appropriately weighted contribution to
g(r) from the ith particle; when summed over all particles in
the measurement volume, the expression gives an estimator
for g(r) that accounts for edge effects. This weighting fac-
tor appears in the denominator and is based on a term that
depends on how close the ith particle is to the edge of the
measurement volume; if the particle in question is within rj
of the edge of the measurement volume, only the portion of
the n-dimensional spherical shell dV that still lies within the
measurement domain is used.

The effective volume method allows for any investigator-
chosen values of rj and (δr)j , allows for as fine of a tessel-
lation of the measurement volume as desired for precision
in the look-up table, and can be used even for rj > L. Once
the look-up table is generated it can be applied to all data
in a data set, assuming the instrument measurement volume
shape and size are constant. It should be further noted that
symmetry in the measurement volume shape can be used to
reduce the number of normalization volumes that need to be
calculated. For example, in a rectangular parallelepiped only
one octant (corner) of the measurement volume needs to be
in the look-up table. More explicit detail on how to imple-
ment this method is presented in the appendix.

4 Testing the effective volume method

The effective volume method described above was imple-
mented for two different geometries – a cubical geometry
(to allow for useful comparisons to the well-known and fre-
quently utilized guard area technique) as well as for an ap-
plied geometry to match a real instrument. For each geome-
try, we present two tests: a homogeneous Poisson distribution
and a Matérn cluster process.

A homogeneous Poisson distribution is the gold standard
of spatial randomness. Within a homogeneous Poisson dis-
tribution, all particles are placed independently with a spatial
density function uniform over the measurement domain. By
construction, g(r)= 1∀r within a volume with particles dis-
tributed according to a homogeneous Poisson distribution.

A Matèrn cluster process (see, e.g., Stoyan et al., 1995;
Martinez and Saar, 2001; Schabenberger and Goway, 2005;
Larsen, 2012) is commonly used in stochastic geometry be-
cause it is (i) statistically homogeneous, (ii) easy to simulate
in any number of spatial dimensions, and (iii) has a known
closed-form expression for its radial distribution function.

4.1 Simulations in a cube

Both distributions described above were simulated within a
unit cube with both guard area and effective volume compu-
tation methods.

For the guard area computation method, a fixed R = 0.1
was used around the outside edges of the cube. This should
allow for unbiased estimation for g(r) when r < 0.1, but it is
expected that g(r > 0.1) will underestimate the true values.

The effective volume computation method was computed
by creating a look-up table for a cubical volume. Due to the
symmetry of the volume, only one octant of the cube had
to be included in the look-up table. To minimize the size of
the look-up table required, the density of the tessellation of
the cubical measurement volume was varied depending on
the distance to the boundary – with points near the boundary
having the densest collection of look-up table entries.

A total of 100 simulations of each volume were averaged
together and the results are displayed in Fig. 3. Except for the
smallest scales (for which sampling variability is still non-
negligible, even after a total of 100 simulations), agreement
between the effective volume method and the theoretical g(r)
curves expected is excellent and comparable to the values
observed for the more commonly used guard area approach.

In this case, the guard area approach involves summing
over less than half (on average 48.8 %) of particles in the
measurement volume, which can help to explain the larger
scatter of observed g(r) for small r using this approach. Note
also the deviation from the theoretical g(r) curve in both tests
for the guard area approach for r > 0.1, consistent with push-
ing the approach beyond its domain of applicability.

www.atmos-meas-tech.net/11/4261/2018/ Atmos. Meas. Tech., 11, 4261–4272, 2018
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Figure 3. First verification of the method for calculating g(r) de-
scribed in the main text. Here, theoretical curves of g(r) are com-
pared to both the effective volume method and the guard area
method (using a fixed guard area of 0.1 times the side length of the
cube). In the top panel, 100 different 10 000 particle Poisson dis-
tributions were created. Deviations from g(r)= 1 in both methods
are observed at small r values due to sampling fluctuations. Panel
(b) shows similar results from 100 simulations of a Matérn cluster
process (with a mean of 10 000 total particles and a cluster length
of 0.025). Note that in both panels the guard area approach begins
to fail as expected for r > 0.1.

