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Formation of nanodiamonds at near-ambient
conditions via microplasma dissociation
of ethanol vapour
Ajay Kumar1, Pin Ann Lin1, Albert Xue1, Boyi Hao2, Yoke Khin Yap2 & R. Mohan Sankaran1

Clusters of diamond-phase carbon, known as nanodiamonds, exhibit novel mechanical,

optical and biological properties that have elicited interest for a wide range of technological

applications. Although diamond is predicted to be more stable than graphite at the nanoscale,

extreme environments are typically used to produce nanodiamonds. Here we show that

nanodiamonds can be stably formed in the gas phase at atmospheric pressure and neutral

gas temperatures o100 �C by dissociation of ethanol vapour in a novel microplasma process.

Addition of hydrogen gas to the process allows in flight purification by selective etching of the

non-diamond carbon and stabilization of the nanodiamonds. The nanodiamond particles are

predominantly between 2 and 5 nm in diameter, and exhibit cubic diamond, n-diamond and

lonsdaleite crystal structures, similar to nanodiamonds recovered from meteoritic residues.

These results may help explain the origin of nanodiamonds in the cosmos, and offer a simple

and inexpensive route for the production of high-purity nanodiamonds.

DOI: 10.1038/ncomms3618
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C
arbon exists as a variety of different forms at the bulk and
nano scale including graphite, diamond, fullerenes, carbon
nanotubes, graphene and nanodiamonds. Graphitic car-

bon is known to be the most stable form of bulk carbon at
ambient temperature and pressure, with high pressures and high
temperatures typically required to convert non-diamond phases
to diamond1,2. Atomistic models have predicted that at the
nanoscale, hydrogen-terminated tetrahedral hydrocarbons,
precursors to diamond phases, are thermodynamically more
stable than polycylic aromatics, precursors to graphitic phases,
with a transition in the phase stability occurring at B3 nm
(ref. 3). This idea supports the existence of naturally formed
diamond clusters, referred to as nanodiamonds, in petroleum4,
interstellar dust5 and candle flames,6 all presumably formed at
pressures and/or temperatures outside the stability field of bulk
diamond.

Nanodiamonds have been synthesized for research by several
methods including detonation of carbon-containing explosives7,8

and plasma-enhanced chemical vapour deposition (PECVD)9.
Despite the predicted stability of nanodiamonds, these processes
require high pressure and/or high temperature and produce
mixtures of non-diamond and diamond phases10. Detonation
synthesis is carried out at extremely high pressures and
temperatures and produces soot containing large quantities of
graphitic carbon in addition to the diamond phase7. PECVD
produces films of amorphous carbon (a-C) with nanodiamonds
embedded at the grain boundaries by deposition at high
temperatures9. Alternatively, it is known that nanoparticles can
be homogeneously nucleated in a plasma process11, which has the
potential to produce nanodiamonds at significantly lower
pressures and temperatures and higher purities. However, this

approach has thus far been limited to non-diamond carbon12 and
larger diamond particles (B0.1 mm)13,14.

Here we report the synthesis of nanodiamonds at near-ambient
conditions using a novel continuous atmospheric pressure,
microscale plasma (microplasma) process. Particles are homo-
geneously nucleated by dissociating ethanol vapour and rapidly
quenched with reaction times o1 ms to limit the size of the
particles to the nanometre-size regime. By adding H2 gas, the
non-diamond phase is etched and the diamond phase is
stabilized, leading to a highly purified as-grown nanodiamond
product. The particles exhibit a uniform diameter of ca. 3.0 nm
consistent with theoretical predictions3,15, and cubic diamond,
lonsdaleite and the less frequently observed n-diamond phases
similar to presolar nanodiamonds recovered from meteorites16.
The formation of nanodiamonds at near-ambient conditions
confirms their remarkable stability and could help realize new
technologies such as drug delivery and the coating of polymeric
substrates.

Results
Gas-phase nucleation and in situ aerosol measurements. The
experimental set-up for the synthesis of nanodiamonds is sche-
matically illustrated in Fig. 1a. This method has been previously
applied to the synthesis of silicon nanoparticles with diameters
o5 nm (ref. 17). To nucleate and grow carbon nanoparticles,
mixtures of Ar and H2 gas and ethanol vapour were continuously
introduced and dissociated in the microplasma at atmospheric
pressure and near-ambient neutral gas temperature
(Supplementary Fig. S1). Ethanol was chosen as the carbon pre-
cursor for several reasons. First, ethanol has been detected in
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Figure 1 | Gas-phase nucleation and in situ characterization of carbon nanoparticles. Carbon nanoparticles are synthesized in the gas phase by

continuously dissociating a mixture of Ar, H2 gas and ethanol vapour in an atmospheric pressure microplasma (a). Scale bar, 5 mm. The aerosol particles

are collected as a dry product by filtration. Aerosol size classification confirms nanoparticle formation and shows that the addition of H2 gas reduces the

particle concentration and geometric mean diameter (Dpg). Error bars correspond to the standard error calculated from the geometric standard deviation

