A random wave method for detecting phase imbalance in a coherent radar receiver

Zhenni Wang
Michigan Technological University

Alexander Kostinski
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/physics-fp

Part of the Physics Commons

Recommended Citation
Retrieved from: https://digitalcommons.mtu.edu/physics-fp/265

Follow this and additional works at: https://digitalcommons.mtu.edu/physics-fp

Part of the Physics Commons
A Random Wave Method for Detecting Phase Imbalance in a Coherent Radar Receiver

ZHENNI WANG
Department of Electrical Engineering, Michigan Technological University, Houghton, Michigan

ALEXANDER B. KOSTINSKI
Department of Physics, Michigan Technological University, Houghton, Michigan
27 May 1992 and 6 January 1993

ABSTRACT

The question of monitoring the angle between the in-phase (I) and quadrature (Q) channels of a coherent radar receiver is considered in this paper. Random interference-type scattering (e.g., rain echo) is assumed so that the received signal is a random phasor sum. It is also assumed that I and Q voltages have a \((90 + \phi_0) \) phase difference. The effects of nonzero phase imbalance \(\phi_0 \) on the I and Q statistics are examined. Joint I and Q as well as amplitude and phase probability distributions are derived. It is shown that the cross-correlation coefficient at zero lag between I and Q time series is proportional to \(\phi_0 \), which provides a simple algorithm to detect the phase imbalance. This is verified by Monte Carlo simulations.

1. Introduction

Coherent radars are now common in remote sensing, for example, Doppler radar networks used in monitoring precipitation systems (Doviak and Zrnić 1984), and it is a standard procedure to test the receivers for amplitude and phase imbalances. This is often done by employing deterministic (e.g., sinusoidal) signals as described, for instance, in Churchill et al. (1981). It can, however, be convenient to use the scatterer itself for testing I and Q errors. For example, in the case of weather radar one may want to use the weather echo, which is Rayleigh distributed, to detect phase and amplitude imbalances (E. Mueller 1992, personal communication). One can also use simple noises as a Rayleigh source. Another example is to test a spaceborne radar flying over an ocean surface by the ocean signal itself. The signal is Rayleigh distributed in the case of a rough (compared with the wavelength) surface. The detection of the phase imbalance by using only the "random scatterer" echo is the topic of this paper.

Consider in-phase and quadrature detection (I and Q) of a radar signal due to a randomly moving source. Time series of echoes of such a signal obey well-known statistical properties (Doviak and Zrnić 1984; Goodman 1985), namely, both I and Q have Gaussian-distributed probability density functions (pdfs) with zero means and equal standard deviations. This leads to the Rayleigh pdf of the amplitude and uniform statistics of the relative phase (Goodman 1985; Papoulis 1984). This result applies to a wide variety of signals involving random wave sources, ranging from weather observations (Doviak and Zrnić 1984, 50–51), laser speckle and communications (Dainty 1975; Frieden 1983), to photoelectron statistics (Saleh 1978).

The receivers are, however, not perfect, and amplitude as well as phase imbalances often occur. In this note we deal with the fact that I and Q components are never exactly 90° apart. Let us denote the angle between I and Q as \(90 + \phi_0 \), where \(\phi_0 \) is the phase imbalance. The question then is, How does nonzero \(\phi_0 \) affect the statistics of the measured I and Q? In particular, do I and Q still have uncorrelated Gaussian distributions? If not, can the deviations be used to measure \(\phi_0 \)? To answer these questions we find the correlations between I and Q when \(\phi_0 \neq 0 \) and derive the pdfs of the resultant amplitude and phase.

2. Analytical results

We now briefly review the assumptions in the random phasor sum model (Goodman 1985, p. 45; Papoulis 1984) and then derive necessary pdfs with explicit \(\phi_0 \) dependence.

