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The extent of droplet clustering in turbulent clouds has remained largely unquantified, and yet is of
possible relevance to precipitation formation and radiative transfer. To that end, data gathered by an
airborne holographic instrument are used to explore the three-dimensional spatial statistics of cloud droplet
positions in homogeneous stratiform boundary-layer clouds. The three-dimensional radial distribution
functions gðrÞ reveal unambiguous evidence of droplet clustering. Three key theoretical predictions are
observed: the existence of positive correlations, onset of correlation in the turbulence dissipation range, and
monotonic increase of gðrÞ with decreasing r. This implies that current theory captures the essential
processes contributing to clustering, even at large Reynolds numbers typical of the atmosphere.
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Collections of dense particles residing in a turbulent fluid
are ubiquitous in natural and applied systems, from dust in
the interstellar medium, to droplets in a cloud, to fuel spray
in a combustion chamber. The spatial distribution of such
particles is relevant to processes such as collision rates and
radiative transfer, and therefore can influence rates of
planetessimal or rain formation, and the optical properties
of clouds relevant to the albedo of planets [1–4].
Studies over the last two decades have shown that dense

particles in a turbulent fluid tend to cluster [5–19]. More
explicitly, extensive study has resulted in the following
physical picture: spatial correlations between particles
(1) are positive in sign, i.e., particles tend to cluster in
common regions of the turbulent flow, (2) have clustering
that is observed within the dissipative range of turbulence,
beginning at scales of order 1–10 times the Kolmogorov
length scale, and (3) have a correlation strength that
increases monotonically with decreasing separation dis-
tance (as a power law).
The physical picture above is based on the simplest,

limiting scenario of small particle inertia, a large particle-
to-fluid density ratio, a particle diameter much less than the
dissipation scale of the turbulence, no particle-particle
interactions, monodisperse uniform particles, no gravita-
tional settling or other uniform drift speeds, and the
existence of fully-developed steady-state turbulence.
More recent work has attempted to determine whether

the physical picture changes if some of the assumptions
in this limiting scenario are relaxed. Theoretical work
has examined the impact of including polydisperse
particles and including a uniform drift [15,19–21], and
careful laboratory observations have shown that spatial

correlations are (as expected) suppressed in the presence of
gravitational sedimentation or polydispersity in the particle
Stokes number [22–27].
A central question that remains centers on scale depend-

ence, which is of practical interest in geophysical and
astrophysical systems: Does particle clustering in simula-
tions and laboratory experiments with maximal spatial
extents less than a meter translate quantitatively to systems
such as atmospheric clouds with scales of kilometers, or to
astrophysical systems with vastly larger scales? This is
essentially a question of Reynolds number (Re) dependence,
because of the implicit dependence on the energy-injection
length scale L: Re3=4 ∼ L=η with η the Kolmogorov length
scale. Typical laboratory and simulation scale ratios reach
order L=η ≈ 103, whereas L=η ≈ 106 and above are of
interest for rain or planet formation. Turbulence is known
to become strongly intermittent in the distribution of
acceleration and energy dissipation with increasing Re
[28,29], and because inertial clustering is a dissipation-
scale phenomenon the Re dependence is open to debate.
Because systems with such wide ranges of length scales

are currently out of reach of simulation and most laboratory
capabilities, this study presents direct, three-dimensional
measurements of in-cloud particle spatial correlations using
an airborne digital-holographic instrument. While the
realities of limited sampling statistics due to lack of
statistical homogeneity in atmospheric flows and broad
particle size distributions make a quantitative comparison
to theory quite challenging at this stage, we are able to
search for the three general characteristics of inertial
clustering described in the first paragraph at Reynolds
numbers inaccessible via other means. The results can then
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be assessed for their relevance to problems such as rain
formation rate or cloud albedo modification through
pollution or even geoengineering.
In situ atmospheric measurements have been used to

estimate several metrics of cloud particle clustering (see,
e.g., Refs. [30–39]), but here we focus on the radial
distribution function gðrÞ because of its direct link to the
theoretical developments previously described. Empirically,
gðrÞ reports the ratio between the observed joint probability
of finding two particles with centers separated by distance
r� dr=2 and the theoretical joint probability of finding two
particles with centers separated by distance r� dr=2 in a
Poisson distribution with the same volume and number of
particles as measured. Mathematically,

