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The texture of clouds 

A. R. Jameson 

RJH Scientific, Inc., Alexandria, Virginia 

A. B. Kostinski 

Department of Physics, Michigan Technological University, Houghton 

R. A. Black 

National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, 
Miami, Florida 

Abstract. Using a precise definition of clustering, it is shown that in two tropical cumulus 
clouds, droplets appear to be bunched over distances ranging from at least a kilometer or 
more down to several centimeters. A statistical framework is proposed for quantifying 
clustering in terms of a Poisson probability mixture. While these observations require 
further substantiation in many different clouds, droplet clustering may play a role in 
diverse phenomena from the coalescence growth of raindrops to the scattering of 
radiation by clouds. 

1. Introduction 

It is widely assumed that cloud droplets are distributed in 
space as evenly as randomness permits, i.e., in accordance with 
Poisson statistics [Cornford, 1967; Rogers and Yau, 1989, p. 134; 
Young, 1993, p. 181]. This is not an innocuous assumption, 
however. Current understanding of how cloud droplets evolve 
into rain and our knowledge of the radiative properties of 
clouds are based upon an assumption of a Poisson distribution 
of droplets. Even within the Poissonian constraint, however, it 
was realized that the spatial distribution of droplets is "even" 
only in an "average" sense and that "randomness" produces 
fluctuations in the droplet concentrations from one location to 
another [Telford, 1955]. This simple concept appeared to ex- 
plain the more rapid coalescence of droplets into rain than 
could be understood using calculations based upon determin- 
istic droplet concentrations [Telford, 1955; Twomey, 1964]. 
Nevertheless, it was demonstrated in subsequent stochastic 
collision-coalescence calculations that such fluctuations, if 
Poissonian, were too small to have any significant effect 
[Gillespie, 1972, 1975] on the speed of raindrop evolution. To 
quote Young [1993, p. 185], 

It may be concluded that the differences due to the stochastic 
nature of the collection processes are negligible and that the cloud 
behavior may be adequately described by the quasistochastic 
treatment. 

However, what would happen if concentration fluctuations 
(i.e., variances) were super-Poissonian? 

Using holographic measurements in fog, Kozikowska et al. 
[1984] found that the mean distance between droplets showed 
no evidence of significant droplet clustering or deviations from 
Poisson statistics. On the other hand, in convective cumulus 
clouds, Paluch and Baumgardner [1986] found evidence of 
"patchy mixing" and clustering on scales of 10 m and less. 
Using forward scattering optical cloud probes, Baker [1992] 
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reported non-Poissonian deviations in convective cumulus clouds 
even down to scales of several centimeters, an effect he attributed 
to small-scale turbulence. These results suggest that on scales of 
several centimeters to several meters, droplet clustering asso- 
ciated with deviations from a Poisson distribution may occur in 
the turbulent environments of convective clouds. However, 
such conclusions are still considered far from proven by many 
cloud physicists (see the discussion by Pruppacher and Klett 
[1997, pp. 27-30], and no stochastic framework for describing 
clustering appears in the cloud physics literature. 

Moreover, because cloud physicists are still primarily con- 
cerned with clustering on very small scales, the question of 
clustering on longer scales remains open to study. Yet, clus- 
tering on longer scales may affect other cloud properties. For 
example, the optical density of clouds can be characterized by 
the mean free path of a photon, typically of the order of several 
tens to hundreds of meters. These scales, then, are the ones 
most relevant to cloud radiation [Cahalan, 1989]. Indeed, it 
appears that the radiative properties of clouds may depend 
upon how the droplets are distributed in space [e.g., Cahalan et 
al., 1994]. If so, a knowledge of the spatial distribution of cloud 
droplets may become important for illuminating the enigmatic 
role clouds play in the radiation budget of the Earth [Ra- 
manathan et al., 1995]. 

As a step toward addressing such questions, the much more 
modest objective of this paper is simply to explore further the 
spatial structure of droplet concentrations in clouds by com- 
paring our results with previous observations and by extending 
observations to longer scales. It is shown below that in conflict 
with a Poisson distribution, droplets in two tropical cumulus 
clouds are often "clustered" apparently on many scales. A statis- 
tical framework is proposed for describing such clustering. 