Let \(A \) be the phasor sum of random waves

\[
A = I + jQ = ae^{j\phi} = \sum_{k=1}^{N} A_k,
\]

where the real part \(I \), and the imaginary part \(Q \), are the in-phase and quadrature voltages, respectively. The
phase error for each component (assumed constant) is denoted by \(\phi_0 \). Then the in-phase and quadrature components of \(A \) are

\[
I = \frac{1}{N^{1/2}} \sum_{k=1}^{N} \alpha_k \cos(\phi_k + \phi_0),
\]

\[
Q = \frac{1}{N^{1/2}} \sum_{k=1}^{N} \alpha_k \sin\phi_k,
\]

(2)

where \(\alpha_k / N^{1/2} \) are normalized random lengths, and \(\phi_k \) are random phases of the phasor components.

The following assumptions are made:

1) The amplitude \(\alpha_k / N^{1/2} \) and the phase \(\phi_k \) of the \(k \)th component of \(A \) are statistically independent of each other and all other phasors.

2) The random variable \(\alpha_k \) is identically distributed for all \(k \), with mean \(\bar{\alpha} \) and second moment \(\alpha^2 \).

3) The phases \(\phi_k \) are uniformly distributed on \((-\pi, \pi)\).

Under the above assumptions and Eq. (2), \(I \) and \(Q \) are Gaussian random variables for large \(N \) according to the central limit theorem (Goodman 1985). Note that the mean, variance, and the correlation of \(I \) and \(Q \) are given by

\[
\langle I \rangle = 0,
\]

\[
\langle Q \rangle = 0,
\]

(3)

\[
\langle I^2 \rangle = \frac{1}{N} \sum_{k=1}^{N} \sum_{n=1}^{N} \langle \alpha_k \alpha_n \rangle \times \langle \cos(\phi_k + \phi_0) \cos(\phi_n + \phi_0) \rangle
\]

\[
= \frac{\alpha^2}{2} = \sigma^2,
\]

\[
\langle Q^2 \rangle = \frac{1}{N} \sum_{k=1}^{N} \sum_{n=1}^{N} \langle \alpha_k \alpha_n \rangle \langle \sin\phi_k \sin\phi_n \rangle
\]

\[
= \frac{\alpha^2}{2} = \sigma^2,
\]

\[
\langle IQ \rangle = \frac{1}{N} \sum_{k=1}^{N} \sum_{n=1}^{N} \langle \alpha_k \alpha_n \rangle \langle \cos(\phi_k + \phi_0) \sin\phi_n \rangle
\]

\[
= -\frac{\alpha^2}{2} \sin\phi_0 = -\sigma^2 \sin\phi_0,
\]

(4)

where \(\langle \cdot \rangle \) is the expectation of a random variable.

Thus, the probability density functions of \(I \) and \(Q \) are given by

\[
p(I) = \frac{1}{(2\pi)^{1/2} \sigma} \exp\left(-\frac{I^2}{2\sigma^2}\right),
\]

\[
p(Q) = \frac{1}{(2\pi)^{1/2} \sigma} \exp\left(-\frac{Q^2}{2\sigma^2}\right).
\]

(5)

To specify the correlation of these two random variables, the joint probability density function is considered. Since \(\langle I \rangle = 0 \) and \(\langle Q \rangle = 0 \), the correlation coefficient of \(I \) and \(Q \) is

\[
\rho = \frac{\langle IQ \rangle}{\langle I^2 \rangle^{1/2} \langle Q^2 \rangle^{1/2}} = -\sin\phi_0.
\]

(6)

From Eqs. (5) and (6) the joint probability density function of in-phase and quadrature components is (Goodman 1985)

\[
p(IQ) = \frac{1}{2\pi\sigma^2 (1 - \rho^2)^{1/2}} \times \exp\left[-\frac{1}{2(1 - \rho^2)} \left(\frac{I^2 + Q^2 - 2\rho IQ}{\sigma^2} \right) \right].
\]

(7)

Note that when the correlation coefficient is equal to zero, the in-phase \(I \) and quadrature \(Q \) have independent Gaussian probability densities. The joint pdf of \(I \) and \(Q \) reduces to

\[
p(IQ) = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{1}{2\sigma^2} (I^2 + Q^2) \right].
\]

