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Entropic Aspects of Supercooled Droplet Freezing

ALEXANDER KOSTINSKI AND WILL CANTRELL

Department of Physics, Michigan Technological University, Houghton, Michigan

(Manuscript received 30 April 2007, in final form 27 December 2007)

ABSTRACT

The freezing of supercooled water droplets in the atmosphere, with an emphasis on the entropic aspects
of the problem, is examined. Supercooled water is a metastable state and, therefore, the associated phase
transition must be irreversible. Temperature-dependent heat capacities of supercooled water and ice are
used to calculate the entropy difference. That difference is then used to establish a lower bound on the
amount of latent heat that can be liberated by the freezing droplets. The calculation is compared with
tabulated values of the latent heat of fusion with surprising results. Based on a novel physical picture of the
freezing process, the authors suggest a simple estimate for the effective latent heat that is suitable for heat
budget calculations of glaciating clouds. In addition, the authors arrive at a quadratic dependence on
supercooling, (�T )2, for the irreversible contribution to heat exchange during the freezing process. The
proportionality factor is estimated as �0.3 J mol�1 K�2.

1. Introduction

Despite its ubiquity in our environment (clouds and
fogs) and practical importance (aircraft icing), super-
cooled water remains enigmatic. For example, the heat
capacity of water at normal pressure varies by less than
1% over the entire range between the melting and boil-
ing points. However, within 36° below the melting
point, it increases by 35%, from 75.9 to 102.7 J mol�1

K�1 (Angell et al. 1982). The latent heat of fusion of
supercooled water is also known to depend on tempera-
ture. Given the wide range of supercooling observed in
atmospheric clouds, the corresponding variation in the
latent heat exchanged with the atmosphere may be sub-
stantial, possibly reaching 30% at extreme supercool-
ing, according to Fukuta and Gramada (2003).

The temperature dependence of the latent heat of
fusion impacts not only our fundamental understanding
of clouds but also their representation in climate mod-
els. Hence, it is important to estimate the amount of
heat released to the atmosphere by freezing droplets
as a function of ambient temperature. There is a
microphysical motivation as well—latent heat appears
in the exponent of the expression for the ice nuclea-

tion rate (see, e.g., Landau and Lifshitz 1980, p. 535); a
small change in the expression for latent heat may re-
sult in a large change in the corresponding nucleation
rate.

Measurements of the latent heat of fusion as a func-
tion of temperature are difficult and remain scarce. We
have been able to locate only three studies—Fukuta
and Gramada (2003), the Smithsonian Meteorological
Tables (List 1951), and Bertolini et al. (1985). In the
two atmospherically motivated studies—Fukuta and
Gramada (2003) and the Smithsonian Meteorological
Tables (List 1951)—the latent heat values were ob-
tained by using measured vapor pressures1 and then
using the Clausius–Clapeyron equation as well as the
triple-point identity for the latent heats of sublimation,
vaporization, and fusion to extract the latent heat of
fusion. Thus, the latent heat measurements are not di-
rect and, as argued below, involve assumptions whose
validity, while unquestionable for phase equilibrium, is
not clear in the supercooled (metastable) domain (see
appendix A). Therefore, our second goal is to employ
entropic considerations in order to facilitate an inter-
pretation of difficult experiments and constrain the
measurements.

Corresponding author address: Alexander Kostinski, Depart-
ment of Physics, Michigan Technological University, 1400
Townsend Drive, Houghton, MI 49931.
E-mail: alex_kostinski@mtu.edu

1 Fukuta and Gramada (2003) used measured values of the va-
por pressure of supercooled water, while values in the Smithso-
nian Meteorological Tables (List 1951) are extrapolated from
measurements above the melting point.
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2. The entropy constraint

We regard a supercooled droplet as a thermody-
namic system and the ambient air as the heat reservoir.
Initially, both are at temperature Ti � Tmelting, cor-
responding to a metastable equilibrium of the su-
percooled water. Upon freezing at that temperature,
L(Ti) is given off to the atmosphere by the droplet.
From the outset, we note that the notion of latent heat
is freely extended to the supercooled domain through-
out the literature, despite being originally developed
for a reversible phase equilibrium. For example, the
relationship L(Ti) � Ti�S, where S is entropy and �S �
Swater � Sice has been used [Jeffery and Austin 1997,
p. 2750, Eq. (3c)]. It is also implied in the identity
Lsublim � Lvapor � Lfusion, a relation used extensively in
the literature, for example, by Fukuta and Gramada
(2003) and the Smithsonian Meteorological Tables (List
1951). However, the relationship Lfusion(T) � T�S is
valid only at the melting point; reversibility is the key
requirement.