2. What Is Clustering? 
To begin, however, it is first necessary to give a precise 

definition of what is meant by "clustering." (The reader is 
referred to Kostinski and Jameson [1997] for a more detailed 
discussion.) Clustering is found over a wide range of physical 
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phenomena. In all cases, clustering is identified as deviations 
from expectations for a Poisson distribution. 

This is not by accident because the Poisson distribution 
permits the uniform, completely uncorrelated, random distri- 
bution of events (in this case, droplets in space). One of the 
assumptions behind the Poisson distribution is that counts 
(events) in nonoverlapping volumes (time intervals) are statis- 
tically independent. Using the two-point correlation function, 
Kostinski and Jameson [1997] show that it is the violation of this 
condition that leads to deviations from the Poisson distribution 

and therefore to the clustering of raindrops. A more physical 
interpretation of this discussion is given below. 

If clustering exists, it must be demonstrated that physical 
variations in concentration (number per unit volume) exceed 
those anticipated for a Poisson distribution, as discussed 
above. Specifically, to see if cloud droplets are clustered, one 
begins with the product of the number of droplets in two 
identical volumes separated by a fixed distance • and then 
subtracts the square of the average value computed over the 
entire volume under study, T, for an ensemble of several such 
pairs in øV. That is, let us consider the quantity 

q,(f) = (a(0)a(f)>- (1) 

where k(0) and k(•) are the number of droplets in two iden- 
tical volumes separated by distance •, /x is the mean number 
over all of øV, and the angle brackets denote an ensemble 
average. If the number of droplets in øV is distributed evenly on 
average, then (k(0)k(•)) = /x 2 so that tb(•) = 0. If, on the 
other hand, there were an "excess" number of droplets in 
volumes separated by scales of • on average (because of inter- 
mittent turbulence, for example), •b(•) would not equal zero; 
that is, [(k(0)k(•)) -• /x2]. In other words, there would be a 
clustering of droplets compared to the average number ex- 
pected for a uniform, statistical spatial (Poisson) distribution 
over T. 

The statistical interpretation of (1) given by Kostinski and 
Jameson [1997] is in terms of the excess two-point correlation 
function given by 

-- - - (2) 
For a Poisson distribution, k(0) and k(•) would be statistically 
independent. Consequently, (k(O)k(•)} = /x 2 and ,/(•) = 0 
even though k fluctuates from location to location. However, 
when ,/(•) -• 0, there is correlation. Hence according to Ko- 
stinski and Jameson [1997], it is the statistical correlation of 
cloud droplets in one volume on the presence of droplets in 
another that distinguish clustering from a uniform Poisson 
distribution. It is likely that intermittent convection and tur- 
bulence, as well as other factors, lead to the cloud droplet 
bunching. Results are given below for aircraft measurements in 
two tropical cumulus clouds. 

3. Observations of Clustering 
During the Tropical Ocean-Global Atmosphere/Coupled 

Ocean-Atmosphere Response Experiment (TOGA/COARE) 
in 1992-1993, the Electra aircraft operated by the National 
Center for Atmospheric Research (NCAR) flew (at a nominal 
air speed of about 130 m s -•) in a nearly saturated environ- 
ment about 3 km above ground level (agl) or about 1 km above 
the cloud base through precipitating warm tropical clouds. 

Cloud and precipitation particles were observed using the Par- 
ticle Measuring System, Inc. (PMS) two-dimensional (2-D) 
optical array probes [Knollenberg, 1981]. For this study, drop- 
lets from 0.025 to 0.80 mm diameter were imaged using the 
PMS 2D-C instrument and were averaged over 1 s, yielding a 
count in a sample volume of about 1 L over a 130 m flight path. 
While slight differences in sampling volume as functions of 
drop size were taken into account, all the analyses (with one 
minor exception) were performed on 50 /xm diameter drop 
counts rendering such volume differences irrelevant. More- 
over, absolute concentrations are not critical to this statistical 
study. 

