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ABSTRACT

In recent studies it is shown that in variable rain the spatial distribution of drops is not Poissonian. However,
these past studies were limited to 1-min drop counts, which likely correspond to spatial scales of a few hundred
to several hundreds of meters.

In this work results based on 1-s drop counts using a video disdrometer are reported. It is shown that the
clustering of raindrops previously found during intervals of 1 min also occurs during 1 s as well in convective
rain. These latter temporal scales likely correspond to spatial features having dimensions from only a few to
tens of meters. Combined with the authors’ earlier results, these findings suggest that clustering of raindrops
and meteorological variability span the range of scales from at least as small as a few meters to several hundreds
of meters in convective precipitating systems. Consequently, non-Poissonian clustering reported in previous
work (analyzing data accumulated over hours using 1-min drop counts) cannot be dismissed as artifacts in the
data or errors in the processing. These studies appear to reflect accurately the true probabilistic character of
rainfall.

Moreover, it is shown that the clustering is more prevalent and occurs over longer coherence times for larger
than for smaller drops. An argument is given suggesting that the clustering of larger drops is likely associated
with the larger scales of convection, whereas the clustering of smaller drops is likely more strongly influenced
by smaller-scale turbulence. Furthermore, in convective rain it appears that the coherence times of drop size
distributions will often be governed by the smaller drops. Using current technology, this will make it very
difficult, at times, to adequately sample the larger drops in variable rain without mixing observations from more
than one drop size distribution at the smaller sizes. Nevertheless, care must be taken since oversampling destroys
information just as effectively as undersampling misses it.

1. Introduction

One of the many pleasures provided by a summer
thunderstorm is the chance to observe curtains of rain
weaving complex patterns aloft before splashing to their
destiny like so many snakes slithering across the pave-
ment. Although aesthetically pleasing, such patterns are
the revealing expressions of both the complexity and
the wide variety of scales that must be characteristics
of rainfall in clouds.

In some sense this is not too surprising given the
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E-mail: jameson@rjhsci.com

stochastic nature of clouds (Jameson et al. 1998) and
rain. Yet simply being random is not necessarily suf-
ficient to explain all of the observed variability. In fact
some stochastic processes actually tend to smooth out
such fluctuations while others actually amplify them.
Indeed it is often assumed, for example, that the number
of raindrops of a given size striking an area in some
time interval (i.e., the flux) can be described by Poisson
statistics. Moreover, it is implicitly assumed, often sim-
ply because of necessity, that the fluxes at different drop
sizes are also statistically independent.

Recently, however, it is shown that neither of these
assumptions accurately reflects the true probabilistic na-
ture of variable rain. That is, the spatial and temporal
distributions of drops of one size often are not Poisson
distributed because the fluxes at successive intervals and
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neighboring volumes are statistically correlated (Kos-
tinski and Jameson 1997). Furthermore, the concept of
size correlation is introduced. That is, the fluxes of drops
having different sizes are also correlated so that they
cannot be treated as independent random variables
(Jameson and Kostinski 1998). As a result, convective,
variable rain shows substantial, non-Poissonian fluctu-
ations, whereas fluctuations in steadier, stratiform rain
are more Poissonian (Kostinski and Jameson 1998).

Why? Because not only are the instantaneous fluxes
themselves random variables, but so are their mean val-
ues (often referred to as the ‘‘meteorological variabil-
ity’’). This led Kostinski and Jameson (1997) to propose
that the statistics of the flux of drops at a single size
can be described by a doubly stochastic mixture of Pois-
son distributions each characterized by some mean value
having a frequency of occurrence described by a prob-
ability density function (pdf ) f (k). The variance of such
a distribution is then the sum of the ‘‘statistical’’ vari-
ance of a Poisson distribution having the observed
‘‘global’’ mean, m, and the ‘‘meteorological’’ variance
associated with the pdf of the mean values contributing
to m. Since rain consists of, say, M different sizes of
drops, these ideas naturally extend to the characteriza-
tion of rain as a doubly stochastic Poisson process (Pois-
son mixture) of M correlated random variables (fluxes)
each having its own f (k) and its own coherence time
(Jameson and Kostinski 1998).