Indeed, recall that the Clausius definition of entropy
dS � dQ/T requires reversibility. On the other hand,
the supercooled water cannot undergo a reversible
freezing transition because it is in a metastable equilib-
rium so that the process is unidirectional; that is, super-
cooled water can turn into ice but not vice versa. This
observation suggests the following question: How does
the irreversibility, inevitably associated with super-
cooled water freezing, affect the amount of latent heat
given off to the atmosphere?

We begin to answer this question by examining Fig.
1a, which is a plot of the heat capacity of supercooled
water (Angell et al. 1982; Archer and Carter 2000) and
ice (Haida et al. 1974) as a function of temperature. We
then use the data as input to calculate the entropy of
supercooled water and ice via

S�T � � S�Tm� � �
T

Tm c�T��

T�
dT�, �1�

where c stands for heat capacity of water or ice. Our
results are displayed in Fig. 1b.

The next step in this chain of reasoning is to calculate
the latent heat at constant (atmospheric) pressure via
the previous equation and

L�T � � T�S � T 	Swater�T � � Sice�T �
 , �2�

which is valid for reversible processes. Throughout this
work, Ti denotes the initial temperature of the super-

cooled water, which is not to be confused with ci

denoting heat capacity of ice. The results of the calcu-
lation as well as values from Fukuta and Gramada
(2003), the Smithsonian Meteorological Tables (List
1951), and Bertolini et al. (1985) are shown in Fig. 1c.

Does the irreversibility associated with freezing of
supercooled water constrain the data? Indeed, the sec-
ond law of thermodynamics can be stated as (e.g.,
Fermi 1936, p. 77)

dSsys � dQ�Ti, �3�

where Q is the heat exchanged with the environ-
ment and the equality is attained in reversible pro-
cesses. In our case, dSsys � 0 (entropy decreases upon
freezing) and dQ � L(Ti) � 0 (heat is given off). Thus,
for magnitudes, in our case the entropy inequality im-
plies

|L�Ti�| � |Ti�S|. �4�

Equation (4) shows that the magnitude of the latent
heat must equal or exceed the magnitude of Ti�S. Fur-
thermore, it is only for a reversible process that the
limiting expression, Ti�S, can be achieved. For the
reader’s convenience, magnitudes of all quantities are
shown in Fig. 1c. Whereas data from Bertolini et al.
(1985) and the Smithsonian Meteorological Tables (List
1951) are above the lower bound, the data from Fukuta
and Gramada (2003) fall below it (see appendix A for
the likely reasons for this discrepancy).

3. Effective latent heat of freezing for supercooled
water: A useful approximation

While supercooled water droplets do not freeze
slowly and reversibly in the atmosphere, this need not
prevent one from finding a physically realizable revers-
ible path that links the same initial and final states.
Given that energy and entropy are state functions, such
a path can be used to calculate heat exchange between
droplets and the atmosphere, thereby establishing an
expression for effective latent heat of supercooled wa-
ter versus temperature. This is probably the motivation
behind the notion, occasionally found in the physical
chemistry literature, for defining the latent heat as an
enthalpy difference between supercooled water and ice.
[See, e.g., Franks (1982, p. 252); Metz (1989, p. 77);
Bertolini et al. (1985). A related discussion in the at-
mospheric science literature is given in Tsonis (2002,
p. 88).] The enthalpy difference is
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L� � Lm � �
Ti

Tm

	cw�T � � ci�T �
 dT �5�

and involves only the reversible latent heat at the melt-
ing point and specific heat data for supercooled water
and ice.

To interpret this physically, consider the reversible
path associated with Eq. (5). Imagine slowly warming a
supercooled droplet from the initial state at Ti to the
melting point, freezing it reversibly, and then cooling

the resulting ice back down to Ti.
2 Thus, the entire pro-

cess is reversible. During the first stage, the super-

2 In most of this work we shall set the initial temperature Ti �
Tfinal in order to render the notion of L(Ti) unambiguous and to
mimic experimental conditions. The implication is that atmospheric
temperature does not change during droplet freezing, which is rea-
sonable for a single droplet and a reservoir (the atmosphere), but the
temperature of the real atmosphere may, of course, rise if billions of
droplets freeze. Later, we account for atmospheric warm up.

FIG. 1. Chain of reasoning leading to the lower bound for the amount of latent heat released
at a given temperature T. (a) Heat capacity vs temperature for supercooled water at constant
pressure (Angell et al. 1982; Archer and Carter 2000) and ice (Haida et al. 1974). (b) The
results of our calculations for entropy of supercooled water vs temperature via

S�T � � S�Tm� � �
T

Tm c �T��

T�
dT�,

where c denotes the heat capacity of water or ice, taken from (a). (c) Values of the latent heat
of fusion from the Smithsonian Meteorological Tables (List 1951), Fukuta and Gramada
(2003), and Bertolini et al. (1985), as well as L � T�S, with �S as input from (b). The T�S
curve is not the lowest (see appendix A).
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cooled droplet gains an amount of heat Q1 � �Tm
Ti

cw(T)
dT, reaches the melting point, and then freezes so that
an amount of heat Lm is released (per unit mass, and m
indicates that the transition takes place at the melting
point). Finally, the droplet cools back to Ti, releasing
Q2 � �Tm

Ti
ci(T) dT. The magnitude of net heat exchange

is then L�(Ti). This process is indicated by the dashed
lines in the upper panel of Fig. 2. Unlike the vertical
“drop” from A to B, dashed lines constitute a path

insofar as each point represents an equilibrium state
(albeit a metastable one) with the same T throughout
the droplet and the reservoir (see, e.g., Zemansky 1981,
p. 183).