gðrÞ ¼
XN

i¼1

ψ iðrÞ=N
ðN − 1ÞðdVr

V Þ ð1Þ

whereψ iðrÞ is a count of the number of particles having their
centers a distance between r − dr=2 and rþ dr=2 from the
center of the ith particle in themeasurement volume.N is the
total number of particles in the measurement volume V, and
dVr is the volume of the generalized n-dimensional shell
between radii r − dr=2 and rþ dr=2.
When no particle pairs are found with separation

r� dr=2, gðrÞ ¼ 0. When gðrÞ exceeds 1 for some value
of r, this implies that there are more particle pairs with
separations at spatial scale r than would be expected in a
Poisson distribution with the same total number of particles
distributed throughout the same volume (indicating spatial
clustering on this scale).
The rest of this Letter (i) addresses the question of

statistical confidence to identify a minimum critical spatial
scale for estimation of gðrÞ, (ii) presents (to our knowledge,
the first ever) in situ three-dimensional gðrÞ curves for
spatial scales larger than the critical spatial scale, and
(iii) discusses the broader implications of these gðrÞ
observations as they relate to our understanding of cloud
microphysical processes.
In order to reliably estimate gðrÞ from cloud measure-

ments and to identify signatures of inertial clustering, it is
crucial to use a measurement strategy that allows the
dissipation range to be reached with statistical significance.
Because for cloud turbulence η ≈ 1 mm, we desire some
means of estimating gðrÞ on mm scales. We use two
strategies to accomplish this measurement challenge:
First, we adopt digital holography, which allows for a
three-dimensional sample volume and, as shown later,
minimizes sampling uncertainty relative to more common
one-dimensional sampling instruments. Second, we sample
from clouds that appear statistically homogeneous in space
so that multiple samples can be averaged.
Specifically, we utilize the HOLODEC (Holographic

Detector for Clouds) instrument, which was deployed
during the CSET (Cloud System Evolution in the

Trades) experiment [40]. The CSET field campaign
occurred during July and August, 2015. This experiment
utilized the NSF/NCAR GV HIAPER aircraft [41] outfitted
with a large number of instruments [42] for measuring
thermodynamic, radiative, and cloud properties. The pri-
mary aim of CSET was to sample the transition of marine
stratocumulus to trade wind cumulus clouds, making it
ideal for the present study due to the occasional long
continuous sampling of stratocumulus decks at constant
altitude. HOLODEC is an in-line digital holography instru-
ment explicitly designed to explore cloud microstructure
[43–45]. The instrument has previously been used to
examine drop size distribution and liquid water content
fluctuations on the centimeter scale [46], and the behavior
of the instrument during CSET has been validated by
comparison to co-collected cloud data in different parts of
the particle size domain [47].
This study uses HOLODEC data from four intervals

during two of the CSET research flights. The four flight
intervals were chosen based on (1) their nearly constant
flight altitude, (2) continuous or nearly continuous collec-
tion of holograms that meet the sampling criteria of 10-μm
minimum droplet size and 100-particle minimum per
sample volume, and (3) having a relatively stationary drop
number concentration throughout the interval. Hologram-
by-hologram drop numbers, mean drop sizes, and size
distributions for each of the four flight intervals are shown
in the Supplemental Material [48]. HOLODEC takes
images at a frequency of 3.3 Hz, so at nominal flight
speeds of 136 m=s, consecutive holograms are located
approximately 40 m apart from each other. In an effort to
ensure that only reliable data are used, this Letter focuses
on the analysis of detected particles larger than 10 μm in
diameter located within a 3.6 cm3 subvolume of each
hologram. More complete information associated with
the CSET HOLODEC data set and considerations related
to subvolume selection can be found in Refs. [47,49].
Details about the four intervals selected are presented in

Table I. For each flight interval, estimates of the turbulence
energy dissipation rate (ε), mean-interval St (τp=τk relating
particle inertial response time to Kolmogorov time scale)
and Sv (vt=vη relating terminal fall speed to Kolmogorov
velocity scale) were obtained by combining HOLODEC
data with 25-Hz flight data [50]. The ε was computed by
estimating the magnitude of the flat-portion of the second
order compensated structure function of the GPS-corrected
vertical velocity component of the wind. The St and Sv
were estimated by using the mean measured cloud drop
diameter, estimated value of ε, and other locally measured
thermodynamic variables from the 25-Hz flight data, as
described elsewhere [51].
We now consider the question of sampling uncertainty