4.2 Case study: the Holographic Detector for Clouds
(HOLODEC)

Although the effective volume approach introduced here per-
forms approximately as well as the more traditional guard
area approach in cubical volumes, the development of the
new method was primarily motivated by a desire to estimate
the radial distribution function in contexts in which the guard
area approach will not work. As noted previously, when es-
timates of g(r) are desired for r&L/2 and/or the aspect ra-
tio of the measurement volume deviates substantially from
unity, the guard area approach becomes ineffective.

An example of an instrument that is subject to these lim-
itations and is relevant for studying cloud particle clustering
is the Holographic Detector for Clouds (HOLODEC).

4.2.1 Introduction to HOLODEC

HOLODEC is an in-line digital holography instrument ex-
plicitly designed to explore cloud microstructure (Fugal
et al., 2004; Fugal and Shaw, 2009; Spuler and Fugal, 2011).
The instrument has previously been used to examine drop
size distribution and liquid water content fluctuations on the
centimeter scale (Beals et al., 2015), and the behavior of the

Figure 4. A two-dimensional cartoon of the HOLODEC sample
volume (not to scale). The leftmost vertical line in the figure in-
dicates the hologram plane. The light grey region indicates areas
of maximum sensor sensitivity (the slope of the angled lines mark-
ing the edge of the light grey region has been greatly magnified
for aid in visualization). The vertical lines 14 and 158 mm from
the left edge of the figure mark the positions of the optical win-
dows; near these windows there is evidence of artificially generated
particles due to instrument-induced particle fragmentation. The vol-
ume simulated here corresponds to the darker central grey rectangle
(parallelepiped in 3-D), where the instrument retains approximately
uniform sensitivity, particle locations and sizes are believed to be
accurate, and the number of small particles generated due to frag-
mentation on the instrument is believed to be negligible.

instrument has been validated by comparison to co-collected
cloud droplet probe (CDP) and 2DC optical array probe data
in different parts of the particle size domain (Glienke et al.,
2017).

A processed HOLODEC hologram reports
droplet positions in a volume that is approximately
1 cm× 1 cm× 15.8 cm with sensitivity to all droplets with
sizes greater than about 6.5 µm. The positional uncertainty
for each drop is approximately 10 µm along the short sides
of the sample volume and about 100 µm along the longer
side (Yang et al., 2005).

A two-dimensional cartoon of the HOLODEC sample vol-
ume is shown in Fig. 4. Although particles out to 158 mm
(or further) from the hologram plane are potentially visi-
ble, the optical windows 14 and 158 mm from the hologram
plane limit the air-exposed field of view to the approximately
14 cm distance between the windows. Additionally, the spa-
tial domain of instrumental sensitivity is not a perfect par-
allelepiped. Preliminary analyses of data suggest that there
may be some decreased sensitivity near the edges of the
sample volume, and – when mounted on an aircraft – drops
can be created by fragmentation near the optical windows
(Fugal and Shaw, 2009). Consequently, to ensure data fi-
delity when used with real data, a conservative sub-volume
of each hologram is selected as the measurement volume for
analysis. This sub-volume was selected to be in the central
part of each hologram where the data are expected to be
most reliable. Thus, the used HOLODEC sample volume is
a 6 mm× 6 mm× 10 cm rectangular parallelepiped.