The arguments for L� appear eminently reasonable,
but there is a subtle flaw, which is the assumption that
the final state of ice is identical for reversible and irre-
versible changes. Atmospheric pressure and tempera-
ture do not determine the thermodynamic state of ice

FIG. 2. An approach to a reversible approximation for the effective latent heat of super-
cooled water. (top) Two ways of freezing supercooled water on an entropy vs temperature
plot. The vertical path is loosely implied by the phrase “supercooled droplet freezes at Ti.”
The reversible path consists of warming the supercooled water slowly to the melting point
(succession of metastable equilibrium states), with the subsequent phase transition at the
melting temperature. The resulting ice is then cooled to the initial temperature. (bottom) Here
L�(T ) � L�(Ti) � Lm � �Tm

Ti
[cw(T ) � ci(T )] dT is computed using the heat capacity data of

Fig. 1a and the results are compared to data and to T�S.
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(a solid) uniquely; one needs to specify stress compo-
nents and final volume as well (see appendix B for
details). Also, rapid freezing may result in ice filled with
defects, while reversibly made ice is relatively defect
free (crystal growers slow down solidification in order
to produce high quality crystals).3 It turns out (see be-
low) that the irreversibility correction is relatively
small, so Eq. (5) may still be a good approximation to
the actual heat exchange.

To compare L� to the available data, we calculated
L�(Ti) � Lm � �Tm

Ti
[cw(T) � ci(T)] dT using the heat

capacity data of Fig. 1. The results are shown in the
lower panel of Fig. 2 along with the entropic bound and
two datasets. As expected, L�  T�S in magnitude
throughout the supercooled region.

The apparent agreement between L� and the Smith-
sonian Meteorological Tables (List 1951) is not particu-
larly surprising; the values are based on reversible
“tools” such as Kirchhoff’s relation, dL/dT � �cp,
which is satisfied by L� (see appendix A). More signif-
icant is the comparison of L� with the data from Ber-
tolini et al. (1985), obtained from a direct calorimetric
experiment. The data are within a few percent of L� and
this closeness suggests the following questions: Are the
thermodynamic state and entropy of actual ice very
near the ones of the reversibly prepared ice? Why is the
data mostly below the L� curve? The answer to the
second question is that the “hurriedly” made irrevers-
ible ice has higher entropy; we shall examine this in
detail in a later section. For now, we focus on the first
question.

Why should L� be a reasonable estimate to actual
freezing of supercooled droplets in the atmosphere? In
other words, does the actual freezing mimic, in some
way, the reversible path shown in the upper panel of
Fig. 2? To that end, in the next section we shall consider
heat transfer within the supercooled droplet because
heat transfer and measurements of latent heat are in-
extricably intertwined. Seemingly simple questions
such as “at what temperature is ice produced?” or
“what is the temperature of ice/water interface?” are
more subtle than would appear at a first glance.

4. Heat transfer within a supercooled water
droplet and a proposed picture of irreversible
freezing

Consider a supercooled water droplet suspended in
air at, say, �30°C, and examine the phrase “droplet

freezes at �30°C” more closely. Does it mean that all of
the droplet water freezes at �30°C? If not, at what
temperature does a supercooled water droplet freeze?
Let us separate the freezing event into the following
main stages:

1) Nucleation occurs and the ice/water interface is cre-
ated. (Whether the nucleation is homogeneous or
heterogeneous is immaterial in this paper.)

2) The interface advances, accompanied by the release
of latent heat of fusion. Temperature gradients are
established within the droplet.

3) The entire droplet freezes, latent heat is conducted
away into the surrounding atmosphere, and the
newly created ice particle cools back down to the
ambient temperature of �30°C.

What is the fate of latent heat in this chain of events?
Once the formation of a critical embryo initiates bulk
freezing, �10�20 J � 0.06 eV per molecule must be
dissipated. If spent on the embryo molecules only (i.e.,
used to heat the newly created ice), a temperature in-
crease of �T � Lfusion/cice � 170 � results! Hence, the
latent heat must be conducted away immediately and
raise the temperature of matter adjacent to the inter-
face. The latent heat of fusion corresponds to a warm
up of some 80°C for liquid water (�T � Lfusion/cwater �
80 K), causing steep temperature gradients to develop.
The temperature is highest at the advancing ice–water
interface (source of heat). We argue, therefore, that the
advancing interface is at the usual melting point and
that the excess heat is conducted into the remaining
supercooled water. In our picture, ice is always created
at Tm, so the intrinsic latent heat released always equals
L(Tm). Our physical picture is illustrated schematically
in Fig. 3. Despite spatial temperature gradients and re-
gardless of supercooling magnitude, the actual freezing
always occurs at the same (melting) temperature.