Other errors can occur, however. Occasionally, the size of a 
few drops can be miscalculated so that they may be erroneously 
included in the count at a particular size bin. On the other 
hand, others of the correct size, which should be included, are 
sometimes excluded. While we do not know the precise fre- 
quency of such missizing, based upon the extensive experience 
and persistent use of this instrument, it seems unlikely that 
measurements over the entire wide range of scales considered 
in this study are significantly affected. 

Two examples of 130 rn resolution time series measurements 
for 50/xm diameter drops are shown in Figure 1. As with any 
stochastic meteorological structure, there are substantial fluc- 
tuations. The true variability is likely to be larger than illus- 
trated in the data, however, because of instrument effects. One 
such effect is the so-called "dead time," arising when data are 
being transferred from a buffer to storage. A second is caused 
by so-called "streakers," i.e., accumulated water peeling off the 
leading edge of the probes as intermittent sheets of water. In 
these data, streakers were removed, but during that interval, an 
observation of real droplets is also lost. The net effect is to 
create approximately uniformly interspersed data gaps. This, in 
turn, leads to a loss of information and therefore to a decrease 
in correlation among samples. Hence any evidence of correla- 
tion and clustering appearing in the analyses should be a con- 
servative reflection of actual non-Poissonian deviations. 

The two-point correlation function given by (2) is illustrated 
in Figure 2a for 50/xm diameter drops and in Figure 2b for the 
total number of droplets (25-800/xm) detected by this probe 
in these two clouds. In both clouds, correlated clustering is 
evident at scales less than 500-1000 m down to the smallest 

resolution of these data (130 m). 
While (2) is useful for determining the overall structure of 

clustering, it is worth looking in greater detail both at scales 
larger than 500 rn and at smaller than 130 m. At the larger end, 
the well-known property of the Poisson distribution that the 
variance and mean are equal [e.g., Feller, 1968, p. 228; Ochi, 
1990, p. 47] is used to detect deviations associated with clus- 
tering by computing the ratio of the observed variance to that 
anticipated for an "equivalent" (0 -2 --/x) Poisson distribution. 
This technique has a spatial (temporal) resolution determined 
by the data rate and the size of the data window, i.e., the 
number of samples used to compute the means and variances. 
(While this technique was developed independently by Jame- 
son and Kostinski [1998] for their studies of rain, it turns out 
that a more complex version of this idea was developed earlier 
as the "Fishing test" by Baker [1992] for his cloud studies. 
Interestingly, as early as 1934, Hubble used this variance test to 
explore galaxy counts [Peebles, 1980, p. 138].) Figure 3 indi- 
cates that on scales from 0.8 to 2.1 km in these clouds, non- 
Poisson statistics appear at many locations in such "windowed" 
data. 
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To study smaller scales, interdrop distances (times) between 
events (droplets) are used. While suggested originally for cloud 
studies by Baumgardner [1986], this approach has been used 
extensively in other branches of physics as well [van Karopen, 
1992, p. 44]. For a Poisson process, the distribution of inter- 
drop distances is given by [Ochi, 1990, p. 432] 

P(,•)d,• = • exp - ds c (3) 

where P(•)d• is the probability of encountering exactly no 
droplets during distance s c, and s c is the mean distance between 
successive drops. (This distribution, however, only applies to a 
one-dimensional, straight-line pass.) Consequently, deviations 
of the observed distribution from exponential indicate a non- 
Poisson spatial distribution of cloud droplets. Note that in (3) 
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Figure 1. Number of 50/•m diameter cloud droplets per liter 
measured by the NCAR Electra as a function of distance along 
a flight path 1 km above cloud base in two different all-liquid 
tropical oceanic cumulonimbus clouds. 
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Figure 2. Two-point excess correlation functions for clouds 1 
and 2 for lags L for (a) the 50/•m drop sizes and (b) the total 
number of drops. 

the slope and coefficient both equal the inverse of the mean 
separation. 