4.2.2 Simulations within the instrument domain

The same two tests (homogeneous Poisson distribution and
Matérn cluster process) were simulated within the paral-
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Figure 5. Verification that the effective volume method for calculat-
ing g(r) as described in the main text works for non-cubical sample
volumes with realistic aspect ratios. In panel (a), 100 different sim-
ulations of a Poisson distribution (perfect spatial randomness) were
created by placing 10 000 particles within a sample volume with the
same dimensions as the HOLODEC sample volume. The mean of
the 100 simulations agrees very well with the theoretical g(r)= 1
curve. An unrealistically large number of particles were used for
each simulation in order to minimize the sampling concerns. Note
that though the agreement is very good, the most pronounced de-
viations from the theoretical curve still occur as expected at small
spatial scales. In panel (b), 100 different simulations of a Matérn
cluster process were generated and compared to the known theoret-
ical expression (see, e.g., Larsen et al., 2014). Clearly, agreement
between the mean of the simulations and the theoretical curve is
excellent.

lelepiped sample volume of the HOLODEC. A new look-
up table for this geometry was generated and used to cal-
culate g(r) for each of 100 different simulations, with the
mean value of g(r) compared to theoretical expectations and
shown in Fig. 5. The guard area method for calculating g(r)
is not shown since it is susceptible to substantial sampling
variability at all scales and cannot be used at all for any scale
larger than 3 mm (the entire volume is then the guard area).

In general, the agreement between the theoretical expres-
sions for g(r) and the measured g(r) is excellent, and sug-
gests that the effective volume radial distribution function
computational method should work for real data.

4.2.3 Real data

To test the claim made above, a proof-of-principle analysis
was completed using real HOLODEC data acquired inside a
laboratory cloud chamber driven by Rayleigh–Bénard con-
vection (Chandrakar et al., 2016, 2017; Chang et al., 2016;
Desai et al., 2018).

The radial distribution functions of the eight holograms
with the largest numbers of detected drops are shown in
Fig. 6. For these eight holograms, there were an average of
about 185 cloud drops per cubic centimeter within the mea-

Figure 6. The measured radial distribution functions for eight dif-
ferent holograms and their mean for HOLODEC data taken in the
cloud chamber. Clearly sampling variability is still pronounced at
small spatial scales, but some evidence of scale-dependent cluster-
ing seems possible.

surement domain (which is reasonable compared to naturally
occurring clouds).

These single-hologram results are noisy due to the sam-
pling uncertainty (especially for the smallest spatial scales),
but it is clear that there is some evidence of scale-dependent
clustering revealed for r.1 mm. Quantitative comparisons to
theoretical expectation are too much to ask for from such
a limited data set, but it is promising to note that the g(r)
curve decays as expected to unity for scales larger than a
few η (where η is the turbulent Kolmogorov scale – nomi-
nally 1 mm for the atmosphere). Additionally, the observed
increase in g(r) with decreasing length scale r within the
dissipative range is consistent with expectations for inertial
clustering of particles in a turbulent flow (Reade and Collins,
2000; Ayala et al., 2008; Saw et al., 2012a). Despite these en-
couraging features, it is important to note that here we merely
present Fig. 6 to demonstrate that the algorithm gives plausi-
ble results for real data; quantitative analysis of these cham-
ber data with so few holograms would be premature.

Actually measuring the three-dimensional radial distribu-
tion function for in situ flight data will still be challenging,
even with the aid of the algorithm introduced here. The ra-
dial distribution function curves shown in Fig. 6 suggest that
individual holograms likely do not give statistically reliable
information on spatial scales of microphysical interest; thus
some means of combining information from multiple holo-
grams will need to be explored in the future. The number
of holograms needed for extraction of in situ radial distribu-
tion function values will critically depend on data and instru-
ment parameters including (i) the spatial scale of interest (r),
(ii) the spatial resolution of interest (dr), (iii) the size and
shape of the measurement volume of the instrument, (iv) the
density of cloud particles, and (v) the acceptable level of un-
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certainty in the extracted radial distribution function. For ex-
ample, a crude estimate with fixed dr = 100 µm for the data
presented here suggests that estimation to within 1 % uncer-
tainty in g(r) requires only one hologram for reliable estima-
tion of g(r = 1cm) but approximately 60 holograms for reli-
able estimation of g(r = 1mm) and almost 3000 holograms
for reliable estimation of g(r = 100 µm). However, the num-
ber of required holograms may be more modest depending on
the drop number concentration, usable measurement volume
of the sensor, scale of physical interest, spatial resolution of
g(r) required, and/or the level of acceptable uncertainty in
the estimate of g(r). Current work with in situ data has re-
vealed promising results, but here our emphasis has been on
proving the viability of the numerical algorithm.

