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a b s t r a c t

Zinc-based alloys have gained increased interest as biodegradable structural materials for

medical applications due to their adequate biocompatibility, crucial roles in many physi-

ological functions and attractive antibacterial properties. However, the major drawbacks of

zinc alloys relate to their inadequate mechanical properties and tendency to provoke

fibrous encapsulation due to relatively high standard potential. Based on the promising

effect of Mn on properties of Zn-based alloys, the present study aimed at evaluating the

suitability of Zne2%Fee0.8%Mn alloy as a potential biodegradable implant under in-vitro

conditions. This evaluation focused on the passivation characteristics as determined by

cyclic potentiodynamic polarization analysis, immersion test, stress corrosion behavior by

slow strain rate testing (SSRT), corrosion fatigue and direct cell viability in terms of cell

adherence and proliferation after 24 and 48 h post incubation. The results showed that the

addition of 0.8%Mn to the base Zne2%Fe alloy improves the specific strength and direct cell

viability characteristics while decreasing the effectiveness of natural passivation pro-

cesses. The main overall effect of adding 0.8%Mn to Zne2%Fe alloy were (i) reduced stress

corrosion resistance in terms of time to failure at a low strain rate (2.5 � 10�7 s�1) from

285 h to 205 h (ii) reduced corrosion fatigue endurance from 4,997,285 cycles to only 377,552

cycles to failure at the lowest load of 30 MPa.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Zn-based alloys can be considered as attractive structural

materials for biodegradable implants that can replace per-

manent implants such as Ti-base alloys, stainless steels, and

cobalt-based alloys [1]. The replacement of permanent

implants can avoid their undesirable side effects of chronic

inflammation and long-termmechanical failure in orthopedic

and cardiovascular applications. Mg alloys remain the most

promising biodegradable alternative to Zn-based alloys.

However, Mg-based alloys suffer from accelerated corrosion

degradation mainly due to the reduced standard potential of
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pure Mg (�2.372 V) and the inherent danger of gas embolism

[2e5]. Comparatively, pure Zn has a higher standard potential

(�0.762 V) and consequently reduced rates of corrosion.

Furthermore, Zn does not produce hydrogen gas upon degra-

dation [6e8].

The construction of biodegradable implants based on zinc

is justified by the myriad physiological roles for zinc in the

human body. Zn is a key element in various biological pro-

cesses such as nucleic acid metabolism, gene expression and

cell growth. The daily intake of Zn is 15 mg/day and its con-

centration within the human body is regulated by the kidneys

[9,10]. Unfortunately, pure Zn suffers from poor mechanical

properties (tensile strength 20 MPa and 0.2% elongation)

relative to conventionalmetallic implants [11]. To address this

drawback several Zn-based alloys have been recently devel-

oped and examined including Zn-Ti [12], ZneMgeMn [13,14],

Zn-Cu and ZneCueTi [15]. In addition, Zn-base alloys tend to

suffer from an insufficient rate of degradation. Arterial im-

plants that degrade too slowly are at risk of fibrous encapsu-

lation, which limits their successful tissue integration [16,17].

This particular drawback was addressed by developing Zn-

based alloys with alloying elements that can induce galvanic

corrosion, such as Zn-Fe [18,19] and ZneFeeCa [20]. The

resulting galvanic corrosion can be made relatively uniform

with finely dispersed precipitates. Another challenge of Zn-

based alloys relates to their performance under stress corro-

sion and corrosion fatigue conditions. Such environments

exist for implants placed under continuous or cyclic stress

from normal human body functions and vary depending upon

the specific implant site [24]. Vulnerabilities in accommoda-

ting cyclic loading can provoke premature failure of the

implant [21e23].

