
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Department of Materials Science and 
Engineering Publications 

Department of Materials Science and 
Engineering 

4-2018 

Design optimization of polymer heat exchanger for automated Design optimization of polymer heat exchanger for automated 

household-scale solar water pasteurizer household-scale solar water pasteurizer 

David C. Denkenberger 
Tennessee State University 

Joshua M. Pearce 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/materials_fp 

 Part of the Electrical and Computer Engineering Commons, and the Materials Science and Engineering 

Commons 

Recommended Citation Recommended Citation 
Denkenberger, D. C., & Pearce, J. M. (2018). Design optimization of polymer heat exchanger for 
automated household-scale solar water pasteurizer. Designs, 2(2). http://dx.doi.org/10.3390/
designs2020011 
Retrieved from: https://digitalcommons.mtu.edu/materials_fp/183 

Follow this and additional works at: https://digitalcommons.mtu.edu/materials_fp 

 Part of the Electrical and Computer Engineering Commons, and the Materials Science and Engineering 
Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/materials_fp
https://digitalcommons.mtu.edu/materials_fp
https://digitalcommons.mtu.edu/materials
https://digitalcommons.mtu.edu/materials
https://digitalcommons.mtu.edu/materials_fp?utm_source=digitalcommons.mtu.edu%2Fmaterials_fp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fmaterials_fp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.mtu.edu%2Fmaterials_fp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.mtu.edu%2Fmaterials_fp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.3390/designs2020011
http://dx.doi.org/10.3390/designs2020011
https://digitalcommons.mtu.edu/materials_fp?utm_source=digitalcommons.mtu.edu%2Fmaterials_fp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fmaterials_fp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.mtu.edu%2Fmaterials_fp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=digitalcommons.mtu.edu%2Fmaterials_fp%2F183&utm_medium=PDF&utm_campaign=PDFCoverPages


designs

Article

Design Optimization of Polymer Heat Exchanger for
Automated Household-Scale Solar Water Pasteurizer

David C. Denkenberger 1,2 and Joshua M. Pearce 3,4,* ID

1 Tennessee State University, Civil and Architectural Engineering, 3500 John A Merritt Boulevard,
Nashville, TN 37209, USA; ddenkenb@tnstate.edu

2 Alliance to Feed the Earth in Disasters (ALLFED), Nashville, TN 37209, USA
3 Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University,

Espoo 02150, Finland
4 Department of Materials Science & Engineering and Department of Electrical & Computer Engineering,

Michigan Technological University, Houghton, MI 49931, USA
* Correspondence: pearce@mtu.edu; Tel.: +1-906-487-1466

Received: 23 March 2018; Accepted: 18 April 2018; Published: 21 April 2018
����������
�������

Abstract: A promising approach to reducing the >870,000 deaths/year globally from unsafe water
is flow-through solar water pasteurization systems (SWPs). Unfortunately, demonstrated systems
have high capital costs, which limits access for the poor. The most expensive component of such
systems is the heat exchanger (HX). Thus, this study focuses on cost optimization of HX designs for
flow-through SWPs using high-effectiveness polymer microchannel HXs. The theoretical foundation
for the cost optimization of a polymer microchannel HX is provided, and outputs are plotted in order
to provide guidelines for designers to perform HX optimizations. These plots are used in two case
studies: (1) substitution of a coiled copper HX with polymer microchannel HX, and (2) design of
a polymer microchannel HX for a 3-D printed collector that can fit in an arbitrary build volume.
The results show that substitution of the polymer expanded HX reduced the overall expenditure
for the system by a factor 50, which aids in making the system more economical. For the second
case study, the results show how future system designers can optimize an HX for an arbitrary SWP
geometry. The approach of distributed manufacturing using laser welding appears promising for HX
for SWP.

Keywords: distributed manufacturing; heat exchanger; laser welding; microchannel; open hardware;
optimization; solar energy; solar thermal; solar water pasteurization; water pasteurization

