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ABSTRACT

One of the most important avenues of recent meteorological radar research is the application of polar-
ization techniques to improve radar rainfall estimation. A keystone in many of these methods is the
so-called differential reflectivity ZDR, the ratio of the reflectivity factor ZH at horizontal polarization
backscattered from a horizontally polarized transmission to that corresponding to a vertically polarized
transmission ZV. For such quantitative applications, it is important to understand the statistical accuracy of
observations of ZDR. The underlying assumption of all past estimations of meteorological radar uncertain-
ties is that the signals obey Rayleigh statistics. It is now evident, however, that as a radar scans, the
meteorological conditions no longer always satisfy the requirements for Rayleigh statistics. In this work,
ZDR is reconsidered, but this time within the new framework of non-Rayleigh signal statistics. Using Monte
Carlo experiments, it is found that clustering of the scatterers multiplies the standard deviation of ZDR

beyond what is always calculated assuming Rayleigh statistics. The magnitude of this enhancement depends
on the magnitudes of the clustering index and of the cross correlation between ZH and ZV. Also, it does not
depend upon the number of independent samples in an ensemble estimate. An example using real radar
data in convective showers suggests that non-Rayleigh signal statistics should be taken into account in future
implementations of polarization radar rainfall estimation techniques using ZDR. At the very least, it is time
to begin to document the prevalence and magnitude of the clustering index in a wide variety of meteoro-
logical conditions.

1. Introduction

For over 25 years, the applications of radar polariza-
tion measurements have been thoroughly explored by a
multitude of investigators. One of the most important
avenues of research has been that directed toward im-
proving radar rainfall estimation. A keystone of many
of these methods is the so-called differential reflectiv-
ity, the ratio of the reflectivity factor ZH backscattered
at horizontal polarization from a horizontally polarized
transmission to that corresponding to a vertically po-
larized transmission ZV. Indeed, it now appears that
ZDR � ZH /ZV is destined to play an increasingly im-
portant operational role when polarization technology

is added to current and future national meteorological
radar systems.

It is important, then, to understand the measurement
accuracy of ZDR, usually expressed in terms of the stan-
dard deviation. Consequently, it is not surprising that
the signal statistics of ZDR have been thoroughly
treated in past studies beginning with Bringi et al.
(1983). Recently, however, some investigators (Gorgucci
et al. 2006, p. 3039) even claim “typical” accuracies of
0.2 dB (about 5%). While that would be wonderful if
true, this work shows why that degree of accuracy is
often unlikely, in reality. It is important, then, not to
oversell the anticipated accuracy of some polarization
rainfall estimation techniques that are likely to be
implemented in future national meteorological radar
systems, particularly in light of the inherent variability
of the rainfall rate itself (Jameson 2008).

The underlying assumption of all past studies is that
the signals obey Rayleigh statistics (Rayleigh 1877) as
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reexpressed for radar meteorology by Marshall and
Hitschfeld (1953). The derivation of Rayleigh statistics
assumes that all waves from each particle scatter inde-
pendently and that conditions are statistically station-
ary (or equivalently, spatially homogeneous). Thus, at
any location, the net observed wave is then the sum of
all the independent waves having randomly distributed
phases.

Rather than directly measuring the amplitude and
phase of the net wave, for radars it is more convenient
to measure the so-called real R and imaginary Q or-
thogonal components. These can be thought of as the x
and y axis projections, respectively, of a complex pha-
sor (vector) rooted at an axis origin that has a magni-
tude equal to the amplitude of the net wave and an
angular position around a circle given by the phase.
From this perspective, Rayleigh statistics implies that
the R and Q components are Gaussian distributed and
are statistically independent. The statistical distribu-
tions of the amplitude (the Rayleigh distribution) and
intensities (exponential distribution) can then be
readily calculated.

As Marshall and Hitschfeld demonstrated, this ap-
proach is useful for a basic understanding of radar sig-
nals at one polarization or frequency. They also showed
that mean intensity calculated from k statistically inde-
pendent samples could then be written as an Erlang
distribution having a shape dependent on k. The larger
the k, the narrower and more Gaussian-like the distri-
bution of the mean values. While as important as these
findings are, there are situations when they do not ap-
ply.

For example, there have been past measurements
suggesting that, at times, the statistics may deviate from
Rayleigh (e.g., Schaffner et al. 1980). Unfortunately,
the origins of the signals were not completely under-
stood, leading most observers to conclude that such
deviations were “unusual” and not a challenge to the
predominance of Rayleigh statistics. We return to this
in a moment.