These conclusions, however, are based upon mea-
surements using the Joss–Waldvogel disdrometer (Joss
and Waldvogel 1967) that typically provides counts of
drops at different sizes every minute. For a translation
speed of a shower of say 5–20 m s21, this interval rep-
resents measurements over distances ranging from 300
to 1200 m. It is natural to wonder, then, about what
might be happening over shorter distances.

This interest is not merely academic, however. Shorter
scales are important for understanding the effects of
small-scale precipitation loading on cumulus dynamics,
for understanding the onset of multiple scatter of mi-
crowaves passing through rain, and for understanding
the effects of precipitation fluctuations on the signal
statistics of all scanning remote sensing devices for mea-
suring precipitation, from lasers to radiometers (Jame-
son and Kostinski 1996). Moreover, because measure-
ments of drop counts on briefer intervals require dif-
ferent instruments, such observations act as an inde-
pendent test of earlier concepts free from any
idiosyncracies unique to the Joss–Waldvogel disdro-
meter (e.g., see Sheppard and Joe 1994).

The instrument used in this study is the University
of Iowa, Iowa Institute of Hydraulic Research video
disdrometer (see http://ias.tu-graz.ac.at/distro.html for
further information). Briefly, two light sources generate
orthogonal light sheets that are projected through narrow
slits onto two line scan cameras—that is, horizontal,
linear arrays of light sensitive detectors sampled on the
order of 30 ms to yield a continuous data stream having

no ‘‘dead’’ times. The optics are designed so that seen
through the camera lens, the slits appear evenly and
brightly lit. Particles falling through the beams of light
appear as dark silhouettes against this background. The
light sources and cameras form the sensor unit that is
then exposed to the precipitation. Thus, the operation
is similar to a flatbed scanner except that the hydro-
meteors move rather than the line-scan camera and light
sheet. The effective sample area is approximately 10 cm
3 10 cm or twice that of a Joss–Waldvogel disdrometer.
The time series of particle images are then processed
to yield the location (to within 0.2 mm horizontally),
size, and other parameters describing the particles. This
information is normally integrated from 15 s to hours
to yield other quantities such as rainfall rate. However,
for our purposes, we instead return to the original stored
data and retrieve the recorded time of arrival to the
nearest ms as well as the size of each drop to form a
time series of the number of drops per second in bins
0.25-mm wide in 0.25 steps from 0.625 mm up to what-
ever the largest size happens to be. Thus, it is possible
to analyze the statistics of 1-s counts without the mask-
ing effects of ‘‘ringing’’ and dead times encountered
when using the Joss–Waldvogel disdrometer (Sheppard
and Joe 1994).

Using these measurements it is shown below that the
characterization of rain derived in Parts I and II of this
series of articles appears valid even down to the 1-s
times. Moreover, drop clustering is apparent even on 1-
s scales associated with distances of a few to tens of
meters suggesting that a more complete resolution of
physical drop size distributions may require even greater
temporal resolution over even larger areas.

2. Drops of single size

In this study, two brief convective rain events are
presented, one lasting 201 s (;3 min) and the other 773
s (;13 min). The shorter event is associated with a mean
rain rate of about 13 mm h21 with values exceeding 40
mm h21 for 40 s during the peak rain intensity, whereas
during the longer rain, the average rate was 3 mm h21

with values exceeding only 8 mm h21 for 50 s during
the maximum intensity. The time series of drop counts
over a representative range of drop sizes are shown in
Fig. 1. During the briefer shower (Fig. 1a) not only are
features lasting less than 10 s evident, but there are
several 1-s structures that appear simultaneously at sev-
eral different drop sizes. Such short duration features
are also evident during the longer rain event (Fig. 1b)
as well. Thus, there are suggestions of correlated struc-
ture on scales approaching our temporal resolution, just
as was found for the 1-min measurements using the
Joss–Waldvogel disdrometer (Kostinski and Jameson
1997).