1. Introduction

Throughout the world, an estimated 871,000 deaths were due to unsafe water in 2012 [1]. Deaths
from unsafe water include those caused by diarrhea, intestinal nematode infections and protein-energy
malnutrition attributable to lack of access to water [1]. They also include deaths from lack of access
to appropriate water sanitation and hygiene (WASH) services [1]. These deaths primarily occur
in low-income communities and strike young children under 5 years old the hardest [2,3]. The
global coverage of safely-managed drinking-water services remains unacceptably low with only 68%
coverage in urban areas and 20% in rural areas [4,5]. Although this problem would be easily solved
with a more even distribution of wealth [6], current political circumstances continue to provide an
urgent need for low-cost water disinfection methods, which can be mass-deployed for the poor in
the developing world. There have been various methods attempted to provide drinking water in
rural areas of undeveloped nations using solar technologies, including: (i) solar desalination; (ii)
solar detoxification; and (iii) solar disinfection [7,8]. These methods include the use of basic solar
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stills [9,10], solar stills with improved output from compound parabolic reflectors [11], phase change
material [12], a hemispherical solar still [13], efficient heat exchange mechanisms [14] and an inclined
wick solar still [15], and progressively more sophisticated variations of the solar water disinfection
(SODIS) method [16], using common chemicals to decrease turbidity to enable SODIS to work [17]
and photocatalysts [18]. SODIS is low-cost, simple, and is available for large geographic regions
(e.g., from Haiti [19] to South Sudan [20]), but becomes less effective in high-turbidity water, which can
be challenging in some communities [16]. Previous simulations [21,22] have shown that although solar
stills have an advantage with chemically contaminated water and salt water, solar water pasteurization
(SWP) is more efficient and less costly for water disinfection. Many types of SWP systems have
been developed [23,24], including simple systems with reflectors [25,26], systems based on density
difference flow principles [27], parabolic trough concentrator systems [28,29], and continuous flow
systems, which are the focus of this study [30–33]. Continuous flow systems have been shown to
be effective at sterilizing water [34], and a kiosk system can be constructed for US$2000 [35]. This is
too much of an investment for individual families and even many communities. Previous numerical
simulation of SWPs found enormous increases in drinkable water output from contaminated sources
by incorporating optimized compound parabolic concentrating (CPC) reflectors into the system
(depending on the climate, CPCs increase output in pasteurizers by 1000–4000%) [22]. The increase in
outputs are so phenomenal they could be applied to provide clean safe drinking water in the worst
case scenarios: long-term isolated areas with no electricity or other sources of energy, no transportation
capabilities for bringing in clean water, and no specialized equipment or materials.

However, to make this possible for many communities and households, the costs of such systems
must be reduced. To enable such high-performance solar water pasteurization systems to be deployed
in developing communities at low costs, in this study an approach known as open-source appropriate
technology (OSAT) [36] is applied. It uses open-design-based strategies [37,38] to harness recent
advances in distributed manufacturing [39] with digital designs to reduce the costs of a system.
Solar-powered distributed manufacturing has already been demonstrated [40,41], which makes even
remote or off-grid manufacturing feasible. In general, the most expensive and most critical system
component for highly efficient flow-through SWP systems is the heat exchanger (HX). Thus, this study
will focus on the cost optimization of HX designs for SWP systems in order to reduce the costs of the
entire systems to be economically viable in the developing world. This study will be limited to the
methods of fabrication that use open-source distributed manufacturing.

This study will provide for the first time a method of cost optimization of HX designs for
SWP systems fabricated using fully open-source distributed manufacturing. Specifically, this paper
first provides the background on flow-through SWP systems and polymer microchannel HXs,
their manufacture, and how to achieve high effectiveness. Next, the theoretical foundation for the cost
optimization of a polymer microchannel HX is provided and outputs are plotted in order to provide
guidelines for designers to perform optimizations for such HXs. These results are used in two case
studies: (1) substitution of a coiled copper HX with polymer microchannel HX; and (2) design of a
polymer microchannel HX for a 3-D printed collector that can fit in an arbitrary build volume. The
results are presented. The challenges and economics of polymer HXs used for flow-through SWP
systems are discussed and conclusions are drawn.

2. Background

A nomenclature Table is provided in Appendix A, which includes units and explanations of all
symbols and subscripts.

2.1. Flow-Through Solar Water Pasteurizer

Boiling water is not necessary to make biologically contaminated water safe to drink, as all
microbes that cause disease in humans are unable to survive at temperatures exceeding 65 ◦C,
which passive solar thermal devices can easily produce [42]. A flow-through SWP contains
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a thermostatic valve that opens when the water reaches a threshold temperature (indicating
pasteurization), and the outgoing hot water warms the incoming cool water in a heat exchanger
(Figure 1). The flow is caused by the dirty water reservoir being at a higher elevation than the clean
water reservoir. The addition of the heat exchanger and the valve increase the output by a factor
of eight or more [42]. With a 70 ◦C valve temperature and an 87.5% effective HX, with the entering
water temperature (ambient) of 30 ◦C, the water entering the solar collector will be at 65 ◦C, which is
already at the pasteurization temperature. This should guarantee that the water is pasteurized despite
some non-uniform illumination and temperature gradients resulting from the heat conducting down
through the tubing. It is clear that a low-cost HX design is critical for this application.
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2.2. Microchannel Heat Exchangers

Heat exchangers transfer heat from one fluid to another (in this case from the hot pasteurized
water to the cool dirty water). Traditionally, they are made from metal, because of the high
thermal conductivity of metals; however, polymers can also be used to make effective HXs [43].
The performance of a HX for SWPs is characterized by its effectiveness, η, defined as the realized heat
transfer rate as a fraction of the maximum heat transfer rate:

η =

.
q

.
qmax

(1)

where the realized heat transfer rate is:

.
q = C(Thi − Tho) = C(Tco − Tci) (2)

where the temperature of the hot pasteurized water entering the HX is Thi, the temperature of the hot
pasteurized water exiting the HX is Tho, the temperature of the contaminated cold water entering the
HX is Tci, and the temperature of the contaminated cold water exiting the HX is Tco [6]. SWPs have
balanced flow, so the heat capacity rate is:

C =
.

mCp (3)

where the mass flow rate
.

m and the specific heat is Cp. The maximum heat transfer rate is:

.
qmax = C(Thi − Tci) (4)
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For a counter-flow HX with balanced flow,

η =
NTU

NTU + 1
(5)

where NTU is “number of transfer units”,

NTU =
hA
C

(6)

where A is the heat transfer area and h is the heat transfer coefficient.
Microchannel HXs (defined as those with a hydraulic diameter <1 mm) are currently used,

and they have reduced material cost, weight, and volume, but the standard mass-manufacturing
techniques that include etching, LIGA (lithography, electroplating and molding), micromachining,
and stereolithography are expensive [44]. In addition, laser welding can be used to fabricate
microchannel HXs [45]. Using reverse conduction laser welding, it is even possible to weld transparent
polymers [46]. For the welding of polymers, the temperature must be above the melting temperature,
but below the decomposition temperature. This temperature difference, or viable range, influences how
easy it is to laser-weld a polymer [47]. Some suitable polymers for this are low-density polyethylene
(LDPE), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), polypropylene
(PP), and polystyrene (PS). An open-source laser polymer welding system was developed [48] and
refined [49] to radically reduce manufacturing costs of polymer HXs. Recent experiments have shown
that polymer-based wall thermal resistance is no longer the limiting factor for such HXs [50] and the
designs have been applied to water-air HXs [50] and air-air HXs [51]. In this study, water-water HX
designs for microchannel HXs will be evaluated in detail.

2.3. Approaches to Achieving High Effectiveness with Polymer Microchannel HXs

Most current HXs experience turbulent flow, which produces a high heat transfer coefficient;
while for microchannel HX at smaller channel hydraulic diameters, the flow becomes laminar, which
reduces the heat transfer coefficient. However, at even smaller diameters, the distance that the heat
has to conduct through the fluid becomes short, so heat transfer coefficient increases, even exceeding
the turbulent heat transfer coefficient for very small channels. Furthermore, with laminar flow,
when velocity is decreased, heat transfer coefficient is maintained (constant Nusselt number (Nu),
which is the ratio of the thermal resistance in the fluid without convection to the thermal resistance
with convection). Since the pumping loss decreases with lower velocity, the pump power can be made
very low by having many parallel channels.

The low thermal conductivity of polymers would appear to be a barrier to achieving high
effectiveness. However, this limitation can be overcome with proper wall thickness and channel
size. The following discussion is based on [45]. Consider a polymer microchannel HX with adjacent
same-sized tubes, which can be achieved with square passages or hexagonal passages. For non-finned
surfaces, no fouling, thin walls, and equal convective heat transfer coefficients on both sides, the
overall heat transfer coefficient is:

U =
1

2
h + tw

kw

(7)

where h is the heat transfer coefficient in each of the fluids (cold contaminated water and hot
pasteurized water), tw is the thickness of the wall, and kw is the thermal conductivity of the wall.
If the effect of wall thickness is analyzed for a material with kw = 0.2 W/(mK), typical of polymers,
the following conclusions can be drawn for various flow configurations:

• 1 mm polymer wall thickness has little effect when h ~100 W/(m2K), which turbulent gas flow or
with laminar gas flow in 1 mm diameter channels can achieve.
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• 0.1 mm polymer wall thickness has little effect when h ~1000 W/(m2K), which laminar gas flow
in 0.1 mm diameter tubes or with turbulent liquid flow or laminar liquid flow in 1 mm channels
can achieve.

• 0.01 mm polymer wall thickness has little effect when h ~10,000 W/(m2K), which laminar liquid
flow in 0.1 mm diameter channels can achieve.

Other factors also reduce the drawback of low polymer thermal conductivity. Surface fouling,
on both metal and polymer HXs, increases the thermal resistance and makes the lower-conductivity
materials relatively less consequential. Finally, the low thermal conductivity of a polymer can actually
be an advantage for high-effectiveness HXs, because it reduces axial conduction.

A significant benefit of polymer HXs compared to metal HXs is low material price. Multiplying
the thickness of the material t and the price of the material PV yields the price per area. Dividing this
by the overall heat transfer coefficient yields the material price per heat transfer ability:

PHT = PV ·
t
U

(8)

For a constant ratio between wall thickness and channel diameter (in this case 0.1), both the
overall thermal resistance and material price per heat transfer area are proportional to the diameter.
The product of these, PHT, varies with the square of the diameter. Therefore, a small diameter is highly
beneficial. Preliminary analysis thus suggests that microchannel polymer HXs can be designed with
small channel diameter, thin walls, low velocity, short flow lengths, and large face areas to produce
high effectiveness and low initial costs.