The present study aims at examining the stress corrosion

behavior and corrosion fatigue of biodegradable Zne2%

Fee0.8%Mn alloy under in-vitro conditions. This includes

direct cell viability analysis to evaluate the biocompatibility of

the alloy. The use of Fe andMn as alloying elements is justified

based on their vital role in normal body functioning. The

recommended daily intake is 8e18mg and 0.6e5mg for Fe and

Mn, respectively [25,26]. Furthermore, Fe is an essential

element of severalmetalloproteins and is vital for biochemical

activities [27e29] while Mn is an activator of enzyme systems

and its deficiency can lead to diabetes, osteoporosis and

atherosclerosis [9,30,31]. Therefore, the dissolution of these

alloy components into metallic ions is not expected to pro-

duce a harmful systemic effect.

2. Experimental

2.1. Preparation of tested alloy

The tested alloy in the form of a biodegradable Zn-base sys-

tem having the composition of Zne2%Fee0.8%Mn was pro-

duced by a gravity casting process. The use of 0.8%Mn was in

accordance with the solubility limit in pure Zn as well as

brittleness concerns [32] and strength requirements [33]. The

casting procedure was performed using a graphite crucible

and pure Zn bars along with Fe and Mn powders with average

particle sizes of 40e50 mm. The melting and alloying process

was carried out at 700 �C for 2 h while stirring every 30 min.

The molten alloy was cast in a cylindrical steel die to obtain

alloy bars with dimensions of 16 cm length and 6 cm diameter

that were then homogenized at 200 �C for 2 h. The tested alloy

was then extruded at 400 �C to obtain final rods with 6 mm

diameter.

2.2. Microstructure examination

As part of the metallography analysis, the tested alloy was

polished and etched in 5% Nital solution (100 mL HNO3-

þ 100 mL ethanol). The general microstructure of the alloy

post extrusion was evaluated by scanning electron micro-

scopy (SEM), JEOL JSM-5600 (JEOL, Tokyo, Japan). Further

investigation was carried out using transmission electron

microscopy (TEM) (JEOL JEM-2100F, Jeol Ltd., Tokyo, Japan)

operating at 200 kV. This investigation involved bright field

imaging, selected area electron diffraction (SAED) and EDS

analysis for local chemical composition. Cross-sectional

specimens were produced using a dual-beam focused ion

beam microscope (FEI, Verios-460L, Hillsboro, OR USA).

2.3. Corrosion resistance and electrochemical behavior

The corrosion resistance of the tested alloys was examined by

means of immersion test in PBS solution at 37 �C for 7 days.

The corrosion products were removed using ethanol and ul-

trasonic bath while the weight loss and corresponding corro-

sion rate were defined according to ASTM G2 standard.

Following the immersion tests the external surfaces of the

corroded samples were examined using SEM analysis.

The electrochemical behavior of the tested alloy in the

form of cyclic potentiodynamic polarization was carried out

using a Bio-Logic SP-200 potentiostat (BioLogic Science In-

struments, Seyssinet-Pariset, France), equipped with EC-Lab

software V11.18. This analysis was performed using a three-

electrode cell including the tested alloy as a working elec-

trode with an exposed area of 0.28 cm, a platinum counter

electrode, and a saturated calomel (SCE) as a reference elec-

trode. The corrosive medium was in the form of PBS solution

at room temperature. The corrosion rate of the tested alloy

was evaluated using Tafel extrapolation.

2.4. Stress corrosion analysis by slow strain rate testing
(SSRT)

SSRT analysis is used to evaluate the susceptibility of alloys to

stress corrosion cracking that can take place under a combined

effect of a corrosive environment and mechanical loading.

SSRT is also known as constant extension rate testing (CERT)

as it involves testing specimens in tensile conditions and

usually at relatively low strain rates. In this study, the SSRT

analysis was carried out using a Cormet C-76 apparatus (Cor-

met Testing Systems, Vantaa, Finland). The tested samples in

the form of rods had a dimeter of 5.6 mmand length of 50mm.

