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Dissociative adsorption has been widely simplified as part of the vapor–liquid–solid(VLS) growth
model. We found that the addition of specific carrier gases can critically modify the growth rate and
growth density of multiwall carbon nanotubes(MWNTs). These results were explained by
dissociative adsorption of C2H2 molecules and a solid-core VLS growth model. Based on these
integrated mechanisms, vertically aligned MWNTs were grown with an initial growth rate as high
as,800 mm/h. This efficient growth process results at temperature and C2H2 partial pressures at
which the decomposition and segregation rates of carbon are balanced. Appropriate use of carrier
gas is one of the factors that could facilitate efficient and continuous growth of carbon nanotubes in
the future. ©2004 American Institute of Physics. [DOI: 10.1063/1.1806558]

Carbon nanotubes(CNTs)1,2 are among the promising
materials for applications in future nanoscale science and
technology. For the synthesis of CNTs, thermal chemical va-
por deposition(CVD) is a convenient technique for growing
both single wall, and multiwall CNTs. The well-accepted
growth mechanism of CNTs by thermal CVD involves the
decomposition of hydrocarbon gases on the surface of cata-
lyst, the diffusion of carbon into the catalyst until saturation,
and subsequent segregation of carbon from the catalyst as a
tubular structure. These processes are described as the vapor-
liquid-solid (VLS) growth model.3,4 In fact, the catalytic de-
composition process is known as dissociative adsorption5–7

and has been widely simplified in the VLS model. Ideally,
CNTs will continue to grow if every carbon atom that depos-
its on the catalyst’s surface becomes incorporated within the
CNTs structure. Such an ideal condition has not been
achieved due to the lack of understanding of the relations
between the growth parameters and the decomposition, dif-
fusion, and segregation processes. This is the main obstacle
for continued growth of CNTs to unlimited tube lengths. The
phenomena responsible for growth saturation and growth in-
hibition are not fully elucidated and just started to gain
attention.8,9

Here, we found that the addition of carrier gas can con-
vert a saturated growth of multiwall carbon nanotubes
(MWNTs) into a continuous mode. We can grow MWNTs by
pure C2H2 without the use of NH3 for pretreatment and
growth. This enables a systematic study on the function of
carrier gases during the growth of MWNTs. Some previous
reports indicated that ammoniasNH3d gas is needed for the
formation of the catalyst nanoparticles and the growth of the
nanotubes.10,11 We found that the addition of specific carrier
gas can critically change the growth rate, and the growth
density of MWNTs. We explain these results by dissociative
adsorption of C2H2 molecules on iron(Fe) nanoparticles and
the VLS growth model. Our result implies for anin situ
technique that could control the decomposition rate of C2H2

on Fe, and the growth rate of MWNTs. The addition of ap-
propriate carrier gas is one of the factors that could facilitate
continuous growth of carbon nanotubes in the future.

The catalytic Fe films used in our experiments were
coated on SiO2/Si substrates in a pulsed-laser deposition
system.12,13 We used the fourth-harmonic generation of
Nd:YAG laser (wavelength,l,266 nm) at an energy den-
sity of ,1 J cm−2 on the Fe target. Depositions were carried
out at room temperature in a vacuum. These films had a
thickness of 4 nm as verified by atomic force microscopy
(AFM). For the growth of the MWNTs, these Fe/SiO2/Si
substrates were inserted into the quartz tube of our thermal
CVD system. Pretreatment was then carried out for 1 h in the
flow of hydrogen s270 sccmd and nitrogens150 sccmd at
800°C. This process will form Fe nanoparticles(diameter
,20–40 nm) for the growth of MWNTs.

MWNTs were then grown at 800°C for 2 h by using
[Fig. 1(a)] pure C2H2, [Fig. 1(b)] C2H2 and Ar, [Fig. 1(c)]
C2H2 and H2, or [Fig. 1(d)] C2H2 and N2. In all cases, the
flow rate of C2H2 was fixed at 60 sccm. In this way, the

a)Author to whom corresponding should be addressed; electronic mail:
ykyap@mtu.edu

FIG. 1. SEM images of MWNTs grown at 800°C by using(a) pure C2H2,
(b) C2H2 and Ar, (c) C2H2 and H2, or (d) C2H2 and N2.
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effect of carrier gases(200 sccm for H2, and 60 sccm for Ar
and N2) on the growth of MWNTs can be determined. After
the growth, the CVD system was cooled to room temperature
in the flow of the carrier gases[cases(b), (c), and(d)], or Ar
gas for case(a). All samples were then examined under scan-
ning electron microscopy(SEM), transmission electron mi-
croscopy(TEM), and Raman spectroscopy.