Thus, because of the continuous heat production
within the droplet and the associated temperature gra-
dients, there is no single temperature characterizing the
droplet during the conversion of supercooled liquid wa-
ter to ice. Yet, the temperature at which the liquid wa-
ter is actually converted to ice and at which latent heat
is released is the melting point, Tm. Therefore, ice is
always created at the melting point, and the heat flux at
any point of the advancing and possibly complicated
(dendritic) ice–water interface is directed outward
against the temperature gradients and from ice to su-
percooled water as schematically illustrated in Fig. 3.4

3 Also note that at the moment of nucleation, the ice embryo is
under higher pressure than is water because of the Laplace pres-
sure. Hence, enthalpy difference is not quite appropriate as the
two phases are under different pressures.

4 This physical picture is further illustrated for the adiabatic
stage in appendix C, along with a comparison to prior work.
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�ach fluid element is continually warmed from Ti to
Tm, reminiscent of the reversible path shown in the
upper panel of Fig. 2. Can L�(T) � Lm � �Tm

Ti
(cw �

ci)(T) dT serve as a useful approximation for the heat
exchanged between the droplet and the environment?
To that end, we proceed to estimate the impact of ir-
reversibility on the entropy budget.

The phase transition at Tm is reversible and does not
generate net total entropy, but temperature gradients
do. We estimate the magnitude of the contribution
from heat conduction using an expression for entropy
production �sirr � ṡ� from Zemansky (1981, p. 204); see,
also, de Groot 1951; Prigogine 1955). Taking � as the
droplet’s thermal relaxation time, � � d2/�, where d is
the diameter of the droplet, � is the thermal diffusivity
of water, k/(�cp), and k is the thermal conductivity of
water, the rate of entropy production ṡ can be estimated
as ṡ � IQ(�T)/T2 (Zemansky 1981, p. 204), where IQ is
the heat “current.” Collecting the terms we

obtain for the irreversible entropy (area A � d2; IQ �
kA�T):

�sirr � ṡ� � kd2��T

d ���T

T2 ��d2

� � � ��cpd3���T

T �2

.

�6�

Note that entropy and heat capacity have the same
units and that the term �cpd3 � mcp is for the entire
system (droplet). To obtain a specific estimate, we nor-
malize the result by the reversible entropy �Srev �
L/Tm, where L is the latent heat released by the entire
droplet. We obtain

�sirr

�srev
� �cp�T

l ���T

Tm
�, �7�

where l is the specific latent heat of fusion. The result
suggests a very small correction at small supercooling
(small gradients) but on the order of 10% at extreme

FIG. 3. Freezing of the supercooled water droplet: a schematic illustration of the proposed
physical picture. Latent heat of fusion, liberated during the freezing, is conducted from the
advancing interface into the supercooled water (heat flux to air is neglected at this stage; see
appendix C). The advancing interface (source of heat) is at the melting point (Tm) and a
temperature gradient, normal to the interface, is setup throughout the aqueous part of the
droplet. The corresponding gradient in the chemical potential is in the opposite direction
(d� � �sdT, p � const). Thus, the ice is always created at Tm, latent heat is always liberated
at Tm and, at the advancing interface, the following boundary conditions hold: �ice � �water

and Tice � Twater � Tm. The water is warmed up in a thin “boundary layer” near the interface,
one fluid filament at a time, so that the effective latent heat can be reasonably approximated
by L�(T ) � L�(Ti) � Lm � �Tm

Ti
[cw(T ) � ci(T )] dT when the ambient air temperature remains

constant at Ti. For the more general case of air temperature Tf at the end of freezing (Ti �
Tf � Tm), the effective latent heat expression we propose is L�gen(Ti, Tf) � Lm � �Tm

Ti
cw(T )

dT � �Tm
Tf

cice(T ) dT � �(�T )2 (see text).
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supercooling of �T � 40 K. The quadratic dependence
on �T can be tested in future experiments. The plau-
sible conjecture that the “hurriedly” made irreversible
ice has higher entropy than the reversible one is in
excellent agreement with the data of Bertolini et al.
(1985).5 We therefore suggest the following simple ex-
pression for the effective latent heat to be used in prac-
tice:

Lp � Lm � �
Ti

Tm

	cw�T � � ci�T �
 dT � 	��T �2

� L� � 	��T �2, �8�

with � � 0.3 J mol�1 K�2 being a result of a simple fit
to data of Bertolini et al. (1985), subject to improve-
ments by future experiments.