The gauge length and diameter were 18 mm and 3.6 mm

respectively. The strain rates usedwere between 2.5� 10�5 and

2.5 � 10�7 s�1, which can simulate a reduced and increased

effect of the corrosivemedium, correspondingly. The corrosive

environmentwas standard PBS solution at 37 �C to simulate in-

vivo thermal conditions.
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2.5. Corrosion fatigue examination

The corrosion fatigue performance of the tested alloys was

examined using a SM1019 rotating fatigue machine (Tec-

Quipment Ltd., Nottingham, U.K.). The results were intro-

duced in terms of SeN curves. The specimens' neck diameter

was 4 mm and the total length was 64 mm. The fatigue tests

were carried out using a load range of 30e230 MPa at 30 Hz in

both air and a corrosive atmosphere to evaluate the effect of

the simulated physiological environment. The corrosive

environment was obtained by continuously dropping PBS so-

lution onto the neck section during cyclic loading.

2.6. Direct cell viability analysis

Direct cell testing was performed to evaluate cell viability and

adhesion on tested alloys surfaces using Mus musculus

(mouse) 4T1 cells. Sample preparation and test protocols were

carried out according to ISO 10993-5/12 standards [34,35]. The

cellswere cultured in an incubator under a humid atmosphere

containing 5% CO2 at 37 �C using Dulbecco Modified Eagle's
Medium (DMEM) supplemented with 4.5 g/L D-Glucose, 10%

Fetal Bovine Serum (FBS), 4 mM L-Glutamine, 1 mM Sodium

Pyruvate, and 1% Penicillin Streptomycin Neomycin (PSN)

antibiotic mixture (Biological Industry, Beit Haemek, Israel).

Cylindrical samples with a diameter of 10 mm and height of

2 mm were made from the tested alloy Zne2%Fee0.8%Mn as

well as from Zne2%Fe and Tie6Ale4V alloys that acted as

reference substances. For statistical consideration, 8 samples

from each alloy were used for two independent repetitions of

the experiment. The samples were polished to 2500 grit,

cleaned ultrasonically for 5 min in ethanol and 2 min in

acetone, air-dried, and then sterilized in an autoclave. All the

samples were pre-incubated for 24 h in Dulbecco Modified

Eagle's Medium (DMEM) at 37 �C in a humid atmosphere. The

surface area to volume ratio of the culture medium was

1.25 cm2/mL according to standards. After 24 h of pre-

incubation, the samples were placed in 24-well culture

plates and cellswere seeded directly onto the alloy surface at a

density of 100,000 cells per well. This was followed by an

additional incubation of 3 h to allow cell adhesion to the

surface. More DMEM was added to each well according to the

standard ratio. Finally, the plates were incubated in a humid

atmosphere containing 5% CO2 at 37 �C for 24 and 48 h.

To visualize the number of adherent cells, a NucBlueTM

Live Cell Stain Formulation kit (RHENIUM, Modi'in, Israel) was

used. The results were documented by a CoolLED pe-2 colli-

mator fitted to an inverted phase-contrastmicroscope (Eclipse

Ti, Nikon) equipped with a digital camera (D5-Qi1Mc, Nikon,

Tokyo, Japan) using the appropriate fluorescent filters. Cell

adhesion was quantified by averaging cell counts at three

random spots on the sample surface.

The evaluation of cell viability was performed using a Live

and Dead Cell Assay (Abcam, Cambridge, UK) according to the

manufacturer's protocol. The Live and Dead Assay stain so-

lution was made of two dyes that allow the differentiation

Fig. 1 e Optical microscopy and Scanning electron microscopy (SEM) post extrusion of (a), (c) Zne2%Fe and (b), (d) Zne2%

Fee0.8%Mn.
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between live and dead cells. The viable cells were shown as

green (Excitation and Emission of 494 nm and 515 nm,

respectively), while the dead cells were shown as red (Exci-

tation and Emission of 528 nm and 617 nm, respectively).