The SEM images of MWNTs grown at these conditions
are shown in Fig. 1. These MWNTs have diameters ranging
from ,15–30 nm as observed by high-resolution SEM.
These are slightly smaller than the diameters of Fe particles
observed by AFM. The overall growth morphologies of
MWNTs are different when deposited at different gases. The
lengths of MWNTs grown by pure C2H2 gas[Fig. 1(a)] are
typically 2 mm long. The addition of Ar gas[Fig. 1(b)] led to
a thicker deposit due to the stacking of individual nanotubes.
These MWNTs were significantly longer(estimated as
,10 mm under dynamic SEM imaging) than those grown by
pure C2H2. The addition of H2 gas to C2H2 [Fig. 1(c)] also
increased the length of MWNTs. In addition, the growth of
these MWNTs did not occur on all Fe nanoparticles. Bare Fe
particles are clearly seen on the substrate. This effect is more
obvious for samples grown by C2H2/N2 gas mixture[Fig.
1(d)]. As shown, the growth density is further reduced.

The change of growth density is verified by Raman spec-
troscopy. In Fig. 2, spectra of these samples are plotted in the
same scale. All of these spectra have a strong Si peak at
,520 cm−1 coming from the substrates. The nanotubes spec-
tra consist of a graphite peaksGd at ,1590 cm−1 and a
disorder-inducedsDd peak at,1350 cm−1 representing zone
center phonons of E2g symmetry andK-point phonons of A1g
symmetry, respectively.12,13 The relative intensity of the G
and Si peakssIG/ ISid will increase with the increase of nano-
tubes growth density. Higher growth density will initiate a
strongerG peak from the nanotubes and weaker Si signal
from the substrate as the excitation lasersl,514 nmd beam
was partially shielded by the nanotubes. As shown, theIG/ ISi
ratios for samples grown by[Fig. 2(a)] pure C2H2, and[Fig.
2(b)] C2H2/Ar, [Fig. 2(c)] C2H2/H2, and [Fig. 2(d)]
C2H2/N2 gas mixtures are 0.62, 1.9, 0.30, and 0.16, respec-
tively. This means, the addition of Ar to C2H2 increases the
growth density of MWNTs, while the addition of H2 and N2
gases decreases the growth density, as is consistent with the
SEM images in Fig. 1. We also observed the change of rela-
tive intensity between theG andD peaks. These are related

to the structural changes of MWNTs as we detected by TEM.
The mechanism involved is still under investigation and will
be discussed in the future.

We explain the change of growth rate and growth density
by referring to dissociative adsorption[Fig. 3(a)] and the
VLS growth model[Figs. 3(b) to 3(e)]. As summarized in
Fig. 3(a), adsorption of C2H2 molecules(step A) will lead to
either the breaking up of CuH bond(step B1) to form C2H
and H fragments or C=C bond(step B2) to form two C–H
fragments. The function of Fe is reducing the energy re-
quired for decomposition by a charge transfer from hydro-
carbon molecules to Fe. According to a first principles
calculation,7 the dissociation energy of the first hydrogen
atom from an isolated C2H2 (steps A to B1) in a vacuum can
be reduced from 5.58 eV to 0.96 eV. Likewise, the energy
barrier from A to B2 is 1.25 eV. The C–H bond breaking
(step B1) is followed by C–C bond breaking(step C) with
an energy barrier of 1.02 eV. Whereas, C=C bond breaking
(step B2) is followed by C–H bond breaking(step C) with a
potential barrier of 0.61 eV. Both modes(A to B1 to C or A
to B2 to C) are possible and give one C–H fragment, one C
and one H. The decomposition of C2H2 is completed after
the breaking of the last C–H bond(step D) at a potential
barrier of 0.61 eV.

The[Fig. 3(b)] decomposed carbon atoms will then[Fig.
3(c)] diffuse into the Fe nanoparticles. At our growth tem-
perature s800°Cd, these nanoparticles are not melted14,15

even after considering the eutectic point of Fe–C phase16,17

Since dissociative adsorption is an exothermic process,5–7 the
near-surface temperatures of the nanoparticles will be higher
than 800°C. Further, with the melting of nanoparticles starts
from their surfaces,18 it is possible that the near-surface re-
gion will form the gas–liquid interface between carbon and
Fe solid-core nanoparticles. Due to the high diffusion rate of
carbon in Fe melt, a Fe–C alloy will start to form. When
these nanoparticles become[Fig. 3(d)] supersaturated with
carbon to a value critical for growth at the solid–liquid inter-
face, the excess carbon will[Fig. 3(e)] segregate as carbon
nanotubes in a tip-growth mode(as confirmed by SEM).