(sg). Scale bar, 5 mm. (b). Dissociation of ethanol vapour is monitored by OES (c). The C2 band, which has been linked to nanodiamond formation, is clearly

observed from 460 to 570 nm (left panel). The addition of H2 gas results in the appearance of the Ha Balmer line at 656 nm, confirming atomic hydrogen

(right panel).
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interstellar gas and thus simulates a potential chemical environ-
ment for nanodiamond formation in outer space18. Second, the
C:H:O ratio of ethanol is within the predicted composition range
for solid carbon precipitation19 and, by adding H2, the ratio can
be systematically tuned from non-diamond to diamond phase
growth. Finally, ethanol has a suitable vapour pressure, not too
high, resulting in excessive soot formation, but not too low,
preventing particle nucleation. When ethanol vapour was
introduced into the microplasma, the discharge turned a bright
blue-green colour as a result of C2 emission (see Fig. 1a). The
neutral species gas temperature was estimated to be o100 �C
using an infrared camera (FLIR, Inc.; Supplementary Fig. S2).
The particles were collected at atmospheric pressure and room
temperature by filtering the exiting aerosol flow with a fibre glass
filter (see Fig. 1a). Particle formation was monitored in situ by
aerosol size classification using a commercial scanning mobility
particle sizing (SMPS) system. Figure 1b shows particle size dis-
tributions (PSDs) for nanoparticles synthesized from 180 p.p.m.
ethanol vapour in Ar and 180 p.p.m. ethanol vapour mixed with
450 and 10,000 p.p.m. H2 gas in Ar. The PSDs represent an
average of 10 scans collected by SMPS characterization after
steady-state operation of the microplasma was reached. The raw
data were fit to log-normal distributions to obtain the geometric
mean diameters (Dpg) and s.d. (sg). We note that no particles
were detected by the SMPS system for a pure Ar microplasma.
The introduction of ethanol vapour produces a well-defined PSD,
with a Dpg of 8.3 nm at steady state. The addition of H2 reduces
the overall particle concentration and the Dpg to 6.9 nm. Further
increase in the gas-phase H2 concentration to 10,000 p.p.m.
completely quenches particle formation (see Fig. 1b). These results
are consistent with the C-H-O phase diagram for carbon growth
that shows increasing H with respect to C in the gas phase even-
tually suppresses solid carbon nucleation19.

OES of precursor dissociation. The dissociation of ethanol
vapour and H2 gas by the microplasma was confirmed by optical
emission spectroscopy (OES). Figure 1c shows spectra collected
from the microplasma for varying mixtures of Ar, ethanol vapour
and H2 gas. All spectra show evidence of lines corresponding to
Ar 4p-4s transitions in the higher wavelength regions (665–
815 nm) (ref. 20). When ethanol is introduced, additional peaks
corresponding to the C2 swan band between 460 and 570 nm (see
left panel of Fig. 1c) and CH modes at 387 and 431 nm are
observed (Supplementary Fig. S3a). In addition, we detect excited
H2 from the Fulcher-a band system B600 nm (Supplementary
Fig. S3b)20. The confirmation of C2 and CH radicals is
particularly important for nanodiamond formation. Previous
reports have shown that C2 species initially nucleate a solid
carbon cluster, and CH species form a hydrocarbon layer,
promoting the nucleation of nanodiamonds20,21; however, these
experiments were carried out on films where the substrate may
also influence nucleation22,23. The addition of H2 gas results in a
new feature in the OES spectra at 656 nm corresponding to the
Ha Balmer line (see right panel of Fig. 1c). To quantify this
observation, we compared the relative intensity of the Ha line
with an Ar-excited neutral line at 750.1 nm as a function
of the gas-phase concentration of H2 (Supplementary Fig. S4).
Increasing the H2 gas concentration is found to increase the
intensity of the Ha line and decrease the H2 band intensity, which
indicates that dissociation to atomic hydrogen is a more
favourable reaction channel than molecular excitation. The
increase in atomic hydrogen coincides with a decrease in the
particle diameter (see Fig. 1b). Atomic hydrogen has been pre-
viously linked in CVD diamond growth to suppression of surface
reconstruction24, etching of non-diamond (sp2) carbon20,25 and

formation of surface radical sites by hydrogen abstraction7,
suggesting that the smaller particle size corresponds to selective
removal of the non-diamond phase and stabilization of the
diamond phase in our as-grown material.

Ultraviolet micro Raman spectroscopy. The structure of the as-
grown carbon nanoparticles was initially analysed by micro
Raman spectroscopy. Ultraviolet (UV) excitation (325 nm) was
employed to enhance the scattering from the sp3 fraction in the
samples26. Raman spectra are shown in Fig. 2a for carbon
nanoparticles synthesized with only ethanol vapour (black) and a
mixture of ethanol vapour and H2 gas (red). Both spectra exhibit
two broad features, one between 1,300 and 1,400 cm� 1 and
another at B1,600 cm� 1, close to the D (disorder) and G (gra-
phite) bands, respectively, which arise from K-point phonon
scattering of A1g symmetry and zone centre phonon scattering of
E2g symmetry, respectively, for sp2 carbon materials. The first
feature also overlaps with the well-known Raman scattering peak
for bulk diamond at 1,332 cm� 1 (ref. 26). The addition of H2 gas
is found to increase the peak intensity ratio of the first to the
second feature, and shift the peak of the first feature to lower
wavenumbers by B40 cm� 1. A similar shift was also observed at
other excitation wavelengths (Supplementary Fig. S5). A small
shift in the peak of the second feature from 1,593 to 1,603 cm� 1