(8)

To obtain the pdfs of amplitude and phase for the \(\phi_0 \neq 0 \) case, consider the relations between in-phase and quadrature versus amplitude and phase:

\[
\phi = \tan^{-1} \left(\frac{Q}{I} \right),
\]

\[
a = (I^2 + Q^2)^{1/2}.
\]

(9)

The Jacobian of this transformation then is

\[
\|J\| = \left| \begin{array}{cc}
\frac{\partial I}{\partial a} & \frac{\partial I}{\partial \phi} \\
\frac{\partial Q}{\partial a} & \frac{\partial Q}{\partial \phi}
\end{array} \right| = a.
\]

(10)

Therefore the joint pdf of amplitude \(a \) and phase \(\phi \) of a random wave with phase imbalance \(\phi_0 \) is

\[
p(a, \phi) = p(IQ) \|J\|
\]

\[
= \left\{ \begin{array}{ll}
\frac{a}{2\pi\sigma^2 (1 - \rho^2)^{1/2}} \\
\times \exp\left[-\frac{a^2}{2\sigma^2 (1 - \rho^2)} \left(1 + \sin\phi_0 \sin 2\phi \right) \right],
\end{array} \right.
\]

\[
0 \quad \text{otherwise.}
\]

(11)

When \(\rho = 0 \), this reduces to

\[
p(a, \phi) = \left\{ \begin{array}{ll}
\frac{a}{2\pi\sigma^2} \exp\left[-\frac{a^2}{2\sigma^2} \right],
\end{array} \right.
\]

\[
-\pi < \phi < \pi \quad \text{and} \quad a \geq 0
\]

(12)

0 otherwise.
The pdf of amplitude a can be obtained from $p(a, \phi)$ by

$$p(a) = \int_{-\pi}^{\pi} p(a, \phi) d\phi. \quad (13)$$

Some examples of the amplitude pdf with $\sigma^2 = 1$ are shown in Fig. 1.

When the correlation coefficient is zero, I and Q have independent Gaussian probability densities, and the amplitude pdf is

$$p(a) = \begin{cases} \frac{a}{\sigma^2} \exp\left(-\frac{a^2}{2\sigma^2}\right), & a \geq 0 \\ 0, & a < 0, \end{cases} \quad (14)$$

that is, the amplitude is a Rayleigh-distributed variable.\(^1\)

The probability density function of the phase ϕ can be calculated as

$$p(\phi) = \begin{cases} \int_{0}^{\infty} p(a, \phi) da = \frac{\cos \phi_0}{2\pi[1 + \sin \phi_0 \sin 2\phi]}, & -\pi < \phi < \pi \\ 0, & \text{otherwise}. \end{cases} \quad (15)$$

The results of the phase pdf calculations are shown in Fig. 2. When the correlation coefficient is zero, the phase pdf reduces to a uniform distribution.\(^2\)

\(^{1}\) On the other hand, if $\rho = \pm 1$, the amplitude pdf becomes Gaussian distribution for $a \gg 0$.

\(^{2}\) If the correlation coefficient is equal to ± 1, the pdf for phase is

$$p(\phi) = \frac{1}{\pi} \left[\delta\left(\phi - \frac{3}{4} \pi \right) + \delta\left(\phi + \frac{1}{4} \pi \right) \right].$$
therefore, a small phase imbalance implies a small correlation coefficient. Consider \(\phi_0 = 3^\circ \), for example. The corresponding coefficient \(|\rho| \approx 0.05 \).