3. Materials and Methods

In order to optimize the design of the HX for solar thermal water pasteurization, this analysis
will take the approach of minimizing the sum of the HX and life cycle “fuel” expenditures. In this
application, the HX is non-essential, as the process will simply require more solar energy (large
collector) if no HX is used. Ineffectiveness is one minus effectiveness. The assumptions include the
standard ones for heat exchangers: (1) no axial or longitudinal conduction (along the flow); (2) no heat
loss to the environment; (3) no flow maldistribution (all channels receive the same amount of flow);
(4) constant fluid properties; and (5) a constant heat transfer coefficient. The equations apply to both
laminar and turbulent flow. The efficiency equals effectiveness, so the expenditure on solar is:

E f uel,n−e = k3(1− η) (9)

where

k3 =

.
mCp∆Tf Psolar H

278, 000r
(10)

where
.

m is the mass flow rate in kg/s, Cp is the specific heat in J/(kgK), ∆Tf is the temperature change
of the water in K (either Th,i − Th,o or Tc,o − Tc,i), Psolar is the price of solar in $/GJ, H is the number of
hours per year, r is the interest rate (1/r is roughly the time horizon), and 278,000 is the constant to
make U.S. dollars the units of k3 (one billion conversion between GJ and J divided by 3600 s per hour
yields 278,000). The solar expenditure is proportional to the ineffectiveness because the solar provides
the heat that is not reclaimed. k3 can be thought of as the “load”. In the pasteurizer case, the load is
the energy required to heat the water and the HX reduces the fraction of this energy that has to be
provided by solar.

The simple model assumes that the material, manufacturing, and life cycle head loss expenditures
are proportional to A for a given channel diameter and wall thickness:

EHX = k1 A (11)
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where
k1 = Pvt (12)

where Pv is the equivalent price of the wall material in $/m3, t is the wall thickness in m, so the units
of k1 are U.S. dollars/m2.

Counter-flow is appropriate when the two fluids have similar heat capacity rates (the
product of density, heat capacity, temperature change, and flow rate) as is the case for the water
pasteurizer. Therefore,

η =
1− exp (−NTU(1− C))
1− Cexp(−NTU(1− C))

(13)

where C is the heat capacity rate ratio, Cmin/Cmax, and

NTU =
A
k2

(14)

where A is the heat transfer area in m2 and

k2 =

.
mCp

U
(15)

where U is the overall heat transfer coefficient in W/(m2K). For the SWP non-essential case,

E f uel,n−e =
k3(1− C) exp (−A(1−C)

k2
)

1− C exp (−A(1−C)
k2

)
(16)

The total expenditure is the sum of the HX expenditure and the solar expenditure:

Et,n−e = EHX + E f uel,n−e = k1 A +
k3(1− C) exp (−A(1−C)

k2
)

1− C exp (−A(1−C)
k2

)
(17)

Setting the derivative with respect to A of Et,n-e equal to zero, and solving, provides:

Aopt,n−e =
k2LN( Θn−e

C2k1k2
)

C− 1
, C 6= 1, C 6= 0 (18)

where

Θn−e = 0.5k3 − Ck3 + Ck1k2 + 0.5C(k3(k3C2 − 2k3C + k3 + 4Ck1k2))
0.5

+ 0.5C2k3

−0.5(k3(k3C2 − 2k3C + k3 + 4Ck1k2))
0.5 (19)

For the special case of C = 1, the starting equations are the same or simpler in the case of effectiveness;
Equation (5). The result of the derivation for the SWP non-essential case is:

Aopt,n−e = k2((
k3

k1k2
)

0.5
− 1) (20)

For C = 0 non-essential (perfectly unbalanced flow, not the SWP), again there is a simpler equation
for effectiveness:

η = 1− e−NTU (21)

The result of the derivation for this case is:

Aopt,n−e = k2LN
(

k3

k1k2

)
(22)

In the next section, a subset of these equations is plotted and used to calculate real-world examples.
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4. Results

4.1. Simulation Results

Equations (9) and (10) are used to make Figure 2.Designs 2018, 2, x FOR PEER REVIEW  7 of 18 
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The results are plotted (Figure 3) as a function of the non-dimensional expenditure:

En−d =
k1k2

k3
=

PNTU
k3

(23)

where PNTU is the price per NTU. For En-d = 1, the price of an NTU is equal to the “load”.
For non-essential SWP, the optimum HX NTU = 0, so ineffectiveness = 1. For low non-dimensional
expenditure (En-d), for C = 1 (balanced flow), slope = 0.5, and for C = 0 (perfectly unbalanced flow),
slope = 1.
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Figure 3. Optimum ineffectiveness as a function of En-d the non-dimensional expenditure.