versus spatial scale r. Assuming statistical homogeneity
over the 3.6 cm3 sampling volume of an individual holo-
gram, the uncertainty in the evaluation of gðrÞ for a single
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hologram is solely driven by sampling variability, which
depends on (1) the size and shape of the sample volume,
(2) the scale of interest r, and (3) the number of particles in
the hologram N. Since sampling uncertainty is related to
shot noise in counting statistics, the uncertainty in gðrÞ
increases with decreasing r (as a spherical shell has
dV ∝ r2dr). Further, there is substantial hologram to
hologram variability in the number of cloud particles
present (e.g., see figure in the Supplemental Material [48]).
To illustrate, we consider an example that highlights the

influence of particle number and sampling volume shape
(see table in Supplemental Material [48] for more details).
A 3D volume matching the size and shape of the
HOLODEC sample volume is compared to a 1D volume
matching that sampled by a single-drop counting instru-
ment (like a Forward Scattering Spectrometer Probe [34])
sampling an equivalent 3.6 cm3 volume. The cloud droplet
concentration is chosen as either 70 cm−3 or 300 cm−3

(approximately the range of values seen in the four flight
intervals in this study). The values of r and dr chosen are
the same ones used in the rest of this study.
To estimate the uncertainty in gðrÞ, we use an ad hoc

method designed to quantify the plausible sampling vari-
ability. If N is the number of observed particle pairs
separated by r� dr=2 and P is the number of expected
particle pairs separated by r� dr=2 in a Poisson distribu-
tion with the same number of particles, then we know
gmeasðrÞ ¼ N =P. We define

g�ðrÞ≡N �
ffiffiffiffiffi
N

p

P ∓ ffiffiffiffi
P

p ð2Þ

using the assumption that the uncertainty in N and P scale
as N 1=2 and P1=2 (counting variables), respectively. For a
measured gmeasðrÞ, the true intrinsic value of gðrÞ likely lies
between g−ðrÞ and gþðrÞ.
Figure 1 shows regions bounded by g−ðrÞ and gþðrÞ as a

function of rwhenN ¼ P; these are calculated curves (not
corresponding to simulation or real data) that demonstrate
the uncertainty due to sampling statistics only. Though
gðrÞ≡ 1 by construction, a measurement of gðrÞ could
potentially end up anywhere in the gray-shaded region.

The figure clearly demonstrates that using a fully 3D
measurement allows access to the mm-scale range by
diminishing the sampling uncertainty for a single holo-
gram. Specifically, HOLODEC sample volumes can be
used to measure gðrÞ on scales larger than ∼1 mm, thereby
allowing the onset of the dissipation range to be examined.
These sampling considerations, along with consideration of

FIG. 1. Quantifying the uncertainty due to counting statistics in
the estimation of gðrÞ as a function of scale for differently shaped
volumes and realistic cloud droplet concentrations. Each panel
shows a range where the measured gðrÞ might lie when the
intrinsic system gðrÞ is known to be unity. These curves are
derived from applying

ffiffiffiffi
N

p
uncertainty estimates to the counting

statistics needed to compute gðrÞ. The 3D volumes match the
aspect ratio of the HOLODEC sample volume, while the 1D
volumes are designed to mimic a typical single-particle-counting
instrument viewing the same total volume. Note that the scale of
the 1D volume panels had to be magnified, since the uncertainty
is many times larger for 1D data sets. Individual hologram gðrÞ
estimates for HOLODEC data drop below 10% uncertainty for
spatial scales somewhere between 1 and 3 mm, depending on
droplet number concentration.

TABLE I. Summary information for flight intervals used in this study. As noted in the text, particles less than 10 μm in diameter and
holograms with fewer than 100 retained droplets in the sample volume were discarded. The final four columns indicate mean interval-
averaged or -estimated values of retained droplet diameter, turbulent energy dissipation rate, Stokes number, and Settling parameter.
Flight interval-averaged standard deviations for droplet diameter, St, and Sv are presented in the Supplemental Material [48].

Interval
ref Flight date

Time interval
(UTC)

Analyzed
holograms

Retained
droplets hDi (μm) ε (m2=s3) St Sv

A 7 July 2015 16:19–16:31 1438 459 189 15.0 9.9 × 10−4 5.5 × 10−3 0.61
B 7 July 2015 17:15–17:26 2005 2 014 146 15.0 1.2 × 10−3 6.1 × 10−3 0.59
C 27 July 2015 16:31–16:41 1835 888 511 16.0 2.7 × 10−3 1.0 × 10−2 0.54
D 27 July 2015 17:20–17:27 1278 346 550 20.2 1.6 × 10−3 1.3 × 10−2 0.99
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instrument inhomogeneities (see Supplemental Material
[48] for details), motivate averaging gðrÞ from multiple
holograms to reduce sampling uncertainty.
Figure 2 shows the interval-averaged radial distribution