5. Implications at microscopic scales

In this section we examine the implications of our
model from the molecular point of view. Insofar as a
temperature can be assigned at every point within the
drop [T � T(x, t)], local thermodynamic equilibrium
(LTE) is implied (e.g., Pruppacher and Klett 1997; Lan-
dau and Lifshitz 1987) and “point” refers to a volume
that is large compared with molecular dimensions, yet
small compared with the characteristic length of tem-
perature variation. In particular, this means that the
ice–water interface is a geometric “line” that, neverthe-
less, spans many molecular layers.

The LTE assumption [frequently employed in solidi-
fication studies; see, e.g., the opening paragraph of
Glicksman et al. (1994)] can also be justified kinetically
if the conversion of liquid to ice is relatively rapid in
comparison with the speed of the advancing interface
(Ma 1985). According to Kurz and Fisher (1989, p. 134),
LTE holds at a well-defined interface as long as the
interface’s rate of advance does not exceed the diffu-
sion rate across the interface. Setting a2/D � a/u, where
a is the thickness of the interface, D is the diffusion
coefficient of water, and u is the critical interface speed,
yields u � D/a. Taking a conservative estimate of a �
10

�9
m and D � 1.3 � 10�9 m2 s�1 for water near the

freezing point gives the critical speed u � 1.3 m s�1.
This value is considerably larger than even the maximal
measured ice–water interface speed of about 20 cm s�1

(Pruppacher and Klett 1997, p. 673), recorded in the
very beginning of the semiadiabatic stage of freezing.

Because of the LTE, the chemical potentials of the
two coexisting phases must be equal at the advancing
interface. Therefore, the interface must be at Tm since
that is the only temperature on the ice–water coexist-
ence curve such that �ice � �liquid at atmospheric pres-
sure. Thus, water freezes and ice is produced at Tm.

Consequently, it is the supercooled water that is con-
stantly being warmed (see appendix C).

These implications appear likely to cause resistance
and it may be helpful to examine typical objections,
encountered during numerous discussions with col-
leagues not only within the atmospheric sciences but
also with physical chemists and materials scientists. In-
variably, we are asked: If the chemical potentials are
equal, why does the interface move? A slightly differ-
ent phrasing is: What is the driving force for the ad-
vancement of the interface?

To that end, note that the equality of chemical po-
tentials at the advancing interface does not imply equal-
ity throughout the drop. As described above, the
chemical potentials cannot be spatially uniform while
the droplet is freezing because the latent heat is re-
leased continuously at the boundary.

Spatial gradients in chemical potential are directed
away from the interface while the temperature gradi-
ents are directed toward it. Thus, the interface advances
because the driving force is the gradient in the chemical
potential ��.6

Also, note that our model does not contradict the
idea of a jump in the chemical potential ��, as long as
one introduces a molecular jump distance a (e.g., Fren-
kel 1955) so that �� � a��. �n a similar manner we can
resolve the controversy related to the question: What is
the temperature of the interface? (See appendix D for
further details.) Across a, �T � a�T for the tempera-
ture jump �T across the interface. This is consistent
with the experimental evidence (see appendix D), al-
though the latter is somewhat ambiguous in that it is
restricted to plane-parallel interfaces between ice and
water (i.e., slow growth at modest supercooling) and
relies heavily upon the assumed solution of the heat
conduction equation. The experiments show that the
interface temperature is within a few tenths of a degree
of the melting point (see Hobbs 1974, 584�585 and
references therein). Indeed, for a comparable to mo-
lecular dimensions, �T � a�T results in a small fraction
of a degree for typical experiments (see appendix D for
details).

5 This is particularly because maximal deviations are on the
order of 10% and Bertolini et al. (1985) were skeptical about the
two points above the L� curve, associated with weak signals.

6 This is somewhat analogous to diffusion problems, for ex-
ample, where �� “drives” the flux of matter. Also, in the Stokes–
Einstein relation, the driving force (��) balances the viscous
force (friction), yielding constant “velocity,” that is, mobility.
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6. Concluding remarks

Measurements of latent heat as a function of tem-
perature in a supercooled domain are difficult and
scarce. Beginning with the observation that super-
cooled water freezing cannot be a reversible process,
we have reexamined the problem from an entropy-
based perspective. We have suggested a simple ap-
proximate expression for the effective latent heat,
based on a proposed reversible path between super-
cooled water at Ti and the resulting ice as well as an
irreversibility correction, whose quadratic dependence
on �T can be tested in future experiments.

