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ABSTRACT

In previous work, it was argued that a source of radar coherent scatter occurs in the direction perpendicular

to the direction of wave propagation because of the presence of grids of enhanced particle concentrations with

spatial periodicities in resonance with the radar wavelength. While convincing, the evidence thus far has been

indirect. In this work the authors now present direct observations of radar coherent backscattered signals in

precipitation in the direction of wave propagation.

The theory is developed for the cross-correlation function of the complex amplitudes in the direction of

propagation calculated for nearest neighbor range bins. Data are analyzed in snow and in rain. The results

agree with the earlier conclusions in the previous work, namely that coherent scatter occurs in both rain and

snow, that it is larger in snow than it is in rain, and that it can be significant at times.

1. Introduction

In previous studies (Jameson and Kostinski 2010a,

hereafter JK10a) the presence of radar coherent signals

backscattered by precipitation was inferred from the

temporal spectral characteristics of the backscattered

signals. In that work (see Fig. 7 in JK10a), it was re-

ported that on average 72% and 34% of the power from

rain and snow, respectively, arose from coherent scatter.

However, the conclusions in JK10a were inferential,

leaving some doubtful skeptics. To address these doubts,

we provide in this work direct evidence of such scat-

ter using the cross-correlation function of the complex

amplitudes between neighboring range bins averaged

over time.

The classical autocorrelation functions (AC) of com-

plex amplitudes in time are always taken at each range

bin independently of the other range bins. Indeed, from

the classical perspective the complex amplitudes at each

range bin should, in time, be statistically independent of

those in neighboring bins when the scatter is incoherent.

Hence, the fluctuating components at each bin arising

from differential particle velocities imply that time av-

eraging of a cross correlation between range bins should

always average to zero. Indeed, it is shown below the-

oretically that this is true when there is no spatial cor-

relation on any scale among the scatterers over a large

domain (a near impossibility in the atmosphere), but

it is not true when there are spatial correlations of the

structures of the precipitation on scales of the radar

wavelength.

If the scales of these structures are in resonance with

the wavelength in a direction orthogonal to the direc-

tion of propagation of the transmitted wave, JK10a have

already argued that coherent backscatter likely occurs.

But what about in the direction of propagation?

Some investigators have argued against the presence

of coherent scatter by combining observations in neigh-

boring range bins. In statistically homogeneous condi-

tions and when only incoherent scatter is present, it is

argued that the total power from the combination of both

bins should double when the volume is doubled because

the total number of particles N doubles. In contrast, be-

cause coherent scatter goes as N2, it is mistakenly argued

that the total power of the combined bins should increase

at a rate greater than linear. Since that is not seen, it has

been concluded by some that coherent scatter does not
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exist. This, however, is a fallacious argument for two rea-

sons. First, if the backscattered power in each bin is al-

ready dominated by coherent scatter, combining two such

bins will simply yield twice the total power. Second, even

if one were to combine the complex amplitudes in each

bin before computing the total power, the presence of any

coherent scatter could not be detected since the addition

of the two complex amplitudes would look like any other

complex amplitude associated with twice the power.

Hence, such approaches are ineffective.

However, instead, we show below that there is a more

direct method for observing coherent scatter as a func-

tion of radar range. That is, we consider the spatial cross-

correlation functions between neighboring range bins.

The primary purpose of this paper, then, is to develop

the theoretical expressions for the complex amplitude

cross-correlation functions when both incoherent and

coherent backscatter are present. We then show that

statistically meaningful real values of time-averaged

cross correlations only occur when there are spatial

structures in resonance with the radar wavelength (i.e.,

where coherent scatter is present). Furthermore, it is

shown that these cross correlations provide a direct

measure of magnitude of the coherent scatter. To that

end, we will compare the results of the theory to ex-

amples from the set of observations used by JK10a.

Before discussing these data further, however, we first

look at the theory for the cross-correlation function

between neighboring range bins when both incoherent

and coherent backscatter are occurring.