functions for the four flight intervals. In addition to plotting
the flight-interval averaged gðrÞ (solid black curve), two
separate regions are marked to quantify the interval-
averaged uncertainty. The pale maroon shading is found
by extending the single-hologram uncertainty results
shown in the left panels of Fig. 1 to an entire flight interval.
Essentially, the thickness of the envelope is scaled byN−1=2

h
where Nh is the number of holograms in the interval. The
gray shading is determined through Monte Carlo sampling
from 100 simulants of each flight interval. For each
simulant a sequence of holograms with the same number
of particles per hologram as the underlying flight intervals
was created. All particles were placed in each simulated
hologram’s 6 mm × 6 mm × 10 cm spatial domain per-
fectly randomly. For each of the 100 simulants, the mean
gðrÞ was computed; all 100 simulant mean gðrÞ curves lie
within the gray region in Fig. 2.
The two independent methods for determining sampling

uncertainty allow us to conclude that the measured gðrÞ
show statistically significant clustering of cloud droplets in
the range of approximately 1–5 mm. We observe that the
measured gðrÞ are consistent with the three core predictions
of the theory of inertial-particle clustering in turbulence.
Namely, (1) the spatial correlations between particles are
positive in sign, (2) clustering is observed within the
dissipative range of turbulence, beginning at lengths of

order 10η, and (3) the correlation strength increases
monotonically with decreasing separation distance.
Regarding the third point, the theory predicts power-law
behavior, but the accessible range of scales is too limited to
allow a reliable conclusion in that regard (although the
curves are at least qualitatively consistent with power-law-
like behavior). The consistency with this theoretical picture
suggests that other mechanisms not accounted for in the
theory, such as particle charge and microhydrodynamic
interactions, are not playing a strong role at the measured
scales. Because of the large length and time scales typical
of atmospheric flows, the measurements also suggest that
clustering behavior does not change drastically at large
Reynolds numbers.
It is worth emphasizing that the requirement of averaging

over multiple holograms, which required that we sample in
a stratocumulus environment, places us in conditions least
favorable to detect cloud droplet inertial clustering. Isolated
convective clouds have much higher turbulence energy
dissipation rates and therefore tend to favor higher Stokes
numbers and lower settling parameters [51]. Theory and
computation suggest that the shape and the magnitude of
the radial distribution function in a turbulent environment is
related to the intensity of the ambient turbulence (see, e.g.,
Refs. [5,15,18,20,21]). Indeed, the flight-interval averaged
clustering has signals of the same order of magnitude as
those observed in the laboratory at lower Reynolds num-
bers, for realistic particle size distributions [27].
If small gðrÞ values are common in the atmosphere, it

may help to understand why earlier, smaller-scale studies of

FIG. 2. The interval-averaged radial distribution functions for each of the four flight intervals examined in this study. The observed
radial distribution functions exceed the maximum value expected based on sampling uncertainty throughout the range 1–5 mm in all
flight intervals. Three key theoretical predictions are observed: positive correlation, onset of correlation in the dissipation range (less
than approximately 10 mm), and monotonic increase of gðrÞ with decreasing r. The two shaded regions quantify the sampling
uncertainty via two independent methods explained in the text.
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atmospheric particulate clustering using holographic mea-
surements [32,52–55] gave somewhat conflicting results; it
was only due to the large amounts of data available in this
study that the sampling variability could be lowered enough
to get an unambiguous confirmation of weak clustering.
With less data, our results—like many of those in the
studies before ours—would have been inconclusive.
In summary, holographic measurements have led to the

first fully three-dimensional radial distribution functions
from in-cloud droplet spatial positions. Sampling consid-
erations require subtle consideration of the observed radial
distribution functions, but a simple argument based on
instrumental and physical parameters showed that there
exists a critical spatial scale (∼1 mm) above which data
from the HOLODEC instrument can be reliably used in
realistic cloud conditions to estimate the radial distribution
function. Analysis of this radial distribution function from
four distinct flight-intervals during CSET revealed sta-
tistically significant and unambiguous evidence of weak
clustering on scales between about 1 and 5 mm. The
measurements are consistent with three key predictions of
the theory: positive spatial correlations, onset in the
dissipation range of the turbulent flow, and monotonic
increase with decreasing spatial scale. Though these
clustering signals are small for these weakly turbulent
clouds, the ability to validate the existing theoretical
picture, even at a semiquantitative level, suggests that
the theory can be extended to other conditions encountered
in the atmosphere.
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