3. Results

The effect of 0.8%Mn addition on the Zne2%Fe alloy micro-

structure is shown in Fig. 1 by optical and electron micro-

scopy, respectively. Both alloys exhibited a homogenized

microstructure with a preferred orientation, as expected after

an extrusion process. The Zne2%Fe alloy included a main

precipitate Zn11Fe with a blocky appearance [19] while the

Zne2%Fee0.8%Mn alloy contained an additional secondary

phase in the form of (Fe, Mn) Zn13 [31,33,36]. This secondary

phase forms because Fe and Mn both have a BCC structure

with only about 3% difference in atomic radii (156 p.m. and 161

p.m., respectively). Hence, Mn atoms can substitute with Fe

atoms in this composed phase.

In-depth examination of Zne2%Fee0.8%Mn alloy by high

resolution TEM and SAED analysis is presented in Fig. 2

along with the EDS analysis, which is shown in Table 1.

This has identified the presence of an additional d1p phase

with a hexagonal structure, Zn126Fe13 [37,38]. The presence

of this phase comes in line with the basic phase composi-

tion introduced by Raghavan [44] in relation to ZneFeeMn

ternary system. Accordingly, apart from the (Fe, Mn) Zn13

phase obtained by the XRD analysis, two other phases can

exist, d and x phase [45]. In addition, the localized compo-

sition at the interface between the d phase and the matrix

included a relatively abnormal amount of Mn (3%) that have

probably segregated to this region as indicated in Table 1

(point 1).

Fig. 2 e (a) Close-up view by TEM of a secondary precipitate phase in Zne2%Fee0.8%Mn alloy; (b) SAED analysis of the

secondary precipitate; (c) Measurement points by EDS analysis.
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The corrosion resistance in terms of immersion test

showed that the average corrosion rate of Zne2%Fee0.8%Mn

was relatively higher compared to its counterpart alloy

without Mn, 0.53 vs. 0.50 mm/year respectively. The external

surface appearance of the tested alloys post immersion test is

shown in Fig. 3. This have revealed that the main precipitate

phase (Zn11Fe) having a blocky shape and sharp edges in the

base alloy Zne2%Fe was un-attacked. Comparatively, the

parallel precipitate in the Zne2%Fee0.8%Mn alloy was slightly

attacked especially at the edges. This can be partly explained

by the TEM analysis (Fig. 3 and Table 1) that highlight the

Fig. 3 e External surface appearance of the tested alloys post immersion experiment in PBS solution at 37 �C for 14 days

(a) Zne2%Fe (b) Zne2%Fee0.8%Mn.

Table 1 e Chemical composition as obtained by EDS
analysis at selected areas shown in Fig. 3c.

Point of measurement Zn Fe Mn Dominant phase

1 89.77 7.22 3.01 d1p phase

2 98.85 0.48 0.67 Zn matrix

3 98.65 0.42 0.92 Zn matrix

Fig. 4 e Typical cyclic polarization analysis in PBS solution.

Table 2 e Tafel extrapolation measurements.

Zne2%Fe Zne2%Fe�0.8%Mn

Ecorr [V] �1.150 �1.133

Icorr [mA] 0.262 0.568

C.R [mmpy] 0.003 0.008
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presence of abnormal segregation of Mn at the interface of the

precipitating phases. Consequently, it is believed that the

preferred segregation of Mn can create additional micro-

galvanic corrosion that can be generated due to the inherent

differences in standard potential betweenMn and Zn (�1.18 V

and �0.763 V respectively).

The sensitivity of the tested alloys to localized corrosion

attack in terms of cyclic potentiodynamic polarization anal-

ysis is shown in Fig. 4. Table 2 presents the Tafel extrapolation

measurements. The hysteresis curve path of the two alloys

showed a decreased potential that eventually crosses the

polarization curve at the passive region. This represents the

typical behavior of a metal that undergoes some type of

localized corrosion attack [39]. Furthermore, the pitting po-

tential (Epit) of the alloy containing 0.8%Mn was relatively

reduced, which is an indication of decreased passivation ca-

pabilities. This result was in line with the reduced protection

potential (Epp) of this alloy and the slight increase in corrosion

rate. Furthermore, the passivation region (roughly between

Epp and Epit) shifted to higher current densities, indicating a

deterioration in passivation abilities [40]. Altogether, the re-

sults of cyclic potentiodynamic polarization suggests that the

addition of 0.8%Mn to Zne2%Fe alloy tendes to destabilize the

passivation process and consequently may increase the

sensitivity to corrosion attack [39].