2. Theory

For a radar constant of unity, the net electric field at

a location produced by spatially distributed scatterers

can be expressed as
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where h i represents the time average and rm 2 ri 5 l 1

Drm 2 0 2 Dri 5 l 2 Drim while the origin of r1 is set to

zero for convenience. In JK10a [see discussion concern-

ing Eqs. (A2)–(A4)] it is already established that, for

Bragg scatter to occur, vi 5 vm for some particles. Hence,

after sufficient temporal averaging—,25–100 ms to al-

low particle reshuffling in rain and snow to decorrelate

the signals to less than ;0.01 level using the nor-

mal assumption of an exponentially decaying (usu-

ally Gaussian) correlation function characterized by a

1/e decorrelation times of 5–20 ms (see JK10a, their

Fig. 1; Jameson and Kostinski 2010b, their Fig. 1)—

the vm 6¼ vi term disappears hE*(r1, t)E(r2, t)i and

becomes
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where Drim are the separations among the scatterers

i 6¼m relative to a common center. Now the evaluation

of the h i term in Eq. (4) follows that in JK10a, [ap-

pendix A, Eqs. (A5)–(A15)], since the particles in each

volume simply obey different realizations of the same

pair-correlation function. (The assumption of statisti-

cal homogeneity implies that both volumes posses the

same pair-correlation function vis-à-vis the correlation–

fluctuation theorem; Ornstein and Zernike 1914; Landau

and Lifshitz 1980). It then follows that Eq. (4) becomes
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where IB is the coherent back-scattered power, N is the

mean number of particles in each sampling volume of

size V, and I is the scalar distance in the direction of

propagation. Clearly, then, the magnitude r12 is given by
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so that the fractional coherent contribution F to the

total power P is r12 5 hE*(r1)E(r2)i
�� ��/ ffiffiffiffiffiffiffiffiffiffiffi

Z1Z2

p
, where Z

represents the two radar reflectivity factors given by

Na2. When h 5 0 there is no structure (correlation) on

any scale so that r12 5 0; that is, there is only incoherent

scatter. Up to now the role of h has been neglected.

For example, others have noted that r12 5 0 because

neighboring range bins have no scatterers in common

[e.g., Doviak and Zrnić 1993, p. 515, Eq. (C.8) with dts 5

t]. However, this conclusion is only valid for incoherent

scattering because it is not the commonality among any

of the scatterers in independent sample volumes, but

rather the commonality of structures in resonance with

the radar wavelength that produces r12 6¼ 0 and, there-

fore, coherent scatter. Since by the assumption of

statistical homogeneity Z
1

5 Z
2

5 Na2 and by letting

FB 5 h
Ð ‘

0 Ih(I) sin(�2kI) dIi
�� ��, F can be expressed suc-

cinctly as
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where l is the radar wavelength. Clearly, for the same

FB, V, and N, F increases with increasing l. This l comes

from the inverse of wavenumber k. One possible phys-

ical explanation, then, for this wavelength dependence

is that as l decreases the number of waves in 2p radians

increases so that coherent scatter sources may increas-

ingly interfere with each other, leading to increasing

cancellation of coherency as the wavelength decreases.

In the limit of infinitesimal wavelengths, we would even-

tually have incoherent scatter. However, at this time this

possible explanation can only be considered as specula-

tion on our part. Furthermore, it must be remembered

that Eq. (7) and hence the dependence on l and V, only

applies to statistically homogeneous conditions.

It is also worth noting that propagation phase shift

has no effect on r12. Hence, by making measurements of

r12, Z1, and Z2, one can calculate F for various sample

volume separations. However, if Bragg scatter is to be

evaluated most directly, the separations of the sampling

volumes should be relatively small so that the deriva-

tion in JK10a remains valid. Analyses of the data below

show that, by the time the separation reaches ;300 m,

r12 rapidly approaches the noise level. This is not too

surprising given the apparently small spatial dimensions

of the coherently scattering grids of particles (Jameson

2010c). That is, the separation must be small enough to

satisfy the condition of sufficient statistical homogeneity

so that the mean number of particles is the same in the

two sampling volumes and so that the same pair corre-

lation function exists in both volumes. Furthermore, it is

highly desirable that the sample volumes be small so that

there will be less noise and fewer other factors capable of

producing decorrelation and, hence, of degrading esti-

mates of F. Interestingly, the displacement between the

sampling volumes by l becomes irrelevant as long as the

precipitation remains statistically homogeneous.