Histograms of spatial separations of 50 •m drops were mea- 
sured over an interval of approximately 20 s at a resolution of 
0.13 mm in two cumulus clouds, the second corresponding to 
cloud 2 above. In these cases, however, dead times and the 
removal of streamers led to occasional artificial contributions 

to the distribution of separation distances. Consequently, the 
distributions of data gaps were first determined and compared 
to the number of droplets occurring in the sequences of buffer 
outputs. The results are plotted in Figure 4 as functions of the 
maximum separation distance considered. Obviously, as the 
maximum distance increases, so does the number of data val- 
ues and gaps. Thus analyses of these interdrop distances are 
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Figure 3. Ratios of the observed variances (0 -2 ) to those 
(o-•,) for Poisson distributions having the same mean value as 
observed for 50/am diameter drops using two different sizes of 
data windows for (a) cloud 1 and (b) cloud 2. The smallest data 
window contains six data points, while the largest contains 16. 
If the observations agreed with a Poisson distribution, o-2/o-•, 
= 1.0. 

restricted to less than or equal to 200 cm in order to avoid any 
significant data gap contamination. 

It is also important to mention that the data segment was 
carefully selected; so during this entire set of measurements, 
the total number of observed cloud droplets each second al- 
ways exceeded a few hundred to several hundred in order to 
avoid artifacts generated by flying in-between clouds. 

Moreover, changes in aircraft airspeed seem unimportant. 
That is, since t - •/F, the variance of the separation times 
(o-t 2) is related to the variances of the separation distances (o•) 
and the aircraft airspeed F through 

2 1 
o-, = (•-• o-• + (•)2o-] (4) 

Calculations show that during the 20 s of time series measure- 
ments, (F) = 12,952 cm s -s, o•/r = 6.00 x 10 -$3, (•) = 130 cm, 
o• > --- 10 (•), so the ratio of the first to the second term is of 
the order of 760 at most. Hence the fluctuations in aircraft 

2 Fluctuations in the air- velocity contribute -< --- 0.13% to o't. 
craft airspeed, while monitored, are inconsequential to these 
data. 

Examples of results are shown in Figure 5. In all cases an 
exponential function and a power law are fit to these histo- 
grams. In addition, the exponential probability density function 
(pdf) given by (3) is also plotted using the measured mean 
separation distance •o. With the one exception in Figure 5a, in 
most cases and over a wide range of separation limits the 
exponential fits to the data differ from the exponential pdf 
associated with a Poisson process. This is illustrated more 
quantitatively in Figure 6. 

In this figure, the slopes and coefficients of the exponential 
fits to the measurements are compared to the inverse of •o. The 
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error bars indicate the 95% confidence interval of the observed 

1/see, while the straight line indicates expectations for a Poisson 
process, namely, the equality of the slopes, coefficients, and 
inverse see. Generally, for separation limits from 5 to 200 cm the 
histograms do not match expectations for a Poisson process. 
There are two exceptions, however, namely, at 100 cm in the 
first (but not the second) time series and at 5 cm in the second 
(but not the first) time series. Consequently, we conclude that 
non-Poisson distributions of cloud droplets appear extensively, 
although not always exclusively, throughout these data on 
scales from 200 down to 5 cm. 

This detection of clustering appears consistent with mea- 
surements by other investigators using an entirely different 
instrument. Indeed, in cumulus clouds, Baumgardner et al. 
[1993] report 10 cm structures, Baker [1992] suggested centi- 
meter structures, while Paluch and Baumgardner [1989] ob- 
served patchiness over 1-10 m in the upper portions of several 
cloud turrets of continental cumuli. To quote the latter (pp. 
276-277), "In mixed cloud regions there is a high degree of 
nonuniformity in droplet concentration on a scale of meters or 
tens of meters .... The small-scale variation in the droplet 
concentration and the presence of droplet-free regions in 
mixed cloud volumes do not fit the conceptual model of tur- 
bulent mixing as a form of gradient diffusion .... " 

However, the significance of the work presented here is not 
simply the reconfirmation of non-Poisson deviations on scales 
of several centimeters to a few meters already reported by 
others but rather the detection as well of such deviations over 

scales from about 100 m to more than 2 km. Moreover, since 
a Poisson distribution would generate a linear increase in 
counts with increasing distance, the nonlinear increase of data 
counts in Figure 4 as well as all the measurements from the 
second cloud (Figures 2, 3b, and 6b) taken together strongly 
suggests that non-Poisson deviations are likely occurring simul- 
taneously on many scales from near 5-10 cm up to 2.1 km. In 
the next section a statistical framework is suggested for de- 
scribing these deviations. 