Non-dimensional expenditure was varied by varying the equivalent material price. This is
equivalent to varying the other parameters that affect the price per heat transfer ability, including
thickness and all the factors that go into the overall heat transfer coefficient: channel diameter, Nusselt
number, and thermal conductivities. The non-essential solar expenditures display the same behavior as
the ineffectiveness because they are proportional (see Figure 4). For low non-dimensional expenditure
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and C = 1 (balanced flow), solar and HX expenditures are equated, similar to the case of building
insulation optimization [52]. For high non-dimensional expenditure, HX expenditures tend to zero,
because the HX area tends to zero.Designs 2018, 2, x FOR PEER REVIEW  8 of 18 
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For C = 1 (balanced flow), slope = 0.5 for HX and solar expenditures. For C = 0 (perfectly
unbalanced flow), slope = 1 for solar expenditures. However, if there were an order of magnitude
reduction in non-dimensional expenditure, for there to be an order of magnitude reduction in the
HX expenditure, the HX would have to stay the same size, which is not consistent with the solar
expenditure falling. To have an order of magnitude reduction in ineffectiveness, 2.3 NTU must be
added. At high non-dimensional expenditure, this represents a large fraction increase in the area, so HX
expenditure does not fall fast. However, at low non-dimensional expenditure, 2.3 NTU represents a
small fraction increase in the area, so HX expenditure falls fast, approaching an order of magnitude
with an order of magnitude non-dimensional expenditure reduction, or a slope of unity.

The optimization can be used not just for calculating the advantages of the expanded HX,
but also for parameter changes in general heat exchangers. For instance, if mass flow rate quadruples,
the inverse of the area required for one NTU (k2) and load (k3) also quadruple, so the non-dimensional
expenditure stays constant. Therefore, the optimal ineffectiveness remains the same for a larger HX
and system (this analysis ignores cost economies of scale). However, the HX and fuel expenditures
quadruple (the curves in Figure 4 shift upward by a factor of four). Some parameters only affect
load (k3), such as fluid temperature change, price of fuel, hours per year of operation, and interest
rate. Quadrupling the first three or reducing interest rate by a factor of four would each quadruple k3.
For a low non-dimensional expenditure, the optimum ineffectiveness is halved for C = 1 (balanced
flow), and quartered for C = 0 (perfectly unbalanced flow) for this scenario. The resulting shift in
the HX and fuel expenditure curves produces for C = 1 a doubling in HX and fuel expenditures for
low non-dimensional expenditure. For C = 0 and low non-dimensional expenditure, fuel expenditure
remains constant, and HX expenditure increases slightly.

Figures 3 and 4 apply for laminar flow or turbulent flow. For turbulent flow, the overall heat
transfer coefficient varies with the fluid velocity. In this case, the price per heat transfer ability in
average conditions should be used. The effect of channel diameter scaling on the overall heat transfer
coefficient is complicated for turbulent flow, so general conclusions cannot be drawn. However,
for laminar flow where the overall heat transfer coefficient is independent of fluid velocity, further
conclusions can be drawn. Combining the slope = 2 behavior of price per heat transfer ability with the
channel diameter and the slope = 0.5 behavior of ineffectiveness with price per heat transfer ability for
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the optimal non-essential HX with C = 1 (Figure 4), the optimal ineffectiveness falls with the channel
diameter for laminar flow. If the 1 mm channel diameter has similar heat transfer coefficient to a
typical turbulent case but a factor of 30 reduction in the price per area (and thus non-dimensional
expenditure), and if the turbulent case has η = 60%, the optimal η ~93%. Furthermore, going to a
0.3 mm tube diameter, the optimal η ~98%.

For non-essential C = 0 (perfectly unbalanced flow), the slope = 1 in Figure 3, so combining the
slope = 2 behavior of price per heat transfer ability with channel diameter, the optimal ineffectiveness
falls with channel diameter squared. Therefore, if the 1 mm channel diameter has similar h to a typical
turbulent case, but a factor of 30 reduction in the price per area (and thus non-dimensional expenditure),
and if the turbulent case has η = 60%, the optimal η ~98.7%. Furthermore, going to a 0.3 mm tube
diameter, the optimal η ~99.8%. This is not for a cost-independent application of cryogenics in space,
but an everyday application. In reality, other factors, such as heat leak (heat gain or loss to the
surroundings), axial conduction, and flow maldistribution (flow in channels not being equal), start to
dominate. However, large HXs have a small percentage of heat leak and axial conduction. Furthermore,
multiple serial stages of cross-flow HXs can be used to approximate counter-flow effectiveness [53].
Similarly, though flow maldistribution limits the effectiveness of a single stage, multiple stages can
be used to mitigate the effect of maldistribution, so analysis indicates that low-cost HXs should have
high effectiveness.