To explore this possibility, histograms of drop counts
during these two periods are computed. In Part I recall
that the histograms of drop counts using 900 one-minute



84 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 1. Stacked time series of drop counts per second measured
by the University of Iowa video disdrometer during the passage of
(a) a brief 200-s convective shower for the indicated four different
drop sizes and (b) a more extended rain event lasting 773 s.

samples are often consistent with the geometric distri-
bution given by

k1 m
P(k) 5 , (1)1 21 1 m 1 1 m

where k and m are the number and the global (long-
term) mean number of drops per time interval, respec-
tively. The beautiful feature of this distribution is that
it involves only a single parameter, the mean value (m),
readily measured during any counting experiment.

As explained in Part I, (1) originates from the char-
acterization of the counts of drops of one size as a
Poisson probability mixture given by

k` ` k exp(2k)
P(k) 5 P(k | k) f (k) dm 5 f (k) dk ,E E k!0 0

(2)

where the vertical bar denotes conditional probability
and k is the mean corresponding to each patch of rain-
drops contributing to the mixture as described by the
probability density function f (k). This pdf may be con-
sidered to represent the distribution of ‘‘meteorological
variability.’’ When f (k) is given by the exponential dis-
tribution

1 k
f (k) 5 exp 2 , (3)1 2m m

Eq. (1) follows. Although it is perhaps not surprising
that mixing as described by (2) is occurring when com-
bining 900 min (15 h) of data over widely varying me-
teorological conditions (Kostinski and Jameson 1997),
we show next that (1) also describes observations over
the much shorter time periods from 13 down to 3 min.

Specifically, Figs. 2a and 2b are the histograms, geo-
metric fits, and Poisson pdf’s (the latter two having the
same mean value m as measured) corresponding to the
longer rain event for both the smallest drop size as well
as for the largest drop size occurring at any reasonable
frequency. It appears that over only 13 min (as opposed
to 15 h in Part I), the histograms are well represented
by a geometric distribution at the smaller and larger
sizes although the Poisson pdf also appears adequate in
Fig. 2b. Furthermore, Figs. 2c and 2d also show that a
geometric distribution even describes the histograms
over a 3-min interval. Thus, the results in Part I are not
peculiar to having used measurements over 900 min.
Rather the meteorological variability observed previ-
ously over hours is actually also occurring even down
to intervals of seconds.

To see this, the two-point autocorrelation function,
h(t), is computed at several different drop sizes for these
two periods. Briefly, in Part I it was shown that

2[k(t)k(0) 2 m ] k(t)k(0)
h(t) [ 5 2 1. (4)

2 2m m

When h(t) is nonzero, there is clustering and P(k) de-
viates from the Poisson distribution. However, when
h(t) is zero, there is no clustering and Poisson statistics
apply.

Figure 3 shows that over intervals of one to several
seconds and at all sizes during both rain events, drop
counts are correlated and, therefore, non-Poisson dis-
tributed. That is, even at 1 s as opposed to the 1-min
temporal resolution in Part I, raindrop clustering and
deviations from the Poisson distribution are still occur-
ring in variable rain. Raindrop clustering, then, is not
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FIG. 2. Probability density functions [P(k)] of observed drop counts per second (k) for the longer rain event [(a), (b)] and for the briefer
rain event [(c), (d)] for the indicated size bins. Geometric fits and Poisson pdf’s using the overall mean counts per second (m) are plotted.
Even during the brief rain, the histograms of the counts are well represented by the geometric distribution at small and large sizes although
a Poisson pdf does almost as well at large sizes too because of the small number of drop counts.

just a phenomena over hundreds of meters (Part I); it
even occurs over a few to tens of meters as well.

It is also apparent, however, that the statistical char-
acters of the two rain events are different. Specifically,
larger correlations appear during the 3-min rain sug-
gesting that conditions are probably more variable then
than during the 13-min rain. In particular, although the
smallest drops in Fig. 3 are highly correlated for several
seconds during the more intense 3-min rain, they are
only weakly correlated for only a few seconds during
the 13-min rain. Weaker correlations can be expected

in so-called steadier rain (Kostinski and Jameson 1998).
As previously pointed out in Parts I and II, sometimes
drops of one size need not be clustered at all. That is,
under less variable conditions, there can be interludes
when a distribution of drops may be nearly Poisson over
periods of hours. Nevertheless, in the more variable rain
associated with convection (Kostinski and Jameson
1998), at least, it now appears that clustering occurs not
just over distances of hundreds of meters but also over
only a few to tens of meters as well.