4. A Statistical Framework Describing 
Clustering in Clouds 

It appears that in these tropical cumulus clouds, deviations 
from Poisson statistics exist on scales from several centimeters 

to kilometers. On the basis of the observations in fog, stratocu- 
mulus, and stratus clouds mentioned at the beginning of this 
work, however, it is wise to refrain from too vigorous an ex- 
trapolation of such results to all clouds. Nevertheless, for con- 
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where L is the spatial lag. Figure 7a shows that the 1/e coher- 
ence distance is about 300-350 m in these two clouds. It is 

reasonable therefore to define a "cloud patch" corresponding 
to this distance in a manner analogous to the "rain patch" 
defined by Kostinski and Jameson [1997]. However, it should be 
noted that the size of the patch (the coherence distance) de- 
pends on the minimum resolution x, as Figure 7b illustrates. 

There are, then, three important scales involved in counting 
measurements, namely, the minimum sample resolution x, the 
total measurement distance X, and the coherence distance X. 
Usually, in order to reduce fluctuations, many observations 

Figure 6. Exponential fits to the histograms for 50 txm drops 
at each of the indicated separation limits compared to ex- 
pected values for an exponential pdf corresponding to a Pois- 
son process (straight line) for the (a) first and (b) second time 
series. Perfect correspondence implies exact equality of the 
slope, coefficient, and inverse of the measured mean separa- 
tion distance •o (see text) along the indicated line. The error 
bars indicate the 95% confidence interval of the measured 1/•o. 
Only for 100 cm in Figure 6a and 5 cm in Figure 6b can the 
exponential fit be considered an exponential pdf associated 
with a Poisson process. 

vective clouds likely to contain strong turbulence, we propose 
the following statistical framework for describing clustering. 

To begin, consider a minimum temporal resolution of 1 s 
corresponding to accumulated counts over a minimum sample 
distance of x = 130 m. Figure 2 implies that for 130 m 
measurements there is a "coherence" distance X beyond which 
the droplet counts decorrelate. This coherence distance can be 
estimated using the autocovariance function given by 
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Figure 7. Cov{(k(d),k(d + L)} : {(k(d)k(d + L)) - 
(k)2}/{(k2(d)) - (k) 2} for lags L at two different droplet 
sizes for 130 m data in the two clouds. The 1/e coherence 

distance X = 300-350 m. (b) Lags for 50 txm drops in cloud 1 
show the dependence of X on measurement resolution x given 
in the legend. 
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over x are combined to estimate a mean over X. Whenever x 

<< X << X, each sample can be considered to be drawn from 
a Poisson distribution characterized by the mean over X. How- 
ever, whenever x << X << X, then like the observations of the 
clustering of raindrops [Kostinski and Jameson, 1997; Jameson 
and Kostinski, 1998], the appropriate statistical framework for 
characterizing droplet counts in variable conditions is likely 
that of Poisson probability mixtures because the mean value 
itself now becomes a random variable. The probability density 
function (pdf) of a particular count over X is then given by 

e(k) = e(kl/c) f(J:)d[c : •.•e-•f([c)d[c (6) 

where f(/c) is the pdf of the contributing mean values, and the 
vertical bar denotes conditional probability. The variance of 
P(k) will be enhanced, sometimes substantially, beyond that of 
a simple Poisson distribution having the same mean because of 
the variance of/c itself (see discussion by Kostinski and Jameson 
[1997]). Specifically, the variance for such a mixture is given by 

k)] + k]) + (7) O- k : 

where the first term is the Poisson variance associated with the 

global mean given by I• = f• [cf([c)d[c, and the second term 
is the variance of k. Obviously, the variance of k can be sig- 
nificantly increased beyond that of a simple Poisson distribu- 
tion, as these data suggest. Moreover, it can be shown that (6) 
implies a mixture of exponential distributions of waiting times 
(distances) as well. 