The proposed expression is L�(Ti) � Lm � �Tm
Ti

[cw(T) � ci(T)] dT for the case of constant ambient
temperature and the correction is ��(�T)2, with � �
0.3 J mol�1 K�2 based on the data of Bertolini et al.
(1985). The expression for L� can be extended to an
arbitrary final ambient temperature Tf , attained at the
end of the freezing process (Ti � Tf � Tm) as follows:

L�gen�Ti,Tf� � Lm � �
Ti

Tm

cw�T � dT

� �
Tf

Tm

cice�T � dT � 	�T2.

This expression can be used to solve for Tf when ex-
amining the heat budget of glaciating clouds. Also,
Lp(Ti) can be inserted in the expression for nucleation
rate, critical nucleus dimension, etc., with implications
in nucleation theory.

The expression for L� led us to scrutinize the ques-
tion “At what temperature does supercooled water
freeze?” This led to a model of freezing in which ice,
and therefore latent heat, is always produced at the
melting point. Temperature gradients do, however,
cause the irreversibility correction, which we interpret
as “hurriedly made” ice with entropy somewhat higher
than that of reversible ice. While the latter has an equi-
librium concentration of defects at a given T, the
former may have a higher concentration yet, at least for
some time. This raises interesting questions about pos-
sible effects of metastable freezing on optical and me-
chanical properties of the resulting ice.

Acknowledgments. This work was supported by Na-
tional Science Foundation Grants ATM01-06271,
ATM05-54670, and CHE-0410007. Part of this work
was performed during ABK’s stay at the Weizmann
Institute of Science in Rehovot, Israel, as a Weston
visiting professor; he is grateful to the Physics of Com-
plex Systems Division and to Gregory Falkovich for
their hospitality and support. Numerous helpful discus-

sions with Gregory Ryskin are greatly appreciated. We
thank Bill Conant, Keith Byers, Dennis Lamb, and
Raymond Shaw for useful comments, and Glenn Shaw
for sharing his 1968 notes of cloud physics lectures by
Jim Macdonald. Finally, we thank an anonymous re-
viewer for referring us to Metz (1989).

APPENDIX A

Some Misconceptions in Thermodynamic
Interpretation of Supercooled Water

Measurements

Here we briefly examine prior work with an empha-
sis on the importance of irreversibility. In particular,
what assumptions are likely responsible for the rather
low latent heat values reported in Fukuta and Gramada
(2003)? In our opinion, the vapor measurements for
supercooled water reported in Fukuta and Gramada
(2003) are accurate, but getting from the measured va-
por pressure data to latent and specific heats involves
three doubtful steps (see Fukuta and Gramada 2003, p.
1873). These steps are by no means unique to Fukuta
and Gramada but originate much earlier (e.g., see Mc-
donald 1953) and are common in the literature (e.g.,
Pruppacher 1995). We shall discuss each of the three
briefly.

Given the vapor pressure of water as a function of
temperature (below the melting point), it is tempting to
use the equality Ls � Lf � L� (Ls denotes the latent
heat of sublimation; L� denotes the latent heat of va-
porization) to deduce the latent heat of fusion (Lf) as
a function of temperature at a fixed pressure. How-
ever, this step can be taken only when all three phase
transitions may be accomplished reversibly—a require-
ment fulfilled only at the triple point. Then and only
then, substituting L � T�S for all three latent heats
yields an identity Svapor � Sice � (Swater � Sice) �
(Svapor � Swater) � Svapor � Sice. However, as discussed
above, Lf does not equal T�S because the phase tran-
sition from supercooled water to ice is not a reversible
one.A1

The remaining two difficulties both involve the use of
the Kirchhoff relation, used often in the atmospheric
science literature (e.g., Mcdonald 1953, p. 423; Prup-

A1 Much of the literature including atmospheric physics texts is
quite misleading on this point. For example, Fleagle and Businger
(1980, p. 113) write, “It follows from the conservation of energy
that at the triple point Ls � Lf � L�.” While the statement is
correct, the reason given is not because the requirement of re-
versibility is ignored. See Tsonis (2002, p. 88 versus p. 167) as well:
Table A.3 implies reversibility for the supercooled state.
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pacher 1995, p. 1928). At first sight, the relation sug-
gests an alternative to a direct measurement of the la-
tent heat as a function of temperature along the follow-
ing lines: deduce Lf at one point on the phase boundary,
and then use the difference in the heat capacities of the
liquid and solid to calculate further values through the
Kirchhoff relation

dL

dT
� �cp. �A1�

There are several difficulties: The approximation lead-
ing to the Kirchhoff relation as stated above is valid
only for sublimation or evaporation; see Denbigh
(1966, 200–201) or Iribarne and Godson (1981, p. 28,
69). Most importantly, the Kirchhoff relation describes
the variation of the reversible latent heat along the
phase boundary but not the variation of the latent heat
of a metastable phase at a fixed pressure as a function
of temperature. Note that differentiating the reversible
approximation

L��Ti� � Lm � �
Ti

Tm

	cw�T � � ci�T �
 dT

w.r.t. to Ti and using the fundamental theorem of cal-
culus results in the Kirchhoff relation.