Furthermore, in Parts I and II, it is shown that on 1-
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FIG. 3. The two-point autocorrelation function of drop counts per
second for (a) the 201-s rain event and (b) for the 773-s rain event
for the indicated sizes. The dashed line at zero indicates complete
statistical independence as expected for a Poisson distribution. Note
the enhanced clustering even down to the 1-s lag.

FIG. 4. The two-point cross correlation of raindrop counts between
drops at the indicated diameters and (a) 2.625-mm size for the briefer
rain and (b) 2.125 mm during the longer rain.

min timescales not just drop counts (concentrations) at
one size are clustered (correlated), but that concentra-
tions at different sizes are also correlated. This is con-
firmed in the next section even over intervals as brief
as 1 s. The implications with regard to the measurement
of physical drop size distributions of interacting, cor-
related drops are then considered as well.

3. Correlations among drops of different sizes

In order to measure cross correlation of counts be-
tween drops of two different sizes, Jameson and Kos-

tinski (1998) modified (4) to become the two-point cross
correlation given by

[k (0)k (t) 2 m m ] k (0)k (t)1 2 1 2 1 2V(t) [ 5 2 1, (5)
m m m m1 2 1 2

where k1, m1 and k2, m2 correspond to two different drop
sizes. Just as for h(t), V(t) is also zero if the two counts
are statistically independent.

Figure 4 illustrates V(t) between one fixed drop size
and other drop sizes for the two rain events. During the
201-s period (Fig. 4a), all the drop sizes appear to be
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FIG. 5. Contour plots of the two-point correlation matrix for all
drop size pairs for a time lag of 10 s during the (a) briefer and (b)
longer rain events. Note the tendency toward greater correlations as
drop sizes increase. The domain is restricted to those sizes having
counts sufficient for meaningful correlation calculations.

correlated to varying degrees at least down to a rather
well-defined coherence time of about 40 s. This is con-
sistent with results in Part II during the passage of a
thunderstorm when the coherence time appears to be
less than 1–2 min—that is, near the resolution limit of
the Joss–Waldvogel disdrometer. Obviously, the nomi-
nal 1-min sampling interval of a Joss–Waldvogel dis-
drometer significantly exceeds the coherence time in
Fig. 4a. It seems likely, then, that in many instances
during convective rain, 1-min temporal resolution may
be insufficient to resolve rainfall structure.

During the longer, 13-min rain event, however, the
characteristics of V(t) are considerably different (Fig.
4b). Specifically, the cross correlation not only appears
to be weaker, but the coherence times also are much
more variable functions of drop size. For example, the
smallest drops are hardly correlated at all with the larg-
est size drops and then only briefly over periods lasting
on the order of a few seconds. On the other hand, the
larger drops not only appear more correlated, but the
coherence times extend over several tens of seconds.

To illustrate this more clearly, we contour the two-
point cross-correlation matrix between all drop pairs
corresponding to a time lag of 10 s for the two rain
events (Fig. 5). Obviously, the correlations are larger
during the 200-s rain event (Fig. 5a) than for the 770-
s rain (Fig. 5b). Because h is a decreasing function of
distance and time, Fig. 5 suggests that the spatial extent
of rain patches is likely greater during the briefer rain.
On the other hand, both plots show increasing corre-
lation with increasing drop size.

In addition, though, we can form a matrix of coher-
ence times for the cross correlations for all the different
drop size pairs by noting the times when V(t) falls be-
low, say, 0.3. These are plotted in Fig. 6. Although Fig.
5 shows greater clustering during the 3-min rain, Fig.
6 shows that for the larger drops the coherence times
of this clustering were considerably briefer than during
the 13-min rain. However, at smaller drop sizes the op-
posite is true—that is, smaller drops were associated
with longer coherence times during the briefer as com-
pared to the longer rain. During both rain events, how-
ever, larger drops exhibit longer coherence than do the
smaller drops.