5 Conclusions

Understanding the effects of cloud particle clustering on
microphysical processes requires reliable estimation of
the three-dimensional radial distribution function. Previous
studies have obtained this information by utilizing one-
dimensional measurements of cloud particle positions to in-
fer scale-dependent clustering, but these methods have been
shown to carry large uncertainties. In the hope of finding
an alternative way of characterizing cloud particle clustering
without such restrictive underlying assumptions and/or un-
certainties, measurement of the radial distribution function
for in situ data in three dimensions is desired.

Comparing measurements with theory and numerical sim-
ulation relies on estimating g(r) over a wide range of spa-
tial scales and making optimal use of the measured data
to combat sampling uncertainties. Because the aspect ratios
of the holographic instruments designed to explore three-
dimensional cloud microstructure are large and the radial
distribution function must be estimated on scales exceeding
the smallest dimension of the measurement volume, standard
computational methods that use spatial information to esti-
mate the radial distribution function are not adequate.

Here, a new method was introduced that explicitly con-
siders each particle’s position within the measurement vol-
ume in the radial distribution function computation. This
method allows for calculating the radial distribution func-
tion for scales larger than the shortest physical dimension
of the measurement volume and makes more optimal use of
the measured data. This effective volume method was tested
in two different geometries, compared to standard computa-
tional methods with simulated data in a unit cube, and vali-
dated in a more realistic sampling scenario.

Preliminary results confirm that use of the effective vol-
ume method should enable the use of airborne digital holog-
raphy data to compute in situ three-dimensional radial distri-
bution functions for cloud droplets.

Data availability. The HOLODEC data associated with the analy-
sis in Sect. 4.2.3 are available from the authors by request.
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Appendix A: Basic structure of codes to use the effective
volume method

The effective volume method to calculate the radial distribu-
tion function relies on two codes – one to generate a look-
up table for the measurement volume, and another to use
the look-up table and data to compute the radial distribution
function. This appendix outlines the basic structure utilized
for each of these codes.

A1 Generating the look-up table

Required inputs from the user include the following: physi-
cal domain of sample volume, set of radii rj and associated
ranges (δr)j , and grid tessellation scale s (as small as com-
putationally feasible).

1. Tessellate the interior of the sample volume domain at
scale s, giving a total of M grid points.

2. For each radius rj , and for each grid point i = 1 :
M , compute the number of grid points inside the n-
dimensional shell centered on the ith grid point with
inner and outer radii rj − (δr)j and rj + (δr)j , respec-
tively. Store the result as a(i,j).

3. Tessellate an n-dimensional cube at scale s with side
lengths 2

[
max

(
rj + (δrj )

)]
.

4. For each radius rj , compute the number of grid points
inside the n-dimensional shell centered on the center
of the n-dimensional cube with inner and outer radii
rj − (δr)j and rj + (δr)j , respectively. Store the result
as b(j).

5. Compute the factor norm(i,j)= a(i,j)/b(j).

A2 Using the look-up table and data to compute a
radial distribution function

Required inputs include the same set of inputs utilized to gen-
erate the look-up table and N different n-dimensional parti-
cle positions.

1. Load the look-up table.

2. For each radius rj , calculate the volume of the n-
dimensional spherical shell between radii rj−(δr)j and
rj + (δr)j . Store the results as dV (j).

3. For each particle k = 1 :N and for each radius rj

(a) count the number of other particles that are between
rj − (δr)j and rj + (δr)j from the kth particle and
store the result as ψ(k,j).

(b) identify the closest entry in the look-up table i to
the associated position of the kth particle; store as
p.

(c) assign dV r(k,j)= dV (j) · norm(p,j) .

(d) use dV r(k,j) and ψ(k,j) to compute the kth term
of the sum for g(r) following Eq. (6) to give
g(k,j).

4. Compute and return g(j)=
∑N
k=1g(k,j).
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