4.2. Case Study 1: Substitution of Metal HX with Polymer HX in Solar Water Pasteurizer

An example SWP has a 6 m2 $300 flat plate solar collector, a HX that is $200 and has η = 66% [54].
The HX is made of coiled copper tubing arranged in a counter-flow pattern and dipped in solder
to increase the heat transfer between the hot and cold tubes. At zero effectiveness, the collector
would cost $900, so this is load (k3). The system pasteurizes 1000 L/day, so if there are four full
sun hours per day, and if the water is flowing the entire time the sun is shining, this would be four
hours per day, or H ~1400 h. The mass flow rate would be 0.07 kg/s. This system has a valve opening
temperature of 80 ◦C. With an ambient temperature of 25 ◦C, the total temperature difference for
the heat exchanger ∆Tt = Th,i − Tc,i = 55 ◦C. With η = 66%, the entering cold water is warmed to
61 ◦C, so the internal HX ∆Ti = 19 ◦C (logarithmic mean temperature difference, but for balanced
flow, it is simply Th,i − Tc,o = Th,o − Tc,i. The heat flow is the mass flow rate times specific heat times
temperature change of one of the fluids in the HX (36 ◦C), or 11,000 W (Equations (2) and (3)). To transfer
11,000 W at 19 ◦C temperature difference requires UA = 550 W/K. Therefore, PHT = $200/(550 W/K)
= $0.36/(W/K). This covers the material and manufacturing costs, and the pumping costs are small
because it is gravity driven (the water is lifted by hand to the higher reservoir or provided by rain
water harvesting and gravity from a roof or other collection surface [55,56]. It should be noted
that harvested rainwater is often microbiologically contaminated and needs pasteurization [56,57].
Since η = 66%, by Equation (5), NTU = 2. Since the HX costs $200, price per NTU = PNTU = $100. Then,
by Equation (22), the corresponding En-d = 0.11; so from Figure 3, the optimal ineffectiveness for C = 1
(balanced flow) is 33%, which agrees very well with the value chosen in practice after trial and error
for the SWP of 34%.

If the current copper HX were replaced with a HX with the parameters of the prototype in [45] with
28 µm thick LDPE but mass produced (close to material price), with $2000/m3 and U = 500 W/(m2K),
by Equation (8), PHT = $0.00011/(W/K). For the experiments in this previous work, the Reynolds
number of the channels was 0.14–10, which is highly laminar. These experiments validated the
model. This corresponds to a factor of 3000 reduction in the price per heat transfer ability and thus
non-dimensional expenditure. Unfortunately, this is beyond the bounds of Figure 3. However, a slope
of 0.5 indicates that the 3000x advantage is equally apportioned to reducing the ineffectiveness and
reducing the total expenditure on the HX, both being reduced by 30000.5 = 55x. Therefore, extrapolating
yields an optimal ineffectiveness of 0.6%, and the collector and HX expenditure would be ~$5 each.



Designs 2018, 2, 11 10 of 18

Therefore, the expanded HX reduced the overall expenditure for the HX/collector system by a factor
of ~50, which aids in making the system more economical.

Tying this back to the original four equations, the effectiveness is 99.4%. Inlet HX temperatures
are 80 ◦C for hot flow and 25 ◦C for cold flow. Outlet HX temperatures are 25.3 ◦C for (initially) hot
flow and 79.7 ◦C for (initially) cold flow. If the flow rate of 1000 L/day is spread out over the 4 full sun
hours, this would be 0.07 kg/s mass flow rate. The specific heat of water is 4180 J/(kgK). Therefore,
the heat capacity rate is 300 W/K. Thus, the maximum heat transfer rate is 15,960 W and the actual
heat transfer rate is 15,880 W (non-significant figures are shown for clarity). Neglecting heat losses
in the insulated piping, this means the solar energy requirement is the difference between maximum
and actual heat transfer of 80 W. With a collector efficiency of 70% when the sun is shining, this would
correspond to 110 W solar input. This corresponds well to a collector area of 0.11 m2, as it is about
1000 W/m2 incident solar energy during the full sun hours.

4.3. Case Study 2: Design for 3-D Printed Collector of Arbitrary Size

There is a growing interest in the use of 3-D printers for sustainable development [58,59] and
disaster relief [60,61]. By using distributed manufacturing of goods, the only inputs are energy and
raw materials, which typically use less storage and transport space, are more durable and require
significantly less packaging than the actual goods needed in a disaster response [62,63]. Oxfam [64]
and the American Red Cross [65,66] are already considering the use of 3-D printing for their work.
Currently, 3-D printing cannot completely replace traditional logistics, but by integrating 3-D printing
into a humanitarian response, the efficiency of the larger relief effort can be increased [67]. 3-D printers
meant to be used in these applications have already been designed [68] and re:3D, an open-source
3-D printing company, has a well-developed interest in seeing their gigabit 3-D printer used for such
applications [69].