In practice, when searching for coherent scatter, one

wants to keep the origin fixed. Then after r12 is com-

puted for that origin, it can be moved one bin and r12

can be recomputed so that any valid signals, if present,

are not spatially or temporally averaged out of existence

by the usual process of computing a cross-correlation

function. We do this below using radar data from the

National Science Foundation–Colorado State University–

University of Chicago–Illinois State Water Survey (CSU–

CHILL) Radar Facility at Greeley, Colorado.

3. Some observations

This radar has a 1.18 beamwidth. It operates at a

frequency of 2.725 GHz corresponding to a nominal

wavelength of 11.01 cm. Holding the antenna sta-

tionary, time series observations of the backscattered

complex amplitudes (I, Q pairs) were collected 1024

times per second at vertical polarization. In the rain,

observations were collected over 332 150-m range bins

over a distance of about 3–53 km from the radar. The

elevation angle was 1.828 so that the bottom of the main

lobe of the beam was around 600 m above the surface at

about 30-km range. These measurements are through

weak convection containing a few convective cores.

Likewise, observations were gathered in snow over

218 150-m range bins over a distance of about 3.30–

36 km from the radar. The elevation angle was 2.548

so that the bottom of the main lobe of the beam was

around 700 m above the surface at about a range of

20 km. Finally, I, Q measurements using a stationary

antenna were collected at 30-m resolution in snow

on 9 March 2009, at an elevation angle of 11.048 from
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1.77 to 15.0 km. All evidence of any ground clutter con-

tamination from any low-order side lobes disappeared by

11 km.

While none of these observations are as high resolu-

tion as we would like, as we shall see, they do provide an

important beginning as well as the first direct measure-

ments of coherent scatter from precipitation. We begin

with the 30-m data after first describing the calculation

procedure in greater detail.

a. The procedure

In these CSU-CHILL observations, the I, Q pairs are

recorded at each range bin every 0.9766 ms over ap-

proximately a 1-min interval while the antenna remains

fixed. The polarization was selected to be vertical. The

data were first combined to be a complex amplitude.

These were then stored in an array in which each column

was a different range bin (usually a few hundred) while

each row corresponded to each millisecond observation

over one second, with time increasing with increasing

row index. Beginning with the first range bin, that com-

plex amplitude is complex conjugated and then multi-

plied with its next range neighbor, and that value is stored

in a new array. This is again repeated for the next range

bin and, subsequently, for all rows (times). The new

array is then transposed and a cumulative sum is taken

along each row, and each element of the array is then

divided by the total elapsed time up to that array bin to

yield a running temporal average for each range bin

from 1 to 1000 samples. In the plots to follow, we only

look at the 1000-sample mean values although it is pos-

sible to pick any time average from 0.001 to 1 s.

In what follows, calculations of the expected noise

levels arising from chance for r12 based on characteristic

times to decorrelation found in these data (20 and 5 ms

in snow and rain, respectively) and on the assumption

of correlated, incoherent scatter indicate that the vast

majority of the plotted values of F shown below are sta-

tistically meaningful. Specifically, the (mean, standard

deviation) of the noise in snow and rain were calculated

to be (0.144, 0.0726) and (0.0736, 0.0385), respectively.

We also note that both the means and the standard de-

viations seem to vary as the square root of the number of

independent samples.

b. The results

We begin with the 30-m resolution data plotted in

Fig. 1. The mean F over this 1-km radial is 0.57. This is

smaller than the mean of 0.72 in snow at 150-m reso-

lution in JK10a in the orthogonal direction for 57 ra-

dials and over 300 range bins in a different snow event.

Reasons for this difference are discussed at the end of

this paper. The most important point here, however, is

that r12 6¼ 0 anywhere.

This is also found when one looks at only one radial at

150-m resolution in the snow event considered in JK10a

as shown in Fig. 2. The Z values are considerably larger

in this example, while the sample volume is on the order

of 20 times larger. Since this is only one radial, it is not

surprising, then, that the mean is hFi 5 0.36 not only in

part just by chance, but also because the larger sampling

volume leads to enhanced decorrelation as discussed at

the end of this work. The important point, however, is

that once again r12 6¼ 0 and F is not zero anywhere.

FIG. 1. Plots of Z and F (5r12) as functions of radar range over

1 km at 30-m resolution in snow. The value hFi is the mean of all

F plotted.