While most radar measurements involve only one pa-
rameter, the complicated nature of meteorological con-
ditions has forced increasing sophistication. For ex-
ample, for some purposes it is often useful to measure
two parameters that, when combined, yield greater in-
formation. One example is dual-wavelength hail detec-
tion involving the ratio of two radar reflectivity factors
measured at two different frequencies. Such ratios
present a statistical problem especially when they in-
volve variables with probability density functions (pdfs)
having extended tails. In the case of dual-wavelength
hail detection, the statistics were first considered by

Srivastava and Carbone (1971). Since the samples at
the two frequencies are entirely statistically indepen-
dent, the statistics of the dual-wavelength ratio is then
the ratio of two Erlang distributions, which, it turns out,
is a beta distribution, as shown in many texts on statis-
tics. That distribution is usually asymmetric, often hav-
ing quite extended tails that seriously challenge the sta-
tistical reliability of such measurements.

Indeed, if ZH and ZV were completely statistically
independent, ZDR would also be beta distributed, hav-
ing long, extended tails, thereby seriously compromis-
ing the usefulness of ZDR. This can be understood by
simply realizing that when the two signals are statisti-
cally independent, a small value of ZV might occur si-
multaneously with a large value of ZH so that ZDR

could, at times, reach tremendous values. This would
not necessarily be an infrequent event either. Fortu-
nately, in precipitation, ZH and ZV are usually highly
correlated (�HV � �0.98). This correlation severely re-
stricts the range of values of ZDR. That is, large ZH and
ZV as well as small ZH and ZV will occur simultaneously
so that their ratio remains close to the expected value
regardless of extreme fluctuations in either quantity.
Consequently, Bringi et al. (1983) and subsequent stud-
ies all treat ZDR as the ratio of two highly correlated
quantities, each consistent with Rayleigh signal statis-
tics.

Letting � � denote an ensemble average and E the
expected value, the normalized differential reflectivity
can be expressed as X � (�ZH�/�ZV�)/[E(ZH)/E(ZV)].
Using Eq. (3) in Bringi et al. (1983) and changing the
variables from normalized amplitudes to normalized
differential reflectivities, the pdf is given by

P�X � �
�1 	 X ��1 
 �HV�

��1 	 X �2 
 4�HVX �3�2 , �1�

where �HV is the cross polarization between the back-
scattered intensities at the two polarizations. While this
distribution exists and integrates to unity over [0, ],
and while there is a modal (expected) value, the mean
and variance (or any other moment) do not exist be-
cause the tail of the distribution goes as 1/X2 (Fig. 1), as
can be derived from (1) for large X, so that the mo-
ments do not converge. Bringi et al. (1983) circumvent
this peculiarity by considering, instead, the statistics of
an estimator of the expected value that comes from the
summation of the Gaussian R and Q components at the
two polarizations. The resulting statistics can then be
treated using the analyses of Krishnaiah et al. (1963) for
correlated bivariate chi distributed variables which
arise from such summations. The Cramer–Rao lowest
possible bound to the variance of ZDR for such circular
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Gaussian models can also be computed (Schultz and
Kostinski 1997).

As useful as these results have been, however, it is
becoming increasingly evident that, as a radar scans,
conditions are not statistically stationary often in im-
portant meteorological settings. Rather, most precipi-
tation is statistically heterogeneous so that radar signals
do not satisfy the conditions required for Rayleigh sta-
tistics (Jameson and Kostinski 1996; Jameson 2008).
That is, non-Rayleigh signal statistics are likely not as
rare as previously assumed. Even in situations of sta-
tistical homogeneity, conditions may fluctuate signifi-
cantly largely because of the spatial clustering of the
scatterers [for a discussion see Kostinski and Jameson
(1997) and Jameson and Kostinski (2000)]. When that
is the case, the central limit theorem, required to pro-
duce Rayleigh statistics, is violated (Jameson and Ko-
stinski 1996, 1999).

In light of this, it is reasonable to return to a recon-
sideration of the statistics of ZDR but this time within
the new framework of non-Rayleigh signal statistics.
While the theoretical calculations performed here are
for statistically homogeneous situations, we do consider
some real data as well. Consequently, since real data is
usually likely statistically heterogeneous, we also con-
sider those cases when the statistical heterogeneity are
consistent with the description of Jameson (2007). As
argued in appendix A, even in such statistically hetero-
geneous cases, the statistics of the fluctuations (the

standard deviation), are largely (i.e., about 80%–100%
as discussed in appendix A) determined by clustering.