This case study will consider the use of a Gigabot (3+) (manufactured by re:3D) to fabricate a
collector and CPC in one piece. The Gigabot 3+ has a build area of 590 × 600 × 600 mm, which would
provide more than enough space to fabricate a collector for the household scale SWP (24 L/day).
With the effectiveness of the HX above, and taking into account cloudy days, the collector would only
have to be approximately 0.01 m2. This is with no reflectors, but reflectors could allow the collector to
be even smaller. The absorber could be fabricated in the same way as the HX with laser welding and
expansion. The pattern could be similar to the “straight” flow configuration layers in the expanded
HX [45]. However, the comparative advantage of expansion is not as large as in HXs, so it may be
most economical to additively manufacture the absorber with the 3-D printer itself. To minimize the
absorber cost, small-diameter parallel channels should be used. Black polymer would absorb the
sunlight and protect the polymer from UV. There are several commercially available 3-D printing
filaments that are UV resistant, such as ultem (a polyether imide (PEI)) and ASA (acrylonitrile styrene
acrylate). Ultem prints at 360–390 ◦C, and thus requires a high-temperature extruder, but has good
thermal properties, dimensional stability, inherent flame retardancy, and good chemical resistance [70].
ASA prints at 250 ◦C and has good outdoor and UV stability [71]. Insulation can be placed or sprayed
around the sides and back to reduce heat loss. A clear cover should be used above the absorber
(i.e., polycarbonate).

5. Discussion

5.1. Challenges of Polymer HXs

There are two challenges that must be addressed with microchannel HXs: fouling and erosion.
There are a variety of solutions to chemical fouling, including dilution, prevention of deposition on the
walls by magnetic means, and scale removal by physical or chemical means [72]. Fouling can also be
due to physical means, for instance, particle deposition. In standard HX design, it is recommended
that the particles be less than one third the channel size to avoid clogging [73]. Since fouling with
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polymers is less of a problem than with metals because the polymers are hydrophobic and expand
more with temperature changes, shedding fouling coatings [43], the particles could be at least as large
as one third the channel size for polymers.

The wall of the HX can also be physically eroded. The erosion rate of polymer pipes is generally
less than that of metal pipes, and the wear decreases with particle size and velocity, with a higher
exponent than unity [74]. Assuming that the wall thickness scales with the channel dimension,
the particle size will scale with the wall thickness to avoid clogging, and since the erosion rate falls
faster than the particle size, this means that percent erosion rate of the wall thickness would be
smaller. Therefore, wall erosion is not likely to be a serious problem for microchannel HXs, especially
polymer ones.

5.2. Economics

The competitive advantages of household-scale solar water heat pasteurizers include local (even
family) control, availability and ease of use. However, CPC SWPs are not likely to become widespread
unless they achieve superior economic performance to water trucking, electric water purifiers and
conventional water treatment. Water trucking costs vary widely by location, demand, and cost of
inputs. In cities, 220 V electricity-driven 3-step branded water purifiers are sold for around US$150.
Large-scale water treatment costs ~0.03 cents/L (and then with distribution: 0.1 cents/L). Electric
purifiers and large-scale treatment are generally only viable in cities.

A typical rural developing country household size is around six (~7 in sub-Saharan Africa and
~5 for India [75]). With the average adult needing 4 L/day (water used in cooking is pasteurized,
and soap cleans the water used for washing, but there is also rinsing vegetables), the SWP needs
to produce 24 L/day minimum average (over the storage time of the clean water reservoir).
One recommendation was $1 per person per year in 2004 [76], so with inflation and a lifetime of
5 years, the device must have a cost of $40 or less. Typically, the HX and collector are the most
expensive components. Scaling down from the SWP above with the expanded microchannel HX
would mean the sum of HX and collector would cost <$1. In reality, there would be economies of scale,
and the cost would not be that low, but this demonstrates the cost feasibility. Competing technologies,
such as UV treatment, could also be done on the village scale, but would require the consumable UV
lamps, more technically challenging maintenance of the battery/photovoltaic system, and extensive
filtration to ensure water clarity.

5.3. Future Work

Due to the improved performance of distributed digital manufacturing tools, a flow-through
solar water pasteurization system can now be constructed using a combination of laser-welded sheets
additive manufacturing (AM), fused filament fabrication or fused pellet-shard RepRap-class 3-D
printing, and the use of bulk commodity purchased parts available through much of the world,
as detailed in Figure 5.