is also observed and maybe related to in-plane stretching of sp2

carbon atoms resulting from strain introduced by the incor-
poration of hydrogen in the as-grown material. To further analyse
the spectra, we deconvoluted and fit the features to Gaussian–
Lorentzian curves (Supplementary Table S1). As shown in the left
inset of Fig. 2a, the spectrum for nanoparticles synthesized with
only ethanol vapour consists of a peak at 1,397 cm� 1 that can be
assigned to a-C, and a weaker peak at 1,328 cm� 1. In compar-
ison, the spectrum for nanoparticles synthesized with H2 gas
consists of two peaks at 1,307 and 1,372 cm� 1 (right inset of
Fig. 2a), the former being significantly shifted to lower wave-
number and broadened. The confinement of optical phonons in
nanodiamonds is known to cause a particle size-dependent shift
to lower wavenumbers and broadening of the Raman scattering
peak for bulk diamond27. Using a recently reported model28, we
simulated Raman spectra as a function of nanodiamond particle
size (Supplementary Fig. S6). The calculated peak position and
full width half maximum (FWHM) for 2.5-nm-diameter particles,
1,311 and 90 cm� 1 (Supplementary Table S2 and Supplementary
Fig. S7), respectively, were found to agree well with our experi-
mentally observed peak (1,307 cm� 1, FWHM¼ 102 cm� 1). We
also obtained UV micro Raman spectra of commercial nanodia-
mond samples (Supplementary Fig. S8a). A similar analysis
showed that the commercial samples primarily contain particles
between 4 and 6 nm, larger than the particles found in our
samples (Supplementary Fig. S8b,c).

X-ray diffraction. Figure 2b shows X-ray diffraction (XRD)
patterns of the same two samples of carbon nanoparticles that
were characterized by Raman spectroscopy. The XRD pattern for
nanoparticles synthesized with only ethanol vapour (black) shows
a broad peak at B25�, indicating that the material is mostly a-C,
consistent with Raman analysis. In comparison, carbon nano-
particles synthesized from a mixture of ethanol vapour and H2

gas (red) exhibit clear diffraction peaks corresponding to lattice
planes of various phases of diamond. A higher fraction of
nanodiamonds in the sample grown with H2 gas agrees with
Raman analysis. The XRD peaks at 44.1�, 51.4� and 75.8� can be
assigned to the (111), (002) and (220) lattice planes of cubic
diamond, with a lattice parameter of 3.55 Å. We note that
the (002) plane is a forbidden reflection for cubic diamond
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and corresponds to the n-diamond phase29. The stability
of n-diamond is a point of contention, but its existence has
been reported in both experiments30 and theoretical
calculations31. The structure of n-diamond is believed to be
face-centered cubic, with hydrogen atoms incorporated into the
cubic carbon lattice30. The formation of n-diamond is consistent
with the increase in the concentration of atomic hydrogen with
the addition of H2 gas detected by OES. The peaks at 41.9� and
44.1�, the latter of which overlaps with cubic diamond, indicates
the presence of lonsdaleite, with lattice constants of a¼ 2.49 Å
and c¼ 4.11 Å (ref. 32). A mechanism for formation of
lonsdaleite is not known, but this diamond phase is often
found in meteorite samples16. In comparison, XRD patterns of
commercial nanodiamond samples only showed the presence of
the cubic phase (Supplementary Fig. 9). We note that all XRD
peak positions are slightly shifted towards higher 2y values as
compared with bulk diamond, highlighting the nanoscale nature
of our material and suggesting lattice compression due to surface
stresses.

X-ray photoelectron spectroscopy. The purity of the diamond-
phase in the as-synthesized carbon nanoparticles was assessed by
X-ray photoelectron spectroscopy (XPS)33,34. From survey
spectra, the metal content was found to be o0.1% in all
samples (Supplementary Table S3 and Supplementary Fig. S10).
Figure 2c,d shows high-resolution C 1s XPS spectra collected
from carbon nanoparticles synthesized with only ethanol vapour
and a mixture of ethanol vapour and H2 gas, respectively. XPS has
been previously used to characterize the carbon bonding in
a-C33,35 and nanodiamond powders using C 1s spectra34,36,37.
Although XPS is generally known to probe the surface of
materials, for carbon materials the inelastic mean-free path of C
1s photoelectrons is B3 nm. Thus, the whole volume of small
nanoparticles, as in the case of our samples, was probed34. The C
1s signal of both samples consists of four chemically shifted
components: peaks at B284.0 and 285.0 eV corresponding to sp2-
and sp3-hybridized carbon, respectively, and peaks at 286.1 and
287.4–287.7 eV corresponding to various hydrogen and oxygen
functionalities including C-H, C-OH, C-O-C and C¼O, in order
of increasing binding energies. These peak shifts are in agreement
with previous studies of nanodiamonds34,37. We focused our
analysis on the sp2 and sp3 carbon peaks that arise from the
presence of graphitic and diamond phases, respectively, in the
samples. The sp3/sp2 carbon ratio increases substantially from 1.6
to 5.5 with the addition of H2 gas, corresponding to an increase in
the fraction of sp3 carbon relative to sp2 carbon from B61 to 85%
(Supplementary Table S4). We validated the reliability of XPS to
assess the purity of the diamond phase with respect to the gra-
phitic phase by also characterizing several commercially available
nanodiamond samples and found excellent agreement with
reported values (Supplementary Fig. S11)38. Overall, our XPS
results confirm that the addition of H2 gas improves the as-
synthesized purity of the nanodiamonds relative to non-diamond
carbon. Although atomic hydrogen has been previously used to
treat nanodiamond powder and remove sp2 carbon39, the key
difference is that in our process the nanodiamonds are purified in
flight.