FIG. 2. As in Fig. 1, but for a different snow event and the reso-

lution is only 150 m. The corresponding smaller value of hFi is likely

due to enhanced decorrelation over a sample volume 20 times

greater than in Fig. 1.
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Finally, we consider a radial in rain as discussed above

and in JK10a (Fig. 3). The hFi is 0.31. In this case this

is in better in reasonable agreement with the average

value of 0.33 found in JK10a. The important point to

note here is that just as in JK10a, F appears to be smaller

in the rain than in the snow. However, at this stage of

investigation what is most important are not these lim-

ited quantitative comparisons but rather the fact that r12

and thus F exist where classical incoherent scatter theory

says there should be only noise.

4. Conclusions

While JK10a have already reported evidence for the

presence of radar coherent backscatter, in that work it

was argued that radar coherent scatter occurs in the

direction perpendicular to the direction of wave prop-

agation because of the presence of grids of enhanced

particle concentrations with spatial periodicities in res-

onance with the radar wavelength. Here, however, and

in support of the previous results, an approach is pre-

sented that provides a direct observation of radar co-

herent backscatter from precipitation in the direction

of propagation. Specifically, by computing the cross-

correlation function of nearest neighbors in range, it is

shown that with temporal averaging, values greater than

the noise level exist because of the persistence of rele-

vant portions of the pair-correlation function across

range bins, leading to radar coherent backscatter in the

direction of propagation. Using this different approach,

examples in rain and snow are consistent with values

found in JK10a, suggesting that indeed radar coherent

backscatter in precipitation is occurring and that it can

be significant at times.

The similarity in the qualitative behavior of coherent

scatter from rain and snow calculated using two different

techniques—the Z( f) approach in JK10a, where f is the

frequency of the fluctuations in both Z and the ampli-

tudes, and the r12 approach here—is gratifying. How-

ever, it is likely that the r12 approach systematically

underestimates F, particularly for the larger sampling

volumes. Consequently, the approach using Z( f) likely

provides the best overall quantitative estimates of F. In

part this is because Z( f) is not affected by decorrelation

caused by noise (and other factors, such as the size of the

sample volume). Furthermore, Z(f) includes important

sources of coherent scatter not necessarily detected in the

cross-correlation functions between neighboring bins. In

fact, the oscillations associated with f in one bin are very

likely to be out of phase with those in neighboring bins so

that the Z(f) oscillations would actually decorrelate r12

rather than reinforce it, thus leading to overall smaller F

computed using r12 rather than Z(f). Nevertheless, re-

gardless of such quantitative concerns, the enduring point

here is that coherent scatter can explain the existence of

r12 5 F above the noise level while incoherent scatter

cannot.

Finally, it should be mentioned that there is no way to

‘‘correct’’ for coherent scatter except to remove it from

the observations since h (and hence FB) are unknown

[see Eqs. (6)–(7)]. This means that the best estimates of

the ‘‘true’’ Zt are given by Zt 5 (1 2 F)Z. Moreover,

when the radar antenna is scanning it is not possible to

estimate F because non-Rayleigh signal effects (Jameson

and Kostinski 1996) make detection impossible (even

though coherent scatter is still present). Hence, such cor-

rections would require phase array antennas capable of

dwelling at one azimuth before jumping to the next. Thus,

for all current operational radars, no observation-to-

observation correction is presently possible.

However, rather than attempting to correct for co-

herent scatter, a second approach is to minimize its rele-

vance when one is trying to estimate rainfall, for example.

In rain, the best way to do this is to use radar polarization

measurements, specifically the combination of differen-

tial reflectivity ZDR and differential phase KDP, as dis-

cussed in Jameson (1994). Although coherent scatter will

increase the variances in ZDR and KDP, it should not bias

their mean values.

Regardless of such considerations, a different but

important implication of the findings in this work is

that observations in separate range bins cannot simply

be combined, assuming statistical homogeneous con-

ditions, and then treated as though they were statis-

tically independent. Hence, the statistical reliability of

estimates using techniques such as pulse compression

to achieve high-spatial-resolution measurements, which

FIG. 3. As in Figs. 1 and 2, but for observations in rain.
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can then be combined to yield estimates over larger do-

mains, will likely be overestimated.
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