So how can we compare cases when clustering is ab-
sent with those when it is present? First of all, as just
noted, the variance cannot be used since it does not
exist for (1). Nor can we use the theoretical approach of
Bringi et al. (1983) using the statistics of an estimator
since the R and Q components are no longer Gaussian
when there is clustering (shown below). This means
that, unlike for Rayleigh statistics, a closed-form ana-
lytic solution corresponding to non-Rayleigh statistics is
not possible. Instead, we must turn to Monte Carlo
calculations as discussed in section 3 and in appendix B.
Like Bringi et al. (1983) we then average over a certain
number of samples of the intensities at the two polar-
izations to estimate ZDR. We then compute the stan-
dard deviation and compare it to the Rayleigh standard
deviation given by (7) in Bringi et al. (1983). As shown
later, this ratio of the clustered to Rayleigh standard
deviation does not depend upon the number of inde-
pendent samples used to calculate an estimate of ZDR.
However, before doing all of this, we first briefly review
clustering and present a framework used in subsequent
calculations.

2. On the distribution of intensities in a clustered
environment and the role of statistical
heterogeneity

A detailed discussion of one derivation of the distri-
bution of radar intensities in a clustered environment
may be found in Jameson (2005). Here, the relevant
points are presented with regard to this paper before
proceeding with the calculations. (Some further discus-
sions relevant to the interpretation of actual measure-
ments in statistically heterogeneous conditions are
given in appendix A with an example presented in sec-
tion 4.)

The spatial variability of precipitation is widely ac-
knowledged. How does this affect radar observations?
Radars measure the reflectivity factor (Z) derived from
observations of backscattered intensities (I) in sample
volumes. For stationary antennas, the signal fluctua-
tions are determined by random coherent summations
of the electromagnetic waves reflected by the individual
particles as described by Rayleigh statistics. The vari-
ance then equals the mean squared (i.e., the relative
dispersion of the intensity, �I /I, is unity for the expo-
nential distribution of intensities arising from Rayleigh
statistics). For scanning antennas, however, additional
deviations occur as clustering and statistical heteroge-
neities extend the tail of the distributions of the relative
dispersion.

FIG. 1. The theoretical pdf of the normalized differential reflec-
tivity X for Rayleigh statistics as discussed in the text. Note the
power-law tail of the distribution which makes moments such as
the mean and variance nonconvergent over [0, ].
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That is, Rayleigh statistics are based upon the central
limit theorem applied to each of the two components of
the complex amplitude when conditions are “near”
statistical stationarity. Jameson and Kostinski (1996)
explored the meaning of near stationarity and con-
cluded, for the simple case of drops of one size, that
whenever the number of drops within the beam fluctu-
ated from sample to sample by more than about 15% of
the mean, non-Rayleigh effects could be detected.
Why? Because now the measurement not only depends
upon the constructive and destructive interference of
the waves scattered off all the drops, it also depends
upon the doubly stochastic nature of the process in
which the number of scatterers themselves becomes a
random variable largely because of the motion of the
observation volume between successive radar samples.
[A more complete discussion of the origin of non-
Rayleigh signal statistics may be found in Jameson and
Kostinski (1996).] What causes the number of drops to
vary?

A central source of drop concentration fluctuations
in a moving radar sample volume is clustering, which is
the enhanced concentration (and dilution) of particles
associated with increased (decreased) correlations of
scatterers in neighboring volumes. That is, the number
of drops in neighboring volumes is not statistically in-
dependent.

An important variable for quantitatively describing
the clustering is the clustering index CI, defined by

CI �
�N2

N2 

1

N
, �2�

where N and �N2 are the mean and variance of the
number of scatterers from sample volume to sample
volume members of an ensemble of such samples. Thus,
when there is no clustering, �N2 � N and CI → 0.
Because the clustering intensity goes as �N2/N

2

 1/N,

the second term often quickly becomes negligible for
most realistic radar sample volumes so that CI → (�N2/
N

2
).

As previously mentioned, another source of drop
concentration variability is statistical heterogeneity, the
result of changing conditions such that the statistics of
the observations depend upon the location of the mea-
surements. Consequently, radar intensity measure-
ments exhibit increased variance (and relative disper-
sion) because of the bunching of drops produced by
correlation (i.e., clustering) and because of systematic
changes in the observed longer-term or larger-scale
mean values of drop concentrations associated with sta-
tistical heterogeneity. As antennas scan during sam-
pling, then, radars “see” the effects of all of this vari-

ability (clustering in conjunction with heterogeneity) in
addition to the usual Rayleigh signal coherency fluctua-
tions.

As the absence of any discussion in statistics text-
books indicates, the subject of statistical heterogeneity
has been a difficult problem to address particularly with
any generality. Recently, however, Jameson (2007)
showed that statistically heterogeneous rain can appar-
ently be decomposed into a half dozen or so statistically
homogeneous components (i.e., steady drop size distri-
butions). The statistically heterogeneous rain event,
then, can be described (and, indeed, reconstituted) us-
ing linear, weighted combinations of these different sta-
tistically homogeneous components. In so far as these
results are generally applicable, it then provides insight
into our meteorological interpretation of non-Rayleigh
signal measurements in statistically heterogeneous con-
ditions. Using the conservative estimate discussed in
appendix A and expression (A8) in Jameson (2008), it
is found that

�2�Z�

E2�Z�
≅

5
4 �

i

CIi�wiEi�Z�

�E�Z�� �
2

≅ CĪ
5
4 �

i
�wiEi�Z�

�E�Z�� �
2

,

�3�

where E denotes the expected value, wi are the weight-
ing functions corresponding to each of the statistically
homogeneous components, � � denotes an ensemble av-
erage, and the “overbar” denotes a weighted average.