Transmission electron microscopy. Additional microstructural
characterization of our material was performed at the nanoscale
by transmission electron microscopy (TEM). Figure 3a,b shows
representative TEM images of carbon nanoparticles synthesized
from only ethanol vapour and drop-cast on carbon-coated Cu
grids from a solution dispersion. The nanoparticles are unag-
glomerated (Fig. 3a), uniformly sized (Fig. 3b) and crystalline, as

1,200

 N
or

m
al

iz
ed

 in
te

ns
ity

 (
a.

u.
)

Raman shift (cm–1)

1,200

b

c d

0

200

400

600

800

1,000

1,200

CD{220}

CD{002}L{100}

In
te

ns
ity

 (
a.

u.
)

2� (degrees)

CD{111}
L{002}

282
Binding energy (eV)

In
te

ns
ity

 (
a.

u.
)

sp2 C

sp3 C

282

In
te

ns
ity

 (
a.

u.
)

Binding energy (eV)

sp2 C

sp3 C

1,6001,400 1,200 1,6001,400

1,8001,7001,6001,5001,4001,300

80757065605550454035302520

288286284 288286284

Figure 2 | Material characterization of carbon nanoparticles. (a) Micro

Raman spectra of carbon nanoparticles synthesized with only ethanol vapour

(black) and with ethanol vapour and H2 gas (red). The addition of H2 gas

results in a shift of the broad feature near 1,400 cm� 1 to lower wavenumber.

Deconvolution and fitting of this feature shows (inset of a) evidence of a

peak at 1,307 cm� 1 that agrees with phonon-confined scattering from

nanodiamonds28. Excitation wavelength of 325 nm was used for all Raman

spectra. (b) XRD patterns of carbon nanoparticles synthesized with only

ethanol vapour (black) shows no crystalline peaks, suggesting an amorphous

material. In comparison, the addition of H2 gas results in crystalline peaks

(red) that can be indexed to crystalline planes of lonsdaleite (L) and cubic

diamond (CD) phases. (c,d) High-resolution C 1s XPS spectra of carbon

nanoparticles synthesized with only ethanol vapour (c) and with ethanol

vapour and H2 gas (d). The different components corresponding to various

chemical shifts of carbon bonds are indicated. The addition of H2 gas

increases the ratio of the sp3/sp2-hybridized carbon peak.
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confirmed by selected-area electron diffraction (SAED; inset of
Fig. 3b). The chemical composition of the particles was assessed
by energy-dispersive spectroscopy (EDX). The EDX spectrum in
Fig. 3c shows that the particles are free of impurities, in support
of XPS results; peaks in the spectra from copper and oxygen are
always present from the Cu grid and O2 gas in the instrument
background. A histogram obtained by sizing and counting B250
individual particles from TEM images shows that the nano-
particles are mostly between 2 and 5 nm diameter (490%). The
monodispersity of the particles supports the existence of a ‘magic’
cluster size15. Figure 4 shows high-resolution TEM analysis of
individual particles whose random orientation allowed lattice
fringes to be observed. The measured lattice spacings match up
well with lattice planes of various diamond phases including
lonsdaleite (100) (2.17 Å), cubic diamond (111) or lonsdaleite
(002) (2.07 Å), lonsdaleite (101) (1.93 Å) and cubic diamond
(002) (1.76 Å). The latter suggests the presence of the previously
described n-diamond phase. We performed similar single-particle
lattice spacing measurements on B50 particles and combined
this analysis with SAED and XRD to statistically assess the crystal
structure of the nanodiamonds in our samples (Supplementary
Table S5 and Supplementary Figs S12–S16). Table 1 summarizes
the measured d spacings, all of which within error compare
favourably with reported values for cubic diamond, n-diamond
and lonsdaleite2,40.

A small number of particles were appropriately oriented with
the electron beam in TEM to allow more than one crystal plane of
individual particles to be resolved. Figure 5a,b shows high-
resolution transmission electron microscopy images of two
representative particles, both 3 nm in diameter. From the fast

Fourier transform images (FFT; see insets of Fig. 5a), we
determined that the particles are lonsdaleite and n-diamond,
imaged along the (010) and (110) zone axes, respectively. The
measured lattice spacings from the corresponding inverse FFT
images shown in Fig. 5c,d validate the crystalline structure and
are in excellent agreement with SAED and XRD results (see
Table 1).