Based on these integrated mechanisms, we explain the
effect of carrier gas in Fig. 1. In fact, the growth of MWNTs
by pure C2H2 gas was terminated after,15 min. Subsequent
experiments had shown that the growth patterns of MWNTs
from pure C2H2 gas for 15 min are similar to those grown for
2 h. We think that our growth condition initiated excessive

FIG. 2. Raman spectra for MWNTs grown at 800°C by using(a) pure
C2H2, (b) C2H2 and Ar, (c) C2H2 and H2, or (d) C2H2 and N2.

FIG. 3. (a) Sequences of dissociative adsorption of C2H2 on Fe surface. The
(b) decomposed carbon atoms(c) diffused into the Fe nanoparticle until(d)
supersaturation and(e) segregate as nanotubes.

3266 Appl. Phys. Lett., Vol. 85, No. 15, 11 October 2004 Kayastha et al.



decomposition of C2H2 on the surfaces of Fe nanoparticles.
This has led to the formation of amorphous carbon on the
surfaces of nanoparticles and prevented further contact of
C2H2 molecules with Fe. Thus, the supply of carbon was
terminated. This happened because the decomposition rate of
C2H2 was higher than the carbon diffusion rate into the Fe
nanoparticles, and the segregation rate of carbon from the
nanoparticles.

We then examined the growth of MWNTs from the
C2H2/Ar mixture at periods shorter than 2 h. The growth
density of MWNTs increases with the growth duration.
MWNTs continued to grow for 2 h in the C2H2/Ar mixture.
The addition of Ar reduces the density of C2H2 molecules on
the surfaces of Fe nanoparticles(dilution effect). This has
prevented excessive decomposition of C2H2 molecules.
Thus, the rate of carbon supply and carbon segregation was
balanced for continued growth.

The addition of H2 gas to C2H2 introduced two effects.
First, the concentration of C2H2 is decreased due to dilution.
Additional experiments confirmed that MWNTs continued to
grow for 2 h. Second, the growth density of MWNTs was
reduced since some particles were occupied for the decom-
position of H2 and resulted in insufficient carbon supply for
growing MWNTs. H2 is known to dissociate on the surface
of Fe at high temperatures.5,6 It is possible that C2H2 and H2
molecules are competing for dissociative adsorption on the
Fe nanopartcles. Besides, cross interaction between the de-
composed hydrogen and hydrocarbon species could result in
the removal of carbon deposits(cleaning effect)19 and thus
reduce the growth density.

The addition of N2 gas to C2H2 gas further suppressed
the growth density of MWNTs. This could be related to the
cross interaction between C2H2 and N2 molecules on the Fe
surfaces. It is possible that CN radicals will be formed,
which are volatile at high temperatures.12 This will reduce
the carbon flux that diffuse into the Fe nanoparticles and thus
reduce the chances of MWNT formation. The actual reason
is subjected to further investigations. The diluting effect of
N2 gas is similar to those in Ar and H2 gases and results in
longer tubes in 2 h.

From these results, we understood that it is important to
balance the decomposition rate of C2H2 and the segregation
rate of carbon. We then optimize the growth of MWNTs by
C2H2/Ar gas mixture by simply varying the growth tempera-
tures. At 650°C, we were able to grow high-density MWNTs
as shown in Fig. 4(a) at a tilted angle of 40° from the aerial
view. As shown, these MWNTs are vertically aligned due to
the van der Waals forces between adjacent MWNTs, which

restrict the growth toward the free space(vertically upward).
We think that this efficient growth process occurs at partial
pressures and temperature at which the decomposition and
segregation rates of carbon are balanced. As compared to the
case shown in Fig. 1(b), this aligned growth is due to a lower
growth temperature, which reduced the decomposition rate
of C2H2 molecules and suppressed the formation of amor-
phous carbon films on some Fe catalysts. This could have
further increased the growth density and thus resulted in
aligned growth. These MWNTs can also be grown to desired
patterns, for instance, MWNTs microtowers shown in Fig.
4(b). All these samples were grown for 15 min with an esti-
mated length of,200 mm: A remarkable growth rate of
,800 mm/h. However, our experiments show that this
growth rate is decreasing with time. This means, other fac-
tors that affect the growth rate have occurred and are sub-
jected to further investigation.

In summary, the addition of carrier gas can suppress the
decomposition rate of C2H2 by diluting the density of C2H2

on the Fe catalyst surface. This will increase the growth rate
of MWNTs that was initially saturated. In addition, both H2

and N2 can reduce the growth density of MWNTs and thus
can be used for density control. A balance between the car-
bon supply(decomposition) and segregation rates is required
for high-density and high growth rate of MWNTs. These
results could facilitate continued growth of carbon nanotubes
in the future byin situ control of the dissociative adsorption
of hydrocarbon molecules on catalyst surfaces.
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Research Office(W911NF-04-1-0029, through the City Col-
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