Thus, the squared relative dispersion of Z is deter-
mined by the summation over the clustering indices for
each statistically homogeneous component of the sta-
tistically heterogeneous rain multiplied by the square of
the fractional contribution each component mean
Ei(Z) makes to the overall average Z times a factor.
Hence, one may think of the second multiplicative term
as weighting factors representing the effect of statistical
heterogeneities. Thus, for most radar measurements we
conclude that in statistically heterogeneous rain 80%–
100% of �2(Z)/E2(Z) provides a measure of a weighted
average clustering index, while in statistically homoge-
neous rain the relative dispersion of Z provides a direct
estimate of the clustering index.

It is also important to note that in (3), Z is the in-
trinsic radar reflectivity factor (without signal fluctua-
tions) and not the measured Z. Since Rayleigh signal
coherency fluctuations are present in actual observa-
tions, it is shown in Jameson (2008) that the observed
and intrinsic relative dispersions are related by

��2�Z�

E2�Z�
�

Observed

� ��2�Z�

E2�Z�
�

Intrinsic

	 1 � CI 	 1, �4�

NOVEMBER 2008 J A M E S O N A N D K O S T I N S K I 2819



where unity appears because of the presence of Ray-
leigh signal fluctuations. Moreover, when there are a
sufficient number of statistically independent samples,
CI can then be reliably extracted from observations
(Jameson 2008) by first subtracting unity from the mea-
sured �2

z /Z
2

and then multiplying by a factor between
80%–100%.

3. Results from Monte Carlo simulations of signal
statistics in a clustered environment

In this section we first sketch out the procedure and
then discuss some results. First, a random, uncorrelated
10 million element time series is generated for the
BesselK distribution (Jameson 2005) for CI � 2, 4, and
6 over the range 0 � I/I � 200 as discussed in appendix
B. An example of the simulated frequency distribution
is compared with theory in Fig. 2. Clearly, the simula-
tions work quite well. The difference between the Ray-
leigh statistics (CI � 0) exponential distribution and the
clustered non-Rayleigh statistics is strikingly apparent.
The long tails of the clustered distributions indicate that
the standard deviations of the intensities should be sig-
nificantly enhanced beyond that for the Rayleigh expo-
nential distribution of intensities. One initially suspects,
then, that this could potentially have an effect on the
variance of the differential reflectivity.

To explore this, we next generate a pair of correlated

time series of BesselK distributed intensities, one for
horizontal and one for vertical polarizations having a
�HV ranging from approximately 0.2 to 0.995. These
correlated intensity time series can be used in two ways.
First, Fig. 2 suggests that the distributions of complex
amplitude component, R and Q, may no longer be
Gaussian. Indeed, this is the case as Fig. 3a confirms.
The distribution is definitely non-Gaussian with tails
that far exceed those for the normal distribution for the
same mean intensity. While somewhat like a Lorentz
distribution in appearance, a closer inspection (not
shown) reveals that the distribution actually has longer

FIG. 2. Frequency distributions of the intensity normalized to
the mean I for the nonclustered (Rayleigh) and clustered case as
discussed in the text. Note the reliability of the Monte Carlo
simulated values as indicated by the agreement between theory
and simulation.

FIG. 3. (a) Frequency distributions for the Q component of the
complex amplitude for Rayleigh signal statistics (the Gaussian
distribution) and simulated clustered case for the same mean I as
discussed in the text. (b) An example of the distribution of Q
measured by a scanning radar.
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and more significant tails than does a Lorentz pdf. In
fact, it can be shown that, for the BesselK distribution

of intensities, the distribution for the Q component is
given by

P�Q� ��2
�

1
��1�CI� � 1

B��1�4��1	2�CI�� 1

Q2��1�4��1
2�CI�

BesselK� 1
CI



1
2

,
2�Q2

�B
�, �5�

where CI is the clustering index, BesselK is the modi-
fied Bessel function of the first kind,

B �
rms�Q�

��CI�2 	 CI
,

and rms denotes the root-mean-square. The same dis-
tribution also holds for R . Such distributions (Fig. 3a)
appear in observations as well (Fig. 3b), giving us some
confidence in this approach.