So what do these observations suggest? First, with
regard to the characterization of the two rain events, it
appears that the 3-min rain is more clustered and vari-
able than the 13-min rain. Moreover, the clusters are
more coherent but of shorter duration like the waves of
raindrops often seen splashing across the pavement dur-
ing a thunderstorm. The 13-min rain, on the other hand,
appears to consist perhaps of two superimposed com-
ponents—namely, a ‘‘background’’ of nearly steady rain
of smaller drops with clusters of larger drops passing
through and lasting up to a minute or more.

In both events, though, the larger drops always show
greater correlation of longer duration than do the smaller
drops. (This same feature is also evident on 1-min time-

scales in Fig. 3 in Part II.) Although we cannot yet say
precisely why this should happen, one reasonable ex-
planation might be that the larger drops are more closely
associated with larger-scale convection. This should not
be too surprising. Larger, more intense convection tends
to be more moist (less entrained) and better able to keep
drops aloft over longer periods so that they can grow
to larger sizes. Furthermore, larger drops do not respond
quickly to small-scale wind fluctuations (Beard and
Jameson 1983). In contrast smaller drops are not only
more easily created on many scales of convection, but
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FIG. 6. Contour plots for all drop pairs of the matrix of coherence
times required for the two-point cross-correlation function to fall
below a threshold 0.3. Note the tendency for longer coherence times
as the drop sizes increase.

they also respond more readily to smaller-scale wind
fluctuations and turbulence. Thus, one might anticipate
that smaller drops would tend to show reduced cluster-
ing of shorter duration, whereas the opposite would be
true for the larger drops. Whatever the explanation,
however, these differences suggest interesting implica-
tions with respect to the measurement of drop size dis-
tributions as discussed in the next section.

4. On the measurement of drop size distributions

In Part II it is argued that there are two types of drop
size distributions. The first is the ‘‘physical’’ distribution
of correlated concentrations among different sizes of
drops resulting from the interactions among those drops.
The second is an ‘‘average’’ distribution described by
a mathematical expression representing the relation
among uncorrelated concentrations at different sizes av-
eraged over many different physical distributions.

In both cases, however, the drop size distribution is
defined using mean fluxes at the different sizes observed
over a measurement interval, T, consisting of many sam-
ples each collected during interval t K T. For physical
drop size distributions it is envisioned that the mean
concentration at each drop size remains constant during
a coherence interval, t , during which the size distri-
bution remains unchanged. We call this the drop size
distribution coherence time. Moreover, when t K T K
t , then the distribution of counts remains Poisson at all
sizes. In reality, however, often T k t . The distribution
of drop counts is then no longer Poisson but something
broader. When the meteorological variability [i.e., the
variance of f (k)] is substantial, such as for an expo-
nential distribution, then the distribution of counts may
become very broad as illustrated by the geometric dis-
tribution (see Fig. 2). On the other hand, when the vari-
ability is less, the distribution of counts will be narrower
and may often be well represented by a negative bi-
nomial distribution. [For greater elaboration see the dis-
cussion in section 2 and Fig. 12 in Part I. Also note that
the last term in (10) in Part I should be [h/(1 1 h))k.]

Ironically, because of the usual paucity of larger
drops, measurement intervals are often selected in order
to capture more of these drops for a ‘‘better’’ sample.
Figure 6, however, suggests that this strategy may some-
times be in error because the coherence time of a phys-
ical drop size distribution (t above) is determined by
the shortest coherence time of all the fluxes of all the
different sizes contributing to the drop size distribution
(Jameson and Kostinski 1998). This is frequently de-
termined by the smaller and not the larger drops (Fig.
7). Thus, if t K t K T, the distribution of counts may
indeed be more Poisson for those larger sizes (provided
T , tL, where tL is the coherence time of the larger
drops). On the other hand, the distribution of counts
may end up being very much broadened at smaller sizes
because of mixing (i.e., T k tS, where tS 5 t is the

coherence time of the smaller drops). This is well il-
lustrated in the next figure.