Carbon nanoparticles synthesized by adding H2 gas to the
ethanol vapour in the microplasma were also analysed by TEM
(Supplementary Fig. S17). In comparison with carbon nanopar-
ticles synthesized with only ethanol vapour, we observed that the
samples were much cleaner (less a-C), consistent with micro
Raman, XRD and XPS characterization. The particles were
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Table 1 | Crystal structure analysis.

Measured
d spacings*

Cubic diamond Lonsdaleite Frequency

(Å) hkl d spacing (Å) hkl d spacing (Å) (%)

2.16–2.20 100 2.18 26.3
2.04–2.08 111 2.06 002 2.06 39.5

1.90–1.96 101 1.93 23.7
1.74–1.78 002 1.78w 10.5
1.51 102 1.5 —

1.25–1.31 022 1.26 110 1.26 —
1.15–1.18 103 1.16 —
1.11 020 1.092 —
1.06 113 1.075 112 1.075 —

Summary of measured d spacings of carbon nanoparticles and comparison with reported d
spacings for cubic diamond and lonsdaleite. The frequency was obtained from TEM analysis of
B50 individual particles.
*Compilation of values from SAED, XRD and TEM analysis.
wForbidden cubic diamond reflection (n-diamond).
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unagglomerated and crystalline, with similar particle sizes and
crystal structures as those synthesized with only ethanol vapour
(Supplementary Fig. S18). Commercial nanodiamond samples
imaged by TEM were found to be comparatively larger in size
(45 nm), in agreement with Raman characterization, and
severely agglomerated (Supplementary Fig. S19).

Discussion
There are several possible reasons why our process is capable of
producing nanodiamonds at near-ambient conditions. The micro-
plasma process is comparable to PECVD and the combination of
plasma dissociation and gas-phase chemistry may aid the
nucleation of diamond-phase carbon analogous to chemical
vapour deposition (CVD) diamond19. Similar to CVD, atomic
hydrogen may kinetically etch the non-diamond sp2 carbon and
allow diamond-phase sp3 carbon to grow1. Hydrogen may also
help stabilize the surface of the nanodiamonds3. Previous attempts
to synthesize carbon nanoparticles by homogeneous nucleation
have produced graphene12 or much larger diamond particles14.
The formation of nanodiamonds in a microplasma underscores the
importance of quenching, which maybe essential to limiting the
particle size to diamond’s predicted thermodynamic stability at
the nanoscale3. Future studies are required to more carefully clarify
the mechanism for nanodiamond formation in our process and,
in particular, separate these kinetic and thermodynamic
considerations.

The formation of nanodiamonds at near-ambient conditions
has wide-ranging scientific implications. Our experimental
confirmation of diamond-phase carbon produced at conditions
far from its bulk thermodynamic stability provides support for
theoretical predictions, and, importantly, the size at which this
occurs (ca. 3 nm)3. The ‘magic’ size15 and structure of the
material, including the more rare lonsdaleite phase, is consistent

with characterization of interstellar diamond16 and suggests that
a high-pressure history is not needed to explain their existence41.
The evidence for gas-phase nucleation in a plasma environment
brings into question how diamond maybe nucleated in
conventional CVD processes9 and suggests that diamond
particles could in some cases nucleate first in the gas phase,
subsequently deposit on the substrate and act as seeds for film
growth.

The process we have developed should also have several
technological benefits. Compared with CVD, nanodiamonds are
synthesized continuously at atmospheric pressure and as a powder.
By fabricating arrays of microplasmas, it should be possible to
produce large mass amounts (41 g h� 1)42. The nanodiamonds are
produced at significantly lower temperatures, which should enable
the coating of plastics for flexible applications43. Compared with
detonation, the microplasma process is higher purity as metal and
other impurities (for example, nitrogen and oxygen) are
eliminated44. Moreover, steep pressure and temperature gradients
are avoided, which in detonation processes lead to fullerene shells
and severe agglomeration, requiring extensive post-purification
steps45. Through the addition of H2 gas, we have shown a path to
improve the purity of the diamond phase in flight, as opposed to
acid treatment45 and air oxidation38. Finally, our results indicate
that the nanodiamonds produced by the microplasma process are
significantly smaller than currently available material10. Such
particles may facilitate biological applications where the particle
size is critical to transport and drug delivery46. Overall, these
differences suggest that it maybe possible through future studies to
further tune and optimize the microplasma process to ultimately
control the particle size, surface chemistry and doping (for example,
nitrogen) of the nanodiamonds for a wide range of applications.

Methods
Microplasma synthesis and aerosol mobility measurements. Carbon nano-
particles were synthesized in the gas phase at atmospheric pressure and room
temperature by continuously dissociating ethanol vapour in a microplasma.
The microplasma was formed between a stainless steel capillary tube (outer
diameter¼ 1.59 mm, inner diameter¼ 0.178 mm) and a stainless steel mesh
(2� 4 mm2) electrode, operated as the cathode and anode, respectively. The elec-
trodes were separated by a gap of 2 mm and sealed inside a quartz tube
(OD¼ 6.35 mm) with Swagelok gas fittings. The microplasma was ignited with a
negatively biased, high-voltage, direct-current power supply (Power Designs Inc,
Model HV-1547), ballasted by a power resistor (500 kO). The discharge was
operated at a constant current of 3.6 mA in all experiments.