Second, the statistics of ZDR can then be calculated.
Figure 4 shows an observed distribution of ZDR com-
pared to the appropriate distributions assuming Ray-
leigh and clustering statistics. These data are from dual-
polarization time series measurements of the R and Q
components at alternating polarizations from a station-
ary antenna over several seconds yielding around
80 000 independent samples over the same locations.
Non-Rayleigh effects are then observed by combining
observations along the beam. This is analogous to look-
ing at data from a single range bin as it scans rapidly
multiple times through the same set of heterogeneous
conditions. Here the parameter X is the ensemble ob-
served value normalized by the expected ZDR, as de-
fined previously. The difference between these two fre-
quency distributions of X for the measured �HV � 0.970
are fairly typical. We note the broadening of the distri-
bution in the clustered environment as compared to
that corresponding to Rayleigh statistics (CI � 0). The
likely source of this enhanced broadening is the ex-
tended tails of R and Q (Fig. 3) as exhibited by the
extended tails of the intensity distribution (Fig. 2). As
with the Rayleigh statistics, �HV acts to significantly
reduce the spread in the distribution of ZDR, but in the
clustered environment, that is still insufficient to return
the variance of ZDR to Rayleigh values.

Now in Fig. 4, there is no averaging; that is, the
curves are the frequency distributions of statistically
independent pulse to pulse values of X. In reality some-
thing like 5–10 independent samples will provide an
ensemble average so that both distributions in Fig. 4
would be narrower. Regardless, however, what is im-
portant is that the standard deviation in the clustered
environment will always be greater than the value com-
puted assuming Rayleigh statistics. This is illustrated in
greater detail in Fig. 5.

Clearly, in all situations, clustering enhances the stan-
dard deviation ZDR beyond what would be calculated
assuming Rayleigh statistics, and the greater the clus-
tering index, the greater this effect even when �HV �

0.99. The symbol in the inset frame in Fig. 5 represents
the observed data in Fig. 4 for the CI � �2

z /Z
2
; that is,

the CI is 100% of the relative dispersion of Z (see
appendix A). The agreement is remarkable despite the
observation that the distributions of ZDR (and the dis-
tributions of the intensities) differ somewhat.

As Fig. 5 illustrates, �HV plays a crucial role in the
accuracy of the ZDR measurements. It is important,
then, to get �HV as close as possible to unity. It has been
suggested (Chandrasekar et al. 1994) that this might be
done using simultaneous horizontally and vertically po-
larized transmissions (the so-called 45° transmissions)
in order to minimize decorrelation caused by particle
reshuffling during one interpulse period (a problem in
the cases of transmissions of alternating polarization
from pulse to pulse). Despite this approach, however,
there will always be decorrelation for several reasons
including the meteorologically intrinsic differences of
the scatterers viewed at the two different polarizations
(Jameson 1989) and the differences in the two radar
beam patterns at each polarization.

Of course, it must be remembered that clustering will
have no effect on the measurements if the antenna re-
mains stationary unless data in different data bins are
combined (as in Fig. 4). Thus, one way around the en-
hanced uncertainty induced by clustering is to take ob-
servations in azimuthal incremental steps keeping the
antenna stationary at each step during sampling or sim-
ply to rotate the antenna very slowly. These alterna-
tives, however, are not consistent with the rapid scan
often desired for greater temporal resolution with the
potential exception of electronically steered, dual-
polarized phased array meteorological radars if that
should ever come to pass. On the other hand, for some
meteorological purposes, non-Rayleigh signals may ac-
tually be useful (Jameson 2008). Some investigators
may, in fact, wish to enhance rather than to suppress
non-Rayleigh signals as a way to explore subbeam-scale
variability.

Another important point to remember is that the ra-
tios in Fig. 5 will largely be independent of the number
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of independent samples m. This occurs because both
�Clustered and �Rayleigh essentially depend on the number
of independent samples in the estimate as 1/�m (Fig.
6a) so that the ratio of the clustered to Rayleigh stan-

dard deviations are independent of m (Fig. 6b). Thus,
for example, if one calculates that �ZDR

� 0.2 dB, (or
1.047 on a linear scale) as Gorgucci et al. (2006) suggest,
the standard deviation may actually be, say, 0.4 dB
(1.097) to 1.2 dB (1.230) or larger depending upon CI
and �HV at the location of the observation.

The objective of this work, then, is simply to suggest
using reasonable caution by pointing out the potential
effect of clustering on measurements of ZDR and to

FIG. 4. Frequency distributions of the normalized differential
reflectivity for �HV � 0.970. Note the significant broadening be-
cause of clustering. The theoretical curve for CI � 4 shows the
same general structure as the radar observations.

FIG. 5. The multiplicative factor of clustering on the standard
deviation (uncertainty) of the differential reflectivity calculated
under the usual assumption of Rayleigh statistics. The effect oc-
curs for all at high correlations �HV even those approaching unity.
The impact of clustering also increases with increasing CI. The
symbol in the inset corresponds to the data in the previous figure
as discussed in the text.