Irreversibility renders all measurements, for ex-
ample, vapor pressure of supercooled water, fundamen-
tally stochastic because spontaneous freezing during
the measurement is always a possibility. For illustra-
tion, consider “slow, quasi-steady reversible” warming
of supercooled water. Slow warming implies that the
duration of the experiment texpt must be much longer
than the thermal relaxation time �relax � d2/�, where d
is the droplet diameter and � is the thermal diffusivity,
which is on the order of 10�3 cm2 s�1 for water. On the
other hand, for a given degree of supercooling �T, the
nucleation rate J(�T) yields an average lifetime of a
supercooled droplet t � (JV)�1 � (Jd3)�1. Thus, ex-
periments must satisfy the condition d2/� K texpt K

(Jd3)�1. When d2/� � (Jd3)�1, reversible warming is
not possible for dcr � (�/J)0.2, yielding d � 100 �m for
the nucleation rate of 108 cm�3 s�1, corresponding to
�T � 36.5 �.

APPENDIX B

Thermodynamic Equivalence on the TS Diagram

In section 3 we argued that the two paths on Fig. 2
are not thermodynamically equivalent for two reasons.
First, the “vertical drop” is not really a path as it does
not consist of a succession of thermodynamic equilib-
rium states. The actual transition is not quasi static, and

does not result in the same final state of ice as that for
a reversible transition. The purpose of this appendix is
to elaborate on the fact that the S versus T plot does not
provide enough information to fully specify the ther-
modynamic state of ice.

Indeed, the final thermodynamic state of ice is not
determined entirely by the final volume and the (atmo-
spheric) pressure, but also by stress components [Lan-
dau and Lifshitz (1959, section 3), thermodynamics of
deformation equations (3.2) and (3.2a); see also Fred-
erick and Chang (1965, p. 129)]. Therefore, once some
ice is present in the droplet, the differential work ele-
ment is no longer given by PdV (valid only for hydro-
static systems) but, rather, by �ikduik (stress and strain
tensors, respectively) and reduces to the hydrostatic ex-
pression only for the special case of uniform compres-
sion. This means that freezing the same mass of super-
cooled liquid water may result in slightly different
states (e.g., volumes), depending on the degree of su-
percooling. This could result, for example, from defects
and dislocations in the ice structure produced by rapid
dendritic growth. Thus, the final “state” is path depen-
dent, though the ice may eventually anneal, approach-
ing the minimum of the free energy. Conversely, the
same value of entropy on the S versus T plot may cor-
respond to different final volumes, depending on super-
cooling.

APPENDIX C

The Adiabatic Case and Complete Freezing

The heat conduction coefficient (k) for air is much
smaller than that of water, so the heat flux (� k�T) to
air is weak compared to that from ice to water. Hence,
most of the released latent heat remains within the
droplet during this initial semiadiabatic stage (see e.g.,
Pruppacher and Klett 1997, p. 674). Pruppacher and
Klett (1997) write the energy balance as follows [Eqs.
(16)–(18) on p. 674]:

Lmi � �mici � mwcw��T, �C1�

where �T � Tm � Tinitial and mi and mw denote masses
of the ice and water fractions, respectively. This equa-
tion implies that heat released during freezing is spent
on warming both the water and ice. In contrast, there is
no warming of ice in our picture. Yet, the energy bud-
get depends on the physical picture of supercooled wa-
ter freezing.

We maintain that there is always a temperature gra-
dient within the drop as it freezes because the advanc-
ing ice–water interface is maintained at the melting
point. Consequently, the latent heat is spent on warm-

SEPTEMBER 2008 K O S T I N S K I A N D C A N T R E L L 2969



ing water since all ice is created at the melting point.
This is expressed as

mxL � mx�
Ti

Tm

cw�T � dT � m�1 � x��
Ti

Tm

cw�T � dT,

�C2�

where m is the mass of the droplet and x is the fraction
frozen. The first term in the rhs of this equation corre-
sponds to warming water that eventually froze, while
the second corresponds to water that warmed to the
melting point but did not freeze. The lhs represents
total heat released: all spent on warming the water as
the rhs amounts to m�Tm

Ti
cw(T) dT.C1 For the limit of

complete adiabatic freezing, x � 1, yielding

L � �
Tinitial

Tm

cw�T � dT. �C3�

In words, the total latent heat released during freezing
(Q � Lmice) is spent on warming all of the supercooled
water from the initial temperature up to the melting
point [Q � mwater�

Tm
Tinitial

cw(T) dT ], where mass con-
servation and the complete freezing condition mice �
mwater was used.