The SSRT analysiswas carried out considering the inherent

tensile properties of the tested alloys in terms of yield point

(YP), ultimate tensile strength (UTS) and elongation as

examined by the authors in a previous paper [33]. This has

revealed the following average measurements for Zne2%Fe

Fig. 5 e SSRT analysis in terms of stress-strain curves in PBS solution at 37 �C at strain rate of (a) 2.5 £ 10¡5 s¡1 and

(b) 2.5 £ 10e7 s¡1.
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and Zne2%Fee0.8%Mn alloys respectively; YP: 69 vs. 191 MPa,

UTS: 119 vs. 224 MPa and elongation 13 vs. 8.1%. Typical stress

corrosion examinations in terms of slow strain rate testing

(SSRT) are shown in Fig. 5. Both alloys were tested in simu-

lated in-vivo conditions using two different strain rates,

2.5� 10�5 and 2.5 � 10�7 s�1, which represent a very short and

very long exposure time to the corrosive environment,

respectively. The strengthening effect of Mn [33] was clear in

both strain rates as manifested by an increased strength and

reduced ductility. It was also evident that the strength of the

two alloys was significantly decreased at the lower strain rate

(2.5 � 10�7 s�1), which is a clear indication of their sensitivity

to stress corrosion conditions.

The correlation between Youngs modulus, YP, and UTS

vs. strain rate is shown in Fig. 6 (a), (b) and (c) respectively. A

more pronounced deterioration in the mechanical

strength of Zne2%Fee0.8%Mn alloy compared to its refer-

ence alloy is apparent at the reduced strain rate

(2.5 � 10�7 s�1). The large deviation in the elongation vs.

strain rate at both strain rates, as shown in Fig. 6(d), may

indicate that the inherent differences in ductility between

the two alloys was relatively maintained. The time to failure

(TTF) vs. strain rate, as shown in Fig. 6(e), demonstrates a

similar performance of the two alloys at high strain rate

(2.5 � 10�5 s�1) and a sharp reduction in the mean TTF of the

0.8%Mn-containing alloy at low strain rate (2.5 � 10�7 s�1)

(205 vs. 285 hrs). The significant difference between the two

alloys in terms of TTF at reduced strain rate demonstrates

that the 0.8%Mn-containing alloy was more sensitive to

stress corrosion attack.

Fig. 6 e The effect of strain rate on: (a) Young modulus; (b) Y.P; (c) UTS; (d) Elongation; (e) Time to failure.
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The fractography analysis of the tested alloys post SSRT at

a low strain rate of 2.5 � 10�7 s�1 is shown in Fig. 7. Although

the brittle fractures of both alloys were inter-granular in na-

ture, as expected from Zn-base alloys [20], the fracture of the

alloy without Mn was relatively more ductile. This can be

attributed mainly to the inherent strengthening effect of Mn

that consequently increases brittleness.

The performance of Zne2%Fe and Zne2%Fee0.8%Mn al-

loys in terms of SeN curves in air and PBS solution is shown

in Fig. 8. Although both alloys showed quite similar fatigue

performance in air atmosphere, a significant difference was

observed in their behavior in the simulated physiological

environment. This was clearly demonstrated by the sub-

stantial reduction in the fatigue endurance that was only

377,552 cycles to failure in the case of Zne2%Fee0.8%Mn

alloy compared to 4,997,285 cycles for the Zne2%Fe alloy

under the same loading conditions. This result is in accor-

dance with the SSRT analysis that highlighted the detri-

mental effect of Mn on the stress corrosion resistance of

Zne2%Fe alloy.