Thus we must make a statistically reliable measurement of \(|\rho| = 0.05 \) in order to detect \(\phi_0 = 3^\circ \). How many samples does one need to "distinguish" between \(|\rho| = 0.00 \) and \(|\rho| = 0.05 \)? The answer can be computed using the methods found in the statistical estimation literature. For our purposes here it will suffice to point out that the variance of cross-correlation coefficient at zero lag between two Gaussian sequences obeys the following equation (Shumway 1988, 22–28):

\[
\text{var}[^{\text{IQ}}] \sim \frac{1}{N},
\]

where \(N \) is a number of samples and \(\text{var} \) denotes the variance. Thus, one can simply demand that
\[
\text{var}[^{\text{IQ}}]^{1/2} \ll |\rho| = 0.05 = 1/20.
\]

This implies that
\[
\frac{1}{N^{1/2}} \ll \frac{1}{20} \quad \text{or} \quad N \gg 20^2 = 400.
\]

In general, \(N \gg |\rho|^{-2} \). We see that even for \(\phi_0 = 0.5^\circ \), \(N \) must satisfy \(N \gg 100^2 = 10000 \), which is quite feasible.

Indeed, a typical radar pulse is on the order of a microsecond \((10^{-6} \text{ s}) \), so that \(10^6 \text{–} 10^8 \) samples, along with the correlation coefficient, can be obtained in a few seconds (Mueller 1992, personal communication). It seems reasonable therefore to expect that the measurement of the IQ cross-correlation coefficient at zero lag can provide an estimate of the phase imbalance \(\phi_0 \) as small as a fraction of a degree. Figure 6 shows typical estimates of \(\rho \) as a function of number of samples. Although just over \(10^4 \) samples are shown, convergence is achieved in all three cases. The figure also demonstrates that for larger values of phase imbalance the estimate of \(\rho \) converges with fewer samples.

Finally let us examine briefly the impact of the phase imbalance on Doppler velocity estimation, which is of interest in the weather radar field. One can start with the definition \(\omega_d = d\gamma/dt = -4\pi v_r/\lambda \), where \(\omega_d \) is the Doppler shift, \(v_r \) is the radial component of velocity, and \(\gamma \) is the absolute phase in \(I \) and \(Q \) components (Doviak and Zrnić 1984). According to our assumptions, \(\gamma \) in one of the channels is corrupted by a constant \(\phi_0 \). In so far as \(\phi_0 \) remains constant, Doppler measurements are not affected by the phase imbalance. When \(\phi_0 \) fluctuates in time, one needs to know the pdf of such "phase jitter" (Doviak and Zrnić 1984, p. 163). A Gaussian pdf for the fluctuating part is often a reasonable assumption (Passarelli and Zrnić 1989), and, in that case, one can still use the phase histogram to estimate \(\phi_0 \). Indeed, Gaussian phase jitter produces a peak at zero while the phase imbalance causes peaks at \(\pm \pi/4 \), \(\pm 3\pi/4 \), and the two effects can be separated.
5. Summary

In this note we have considered the effects of the phase imbalance \(\phi_0 \) on the \(I \) and \(Q \) statistics. A relation between the correlation coefficient and the phase imbalance was derived [Eq. (6)] and it was shown with statistical arguments and through the numerical examples that the \(IQ \) cross-correlation coefficient measurement may provide a practical way to estimate \(\phi_0 \). Expressions for the joint \(I \) and \(Q \) pdf as well as marginal amplitude and phase pdfs have also been obtained as functions of the phase imbalance \(\phi_0 \) and it was shown that the phase pdf develops peaks at \(\pm \pi/4, \pm 3\pi/4 \) as the correlation coefficient increases. Numerical illustrations and Monte Carlo simulations have also been given.

Acknowledgments. We would like to thank Dr. Eugene Mueller of the CSU/CHILL Radar Facility who suggested the problem considered in this note and provided many helpful comments.

Useful discussions with Dr. Thomas Drummer of the MTU Mathematical Science Department and with Dr. Timothy Schulz of the Electrical Engineering Department are also gratefully acknowledged. We also wish to thank anonymous reviewers for exceptionally thorough and constructive comments that resulted in several important corrections.

Partial support for this work (ABK) has been provided by the NSF Grant ATM-9116075.

REFERENCES