Specifically, using (6) and rewriting in terms of distance (i.e., 
• -- •v), the probability of no droplets occurring (k - O) in 
distance • is given by 

P(O, •) = f(v)e -• dr, v = • (8) 

so that the accumulated probability distribution F that one or 
more drops occur in s c is given by 

F(•) = 1 - f(v)e •'• dv - P(•) d• 

Taking the derivative of F(s c) with respect to s c, it follows that 

P(•)d• = vf(v)e --• av (10) 

That is, for a Poisson probability mixture, the waiting distances 
(times) are a probability mixture of the exponential waiting 
distances (times) associated with each Poisson distribution 
contributing to (6). 

As two examples, Kostinski and Jameson [1997] show that if 
f(•:) were an exponential distribution, P(k) would become the 
geometric distribution given by 

where /x is the "global" average over f(•). For waiting dis- 
tances (times) the integration of (10) for the corresponding 
exponential distribution of f(v) yields 
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Figure 8. Probability density function of separation distances 
P(•) corresponding to a Poisson [exponential P(•)] and to a 
geometric [P(•) given by equation (12)] distribution of drops. 
The P(•) for the geometric distribution representing cluster- 
ing is enhanced compared to that for a Poisson P(k), consis- 
tent with the data and curves in Figure 5. 

1 

P(f)df-(• )2ds c (12) 
This expression depends only on s c and s%, the global average of 

On the other hand, iff(•:) were a gamma distribution, P(k) 
would become the negative binomial distribution given by 

' k m • • (13) 

while for the corresponding gamma distribution of f(u) 
m 

fo 
where m is a parameter that can be adjusted so that the 
variance of P matches the observed variance of a data set (for 
measured mean /• and variance o '2, m = int[(1/p)(l•:/rr2)] 
where p - 1 - (/•/rr 2) and int is the integer function [see 
Ochi, 1990, p. 96]). 

To illustrate, P(s c) given by (12) is plotted in Figure 8 along 
with the exponential pdf corresponding to the Poisson P(k) 
having the same mean separation. In addition, there is also a 
plot of an exponential fit to P(s c) for the geometric distribution 
of P(k). The general features of Figure 8 are remarkably 
similar to the plots in Figure 5. That is, the exponential pdf falls 
off much more quickly with increasing distance than does the 
pdf when the drops are clustered. This is also reflected in the 
flatter slope of the exponential fit to the pdf (12) correspond- 
ing to the geometric distribution P(k). 

It must be remembered, however, that we do not really know 
the exact form of P(k) corresponding to the measurements 
(Figure 5). It is not surprising then that neither (12) nor (13), 
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based on assumed theoretical P(k), match the data precisely. 
However, even without knowing P(k), Figure 8 nevertheless 
captures the essential features evident in the data, indicating 
that the measurements are consistent with the clustering of the 
drops. 

A different, complementary tact is to use the total number of 
droplets detected by the 2DC-PMS cloud probe over all 32 bins 
(25-800 /xm diameter) rather than drops only of one size. If 
the different counts at different sizes are uncorrelated and if 

none dominate the sum (i.e., under conditions quite similar to 
those for the Central Limit Theorem), then statistical theory 
[Kovalenko et al., 1996, p. 163] shows that a sum of indepen- 
dent random counts tends toward a Poisson distribution re- 

gardless of the underlying probability density functions of the 
individual components. Hence if clouds were described by M 
independent droplet counts at M different sizes corresponding 
to each of the PMS probe bins, the statistics of the sum total 
should approach a Poisson distribution. 