The same laser-welding AM (l in Figure 5) approach could be used for the clean water reservoir
and the absorber as well as the HX, which would be expected to have a similar cost reductions as seen
in the HX. To reduce the costs of the household-scale solar water heat pasteurizers, digital additive
manufacturing with fused filament RepRap-class 3-D printers can be applied to all of the components
labeled r in Figure 5, including the fittings, absorber and CPC base. The filter holder, as well as all
of the fittings, could also be 3-D printed on a small system [77]. Finally, the tubing, pipe insulation,
thermostatic valve, and cover sheet can be purchased from local retailers, as they are all relatively
low-cost components. The tubing and insulation are already being mass-manufactured, and are
available. The thermostatic valve, although it is mass manufactured for automobiles, could possibly
be redesigned to be digitally manufactured, as well. The final component, the dirty water reservoir,
may already exist in most locations needing a SWP, and can be purchased or locally manufactured
following [55]. Using this approach would be expected to reduce the costs to approximately the



Designs 2018, 2, 11 12 of 18

cost of raw materials, in which case a <$40 system is economically feasible. For example, as noted
in case study 2, the structure for the reflectors and the absorber can be 3-D printed. To minimize
the costs, recycled plastic could also be used. There have been substantial recent developments in
converting waste plastic/recycled plastic in 3-D printing filament with a recyclebot (waste plastic
3-D printer filament extruder [78]) and then use it for 3-D printing. Thermopolymer processes
already developed include polylactic acid (PLA) [79–82], high-density polyethylene (HDPE) [78,83],
acrylonitrile butadiene styrene (ABS) [84–86], as well as waste wood composites [87] and carbon fiber
reinforced composites [88]. Future work is needed to design and optimize each of these components,
as well as an overall cost optimization of the system. Simultaneously, optimal settings for the digital
manufacturing of the open-source designs can be developed and shared, along with the designs on
OSAT centers like Appropedia.org [89], to leverage lateral distribution methods.Designs 2018, 2, x FOR PEER REVIEW  12 of 18 
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6. Conclusions

Modeling indicates that high effectiveness can be achieved with polymer HXs for SWP. The new
expanded microchannel HX has low materials cost and can be manufactured digitally with low-cost
open-source additive manufacturing tools. This optimization is valid for laminar and turbulent flow
and applications where the life cycle expenditure for the system to which the HX is connected scales
with ineffectiveness (non-essential as in the case of SWP. The optimum effectiveness is higher in cases
of higher fuel price, greater hours of operation, greater fluid temperature change, and a longer time
horizon, but the HX costs more. However, if the manufacturing and material costs of HXs can be
reduced, the optimal effectiveness is higher and the total HX expenditure is lower. Applying these
results to the case studies shows that (1) substitution of the polymer-expanded HX reduced the overall
expenditure for the system using a metal HX by a factor 50; and (2) future system designers can
optimize an HX for an arbitrary SWP geometry. Furthermore, when the HX optimization is applied
to SWP, the systems could be manufactured using low-cost open-source AM tools. Thus, it has the
potential to be scaled laterally where companies and communities can use the open hardware designs
to digitally manufacture their own SWP systems to meet local needs. If this is done globally, there is
the potential to save thousands of lives a day with this technology.
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Appendix A

Table A1. Nomenclature.

Symbol Units Explanation

A m2 Heat transfer area
C - Heat capacity rate ratio
Cc W/K Cold heat capacity rate
Ch W/K Hot heat capacity rate
Cp J/(kgK) Specific heat at constant pressure

Efuel $ Expenditure on fuel
EHX $ Expenditure on heat exchanger
En-d - Non-dimensional expenditure

h W/(m2K) Heat transfer coefficient
H hours/year Utilization of the heat exchanger

HDPE - High density polyethylene
HX - Heat exchanger

k W/(mK) Thermal conductivity
k1 $/m2 Price per heat transfer area, constant for optimization
k2 1/m2 Inverse of area required for one NTU, constant for optimization
k3 $ Fuel expenditure for zero effectiveness for non-essential heat exchanger case, or unit

effectiveness for essential, constant for optimization
LDPE - Low density polyethylene

LLDPE - Linear low density polyethylene
.

m kg/s Mass flow rate
NTU - Number of transfer units
Nu - Nusselt number
Pfuel $/GJ Price of fuel
PHT $/(W/K) Price per heat transfer ability

PNTU $ Price per NTU
PV $/m3 Price of heat exchanger material per volume
PP - Polypropylene
PS - Polystyrene

.
q W Heat transfer rate
r - Interest rate
t m Wall thickness
T ◦C Temperature
U W/(m2K) Overall heat transfer coefficient

Greek
∆Tf K Temperature change of one of the fluids
∆Ti K Logarithmic mean temperature difference between the hot and cold fluid inside the heat

exchanger
∆Tt K Total temperature difference for the heat exchanger
η - Effectiveness

Subscripts
c - Cold
e - Essential heat exchanger case
h - Hot

HT - Heat transfer
i - In

max - Maximum
n-e - Non-essential heat exchanger case
o - Out

opt - Optimum
t - Total
w - Wall
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