Controlled concentrations of ethanol vapour were introduced into the
microplasma by bubbling Ar gas through a solution of pure ethanol (200 proof,
Decon Labs, Inc.) cooled to � 10 �C (*P¼ 0.1079 psi, 5,000 p.p.m.). This flow was
then diluted twice, first with a flow of 460 s.c.c.m. Ar, and then with a flow of
55 s.c.c.m. Ar after exhausting a flow of 455 s.c.c.m. Thus, a final concentration of
180 p.p.m. ethanol in Ar at a total gas flow rate of 100 s.c.c.m. was introduced into
the microplasma. From aerosol measurements, we found that this ethanol
concentration was optimal to nucleate a steady-state concentration of carbon
nanoparticles for over 100 h. Alternatively, we introduced H2 gas either directly
into the microplasma at a concentration of 10,000 p.p.m. or with Ar through the
bubbler for a final H2 concentration of 450–1,800 p.p.m. in the microplasma.

In situ aerosol measurements of as-synthesized carbon nanoparticles were
performed with a scanning mobility particle sizer (SMPS) system (TSI, Inc., Model
3936) consisting of a differential mobility analyser and a butanol-based
condensation particle counter. To avoid Brownian coagulation, the particles exiting
the microplasma were diluted with a flow of N2 gas.

Optical emission spectroscopy. OES of the microplasma was carried out by
collecting the emitted light with a 600-mm-diameter fibre optic cable coupled to a
spectrometer (Ocean Optics Inc., Model HR400). Line intensities were calibrated
with a tungsten halogen light source. Spectra were integrated 10 times with an
acquisition time of 100 ms.

Collection of carbon nanoparticles. As-synthesized carbon nanoparticles were
collected by continuously trapping the aerosol product exiting the microplasma on
commercial filters with pore sizes o1 mm including stainless steel, poly-
fluorotetraethylene and glass fibre. In most cases, we used glass fibre filters (Mil-
lipore Inc.) that did not contribute any background signal in micro Raman
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Figure 5 | Single-particle analysis by FFT filtering. (a,b) High-resolution

transmission electron microscopy images of two nanodiamond particles

aligned with the electron beam and imaged along the (010) (a) and (110)

(b) zone axes. Corresponding FFT images (insets of a,b) and inverse

FFT images (c,d) confirm that the particles are lonsdaleite (a,c) and

n-diamond (b,d), respectively. Scale bars, 2 nm.
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spectroscopy and XRD. The mass of collected product was obtained by weighing
the filter before and after collection.

Micro Raman spectroscopy and phonon confinement model. Micro Raman
spectroscopy was carried out at various excitation wavelengths. Excitation in the
visible range was performed with an inVia Renishaw spectrometer equipped with
three lasers at l¼ 488, 514 and 633 nm. To enhance the scattering from the sp3

component relative to the sp2 component of our material26, UV excitation at
l¼ 325 nm was performed with a Jobin-Yvon LabRAM HR800 spectrometer.

The Raman spectra were fit to a refined phonon confinement model28 for
diamond, which relates the intensity of the Raman scattering to the size of the
particles:

I oð Þ ffi
Z1

0

expð� q2L2=4Þ4pq2

o�o qð Þ½ �2 þðG=2Þ2
dq ð1Þ

where I is the intensity, L is the size of the particles, o is the phonon dispersion
curve, q is the wave vector and G is the FWHM of the scattering peak. G and o(q)
are given by the following polynomial functions:

G ¼ Aþ B
L2

ð2Þ

where A¼ 11 cm� 1 and B¼ 491.25 cm� 1 and

oðqÞ ¼ AþB � qþC � q2 þD � q3 þ E � q4 þ F � q5 ð3Þ

where A, B, C, D, E and F are coefficients for seven different phonon branches (L1,
L3, S1, S2, S3, D2 and D5) corresponding to scattering from various crystalline
phases of diamond.

XRD. XRD was carried out with a Scintag X-1 advanced X-ray diffractometer using
monochromated Cu-Ka radiation (l¼ 0.1542 nm). All XRD patterns were col-
lected from a 2y of 20�–80�, with a step size of 0.01�, at a grazing incident angle of
2� to enhance the sensitivity from our relatively thin samples. From the XRD peaks,
d spacings were calculated using Bragg’s equation (nl¼ 2dsiny). For d spacings
corresponding to cubic or n-diamond, the lattice parameter, a, was calculated using
the following equation:

1
d2

hkl

¼ h2 þ k2 þ l2

a2
ð4Þ

and for d spacings corresponding to the lonsdaleite phase of diamond, the lattice
parameters, a and c were calculated using the following equation (where a¼ bac):