As Figure 9 illustrates, however, neither the distributions 
nor the variances are Poisson. Indeed, the histogram for cloud 
1 is well approximated by either a geometric distribution cor- 
responding to the mean 425.59 counts or a negative binomial 
distribution having the same mean with parameter m = 2. On 
the other hand, cloud 2 is best approximated by a negative 
binomial having a mean of 161.11 counts and m -- 4. While it 
cannot be claimed that these results "prove" the applicability 
of the Poisson mixture (6) to these data, the results in Figure 
9 (and indeed Figure 2 as well) suggest the presence of corre- 
lations consistent with such a formulation. Aside from this 

consideration these results emphasize that care must be taken 
to assure that x << X << X in order to avoid mixing counts 
from different cloud patches and thereby enhancing statistical 
uncertainty of the measured mean droplet concentration. 

5. Discussion 

Using a variety of analysis tools, measurements in two trop- 
ical cumulus clouds indicate that droplet clustering is occurring 
on many scales. Specifically, the two-point excess correlation 
function shows clustering occurring over scales from about 
100 m up to 1 km or more, while an analysis of interdrop 
distances suggest clustering from several centimeters to tens of 
meters, consistent with previous studies. 

These particular scales of clustering are important. At the 
longer end and for a cloud of droplets of one size, the mean 
free path of a photon )• is inversely proportional to the product 
of droplet concentration times the particle-scattering cross sec- 
tion (for example, see Reif[1965, pp. 463-471] for a kinematic 
analogy in ideal gases). The importance of clustering is that )• 
can vary considerably throughout a cloud, thereby perhaps 
altering the overall radiation properties of the cloud from 
those of an equivalent (mean sense) Poisson cloud, as Cahalan 
et al. [1994] suggest. 

At the smaller scale of centimeters, clustering may alter the 
environment for droplet growth from that anticipated for a 
Poissonian cloud. For example, both Paluch and Baumgardner 
[1989] and Cooper [1989] consider the effects on droplet 
growth through condensation associated with fluctuations in 
saturation occurring from the mixing of cloudy and entrained 
air. Here we emphasize that super-Poissonian concentration 
fluctuations associated with clustering may significantly en- 
hance drop growth through coalescence, as originally sug- 
gested by Telford [1955] and Twomey [1964]. 
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Figure 9. Histograms of the total number of 25-800 
diameter drops measured in (a) cloud 1 (/x - 425.59, 0 -2 = 
86517) and (b) cloud 2 (/x = 161.11, 0 -2 = 6406.9) compared to 
three different distributions discussed in the text. 

While these ideas are obviously only speculations at this 
point, the results of this study suggest that it may now be time 
to begin considering the potential role of detailed cloud struc- 
ture on scales of a few kilometers and smaller. The analyses in 
this work suggest a framework for statistically characterizing 
such structure for future detailed calculations and simulations. 

Acknowledgments. Support for this work was provided by the Na- 
tional Science Foundation under grants ATM95-12685 (ABK), 
ATM97-08657 (ARJ), and ATM94-19523 (ARJ). Support for R. Black 
came from the National Oceanic and Atmospheric Administration 
through the Atlantic Oceanographic and Meteorological Laboratory. 

References 

Baker, B. A., Turbulent entrainment and mixing in clouds: A new 
observational approach, J. Atmos. Sci.,.49, 387-404, 1992. 



JAMESON ET AL.: TEXTURE OF CLOUDS 6219 

Baumgardner, D., A new technique for the study of cloud microstruc- 
ture, J. Atmos. Oceanic Technol., 3, 340-343, 1986. 

Baumgardner, D., B. Baker, and K. Weaver, A technique for the 
measurement of cloud structure on centimeter scales, J. Atmos. 
Oceanic Technol., 10, 557-565, 1993. 

Cahalan, R. F., Overview of fractal clouds, in Advances in Remote 
Sensing Retrieval Methods, edited by A. Deepak, H. E. Fleming, and 
J. S. Theon, pp. 371-389, A. Deepak, Hampton, Va., 1989. 

Cahalan, R. F., W. Ridgway, W. J. Wiscomb, and T. L. Bell, The 
albedo of fractal stratocumulus clouds, J. Atmos. Sci., 51, 2434-2455, 
1994. 

Cooper, W. A., Effects of variable droplet growth histories on droplet 
size distributions, I, Theory, J. Atmos. Sci., 46, 1301-1311, 1989. 