FIG. 6. (a) Standard deviations for clustered and Rayleigh cases
for average powers ratio estimator of normalized ZDR on a linear
scale. Both exhibit nearly inverse square root relationships to the
number of independent samples. (b) An illustration showing that
the ratio of the clustered to Rayleigh standard deviations does not
depend upon the number of independent samples (numbers in the
figure) used to estimate ZDR.
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leave any rational scientist at least thinking about just
how much such clustering may affect the future opera-
tional accuracy of some polarization rainfall algorithms.
At the very least, values as low as Gorgucci et al. (2006)
suggest seem highly improbable much of the time as
illustrated later in Fig. 7 except, perhaps, in less inter-
esting meteorological conditions.

However, with our current nearly nonexistent mea-
surements of the clustering index it is impossible to
generalize the extent of the effect of clustering on radar

measurements except to note that, regardless of radars,
clustering appears to be ubiquitous throughout most
precipitation. When and where that will be significant
remains to be determined through extensive observa-
tions. However, in the next section, one example from
a rare set of observations of CI is presented. While its
relevance should not be viewed with any sweeping gen-
erality, of course, it does raise valid concerns and sug-
gests the importance of gathering further observations
of the clustering index in a number of different meteo-
rological settings.

4. A sample observation

The azimuthal-range scan considered in this section
was measured on 9 September 2005. Details may be
found in Jameson (2008), but some of the relevant in-
formation is repeated here as well. These data were
kindly provided by Dave Brunkow of the University of
Chicago–Illinois State Water Survey (CHILL) National
Radar Facility at Colorado State University in Fort
Collins, Colorado. In both cases the observations were
made in rain by the CHILL radar that has a nominal 1°
beam and wavelength of 10 cm.

In each scan, over a set of 150-m range bins and over
several degrees of azimuth, the R and Q data were
given for each pulse. This permitted a detailed inspec-
tion of data quality (e.g., the R and Q were found to be
completely balanced). It was also then possible to com-
pute the intensity (R 2 	 Q2) for each pulse and range
bin. Data over a number of pulses and range bins were
then used to estimate I2 and I2 and, therefore, the vari-
ance �2(I). The number of data bins combined was
selected to preserve as high a spatial resolution as pos-
sible while still yielding a reasonable number of statis-
tically independent samples. The number of statistically
independent samples was estimated assuming that
there were 5 independent samples per 1° of azimuth
and that the range bins along each azimuthal radial
separated by 1° were also statistically independent. This
means that the estimate of the number of independent
samples for each estimate of the variance and mean of
I were, on average, on the order of 13 in this example.
As explained in Jameson (2008), the corresponding
99% confidence threshold that the observed relative
dispersions (squared) of ZH were not Rayleigh in origin
was found to be 2.24 (i.e., a CI of 1.24). That is, any CI
greater than 1.24 were 99% likely not due to Rayleigh
fluctuations, or to put it more positively, they were 99%
likely due to clustering (weighted by statistical hetero-
geneity, of course).

To see where clustering is occurring, the shaded con-
tours of radar reflectivity ZH are shown in Fig. 7a

FIG. 7. (a) Shaded contour plots of the radar reflectivity factor,
Z, in units of dBZ with overlays of contours of the CI at the 99%
confidence level as functions of the radar range and azimuth (after
Jameson 2008, his Fig. 4). CI is estimated assuming it is 80% of
�2

Z/Z
2

as discussed in appendix A and the text. Note that the
radials and arcs are not orthogonal since the scaling in the vertical
and horizontal directions differ in this plot. (b) The multiplicative
factor of the clustered to the traditional, nonclustered (Rayleigh)
standard deviation contoured beginning at 1.2 in steps of 0.2 and
overlaid on the shaded contour plot of Z using the clustered in-
dices in (a) as discussed in the text.
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adapted from Jameson (2008) along with the contours
of the clustering index in unit steps beginning with the
modest CI � 1.3. In this example, the most significant
values of the clustering index are often found in or near
the highest radar reflectivity factors such as in the core
of a small, convective shower at about 156° azimuth and
36-km range (156°, 36 km). This need not always be the
case, however (Fig. 5 of Jameson 2008).