For illustration, let us consider the degree of super-
cooling, required for complete freezing and take, for
simplicity, ci and cw as constants (with values at the
melting point). Then Eq. (C1) yields �T � L/ci � 170
K, completely (and somewhat surprisingly) eliminating
the heat capacity of water from consideration. On the
other hand, Eq. (C3) reduces to �T � L/cw � 80 K,
rendering the heat capacity of ice irrelevant.C2

APPENDIX D

Conflicting Opinions in the Literature Concerning
Temperature of the Crystallization Front:

Proposed Resolution

What is the temperature of the ice–water interface?
The perceived importance of the latter question is such
that it reached semipopular literature. For example,
Knight (1967, p. 63) writes, “Interface temperature
emerges as the most important parameter in crystal

growth from pure melts. . . The difficulty of determin-
ing interface temperature is one of the major frustra-
tions. . .” Consulting the literature on this issue reveals
a surprising diversity of often contradictory opinions.
Some state that the temperature of the interface sepa-
rating the growing crystal from its melt is the normal
melting point (Frenkel 1955; Tamman 1925; Glicksman
et al. 1994), while others insist that the interface must
be at a temperature below the normal melting point,
though no one specifies just what that temperature is
(Hallett 1964; Macklin and Payne 1967, 1968; Prup-
pacher and Klett 1997; Frenkel 1955).

Those in the lower-than-melting-point camp make
statements exemplified by “The condition for freezing,
however, is that the interface temperature should be
equal to, or slightly lower than, the thermodynamic
freezing point. It follows that the liquid just ahead of
the interface must have a still lower temperature. . .”
[Cottrell (1955, p. 210); see also Chalmers (1959, p.
232)]. On the other hand, Haasen (1978, p. 59) states “it
can be assumed that the temperature of the interface is
always Tm,” and Porter and Easterling (1981, p. 205)
concur, stating “solid/liquid interface remains isother-
mal at essentially Tm.”

Curiously, Frenkel (1945, 1955) is cited by both
camps. In the Russian edition of his classical mongraph,
Kinetic Theory of Liquids, he states (p. 375, translation
by ABK) “. . . because of the release of the latent heat
of crystallization, the temperature near the crystal-
solution boundary remains at a steady level, corre-
sponding to the usual melting point.” However, the En-
glish translation, appearing only a year later, states
(Frenkel 1955, p. 417) “the temperature near the
boundary surface between the liquid and the crystal is
raised, owing to the evolution of the latent heat of crys-
tallization, being determined by the rate of flow of heat
away from this surface.” We have been unable to es-
tablish whether Frenkel changed his mind or whether
the translators, Sir Neville Mott and R. S. Sack, “cor-
rected the error.”

Because the ice–water interface moves slowly (see
section 5), the conflicting opinions may be reconciled
via the relation �T � l�T, connecting the microscopic
and macroscopic descriptions. To estimate the tem-
perature gradient, consider heat conduction limited ad-
vancement of the ice–water interface. The scaling is u �
�T/�l, where u is the interface speed and �T is the
temperature gradient between the ice and supercooled
liquid over the distance �l. More precisely, the heat loss
from an area A is kA�T. The heat supply is dQ/dt �
A�Lfusionu. Steady state yields �T � �Luk�1.

Inserting values for the density of water, k � 0.6 W
m K�1 and Lfusion � 0.33 � 106 J kg�1 and using ob-

C1 There is a possibility that a solid crystalline mass at a tem-
perature Tf � Tm is a net result of isenthalpic solidification as was
observed by Glicksman and Schaefer (1966) for deeply super-
cooled phosphorus. Gentler supercooling did result in a phospho-
rus “slush” similar to freezing of supercooled water.

C2 A similar difference of opinion occurred in the literature of
physical metallurgy and solidification. See, for example, Glicks-
man and Schaefer (1966, p. 2368).
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served interface speeds in the range of 1–10 cm s�1

(Pruppacher and Klett 1997, p. 669) gives the range of
�T � 5–50 K �m�1. This should be considered an up-
per bound as forced convection, caused by the move-
ment of dendrites, is likely to soften the gradients.D1

Another simple estimate of �T is to take supercooling
of, say, 30° and divide it by 3 �m (representing distance
from a random nucleation site to the cloud-droplet sur-
face). This still results in 10 K �m�1, so the two esti-
mates are not far apart. Setting the “molecular jump
length” to 10Å yields the temperature difference across
the “interface” of about 0.02°C. This is in agreement
with a “fraction of a degree” often reported in the lit-
erature (Pruppacher and Klett 1997, p. 673), especially
if the “jump length” is increased to mimic the condi-
tions of the various experiments.D2
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D1 Natural convection is not likely to occur. The Rayleigh num-
ber, the ratio of convection-causing buoyancy to resistance by
diffusion and viscosity, is on the order of 10�5 for a 10-�m droplet.

D2 The argument can also be used in reverse, to justify the heat
transfer limited regime by observation of interface speed on the
order of several centimeters per second.
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