The fractography analysis of the tested alloys after fatigue

failure in PBS solution is presented in Fig. 9. The Zne2%Fe

alloy fracture has a typical morphology of a “fisheye” failure

with crack initiation sites shown at the top side and overload

area at the bottom [41]. The fracture surface of Zne2%Fee0.8%

Mn alloy was significantly more brittle with multiple crack

initiating sites. This can be attributed to the increased sensi-

tivity to localized corrosion attack generated by the Mn

addition, as indicated by the potentiodynamic polarization

analysis.

The direct cytotoxicity analysis of Zne2%Fe and Zne2%

Fee0.8%Mn was carried out using Tie6Ale4V as a reference

substance. The ability of cells to adhere to the surface of the

metal while maintaining their viability is a critical require-

ment for the alloy to perform as a biodegradable medical

implant. The adherent cells on the surfaces of the tested al-

loys 24 and 48 h post incubation are presented in Figs. 10e12

where green color identifies living and red color identifies

dead cells. In addition, the total number of adherent cells per

unit area is shown in Fig. 13. Although cells per unit field were

reduced on both Zn-based alloys compared to the Ti-base

alloy, the addition of 0.8%Mn to Fee2%Zn alloy has a benefi-

cial effect on cell growth, particularly after 48hrs of incuba-

tion. Even though fewer cells adhered to the tested alloys

compared to the reference alloy, their increased numbers over

time demonstrates cells were viable and able to multiply, in

particular on the Zne2%Fee0.8%Mn alloy surface. This in-

dicates an acceptable biocompatibility of the tested alloy with

the addition of Mn.

4. Discussion

Zinc-bases arterial implants that degrade too slowly have

been found to promote fibrous encapsulation [16,17], an un-

desirable biological response that is common to biostable

Fig. 7 e Fractography analysis post SSRT at a strain rate of 2:5*10�7 (a) and (b) Zne2%Fe, (c) and (d) Zne2%Fe-0.8%Mn.
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implants. To improve the biological integration of Zn-based

implants, we recently incorporated alloying elements that

can induce galvanic corrosion, such as Zn-Fe [18,19]. In the

present study, we have found that the addition of 0.8%Mn to

our recent Zne2%Fe alloy has a damaging effect on the

passivation capability. This can be expected to increase the

corrosion rate of the alloy and potentially mitigate fibrous

encapsulation responses. Relating to detrimental effect of Mn

on passivation ability, and although this outcome seems to be

in some disagreement with the general perception that

Fig. 8 e SeN curves of the tested alloys in (a) air environment and (b) PBS environment.
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Fig. 9 e Fractography analysis after fatigue failure in PBS environment (a) and (b) Zne2%Fe; (c) and (d) Zne2%Fee0.8%Mn.

Fig. 10 e Direct cell viability on Tie6Ale4V alloy (a, b) 24hr post incubation; (c, d) 48hr post incubation.
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Fig. 11 e Direct cell viability on Zne2%Fe alloy (a, b) 24hr post incubation; (c, d) 48hr post incubation.

Fig. 12 e Direct cell viability on Zne2%Fee0.8%Mn alloy (a, b) 24hr post incubation; (c, d) 48hr post incubation.
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addition of Mn to pure Zn has a beneficial effect on corrosion

resistance [46e48], the tested alloy here also includes 2%Fe

which can alter this perception. For example, this was

demonstrated by the TEM analysis which showed an

abnormal amount of Mn (3%) that segregated to the interface

between the d phase (FexZny) and the matrix. Owing to the

significant differences in standard potential between Mn and

Zn, �1.18 V and �0.763 V respectively, the preferred segrega-

tion of Mnmay create an additional micro-galvanic effect that

can disrupt normal passivation.