Using a coherence time of approximately 43 s (see
Fig. 4), the histograms of drop counts for one period
(87–129 s) during the 3-min rain are shown in Fig. 8.
In addition, a negative binomial distribution is also fit
to the observed histograms for three different drop sizes.
Recall that the larger the shape parameter, m, for a neg-
ative binomial distribution, the closer it is to a Poisson
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FIG. 7. The autocorrelation coherence times (Fig. 6) plotted as
functions of drop diameter for the two rain events. The longer event
shows much stronger dependence on drop diameter than does the
shorter event consistent with Figs. 3 and 6.

→

FIG. 8. Histograms of the drop counts plotted as functions of the
number of counts normalized by the mean value for a 43-s time block
during the brief rain event. Fits for negative binomial distributions
are also plotted for the indicated shape parameter, m. Plots are for
small (a), medium (b), and large (c) drop size categories. Notice the
broadening of the distribution as the size decreases even though the
number of drops counted increases.

distribution [see Kostinski and Jameson (1997) for elab-
oration].

During this interval, 181 drops are observed at the
largest drop size, whereas 304 and 789 are counted at
the successively smaller sizes, respectively. In spite of
the much larger number of drops at the smallest size,
it is indeed the distribution of the largest drop size that
is closer to Poissonian in appearance. That is, the dis-
tribution at the smallest sizes is actually broader (m 5
3) than is that at the largest size (m 5 9) even though
over four times as many drops are counted! Why? Be-
cause t K tS K tL , T (Fig. 3a) so that there is more
mixing,—that is, more different physical drop size dis-
tributions are contributing to the smaller sizes than to
the larger size. However, in this example, 43 s still ap-
pears a bit too long (i.e., T . tL) since even at the
largest size there is evidence of broadening of the his-
togram (Fig. 8c) beyond a pure Poisson distribution.
Hence, it appears that even briefer measurement inter-
vals (and, consequently, in order to achieve adequate
sampling, shorter sample intervals over larger areas)
may be required in order to avoid mixing. It is clear
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FIG. 9. Drop flux distributions for four consecutive time blocks
(samples) each 43 s long during the brief rain event indicating the
significant changes that can occur even during 3 min. The solid lines
correspond to exponential fits at each time block.

FIG. 10. Accumulated total fractional deviation from the exponen-
tial fits (Fig. 8) of flux averages as a function of measurement interval.
Minima occur at different times ranging from 34 to 60 s.

that 1-min intervals are totally inadequate for resolving
the rapid changes occurring during the 3-min rain in
this example as well as in many convective rain events.

This can be seen by calculating a different distribution
for each of the four successive 43-s time blocks during
the 201-s rain as illustrated in Fig. 9. In this example,
the solid lines represent exponential fits to the 43-s av-
erage fluxes for each block.1 Obviously, even in a period
as brief as 3 min there can be significant changes in the
drop size distribution, changes that apparently at least
can be partially resolved over 43 s using these 1-s mea-
surements.

Although the variability around each exponential fit
is reasonably small, the breadths of the distributions in
Fig. 8 suggest that we have only partially separated the
distributions. More complete resolution of the drop size
distributions probably requires an even briefer mea-
surement interval at even finer sample resolution over
a larger sample area. After all, residual mixing still ap-
pears to occur in Fig. 8 even for a subminute, ‘‘fixed’’
43-s coherence time. In fact, there is evidence that the
coherence time itself changes even over only 201 s.