To get an idea of what this means with respect to the
level of uncertainty in ZDR we assume that �HV � 0.98.
From the numbers used to generate Fig. 5, it is found
that the ratio of �Clustered/�Rayleigh goes as (1.00 	
1.083CI)1/2 at this �HV. Using this expression, the clus-
tering indices are converted into the ratio of the stan-
dard deviations. These are plotted in Fig. 7b in steps of
0.2 beginning at 1.2. Clearly, there are areas over which
the uncertainty is significantly greater than Rayleigh
statistics would imply. So, for example, near the core
of the shower in Fig. 7, one would have to multiply
�Rayleigh by a factor of more than 2.8, yielding an un-
certainty of almost 1 dB if the estimated uncertainty
based on a Rayleigh assumption had been 0.4 dB. Thus,
in this case the uncertainty is greatest just where accu-
rate estimates of, say, the rainfall rate are most desir-
able, namely near the core of the most intense shower.

5. Summary and conclusions

Polarization measurements are poised to play an in-
creasingly important role in future operational radar
systems. While polarization observations can contrib-
ute in many ways, one of the most quantitative appli-
cations will be to radar rainfall measurement. In par-
ticular, many studies have suggested that polarization
rainfall estimates, for example, can significantly im-
prove such estimates relative to those derived using the
standard radar reflectivity–rainfall rate (Z–R) relations
in current use.

A key parameter in all of these polarization–rainfall
algorithms is the differential reflectivity (ZDR), the ra-
tio of the radar reflectivity factor measured using hori-
zontally polarized waves to that observed using vertical
polarization (ZH/ZV). As with any scientific variable, it
is important to understand the statistics associated with
ZDR. This was first addressed extensively by Bringi et
al. (1983) and in subsequent studies under the assump-
tion that Rayleigh signal statistics, as expounded for
radar by Marshall and Hitschfeld (1953), apply. This
has been the solitary approach to radar signal statistics
since the beginning days of radar meteorology.

Rayleigh statistics, however, are based upon two es-
sential assumptions, namely that conditions are statis-
tically stationary during sampling and that each particle

scatters independently. It is becoming increasingly evi-
dent, however, that as a radar scans and in important
meteorological settings, conditions are not statistically
stationary in time (i.e., they are statistically heteroge-
neous across the sampling space) so that often, radar
signals do not satisfy the conditions required for Ray-
leigh statistics (Jameson 2008). Even in those rare situ-
ations of statistical homogeneity, conditions may fluc-
tuate significantly largely because of clustering or
bunching of the scatterers (Kostinski and Jameson
1997; Jameson and Kostinski 2000) so that the central
limit theorem, required to produce Rayleigh statistics,
is violated (Jameson and Kostinski 1996, 1999). Since it
appears meteorologically that the clustering of particles
is nearly ubiquitous, non-Rayleigh signal statistics can
no longer be attributed to unusual meteorological con-
ditions.

Therefore, in this study we return to a reconsidera-
tion of the statistics of ZDR but this time within the new
framework of non-Rayleigh signal statistics. Here, as
discussed in the text [and in so far as the results in
Jameson (2007) apply], even in conditions of statistical
heterogeneity, clustering is largely responsible for the
statistics of the fluctuations (see appendix A and Figs. 4
and 5), although other terms due to statistical hetero-
geneity may also contribute at times (appendix A).
Consequently, as has been done in all previous studies,
in the theoretical analysis we consider only statistically
homogeneous but clustered conditions remembering
that our conclusions are likely applicable in a substan-
tial degree to those statistically heterogeneous cases
consistent with the results in Jameson (2007) as argued
in appendix A.

For reasons given in Jameson (2005), the BesselK
function is used as the probability density function
(pdf) of radar intensity measurements in a clustered
environment. This has the advantage that the clustering
index is explicit in the intensity distribution. However,
because of the correlation, �HV, between ZH and ZV, a
direct analytic solution for the statistics of ZDR is not
possible so that Monte Carlo calculations (appendix B)
are used to study the effect of clustering on the stan-
dard deviation of ZDR using the estimator of averaged
powers [Bringi et al. 1983, their Eq. (4)].

It is found that �ZDR
is significantly enhanced by clus-

tering to a degree that depends upon the clustering
index and �HV. It is noteworthy, however, that, regard-
less of how small the Rayleigh standard deviation is
reduced by increasing the number of independent
samples m, clustering still magnifies that Rayleigh stan-
dard deviation by an amount that is independent of m.
This effect is present even for �HV approaching unity
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and over the range of CI values likely to be found in
most real observations.