1
d2

hkl

¼ 4
3
:
ðh2 þ hkþ l2Þ

a2
þ l2

c2
ð5Þ

XPS. XPS was performed with a PHI VersaProbe using a monochromatic Al Ka
X-ray (1486.6 eV) source. Samples for XPS were either prepared by collecting on
glass fibre filters to assess the metal impurities or directly depositing on single
crystal Si substrates using a nanometre aerosol sampler (TSI, Inc., Model 3089) to
characterize the relative fraction of diamond (sp3 carbon) and non-diamond (sp2

carbon) phases. Before nanoparticle deposition, the Si substrates were cleaned with
acetone to remove residual carbon. After deposition, the samples were sputtered
inside the XPS instrument by an Ar ion beam to remove contamination (for
example, adventitious carbon) that occurred during sample transfer. In all cases,
spectra were taken with a spot size of 300 mm. High-resolution C 1s spectra
were acquired with a step size of 0.1 eV from a minimum of two spots on each
sample and averaged. The binding energies were corrected to compensate for
surface charging. The spectra were deconvoluted and fit using the PHI Multipak
program from ULVAC-PHI, Inc. by a Lorentz�Gauss algorithm after subtracting
a Shirley background.

TEM and EDX. TEM was carried out with a Philips Tecnai F30 field-emission
electron microscope operated at 300 kV. TEM samples were prepared by carefully
shaking the filter-collected carbon nanoparticles in methanol and drop casting
on carbon-coated Cu grids. Sonication was avoided to prevent the filter from
breaking up. EDX was performed with a 130-eV energy resolution Li-drift Si
detector. Additional structural information was obtained by SAED and FFT.

References
1. Angus, J. C. & Hayman, C. C. Low-pressure, metastable growth of diamond

and "diamondlike" phases. Science 241, 913–921 (1988).
2. Gogotsi, Y., Welz, S., Ersoy, D. A. & McNallan, M. J. Conversion of silicon

carbide to crystalline diamond-structured carbon at ambient pressure. Nature
411, 283–287 (2001).

3. Badziag, P., Verwoerd, W. S., Ellis, W. P. & Greiner, N. R. Nanometre-sized
diamonds are more stable than graphite. Nature 343, 244–245 (1990).

4. Dahl, J. E., Liu, S. G. & Carlson, R. M. Isolation and structure of higher
diamondoids, nanometer-sized diamond molecules. Science 299, 96–99
(2003).

5. Lewis, R. S., Ming, T., Wacker, J. F., Anders, E. & Steel, E. Interstellar diamonds
in meteorites. Nature 326, 160–162 (1987).

6. Su, Z., Zhou, W. & Zhang, Y. New insight into the soot nanoparticles in a
candle flame. Chem. Comm. 47, 4700–4702 (2011).

7. Greiner, N. R., Phillips, D. S., Johnson, J. D. & Volk, F. Diamonds in detonation
soot. Nature 333, 440–442 (1988).

8. See Danilenko, V. V. On the history of the discovery of nanodiamond synthesis.
Phys. Solid State 46, 595–599 (2004 and references therein).

9. Jiao, S. et al. Microstructure of ultrananocrystalline diamond films grown by
microwave Ar–CH4 plasma chemical vapor deposition with or without added
H2. J. Appl. Phys. 90, 118–122 (2001).

10. Mochalin, V. N., Shenderova, O., Ho, D. & Gogotsi, Y. The properties and
applications of nanodiamonds. Nat. Nanotech. 7, 11–23 (2012).

11. Kortshagen, U. Nonthermal plasma synthesis of semiconductor nanocrystals.
J. Phys. D 42, 113001 (2009).

12. Dato, A., Radmilovic, V., Zonghoon, L., Phillips, J. & Frenklach, M.
Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 8, 2012–2016
(2008).

13. Frenklach, M. et al. Induced nucleation of diamond powder. Appl. Phys. Lett.
59, 546–548 (1991).

14. Vandenbulcke, L., Gries, T. & Rouzaud, J. N. Nanodiamonds in dusty low-
pressure plasmas. Appl. Phys. Lett. 94, 044106 (2009).

15. Raty, J.-Y. & Galli, G. Ultradispersity of diamond at the nanoscale. Nat. Mater.
2, 792–795 (2003).

16. Karczemska, A. et al. Extraterrestrial, terrestrial and laboratory diamonds —
Differences and similarities. Diam. Relat. Mater. 17, 1179–1185 (2008).

17. Sankaran, R. M., Holunga, D., Flagan, R. C. & Giapis, K. P. Synthesis of blue
luminescent Si nanoparticles using atmospheric-pressure microdischarges.
Nano Lett. 5, 537–541 (2005).

18. Ehrenfreung, P. & Charnley, S. B. Organic molecules in the interstellar medium,
comets, and meteorites: a voyage from dark clouds to the early Earth. Ann. Rev.
Astron. Astrophys. 38, 427–483 (2000).

19. Bachman, P. K., Leers, D. & Lydtin, H. Towards a general concept of diamond
chemical vapour deposition. Diam. Rel. Mater. 1, 1–12 (1991).

20. Mucha, J. A., Flamm, D. L. & Ibbotson, D. E. On the role of oxygen and
hydrogen in diamond-forming discharges. J. Appl. Phys. 65, 3448–3452
(1989).