Cornford, G. S., Sampling errors in measurements of raindrop and 
cloud droplet concentration, Meteorol. Mag., 96, 271-282, 1967. 

Feller, W., An Introduction to Probability Theory and Its Applications, 
vol. 1, 478 pp., John Wiley, New York, 1968. 

Gillespie, D. N., The stochastic coalescence model for cloud droplet 
growth, J. Atmos. Sci., 29, 1496-1510, 1972. 

Gillespie, D. N., Three models for the coalescence growth of cloud 
drops, J. Atmos. Sci., 32, 600-607, 1975. 

Jameson, A. R., and A. B. Kostinski, Fluctuation properties of precip- 
itation, II, Reconsideration of the meaning and measurement of 
raindrop size distributions, J. Atmos. Sci., 55, 283-294, 1998. 

Knollenberg, R. G., Clouds: Their optical properties and effects, in 
Techniques for Probing Cloud Microstructure, edited by P. V. Hobbs 
and A. Deepak, pp. 15-89, Academic, San Diego, Calif., 1981. 

Kostinski, A. B., and A. R. Jameson, Fluctuation properties of precip- 
itation, I, On deviations of single-size drop counts from the Poisson 
distribution, J. Atmos. Sci., 54, 2174-2186, 1997. 

Kovalenko, I. N., N.Y. Kuznetsov, and V. M. Shurenkov, Models of 
Random Processes: A Handbook for Mathematicians and Engineers, 
446 pp., CRC Press, Boca Raton, Fla., 1996. 

Kozikowska, A., K. Haman, and J. Supronowicz, Preliminary results of 
an investigation of the spatial distribution of fog droplets by a ho- 
lographic method, Q. J. R. Meteorol. Soc., 110, 65-73, 1984. 

Ochi, M., Applied Probability and Stochastic Processes, 499 pp., John 
Wiley, New York, 1990. 

Paluch, I. R., and D. Baumgardner, Entrainment and fine-scale mixing 
in a continental convective cloud, J. Atmos. Sci., 46, 261-278, 1989. 

Peebles, P. J. E., The Large-Scale Structure of the Universe, 422 pp., 
Princeton Univ. Press, Princeton, N.J., 1980. 

Pruppacher, H. R., and J. D. Klett, Microphysics of Clouds and Precip- 
itation, 954 pp., Kluwer Acad., Norwell, Mass., 1997. 

Ramanathan, V., B. Subasilar, G. J. Zhang, W. Conant, R. D. Cess, 
J. T. Kiehl, J. T. Grassal, and L. Shi, Warm pool heat budget and 
short wave cloud forcing: A missing physics?, Science, 267, 499-503, 
1995. 

Reif, F., Fundamentals of Statistical and Thermal Physics, 651 pp., 
McGraw-Hill, New York, 1965. 

Rogers, R. R., and M. K. Yau, A Short Course in Cloud Physics, 229 pp., 
Pergamon, Tarrytown, N.Y., 1989. 

Telford, J. W., A new aspect of coalescence theory, J. Meteorol., 12, 
436-444, 1955. 

Twomey, S., Statistical effects in the evolution of a distribution of 
cloud droplets by coalescence, J. Atmos. Sci., 21, 553-557, 1964. 

van Kampen, N. G., Stochastic Processes in Physics and Chemistry, 465 
pp., North-Holland, New York, 1992. 

Young, K. C., Microphysical Processes in Clouds, 427 pp., Oxford Univ. 
Press, New York, 1993. 

R. A. Black, National Oceanic and Atmospheric Administration, 
Atlantic Oceanographic and Meteorological Laboratory, Miami, FL 
33149. 

A. R. Jameson, RJH Scientific, Inc., 5904 Richmond Hwy., Ste 401, 
Alexandria, VA 22303. (e-mail: jameson@rjhsci.com) 

A. B. Kostinski, Department of Physics, Michigan Technological 
University, Houghton, MI 49931. 

(Received April 4, 1997; revised January 5, 1998; 
accepted January 5, 1998.) 


	The texture of clouds
	Recommended Citation

	The texture of clouds