As pointed out in Jameson (2008), most current ra-
dar observations of reflectivity factors alone are un-
likely to be too affected by non-Rayleigh signal statis-
tics because of the small number of independent
samples used to form estimates. However, that is not
the case for more sophisticated observations such as the
differential reflectivity involving ratios of such param-
eters as Fig. 6 demonstrates. All current observations of
ZDR are likely affected to varying degrees. Using the
methodology described here and in Jameson (2008), an
example in convective showers suggests that this am-
plification of �ZDR

by non-Rayleigh signals should be
taken into account in future implementations of polariza-
tion radar rainfall estimation algorithms. At the very least,
it is time to begin to document the prevalence and mag-
nitude of clustering and its subsequent generation of non-
Rayleigh signal statistics in a wide variety of meteorologi-
cal settings if we are going to embrace with confidence
more quantitative applications of radar observations.
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APPENDIX A

On the Contribution of Clustering to the Relative
Dispersion of the Radar Reflectivity Factor in

Statistically Heterogeneous Environments

In previous work (Jameson 2008) the relationship be-
tween the relative dispersion of the radar reflectivity
factor and the clustering index in a statistically hetero-
geneous environment was developed under the as-
sumption that the weighting functions of the statisti-
cally homogeneous components of the heterogeneous
data were represented by a Dirac distribution. Al-
though nothing is yet known about those distributions,
it seems likely that they will usually have some breadth
expressed as a variance. It is shown below that when
that is the case the variance (and, hence, the relative
dispersion) of the radar reflectivity factor is enhanced
by factors other than just the clustering, although that
remains the predominant influence.

Specifically, we imagine an entire set of data having
associated sets of weighting functions {wi} and realiza-
tions of M components of the radar reflectivity factors
{Zi}. For one realization from this ensemble of obser-
vations Z� � �M

i�1w�i Z�i it then follows that

Z � �Z	� � �
i�1

M

�w	iZ	i� � �
i�1

M

�w	i��Z	i� � �
i�1
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wiZi, while �A1�
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i�1
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�
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M

ZiZj cov�wiwj�, �A3�

where it is assumed that the Zi are statistically indepen-
dent. In contrast to the derivation in Jameson (2008)
additional terms are now included to reflect the com-
plete contribution from the statistical heterogeneity.
This means that the observed relative dispersion of Z
will be enhanced beyond that due solely to clustering.
Let us estimate by how much.

Give our current state of knowledge, it is now as-
sumed that the ws are statistically independent so that
(A3) becomes

�Z
2 � Z2 
 Z

2
� �

i�1

M

�wi

2 �Zi

2 	 �
i�1

M

�wi

2 Zi
2 	 �

i�1

M

wi
2�Zi

2 .

�A4�

Unfortunately, at present nothing is known about the
pdf of w. Consistent with this ignorance, the assumption
is also made that the distributions are uniform over
[0, 1] for all wi. In that case �2

wi
� 1/3w2

i so that (A4)
reduces to

�Z
2 � Z2 
 Z

2
�

1
3 �

i�1

M

wi
2Zi

2 	
4
3 �

i�1

M

wi
2�Zi

2 . �A5�

Now, because of different meteorological conditions
even within one set of observations, it is unlikely that
the Zi are uniformly distributed. Since Z2

i is of the order
�2

Zi
, to a reasonable approximation we can then write
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�Z
2 � Z2 
 Z

2
�

5
3 �

i�1

M

wi
2�Zi

2 . �A6�

Consequently, it is still expected that the clustering in-
dex will be a minimum of at least 60% of the intrinsic
relative dispersion, and it seems far more likely (using
more reasonable pdfs for wi) that the minimum is more
likely closer to 80%–100%. Furthermore, as the pdf of

wi narrows, this percentage will increase until it is 100%
for the Dirac distribution of wi as for the data in Figs. 4
and 5. However, to remain conservative, in this work it
is assumed that the CI is represented by 80% of the
intrinsic relative dispersion, realizing that in Fig. 7 that
assumption may well be an underestimate.

APPENDIX B

The Monte Carlo Generation of the RR , Q
Components and Correlated Intensities in a

Clustered Environment

A random sequence of draws from the BesselK dis-
tribution of intensities corresponding to a clustering in-
dices CI � 2, 4, and 6 are generated using the copula
transformation method (Genest and Mackay 1986;
Nelsen 1999; Frees and Valdez 1998) using correlated
Gaussian distributions and a uniform random number
generator (Fox et al. 1988). First, corresponding to a
particular �HV, two correlated time series of zero mean,
Gaussian distributions with unit variance are gener-
ated. Using the inverse accumulated density function
(CDF) for the Gaussian, these time series are then con-
verted into correlated time series of uniformly distrib-
uted variables. Next, using the CDF of BesselK pdf,
found through fitting procedures, one can generate an
inverse function to transform the uniform random vari-
ables into BesselK random variables. The correlated
intensities at both horizontal and vertical polarizations
as well as ZDR can then be computed as illustrated in
Fig. B1a.

Second, the R , Q at both polarizations can also be
computed by taking the square root of the just corre-
lated intensities (IH and IV) and then picking uniformly
uncorrelated random phases (� ) so that R H,V � (AH,
AV)cos(�i) and Q � (AH, AV)sin(�i). Consequently,
the random phases between R and Q are produced (Fig.
B1b), while the intensities at the two polarizations re-
main correlated.
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