A reduction in corrosion resistance and passivation capa-

bilities obtained by the immersion test and cyclic potentio-

dynamic polarization analysis can explain the reduced stress

corrosion and corrosion fatigue resistance relative to the

reference alloy The SSRT analysis also showed a significant

reduction in time to failure (TTF) at low strain rate (205 h. vs.

285 hr.) for the alloy containing 0.8%Mn. This phenomenon

was further demonstrated by the corrosion fatigue analysis in

terms of SeN curves in PBS solution. We found a sharp

reduction in fatigue endurance of the Zne2%Fe alloy from

nearly 5 million cycles to less than 400,000 cycles for the same

alloy with 0.8% Mn. The fractography analysis for both SSRT

and corrosion fatigue tests further demonstrated that the

addition of 0.8%Mn to Zne2%Fe alloy increased brittleness

and consequently premature failure. Thus, modifications to

the implant material with the aim to reduce fibrous encap-

sulation may lead to reduced corrosion stress and fatigue

resistance.

The relatively reduced passivation ability and subse-

quently increased sensitivity to localized corrosion attack of

Zne2%Fee0.8%Mn alloy can be mainly attributed to the

presence of the secondary phases (Fe, Mn) Zn13 that accom-

pany the inherent precipitate of Zne2%Fe alloy in the form of

Zn11Fe [19,20] and Zn126Fe13. The formation of (Fe, Mn) Zn13

phase mainly relates to the similarities between Fe and Mn in

terms of crystal structure and atomic radius. Both elements

have a BCC structure with about 3% differences in atomic

radius (161 p.m. vs. 156 p.m.), which enables Mn to replace

some of the Fe atoms in this phase.

The direct cell viability assessment of this study is in

accordance with the indirect cell viability analysis from a

previous study by the authors [33]. In both cases the addition

of 0.8%Mn to the base Zne2%Fe alloy had a favorable effect on

cell viability. This was demonstrated by the relatively

increased number of adherent cells per unit area in Zne2%Fe-

0.8%Mn alloy (Fig. 13) and by cell viability of 95e120% after 24

and 48 post incubation. In both studies the favorable effect of

Mn on cell viability was more dominant after 48 h post incu-

bation, which emphasizes the positive effect ofMn. In general,

our results are in accordance with the findings of Prasadh

et al. [42] and Wang et al. [43] who found a favorable effect of

Mn on cell viability in Mge2%Zne1%Mn and MgeZneCa al-

loys, respectively. The cell viability results in tandemwith the

reduced passivation effectiveness, suggest that the biocom-

patibility of a Zne2%Fee0.8%Mn arterial implant may be su-

perior to that of the Zne2%Fe reference alloy, even though

considerable mechanical performance has been sacrificed.

Future work could focus on uniformly distributing nano-sized

secondary phases to improve corrosion uniformity.

Overall, the results of this study demonstrate the potential

of Zne2%Fee0.8%Mn alloy to serve as a biodegradable struc-

tural implant material. The addition of 0.8%Mn improves the

specific strength and the direct cell viability of the Zne2%Fe

alloy. However, it also reduces the passivation capability and

consequently the stress corrosion and corrosion fatigue

resistance. This practically means that the potential applica-

tion of biodegradable Zne2%Fe-0.8%Mn alloy in implants that

are exposed to stress corrosion and corrosion fatigue condi-

tions should be done in caution to avoid premature failure.

Hence additional in-vivo examinations are essential to

confirm the potential of using this alloy in medical

applications.

5. Conclusions

Although the addition of 0.8%Mn to Zne2%Fe alloy has a

favorable effect on strength and direct cell viability under in-

Fig. 13 e Number of cells per area post incubation after 24 and 48 h of exposure.
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vitro conditions, it is accompanied by increased sensitivity to

localized corrosion attack and reduced passivation capabil-

ities. Consequently, the stress corrosion resistance at slow

strain rate tension and under cyclic loading is decreased

particularly in terms of time to failure (TTF) and fatigue

endurance, respectively.
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