21. Zhou, D., Gruen, D. M., Qin, L. C., McCauley, T. G. & Krauss, A. R. Control of
diamond film microstructure by Ar additions to CH4/H2 microwave plasmas.
J. Appl. Phys. 84, 1981–1989 (1998).

22. Wang, C. S., Chen, H. C., Shih, W.-C., Cheng, H.-F. & Lin, I. N. Effect of H2/Ar
plasma on growth behavior of ultra-nanocrystalline diamond films: The TEM
study. Diam. Rel. Mater. 19, 138–142 (2010).

23. Gruen, D. M. Nanocrystalline diamond films. Annu. Rev. Mater. Sci. 29,
211–259 (1999).

24. Lander, J. J. & Morrison, J. Low energy electron diffraction study of the (111)
diamond surface. Surf. Sci 4, 241–246 (1966).

25. Spitsyn, B. V., Bouilov, L. L. & Derjaguin, B. V. Vapor growth of diamond on
diamond and other surfaces. J. Cryst. Growth 52, 219–226 (1981).

26. Ferrari, A. C. & Robertson, J. Raman spectroscopy of amorphous,
nanostructured, diamond–like carbon, and nanodiamond. Phil. Trans. R. Soc.
Lond. A 362, 2477–2512 (2004).

27. Yoshikawa, M. et al. Raman scattering from nanometer-sized diamond. Appl.
Phys. Lett. 67, 694–696 (1995).

28. Osswald, S., Mochalin, V. N., Havel, M., Yushin, G. & Gogotsi, Y. Phonon
confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 80,
075419 (2009).

29. Hirai, H. & Kondo, K. Modified phases of diamond formed under shock
compression and rapid quenching. Science 253, 772–774 (1991).

30. Cowley, J. M., Mani, R. C., Sunkara, M. K., O’Keeffe, M. & Bonneau, C.
Structures of carbon nanocrystals. Chem. Mater. 16, 4905–4911 (2004).

31. Singh, T., Behr, M. J., Aydil, E. S. & Maroudas, D. First-principles theoretical
analysis of pure and hydrogenated crystalline carbon phases and
nanostructures. Chem. Phys. Lett. 474, 168–174 (2009).

32. Frondel, C. & Marvin, U. B. Lonsdaleite, a hexagonal polymorph of diamond.
Nature 214, 587–589 (1967).

33. Haerle, R., Riedo, E., Pasquarello, A. & Baldereschi, A. sp2/sp3 hybridization
ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron
spectroscopy and first-principles calculation. Phys. Rev. B 65, 045101
(2001).

34. Petit, T., Arnault, J.-C., Girard, H. A., Sennour, M. & Bergonzo, P. Early stages
of surface graphitization on nanodiamond probed by X-ray photoelectron
spectroscopy. Phys. Rev. B 84, 233407 (2011).

35. Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281
(2002).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3618 ARTICLE

NATURE COMMUNICATIONS | 4:2618 | DOI: 10.1038/ncomms3618 | www.nature.com/naturecommunications 7

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


36. Cunningham, G., Panich, A. M., Shames, A. I., Petrov, I. & Shenderova, O.
Ozone-modified detonation nanodiamonds. Diam. Rel. Mater. 17, 650–654
(2008).

37. Butenko, Y. V. et al. Photoemission study of onionlike carbons produced by
annealing nanodiamonds. Phys. Rev. B 71, 075420 (2005).

38. Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O. & Gogotsi, Y. Control of
sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by
selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006).

39. Yeganeh, M., Coxon, P. R., Brieva, A. C., Dhanak, V. R., Siller, L. & Butenko, Y.
V. Atomic hydrogen treatment of nanodiamond powder studied with
photoemission spectroscopy. Phys. Rev. B 75, 155404–155412 (2007).

40. Dai, Z. R. et al. Possible in situ formation of meteoritic nanodiamonds in the
early solar system. Nature 418, 157–159 (2002).

41. Marks, N. A., Lattemann, M. & McKenzie, D. R. Nonequilibrium route to
nanodiamond with astrophysical implications. Phys. Rev. Lett. 108, 075503
(2012).

42. Mariotti, D. & Sankaran, R. M. Microplasmas for nanomaterials synthesis.
J. Phys. D 43, 323001 (2010).

43. Lam, R. et al. Nanodiamond-embedded microfilm devices for localized
chemotherapeutic elution. ACS Nano 2, 2095–2102 (2008).
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Corrigendum: Formation of nanodiamonds at
near-ambient conditions via microplasma
dissociation of ethanol vapour
Ajay Kumar, Pin Ann Lin, Albert Xue, Boyi Hao, Yoke Khin Yap & R. Mohan Sankaran

Nature Communications 4:2618 doi: 10.1038/ncomms3618 (2013); Published 21 Oct 2013; Updated 3 Jul 2014

During the final stages of manuscript preparation, the fast Fourier transform (FFT) filtered images in the insets of Fig. 5a,b were
inadvertently switched and labelled with the wrong crystallographic indices. Our analysis and conclusions remain unchanged by this
error. The correct version of Fig. 5 appears below.
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