To see this, for each of the four time blocks illustrated
in Fig. 9 we compute the absolute magnitude of the
deviation (|ni 2 ^n& i|) of the observed average number

1 While drop size distributions are normally computed for drop
concentrations, we avoid uncertainties in the conversion from flux to
concentration here by simply computing flux distributions directly.
It is shown in Part III of this series (Kostinski and Jameson 1998)
that the forms of the ‘‘flux’’ and ‘‘concentration’’ distributions are
nearly identical. However, for our purposes here either distribution
is sufficient.

of counts, ni(t), from the average number expected for
each exponential fit ^n&i at each drop size and for each
measurement interval of length t. We then normalize
each of these deviations by ^n& i (i.e., |ni(t) 2 ^n&i|/^n&i)
and sum these quantities over all the drop sizes as func-
tions of t so that D(t) 5 Si (|ni(t) 2 ^n& i|/^n& i. These
accumulated fractional deviations, then, serve as overall
measures of how closely the averaged observations
match the exponential fit.

These are illustrated in Fig. 10. In all four cases there
is a minimum in D(t), but these minima do not all occur
at 43 s. Rather in going from the first to fourth time
block, they occur at 34, 46, 58, and 43 s, respectively,
suggesting that the coherence time of the drop size dis-
tribution is likely changing as well.

Moreover, it is also clear that overaveraging produces
increasing deviations from the exponential fit, whereas
underaveraging also leads to greater deviations. This
appears consistent with the notion that if the averaging
period becomes too large, it exceeds the coherence time
of the distribution leading to mixtures of physical dis-
tributions and increased uncertainties in the character-
ization of the drop size distributions themselves (Jame-
son and Kostinski 1998). Although previously shown
to be true for sampling periods of several minutes in
Part II, these data now indicate that the same is occurring
even over times as small as tens of seconds in variable
rain. Oversampling destroys information just as effec-
tively as undersampling misses it.

5. Summary and additional comments
One of the significant findings of this work is that

the results previously uncovered using 1-min samples
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from a Joss–Waldvogel disdrometer (Kostinski and
Jameson 1997; Jameson and Kostinski 1998) over 15 h
apply just as aptly to 1-s measurements using a video
disdrometer over tens of seconds. Consequently, the re-
sults reported in Parts I and II cannot be dismissed as
artifacts in the data or errors in the processing. These
studies appear to reflect accurately the true probabilistic
character of rainfall.

Specifically, we show that at most drop sizes in vari-
able rain the clustering of drops is occurring even down
to 1-s intervals likely corresponding to spatial scales of
a few to tens of meters, a significant reduction from the
few hundred to the several hundreds of meters reported
in our previous studies. This is consistent with obser-
vations of ‘‘waves’’ or ‘‘sheets’’ of rain meandering
across pavement during thunderstorms. Thus, fluctuat-
ing mean concentrations as described by f (k) are per-
vasive in variable rain over many if not all scales.

Beyond simply reaffirming these previous results,
however, the two-point correlation matrix is used here
to show that larger drops are more strongly correlated
over longer coherence times not only among drops of
the same size but also among drops of different sizes
than are the smaller drops. It is suggested that this occurs
in part because the larger drops are likely associated
with larger scales of convection, whereas the smaller
drops are more strongly affected by smaller-scale tur-
bulence.

In addition, the briefer coherence times of the smaller
drops means that the coherence times of drop size dis-
tributions (Jameson and Kostinski 1998) is controlled
not by the larger (as often assumed) but rather by the
smaller drops. Therefore, the measurement of physical
size distributions of interacting drops likely requires
even briefer measurement intervals having finer sam-
pling resolution (say on the order of 0.1 s) over larger
areas (on the order 1000 cm2) than used in this study
for more satisfactory resolution of physical drop size
distributions. This requires instrumentation not cur-
rently available. Yet it is these distributions that should
be compared to results from numerical experiments that
never attempt to include f (k).

Finally, based on this study it appears that in variable
rain, 1-min Joss–Waldvogel disdrometer samples will
often be incapable of resolving physical drop size dis-

tributions. Thus, up to now many reported measure-
ments of drop size distributions in thunderstorms, for
example, likely represent mixtures of several physical
distributions. Although such mixing is not necessarily
always a problem, it must be remembered that such
distributions may never have existed as real physical
entities but instead represent only some average con-
dition. In subsequent simulations and calculations, then,
it is important that the conditions of the simulations be
consistent with the averaging used to derive the drop
size distributions if the calculations are to yield phys-
ically meaningful results.
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